Title word cross-reference

\[(2 + 1)D \, [HP14]. \quad (MC)^3 \, [KSW15]. \quad 1 \]
\[CC14, Gio14a, HTT13, HTT14, MGL13, RKVL14, SBH14]. \quad 1 + 1 \]
\[SÓON11]. \quad 2 \]
\[APC14, BVP10, EW14a, FK12, GCVA14b, Gwi12, Ixa10, KO14b, RAV11, \]
\[SW14a, SW14b, SKK11, SW11, TMA15, TY10, TKL12, VLM11]. \quad 3 \]
\[AV13, AGMS15, BAR12b, CP15a, DGG13, FRFH10, GS15, GX15, HKJ12, \]
\[HDM12, JEC12, KAK12, KL11, KO14b, LHJZ10, LHC13, LX14, LWK11, \]
\[MGO13, MCP11, PR10, PCGM14, QSC14, RF15, RS12, RHBH15a, \]
\[RHBH15b]. \quad 3 + 1 \quad [KHB14]. \quad 4 \quad [GGF13, dSLF13]. \quad 71 \quad [JTH14]. \quad \sim \quad [KH11]. \quad 125f \]
\[RMS12]. \quad 2 \quad [BG13b, BG14a, BLG14, GBD10, HFSK12, RP15]. \quad 3 \]
\[CDTV10]. \quad 3 \Sigma \quad [Faw10]. \quad \text{Web} \quad [LSJ13]. \quad 1 \sim \quad [TMA15]. \quad 11 \sim \quad [LQZ13]. \quad 12 \]
\[CJH11, CHW15, DSM11, LS11]. \quad 20 \quad [CHW15]. \quad 21 \quad [CHW15]. \quad 3 \]
\[BKA14, CJH11, CHW15, DSM11, KAR15, LQZ13]. \quad 4 \quad [LQZ13]. \quad 5 \]
[LS11]. 6 [CJH11, CHW+15]. $p_{F_{p-1}}, F_1, F_2, F_3, F_4$ [BKK13]. w [TMA+15]. x
[Fen12a]. B_c [YWW13]. B_c [WW12]. $BR(B^0_s, e^+\pi^-)$ [DNPS13]. C [Nik12b].
C_{3v} [Nik12b]. N = 4 [SD15]. Cocos [SM13]. d [Kap12b]. D = 4 [Fis12]. δf
$e^+e^- e^+e^- R(J^B_C = 0^+)$ [DKT14]. ϵ_p [AFIS12]. η_i [AHK+12]. $\eta_0(Z)$
[CEPI10]. F_D [BKM14]. F_S [BKM14]. G [CNMC10a, HR11]. γ
[CCM12, LL15, MM11, WT12]. GGA + U [HWW12]. GW [JGAL+13]. H
[MR13]. h_p [CMC+15]. j [Wei11a]. k [MDGC+12, OBH10]. $k \cdot p$
[Bot12, MBF+10]. L [SS13b]. L_∞ [TK14b]. Λ [WL11b]. LDA + U [HWW12].
μ [TACA15]. N
[BBL+13, CDS13a, MTM13, MBFD12, PH11, WSH+12, dH12, GJ14, RF10].
N = 8 [Fis12]. $N_f = 2 + 1 + 1$ [BBC+11]. O_h [Nik12b]. p [Wie13]. $p^{\mu}_{1/2+i_2}(x)$
[GST12]. ϕ^4 [KVW11]. π [Ksi12]. q [FDWC12, KO13]. q = 3 [dlSLF13]. Q^2
[HK12]. R [AB10, AKH12, Bot12]. S [LB10a, LB11, LB12, LB13, SAS11]. S^4
[LF12]. SO(8) [Fis12]. * [Tos10]. SU(2) [Alv12]. SU(3) [BW12a]. SU(Nc)
[CB13a]. T [HCRD14, TU14]. T_c [CMJ+11]. T_δ [Nik12b]. Θ [BJ11]. U(1)
[BBI13a]. W [QGLP13, Vebl12]. Ξ_{bb} [CW10]. Ξ_{bc} [CW10]. Ξ_{cc} [CW10].
XY [KO14b]. Z [GLPQ11]. Z_2 [FWZ+12].

- body [CDS13a, MTM13, MBFD12, PH11, WSH+12]. - conjugated [Ksi12].
-coupled [QSC14]. -D [GX15, RKVL14, FK12, Gio14a, LHJZ10, LH+13].
-diff [TACA15]. -dimensional [Kap12b, dh12]. -gauged [Fis12]. -helices
-stable [SS13b]. -state [FDWC12, KO13]. -states

/Python
[SV14].

1 [TU14]. 1-loop [DNPS13]. 1.0 [SGN+11]. 1.2 [CGV13]. 10 [SV14]. 11
181 [ERS10c]. 182 [SGM11a, Sco13]. 183 [YQM14]. 184
[SIMGCP14, ZTG14]. 186 [KYKN15a]. 187 [RBBH15a].

2 [CFKB12, DES+11, FP14, HM12c, JNN13, diRL11, diRAPL11, diRLJ14,
PR12, RSBB14, TBB+14]. 2.0
[AFIS12, ACD+14b, BCH13, GLPQ11, GBR+14, HEPW13, HHS+10,
LRR+15, LCRL10, OG14, PSMS14, SZY+12, SZY+13]. 2.0-Hybrid
[GBR+14]. 2.0.0 [BBH+11a]. 2.1
[BH13, CNMC10a, PSMS15, QGLP13, SZY+13]. 2.2 [ZYL+15]. 2.8 [OK12].
2HDMC [ERS10c, ERS10a, ERS10b]. 2ODEs [AdM14].

4 [Gri10, Sta14]. 4.0 [KUVV13]. 4.1 [KRW13].

5 [CFS13].

6 [Nik12b]. 6.4 [KRW13]. 6.5 [KRW13]. 64-bit [TC11a].

70th [Pat12].

8.2 [SAC+15].

9 [Nik12b]. 90 [GST12, KS12, SSG+10, SS10a]. 95 [vH10].

Algorithm [BR11, VRV15, Wan10b, Alv12, AZM14, BK13a, BCJW13, BR13, BVC13, BO12, Bru13, CM10a, CC14, CDS+13b, CGRB14, CBAM12, DE13, DG10c, Emc11, ES11, FRG12, FKHI15, GJLB12, GST12, GT11, GD14, GES13, GLX+14, GX15, Gwi12, HWT10, HP11, Jab12, Jab13, JWW11, JWC13, JPK+12, KP12a, KO12, KO13, KO14b, Kom15, KVW11, KSW15, LKL11, LC12, LM12, LHH+12a, Lii14, LZ11a, LZ11b, LY13, Lya15, LYSZ13, MGO13, MPM14, MH11, MGS13, MEM+11, MC10, MTO15, NBN+14, OL12, OOK+12, PH13, PSB11, PDRG10, PP13, PYW+14, PR10, QWWL+15, Ray10, RU13, Rom15, RW11, SGM11a, SGM11b, SWL+15, SPS10, Sin12b, SKK11, SQA+15, SOJ14, UW12, VvAN+11b, VGM+15, WP11, WWHW14, Wei12, XWhZ13, Zhe15, ZMJ13, vRWS14, Cho11, SKH+10, YKS11].

ADdM$^{+12b}$, ACdM14, APC$^{+14}$, BHH$^{+10}$, BBH$^{+15}$, CSC11, Car10b, CMRVVR$^{+14}$, CZL$^{+11}$, EBCB$^{+14}$, EW14b, Faw10, FF11, FNPMB10, FBN$^{+13}$, GMRHCEME13, GMPFC$^{+14}$, Gio14b, GA$^{+10}$, GBJ$^{+12}$, GBJ$^{+13}$, GFJ$^{+14}$, GA013b, HJL$^{+14}$, JCW$^{+13}$, KPK11, KYKN15a, KYKN15b, LRR$^{+15}$, MLW$^{+10}$, MB12, ML14, MPSV15, Ost10, dRLJL14, OVSI15, PCVZ11, PM14, Ram10, RRSCJ10, RV10, Ruf13, RWKS15, SAA$^{+10}$, iSYS12, Ser10, Sha13a, SLC11, Sin11, Sin12a, TRM$^{+12}$, TBZ12, TS11, UW12, WH$^{+12}$, WLS13, Yan09, GGF13.

Analytic [BK13b, NS10, AC15, Kau13, LLL12, LLL13, PSB11, PSBT12, Ser10, WAHL13]. Analytical [MCAdF14, BHW$^{+12}$, DS10, JDG12, KCT15, KR14, MRVF13]. Analyze [GWM13]. Analyzer [FCC15]. Analyzing [BPML12]. and/or [XHLM12]. Anderson [FFT14]. angle [HJ14]. angular [PR12, Wei99, WT12]. angustifolia [VLM11]. anharmonicity [ZMCT12, ZMPT13]. anisotropic [MLW$^{+10}$, MLS10, NO14, Ots11, SKML11, Tau10, VV$^{+12}$]. anisotropically [CA$^{+11}$]. anisotropy [BDK11, KGNS10, MS11, NO14]. annealing [BSM13, CM10a, CD12, IZRT15, LM12, ON11]. annihilation [GGGH14, HLM13]. annotate [BVC13]. anomalous [LRK13, PPV$^{+11}$]. anQCD [AC15]. antenna [THDH14]. antiferromagnetism [BG11]. antipeakon [HDI14]. any [Fer15]. Apart [Fen12a]. aperture [HKF$^{+12}$]. APFEL [BCR14]. API [Zag14]. Application [BHH$^{+10}$, BBH$^{+15}$, CZD15, CSSB15, DG10a, Evs14, GZL14, GJHF14, HW12, IUM13, KPA13, Kom15, Kra10, Lan13, LHJZ12, MS14, MK10, QA13b, STK10, SGM11a, SGM11b, SCG11, TKS10, YK10, BJBC$^{+14}$, BMW14, BMNS14, Bru13, Dua12, FK15, Fer15, GBK$^{+12}$, HCRD14, HBP14, JHL$^{+15}$, KPPC13, PS11, RWKS15, SV14, Sva12, TFBW14, TC12, WZS$^{+11}$, WX14, vRWS14]. application-driven [BJBC$^{+14}$]. application-programming [SV14].

Applications [CM10a, HH11a, sl10, RBB15, Asc10, BDPM15, BKA$^{+14}$, CMSV14, Dim14, DBK$^{+14}$, FUSH14, FOB$^{+15}$, GMH11, GCHL15, KV10a, LM12, MCA$^{+14}$, MFG$^{+13}$, Pan15, Ram10, Sa13, SKS13, TK14a, Veb12, ZS13, MD11b]. applied [AHK$^{+12}$, ASS13, BAR12b, FBN$^{+13}$, HJL$^{+14}$, KL11, MCP$^{+11}$, SD14, VK14, WSTP15]. Applying [KSH11, BS14a]. approach [AV13, AGVP10, ADdM14, Aza13, BD12, Bot12, CSC11, CNMC10b, Cho11, CKCS13, Dan12, DF11a, ERP$^{+12}$, FM12, GLAC13, Gen10, GS14, GLX$^{+14}$, GCVA14a, HO13, HFSK12, HCC14, Jiw12, JHL$^{+15}$, KY14, Kan14, KLKR11, KV10a, KSY$^{+13}$, Lan13, LHI$^{+15}$, MGRB11, MLR10, MBS$^{+10}$, MC10, MCP10, NS10, ON14, ONS$^{+15}$, OK14, PC11, PLD15, RS12, RM10a, RHC15, Sch14a, SKK11, SSB15, TUY15, Wei99, WFV14, WAW14, YL10, YG12, ZLL13, Zi14]. approaches [AMR15, CM10b, DS10, VEM12]. Approaching [mZIXL15]. approximants [IH11]. Approximate [CB13b, He12, JLI10, JC13, KMM13, LLI12, LLI13]. approximating [FM12]. approximation [AQ10, BK12, Cou13a, Cou13b, Evs14, Kau13, KK14b, PDRG10, Ram10, WSTP15, Wit14, DVB11, YLO13, SKB10].
auxiliary \[\text{GA15}\]. auxiliary-field \[\text{GA15}\]. available \[\text{Cip13}\].
available \[\text{Cip13}\]. avalanches \[\text{VKLM11}\]. avoiding \[\text{SBB13}\]. AWESoMe \[\text{MSHLS15}\]. axes
[\text{BDK11, CNMC10a, CNMC10b}]. axial \[\text{RS12, Sza13b, Sza13a}\]. axial-symmetric \[\text{Sza13b, Sza13a}\]. Axially
[\text{SSK +13, MCP10}\]. axially-symmetric \[\text{MCP10}\]. axis \[\text{CLW11, JTP15, SMDONF14}\].
axisymmetric \[\text{CLW11}\]. azimuth \[\text{LWZ14}\].

