A Bibliography of Publications about the Fast Multipole Method

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 March 2015
Version 2.97

Title word cross-reference

1 [TPKP12]. $15K$ [WGL+98]. 2 [GROZ04, Lab98, Liu08, ON08a, RS94, VGZB09, WYW05, WXQL08]. 3 [BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GP08, GD03, JMC97, NW89, NH97, ON08b, PG94, Sar03, WY05, WLL+07, iYNK02, YB01, ZY05]. $50/$Mflop [WSB+97]. 7.3/Mflops [KFM99]. 3 [PG96b]. $h = 0$ [DNS90]. K [MG05, CK95b]. LU [MG07]. R^N [CBN02]. N
[Aar85, Alu94, APG94, Ali96, AGPS98, AAL+01, And99, Ano94a, Ano94c, ADB94, ADBG99, Bag02, Bar86, BADP96, BAAD+97, BADG00, BAD01, BS97, BN97, BOX00, Bor86, BDS07, BME90, BME93, BEM94, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+08, FM95, FM96, FQG+92, HTG02, HJ96, IFO09, IIM05, Kat89, KFM99, KFM01, KMT94, LKM02, Liu94, MIES90, MNTS94, MG95, MD12, MG05, MMC99, MCD97, NM96, Oku96, PGB05, Per99, PRL03, SW99, SL96, Sha06, SP99, Sin92, SH95, SHG95, RHT+12, TMES94, TWYC06, TY01, TY02, Ten98, TL14, WPM+02, WS92, WS93, WN14, WSL95, WHS+12, Xu95, YF05, Ano94b, CK95a, CK95b, GKS94, GKS98, Gre90b, HNY+09, HN10, HS95, KK95, Xue98]. $N \log N$
[AO10, DYP93, ADO11]. ν [SH07]. $O(\log_2 n)$ [JBL02]. $O(N)$
[BSL11, Deh02, DTG96, OKF14, Xue98]. $O(N \log N)$ [BH86, FGM11, PJY95]. $r^{-\lambda}$
[CJ05]. $R^{-\nu}$ [SH07]. $r \pm 1/2$ [Pan95].
-Body [Ano94b, CK95b, GKS94, KK95, BEM94, GKS98, Gre90b, HNY+09, HN10, HS95, Xue98, AGPS98, AAL+01, Aud99, AD99, Bag02, BADG00, BS97, BN97, BOX00, FM96, HTG02, HJ96, KFM99, KFMT00, SWW94, SHC95, SHT+95, Ten98, WPM*02, WS93, Xu95, YF05, Aar85, Alu94, APG94, Alu96, Ano94a, Ano94c, ADBGP99, Bar86, BADP96, BAA+97, BAD01, BDS07, BME90, BME93, CK95a, DH86, Dem95, Dem96a, Dem96b, DHM03, FRE+08, FM95, FQG+92, IFM09, IHH05, Kat89, KMT94, LKM02, Liu94, MIES90, MTES94, MT95, MD12, MG05, MMC99, NHM06, Oku96, PGB05, Per99, PRL03, Sal96, Sha96, SP99, Sin92, SRK+12, TME94, TWY06, TY012, TY012, TL14, WS92, WN14, WSWL95, WSH+S12].

- [NH97, BDMN03b, CDM98, DDL13, Dar02, GROZ04, GD03, JMC97, NW89, Sar03, TPKP12, WYW05, YB01, ZY05].

-dimensional [Lab98].

-means [MG05].

-Nearest-Neighbors [CK95b].

/ [Ano95a, KK88].

3 [OME+92]. 3-D [WY07a]. 3051-66 [YB97]. 33rd [IEE92a]. 3D [LO96b].

4 [Ano94a, FM95, FM96, MTES94, MT95, TMES94]. 42 [HN+09].

5 [KFM99, KFMT00]. 512 [MHI07]. 512-core [MHI07]. 512-Gflops [MHI07].

6 [MKF00, MF01, MKFD02, MFKN03].

8 [MD12]. '88 [KK88]. 8th [BGPW00].

= [Ano97b].

A-posteriori [XTH09]. above [GSC01].

Accelerate [CS98b, LSCM96, LKM02, TYNO12].

Accelerated [BCL+92, EB96, SH07, WN14, BHE+94, BHER94, EB94, EG01, GD09, GODZ10, GAD13, Ham11, JH08, LCM07, MR07, Tak14, WLL+07, ZD05].

Accelerating [GHRW98, MG09, WC94a].

Acceleration [CKE08, LCZ07, SWW99, VCM00, BK96, KCF+05, SGD+04].

accelerator [ATMK03, MD12].

accomplishments [Ano90].

Accuracy [CDCD97, DY98, CB09, GL96, JP89].

Accurate [SRPD06, AHP93, Dac06, EG09a, EG13, HHKP09]. achieves [WGL+98]. Achieving [SSF96].

ACM [IEE02, Kar95]. ACM/IEEE [Kar95, ACM97].

acoustic [AD05, BSL09, BN07, CWK08, GF06b, GF06a, HW10, TCW08, WJYO06].

acoustic-structure [GF06b, GF06a].

acoustics [FPG05, OLL04]. Acta [Ise97].

Adaptation [McK96]. Adapted
Adaptation [NT96, NT94], adaption [BLA05].

Adaptive [BT95, BSL09, BS97, BFO99, GE13, GP08, HEGH14, KK95, NPR93, SHHG93, SHT+95, Ten98, ZT97, BCP08, CGR88, CGR99, CHLO6, CFR10, FOCB96, GY08, GL96, HJZ09, LCL+12, LB92a, LCHM10, LCHM13, PRL03, YBZ04, ZHPS10].

addition [HC08, KSC99].

address [HS95].

Advanced [HM86, Win95, dCGQS06, TYON12].

Advances [BLA05, SM05].

address [HS95].

Analyse [Ano90].

Analyzing [CSMCxx, JMC97].

Angeles [AG88, Rod89].

Anger [CC04].

angular [GY08, WHG96b].

Anger [CC04].

Annual [Ano95b, Ano96, Ano97a, IEE92a, Mak93, PA02].

approximation [AP99, AP00, BH89, ERT12, HAS02, Hol12, JMBC98, LCK11, Sat10, VTG91, Ano97b, Car07, Car09, Dar00a, EG13, JMB98, JKCGJ08, KSC99, NH97, OLL04, Pel98, RC97, SGD+04, SSG+04, SS07, Sud04, WY05, WY07b, WY07a].

Analytical [ABD04, BSSF96a, LCD14, BSSF96b, DDL13].

Analytical [Gue98, CC13], analyze [SHM98], Analyzing [CSMCxx, JMC97].

anteploration [Sar03].

Appendix [Ano90].

Application [LSCM96, LJ96b, LJ96a, NH97, SGD+04, VOD08, WSS+95, DHM03, ESSR01, GROZ04, HNO06, IWM+02, SGD+04, YR98].

Applications [CK95b, CCKL09, OSW05, BHER94, HNY+09, LGG+09, On07, ON08b, PDS9, ZY05, dCGQS06, TDBEE11].

Approximate [BGPW00, RSS96, Ano95b, Ano96, Ano97a, BN07, MB05, OCR08].

Approach [AC94, SHMC97, WC94a, AHLP93, BWS+95, KAN95, KAN96, PGB05, SHM98, WJGH96a].

approximations [DC07, HW11, Lem04, RŚZ09].

April [Dem95, Dem96a, Dem96b].

Aqueous [GP93].

Arbitrary [LS93, EIM+92, GSC01, GL96, KS98b, LM02, Tau03b, YRGS10].

Architecture [LSCM96, AO10, GP08, ST06].

approximations [DC07, HW11, Lem04, RŚZ09].

April [Dem95, Dem96a, Dem96b].

Aqueous [GP93].

Arbitrary [LS93, EIM+92, GSC01, GL96, KS98b, LM02, Tau03b, YRGS10].

Architecture [LSCM96, AO10, GP08, ST06].
Architectures [SHG95, HGD11, LCL+12, MMC99],

arithmetic [LKM02], armed [KLM+09],

array [CKS91], article [Dac10], ASCI [WSB+97], aspects [CHIN03], assemblies [CPP93, LDB96].

Astrophysical [Ano94a, KFM99, MTE94, MT95, MFKN03, WS92, HN10, TME94].

Astrophysics [FQG+92, HNY+09].

asymptotic [BK96, Dar00a].

atom [DKG92c, FRE+08].

Atomic [AC94, DKG92a, Kon93].

Atoms [McD97, Pie93].

August [IEE96b, RSS96].

Australian [Ano92].

Automatic [RGKM12].

Autotuning [HEGH14].

Avalon [WGL+98].

Axial [SMC97, SM97].

B [Ano90].

balance [BAAD+97].

Balancing [SHT+95, Ten98, FG96, MG05].

Baltimore [IEE96a, IEE02].

Barnes [AAL+01, Ano94b, BJWS96, BGLM05, GKS94, GKS98, SHT+95, WSM+93].

barrier [WHG96b].

Based [CD13, GSS99a, GSS00, MPPA96, YB01, AO10, BLA05, BN98, BHR05, FMI+93, GROZ04, GKD09, GP08, HHP90, HLL08, LM02, LDB96, Liu08, NN12, Sud04, Tak14, WL06, ZHPS11].

bases [FBIJ04, TW03].

basis [BLA05, BL97, BN98, BCR01, Buh03, CB02, GH08, GDDC08, GD07a, LCZ07, Yin06].

BE [SGD+04].

Beach [IEE95].

Behaviour [ON09a].

Beltrami [SHMC97, SM97, SMC97].

BEM [Ano88, BN07, FP05, GP06b, GP06a, HKS05, MB05, NH97, Tau03a, WYW05, XWT09, XTH09, XYW+08, hYTwbWL08, YBK+11, ZY05].

BEM-FEM [MB05].

Beowulf [WFW02].

Between [Pie93, CD198, RSZ09].

Beyond [ZH14].

Bianisotropic [SHMC97, SHM98].

BIE [Liu08].

biharmonic [GD06].

billion [YBK+11].

binary [PD89].

binding [KSS10].

biomacromolecular [SKT94].