B \[\text{CHW}^{+15, LQZ}^{+13, BSC}^{+13, Fis11, Jiw15b, LD10b, LX12, RHC15}\].
B-DNA \[\text{BSC}^{+13}\]. B-spline \[\text{Fis11, Jiw15b, LD10b, LX12}\]. B-splines\[\text{RHC15}\].
BACHSCORE \[\text{SZC}^{+13}\]. back \[\text{KSYY13}\]. backed \[\text{LL15}\].
baixal \[\text{MBGV15}\]. background \[\text{KOT12, LCRL10}\]. Bäcklund
[\text{MWCY14}\]. backward \[\text{VEM12}\]. bacteria \[\text{AD11}\]. BADGER \[\text{HM12a}\].
Bailey \[\text{BJCW13, BCJW13}\]. balanced \[\text{OCF10}\]. balancing
[\text{BS15, FRG12, SKSK13}\]. ballistic \[\text{KLKR11}\]. balls \[\text{BBH}^{+10, BBH}^{+15}\].
bamboo \[\text{VLM11}\]. band
[\text{CGRB14, GBP13, LHSL14, MD10a, QDZ}^{+13, RJI2, SW13a, SCG11, Zlo13}\].
band-gap \[\text{MD10a, SW13a}\]. banding \[\text{SSF}^{+14}\]. bands \[\text{ZZD15}\].
bandstructure \[\text{DSLP11}\]. Bank \[\text{DPK}^{+15}\]. Barnes \[\text{WSH}^{+12}\]. barrier
[\text{CHC}^{+11, DTII1b}\]. barriers \[\text{Den10}\]. baryon \[\text{DE13, LCL}^{+11}\]. baryons
[\text{CWW10, WW13}\]. based
[\text{AGB}^{+15, BLPP13, BD12, BCJW13, BDKS10, BK12, BRL12, BPM14,}
BDBV12, BAR12b, BMW14, Boe14, BO12, BC11, BS12, BKK13, BKM14,}
BK15, CM10b, Cap13, CMVRB \[+14\], CSPAD10, CMJ \[+11\]. CDL \[+12\]. Ckhn11,
CAGL13, CDRI \[+15\], DIP11, DG10b, DSPJ10, ELDS14, FRG12, FGC \[+11\],
FDWC12, GLX \[+14\], HEL13, HOFPPF15, HWT10, HLD13, HKVR10, HI11,
JPCG15, JEC \[+12\]. rJmYT11, JGAL \[+13\]. JTP15, KK13, KK14b, KK14a,
KO14a, KSH14, KO12, KO13, Kom15, KMA \[+12\]. LCC13, LJE11, LFG14,
LO14, Liu13, MB12, MKR \[+12\]. MW14, NPAD11, ON14, Oti13, OT11,
OAKS11, ÖY13, PP13, RC13, SAA \[+10\]. SC14, Sh13a, SSX14, SZM \[+14\],
SHL \[+11\], SK10, TMD11, TB14, TDL \[+14\]. UW12, VPK14, VD1 \[+11\]. VPP \[+12\],
WP10a, WLS13, WSH \[+14\]. Wit14, XLL15, Zag14, Zs13, Zhe15, Zlo13, Cho11].
Basic \[\text{GFB}^{+10}\]. basis
[\text{Cor14, FM12, GYW}^{+10, JH15, JDG12, KAK12, LRW}^{+15, MCWJ15,}
MBFB13, MK10, MCG11, MAM14, ONS \[+15\]. Pit12, PVK \[+14a\]. PVK \[+14b\],
Ray10, RHC15, RLM13, SDM \[+12\], SD10b, SSK \[+13\]. ZDYY \[+10\].
basis-set
[\text{MBFB13}\]. bath \[\text{Fri10}\]. baths \[\text{DS13b}\]. Bayesian \[\text{AM15, KZ14, ZHL11}\].
BBN \[\text{Arb12}\]. BCS [\text{RHBH15a, RHBH15b}]. BCVEGPY \[\text{WW12}\].
Be \[\text{MSN11}\]. beam \[\text{BRL12, OKP10, PR14, QL10}\]. beam-based \[\text{BRL12}\].
Beamlet \[\text{AGB}^{+15}\]. Beamlet-based \[\text{AGB}^{+15}\]. beams \[\text{AGB}^{+15}\].
Beating \[\text{CCL15}\]. Becke \[\text{GSZ13}\]. bee \[\text{vRWS14}\]. BEEC \[\text{YWW13}\].
behavior
[\text{CND11, DV11, FFIH11, HLS12, HST}^{+11, MFS10b, SLC11, vMB14}\].
behaviour \[\text{WCT11}\]. being \[\text{GK11}\]. belief \[\text{EKDGG15}\]. Bell \[\text{TZG12}\].
Belle [Ano11a]. BEM [BD12, YBK+11]. BEM/GO/PO/PTD [BD12]. Bénard [GLW14]. Benchmark [SISW10]. Benchmarking [BPP11]. benchmarks [Yi11]. bent [Bab14]. Benz [HDM+12, SBPN15]. BerkeleyGW [DS+12]. BerryPI [AKZ+13]. Bessel [Cai11, GDB10, JL12, TO10a]. best [SS13a]. between [ABB+14, AC13, Ano10o, BB13b, FD13, GZL14, LSK+14, PDC14, USOA13, VC10, Yan11]. beyond [BCP13, DNPS13, HRC11, PS12]. BGK [CM14a]. biased [Sin11, Sin12a]. biasing [Gio14b]. BiCGGR [TKS10]. BiCGSTAB [NIK+12a]. bidirectional [FSF11]. bilayers [MSRL10]. bilinear [MWCY14, Ram10]. BilKristal [OG14]. billiard [TTS11]. billion [YBK+11]. Bimolecular [SAG13]. binary [CM10b, LM12, WLU11]. BiNCa [BKA+14]. binding [BBH11b, PDC14, SHNM11]. Binoth [ABB+14]. bio [BG13a]. bio-molecular [BG13a]. biological [BHVMH15, CRNK12, NBM+15, Yan11]. biology [DS10]. biomass [XAPK14]. Biomolecular [YBK+11, CBB14, LCHM10, LCHM13, SCC+12, TVZ+15]. biopolymers [PA13]. BIOTC [XAPK14]. bird [TBB+14]. birthday [Pat12]. bit [MP11, TC11a]. black [Gin10]. blast [SKH+10]. Bloch [CCW10, Dem13]. Block [DB13, FRFH10, SPS10, DKOS14, LW14a, NIK+12a, STK10, TKS10]. Block-pulse [SPS10]. Block-structured [FRFH10]. block-tridiagonal [LW14a]. blood [CRA10, MMC10, MBS+10]. Blue [CRA10, BW15]. Blume [FLP10]. BN2D [SBPN15]. BNL [GFJ+14]. Board [Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano10m, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano14a, Ano14b, Ano14c, Ano14d, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j]. bodies [MNV13]. Body [GBJ+13, BBC+13, BY13, CDS+13a, CKS10, FEH11, GBJ+10, GBJ+12, GBJF14, HEF12, HLZ+13, JOK13, JDG12, KPA13, LSD14, LB13, MTM13, MBFD12, NPAG11, PMMW15, PH11, RC11, Vv+11b, WSH+12, ZC12]. Bogoliubov [SKK+13]. Bogolyubov [SDM+12]. BOINC [GhdF10]. Boltzmann [Asi10, BO12, CAN11, FGG11, FKH15, GTS+13, GJ13, HCSW10, JK14, JEF14, LCKM14, LCHM10, LCHM13, MOD13, MR14, Maz13, Sch14a, SD14, SD10a, WLU11, vds10, vds13]. Boltzmann-cellular [JEF14]. Boltzmann/finite [CRA10]. BoltzWann [PVK+14a, PVK+14b]. bond [MH11, XZF12]. bonded [BL14, Faw10, GTPWL12]. bonding [Sva12]. boron [HW12, Yan11]. Borwein [BJCW13, BCIJW13]. Bose [CCW10, GM14, Hohl14a, JWC13, JWL13, LCC11, MT13, WX11, WX14]. boson [BGM+14, Cas12, OK12, QwWL+15]. bottle [HP11]. bottle-brush [HP11]. bottom [HLM13]. bottom-quark [HLM13]. bounces [GLAC13]. Bound [Eba13, LB13, BK11b, DT11b, LV13]. boundaries
[ADdM+12b, DV11, KSH11, NVW+13]. Boundary
[KPPC13, WL1U11, CCHL11, CS10, CBB14, DG10a, DS13c, DGG13, GJ13,
GN14, Ham11, Hon10, Jiwi15b, LX12, LWZ14, LS13, MRVF13, PN15, PS11,
PLCC12, RC13, RHH12, RTA10, SK14, Uty14, ZLL13, vdS13], bounded
[MRVF13]. boundedness [MD11a]. bounding [WP11]. Bounds
[TK14b, BBH+10, BBH+11a]. Boussinesq [MA11, SD10b]. box
[GES13, JLW13, SOPS12, WP11, YdDH+12]. box-counting [GES13].
brackets [GKM10, MBGK11, MGK13, SMGK14]. braided [OVS15].
branching [MD11a]. bounding [WP11]. Boundless [MRVF13].
Boussinesq [MA11, SD10b]. box
[GES13, JLW13, SOPS12, WP11, YdDH+12]. box-counting [GES13].
brackets [GKM10, MBGK11, MGK13, SMGK14]. braided [OVS15].
branching [MD11a]. bounding [WP11]. Boundless [MRVF13].
Boussinesq [MA11, SD10b]. box
[GES13, JLW13, SOPS12, WP11, YdDH+12]. box-counting [GES13].
Characterization [CSRV13, KK13, SZM⁺14, SC14].
Charge [SCW⁺11, CC14, CAGL13, MSRL10, MTO15, iNSK⁺15, SGM11a, SGM11b, Sok13].
charge-conserving [CC14, MTO15, Sok13].
charged [BBH⁺11a, BG13b, BG14a, BLG14, CLC14, Gwi12, KB15a, KFS⁺13, PCGM14, SKK11].
CHARM [PLRT14].

Chebyshev [DT11a, LD10b, SW14c].
Check [HWW12].
checkerboard [BW12a].
checking [COSU11].
CheckMATE [DDK⁺15].
chemical [BBF⁺10, BO12, BSWC14, DBDP12, LCC13, LSK⁺14, LL12, MLGVE14, diRJL14, RH11, SAG13, TM14].
chemistry [CHH⁺11, KEH12, Sou14, WPAV14].
chemokine [rJmYT11].
CheMPS2 [WPAV14, WPD⁺15].
Chen [HLD13, OY13].
chi [GST15].
chi-square [GST15].
CHICOM [Gag12a].
chiral [GBD10].
CHIWEI [Gag12b].
choice [DDM14].
Cholesky [LHJZ10].
CI [DKG⁺14].
CIF2Cell [Bjo11].
CIJET [Gao13a].
circuit [LW11, LW13].
circular [LWZ14].
citation [wHwH11].
CL [BHW⁺12, BBH⁺15].
class [BPC12, BPC13, GCHL15, LLP15, MP11, MNO011, SS13b, SCM14].
classes [rJmYT11].
Classical [CPHL14, DT11b, DS13b, Gwi12, KO12, SKK11, SA14].
classification [CFSK14].
ClassSTRONG [CPHL14].
Clebsch [HR11].
CleGo [HR11].
cloning [BS12].
close [WISA11].
close-coupling [WISA11].
closed [Faw10].
closed-shell [Faw10].
cloud [CNS⁺14, JVR12].
clouds [APC⁺14, JH11].
clumpy [CCM12].
Cluster [LX14, Smi14, CSPAD10, GTL11, KP12b, KSL⁺11, KO12, KO13, KO14b, Kom15, KZ14, MTK13, TKR13, XLCW14, LX14].
classifier [XLCW14].
cluster-labeling [Kom15].
Cluster-parallelizable [Sm14].
Clustering [HBP14, MKMK10, LLHC11].
clusters [BBF⁺13, BG13b, BG14a, BLG14, DCVB⁺13, Gwi12, KSL⁺11, LLHC11, LSYZ12, RRSCCJ10, RD10, SKK11, SQL⁺10, VK14, YHL11].
CMBE [GFJ⁺14].
CMistark [CFSK14].
CN [PYW⁺14].
CN-ICCG-FDTD [PYW⁺14].
Co [CJH11, LQZ⁺13, DS13c, TG11].
Coarse [GB11, AGVP10, PA13].
coarse-grained [PA13].
Coarse-graining [GB11].
coated [CKLM10].
coating [CDSG11].
Code [KUV15, Bab14, BS13, Bar11a, Bar12a, BU11, BDPM15, BH14a, BW12a, BRL12, BG13b, BG14a, BLG14, BF10, CR13, CJ12, CCM12, CPR12, CL14, DCM⁺12, DET12, DLGP10, DBJ11, DT11b, Faw10, Gag12b, Gag12a, GLPQ11, GC10, GC13, GB1⁺13, HBE10, HCRD14, HTT13, HTT14, HHM⁺15, IBP⁺15, JCW⁺13, JFC12, JGAL⁺13, JHL⁺15, KHB14, KTE⁺12, KBSP12, KCS⁺15, LAA⁺10, LHH⁺12b, Lit13, LO14, LL15, LR13, MT13, MGA⁺13, MGRB11, MRSU14, MTM14, MAM14, MSRL15, MO14, Nik12b, NMS14, dRL11, dRPL11, Oti13, PPV⁺11, PBMD12, PG10, PKV⁺14a, PVK⁺14b, REbVH12, Rei10, RWKS15, RHBH15a, RHBH15b, SSS⁺11, SKB10, SE12, SEW14, SM14, SHZ13, SD10a, SS11a, SC15, SHL⁺11, SF10, SMGK14, Tau10, TKL⁺12, VPK14, VPM12, WN10, WSH⁺12, XAPK14, ZAG14].
code [ZD15, ZMPT13, vWB10, MZE13, GBJ⁺10, GBJ⁺12, OKP10].
[KST14a, CL14, FLSZ13, KVW11, LSK+14, NGM+10, Sch14a, SS12, WISA11, WX11, Wei99]. **covalent** [HXW+13]. **covariant** [BS12]. **CP** [CRC+13, LCE+13, PS12, RCD+10, Ros15]. **CP-phases** [PS12]. **CP-violating** [CRC+13, LCE+13, PS12, RCD+10, Ros15]. **CPU** [BPP11, DCGG13, ELDS14, FBN+13, FOB+15, LSYZ12, Lya15, MPM14, WC13]. **CPU/GPU** [LSYZ12]. **CPUs** [BS14a, ON12]. **CR** [AANAJ12]. **CR-39** [AANAJ12]. **Crank** [BB10, CWS14]. **CrasyDSE** [HM12b]. **criteria** [AG12a]. **criterion** [HFSK12, SK10]. **Critic** [dlRJL14]. **Critical** [CND11, CM10a,Fri10,OML11,XZF12]. **cross-section** [Lit13]. **cross-sections** [Lit13]. **crosswell** [CL15a]. **Crowd** [GK11]. **crowded** [BJ11]. **CRunDec** [SS12]. **crystal** [Aza13,BP12,Bab14,BK13a,FBP+14,HWCH11,Liu14,LZ11a,LZ11b,LZ12,LOV10,MW14,OG14,OO15,WS11a,WLZM12,WBY11,YZY10]. **crystalline** [AKZ+13,DBJ11,TKP12]. **crystallization** [AYDY11]. **crystals** [BBH11b,CLC14,Gen10,HXW+13,PYW+14,RDP14,Sin12b]. **CSD** [CW13]. **Cu** [TG11]. **Cube** [CD12,MGO13]. **cubic** [Jiw15b,LX14,LKW11,MGL13,MGO13,MCP+11,PR10,PCGM14,RF15,RS12,SBH+14,SW14b,SKK11,SW11,TMA+15,TY10,TKL+12,VL11,SW14a]. **D-3V** [CC14]. **damage** [MBRV+13]. **damped** [D313,Eba13]. **damped-relaxation** [Eba13]. **damping** [MD11a,SS11a]. **DAMQT** [LRR+15]. **Darboux** [AddM14]. **dark** [BB12,BBPS14,BBPS15,CCM12]. **Darwin** [CC14]. **dash** [SCG11]. **Data** [BCJ+11,Car10a,DPK+15,KST+14b,XLCW14,Ano10a,Ano11a,Ano11o,DKS10,BG13a,BBV10,CL15a,Car10b,CMSV14,CO11,DRUE12,DDK+15,DADS11,ECD+10,End11,Fer15,FCC15,GMRHRCME13,HBP14,JTH14,MW12,MGO13,MD10b,MM11,MGFRG12,dlRL11,PCVZ11,RMW13,RSSH+10,SEW12,SEW14,SN11,
Sin12a, SAS11, SOJ14, TRM+12, WMK11, YG12, Zlo14, dBCH14.

dealloying [ZDD+13]. Decay [APV10, BGM+14, CDL+12, Gin10]. decays [CGV13, DET12, DGPW11, FEH11, HEF12, WT12]. decomposition [ASWP13, APC+14, BS15, CH11a, DO14a, DO14b, KU10, QL10, San15, TD14, WM13]. decompositions [FRG12]. decoupling [SS12].

dedicated [ZDD+13]. Decay [APV10, BGM+14, CDL+12, Gin10]. decays [CGV13, DET12, DGPW11, FEH11, HEF12, WT12]. decomposition [ASWP13, APC+14, BS15, CH11a, DO14a, DO14b, KU10, QL10, San15, TD14, WM13]. decompositions [FRG12]. decoupling [SS12].

definition [Sza13a, WWS10]. defined [CNMC10b, DADS11, Vuk12].
definition [CNMC10b, DADS11, Vuk12].
defined [MH11, Pat12].
defect [DMC+15, HWW12, MBRV+13, OI15]. defects [CLC14]. defined [Sza13a, WWS10]. defined [CNMC10b, DADS11, Vuk12]. defined [CNMC10b, DADS11, Vuk12].
de¯ned [Sza13a, WWS10].
dephased [ZDD+13]. Decay [APV10, BGM+14, CDL+12, Gin10]. decays [CGV13, DET12, DGPW11, FEH11, HEF12, WT12]. decomposition [ASWP13, APC+14, BS15, CH11a, DO14a, DO14b, KU10, QL10, San15, TD14, WM13]. decompositions [FRG12]. decoupling [SS12].

definition [CNMC10b, DADS11, Vuk12].
definition [CNMC10b, DADS11, Vuk12].
defined [MH11, Pat12].
defect [DMC+15, HWW12, MBRV+13, OI15]. defects [CLC14]. defined [Sza13a, WWS10].
definition [CNMC10b, DADS11, Vuk12].
definition [CNMC10b, DADS11, Vuk12].
defined [MH11, Pat12].
defect [DMC+15, HWW12, MBRV+13, OI15]. defects [CLC14].
Direct [SKH⁺10, Wei11a, CDS13a, GJ13, LSK⁺13, OP12, WAW14].
Direct-MPI [WAW14]. direct-sum [GJ13]. directed [FLP10, QHC⁺10, dSLF13]. direction [LST15, LSK⁺13, NO14, TT14, XYK12, XZ12]. directly [Kon11, Sco13].
discretized [LHC⁺13]. discrimination [sL10]. disks [TACA15].
DNA-radiation [BSC⁺13]. DNAD [YB13]. DNS [APC⁺14].
documentation [DNP⁺12]. doing [GLMG12]. Domain [IBP⁺15, ASPW13, APC⁺14, BS15, DO14b, FRG12, FNPMB10, HE13, Hsu11b, Kap12b, MBFD12, ICD13, Oti13, QL10, Ram14, SW12b, TD14, TT14, VDB14, ZLL13, HKF⁺12, MCM⁺12]. domains [Bot13, DS13a, KSW12, OOK⁺12, SNB11]. dominated [Kau13]. dopant [LCH11, SD14]. doped [KAR⁺15, NS11b, SQL⁺10]. Doppler [MGA⁺13].
Driven [Dan10a, Dan10b, BJBC⁺14, CHC⁺11, De 11, GTL11, Hin11,
HJL+14, IBKK\textsubscript{11}, LDW\textsubscript{13}, LHJ+15, MiH\textsubscript{12}, MS\textsubscript{11}, RHHF\textsubscript{12}, VPM\textsubscript{12}.

driving [BNAB\textsubscript{11}, THDH\textsubscript{14}]. droplets [APC+14]. drosophila [SLC\textsubscript{11}].
dsDNA [AGVP\textsubscript{10}]. DSCM [OCF\textsubscript{10}, TKL+12]. dual [DG\textsubscript{10a}, VvAN+11b, YB\textsubscript{13}]. DualSPHysics [CDR+15]. due [Cip\textsubscript{13}, Emc\textsubscript{11}, TW\textsubscript{11}, XYM+13]. duplicate [LZ\textsubscript{12}]. during [GTSL+13, XL+15, ZBM\textsubscript{11}]. dust [HCRD\textsubscript{14}]. dye [HG\textsubscript{13}]. Dynamic [Bar\textsubscript{12a}, FRG\textsubscript{12}, SKSK\textsubscript{13}, AGMS\textsubscript{15}, Bar\textsubscript{11a}, BS\textsubscript{15}, CD\textsubscript{12}, DF\textsubscript{11a}, DGMZ\textsubscript{15}, HST+11, JOR+12, Sva\textsubscript{12}]. Dynamical [KLKR\textsubscript{11}, LLHC\textsubscript{11}, AG\textsubscript{14}, ADD\textsubscript{+12b}, ACDdM\textsubscript{13}, BVC\textsubscript{13}, Dan\textsubscript{11}, DG\textsubscript{10a}, VvAN\textsubscript{+11b}, YB\textsubscript{13}]. DualSPHysics [CDR+15]. due [Cip\textsubscript{13}, Emc\textsubscript{11}, TW\textsubscript{11}, XYM+13]. duplicate [LZ\textsubscript{12}]. during [GTSL+13, XL+15, ZBM\textsubscript{11}]. dust [HCRD\textsubscript{14}]. dye [HG\textsubscript{13}]. Dynamics [LBM+14].
dynamics-based [ZS13, Zhe15]. Dyson [HB\textsubscript{12}, HM\textsubscript{12b}].
element-spectral [LW14a]. elemental [HW12]. elementary [FBG10].
elements [AC13, Arb12, CCHL11, CK12, CBB14, FNPMB10, HS14b, LA13,
MSRL10, PO14, SD10a, USOA13]. eliminate [HHT14]. eliminating
[SCM13]. Elimination [MBFB13, YXD+15]. ellipses [SC14]. elliptic
[GCPVA14b, PS11]. ELMAG [KOT12]. ELRADGEN [AFIS12]. Embedded
[BM13, RHH12, PS14, PP13]. Enden [CB13b, KMM13, PDRG10].
Emergence [dSVLP13]. emerging [DS14]. emission
[AAB+10b, CL11, LSF14, LL15, ZLM12]. emissions [VDJ+11]. Employing
[Mis13, GX15]. enabled [LYP14]. Enabling [DSW+15, ECD+10].
encapsulation [DSCM13]. enclosure [CAN11]. encoding [CMSV14].
encounters [HLS12]. end [PPY14]. end-point [PPY14]. energetic
[PCGM14]. energies [DT11b, Gen10, GFJ+14, RJ12, TKP15, ZMCT12].
Energy [AK15, MGL13, AG14, BMC+11a, BDKS10, BH14a, BH14b,
BKA+14, BIT12, CDTV10, CC14, DCC+10, DGPW11, Den10, DR12, Eme11,
Fggm11, Fzy13, GBD10, Gcva14a, Hah12, Hoh14b, HEPW13, JPCG15,
Kar+15, KK14a, KCA+15, Kra11, LAA+10, Lcy+11, MD10a, MSPD12,
Mmt+11, Mip15, NrsVW12, PB13, Rpl+14, Rom15, SSF+14, SA14, TM14,
TS10, WS11a, WXL13, WX14, WP10a, ZPH+15, ZZD15]. energy-based
[GBJ+13, GBFJ14]. engineering [Zhe15]. Enhanced
[Rap11, JTP15, PLD15]. Enhancement [VCMS+13, CLY11, EEGW12].
ENO [AAD14]. ENO-flux [AAD14]. Ensemble
[TDL+14, BG13a, GA15, MHR+13, PA13, Zkw+15]. ensembles
[CRNK12, FD13, MJBF11]. entanglement [RLL12]. enthalpies [ZMCT12].
entire [Wei11a]. entropies [ZMCT12]. Entropy [TW11, CHDF10].
environment [Gio14b, JVR12, WP10a]. environmental [GMPCF+14].
EnvironmentalWaveletTool [GMPCF+14]. EPCM [PS14]. epsilon
[GS14, HL13]. Epstein [Ram10, Yan09]. EPW [NGM+10]. equality [ON11].
Equation
[LB10b, Asi10, BB15, BAr12b, Bot12, BB13b, CWS14, Cap13, CZS10,
CC10b, CC12, DG10a, DS11b, DZ13, DSP15, DM12, Eba13, Fil13, FglB12,
Fgg11, Gs15, GA10, GtG+11, Gcva14b, HP14, HM12a, HAK+14, HJ14,
HS14b, HH11a, HDZ14, HCsw10, Isa10, Isa12, Jl10, Ji112, Ji15a, Kh12,
KN13, KBSP12, KP14, KR14, LD10a, LD10b, LV14, Lzzzl10, LS12a,
Lckm14, Lin13, Mgl13, MC12, MLS10, ML14, MA11, MM10, MM12, ON12,
ORS+14, Oaks11, OK14, PSB11, PSt12, Pas11, Pr13, QSc14, RM10a,
RHBH15a, RHBH15b, STK10, Isys12, SSH+13, SD10b, SB11, TKS10, Tt14,
TY10, Unk12, Vvb+12, Xz12, ZFH14, ZST11, dB14, dHV12]. equations
[AAD13, ACCB13, APV10, ABB13, AD14, AD15, AG12a, AEdm12a, Bsm13,
Bar11b, Bk11b, BB10, BB13b, BH+12, CZD15, CR13, CDTV10, CB13b,
Ckk+13, CBB+10, CM14a, DT10, DT11a, DN13, DJ12, Dem13, DhiJ13,
DJ14, DSP15, EW14a, FF11, Fsc13, Fon12, GJ14, Gjlb12, GX15, HK12,
Hhc+10, HB12, HM12b, Hcwh11, Ih11, Jpss10, JK10, JC13, JC14,
[Bla15, AH13, DJ14, FG13, FGR14, KZC+10, KAS12, LCE+13, QSC14, RL10, SS10b]. explicitly [LV14]. Exploiting [ASPW13, YRR13].

Exploring [CDS+13b, GTS14, Yan11, MG10a, Müll11a]. explosions [BNAB11], exponent [XZF12]. Exponential

[Er15, PTMDPK14, AQJ10, GDB10, GH11, Moh14, Pat12, PH11, Ram12]. Exponential-time [PTMDPK14]. exponentially [Miy15].

Explicitly [LV14]. Exploiting [ASPW13, YRR13]. Exploring [CDS+13b, GTS14, Yan11, MG10a, Mul11a].

Explosions [BNAB11]. Exponent [XZF12]. Exponential [Ert15, PTMDPK14, AQJ10, GDB10, GH11, Moh14, Pat12, PH11, Ram12].

expressions [Dua12, MBGK11, Zit11]. expressions [Dua12, MBGK11, Zit11]. Extended

[FLW10, FMW10, KSL+11, PPY14, Wu10, WWYF09, BM13, Bla15, LWYW11, LW13, Mü11b, Mü14b, iNSK+15, RLM13, XW15, YZWR14].

extended-Lagrangian [iNSK+15]. extendible [SCM14]. Extension

[AM11, GHvSF14, Mü+10]. extensions [BCPS11, PS12].

extensive [BG14b]. exterior [BH14b]. extra [CD12, EGPS10, PR13]. extra-high-order [CD12]. Extracting [SAS11]. extraction

[CCK13, MSPD12, OG14, OO15, RJ12]. extragalactic [KOT12]. extrapolation [MC12]. extrasolar [HTT13, HTT14]. extreme

[DKOS14, WSH+12]. extreme-scale [WSH+12]. extrinsic [DMC+15].

factor [GDB10, MSZW11, TZG12, dHV10]. Factorization

[JOK13, K14a, LHJZ10, RW11]. factors [AHK+12, Pål12]. Faddeev

[DVB11], failure [Pra11]. Falkner [RL10]. family

[DK13, rJmYT11, NCHN15, WCT11]. FAST [BK13b]. FAPT

[Ruf13, ABRS12, BG13a, BKM11, Bot11, BGL+14, BSW12, CC10b, CC12, DHJ13, GRZ10, KAK12, KME+11, Lut15, Maz13, MSS+14, TO10a, VLPPM14, WISA11, WSO+12, AGB+15, Brü13, CB15, Dat13, GJHF14, Ham11, HP11, JLW13, LC15, LL15, LCHM10, LCHM13, LLX14a, MRZ10, OLY14, Qia10, RMW13, IT11, XW15, XAPK14, YBK+11, YBNY13, ZHPS10, ZC12, vWB10, FCC15, JLW13]. favourite [DK+15].

FCNC

[CRC+13, RCD+10, Ros15]. FDCQHP [WW14]. FDTD

[Ram10, BAR12b, CCK+13, FBN+13, KKK11, KP12b, KO14a, OR1+10, PYW+14, Ram10, Ram12, RHW+12, SSH+13, WWGH14, Yan09].

FDTD-based [BAR12b]. Fe [LQZ+13, TG11]. FEAST [LZP12]. feathers

[TBB+14]. features [CDSG11, DZ15, dRPL11]. featuring [EBCB+14].

Fedosov [To10]. feed [KSY13]. feed-back [KSY13]. feedback

[CDL+12, OCF10, mZXL15]. Feenberg [MBG15]. FEM

fermionic [Men11, ÖKCI11]. Fermions

few-particle [RAV11]. FEWZ [GLPQ11, QGLP13]. FeynArts

[FHH+14, Sta10, SV12]. FeynDyn [Dat13]. Feynman
[Bor14, Dat13, Fri14b, Pan15, Smi15, Stu10, XWhZ13, WX15, dALM+12].

FeynRules [DDF+12, ACD+14b, DF11b]. **FFT** [BC11]. **FFT-based** [BC11]. **FTTs** [DO14a]. **FFTW** [KT10]. **FGT** [CLB11]. **FHI** [JGAL+13].

FHI-gap [JGAL+13]. **fibers** [APRG11]. **fidelity** [TTS11]. **Field** [RLMGM+11, BG11, CZD15, CCHL11, CPHL14, DF13, EEGW12, GA15, GLW14, GX15, HO13, HEF+11, JTT11, KB15a, KH12, LFG14, MEG12, NPVR14, NVW+13, Nut14, PC11, FCGM14, Pit12, QL10, RS12, RK11, SEW12, SEW14, SZM+14, SW11, TKP15, XHLM12, XLX+15, YLK10, dB14, Asc10].

field-aligned [HO13]. **field-theory** [DF13, Nut14]. **fields** [Asc10].

FFT-based [BC11]. **FFTs** [DO14a]. **FFTW** [KT10]. **FGT** [CLB11]. **FHI** [JGAL+13]. **bers** [APRG11]. **delity** [TTS11]. **Field** [RLMGM+11, BG11, CZD15, CCHL11, CPHL14, DF13, EEGW12, GA15, GLW14, GX15, HO13, HEF+11, JTT11, KB15a, KH12, LFG14, MEG12, NPVR14, NVW+13, Nut14, PC11, FCGM14, Pit12, QL10, RS12, RK11, SEW12, SEW14, SZM+14, SW11, TKP15, XHLM12, XLX+15, YLK10, dB14, Asc10].

field-aligned [HO13]. **field-theory** [DF13, Nut14]. **fields** [Asc10].

FIESTA [SST11, Smi14]. **FiEstAS** [Asc10].

FIESTA [SST11, Smi14]. **FiEstAS** [Asc10].

ft [DSW+15]. **le** [iSYS12, SV12, dBCH14].

files [Sta10].

fitted [CBB14].

filter [LFG14, TdAdSS11, ZLFM11].

filtering [GMRHRCME13, GMPFC+14, PCVZ11].

financial [CLKK11].

Finding [Kan14, SS13a, VJC12, MWCY14].

Fine [MEM+11, Bru13, CYD11, Faw10].

FinFET [LCH11]. **Finite** [DJ12, DSpJ10, KST14a, MAIVAH14, OBH10, SBvD13, TMA+15, Zag14, AAD13, AS11a, BMNS14, CAN11, CCHL11, Cor14, DT10, Den10, EKDDG15, Evs14, FNPM10, GBP13, GB14, GLW14, HE13, Has11, Hsu11b, HZ11, IP14, KCT15, Kob13, KMD12, KVW11, LD10a, LA13, LW14a, LV15, LHJZ10, LHH+12b, MB12, MIA15, MJB11, MBFD12, ICD13, Naz12, ON14, OWS+14, Ot13, OVS15, OT11, QLN14, Ram14, RS12, RC13, SW14a, SC15, SHL+11, SBH+12, SCG11, TT14, TXZ15, VLPMM14, VDB14, WZ13, WP10a, Wit14, YRR13, YQM12, YQMF14, HKF+12, LYP14, MCM+12].

finite-dimension [DJ12, DSpJ10, KST14a, MAIVAH14, OBH10, SBvD13, TMA+15, Zag14, AAD13, AS11a, BMNS14, CAN11, CCHL11, Cor14, DT10, Den10, EKDDG15, Evs14, FNPM10, GBP13, GB14, GLW14, HE13, Has11, Hsu11b, HZ11, IP14, KCT15, Kob13, KMD12, KVW11, LD10a, LA13, LW14a, LV15, LHJZ10, LHH+12b, MB12, MIA15, MJB11, MBFD12, ICD13, Naz12, ON14, OWS+14, Ot13, OVS15, OT11, QLN14, Ram14, RS12, RC13, SW14a, SC15, SHL+11, SBH+12, SCG11, TT14, TXZ15, VLPMM14, VDB14, WZ13, WP10a, Wit14, YRR13, YQM12, YQMF14, HKF+12, LYP14, MCM+12].

finite-range [Cor14].

finite-size [OBH10, Evs14].

Finite-temperature [KST14a, KCT15]. **Finite-time** [Has11].

finite-volume [LHH+12b, SHL+11].

finite/infinite [SBH+12].

Finsler [YE14b].

FIRE [SS13a]. **FIRE5** [Smi15].

First [EY11, FWZ+12, PBMD12, SQL+10, AddM12a, ACDdM14, ADDdM14, BP12, CSL+13, GPS+13, GCVA14b, JLA+14, LZL11, SS13b, SWL11].

First-principles [EY11, FWZ+12, PBMD12, CSL+13, LZL11, SWL11].

fission [Rom15, VRV15, VRV15].

fit [Gag12b].

fits [DS15].

fitted [CFMR10, FG13, KMS14, KV10b, Miy15, PS14, RAV14, YZZ11].

Fitting [GD14, BPPM14, Bla15, Bru13, DSpJ10, Ene11, LFG14, Pat12].

fixed [BMW14, CNMC10a, CNMC10b, FGMG11].

fixed-phase [BMW14].

fixing [CSBO13, HbotRC15, SV13].

flame [WLM14]. **FLAPW** [MBFB13].

Flin [Dim14].