Biomolecular [SRPD06, YBK+11, KP08, LCM07, LCHM10, LCHM13, SKT93].

biomolecules [AO10, FGM11].

Biot [Ros06].

black [FD09, MFK00].

black-box [FD09].

BLAS [CFR08, CFR10].

Blobs [DD95].

blocks [CM94].

block-diagonal [CM4].

Blue [FRE+08].

BO12 [LB91].

board [ATMK03].

Bodies [BT95].

Body [AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, CK95b, FM96, GKS94, HP95, HTG02, HJ96, KFM99, KFMT00, KK95, Pie93, SWW94, SHCG95, SHT+95, Ten98, WPM+02, WS93]

billion [YBK+11].

binary [PD89].

BLAS [CFR08, CFR10].

Blob [DD95].

blocks [CM94].

block-diagonal [CM4].

Blue [FRE+08].

BO12 [LB91].

board [ATMK03].

Bodies [BT95].

Body [AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, CK95b, FM96, GKS94, HP95, HTG02, HJ96, KFM99, KFMT00, KK95, Pie93, SWW94, SHCG95, SHT+95, Ten98, WPM+02, WS93]

billion [YBK+11].

binary [PD89].

BLAS [CFR08, CFR10].

Blob [DD95].

blocks [CM94].

block-diagonal [CM4].

Blue [FRE+08].

BO12 [LB91].

board [ATMK03].

Bodies [BT95].

Body [AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, CK95b, FM96, GKS94, HP95, HTG02, HJ96, KFM99, KFMT00, KK95, Pie93, SWW94, SHCG95, SHT+95, Ten98, WPM+02, WS93]

billion [YBK+11].

binary [PD89].

BLAS [CFR08, CFR10].

Blob [DD95].

blocks [CM94].

block-diagonal [CM4].

Blue [FRE+08].

BO12 [LB91].

board [ATMK03].

Bodies [BT95].

Body [AGPS98, AAL+01, And99, ADB94, Bag02, BADG00, BS97, BN97, BOX00, CK95b, FM96, GKS94, HP95, HTG02, HJ96, KFM99, KFMT00, KK95, Pie93, SWW94, SHCG95, SHT+95, Ten98, WPM+02, WS93]
VGZB09, WY05, WY07b, WY07a, WSWL95, XJM08, Yin09, iYNK02, YSM05, BR93.

Boundary-Integral [LJ96b].

boundary-value [Lin95]. Bounds [GSS98a, GSS00]. box [FD09]. breast [ES04]. Broadband [WJYO06, GD09]. Brownian [DHM03]. Building [TD09]. buried [ERS01, GSC01].

GD03, GD05, GODZ10, McD97, MSV92, Pie93, YRGS13, ATMK03, AO10, FOCC96.

Computational [Bat03, BGPW00, JBL02, Kat89, Les96, Mat95, TDBEE11, Ano95b, Ano96, Ano97a, OMH+94, SM05].

Computationally [KM00].

Computations [ERT12, Pan92, KAN95, KAN96, OKS09, SyI03, VOD08, WJGHG96a, YF98].

Computer [AT87, Ano94a, BGGT90, BP88, CKE08, FM96, HE88, IEE92a, KFMT00, MTES94, MFKN03, Bar86, EIM+92, EFT+93, FMI+93, FM95, HFKM98, HG90, KMT94, MIES90, MT95, MHI07, OMH+94, OYK+14, OME+92, SCM+90, TMES94].

Computers [FHM99, LCP93, MT98, DK93, LBI+97, NKV94, OCK+03].

Computing [ACM97, B+95, BGI+99, HTA+97, Hol12, IEE94b, IEE96b, IEE98, LCK11, Mat95, PA02, SMHC97, WWF02, WSY+95, CGL03, CPP93, MHI07, MMC99, PRT92, Rod89, SH07, Xue98].

concise [PJY96].

conditions [CWHG97, SKT93, Sin95].

Conducting [GA96a, HAS02].

conduction [RO04].

Conference [ACM96, ACM97, Ano92, Ano95a, B+95, BR93, HTA+97, Hol12, IEE94b, IEE96b, IEE98, LCK11, Mat95, PA02, SMHC97, WWF02, WSY+95, CGL03, CPP93, MHI07, MMC99, PRT92, Rod89, SH07, Xue98].

Converting [GA96a, HAS02].

Connected [CC13].

constant [Rei99].

Constrained [PGB05, Sal96].

Constructing [BF78].

construction [HHKP09].

controlled [Dac95].

control [GK09].

control [Dac09, Dac10].

controls [JP89].

Convention [ACM99, Hol12, Kar95].

Convergence [VTG91, Lab98, RO04].

Correlations [ZQSW94].

Cosmological [Bag02, BH88, IFM09, YF05, Spr05].

Coulomb [ADG96, BFO99, CFH89, DNS90, DKG92a, DKG92b, DKG92c, DTG96, GGM01, GH02, HJZ09, KS98a, SP96, SFP96, ZHPS10].

Coulombic [PG96b, SKT93].

Coupled [LS05, PNB94, SGD+04, NMDK99].

Coupling [BDMN03a, BDMN03b, Dar02, DM07, GBMN06, MB05]. course [BG97].

CPU [HEGH14].

Creep [Kro99, Kro01, Kro02].

Cross [Gue97, GP08].

Crystal [MPPA96].

crystals [ON08b].

CS [Dem95, Dem96a, Dem96b].

Cubic [WWF02].

Current [CGL03, Les96].

curved [GH08].

curves [STZ14].

Custom [PA02].

cutoff [KLM+09].

cutoffs [DKG92b].

Cylindrical [CG97, ZCG00].

D [NH97, BDMN03b, BHR04, BHGR04, CDM98, DDL13, Dar02, GROZ04, GP08, GD93, GA96b, JMC97, Liu08, NW89, ON08a, ON08b, PG94, RS94, Sar03, TPKP12, VGB90, WW05, WW05, WW07, WLL+07, WXQL08, yYNK02, YB01, ZY05].

Dame [IEE96c].

Dangers [BS93].

Dark [ZQSW94].

Data [AAL+01, And99, BGLM05, HJ96, LY14, NPR93, SS89, SHT+95, WPM+02, BADP96, BAAD+97, DR95, KPO8, LOSZ07a, RZ90, WS92, YGR01].

Data-driven [LY14].

Data-Parallel [HJ96, NPR93].

data-sharing [BADP96].

data-sparse [LOSZ07a]. databases [Mak93].

DC [IEE94c].

debugging [RC97].

December
eigendecomposition [CG04]. Eighth [HTA+97]. elastic [CCZ97, TC09].

eigendecomposition [CG04]. Eighth [HTA+97]. elastic [CCZ97, TC09].
Excitation [GIS98], execution [BDS07, LY14, YF98], exhibition [Ano95a]. Existence [YSM05], Expansion [Le 97, OC05, Pan95, SPS96, AHLP93, OC03, WL96, WXQLO8], Expansions [Boy92b, CJ05, McD97, RGKM12, AR91, GB11, Lem98, MD98, SH07], explicit [JP89], exponential [TWYC06]. Expressions [Pan95, CS82]. extended [KS11]. Extending [CDJ07, DC07]. Extension [GY08, TYON12]. eXtensions [TYON12]. exterior [AP03]. Extraction [YB01, JC04, NW89]. extreme [WSH+12], extreme-scale [WSH+12].

facility [RTZ+96]. FAMUSAMM [EGHT97]. Fast [LSCM96, HW11]. fast [NPR93, Of07, OKS09, PSN04, Pri94, RRR05, RW94, RS94, SWW94, Sch94, SG97, SHMC97, SMC97, SHHG93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, SP01, STZ+14, WC94a, WC94b, WLMP99, WY05, WY07b, WXQL08, WSW+95, XWY+08, XJM08, YR99, Yin09, YNS+09, YB01, ZY05, AHLP93, AR91, AGR88a, AGR88b, AP99, AP00, AP03, Ami00, ATM03, ATR+12, BDMN03a, BDMN03b, BSL09, BG97, BWS+95, BV96a, BSS97, BCL+92, BP03, BSSF96a, BSSF96b, BK96, CDJ07, CC04, CC05, Car90, CRG98, CWH97, CDF10, CWK08, CCKL09, CRG99, CHL06, CC+06b, CRG01, CPP93, CWD08, CRW93, CFR08, CB09, Dac09, Dac10, Dar02, DM07, DM12, Dar0a, Dar0b, DH04a, DH04b, DC07, DRS96, ERS91, ES04, Eng11, EG08, EG09a, EG09b, Erg11, EG01, FGM11, FLZ97a, FLZ97b, FPG05].

Fast [FD09, Fu98, GDDC08, GBMN06, GF06a, GF06b, GIS98, GY08, GR02, GROZ04, GKD09, GE13, GR87, GR88b, GS99, GS90, GH02, GD05, GD09, GODZ10, Han11, HHP90, HS08, Hav03, HLL08, HW10, HW11, HU97, HR98, HGD11, HJZ09, Kan15, KM00, KSS10, KS11, Kon93, KLM+09, KS98a, KS98b, KS04, KP05a, KP05b, KP08, KAN95, KAN96, Lab98, LOSZ07, LCL+12, LB91, LB92a, LB92b, LJS98, LZL04, LGG+13, LC14, Lii08, LY14, LC07, LCM07, LCM10, LCM13, LW+02, Mak99, MG07, MG09, MR07, MRH14, NT09, NN12, NH97, OR89, OSW05, OSW06a, Ofo8, OCK+03, OYK+14, OMC08, OLL03, OLL04, OFH+08, OP07, ON09a, PJY96, PSPS94, PSPS95, PS895, PA14, Rah96, RRR03, RSZ09, RTZ+96, RO04, RTA+08, RS97, RS06, Rc07, SGG+04, Sar03, Sar10].