FLAVOR [Ros15, EFG+10, AM10, CDS+13b, CGV13, Mur14].

flavour [AM11, MHA+12, PS12, MHA+12].

flexible [CSRV13, DLP10, HvAS+13, JK14, KPA13, ORI+10, PHI13, SGM11a, SGM11b, KBT+14].
FlexibleSUSY [AhPSV15]. flip [KO14b, Kom15]. floating [CH11b].
floating-point [CH11b]. floor [PC11]. Flow [San11, Beu11, CLW11, CRA10, CL13, DMC10, FM15, HSF+15, HCT11, KK13, LCC13, LHH+12a, LTL+12, MSI+10, MMC10, MPM14, MBS+10, OP12, PC11, RF15, SS11c, SQA+15, SDJ+12, SJW10, TFBW14, TKL+12, VSO+13, Van15].
Flow-induced [San11]. FlowPy [FSC13]. flows [ACMM10, BBF+13, CPR12, JPK+12, Kl10, KPPC13, LSK+13, MRVF13, Sza13b, Sza13a, TIM13, TCP13, WZS+11, ZOZ13, vdS10].
fluctuated [LCH11]. fluctuation [Voy13, ZC12]. fluctuations [HBP14]. fluid [CG14, CL13, DF11a, DMC10, GLW14, HCHW11, KK13, KTE+12, LHH+12b, MOD13, OP12, SH12a, Sch14a, SLR+11, SHL+11, SQA+15, sX14, Zag14].

fluid-particle [Sch14a]. fluids [DS11b, GAHP15, JPK+12, MRZ10, SA14, WLU11]. fluorescence [CDGS11, MD11b, ZLM12, RMW13]. flux [AAD14, HO13, HHIC+10, LHH+15, QM10, TCP13, WFW14].
fluxes [ORS+14]. fly [Ray10]. FMM [CLB11, ZHPS10]. Fock [BM14, SEW12, SEW14, SW14b, SDM+12, SSK+13, DG10c, Fis11, GBD10, KAK12, Koh13, KS12, OT11, ZYZ15].
form [AHK+12, KO14a, Pali2, Zhe15, KUV13, KUV15, TV10, CKJR11].
formalism [FWZ+12, KCA+15, MBF+10, THJ+10, VKP14, Voi13]. format [BDKS10, CMSV14, DKOS14, JTH14, dBC14, RSH+10]. formation [BRL12, BSWC14, CHDF10, GTL11, HFK+12, IBKK11, UIY11, ZDD+13].
FormCalc [FHH+14]. forms [MWCY14]. formula [CMN12, TO10a].
formulas [BCMS10]. formulation [CL12, HRC11, Kap12a, Kap12b, MMA15, ZDWY10]. formulations [Ram12, Ram14, WLU11]. Fortran [BS13a, BW12a, BV13, BD14, DET12, GSD12, HE13, HM12a, JCL10, KS12, LZZ11, MBGK11, NS11a, PG10, iYS12, SSG+10, SHZ13, STY15, SS10a, SF10, WW14, YB13, Zag14, vH10].
forward [MAC12, VEM12]. four [BH13, GKM10, KMA+12, MBGK11, MKG13, Miil14a, SMG14].
fraction [ZTG13, ZTG14]. fractional [Dev12, DS15, HZ11, JC14, JL10, LLL13, PS11b, PSBT12, SW12b, YQM12, YQM14, BK13b]. fracture [VLM11, VKLM11, VLM11]. fragmentation [BG14a, HK12]. frames [MFS\(^{+10a}\), SS11b]. framework [Ano11o, CMC\(^{+15}\), CFFR15, DMC\(^{+15}\), GBFJ14, HMR14, HM12b, JEC\(^{+12}\), JNN12, JNN13, KEH12, KSH14, LSD14, LS14, LRW\(^{+15}\), LZP12, ML10, MGFRG12, NBM\(^{+15}\), NPVR14, RM14, SV14, SSX14, SJ11, Sva12, TOB\(^{+14}\), WFV14, ZHL11, FCC15]. Free [ACMM10, Gen10, AK15, CP15a, CXH\(^{+15}\), CPR12, DGG13, FM15, Hon10, HHS\(^{+10}\), JPCG15, KT12, KST14a, KH12, LF12, ORI\(^{+10}\), PIH11, SA14, WPAV14, Zag14, ZOZ13, ZPH\(^{+15}\), Zhe15, ZMCT12]. Free-boundary [Hon10]. free-form [Zhe15]. free-software [ORI\(^{+10}\)]. Free-surface [ACMM10, CPR12]. freedom [Er14]. Frenkel [AMM11]. frequencies [KMD12, RVA14, RJ12]. Frequency-Domain [MCM\(^{+12}\)]. FRESHS [KBT\(^{+14}\)]. Fresnel [JTP15]. FRET [HG13]. FREYA [VRV15]. friction [AMM11, HST\(^{+11}\), RU12]. frictionless [LDW13]. Friedel [TW11]. friendly [CFS13]. Fringe [MB12, MB12]. FRODO [AC13]. frog [AZM14, HP14]. fronts [KR14]. frustrated [IUM13, KGS10, Leô12]. frustration [HML11]. functional [AQJ10, AK13b, BH11, BSGG10, CDL\(^{+12}\), Fen12a, FM12, GST12, Jab12, Jab13, KDM11, LSF14, LKL11, LHSL14, MR13, OKP10, PM13, Raw15, SS11a, VeH12, XD13]. Functional [BC10, DBB12, LT15, VCM\(^{+13}\), AKZ\(^{+13}\), BH11b, CDTV10, CXX\(^{+15}\), FSC13, GBR\(^{+14}\), GSZ13, HB12, HHS\(^{+10}\), JCW\(^{+13}\), KT12, KCT15, LS11, MGR11, MOB12, OOK\(^{+12}\), OT11, RHC15, RWKS15, SBH\(^{+12}\), SA14, WX14, YRR13]. functionals [GBR\(^{+14}\), LRW\(^{+15}\), MOB12, NPAD11]. functions [BBBV12, BMW14, BKK13, BKM14, BK15, CM10a, Cai11, CD15, CCWL11, CLJ12, CSR13, CEPI10, Cou13a, Cou13b, EUT\(^{+15}\), Ert15, ERG\(^{+12}\), FP14, GDB10, GST15, GTS14, GS14, GYW\(^{+10}\), GCV14a, HK12, HL13, HM12c, JL10, Kap12a, KH11, KCL11, Kir10, KAW\(^{+10}\), LD10b, LM12, Liu11, Liu13, MK10, MYP\(^{+14}\), NGM\(^{+10}\), OWS\(^{+14}\), PPY14, PDRG10, PG10, PVK\(^{+14a}\), PVK\(^{+14b}\), RA13, RE12, SSG\(^{+10}\), SPMM11, SD10b, WWS10, WAHL13, WPD\(^{+15}\), ZDWY10, ZMCT12, vH11]. fundamental [LZP12, MK10]. fusion [AGB\(^{+15}\), FK12, FR15, HLM13, HJL\(^{+14}\), LHJ\(^{+15}\), Maz13]. fuzzy [GES13].

Galerkin
gas [DS13a, GM11, HCHW11, KR14, LHH+12a, LSK+13, UBRT10, WZS+11].
GASPRNG [GP13]. gather [MTO15].

gauge [BB13a, BW12a, CB13a, CSBO13, Fri14a, HbotRC15, LSSW14, SV13, MGS13].
gauged [Fis12]. gauginos [Sta13].
Gauss [MSR10].
Gaussian [EKDGG15, Er14, FM12, Odr14, Ray10]. GBS [JHL+15].
Geant [Gri11]. Geant4 [DPK+15, KB15b, PCEH15].
Geant4-DNA [DPK+15]. Gene [BW15, CRA10]. Gene/P [CRA10].
generalised [BBC+13a]. Generalized [JPH+14, BDV11, BKK13, BK15, DBB12, Ert15, Fer15, GTG+11, KMM13, LJE11, LS12a, llsSZ14, MBFD12, ICD13, PH11, PA13, RLM13, TC11b, BD12, MCGR11].
generate [AM14a]. generated [BD10, MSH11, MSS+14, WSO+12].
Generating [Bjö11, CB13a, MMT+11, Mis12, Mis13, RM14, Rom15, WW12].
Generation [CC10a, JTH14, BJBC+14, BS11, BS13a, BS14a, BCJW13, Bor14, BGL+14, DCM+12, Fer15, HMU10, MV11, Rei10, XWhZ13, ZS13].
generator [AFIS12, AhPSV15, BCMS10, BCJW13, CWW10, CI11, DKT14, GP13, Gin10, HLD13, Kas14, KRW13, KYKN15a, KYKN15b, MO14, OY13, Shal13b, TU14, XW15, YWW13].
generators [ASPW13, BS13a, CKS10, Dem11, MZ14, Mis13, SS13a, TC11a].
generic [Ano10n]. genes [SCW+11]. Genetic [SKH+10, SKK11, Bru13].
GENXICC [WW13]. GENXICC2.0 [CWW10]. GENXICC2.1 [WW13].
geodesics [MG10a, Müll11a]. GeodesicViewer [MG10a, Müll11a].
Ginzburg [Wan10a, WZ13]. Glass [LRC+11, BL14, BPP11]. glasses [BW11, IZRT15].
Glassstone [TZG12].
glassy [CH11b, Has11]. GLLauber [RSBB14]. GLISSANDO [RSBB14].
Global [PPS10, WWM14, CDdM14, FKL13, KTE+12, KHR14, KTA12, KSYY13, LYP14, SK10, TBZ12, VPP+12, WHL+12, WLS13].
globular [RV10]. glsim [Gri11].
gluodynamics [Fri10].
gluon
[BBU11, HLM13, HAH13]. Gmat [CNMC10a]. GMES [CKK+13].
GMXPBSA [PSMS14, PSMS15]. Godunov [KPPC13]. gold [ZDD+13].
Golem95C [CGH+11, GHvSF14]. good [MA11, TC11a]. goodness [Gag12b].
Gordan [HR11]. Gordon [DN13, KZC+10, AH13, DG10a, DG10b, Eba13, JPM12, LD10a, MD10a, Pál12, PTS12, RM10a, SW14c, dlHV12].
GPELab [AD14, AD15]. GPGPU [LYZ13, ON14]. GPScan.VI [Fer15].
GPU [BS14a, BFP11, BBF+13, BBS14, BD10, BVP10, Boe14, Cap13, CMVRB+14, CSSB15, CLB11, DS13a, DCVB+13, DCGG13, DGG13, ELDS14, FFT+14, FGC+11, FDWC12, Fil13, FBN+13, FOB+15, GP13, GJ13, GLHG12, Ham11, HW+13, HW12, Hln12, JK14, JPCG15, JCW+13, KKP11, KP12b, KO12, KO13, KO14b, Kom15, KMA+12, LYY14, LCC13, LGW13, Lut15, Lya15, MPM14, MHR+13, MTM13, OP12, PR14, PLD15, RD10, Sai10, iSYS12, SKM15, TDL+14, WXW14, Wei11b, WSH+14, WC13, WAW14, XH14, YHL11].
GPU-accelerated [ELDS14, WXW14, Cap13, DS13a, GJ13, Ham11, HW+13, MHR+13, XLX13]. GPU-based [Boe14, CMVRB+14, FDWC12, JPCG15, KO12, Kom15, KMA+12, LCC13].
GPU-enabled [LYP14]. GPUs [ACD+14a, BS14a, BCDI12, CMVRV+14, CB13a, CSBO13, CBB+10, CH11b, CBB14, Dat13, Dem13, DSP15, ECD+10, FGG11, GNA+15, GJB11, HAH13, HLZ+13, sLqSqL+13, MR14, Maz13, MBA+11, ON12, SV13, SÓON11, TK14a, TCP13, WXW13, WAHL13, WMM14, YL12, YBK+11, YBNY13].
GPUs-The [HLZ+13]. GR [OK12]. Grad [HS14b]. gradient [AG12a, CR12, HbotRC15, HKVR10, JHL+15, KN13, SEG15, WX14].
grand-canonical-like [PLCC12]. granular [GTPWL12, KPPC13, RU12, San11]. graph [Bo14, SSB15].
graph-theoretic [SSB15]. graphene [FUSH14, GLZ14, Hln12, KLKR11, LHS14, OCL+13, STT11, SP11, SWL11, TMA+15].
graphical [Fil14, GLB13, RPL+14, RLMG+11].

[DS11a, GWM13, TUY15, Zlo13]. Graphics [Dem11, APRG11, BdVGS11, BK11a, BJWC13, CDS13a, Col14, DBDP12, DF13, FSH13, FUSH14, FY13, MED11, MEM+11, NPA11, PLD+13, Rap11, SH12b, TD11, Ti10, TB14, WDL11, WWFT11, MSML10, YL13].
Grazing-incidence [MPSV15]. Green [AK13b, KDM11, Liu13, WAHL13, XD13]. Grid [KK14b, BAR12b, DF11a, GLHG12, HP14, HV+13, HK11, KDP+14, KK14a, KV10a, NVV+13, RC11, TIMM13, YRR13, ZS13, BCJ+11, LHL11, MLR10, MWL+10].
Grid-based [KK14b, KK14a]. grid-computing [KDP+14]. gridless [OCF10]. gridlock [wH15]. GridMD [MV11]. grids [DJ11, DHS14,

[AK13b, CZL+, Jab13, KCT15, LRK13, RGH10, SSF+, WMK11, WPD+, BW15, CKLM10, CdDM14, GST12, KHK+, KDM11, KPPC13, MGO13, MBFB13, Nat09, Nat10, SWL+, SD10b, WZS+, WW13].

intensity-energy [MSPD12]. inter [HB13]. inter-polyelectrolyte [HB13].
Interacting
[Cas12, APC+14, CvW12a, CvW12b, Fil14, LJSW11, MBFD12, RS12].
interaction [BM13, BL14, BSC+13, CL11, GC12, GBD10, GC10, GC13, HRC11, LB13, MPS13, NS11b, ReTV12, RE12, SS14, Yan11, ZF15].
interactions [BBL+13, BCh11, CCGC13, ERP+12, Fil13, Gao13a, HCSW10, KMD12, LSDD14, dRJL14, Ots11, PH13, TMA+15, TT11, ZE11, ZHPS10].
Interactive [KY14, Gio14b, MCI10, KST+14b], interatomic [GD14].
interchangeable [ZMvE+13]. interest [OK10]. interesting [MN10].
interface [ABB+14, Ano10o, BPML12, BB13b, CMM14, CSPAD10, CCHL11, DNP+12, EW14b, FLSZ13, GWM13, KDP+14, MZ14, TM14, Uty14, WMK11, XD13, ZMvE+13].
interfaces [KRW13, PR10, RH11, ZFBR11].
Interfacing [MHA+12], interference [FNPM10], interlaced [RRdB11].
intermediate [vMB14].
intermetallic [DMC+15].
intermolecular [KHKR14].
internal [BH11o, BBH+15].
International [BCJ+11].
Internet [VDJ+11]. Internet-based [VDJ+11], interoperating [CcdC+11].
particle [QLN14], interpolated [FZY13]. Interpolation [HKJ+12, DG10b, Jiw15b, PGM14, RWKS15, Sok13, UNK12, XLL15].
interpretation [HLL13].
intersection [PC11]. interval [Zlo14].
intraband [TB14], intrinsic [Dev12, DMC+15]. intrinsically [CRNK12].
Introducing [CXH+15, HHS+10, MDGC+12, MAfD14, dHGC11].
Introduction [IBP+15, Brel10, SAC+15, TRK13]. intrusive [HHM+15].
invariant [QwWL+15]. invariants [ADdM14, FWZ+12]. inverse
[CL15b, K11, MW12, MK10, MD10b]. inversely [KB15a]. Inversion
[CL15a, GST15]. invert [RLM13]. investigated [RD14]. investigated
[CSL+13]. investigating [BG14a]. Investigation [AM14b, K11, KK13, MDPTK15, MRVF13, vdS13, EEGW12, MSH11, NS11b]. inviscid
[LSK+13, TFW14]. involving [Cip13, GC13]. ion
[BB13b, JGC+11, KH14, KMD12, PR14, SK12, SVG10, TXL15]. ion-ion
[SvG10]. IONIS [Hei12]. Ionization [TT11, BPC12, Fri12]. ionospheric
[KST+14b]. ions [BP12, HH11a, JTT11, L13, LB11, LB12, MFS10b]. IPEC
[HB13]. Iron [BPM14]. irradiation [MBRV+13]. irregular
[BS15, RH112, SSG+10, vdS13]. ISDEP [VCB+12]. ISICS [Cip11, Cip13].
ISICS2011 [Cip11]. ISICSoo [BPC12, BPC13]. Ising
[BO12, LB+14, VK14]. isothermal-isobaric [VK14]. isotope [NGG+13]. isotropic
[Asi10]. issue [SZY+13, ZYL+15]. Issues [KT12]. iterated
[BB10, FR15]. iteration [CM10b, Kom15, Z10]. Iterative [GB14, Kau13, TC12, BHVMH15, Bis15, DB13, Du10, MCF+11, TVZ+15, VDB14, ZLL13].
iterinant [IUM13]. IVPs [PS11, FS14]. Ixaru [Pat12].
laser-plasma [REtVH12]. Lattice
[BCJ+11, CDS+13b, CKCS13, LS13, dHGCS11, vdS10, BBC+11, BB13a,
BW12a, BO12, CB13a, CAN11, CBB+10, CRA10, CND11, DE13, FD13,
Fri14a, FKH15, HFOFF15, HMR14, HbotRC15, IUM13, JLA+14, JK14,
JEFP14, KP12a, KK14b, KdMvO14, KLA11, LS14, LQZ+13, LCL+11,
MMHL11, MOD13, MR14, MRZ10, Maz13, MGS13, NIK+12a,
Ots11, RV10, Sai10, STK10, SD15, Sch14a, SV13, Sin12b, TKS10, WL+13,
WLU11, XLCW14, BLPP13, BCS10, GTS+13, MWL+10, vdS13].
lattice-Boltzmann [CRA10, FKH15, MOD13, Maz13].
lattice-Boltzmann/finite [CRA10]. lattices [BG11, CCW10, FLP10, HML11,
LCCC11, MKV11, SO ON11]. launched [sLqSQ+13]. Laurent [Per14].
law [SB11, UW12, WCT11]. laws [AAD14, DJ11, MWCY14, SW12b].
Lax [MWCY14]. Layer [LV15, GGI+13, GLW14, JHL+15, WTH15].
layered [Bot12, CL15b, DV11, LF12, MPSV15, PP13]. layers [CB14]. leading
least-square [DSPJ10]. least-squares [AG12a, Kra11]. Legendre
[MSR10, SSG+10, SPS10]. Lemon [DRUE12]. length [UY11].
LEP [BBH+10, BBH+11a]. lepton [CGVi3, Mur14]. leptons [KFS+13]. Level
[Ki10, ACD+14b, BR14, Fen12b, FE11, FEH11, HEF12, KN13, LW14a,
MNPY14, OK10, SHZ13, WL11b, XHLM12, XLX+15, IBP+15, MFG+13].
level-of-detail [OK10]. level/high [MVS15]. levels [GCV14a, Kra11, TRM+12].
LEVIS [PCGM14]. LHC
[DDK+15, QGLP13]. libCreme [RLL2]. LIBERI [TO10b]. libraries
[BV13, dALM+12]. Library [TO10b, AS14, BS11, BS13a, BS14a, BCP11,
BCR14, BFD+11, ÇÖSÜ11, CGH+11, CKJR11, DRUE12, GGI+13, GP13,
Gri11, GVhSF14, HAV+14, HM12a, HvAS+13, JCL10, KvdO11, MW12,
MOB12, MD11b, MCAfD14, MV11, MG10b, Müll11b, Müll14b, NGCI+12,
RLL2, Sai13, SWS+12, TM14, ZE11]. Libxc [MOB12]. Lie
[FK15, HR11, JC14, Naz12]. LieART [FK15]. life [GMH11]. ligands
[PDC14]. Light
[SKML11, CKLM10, EW14b, HHT14, KOT12, TMD11, WL11b, Zió14].
lights [SJW10]. like [BP12, HH11a, LB+14, LR11, LB12, MFS10b,
NVW+13, PLCC12, SQA+15, XLL15, ZRS12]. LIME [DRUE12]. limit
[CM14a]. Limited [BR11, CH11b, KdMvO14]. limiter [AAD14]. Limits
[LCRL10]. line [MKMK10, Ruf13, Zlo13]. Linear
[AG12a, BMU11, MW12, OOK+12, YÇO15, AS11b, BMC+11a, BMC+11b,
CFSK14, FUSH14, FR15, GBP13, GCHL15, HRC11, HHS+10, Jan10, Kan14,
Kap12a, Kap12b, MJB\(^+10\), MBGV15, PR14, RWKS15, SK12, SS10b, TC11a.