Fast [SL97a, SL97b, ST06, SWW99, SM97, SMH98, SH07, SKT94, Sin95, SKPP95, SP97, Sta95b, SB96, ST02, SK04, Sud04, Syl03, Tak14, Tau03b, Tau04, TCW08, TC90, TG08, TD09, VOD08, WJYO06, WL96, WY05, WY07a, W+07, WFC08, WHG94, WJGHG96a, WHG96a, WJG96b, WHG96b, WSLW95, XWT09, YRSG13,
Fast-multipole
[Dar97, EGG01, Tak14, ZCL+98]. FCCM
[PA02]. FE [SGD+04]. February [B+95].
FEM [MB05]. FFT [TPKP12]. FTTM
[HLL08, LHL08, OLL04]. fiber [WY07a].
fiber-reinforced [WY07a]. Field
[LSCM96, PA02, ABD04, BHGR04, BHGR05,
HW11, MD98, OKS99, WFC08, Xue98].
Field-Programmable [PA02]. Fields
[C95b, Gre87, SHMC97, SM97, SB98,
YR99, CK95a, CG97, DC07, ESM98, Gre88,
GR88a, GM94, GH98, HR98, OLL03,
Pel98, ST06, SM97, VD08]. Fifth
[Ano92, IEE96b, MC92, IEE98].
Field-programming [BP03, YR98].
finite [Bar86]. Finite
[FST03, LJ96b, LJ96a, Beb06, Ich02, LS05,
LCZ07, SGD+04, Sat10, VV02].
Finite-Element [LJ96b]. finite-sized
[Sat10]. First [OKF14, AHLP93].
First-Principles [OKF14]. FISP
[SLCL98a, SLCL98b]. Fitted [ÁC94].
fitting [TWYC06]. floating [LKM02].
floating-point [LKM02]. Flow
[Fri94, ECL02, Gre90a, GKM96, GKO4,
NMDK99, Tau03a]. Flows [CCG+99,
WSP+95, BCH93, Kro99, Kro01, Kro02].
Fluid [SWW94, TDBEE11, Bat03,
OMH+94, VGB09, WSWL95]. fluids
[BPK85, LRJ+99, ZB14]. FLY
[BAD01, BCAD06]. FM [BN07]. FM-BEM
[BN07]. FMA [LQ96b], FMBEM
[CWK08]. FMD [LWM+02]. FMM
[C95+06a, EMRV92, HNO+06, HJZ09,
MRH14, No8a, No8b, ON98b, ON98b,
SGD+04, SB98, ZHS10]. Fock
[KAN96, WJG96a, KAN95]. Fokker
[Lem98, Lem04]. Force [Deh02, BH96,
EIM+92, JP98, Xue98, YRGS13].
force-calculation [BH86]. Forces
[BP88, CDM98, NT96, Pie93, BH03, CKS91,
DM90, LDB06]. Form
[CI05, AP99, BCP08, SH07]. Formation
[FM96, FM95, SWJ+05]. forms
[KSC99, Rah96, Rok98]. Formula [CL12].
formulae [NN12]. Formulation
[AAL+01, JBL02, CB14, CWK08, CCKL09,
CFR08, CFR10, DM07, GD07b, Liu08,
OSW06a, DM12]. Formulations
[Ano94b, GKS94, MG11, GKS98].
Fortran [GD98]. Foundations [IEE92a].
Four [BCR01]. four-dimensional [BCR01].
Fourier [Boy92b, EMT99, Boy92a, CD13,
DR95, EB94, EB96, HLL08, HW10, LHL08,
OLL03, OLL04, Sar03, ZHPS11].
Fourier-Based [CD13].
Fourier-series-based [ZHS10]. FPGAs
[KL92]. Fractional [WH96a], fracture
[XWY+08]. framework [TPKP12].
Francisco [B+95]. Fredholm [AHLP93].
free [BSL11, BKM90, Car06]. Frequencies
[GHRW98, DH04b, ZC00]. Frequency
[Nil04, BK96, DH04a, KMC09, ZC00].
frontiers [And08]. Fully [VTG91].
function [BLA05, BKM90, GDCC08,
GD07a, GDZ10]. Functional [DR96,
KAN95, KAN96, WJG96a, WJG96b].
Functions
[Boy92b, BL97, BN98, BCR01, Buh07,
CBN02, KMC09, LCZ07, Tau03b, Yin06].
Future [EMT99].

GADGET [Spr05]. GADGET-2 [Spr05].
galactic [MFK00]. galaxies [SWJ+05].
Galaxy [FM96, FM95]. Galerkin
[AHL93, AP03, HKS05, OSW05, WXT09].
Gauss [GS91]. Gaussian [BSSF96a,
BSSF96b, KS98a, Le 97, Ros06, Sal96].
Gegenbauer [CC05]. General
[LC04, McD97, BSL11, FG96].
Generalization [Boy92b]. Generalized
[ADO11, CBN02, GR02, KAN95, KAN96, ST06, SK04, WJGHG96a, YR98].
Generation [Sal96]. geometric [CDF10].
Geometries [MGM95, KS98b, NW89].
Geometry [SC94, TW03]. Gflops [MHI07, WGL+98]. giant [RTZ+96].
gigaflops [WSB+97]. GMRES [GGC06].
Good [Ten98]. GOTPM [DKPH04]. GPU [GE13, Ham11, HEGH14, Kan15, WN14].
GPU-accelerated [Ham11]. GPUs [HNY+09, HN10, YNS+09, YBK+11, YBNY12, YBNY13].
gradients [BSSF96a].
grain [Bar86]. grained [PA14].
graining [GB11]. granularities [BME93, BEM94].
GRAPE [Ano94a, CKE08, EIM+92, EFT+93, FM95, FM96, KFM99, KFMT00, MIES94, MTES94, MT95, MKF01, MKFD02, MKFN03, Mak04, MHI07, MD12, OME+92, TME94, TYON12, YF05].
GRAPE-2A [EIM+92]. GRAPE-3 [OME+92]. GRAPE-4 [Ano94a, FM95, FM96, MTES94, MT95, TME94].
GRAPE-5 [KF99, KFMT00]. GRAPE-6 [MF90, MKF01, MKFD02, MKFN03].
GRAPE-8 [MD12]. GRAPE-DR [MHI07]. graphics [GD08]. gratings [Sat10].
gravitating [TYON12]. Gravitational [CDM98, SWW94, DHM03, MD12, OME+92, SCM+90]. Gravity [BOX00, Xu95]. GreeM [IFM09]. Green [BKM09, Tan03b]. Greengard [Alu94, Alu96, HM95, SB98]. Green’s [CB14]. Grid [Ber95, Bor96, Boy92a, HTG02, Bes00, Car06, DM90, ZGI+10].
ground [TCW08]. Group [Wel91].
guided [Sat10]. guided-mode [Sat10]. Guidelines [BV96b, BV96a]. guns [NH97].
GvFMM [BSSF96a, BSSF96b]. half [BSL09, CB14, GSC01]. half-space [BSL09, CB14]. Halos [ZQSW94].
Hamiltonian [CDF10]. Hanover [Mak93].
hardware [ATMK03]. Harmonic [CAJ03, GD07b, GODZ10].
harmonics [PJY96, ST02, WL96, YR98]. HARP [KMT94].
HARP-1 [KMT94]. Hartree [KAN96, WJGHG96a, KAN95].
Hashed [WS93]. Haskell [TL14]. head [GODZ10, KMC09]. head-related [GODZ10, KMC09]. heavy [RTZ+96].
heavy-ion [RTZ+96]. Held [HTA+97, HM86, AG88, Ano97b, K+96, Rod89].
Helmholtz [AP03, BKM09, CD13, CHL06, CCG+06a, CCG+06b, CC10, CC12, DDL13, Dar02, GHRW98, GD03, GD09, GAD13, GS98, NN12, Nil04, OLL04, ON08a, RS97, Rok98, Sta95b, Sta95a, VW02]. Hermite [KMT94, NMH06]. Hierarchical [ADB94, HGD11, LCL+12]. Hierarchical-element [VCM00].
High [ACM97, BGI+99, BK96, CFR08, CFR10, FHM99, GBMN06, Hol12, IEE94b, IEE96b, IEE98, LCK11, Nil04, TYW06, WWF02, DC07, GH08, GYO8].
High-Density [WWF02]. High-frequency [BK96].
High-order [TWY06, DC07, GH08].
High-Performance [FMH99, IEE94b].
Higher [PNB94, RRR05].
Highly [BS97, OME+92, YBNY13]. Hilton [IEE90].
holes [MKF00]. homogeneous [CL91, YRGS13]. homogenisation [HNO06]. host [SHM98]. Hotel [IEE97].
Hut [AAL+01, Ano94b, BJW96, BGLM05, GKS94, GKS98, SHT+95, WSH+12, ZBS11].
Hybrid [HEGH14, JMC97, WN14, DKPH04, LZL04, LC93, OFH+08, SGG+04].
Hygla [WSB+97]. hyper [DHM03].
hyper-systolic [DHM03].
Hypercube
Karhunen [ST06]. Kernel [CWA14, MR07, YBZL03, YBZ04, Yin06, ZHPS11].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernels [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels
Karhunen [ST06]. Kernel [CWA14, MR07, YBZL03, YBZ04, Yin06, ZHPS11].
kernels [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Kernel [CWA14, MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
kernel-independent [MR07, YBZL03, YBZ04, ZHPS11]. Kernels [LCD14, GR02, PSN04].
Matrix
[PNB94, SP01, Car06, FG96, XWT09].

Matrix-free [Car06]. Matrix-vector [XWT09].

Matter [ZQSW94, FRE08].

May [AG88, IEE94b].

Mechanical [SGD04, WY05, WY07a].

Mechanical-electrostatic [SGD04].

Mechanics [BCM02, Bat03, HytWbWL08].

Media [GA96a, GA96b, GROZ04].

Medium [ZCL98].

MEG [KCF05].

MEG/EEG [KCF05].

Memory [YB01, BCOY93, DK93, KP05b, LBC91, LBCPP92, MMC99, RC97, Ske89].

MEMS [SGD04].

Mesh [BOX00, DYP93, DKPH04, KM00].

Meshes [HKS05].

Message [BLA05, YNS09].

Message-passing [KP08].

Metamaterials [OMC08].

Meter [WWF02].