linear-scaling [FUSH14, RWKS15]. **linearization** [MBFB13]. **linearized** [AM14b, CSPAD10, IH11, KAW\(^+10\), ILsSZ14, PBMAD12]. **linked** [SK10].

linked [LYJY10, TKR13, WGI11, MRZ10]. **linked-cell** [LYJY10].

linked [LYJY10, TKR13, WG11, MRZ10]. **linked-cell** [LYJY10].

Liouville [LV10, MGRB11]. **Liouvillian** [ADdM12a, ACDdM14].

liquid [FBP\(^+14\), MSH11, Sin12b, SA14, TW11]. **List** [Ano10a, Ano11b, Ano12a, Ano13a, Ano15a, MRZ10, LYJY10].

lists [ABRS12]. **LiteRed** [SS13c]. **Liviu** [Pat12]. **LNL** [MRZ10].

load [BS15, FRG12, OCF10, SKSK13]. **load-balanced** [OCF10]. **load-balancing** [BS15].

loaded [Pra11]. **Local** [CHDF10, LWZ14, PR12, DG10b, DKG\(^+14\), KL14, LJWK11, MS14, NKS15, VPP\(+12\), Wit14].

localised [MYP\(^+14\), SPMM11]. **Localization** [dSFdFF13, HW11].

localization-delocalization [HW11].

Long [DV11, Boe14, DS11b, Fill3, Fill4, iT11, WWVB11]. **Long-time** [DV11]. **long-wave** [DS11b].

Longitudinal [KB15a].

loop [ABB\(^+14\), Ano10o, BBU11, BGM\(+14\), BH13, BICH13, CGH\(+14\), DNPS13, Fen12b, FEH11, HEF12, MCWJ15, Per14, Sta11, YdDH\(+12\), vH11].

loop-corrected [BGM\(+14\)].

loops [AHK\(+12\), AC\(+14\), BCS10].

LOPT [Kra11].

Lorentz [MFS\(+10\)].

Lorenz [BDT15].

loss [Hoh14b, Lit13].

losses [Eme11].

lossless [TM11].

Lossy [WWHW14].

Low [BK12, KGNS10, LCY\(+11\), BDBV12, HYM11, LO14, MSPD12, MCP\(+11\), NRSVW12, PTMDPK14, RHCI5, Weil2, Zlo14, vRWS14, BH14b, MPS13].

Low-density [HYM11].

Low-energy [LCY\(+11\), MSPD12, NRSVW12, BH14b].

Low-frequency [MCP\(+11\)].

Low-mass [PTMDPK14].

Low-noise [BDBV12].

Low-rank [BK12].

Low-temperature [KGNS10].

lowest [Kol14].

LSQR [Wan10b].

LU [San15, WM13].

luminescence [Str15].
40

moment-independent [LLX14a]. moments [RE12]. Momentum
[HHC+10, DSM+11, EUT+15, HKJ+12, MMT+11, Trö11, Wei99].
Momentum-time [HHC+10]. monolayer [OCL+13]. monopolar
[ZWY10]. monosized [AYDY11]. monotonic [SC15]. monotonically
[HRC11]. Monte
[JPSS10, MBRV+13, NSXZ14, OPO+11, OPSR13, TDL+14, ZTG14, ZDD+13,
AFIS12, ASGLK10, AK15, ABB+14, Anol00, AK13a, AK13b, Bar11a, Bar12a,
BPV10, BG11, BMW14, BG13b, BLG14, CL11, CL15b, CKS10, CNS+14,
Cl11, DGPW11, DPK+15, Dem11, DKT14, ES11, FGGM11, FW11, FDWC12,
GA15, Gin10, GSB+14, GWF+11, HBE10, HMR14, HP11, IUM13, JLA+14,
KOL12, KHE11, Kan14, KRW13, KC14, KSW15, KPVvdH13, LS14, LS15,
LWL11, Lu15, MP11, MRZ10, MEM+11, MW14, MHR+13, NIA+11, NM14,
OPR14, PM14, RMS+12, RV10, RV11, SI11, SFP11, SD14, SFF+14, SKM15,
SKSK13, TIZ12, TVZ+15, TIC10, TIC14, TKP11, TU14, Trö11, VK14,
WL11, WSTP15, WvSL13, WT12, WWVB11, ZLM12, ZTG13, dHGCS11].
Monte-Carlo [DPK+15]. MonteCUBES [BFM10]. MonteGrappa
[PR10]. most [BS14a]. Motion [KBI5a, HH11a]. Motion4D
[MG10b, Müll11b, Müll14b]. MotionD-library [MG10b, Müll11b, Müll14b].
motors [SKM15]. moves [RV10]. Moving [YJK11]. MPI
[BW12a, DRUE11, Hin11, OKM12, TKP15, WAW14, YHL11]. MPI-driven
[Hin11]. MPPPhys [Müll14c]. MPS [SIMGCP14, NSH14, SIMGCP13].
MRT [vdS10]. ms [DES+11]. ms2 [GRR+14]. MSSM [CRC+13, DNPS13, FEH11,
FHI+14, HLM13, HIF12, KZ11, LCE+13, PS12, RCD+10, Ros15, SV12].
MsSpec [SNG+11]. MsSpec-1.0 [SNG+11]. MSTor [ZMCT12, ZMPT13].
MT [HHP+14]. muffin [LZP12]. muffin-tin [LZP12]. Multi
[BFPP12, BBS14, BVF10, BM14, CZS10, ELDS14, FBN+13, HDZ14,
IBP+15, K013, KSW15, Liu14, MRR+12, OP12, PP13, SW14b, UBR10,
ZST11, ZMvE+13, ASS13, AZM14, BBB11, BBBU13, BARR12b, BCH13,
Cap13, CL15b, DKG+14, DE13, DCVB+13, DO14a, Ex14, HW10, J14,
KPA13, KO12, KO14b, Kom15, LS12a, LHJ11, LRK13, MIA15, Pål12,
PR14, PC11, QSC14, QWEL+15, Sch14a, SV13, SLR+11, TRM+12, TD14,
TD14, Vuk12, WSH+12, WAW14, sX14, YZWR14, YI11, ZMPT13,
RfEH12, FOB+15, IB+15]. Multi-algorithm [Liu14]. multi-array
[Vuk12]. multi-baryon [DE13]. multi-center [BAR12b]. Multi-Channel
[KSW15]. multi-cluster [KO12, KO13, KO14b, Kom15]. Multi-core
[FBN+13, HWT10, LH11, TRM+12, TD14]. Multi-core-CPU
Multi-dimensional [MRR+12, ASS13, Cap13, DO14a, TD14].
multi-disciplinary [WHS+12]. Multi-Domain [IBP+15]. Multi-electron
multi-fluid [SLR+11, sX14]. Multi-frequency [PP13, YZWR14].
MULTI-fs [RfEH12]. multi-gluon [BBU11]. Multi-GPU
[BFPP12, BVF10, OP12, DCVB+13, JK14, WAW14, FOB+15].
near-barrier [DT11b]. near-continuum [TKL+12]. near-rigid [Faw10].
near-wall [Uty14]. necessary [BSWC14]. neighbor [ABRS12, LYJY10].
Neighbour [MRZ10]. Nektar [CMC+15]. neoclassical [BSM13, HSK+12, MS14, SISW10].
nested [BH11, SEGPI5]. Network [VKLM11, VLM11, HH11b, dSLF13, ZHL11]. networks
[BHVMH15, CHDF10, HLS12, IBKK11, Kra10, QHC+10, RRdB11].
Neumann [Jiw15b, RC13, RTA10]. Neural [ZHL11].
nucleon KB15b, LS12b, SEW12, SEW14, VPM12, ZTG13, ZTG14]. Neutron_CR [MSNI11].

One [CHC+11, EGPS10, ABB+14, AG14, Ano10o, BBU11, BDV11, CZD15, CJI11, CR12, CvW12a, CvW12b, CGH+11, Dua10, Fen12b, Fil13, FEH11, HLS12, HEF12, HHC+10, KS12, Liu11, Liu13, MP11, MEM+11, OAKS11, Per14, QA13a, RVA14, Rei12, TD14, vH11]. **One-dimensional** [CHC+11, AG14, CZD15, CR12, CvW12a, CvW12b, Dua10, Fil13, HHC+10, KS12, MEM+11, QA13a, Rei12]. **One-loop** [ABB+14, Ano10o, BBU11, CGH+11, Fen12b, FEH11, HEF12, Per14, vH11]. **One-particle** [Liu11, Liu13]. **One-shot** [HLS12]. **One-way** [OAKS11]. **OneLoop** [vH11]. **onetep** [BDPM15]. **Onia** [Sha13b]. **online** [Mis13, PR14, TdAdSS11]. **only** [Sta14]. **Open** [CDR+15, CMC+15, CLJ12, CCHL11, Dan11, Dat13, Faw10, HSF+15, JNN12, JNN13, KSI14, LZ11a, LZ11b, LZ12, LS13, MZE13, MVS15, MGFRG12, NMS14, NGCI+12, ORS+14, PLCC12, SV14, TACA15, VBG10, WLV14, WPAV14, XAPK14]. **Open-source** [CDR+15, CMC+15, Dan11, HSF+15, JNN12, KSI14, LZ11a, LZ11b, LZ12, MZE13, MGFRG12, NGCI+12, TACA15, VBG+10, WPAV14, XAPK14]. **OpenCL** [BLPP13, BHW+12, BBH+15, CP15a, HD11, KM10, MAIVAH14, ÖN12, RBB15, TKP15]. **OpenFOAM** [CL13, SSX14]. **OpenMM** [BCFR15]. **OPENMP** [OKM12, KT10, YHL11]. **OptaDOS** [MNPY14]. **optic** [FNPMB10]. **Optical** [Ost10, AM14b, APRG11, BD10, BG11, BGL+14, CCL15, CCW10, CSL+13, DSS+12, FE11, HCRD14, HWCH11, HHT14, LCC11, MNFY14, OCL+13, PM14, WX11]. **optics** [Dem13, SWS+12]. **optimal** [CNMC10b, DJ14, FSF11, Hoh14a, MFS+10a, PSBT12, XLL15]. **optimality** [KLI4]. **Optimised** [IZRT15, RWKS15, Wei12]. **Optimising** [Rei10]. **Optimization** [BS14b, DF14, DCGG13, FGR14, AcDS13, AZM14, BR11, CM10b, DBJ11, GD14, Has11, HJJ+14, HVMR10, KHKV10, KPA13, KPK11, KHBR14, Kral11, KU15, KL14, LCR10, MR14, MBGV15, PCV11, QwWL+15, RRS+12, RLL12, SWL+15, SZM+14, SKH+10, VvAN+11a, VPP+12, XLCW14, ZBMM11, Zlo14, VRWS14]. **Optimizations** [iSYS12]. **optimize** [TVZ+15]. **Optimized** [MAIVAH14, BD10, CNMC10a, FDWC12, KAS12, LWC14, SEW12, SEW14]. **Optimizing** [De 11, KdMcV14, RKVL14]. **Optimum** [PCV11]. **OptQC** [LWC14]. **OPUCEM** [COSU11]. **ORACLE** [WS11b]. **orbifolder** [NRSVW12]. **orbifolds** [NRSVW12]. **Orbit** [BDBV12, CL14, HSK+12, Nis11, PCGM14, RE12, WX14, MPS13]. **Orbit-based** [BDBV12]. **orbit-following** [HSK+12]. **orbital** [CXH+15, Cor14, FGR14, HHS+10, KT12, KST14a, KAS12, PS14, QwWL+15]. **orbital-free** [CXH+15, HHS+10, KT12, KST14a]. **orbitals** [Ert15, KCA+15]. **orbits** [BRB12, BDT15]. **orchestration** [CdC+11]. **order** [AAD13, AAD14, ABD15, AH13, ADdM12a, ADdM14, BBL+13, BVC13, BIT12, CFMR10, Cap13, CD15, CD12, CR12, DJ11, DZ13, FG13, GLPQ11].

finite [CRA10]. GaAs [TMA+15]. GO [BD12]. GPU [LSYZ12]. Gross
[ABB13]. high-performance [MVS15]. hole [Dua12]. LDA [SW13a]. MC
[FK12]. MOM [LHC+13]. NWChem [LSK+14]. or [XHLM12]. PBSA
[PSMS14, PSMS15]. PO [BD12]. PTD [BD12]. Python [SV14]. SE
[QYM11, QA13a, WZ+11]. stochastic [GJLB12]. Vlasov [FK12]. Yukawa
[LV15, SKML11]. perform [PSMS14, PSMS15]. Performance
[CMRVVR+14, FBN+13, KKP11, KVW11, LSYZ12, Sha13a, Sin12b,
TRM+12, Yi11, Ara14a, Ara14b, BR13, BWPT11, BKPT12, BY13, CDS13a,
CL15b, CRA10, GS15, GBK+12, HLZ+13, JVR12, MVS15, NMS14, NFS15,
Rap11, RV10, SHZ13, SSF+14, XLCW14]. peridynamic [HS14a]. periodic
[BRB12, BDT15, DV11, GBP13, HB14, HBS+11, KS12, LRW+15, LF12,
PMS+15, SS10b, VDB14, YLK10]. periodical [KAS12]. Perturbation
[BK13b, CS10, GBR+14, LV10, MGRB11, Nis11, ZX10]. perturbations
[LMRC15, Tic14]. perturbative [WL11b]. perturbed
[Bla15, FMW10, GN14, Wu10, YYWF09, YYZ11]. petabyte
[Ano11o]. petabyte
[BBF+13]. Petascale [OYK+14, YBNY13, SKSK13, VCMS+13].
petascaling [SSS+11]. PETOOL [OAKS11]. Petviashvili
[DVB11, KV10b, Ots11, Raw15, WJHW14, XHLM12, YLO13, BMW14, BS12,
CZD15, CHW+15, Evis14, FFH11, GTS14, GLW14, GX15, Hon10, K10,
KSW15, Liu15, MKS10, MSHL15, OKC11, PS14, QDZ+13, SJW10, TKP15,
Wai12, YLK10]. Phase-Amplitude [Raw15]. phase-covariant
[Liu15]. phases [BSWC14, PS12]. phenomenology
[ACD+14b]. phone [Sal12]. Phonon [CP15b, Kon11, Sco13, CGBR14, NGM+10].
phonons [LCKM14, WCL14]. PhonTS [CP15b]. photoelectric [Wit14].
photoionization [Hei12, HH11a, HL11]. photon
[CJM+11, DKT14, HEHW13, Tic10, VDJ+11, ZLM12]. photon-based
photorefractive [Zio14]. photovoltaic [RF15]. Phys [ERS10c, KYK15a,
Nat10, RHBB15a, SGML11a, Sco13, SIMGCP14, YQ14, ZTG14]. physical
[AABC+13, LCH11, MD11a, RKVL14, Sm14]. physicist [Hah12]. Physics
[Ao10a, Ao11b, Ao12a, Ao13a, Ao15a, DS13c, Ram10, Wu10, Ao10n,
AM10, AM11, BDKS10, BCP13, Che11, CH11, DGW11, DN+12,
DDK+15, JPCG15, JEC+12, KV10a, LPBH11, MüH14, ONS+15, QGLP13,
Sh13b, SLR+11, Veh12, ZMV+13]. PI [CMM14]. PIC
[FK12, VGM+15, XYM+13, YXD+15]. PIC/MC/Vlasov [FK12].
POTLIB2Math [TM14].
Potts [Boe14, FDWC12, KO13, KO14b, MEG12, NCHN15, TD11, XZF12, dSLF13].
power [CC10a, CHC11, SU11b, SW12b, UW12, WCT11].
power-law [WCT11].
Potts [Boe14, FDWC12, KO13, KO14b, MEG12, NCHN15, TD11, XZF12, dSLF13].
predetermined [TU13].
predict [DAN12].
Predicting [rJmYT11, WS11b].
predictions [BBH11a, DGPW11, KKK15, Pit10, RH11].
predictor [PAS11, PS14, SD10b].
Predictor-corrector [PAS11, PS14, SD10b].
Probabilistic [Er14].
Probabilities [PDC14].
Probability [PM13, SI11, AQJ10, Asc10, KCL11].
prob [AAJA14, XLX15].
problem [BBC13b, CDIN11, CD12, Cho11, Dua10, GLX14, Ixa10, Jia10, KPa13, KL11, LX12, LZP12, LW10, MW12, MK10, MD10b, PS11, RM10b, RC13, SCS12, Wan10b, WP10b].
problems [AABC13, AG12a, CAN11, CHLI11, CS10, DB13, DS15, FGR14, GHvL11, GN14, GLHI15, HKSW10, Jan10, JOR12, KV10a, KBSP12, KAS12, KL14, LMR15, LV10, LHJZ10, LW12, LHC13, LW14b, LR13, MCW15, OY13, PS14, PS11, S13b, SK14, SS10b, TFBW14, TAO15, VSO13, WFV14, ZHSL13, ZX10, ZLI13, vRWS14, vWB10].
procedure [BSWC14, KMD12, KSW12, TIMM13].
procedures [Dua10, FG13].
Procesi [HDZ14].
process [DKT14, LTL12, LCR10, dHGCS11].
processes [BdVGS11, CPHL14, CRC13, CI11, GTPWL12, MKB11, OK12, RCD10, Ros15, TC11b].
Processing [Dem11, MSML10, YLO13, BK11a, BCW13, CD13a, CSSB15, Col14, DBDP12, DS11a, DF13, FSH13, FUSH14, Fil14, Fri14b, FZY13, LAA10, MED11, MEM11, NPAG11, PLD10, SH12b, TD11, Tic10, WDL11, WWFT11, Zlo13].
processor [APR11, NBN14, Rap11, TB14].
processor-based [TB14].
processors [LSG12].
produced [AG14].
product [DBK14, Eks11, GDB10, HR11, Tso10].
production [BBUY13, BG14b, CWW10, Cip13, GLPQ11, Gin10, HLM13, KKK15, OK12, WW13, YWW13].
PROFESS [CXH15, HHS10, KST14a].
profile [Gio14a].
profiles [AANAJ12, MSNI11, WA12].
Program
[BS11, BS13a, BB13a, CGV13, DHR14, LSDD14, NS10, AC13, AM10, AM11, Arb12, Asi10, BGM+14, BBPS14, BH14b, BFD+11, CKLM10, CDTV10, CH1a, CATK11, CEXH+15, Cip11, Cip13, CGGC13, CRNK12, CM14b, CO11, Dan11, Dat13, Dev12, DKG+14, Fer15, Fis11, FEH11, Fri12, Gao13a, GLS+13, GCVA14a, GCVA14b, HLM13, HEF12, HHS+10, JPSS10, Kob13, Kol14, KS12, Kra11, LHC+12, LZL11, MPS13, MLW+10, MVN13, MBGK11, MSNI11, NGC+13, NGM+10, ÖN14, OKM12, dIRJL14, Pit12, RDP14, SYZ+12, Sai10, SS+10, SBB13, SMD+12, STY15, SZM+14, SS10a, SSK+13, TVZ+15, TS11, UW12, ZKW+15, ZY15, ZMCT12, ZDD15, ZHL11, Zlo13, ZUT13, dB14].

programmable [Rap11]. programming [GRTZ10, LSYZ12, SV14, iSYS12, TSTT13, VvAN+11b, VvAN+11a, WMK11, YHL11]. programs [ABB+14, Ano10o, Bjo11, CL15b, HD11, JCL10, KO14b, LCJ10, VVB+12].

prolate [ALSW14, Kir10]. ProMC [CMSV14]. proof [BRB12].

proteins [BS13a, Gin10, MSNI11].

Pseudopotential [DLSL14, JCW+13]. Pseudorandom [HLD13, ÖY13]. pseudospectral [DT11a, TC11b]. PTX [iSYS12].

PumpedKin [MLGVE14]. PUQ [HJM15]. pure [CB13a, KAR+15, NS11b]. purpose [AABC+13, Fer15, GJ14, GNA+15, MJI10, sSSM11, SS10a, TdAdSS11].

PYTHIA [KRW13, SAC+15, EGPS10]. Pythia8 [AAB+10b]. python [DMC+15, CMM14, CFSK14, CSRV13, CTKK+13, CBB14, JNN12, JNN13, KSH14, RKVL14].

Q [SKB10, Wan10b]. QBH [Gin10]. QCD [AC15, BLPP13, BBUY13, BK13b, BCS10, BBC+11, BCDII12, BS13b, Bot11].

R [LQZ+13, LQZ+13, MiH12]. **R-matrix** [MiH12]. **r7** [LZ11b]. **RA** [SKB10]. **radial** [DG10b, Kir10, MK10, PAS11, SD10b]. **radially** [KSW12]. **radiation** [ASS13, Aza13, BBC+13, CAN11, GLAC13, HJ+14, KEH12, LH+15, PCEH15, QA13b, SC15]. **radiation-hydrodynamics** [SC15]. **radiative** [AFIS12, ELDS14, HFTT13, HFTT14]. **radical** [Faw10]. **radio** [ECD+10, GB14, KMD12, SVG10, TRM+12, TUY15]. **radio-frequency** [GB14, KMD12, SVG10]. **radio-map** [TRM+12]. **radioactive** [SM14]. **radiobiological** [KEH12]. **radioisotope** [WT12]. **radiowave** [OAKS11]. **radius** [KB15a, SH12a]. **raft** [MD11b]. **Raman** [CLY11]. **ramp** [Hon10]. **ramp-up** [Hon10]. **Random** [DVB11, AM14a, ASPW13, BS11, BS13a, BS14a, BJCW13, BCJW13,
LW14b, NO12, PKT15, RL10, WC13, WYSW10, Zit11. second-order [GPS+13, LW14b, PKT15, RL10, WC13, WYSW10].
section [ALL+11, BS13b, CYD11, CM14b, DHS14, vdS13]. sections [ASEA14, BPC12, Cip11, Cip13, Gao13a, GLS+13, Kol14, Lit13, VC10].
safeladaptable [CFCB12]. Semi [DS15, KZC+10, BB12, CZD15, DS10, IBP+15, Lan13, LHH+12b, MIW+12, MRVF13, QSC14, Ser10, SmD0NF14, SHL+11, UNK12, ZLL13].
semiconductor [ASGLK10, AK15, ACCB13, Bot12, CL10, DJ12, GTG+11, MiH12].
semiconductors [GC12, LZL11]. semidefinite [VvAN+11b, VvAN+11a].
semismooth [CB15]. semismooth-Krylov [CB15]. sensitivities [GA13].
sensitivity [CSC11, HS14a, KTA12, PPS10, SAA+10, SK10, TBZ12, WH+12, WLS13]. separation [MSRL10, SJW10]. sequence [HLD13, ÖY13]. sequences [DBB12, DB13].
shear-shear [CMVRB +14]. sheath [KMD12]. sheath-plasma [KMD12].
shedding [TKL +12]. shell [Cip11, Faw10, Tro11]. ShengBTE [LCKM14].
Shepard [FZY13]. shields [OVSI15]. shift
[Ber14, NGG +13, Ram10, RLM13, STY15]. shift-invert [RLM13].
shift-operator [Ram10]. shock [KR14]. Short
[BBF +10, ADD +11, BWPT11, Fri10, Ram10, TKR13]. short-range
[ADD +11]. Short-recurrence [BBF +10]. short-time [Fri10]. shot [HLS12].
[Kap12b]. simplification [SBQ14]. simplifications [BD12]. Simplified
[vMB14, SA14, TVZ +15, YZWR14]. simulate
[AMM11, MPM14, SQA +15, TXZL15, TS10]. Simulated
[BL14, BS13, BDKS10, CM10a, CD12, HG13, IZRT15, LM12, VdLF14]. Simulating
[GH15, Hoh14b, Wei11b, CJ12, DMC10, JPK +12, LHH +12a, LL15, LL12, SV14, WX11, XAPK14, YWW13]. Simulation
[AZS +11, Bar12a, BdVGS11, Beu11, CAGL13, EFG +10, FBP +14, HEPW13, Hon10, JP11, PPV +11, PC11, RF10, RSB14, SÖÖN11, SKH +10, UYI11, XLX +15, AFIS12, ALSW14, AABB +13, AJA14, Bar11a, BE14, Boc14, BO12, CHC +11, CSSB15, CHH +11, CvW12a, CvW12b, DG10b, DSW +15, DZH13, DES +11, DDM14, FFT +14, FGC +11, FFH11, FM15, GCI2, GM11, GRR +14, GRZ10, GSB +14, GB14, Gri11, GRTZ10, HBE10, HBL +13, HKJ +12, H0112, HvAS +13, HXW +13, Hsu11b, HB13, HHT14, HCSW10, Ji12, JPM12, KOT12, Ji12, K012, K013, KCS +15, KP14, KSYY13, LCC13, LJ111, LJSW11, LCH11, LX14, LSK +13, LZY13, MD10a, MT13, MGRB11, MTS11, MKU +12, MMC10, MSNI11, MFG +13, Mü114c, MSH11, NQQL14, NM14, NFS15, OKM12, OYK +14, PKT15, PCEH15, PA13, QL10, RD10, RLBC +14, Sal12, SBH +14, SCC +12, SS11b, SVG10]. simulation
[SKM15, TJDI1, Tau10, Tic10, TIMM13, TMD11, TB14, VDB14, VRV15, VEM12, WP11, WS11a, WS13, WBY11, WT12, WL11b, YBYNY13, YG12, ZFH14, ZLFM11, dHV12]. Simulations
[APRG11, Bab14, LDW13, TKL +12, AM14a, ASGLK10, AK15, AD15, AGB +15, ABR12, BJBC +14, BB13a, BS15, BSC +13, BFPP12, BBF +13, BBS14, BPM12, BBV12, BVP10, BG11, BCD12, BB13b, CDS13a, CM114, CHAI1, CXH +15, CL11, CPHL14, CH11b, DZ15, De 11, DS13a, DPK +15, DF13, Dem11, DF14, EBCB +14, EVB14, EVs14, FW11, FRFH10, FKH15, GDdF10, Gio14a, GNA +15, GSKM14, GSKM15, GM14, GJHF14, GJB11, H013, HS14a, HIN11, HYMN11, HLZ +13, HHM +15, HOKK1, JPH +14, JHL +15, JVIR12, KC14, KHK +11, Kon11, LYP14, LGW13, LS14, LS15, LWL11, LHZ11, LKW11, LSK +14, MIW +12, MIW +13, MAC12, MP11,
[APV10, CDTV10, DS10, LHC+13, PH11, RHBH15a, RHBH15b, SDM+12, AH13, BSM13, Bis15, CDCMN11, DT11a, DS11b, DN13, DSW+15, FGLB12, FFH11, FM15, HKSW10, HK12, JK10, JL10, Jiw15a, KAS12, LD10a, LD10b, LV14, LNP12, LLP15, Lin13, LW10, LZ12, MJB+10, Moh14, MA11, MM10, ON12, OK14, PAS11, PDRG10, PR13, PTS12, RDP14, RVA14, RM10a, RM10b, RLM13, SW14c, SD10b, SS13b, SK14, SSK+13, VBG10].

solutions

[AD14, ADdM12a, Beu11, CB13, Er14, JLW13, KMM13, LLL12, LLL13, sL10, MC12, MSZW11, MK10, MNO011, NO12, PAS11, PS14, SR12, TD14].

SuperIso [AM10, AM11], superlattices [ACCB13, MiH12], SuperLFV [Mur14], supernova [BNAB11], supernovae [CHA11], superposition [HCRD14], superpositions [BS12], superpotential [Sta10], superspace [DF11b], Supersymmetric [AB10, AbdA15, AhPSV15, CJ12, CGV13, DET12, Mur14, SD15, Sta11, SOPS12], supersymmetry [AKH12, AM10, BBC +13a, BSW12].

SuperLFV [Mur14], supernova [BNAB11], supernovae [CHA11], superposition [HCRD14], superpositions [BS12], superpotential [Sta10], superspace [DF11b], Supersymmetric [AB10, AbdA15, AhPSV15, CJ12, CGV13, DET12, Mur14, SD15, Sta11, SOPS12], supersymmetry [AKH12, AM10, BBC +13a, BSW12].

SuperLFV [Mur14], supernova [BNAB11], supernovae [CHA11], superposition [HCRD14], superpositions [BS12], superpotential [Sta10], superspace [DF11b], Supersymmetric [AB10, AbdA15, AhPSV15, CJ12, CGV13, DET12, Mur14, SD15, Sta11, SOPS12], supersymmetry [AKH12, AM10, BBC +13a, BSW12].

two-electron [AG12b, GH11, JHI5, KK14a, LB10a, YCÖ15]. two-flavor [CDS13b]. two-fluid [KTE12, SQ15]. Two-grid [KV10a].
two-Higgs-doublet [ERS10c, ERS10a, ERS10b]. two-layer [GLW14].
two-layered [PP13]. two-level [LW14a]. two-loop [BH13, YDH12].
two-parameter [JWC13]. two-particle [De12]. two-phase [K10].
two-photon [DKT14, ZLM12]. two-point [CS10]. two-power [SW12b].