Method [Alu94, AAL+01, And92, Ano94b, BT03, BPT+14, BVW96, BV96b, BL05, BH88, CL12, CS98b, CKB11, EMRV92, GP93, GKS94, Gue97, GA96a, GA96b, GS98, HOST95, HAS02, KLZ+06, LCD14, LSCM96, LJ96b, LJ96a, MI96, McK96, NTF6, Nn04, RRR05, RW94, Sch94, SG97, SM97, SSS93, SC94, SC95, Sta95a, SP01, WC94a, ZJ91, AGR88a, AGR88b, AP00, AP03, Ami00, ATMK03, BDMN03a, BDMN03b, BSL90, BG94, BWS+95, BV96a, BL98, BH03, BHR04, BHGR04, BHRG05, BSSF96a, BSSF96b, BK96, CDJ07, CL91, CC04, CC05, Car99, CWH97, CDF10, CCZ97, CKW08, CCKL09, CGC+06b, CR01, CPP93, CRW93, CFR08, CB09, Dac06, Dac09, Dac10, DYP93, Dar02, DM07, DM12, Dar97, Dar00a, Dar00b, DH04a, DO4b, DO7, DRS96, DKG92a, DKG92c, ERS01, ECL02].

Method [FGM11, FOGB96, FLZB97a, FLZB97b, FD09, Fuj98, FMI+93, GDDC08, GSC01, Gib08, GR02, GROZ04, GKS98, GG89, GG90, GH02, GP08, GD05, GD06, GD09, GODZ10, Ham11, HM95, Hav03, HC10, HW10, HW11, Hu97, HJZ09, Ich02, JH08, JC04, Kan15, KM00, KTS10, KS11, KLM+09, KMC09, Kro01, KS98b, KS04, KP05b, KN95, KCF+05, Lab08, LCL+12, LJ98, LGG+13, LHL08, LC14, Liu08, Liu09, LCZ07, LCM07, M95, Mak99, MB05, MR07, Mil08, MRH14, MMNB06, NT94, NH97, OSW05, OSW06a, OS0, OKS09, OCK+03, OYK+14, OMC08, OFH+08, OP07, ON09a, PN95, PPS94, PPS95, PSS95, PG96b, PA14, RRR03, RO04, RTA+08, RS97, RS06, SGG+04, Sat10, SL97a, SL97b, SM97, SH07, Sin95, SKPP95, SP97, Sta95b, SK04, Sud04, Sy03, Tak14, Tan03b].

Method-Efficient [NT96].

Methods [Aar85, Alu94, AG88, BS93, BS97, BR93, DY98, Dem95, Dem96a, Dem96b, FQG+92, GHRW98, GW98, HEGH14, HJ96, LRW95, MBA97, SRP06, SHG95, SHT+05].

TDBEE11, VTB91, WSW+95, YF05, A+97, BLA05, BCH93, BL97, BC97, BN98, BCR01, Bes00, BDS07, Car07, CBN02, CJL+97, CW08, CK00, Eng11, Gas97, GBMN06, Gy08, GCG+99, Goe99, GE13, GKM96, GKO4, GD08, HS95, HGD11, Kro99, Kro02, DP05a, KP08, LS05, LOSZ07a, LOSZ07b, LOG12, Lin95, LY14, MC92, NN12, OSW06b, OF07, Oku96, PJY96, PG96a, RS94, ST06, SKT94, SM05, Sin92, SB96, TD09, YGSR01, aYZ97, YNS+09, YBNY12, MC92].

Microlithography [Ful97].

Microlocal [BDMN03a, BDMN03b, Dar02, GBMN06].

Micromagnetic [VOD08].

Microprocessors [NMH06, MSV92].
Microscopic [HB93], Microstrip [MI96, MI95, ZCL+98], Microwave [Ano95a, ZC00], militaires [Ano97b].
military [Ano97b], million [DKG92a, DKG92c]. million-atom [DKG92c].
MIMD [FQG+92, LB92a]. mine [ESRS01]. Minimal [BF78]. Minimization [OC05].
Minneapolis [HTA+97, IEE92b]. Minnesota [IEE97]. MLFMA [SLC96].
MN [HTA+97, mode [Sat10]. model [CAJ09, ES04, FG96, Ham11, KP08, TD09].
modeling [BCM02, NMDK99, NKV94, ZKL+07]. Models [AC94, HB93, PN95, SGG+04].
modern [NMH06]. Modification [SB98]. Modified [Bar90, BAG00, CHL06].
module [DK93]. Molecular [AC94, BGGT90, BAL91, BHGS90, BP88, CDD97, Gus98, HGS90, LBC91, LBI+97, LMCPP92, MPPA96, OKF14, WLMP99, WS91, ATMK03, BSL11, BWS+95, BSS97, BCL+92, BHE+94, BHER94, BCOY93, BCOY94, BP93, CvHMS94, DK93, EGHT97, GDK89, GKOZ97, KM00, LM02, LWM+02, NKV94, OYK+14, OP07, PGB05, PA14, SWW99, Win95, ZB95].
molecular-dynamics [BCL+92, BP93]. Molecule [Pie93]. molecules [Kan15].
Moment [Gus98, McD97, ZZ93, BN98, CS82]. moment-based [BN98]. Moments
[PNB94, Gib08, HHIKP09, Kon93].
momentum [GY08, WHG96b]. monostatic [RCWY07]. Monotonic [Bor86]. Monte
ESRS01]. Monterey [Ano95b, Ano96, Ano97a]. Montréal [IEE97]. motion [DHM03, Kro01].
Mountain [MC92]. mover [CC13]. MPI [IEE96c, BCA06, LO96b, Per99, SP99].
MPI-2 [BCAD06]. MPSim [LBI+97]. MR [BEM94]. Multi
[AP03, BAD01, Liu08, WSH+12]. multi-disciplinary [WSH+12].
multi-domain [Liu08]. Multi-level [AP03]. multi-platform [BAD01]. Multibody
[BGI+99, JBL02, LOG12].
Multicomputers [YB01]. Multicore
[HEGH14]. Multidimensional [CK95b, BCP08, BL98]. multigrid
[Gas97, IHM05, MC92, OF08]. Multilevel
[CSMCxx, GS98, MG11, SLC96, SLC97, TCW08, TC09, A+97, ATR+12, BDMN03b, DM12, EG08, EG09a, EG09b, Erg11, EG13, GDCDC08, GKD09, HS08, HC10, LZL04, LC94, MG07, MG09, RCWY07, Sar03, WJYO06, YRGS13]. Multiple [BS93, BSS97, FLZB97a, FLZB97b, KM00, Kro02].
multiplication [XWT09]. multiply
[GGM93]. multipoint [PRT92].
Multipolar [LS93]. Multipole
[And92, BT03, BPT+14, Ber95, BVW96, BV96b, BS00, BL05, BFO99, Boy92b, CDM98, CDS03, CDS05, CL12, CD13, CSMCxx, CKE08, CS98b, CC10, CC12, CJ05, CCF01, CKB11, DDL13, DY98, EB96, EMRV92, FL13, GP93, GSS09a, GSS06, GR97, GHR98, GW98, Gue97, GD03, GA96a, GA96b, Gus98, GS98, HOST95, HAS02, HEGH14, JMC97, JBMC98, Kon93, KLZ+06, KK95, Le 97, Lea92, Len98, LCD14, Lin95, LSCM96, LJ96b, LJ96a, LO96a, LCP93, LRW95, MI96, MBS+00, MG11, McD97, McK96, MPPA96, NT96, Nilo4, NPR93, OC05, Pan95, PN94, RRR05, RKGM12, RW94, SRP06, SPS96, SL91, SL97b, Sch94, SG97, SHMC97, SMC97, SHHG93, SHT+95, SC94, SC95, SLC96, SLC97, Sta95a, SP01, WC94a, WC94b, WLMP99, YR99, YB01, ZJ91, ZZ93, AHLP93].
multipole
[AGR88a, AGR88b, AP99, AP00, AP03, Ami00, ATMK03, ATR+12, BDMN03a, BDMN03b, BS00, BG97, BWS+95, BV96a, BSS97, BCL+92, BHE+94, BHER94, BL98, BH03, BHGR04, BHGR05, BSS96a, BSS96b, BK96, CDJ07, CC04, CC05, Car09, CGR88, CSA95, CWGH97, CDF01, CCZ97, CWK08, CCLK09, CGR99, CCG+06b,
CRG01, CPP93, CS82, CWD08, CRW93, CFR08, CB09, Dac06, Dac09, Dac10, Dar02, DM07, DM12, Dar07, Dar00a, Dar00b, DH04a, DH04b, DC07, DRS96, DKG92a, DKG92c, ESR01, ES04, EB94, Eng11, EG08, EG09a, Erg11, EG13, EG01, FOC096, FLZB97a, FLZB97b, FPG05, FD09, Fuj98, GDDC08, Gas97, GBMN06, GF06b, GF06a, Gav11, GSC01, GIS98, GY08, GR02, GROZ04, GKD09, GE13, GB11, GR88b, GG89, GG90, GH02, GD05, GD06, multipole-accelerated [BHE+94, BHER94, ZD05].

Multipole-Based
[GSS98a, GSS00, YB01, LDB96].
multipole-to-local [CFR08].

Multiwavelet [FBHJ04].

Napa [PA02].
natural [AO10].
Near [Bor86, CAJ09, ON09a, Rei99].
near-rigid [CAJ09].
Nearest [CK95b].
Neighbor [Bor86].
Neighbors [CK95b].
Neptune [MKFD02].
network [LB91].
New-version-fast-multipole-method [LCM07].
Newport [IEE95].
News [Kan15].
NH [Mak93].
node [FRE+08].
Non [BB87, BCP08, DR95].
non-equispaced [DR95].
non-standard [BCP08].
Non-Uniform [BB87].
nonbonded [ATMK03].
nonequispaced [PSN04].
nonlinear [CAJ09].
nonlinearly [CC13].
nonoscillatory [GR02].
nonplanar [YB97].
nonsmooth [Beb06].
Nose [BVW96].
Notre [IEE96c].
November [ACM96, ACM97, ACM99, ACM03, Hol12, IE90, IE92b, IE93, IE94c, IE02, K+96, LCK11].
nuclear [PGB05].
numbers [GYW05].
numerica [Ise97].
Numerical [CL91, GZ07, Kro02, Pri94, TDEE11, dCGQS06, Atk97, BCM02, BCH93, CDF10, CG97, CHJN03, Dar00b, CG+99, Gre90b, GM94, GH98, KSC99, Kro01, OR89, PRT92, RSS96, TYNO12, ERT12].
HM95, HNO06, KS98a, KS98b, KS04, LDB96, LCZ07, NN12, ON08a, ON08b, ON09a, ON09b, PG96b, SHT03, Sin95, YB97.