U [CHW15]. uasiparticle [SKB10]. UCL [CYD11]. udkm1Dsim
[SBH14]. ultrashort [GC12]. ultrashort-pulsed [GC12]. ultrasonic
[RLMG11]. Uncertainty
[CNS14, HHM15, KKK15, KZ14, LCR10, LLX14a]. Unconditionally
[Ram14]. under-ice [TS10]. under-saturated [JHJG14]. underground
[TS10]. underwater [TS10]. undirected [FLP10]. UNEDF [BBC13b].
Unfolding [ZZD15]. unification [ABdA15]. Unified
[DE13, Ram12, Wo99, CSC11, KEH12, MRVF13, RHW12, Sch14a, SK12].
uniform [CDMCN11, LA13, LFG14, Ser10, Wit14, YQM12, YQM14].
uniformly [Gwi12, SKK11]. Unique [WLG13]. unit
[MEM11, Tic10, MSML10, YLO13]. units [APRG11, BK11a, BJW13, CDS13a, Col14, DBDP12, DS11a, DF13, FSH13, FUSH14, Fil14, FZY13, MED11, NPAG11, PLD13, SH12b, TD11, WDL11, WWFT11, Dem11]. Universal
[CCWL11, DNP12, DGPW11, EGPS10, GGI13, SJ11, DDF12].
unparticles [AAB10b]. unsaturated [GTSL13]. unsteady
[SL14, TY10, Tia11, TCP13, Uty14]. unstructured
[ASGLK10, AK15, GLHG12, LYP14, LJWK11, MTO15, SC15, ZS13].
unstructured-grids [SC15]. unweighted [Gag12b, Gag12a, WW12].
Update [ABB14, CYD11, K10, BCMS10, NM14, TJD11]. Updated
[KKK15, Cip11, LCE13, MBGK11, MYP14, MG10b, PK14b, SZY12, SZY13]. upgrade [Dan11]. upgraded [CWW10, OKP10, ZYL15].
Uquantchem [Sou14]. use [KAR15, Kom15, LCIJ0, MNV13, Sou14].
Useful [Bar11b]. user [BBG13, CFS13]. user-friendly [CFS13]. uses
[CEPI10]. Using
[BS14a, CSRV13, AM14b, APRG11, ACD14a, AGMS15, Asc10, AH13, APL14, AAJA14, BMC11a, BSM13, BdVGS11, BH14b, BD10, BKM11, BSW12, CKLM10, CL15a, Cap13, CB13b, CAN11, CMSV14, CDS13b, CKK13, Cip11, CBB10, CH11b, CBB14, CL13, CLB11, CRNK12, Dem13,
DRUE12, DKOS14, DM12, EKDGG15, FDWC12, FNPMB10, FZY13, GBP13, GA10, GB14, GMH11, GWY10, GRTZ10, HCC14, HKK11, Ihn12, JK13, KH11, KK14a, KPP11, KN13, KS12, KST14b, KHKR14, KCS15, LLHC11, LD10b, LA13, LBM14, LWZ14, LH12b, LS12b, MED11, MGRB11, MP11, MSI10, MVF13, MC12, Mis12, MM10, MSML10, MSS14, NGM10, OBH10, OY14, PSBT12, PPV11, PDRG10, PR10, PR12, PCEH15, PA13, RDP14, RMS12, RLMGM11, SEW12, SEW14, SOON11, SW14c, SWL15, SD10b, SLR11, SSF14, SC15, SPS10, SKH10, SHL11, SBH12, SS10a, SSK13, TOB14, TW15, TCP13, UBRT10, VSO13, VJC12, WISA11, WLG13, WAHL13, WFV14, WAW14, XLX15, YK10, Yi11, YBK11, YE14a, YB13, YG12, ZDWY10, ZMVE13, USPEX13, TCP13, UBRT10, VSO13, VvAN11a, VJC12, WISA11, WLG13, WAHL13, WFV14, WAW14, XLX15, YK10, Yi11, YBK11, YE14a, YB13, YG12, ZDWY10, ZMVE13, USPEX13.

using [SPS10, SKH10, SHL11, SBH12, SS10a, SSK13, TOB14, TW15, TCP13, UBRT10, VSO13, VJC12, WISA11, WLG13, WAHL13, WFV14, WAW14, XLX15, YK10, Yi11, YBK11, YE14a, YB13, YG12, ZDWY10, ZMVE13, USPEX13].

REFERENCES

Andono:2010:SSM

Ask:2010:REV

[AAB+10b] S. Ask, I. V. Akin, L. Benucci, A. De Roeck, M. Goebel, and J. Haller. Real emission and virtual exchange of gravi-

[Arbona:2013:SGP]

[Abedian:2013:HOW]

[Abedian:2014:HOS]

REFERENCES

REFERENCES

Alves:2013:GED

Antuono:2012:NDT

Antuono:2011:PGW

Antuono:2010:FSF

Angelani:2011:NMB

REFERENCES

REFERENCES

REFERENCES

Asunta:2015:MNB

Attig:2011:TSE

Alpers:2015:PTV

Ambia-Garrido:2010:MST

Asgari:2013:NST

Alexandrou:2012:EFL

Athron:2015:FSG

Arthur:2013:MCI

Augustinsky:2013:IGF

REFERENCES

REFERENCES

[AM14b] Iftikhar Ahmad and Muhammad Maqbool. Investigation of the optical properties of P, As and Sb incor-

REFERENCES

Anonymous:2010:EBi

Anonymous:2010:EBj

Anonymous:2010:EBk

Anonymous:2010:EBl

Anonymous:2010:GDS

Anonymous:2010:PSI

Anonymous:2011:ADS

Anonymous:2011:CPC

Anonymous:2011:EBa

Anonymous:2011:EBb

Anonymous:2011:EBc

Anonymous:2011:EBd

Anonymous:2011:EBk

Anonymous:2011:EBl

Anonymous:2011:RCF

Anonymous:2012:CPC

Anonymous:2012:EBa

Anonymous:2012:EBb

Anon:2012:EBc

Anon:2012:EBd

Anon:2012:EBe

Anon:2012:EBf

Anon:2012:EBg

Anon:2012:EBh

REFERENCES

REFERENCES

Anonymous:2015:EBd

Anonymous:2015:EBe

Anonymous:2015:EBf

Anonymous:2015:EBg

Anonymous:2015:EBh

Anonymous:2015:EBi

REFERENCES

Ayala:2014:DHI

Alcaraz-Pelegrina:2011:SPP

Amaku:2010:DCD

Abrarov:2010:HAA

Aragon:2014:CIAa

Aragon:2014:CIAb

Arbey:2012:APC

Ahmed:2011:RSM

Alexandrescu:2011:ENM

Ascasibar:2010:EMP

REFERENCES

Andrienko:2013:SHM

Adhikari:2013:CWP

An:2011:SCM

Azadegan:2013:MPC

Arshi:2014:MOS

REFERENCES

Adler:2011:SVN

Babaev:2014:PCN

Badnell:2011:BPD

Barletta:2011:CCD

Barnard:2011:UEM

Barletta:2012:CCD

Bigaouette:2012:NGM

Bourchtein:2010:ICN

Bourchtein:2012:SIT

Bazavov:2013:PPM

Buckley:2013:RUM

Bechtle:2010:HCA

Bechtle:2011:HCN

Berland:2011:VWD

Busa:2015:CCO

REFERENCES

REFERENCES

104

REFERENCES

REFERENCES

REFERENCES

Bell:2015:ETC

Barrio:2015:DRH

Bonciani:2011:GHP

Barros:2011:SSP

Bian:2014:SIS
REFERENCES

REFERENCES

Benda:2014:CEHa

Benda:2014:CEHb

Busa:2010:CPD

Binder:2015:RCI

Busa:2012:ACO

REFERENCES

Backovic:2014:TVT

Baity-Jesi:2014:JIN

Beliakov:2013:EIBa

Björkman:2011:CGG

Bauke:2011:AFS

Heiko Bauke and Christoph H. Keitel. Accelerating the Fourier split operator method via graphics processing units.
REFERENCES

REFERENCES

Bilal:2014:TPS

Bilal:2014:TPS

Bytev:2013:HHF

Blobel:2011:FAC

Bytev:2014:HFD
Vladimir V. Bytev, Mikhail Yu. Kalmykov, and Sven-Olaf Moch. HYPERgeometric functions DIfferential REduction (HYPERDIRE): MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: F_D and F_S Horn-type hypergeometric

REFERENCES

REFERENCES

References

REFERENCES

References

REFERENCES

REFERENCES

Broeckhove:2013:ACC

Blochliger:2013:SAO

Block:2010:MGA

Beyer:2011:SSV

Berg:2012:FCL

REFERENCES

REFERENCES

REFERENCES

Colagrossi:2012:PPA

Clark:2010:SLQ

Cooper:2014:BES

Carrettoni:2010:GNT

Cho:2010:WFM

REFERENCES

Cho:2012:RWW

Chen:2014:ECC

Cabellos:2011:SWO

Colo:2013:SCR

Chu:2011:ABC

[CCHL11] Yuchuan Chu, Yong Cao, Xiaoming He, and Min Luo. Asymptotic boundary conditions with immersed finite el-

Chen:2015:BOM

Charbonnier:2012:CCR

Chien:2010:TSC

Chien:2011:USF

Chen:2012:SEH

[CD12] Xi Chen and Z. J. Ding. Solving extra-high-order Rubik’s Cube problem by a dynamic simulated annealing. *Com-
REFERENCES

Capuzzo-Dolcetta:2013:PCD

Chowdhury:2013:EAT

Carapelle:2011:HMC

Carlsson:2010:SSC

REFERENCES

Chang:2014:CPP

Contino:2014:EIH

Cullen:2011:GLO

Cimrak:2014:EIE

REFERENCES

REFERENCES

Cheng:2011:MCM

Cosden:2013:HAC

Chiodo:2014:MSO

Cao:2015:CMF

Chugunov:2015:PHI

Svyatoslav Chugunov and Changying Li. Parallel implementation of inverse adding-doubling and Monte Carlo multilayered programs for high performance computing systems

[Cruz:2011:HOE]

[Chan:2014:ECM]

[Chen:2012:RFT]

[Choi:2011:IGC]
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[CSPAD10] Monodeep Chakraborty, Jürgen Spitaler, Peter Puschnig, and Claudia Ambrosch-Draxl. ATAT@WIEN2k: An interface for cluster expansion based on the linearized aug-

REFERENCES

REFERENCES

REFERENCES

deBuyl:2014:VPN

DiNapoli:2012:CSG

deBuyl:2014:HSE

Daly:2012:MPC

Davis:2011:SSO

Dominguez:2013:NMG

Degrande:2012:UUF

Drees:2015:CCY

Donker:2014:EES

DeMichele:2011:OED

REFERENCES

REFERENCES

Deng:2014:OMR

Dehghan:2010:ADR

Dehghan:2010:NST

Duchemin:2010:SAA

Dugan:2013:CGP

Dhote:2015:SMA

Davidson:2011:MTV

deHaan:2011:IIW

Dennis:2013:XFS

Dion:2014:PQW

DelDebbio:2014:MPC

Dima:2014:FVA

DAmbrinosio:2011:CEB

Dehghan:2011:HON

Deinega:2012:FDD

REFERENCES

Doerk:2014:TOE

Dieterich:2014:SMP

Dolgov:2014:CEE

Druzhinin:2014:GMC

Davis:2010:PMD

REFERENCES

[Dziubak:2012:OOI]

[Doctors:2010:CEM]

[Ding:2015:PPF]

[Dehghan:2013:SWS]

REFERENCES

REFERENCES

REFERENCES

M. S. Dhaka, G. Sharma, M. C. Mishra, K. B. Joshi, R. K. Kothari, and B. K. Sharma. Electron momentum...

Dunzlaff:2015:SPT

Dupuy:2010:FDS

Deslippe:2012:BMP

daSilva:2013:SNM

Duarte:2012:CEM

Deinega:2011:LTB

Degroote:2011:FRP

Deng:2013:FNF

Dai:2015:ASM

REFERENCES

ElKacimi:2010:OUE

El-Kurdi:2015:PFE

Eitzlmayr:2014:NMM

Ekstrand:2011:LMP

Efremenko:2014:MCC

[ELDS14] Dmitry S. Efremenko, Diego G. Loyola, Adrian Doicu, and Robert J. D. Spurr. Multi-core-CPU and GPU-

[C. Espejo, T. Rangel, Y. Pouillon, A. H. Romero, and X. Gonze. Wannier functions approach to van der Waals]

Eriksson:2010:THDa

Eriksson:2010:THDb

Eriksson:2010:ETH

Erturk:2015:ETO

Engel:2011:TTM

Georg P. Engel and Stefan Schaefer. Testing trivializing maps in the hybrid Monte Carlo algorithm. *Computer Physics Communications*

Eremenko:2015:CWF

Eder:2014:MNA

Evstatiev:2014:APS

Einkemmer:2014:CDG

Frances:2013:PAF

Fischermeier:2014:SHS

Frankowski:2015:SSA

Fiore:2013:EBM
REFERENCES

REFERENCES

REFERENCES

Ferrando:2011:OBC

Frezzotti:2011:SBE

Farhi:2011:QMC

Fillion-Gourdeau:2012:NST

Franco:2014:OET

REFERENCES

REFERENCES

REFERENCES

[Fang:2010:ER]

[Furuchi:2015:ISM]

[FMW10]

[Fiori:2012:NAA]

[Furuichi:2015:ISM]

[Fang:2010:ERM]

[FLSZ13]
REFERENCES

REFERENCES

[Fattebert:2012:DLB]

[Frigori:2010:UST]

[Fritzche:2012:RPR]

[Frigori:2014:NLG]

[Fri10]

[Fri12]

[Fri14a]
REFERENCES

Fernandes:2011:NRM

Feng:2012:FPC

Feng:2014:SCM

Fu:2013:AMS

Golbabai:2010:NMD

REFERENCES

Grossu:2014:HPF

Grossu:2010:CCC

Grossu:2012:CCC

Grossu:2013:CMB

Gray:2012:MAP

REFERENCES

REFERENCES

[Grossu:2010:NVV]

[Grossu:2013:HFAa]

[Galonska:2013:PUA]

REFERENCES

Guillet:2014:TNA

Gingrich:2010:MCE

Giorgino:2014:CDA

Giorgino:2014:PGE

Geng:2013:GAD

Gelmi:2014:IGP

Gross:2011:MPR

Gronbech-Jensen:2014:AGJ

Gawronski:2011:CDB

Grisins:2014:MHT

Grise:2011:SRU

Galiana-Merino:2014:ECD

Galiana-Merino:2013:SCD

Gowrisank:2014:RNS

S. Gowrisankar and Srinivasan Natesan. Robust numerical scheme for singularly perturbed convection-diffusion

Glaser:2015:SSG

Gao:2013:GGA

Golesorkhtabar:2013:ETC

Grichine:2010:GHE

Grigera:2011:GGL

Tomás S. Grigera. gsim: a general library for numerical simulation. *Computer Physics Communications*,

REFERENCES

REFERENCES

P. Halder, A. Chakraborty, P. Deb Roy, and H. S. Das. Java application for the superposition T-matrix code to study the optical properties of cosmic dust aggregates. *Computer Physics Communications*, 185(9):2369–2379, September 2014. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
REFERENCES

Hadi:2013:CFA

Hirayama:2011:TDN

Hlucha:2012:SPP

Heinasmaki:2012:IAA

Homola:2013:SUH

REFERENCES

REFERENCES

Huang:2010:MTF

Hunt:2015:PCN

Hoschele:2014:MMP

Hung:2010:IPP

Huang:2014:OTE

Hinde:2011:QMD

Hook:2014:CSS

Huang:2014:CAA

Hirai:2012:NSE

REFERENCES

Hamiaz:2012:FVT

Heikkinen:2012:IMC

Hwang:2011:LSD

Hammerling:2010:NSS

Hulsmann:2010:GGB

Huang:2013:NNE

Hu:2013:PSG

Hao:2013:NIV

Harlander:2013:SPC

Hadzibeganovic:2012:ETM

Tarik Hadzibeganovic, F. Welington S. Lima, and Dietrich Stauffer. Evolution of tag-mediated altruistic behavior in
REFERENCES

[Hou:2013:MDS]

[Huber:2010:BSP]

[Heltemes:2012:BVF]

[Huber:2012:CFS]

[Huber:2012:HEH]
Tobias Huber and Daniel Maître. HypExp 2, expanding hypergeometric functions about half-integer parameters. *Comput-
Hu:2011:NSG