Potentials [CJ05, McK96, Pie93, DM90, LDB96, SH07]. power [PRT92]. PPPM [YF05, ZB14]. Practical [BN97, Pan95, CAJ90, MK93]. practice [CK00]. Prager [LGG +13]. pragmatic [SB96]. Precise [Ami00]. preconditioned [BGGC06, GD07a].

Preconditioner [CDGS03, CDGS05, Car06, DDL13, Of08]. Preconditioners [MG11, ABD04, Car09]. Preconditioning [NN12, Beb06, FPG05, LZL04, MG07, MG09, RCWY07]. predictor [TWY06]. predictor-corrector [TWY06]. preeminent [YB12]. preprocessed [SK04]. Prescription [GS98, CRW93]. presented [Ano97b]. pressure [YRGS13]. Price [WSB +97]. Price/performance [WSB +97]. Princeton [HM86]. Principles [OKF14]. Pro [WSB +97]. Problem [APG94, AGPS98, Ano94a, Ano94c, Dem95, Dem96a, Dem96b, HTG02, MTE09, CCKL09, DH86, DCM03, Gre90b, ICM05, Kat89, KS98a, Mil08, SSF96, TL14, WXQL08]. Problems [BB87, EMR92, GA96b, KK95, LJ96b, LJ96a, MG11, SWW94, SG97, AP00, AD05, ATR +12, BSL09, Bes00, BCP08, BHGR04, BHGR05, BGGC06, CC04, CC05, Car09, EG08, EG09a, Erg11, FST05, Fu98, GDDC08, GLS06, HM95, HN006, HK97, JH08, Lab98, Lin95, Liu08, MIES90, OK96, ON08a, ON08b, ON09b, Rah96, RO04, SCM +90, TWY06, WY07b, WSWL95, WXY +08, XJM08, iYNK02, ZY05]. Proceedings [ACM96, ACM97, AG88, ERT12, Hol12, HMS6, IEE02, Kar95, LCK11, Rod89, Ano92, Ano95a, IEE92a, IEE98, KK88, PA02, We91, B +95, BGPW00, HB03, HTA +07, IEE90, IEE92b, IEE93, IEE94b, IEE94c, IEE96b]. Proceedings. [IEE96c]. processes [Sal96]. processing [B +95, HTA +07, BCOY94, Rod89]. Processor [WWF02, FL13, MHI07]. processors [GD08]. produced [Kon93]. products [And08]. Professor [Wil00]. Program [CD097, YB01, App85, LBI +97, WS95b, Win95]. Programmable [PA02, HFKM98]. programming [MRH14]. Programs [BGLM05, RC97]. PROGRAPE [HFKM98]. PROGRAPE-1 [HFKM98]. Progress [Ano95b, Ano96, Ano97a]. Prolate [KLZ +06]. Propagation [Ano97b, IEE94a, IEE95, IEE96a, IEE97].
WC94a, WC94b, CHJN03, GLS06].
propagator [ZB95]. properties [WY05, WY07a]. Protein [NT96, Kan15, KSS10, KS11, NT94].
Purpose [Ano94a, BGGT90, CKE08, FM96, FHM99, KFMT00, MTES94, MT98, MFKN03, EIM+92, EFT+93, FMI+93, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TMES94].
Quantum [SPS96, KLM+09, SSF96]. quartic [WHG96b]. quasars [SWJ+05].
Queen [IEE97]. Radar [Gue97, Ano97b, Ano97b]. Radial [Buh03, BLA05, BL97, BN98, BCR01, CBN02, GD07a, PSN04, Yin06]. Radiation [CSCMxx, SG97, CKW08, YRG13].
Radiosity [SHT+95, HSA91, MNNB06]. Radome [BVW96]. random [CG97, ERS01, ST06]. Range [Pie93, AO10, BAL91, BDS07, BP93, Ess95, KMC09]. range-limited [BDS07]. ranged [BPK85]. rank [HW11]. Rapid [Gre87, KLZ+96, Rok85, Rok90, BH03, EGHT97, Gre88, Gr88a, HSA91, PJY95]. Ray [WC94a, WC94b]. Ray-Propagation [WC94b]. RCS [BVW96, BV96b, BV96a, Gue97, RCW07].
reactions [NMDK99]. reaction [DC07]. ready [BAD01]. real [MKF01, SH07].
realistic [NVK94]. Recurrence [CSA95]. Recursions [GD03]. Red [WSB+97].
Revisiting [KSO4]. Rigid [BT95, JBL02, CAJ09, HNO06].
rigid-inclusion [HNO06]. rigorous [SKPF95]. Ring [BHGS90]. Rockefeller [IEE90]. Rokhlin [HM95, HS08, SB98].
Rome [MBA97]. Root [GGM01]. Rotating [WHG96b]. Rotation [GD03, Dac06].
Rotne [LL+12]. Rough [JMC97, JMBC98, ERS01, JBMC98].
SAI [MG09]. Salt [Hol12]. San [ACM97, B+95, Kar95]. Santa [Ful97].
Scalability [RS97]. Scalable [Ano94b, BHE+94, BHER94, GKS94, GKS98, HAS02, HGD11, IEE94b, MSV92, OCK+03, OKF14, YB12]. scalar [GD07b, KSC99]. Scale [BAGD00, OKF14, SRF06, WLMP99, ZQSW94, ATR+12, EG08, Erg11, EG13, FLZB97a, FLZB97b, GF06b, GF06a, KP08, LCZ07, LWM+02, PN95, WY05, WY07a, WSH+12, XYZ+08].
Scaling [CDCD97, FERE+08, YBNY12, Goe99, KLM+09, SSF96, WJGH96b].
Scatterers [HOST95]. Scattering [BVW96, EMRV92, GA96a, GA96b, HAS02, JMC97, JMBC98, LJ96b, LJ96a, SHMC97, SMC97, SLC97, ZCG00, AP99, AP00, AD05,
BN07, BGGC06, CC04, CC05, Car09,
CWK08, DH04a, ESR01, EG08, EG09a,
Fuji98, GH08, GSC01, GD05, HC10, HW10,
JBM98, Lab98, LC94, MG07, Rah96,
RTZ+96, Roz90, SM97, SHM98, TCW08,
TC09, WJYO06. scheduling [YF98].
scheduling [NMDK99, NMH06, WLL+07].
Schrödinger [ZKL+07]. Schur [MG11].
Scientific [BEM94]. Science [FHM99, IEE92a].
sciences [SM05]. Scientific [B+95, HTA+97, MT98, Rod89].
Screened [BFO99, GH02, HJZ09, ZHPS10].
Seattle [IEE94a, LCK11]. Second
Section [Gue97]. seismic [Fuj98]. self
[TYON12]. self-gravitating [TYON12].
Seminar [RSS96]. semiseparable [CG04].
sensitivity [DH86]. Sensor [Ano97b]. separated
[Eng11]. September [Ano95a].
Seventh [B+95]. Sham [DSSF96b]. shape
[LM02]. shaped [YRGS13]. shared
[HS95, RC97, Ske99]. shared-memory
[Ske99]. sharing [BADF96]. shells [CAJ09].
short [BG97, BF93]. short-range [BF93].
shunt [SGD+04]. SIAM
[B+95, BEM94, HTA+97, RSH96, Rod89].
Sides [BT03]. signature [Ano97b].
Siloxane [MPPA96]. Siloxane-Based
[MPPA96]. SIMD [TYON12, TYNO12].
simple [AB95, PJY95]. Simulating
[ZGI+10, VGZB90, ZB95]. Simulation
[AT87, And99, BADG00, CKS91, FM96,
HE88, KFM99, LCE+06, MI96, Ten98,
WPM+05, AGR88a, App85, BCM02,
BAAD+97, BCL+92, DRS96, FLZB97a,
FLZB97b, FMI+93, FM95, GF06b, GKZ07,
HN10, HGZ90, KMT94, LM12, LWM+02,
MI95, MFK00, MKFD02, MD12, OYK+14,
OMC08, PG94, SWW99, Spr05, TYON12,
TYNO12, WYW05, Win95, YB97, YNS+09,
YBNY13]. Simulations
[Aar85, AAL+01, Ano94b, ADBGP99,
Bag02, BHGS90, BH88, GP93, GKS94,
HP95, IFM09, KFMT00, LR1+99, MT98,
MFKN03, MPPA96, OF14, SRPD06,
SWJ+95, WLMP99, WN14, YF05, AGR88b,
ATMK03, AB95, BAL91, BDS07, BCOY93,
BCOY94, CL91, CGR88, CWD08, CB09,
DKG92a, EIM+92, EFT+93, EGHT97,
ESRS01, FOCB96, FRE+08, GF06a, GKS98,
GR87, GFK98, HKM98, HNY+09, KM00,
K+96, Kro99, KP08, LBC91, LMK02, MT95,
MG05, MMC99, OME+92, PA14, Sal96,
Sha06, SKT93, SKT94, TMES94, VCM00,
WS92, WSH+12, Xue98]. simulator
[BESL12]. Sinc [Boy92a]. Single
[CJ05, GP08]. Singular [FBHJ04, RTA+08].
singularities [Pel98]. sized [Sat10]. sizes
[LZC07]. Skeletons [SW94]. Slater
[Gus98, ZZ93]. Slater-Type [Gus98, ZZ93].
slightly [ZD05]. Society
[IEE95, IEE96a, IEE97]. Software
[Kan15, TDBEE11, TYNO12]. solid
[Bat03, PJY96, WL96, hYtWbWL08]. solids
[WYW05]. Solution
[ATR+12, GA96a, LJJ96b, LJJ96a, SG97,
SC94, SC95, ACHLP93, AP03, AD05, Atk97,
BH03, BHGR04, BHGR05, CJL+97, EG08,
EG09a, FLZB97a, FLZB97b, GDDC08,
Gas97, GLS06, Gre90b, HW10, PN95, Rok85,
Rok90, WFC08, WSWL95, YSM05, ZC00].
Solutions [Erg11, HC10, KS11]. solvation
[FNM11]. Solved [MG11]. solvent [DC07].
Solvers [BOX00, MGM95, SLCL98a,
SLCL98b, Xa95, BME90, CCM79, CHL06,
EG01, GL96, GP08, HLL08, Kan15, L198,
LCHM10, LCHM13, SRK+12]. Solvers
[GS98b, BME93, BEM94]. Solving
[HTG02, VTC91, Car06, Car07, LC93, LC94,
MCCB07, MMNB06, OLL04, XJM08,
ZCL+98]. some [Sha06]. sound [CAJ09].
Source [SB98, CBK11]. Space
[BT95, YF98, BSL09, BKM09, CB14,
GSC01, HM95, HS95, SRK+12]. space-time
[SRK+12]. **Space/time** [YF98]. **Space/time-efficient** [YF98]. **Spaces** [BF78]. **Spanning** [BF78]. **Sparse**
[gos99, lzl04, Rok98, Tau03a, LOSZ07a, MG09, RSZ09, TW03]. **sparse-approximate-inverse** [MG09]. **Spatial** [BT95, BLa05, CvHMS94, ZT07]. **Special**
[ano94a, BGGT90, CKM09, FHM99, KFM00, MTE594, MT98, MFKN03, EIM+92, FTM+93, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TME594, MC92]. **Special-Purpose**
[ano94a, BGGT90, CKM09, FHM99, KFM00, MTE594, MT98, MFKN03, EIM+92, FTM+93, FM95, HFKM98, KMT94, MIES90, MT95, OMH+94, OME+92, SCM+90, TME594]. **spectra** [ES04]. **Spectral** [RCWY07, OFH+08, PN95]. **speeding** [AO10]. **sphere** [BP03, CDJ07, DC07, Lin95]. **spheres** [GD05]. **spherical**
[GODZ10, KSC99, PJSY96, ST02, YR98]. **Spline** [CS98b, DKG92b]. **Splines** [CS98a, BL97, BCR01, BPT07]. **Square** [GMG01]. **Stability** [Nil04, Sud04]. **stable** [BCP08]. **static** [VOD08]. **Station** [ERT12]. **statistical** [Kan15]. **Steepest**
[JMC97, JMB598, ERS01]. **Steepest-descent** [ERS01]. **Stellar** [HM86]. **Step** [BS93, FLZ597a, FLZ597b, KM00, RCWY07]. **stepping** [BS597].
stochastic [FST05, Sa96]. **Stokes** [GKM96, GKO4, Tau03a, TG08, WLL+07]. **Stokesian** [Ich02]. **Storage** [Hol12, LCK11]. **Strategy** [BB87, BCOY93, EG90b]. **stratified** [ZCL+98]. **Strips** [GAS96a]. **strong** [KAN15]. **Structural** [BPK85]. **Structure**
[BADG00, NT96, ZQSW94, GF06b, GF06a, Goe99, Kat89, KS98a, NT94]. **Structures**
[And99, CSMCxx, GGM01, MI96, RW94, WPM+02, Car09, CWK08, EG13, LCZ07, WS92, ZCL+98, ZY05]. **studies** [RTZ+96]. **Study** [BGLM05, HM86, PR94, Dar97]. **studying** [Kro01]. **sub** [LCZ07]. **sub-entire-domain** [LCZ07]. **Subdivision** [BT95]. **Summation** [CWA14, LS93, AM00, BAL91, HMM05, ZB14]. **Summer** [RSS96]. **Sums**
[DNS90, BG94, DYP93, KS04, RO04, SL97b]. **Sunnyvale** [We91]. **Supercomputers**
[FQG+92, HM86, BAD01]. **Supercomputing**
[ACM96, Ano92, IEE90, IEE92b, IEE93, IEE94c, Kar95, Ano92, KK88]. **Surface**
[MG11, CCZ97, ERS01]. **Surfaces** [CSM00, HAS02, JMC97, JMC98, GH08, JBT98]. **Surfaces-Wire** [CSM00]. **suspended** [VGZ09]. **switch** [SGD+04]. **Symbolic** [Pie93]. **symmetric**
[CG04, OSW06a]. **Symposium** [Ano97b, HB93, IEE92a, IEE94a, IEE95, IEE96a, IEE96b, IEE97, PA02, K+96, Mak93]. **Syracuse** [IEE96b]. **System**
[BGI+99, RKM12, BAA5+97, TME594, ZB95, HTG02]. **Systems** [GP93, Gre87, HEGH14, MT98, VTG91, YF05, AB95, BWS+95, BGGC06, CL91, CDF10, CFH89, DYP93, DKG92c, EIM+92, EFT+93, Gre88, Ich02, KS98a, KS98b, KN95, LM02, LB92a, LBI+97, LCM07, LCH10, LCH13, PGB05, PG96b, TYON12, YB12, ZB95]. **Systolic**
[BHGS90, DHM03]. **T3D** [BAAD+97]. **tails** [ADG96]. **tangential** [GH08]. **Target** [SB98, GSC01]. **targets** [Ano97b]. **tearing**
[LS05, LOSZ07a, LOSZ07b, OSW06b]. **technique** [Gas97, KLM+09]. **Techniques**
[CDGS03, CDGS05, PRT92, SWW99]. **Telescoping** [LRW95]. **Template**
[BGLM05]. **Tennessee** [IEE94b]. **tensor** [CB14, CSA95, HC08, LGG+13]. **Tensors**
[PBN94]. **Terabytes** [IEE02]. **teraFLOPS** [TME594]. **Term** [DNS90]. **terms** [JP89].
test [AB95]. Tlflow [ANO94a, HNY+09, HN10, MTES94, MFK00, MKF01, MKFD02]. theorem [KSC99, Lab98]. theorems [HC08]. theory [AP99, Buh03, CK00, GD07b, K+96, Peln98, Rok85, Rok90, Tau03a]. thermodynamics [Kan15]. Thin [ZCL+98, CAJ09, ZY05]. Thin-stratiﬁed [ZCL+98]. Third [KK88, Rod89, Bha97]. Thousands [BT03]. Three [CS98a, JMBC98, LO96a, Nil04, Pie93, Pri94, SL91, SC95, WSW95, YB97, BSL09, BPT07, CWK08, CGR99, CCG+06b, ESR01, ES04, ESM98, GR88a, GR97, GH02, GD06, GD09, LB92b, MCBB07, OLLL03, PSS95, SL97a, Tak14, TC09, TG08, WSLW95, YBZ04]. Three-Body [Pie93]. Three-Dimensional [JMBC98, Pri94, WSW95, YB97, BSL09, CWK08, ESR01, ES04, ESM98, OLLL03, PSS95, Tak14, TC09, TG08, WSLW95]. tiers [WHG96a]. Time [BS93, MD98, BSS97, FLZB07a, FLZB07b, GD07b, KM00, OFH+08, RC97, SRK+12, WV02, Xue98]. Time-dependent [MD98]. time-harmonic [GD07b]. time-step [KM00]. Top [DS00, MBS+00]. topological [BN07]. toroidal [CKS91]. Toronto [HB93]. Touchstone [FQG+92]. TPM [Xu95]. trained [HHKP09]. transfer [GD0210, KMC09]. Transform [EB06, EB94, GS91, HLL08, HW11, LHL08, OLLL03, OLL04, Sar03, ST02, Sud04, Boy92b, EMT99]. Transformation [DNS90]. transforms [DR95]. transient [ESM98]. Translation [GD03, ESM98, GD07b, Rah96, Rok98]. translator [HS08]. transpose [JH08]. Transputer [Wel91, CKS91, LB91]. Transputers [BHGS90]. Transputing [Wel91]. treatment [KS98a]. Tree [And99, ADB94, ADBG99, BH89, Bar90, BADG00, BOX00, BH88, CDM98, CWA14, SWW94, WPM+02, WS93, WN14, WSW+95, BADP96, BAAD+97, BAD01, BCAD06, BJWS96, Dub96, GY08, JP89, PD89, PG94, PG96a, WS92, WSWL95, WSH+12, Xue98, JKCGJ08]. Tree-Code [CDM98]. Treecode [KFM99, Mak04, SW94, DKPH04, WS95a, WSB+97]. Treecodes [GSS98a, GSS00]. TreePM [Bag02, IFM09, YF05]. Trees [BF78]. trenches [TCW08]. trends [Car09, CGL03, Les96]. triangulated [RS94]. Truly [APG94, An094c]. truncated [TCW08]. truncating [BPK85]. Truncation [OC03, AP00, AB95, CC04, CC05]. tube [Lin95]. tumors [ES04]. tuned [YB12]. tuning [MKF01, NMH06]. turbulence [HNY+09, YNS+09, YBNY13]. Turkey [An097]. Two [LS93, McK96, Pan95, Pie93, RRR05, BL97, Car06, CHL06, CCG+06a, CC10, CC12, ECL02, EG01, GH98, JKCGJ08, Kro01, NT09, PSS95, RRR03, Rok90, Rok98, RCWY07, SKPP95, WY07b, XJM08, YBZ04]. Two-Center [Pan95]. two-component [JKCGJ08]. Two-Dimensional [LS93, BL97, CC10, CC12, ECL02, GH98, Kro01, NT09, PSS95, RRR03, WY07b, XJM08]. two-grid [Car06]. two-step [RCWY07]. Type [Gus98, ZZ93].

REFERENCES

MPPA96, Per99, SG97, SHMC97, SMC97, SP99, SC94, BV96a, Bor86, BH88, CKS91, CvHMS94, DM07, ESRB01, ES04, ESM98, Gas97, GF06b, GF06a, GD05, HC10, Kan15, KM00, LB91, LS95, LCZ07, LWM02, MI95, MRH14, OYK14, Pri94, RC97, Sat10, Sy103, Tan03a, WY07a, WS92, WSL95, YB97, YBK11, YBY13, ZCG00]

Who [Wil00]. wide [KMC09]. wideband [CCG06a, CCG06b, NT09, CC10, CC12].
Wigner [dac06]. WINE [FMJ93].
WINE-1 [FMJ93]. Winter [ERT12].
Wire [CSMxx]. without
[ADG96, And92, HP95, Mak99, Pel98].
Wood [ON09a]. Worcester [BR93]. work
[BAVP96, DTM96, Rei99]. work- [BAVP96].
Workshop [ERT12, HM86, AG88].
workstations [LJ98]. World [We91].
WOTUG [We91]. Would [Wil00].

X [Ful97]. X10 [MRH14]. x86 [TYON12, TYNO12]. x86_64 [NMH06].
XV [BR93]. XXVI [Bre04].

Yamakawa [LGJ13]. York [IEE90, IEE90, IEE96].
Yukawa [BFO99, HJZ09, ZHPS10].

zero [ZC00]. Zonal [BDS07].

References

M. Amor, F. Argüello,

Angyan:1994:CAM

ACM:1996:SCP

ACM:1997:SHP

REFERENCES

Antonuccio-Delogu:1994:PTB

Antonuccio-Delogu:1999:PTB
Antonuccio-Delogu:1999:PTB

Adamson:1996:CCT

Anandakrishnan:2011:GBA
REFERENCES

CODEN JCTCCE. ISSN 1549-9618 (print), 1549-9626 (electronic).

Anderson:1988:VMP

Aluru:1998:DIH

Ambrosiano:1988:FMM

Aluru:1994:DIH

Srinivas Aluru. Distribution-Independent Hierarchical N-body Methods (Greengard Method). Ph.d. thesis, Iowa State University, Ames, IA,

Ambrosiano:1988:GPS

Allen:1993:GIM

Alu94
REFERENCES

Aluru:1996:GBA

Amisaki:2000:PEE

Anderson:1992:IFM

Andjelic:2008:BON

Anonymous:1990:RUM

REFERENCES

[Ano97a] Anonymous, editor. Progress in applied computational electromagnetics: Annual review;
REFERENCES

Anonymous:1997:RSA

Anandakrishnan:2010:ABN

Amini:1999:ADF

Amini:2000:ATE

Amini:2003:MLF

Aluru:1994:TDI

Appel:1985:EPM

Alpert:1991:FAE

Allen:1987:CSL

Atkinson:1997:NSB

Amisaki:2003:DHA

Araujo:2012:SLS

REFERENCES

Ying:1997:VM

Bailey:1995:PSS

Becciani:1997:PTC

Becciani:2001:YRF

Becciani:2000:MPT

Becciani:1996:WDS

REFERENCES

Bagla:2002:TCC

Belhadj:1991:MDS

Barnes:1986:USS

Barnes:1990:MTC

Becciani:2006:FMP

Beale:1993:VFR

REFERENCES

CODEN SJMAAH. ISSN 0036-1410 (print), 1095-7154 (electronic).

[Bes00] A. N. Bespalov. On the use of a regular grid for imple-
Bentley:1978:FAC

Boschitsch:1999:FAM

Beatson:1997:SCF

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. In Ainsworth et al. [A+97], pages 1–37. ISBN 0-19-850190-0. LCCN QA374 .W38 1997. The Seventh EPSRC Numerical Analysis Summer School was held at the University of Leicester during the summer of 1996, from the 8th to the 19th of July.

Bunse-Gerstner:2006:PGC

Bakker:1990:SPC

REFERENCES

[BH86] J. E. Barnes and P. Hut. A hierarchical $O(N\log N)$ force-calculation algorithm. *Nature*, 324(6270):446–449, ???. 1986. CODEN NATUAS. ISSN 0028-0836 (print), 1476-4687 (electronic). This paper appears to be the origin of fast multipole algorithms; its $O(N\log N)$ complexity was later improved to $O(N)$ [GR87]. See also [App85], which might predate this work.

Bhatt:1997:PA

Board:1994:SVM

Board:1994:SIM

Baca:2004:FMB

Buchau:2005:FMM

Boehnke:1990:MDS

Buchau:2004:FEB

REFERENCES

Brunet:1993:HAD

Blelloch:1997:PCB

Beatson:1998:FER

Bonnet:2007:FBT

Boris:1986:VNN

Bode:2000:TPM

REFERENCES

Benson:2014:PDF

Brennia:1993:BEX

Brennia:2004:BEX

Brennia:2004:BEX

Blackston:1997:HPE

Board:2000:FMA

REFERENCES

Bapat:2009:AFM

Bannerman:2011:DFG

Bishop:1997:DMT

Buran:1996:AEG

Buran:1996:KSA

Barnett:1994:ICC

Bandi:1995:ASS

REFERENCES

REFERENCES

Carpentieri:2006:MFT

Carpentieri:2007:PAP

Carpentieri:2009:APF

Cruz:2009:CAF

Chaillat:2014:NFM

Cherrie:2002:FER

Carayol:2004:EEF

Chen:2009:ADI

Chen:1997:FMM

Cecka:2013:FBF

Crowley:1997:AIS

Chartier:2010:RFM

Carpentieri:2003:CFM

Carpentieri:2005:CFM

Cai:2007:EFM

Capuzzo-Dolcetta:1998:CBF

Cichocki:1989:EIP

Coulaud:2008:HPB

Coulaud:2010:HPB

Cheng:1997:NEE

REFERENCES

Chandrasekaran:2004:DCA

Chen:2003:CTS

Carrier:1988:FAM

Cheng:1999:FAM

Cohen:2003:MNA

Cheng:2006:AFS

Chowdhury:2005:SLM

Indranil Chowdhury and Vikram Jandhyala. Single level multipole expansions and operators for potentials of the form $r^{-\lambda}$. SIAM
REFERENCES

Nguyen Hai Chau, Atsushi Kawai, and Toshikazu
REFERENCES

Chynoweth:1991:SOL

Caillol:1991:NSH

Cecka:2012:FMM

Coifman:2006:DW

Christiansen:1993:FMM

Choi:2001:NPO

Coifman:1993:FMM

Cipriani:1982:CEE

Chen:1998:FEV

Chen:1998:UFM

Challacombe:1995:RRC

Chao:19xx:MFM

Clark:1994:PMD

Chen:2014:FST

Cocle:2008:CVC

Challacombe:1997:PBC

Chen:2008:FFM

Dachsel:2006:FAD

Dachsel:2009:ECF

Dachsel:2010:CAE
REFERENCES

Darve:1997:FMM

Darve:2000:FMMa

Darve:2000:FMMb

Darrigrand:2002:CFM

Deng:2007:EFM

deCastro:2006:NMA

Draghicescu:1995:FA

Darbas:2013:CAP

REFERENCES

[DH04b] Eric Darve and Pascal Havé. A fast multipole method for Maxwell equations sta-

REFERENCES

REFERENCES

Jeremy P. Dombroski, Stephen W. Taylor, and Peter M. W. Gill.

REFERENCES

ISSN 0192-8651 (print), 1096-987X (electronic).

El-Shenawee:2004:RSM

Ergin:1998:FET

El-Shenawee:2001:MCS

Esselink:1995:CAL

Fann:2004:SOM

Fong:2009:BBF

Franklin:1996:GMI

Mark A. Franklin and Vasudha Govindan. A general matrix iterative model

[Fenley:1996:FAM] Marcia O. Fenley, Wilma K. Olson, Kiat Chua, and
REFERENCES

REFERENCES

Gavrilyuk:2011:BRF

Gramada:2011:CGE

Gatard:2006:HOB

L. Gatard, A. Bachelot, and K. Mer-Nkonga. High order boundary integral methods for Maxwell’s equations: coupling of microlocal discretiza-

Giovannini:1999:FRN

Gumerov:2003:RCM

Gumerov:2005:CSC

REFERENCES

Gumerov:2006:FMM

Gumerov:2007:FRB

Gumerov:2007:SPF

Gumerov:2008:FMM

Gumerov:2009:BFM

Garcia:2008:ISE

Grest:1989:VLC

Goude:2013:AFM

Leslie Greengard and Johan Helsing. On the nu-
merical evaluation of elasto-
static fields in locally isotropic
two-dimensional composites. *Journal of the mechanics
JMPSA8. ISSN 0022-5096.

Greengard:2002:NVF

Greengard:1998:AFM

Gibson:2008:MME

Gerchikov:1998:EMP

Greengard:2004:IEM

Ginste:2009:ECP

[GKD09] Dries Vande Ginste, Luc Knockaert, and Daniel De Zutter. Error control in the perfectly matched layer based

REFERENCES

Greengard:1994:NEE

Gumerov:2010:CHR

Greengard:1987:FAP

This paper is credited as the origin of the fast multipole method, with an $O(N)$ algorithm. It was reprinted in the same journal, vol. 135, pp. 280–292, August 1997.

Greengard:1988:REPb

Greengard:1988:EIF

Greengard:1997:NVF

Gimbutas:2002:GFM

Greengard:1987:REP

Greengard:1988:REPb

Greengard:1990:PFC

Greengard:1990:NSB

REFERENCES

on Multigrid Methods, Colorado, April 1991.

REFERENCES

REFERENCES

REFERENCES

Hollingsworth:2012:SPI

Hamilton:1995:FMM

Hendrickson:1995:PMB

Hrycak:1998:IFM

Holt:1995:HBM

Hanninen:2008:EER

Hanrahan:1991:RHR
REFERENCES

Heath:1997:PES

Ho:2002:SBP

Hoyler:1997:FMM

Hesford:2010:FMM

Hesford:2011:RRA

REFERENCES

Yao:2008:IFM

Ichiki:2002:ISD

IEEE:1990:PSN

IEEE:1992:ASF

IEEE:1992:PSM

IEEE:1993:PSP

IEEE:1994:IAP

IEEE:1994:PSH

IEEE:1996:IAP

IEEE:1996:PFI

IEEE:1996:PSM

IEEE:1997:IAP

IEEE:1998:FIC

IEEE:2002:STI

Ishiyama:2009:GMP

Izaguirre:2005:PMS

Iserles:1997:AN

Yoshida:2002:NFM

Jaramillo-Botero:2002:UFM

Jandhyala:1998:FAA

Jiang:2004:NCE

References

REFERENCES

[KM00] Masaaki Kawata and Masuhiro Mikami. Computationally efficient canonical molecular dynamics simulations by using a multiple time-step integrator algorithm combined with the particle mesh Ewald method and with the fast multipole method. *Journal of...*
Kreuzer:2009:FMB

Kokubo:1994:HSP

Kutteh:1995:ICM

Kondratyev:1993:MME

Kurzak:2005:COF

Kurzak:2005:MPI

REFERENCES

Kurzak:2008:MPI

Kropinski:1999:IEM

Kropinski:2001:ENM

Kropinski:2002:NMM

Kudin:1998:FMA

Kudin:1998:FMM

Kudin:2004:RIL

Kim:2011:CSV

REFERENCES

related interdisciplinary topics), 83(1 Pt 1):011915, January 2011. CODEN PLEEE8. ISSN 1550-2376.

Koc:1999:EAN

KSS10

Lab98

LBC91

Leathrum:1999:PFM

Leathrum:1992:MAF

Leathrum:1992:PFMb

REFERENCES

Lim:1997:MDV

Lu:1993:FAS

Lu:1994:MAS

Liskal:2014:PFM

Letourneau:2014:CFM

Leimkuhler:2006:NAM

Lu:2010:AAF

Benzhuo Lu, Xiaolin Cheng,

REFERENCES

Lu:2007:AFM

Lambert:1996:MBA

LeRouzo:1997:MEC

Leathrum:1992:PFMa

Lemou:1998:MEF

Lemou:2004:MAF

Leszczynski:1996:CCR

Liang:2013:FMM

REFERENCES

REFERENCES

Langer:2007:IFM

Ly:1999:SPD

Lustig:1995:TFM

Lambin:1993:ESM

Langer:2005:CBF

Lu:1996:AF

Lupo:2002:LSM

James A. Lupo, Zhiqiang Wang, Alan M. McKenney,

Massimiliano Margonari and Marc Bonnet. Fast multipole method applied to elastostatic BEM-FEM coupling.
REFERENCES

Marchetti:1997:ICB

Makino:2000:LEF

Mandel:1992:SIM

McCorquodale:2007:LCA

McDowell:1997:CGM

McKenney:1996:AFM
REFERENCES

Marengo:1998:TDP

Makino:2012:GAG

Makino:2000:TSB

Makino:2003:GMP

Marzouk:2005:MCO

Malas:2007:IPM

Malas:2009:AMF

REFERENCES

2009. CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic).

Malas:2011:SCP

McKenney:1995:FPS

Makino:2007:GDP

MacDonald:1995:FSM

Macdonald:1996:FSM

Makino:1990:GSP
REFERENCES

REFERENCES

8275 (print), 1095-7197 (electronic).

Milthorpe:2014:PFI

Mehrotra:1992:USC

Makino:1995:ABS

Makino:1998:SSS

Makino:1994:GOT

Nishida:1997:AFM

REFERENCES

REFERENCES

REFERENCES

1. Olyslager:2008:FMM

2. Okumura:1992:GHP

4. Otani:2008:FPB

5. Otani:2008:PFM

[OYK14] Yousuke Ohno, Rio Yokota, Hiroshi Koyama, Gentaro Morimoto, Aki Hasegawa, Gen Masumoto, Noriaki Okimoto, Yoshinori Hirano, Huda Ibeid, Tetsu Narumi, and Makoto Taiji. Petascale molecular dy-

Pocek:2002:FAI

Poursina:2014:IFM

Pellegrini:1998:EFS

REFERENCES

Pereira:1999:PBI

Pfalzner:1994:HTC

Pfalzner:1996:MBT

Pollock:1996:CPF

Papa:2005:CMD

Piecuch:1993:MSC

Perez-Jorda:1995:SAR

Perez-Jorda:1996:CRS

Peirce:1995:SMM

Pluta:1994:DHE

Pringle:1994:NST

Pruett:2003:ABA

Pan:1992:PCT

Society Press Order Number 2900.

Potts:2004:FCR

Petersen:1994:VFM

Petersen:1995:EEF

Rahola:1996:DFT

Rajamon:1997:PDS

Rui:2007:STS

P. L. Rui, R. Sh. Chen, D. X. Wang, and E. K-N Yung. Spec-

References

REFERENCES

Rokhlin:1998:SDF

Rossi:2006:EBS

Ramachandran:2003:FTD

Ramachandran:2005:FMM

Russo:1994:FTV

Rokhlin:1997:SFM

Rudberg:2006:EIF

REFERENCES

REFERENCES

637X (print), 1538-4357 (electronic).

Sarvas:2003:PIA

Sato:2010:AFS

Strickland:1996:POF

Strickland:1998:MCG

Song:1994:FMM

Song:1995:FMM

Schmitt:1994:CDF

Sugimoto:1990:SPC

D. Sugimoto, Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, and M. Umemura. A special-
REFERENCES

Sendur:1997:SRP

Sabariego:2004:CME

Sharp:2006:BSP

Singh:1995:IHB

REFERENCES

REFERENCES

1995. CODEN EJNMEA. ISSN 0928-0200.

Suda:2004:APA

Skeel:1989:MDS

Solvason:1995:RCE

Shimada:1993:ECC

Shimada:1994:PFM

Schmidt:1991:IFM

Schmidt:1997:EIF

K. E. Schmidt and Michael A. Lee. Erratum: Implementing the fast multipole method in three dimensions. *Jour-
REFERENCES

Schmidt:1997:MES

Song:1996:MFM

Song:1997:MFM

Song:1998:FISa

Song:1998:FISb

Shanker:1997:OSI

Simos:2005:ACM

Shanker:1997:SIC

Solvason:1997:EEF

Sidonio:1999:PBI

Sun:2001:MVF

Springel:2005:CSC

Scherbinin:1996:UME

Speck:2012:MST

Sagui:2006:NDM

Stalzer:1995:PFMb

Saad:1989:DCH

Schanz:2007:BEA

Suda:2002:FSH

Schwab:2006:KLA

Strain:1996:ALS

REFERENCES

Stalzer:1995:PFMa

Sun:2014:FMR

Suda:2004:SAF

Salmon:1994:STC

Springel:2005:SFE

Salmon:1994:FPT
Schwichtenberg:1999:AMM

Sylvand:2003:CIC

Takahashi:2014:IBF

Tausch:2003:SBP

Tausch:2003:FMM

Tausch:2004:VOF

Tong:2009:MFM

REFERENCES

REFERENCES

REFERENCES

Windemuth:1991:MDC

Warren:1992:ANS

Warren:1993:PHO

Warren:1995:PPV

Warren:1995:PPP

Warren:1997:PPI

REFERENCES

LCCN ???. URL http://
www.supercomp.org/sc97/
proceedings/. ACM SIGARCH
order number 415972. IEEE
Computer Society Press order
number RS00160.

[WSH+12] Mathias Winkel, Robert
Speck, Helge Hübner, Lukas
Arnold, Rolf Krause, and Paul
Gibbon. A massively parallel,
multi-disciplinary Barnes–Hut
tree code for extreme-scale
N-body simulations. Computer
Physics Communications, 183(4):
880–889, April 2012. CODEN
CPHCBZ. ISSN 0010-4655 (print),
www.sciencedirect.com/
science/article/pii/S0010465511004012.

[Wink:2012:MPM] Grégoire S. Winckelmans,
John K. Salmon, Michael S.
Warren, and Anthony Leonard.
The fast solution of three-
dimensional fluid dynamical
N-body problems using parallel
tree codes: vortex element method and boundary element method. In Ba-
ley et al. [B+95], pages xviii + 875.

[WWF02] Michael S. Warren, Eric H.
Weigle, and Wu-Chun Feng.
High-density computing: A
240-processor Beowulf in one
cubic meter. In IEEE [IEE02],
pages xvi + 875. ISBN 0-7695-1524-X.
LCCN ???. URL http://
www.sc-2002.org/
paperpdfs/pap.pap210.pdf.

[WWFL95] Grégory S. Winckelmans,
John K. Salmon, Michael S.
Warren, and Anthony Leonard.
The fast solution of three-
dimensional fluid dynamical
N-body problems using parallel
tree codes: vortex element method and boundary element method. In Ba-
ley et al. [B+95], pages xviii + 875.

John K. Salmon, Michael S.
Warren, and Anthony Leonard.
The fast solution of three-
dimensional fluid dynamical
N-body problems using parallel
tree codes: vortex element method and boundary element method. In Ba-
ley et al. [B+95], pages xviii + 875.

[WWFL95] Grégory S. Winckelmans,
John K. Salmon, Michael S.
Warren, and Anthony Leonard.
The fast solution of three-
dimensional fluid dynamical
N-body problems using parallel
tree codes: vortex element method and boundary element method. In Ba-
ley et al. [B+95], pages xviii + 875.

Xu, Fen Tao Qin, and Jiao
Li. Fast multipole expansion
Pract. Theory, 38(24):
225–228, 2008. ISSN 1000-
0984.

[WY05] Haitao Wang and Zhenhan
Yao. A new fast multipole
boundary element method for
large scale analysis of mechanical
properties in 3D particle-
reinforced composites. CMES
Wang:2007:LSA

Wang:2007:FMB

Wang:2005:FMB

Xue:1998:THT

Xiao:2009:FMV
Xu:2008:FMB

Yeung:1997:TNL

Yuan:2001:PIF

REFERENCES

Yokota:2013:PTS

Ying:2004:KIA

Ying:2003:NPK

Yang:1998:STE

Yoshikawa:2005:PTM

Yang:2001:CPD

REFERENCES

Ying:2006:KIF

Ying:2009:FAB

Yokota:2009:FMM

Yarvin:1999:IFM

Yarvin:1999:GOD

REFERENCES

Zhou:1995:NMD

Zhang:2014:PFS

Zhang:2011:OBH

Junchao Zhang, Babak Behzad, and Marc Snir. Optimizing the Barnes–Hut algorithm in UPC. In Latrope et al. [LCK11], pages 75:1–75:11. ISBN 1-4503-0771-X. LCCN ????

Zhao:2000:IES

Zhao:1998:TSM

Zinchenko:2005:MAA

REFERENCES

[Zhao:2005:FMB]

[ZZ93]