Hoffmann:2014:KLK

Hasegawa:2010:AAG

Hariri:2013:FCI

Hohenester:2014:OMT

REFERENCES

Hirvijoki:2012:AEN

Hayashi:2011:TCM

Hsu:2011:P

Hsu:2011:RTM

Hohenester:2012:MMT

Hollis:2013:TR

Hollis:2014:TR

Honkonen:2013:PGL

Hulsmann:2010:ANO

Huang:2011:NSL

Hutchinson:2012:VGA

Huang:2011:ESC

Hafermann:2013:EIC

Holmes:2010:EBA

Huang:2012:DCC

REFERENCES

REFERENCES

Idesman:2014:AFE

Satake:2011:SPC

Satake:2012:OGA

Tadaki:2011:EFN

Ishizuka:2013:PEM

[Izaac2015:PCT] Izaac:2015:PCT

[Ixa10] Ixaru:2010:NNM

[Ixa12] Ixaru:2012:RKM

[IZRT15] Isakov:2015:OSA

REFERENCES

Jezequel:2010:NVC

Jia:2013:APW

Julia-Diaz:2012:SEA

Jara:2012:NVJ

Jelinek:2014:LSP

[JEFP14] Bohumir Jelinek, Mohsen Eshraghi, Sergio Felicelli, and John F. Peters. Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic
REFERENCES

Jiang:2012:NMC

Jiang:2013:FGC

Jonsson:2013:NVG

Jucker:2011:IMI

REFERENCES

REFERENCES

REFERENCES

Johansson:2012:QOS

Johansson:2013:QPF

Johnson:2013:FLS

Jiang:2012:MCS

Junghans:2010:RIA

REFERENCES

[KAK12] V. Khoromskaia, D. Andrae, and B. N. Khoromskij. Fast and accurate 3D tensor calculation of the Fock oper-

REFERENCES

Kabin:2015:MCP

Kittelmann:2015:PNS

Kopp:2012:SDE

Kratzer:2014:FRE

Khankhoje:2014:MRS

REFERENCES

[Kong:2011:IVG] Ling Ti Kong, Colin Denniston, and Martin H. Möser. An improved version of the Green’s function molecu-

REFERENCES

REFERENCES

Kamali:2013:IMF

Khoromskaia:2014:MPM

Khoromskaia:2014:GBL

Kempf:2015:PSC

Kant:2015:HST

REFERENCES

[KM10] Gaurav Khanna and Justin McKennon. Numerical modeling of gravitational wave sources accelerated by OpenCL. *Computer Physics Communications*, 181(9):1605–1611, September 2010. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
REFERENCES

Kumar:2013:PGS

Kuipers:2013:IMH

Kumar:2014:NAM

Krawczyk:2010:ADE

Kramida:2011:PLL

REFERENCES

Krivc:2012:NRK

Kersevan:2013:MCE

Kondayya:2012:FHF

Kesselheim:2011:AID

Koenka:2014:IOS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kim:2015:DVF

Keren-Zur:2011:HIE

Kristensen:2014:BUQ

Kong:2010:SES

Lapelosa:2013:TPT

Lazic:2010:JJN

Lanzafame:2013:IIIS

Liverts:2010:TEA

Lorin:2010:MST

Liverts:2011:SHL

Liverts:2012:SHL

Liverts:2013:TBS

Larentzos:2014:PI

Lee:2015:EFA

Le:2013:GBF

REFERENCES

REFERENCES

Lakestani:2010:CFD

Lakestani:2010:NSR

Lerner:2013:SDO

Leon:2012:EMS

Liu:2012:FES
REFERENCES

REFERENCES

Li:2013:SDE

Lin:2012:PHN

Lin:2012:DPS

Li:2015:ECA

Li:2010:AIC

[LHJZ10] Liang Li, Ting-Zhu Huang, Yan-Fei Jing, and Yong Zhang. Application of the incomplete Cholesky factorization precon-

REFERENCES

REFERENCES

Lin:2012:SCA

Lin:2013:SCA

Li:2015:CL

Liao:2014:NSF

Luo:2014:FCM

REFERENCES

Lyakhov:2010:HPV

Landau:2011:MPE

Li:2013:TSS

Luukko:2013:ITP

Li:2011:GTR

...
REFERENCES

REFERENCES

REFERENCES

Launey:2014:PSC

Landreman:2014:NCR

Leidi:2012:CEP

Lopez:2013:ISP

Ledoux:2014:ANS

Lee:2015:EPM

Loke:2011:EQC

Loke:2013:CQC

Lee:2014:BTS

Liu:2014:MAM

Loke:2014:OOP

Li:2011:MCS

Li:2012:HDM

Ling:2010:HTS
Li:2011:TSE

Li:2014:LAB

Lang:2012:QBS

Li:2014:SCC

Lyakh:2015:ETT

Magoga:2012:NSF

Maitre:2012:EHC

Molero-Armenta:2014:OOI

Mohammed-Azizi:2014:SPC

Marti:2015:CCV

REFERENCES

Mohankumar:2010:NAD

Mei:2012:NSR

Miqueles:2014:ART

Mitnik:2011:CMG

Melazzi:2012:SFD

REFERENCES

Macías-Díaz:2011:SCP

Miqueles:2011:CLR

Moritz:2011:TRN

Maniopoulou:2012:IPP

Mai-Duy:2015:IPS

N. Mai-Duy, N. Phan-Thien, and B. C. Khoo. Investigation of particles size effects in Dissipative Particle Dynam-

Maintz:2011:SPW

Mercado:2012:WAS

Mertmann:2011:FSO

Mendl:2011:FTF

Muller:2010:UVM

Makkonen:2013:SDS

Mostaco-Guidolin:2012:SOS

Mickevicius:2013:RCF

Marojevic:2013:EEG

REFERENCES

REFERENCES

[Miy15] Yuto Miyatake. A derivation of energy-preserving exponentially-fitted integrators for Poisson systems. *Computer Physics Communications*
McMillan:2010:RFS

Model:2011:AFP

Mierzwiczak:2010:AMF

Morozov:2011:MDS

REFERENCES

REFERENCES

Mushtaq:2014:ACG

Marques:2012:LLE

Mackay:2013:HFI

Mohammadi:2014:ESS

Mao:2011:ERM

REFERENCES

[MH] N. Mohankumar and Ajay Rawat. Some comments on the evaluation of the Chandrasekhar H function. *Computer...
REFERENCES

Mawson:2014:MTO

Maruhn:2014:TCS

Mayrhofer:2013:IWB

Mazzeo:2010:LNL

Menshutin:2011:MDD

Matsuoka:2014:AIC

Munejiri:2011:RSI

Munoz-Santiburcio:2015:ACC

Masuda:2010:SPC

Muller:2011:KFA

Molnar:2010:APM

Milenkovic:2011:CPN

Mayer:2012:NME

Mohankumar:2010:ECT

Mondragon-Shem:2010:ECC

Murano:2014:FCC

Meyer:2011:SFD

Madarassy:2013:NSC

Miki:2013:HSI

Magierski:2012:LLI

Michel:2014:SBM

Miao:2014:PMP

Moscicki:2010:LQT

Mostofi:2014:UVW

REFERENCES

Marquard:2014:SMI

Mikram:2013:PCP

Zhao:2015:ASE

Nath:2009:TVI

Nat09

REFERENCES

REFERENCES

Nishiura:2015:CPS

Novaresio:2012:OSL

Naze:2013:RPR

Noffssinger:2010:EPC

Ng:2014:AAL

Trung Dac Nguyen, Carolyn L. Phillips, Joshua A. Anderson, and Sharon C. Glotzer. Rigid body constraints re-

REFERENCES

Nguyen:2014:CLM

Nutma:2014:XFT

Norris:2013:ALB

Nie:2014:PNP

Ozgun:2011:PMB

[OAKS11] Ozlem Ozgun, Gökhan Apaydin, Mustafa Kuzuoglu, and Levent Sevgi. PETOOL: Matlab-based one-way and two-

REFERENCES

Okuyan:2014:BTP

Ohno:2010:RIV

Odaka:2012:GIS

Ozgun:2014:CTA

Ogren:2011:SSF

Oh:2012:MOO

Ogoyski:2010:COU

Ogarko:2012:FMA

Oquendo:2011:IRC

Ohzeki:2011:QAJ

REFERENCES

Ovaysi:2012:MGA

Opletal:2011:HHR

Opletal:2014:HHR

Opletal:2013:HHR

Oskooi:2010:MFF
Ardavan F. Oskooi, David Roundy, Mihai Ibanescu, Peter Bermel, J. D. Joannopoulos, and Steven G. Johnson.
REFERENCES

Orgogozo:2014:OSM

Osterman:2010:TOT

Ozaki:2011:AFE

Oxburgh:2014:DTR

Ohno:2014:PMD

Poursina:2013:CES

Palmai:2012:RMS

Panzer:2015:ASI

Panopoulos:2011:SES

REFERENCES

Paternoster:2012:PSA

Pavlyukh:2013:ERI

Perona:2014:TEM

Pardini:2012:FPC

Peng:2011:SPF
Yu-Cih Peng and Chung-I Chou. Simulation of pedestrian flow through a “T” intersection: a multi-floor field

Piotrowski:2015:SLH

Pfeerle:2014:VLS

Pavlov:2011:OFS

Plante:2014:CDD

REFERENCES

REFERENCES

REFERENCES

Pradhan:2011:CWP

Pletzer:2011:EMS

Porod:2012:SEI

Panopoulos:2014:NPF

Pandey:2011:AAS

Pletzer:2011:EMS

Pandey:2012:ASS

Paissoni:2014:GGT

Paissoni:2015:GGT

Phan-Thien:2014:ETD

REFERENCES

Qamar:2013:STC

Qamar:2013:ACS

Qian:2013:VCN

Quackenbush:2013:PLF

Qiu:2010:CSG

[QHC+10] Tian Qiu, Tarik Hadzibeganovic, Guang Chen, Li-Xin Zhong, and Xiao-Run Wu. Cooperation in the snow-drift game on directed small-world networks under self-

Qiu:2014:RCE

Qiang:2010:HOF

Qiang:2010:PFD

Quinlan:2014:DMF

Qamar:2010:KFV

Shamsul Qamar and Sidrah Mudasser. A kinetic flux-vector splitting method for the shallow water magnetohydrodynam-

[Ram10] Omar Ramadan. Addendum to: “A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation” [Computer Physics Communications

Rawitscher:2015:SPA

Rayson:2010:RFA

Rodriguez:2015:OPI

Roudnev:2011:AGC

Reimer:2013:MBF

REFERENCES

Julián Rincón, D. J. García, and K. Hallberg. Improved parallelization techniques for the density matrix
REFERENCES

REFERENCES

REFERENCES

[RPB*15] Dominic Roehm, Robert S. Pavel, Kipton Barros, Bertrand Rouet-Leduc, Allen L. McPherson, Timothy C. Germann,

Rodrigues:2014:AAC

Ramos:2010:PIM

Ribeiro:2011:DTK

Ramirez:2012:TIE

Rybczynski:2014:GGI

Riede:2010:Csd

Ryan:2010:NMM

Ringl:2012:Lig

Ringl:2013:SAC

REFERENCES

REFERENCES

 Russell:2015:OTD

 Sundararaman:2014:ECD

 Sharma:2015:OHS

 Saltelli:2010:VBS

 Sjostrand:2015:IP

 Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna,

REFERENCES

Sangwine:2015:CSP

Sokolovski:2011:EMP

Smadi:2011:CSS

Schram:2013:SPC

Soba:2012:RSD

[SBH+12] Alejandro Soba, Edgar Alejandro Bea, Guillaume Houzeaux, Hadrien Calmet, and José María Cela. Real-space density

[SBH+12] Alejandro Soba, Edgar Alejandro Bea, Guillaume Houzeaux, Hadrien Calmet, and José María Cela. Real-space density

REFERENCES

[Sc14a] Ulf D. Schiller. A unified operator splitting approach for multi-scale fluid-particle coupling in the lattice Boltzmann

REFERENCES

REFERENCES

Serebrennikov:2010: NSA

Schimeczek:2012:HOC

Schimeczek:2014:HOC

Stamatiadis:2010:ATA

Santos-Filho:2011:MCS

REFERENCES

Souto-Iglesias:2013:CM

Souto-Iglesias:2014:ASC

Sindhikara:2011:MRS

Sindhikara:2012:MRS

Sinha:2012:PWL

REFERENCES

Sobczak:2011:GAA

Spiechowicz:2015:GAM

Simonsen:2011:LSA

Sudheer:2013:DLB

Liu:2010:ACD
REFERENCES

REFERENCES

Smirnov:2014:FCP

Smirnov:2015:FCI

Schneider:2011:PSM

Sebilleau:2011:MMS

Starinshak:2014:NPA

REFERENCES

REFERENCES

REFERENCES

Su:2010:FPC

Sekhar:2012:EHO

Sony:2010:GPF

Stavroyiannis:2010:NET

Shkarofsky:2011:NCC

REFERENCES

REFERENCES

Shen:2013:HOS

Stoitsov:2013:ADS

Saez:2011:IPC

Smirnov:2011:FPM

Strater:2015:PDA

Sakamoto:2011:SME

Studerus:2010:RFI

Shabaev:2015:QFP

Stockinger:2012:FMF

Stockinger: Dominik Stöckinger and Philipp Varso. FeynArts model file for MSSM transition counterterms from DREG to DRED. *Computer Physics Communications*, 183(2):422–430, February 2012. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
References

Schröck:2013:CLM

Sandner:2014:CMI

Svaneborg:2012:LFD

Snytnikov:2010:AMA

Stevenson:2011:PSL

REFERENCES

REFERENCES

Xie:2014:PGD

Scott:2015:EHS

Szalmas:2013:ADVb

Szalmas:2013:ADVa

Sarti:2013:BTE

REFERENCES

Smiljanic:2014:MBP

Sa:2012:PUP

Sa:2013:PUI

Thierry:2015:IDO

REFERENCES

Tautz:2010:NSC

Tseung:2014:GPB

Tribello:2014:PNF

Tarantola:2012:CTS

Tang:2011:ESG

REFERENCES

[TIMM13] D. Tordella, M. Iovieno, S. Massaglia, and A. Mignone. Large-eddy simulation of hypersonic flows. Selective pro-
procedure to activate the sub-grid model wherever small
scale turbulence is present. *Computer Physics Commu-
nications*, 184(12):2651–2661, December 2013. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Tabakin:2011:QMQ

[TJD11] Frank Tabakin and Bruno Juliá-Díaz. QCWAVE — a Math-
ematica quantum computer simulation update. *Computer
CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
pii/S0010465511001287.

Tang:2014:ADP

dissipative particle dynamics simulations on GPUs: Algo-
rithms, numerics and applications. *Computer Physics Com-
munications*, 185(11):2809–2822, November 2014. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

Tsitouras:2014:BVD

[TK14b] Ch. Tsitouras and V. N. Katsikis. Bounds for variable de-
gree rational L_∞ approximations to the matrix cosine. *Computer
Physics Communications*, 185(11):2834–2840, November 2014. CODEN
science/article/pii/S0010465514002422.

Tseng:2012:SSV

J. S. Wu. Simulations of subsonic vortex-shedding flow
past a 2D vertical plate in the near-continuum regime
by the parallelized DSMC code. *Computer Physics Commu-
nications*, 183(8):1596–1608, August 2012. CODEN
CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

REFERENCES

REFERENCES

REFERENCES

Tsoulos:2011:ECP

Teijeiro:2013:PBD

Tong:2011:TDM

Tay:2014:PAD

Tang:2011:MTM

REFERENCES

REFERENCES

Umansky:2012:NAM

Vanni:2015:AMF

Vogel:2011:APN

Velasco:2012:IIS

Valiev:2010:NCS

REFERENCES

REFERENCES

ISSN 0010-4655 (print), 1879-2944 (electronic). URL

[vRWS14] Guido Falk von Rudorff, Christoph Wehmeyer, and Daniel
Sebastiani. Efficient implementation and application of
the artificial bee colony algorithm to low-dimensional
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

[VanLiedekerke:2013:SMF] P. Van Liedekerke, B. Smeets, T. Odenthal, E. Tijskens,
and H. Ramon. Solving microscopic flow problems using
Stokes equations in SPH. *Computer Physics Communications*, 184(7):1686–1696, July 2013. CODEN CPCHBZ.
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

and compile-time algorithms in the definition of com posi
ISSN 0010-4655 (print), 1879-2944 (electronic). URL

[Verstichel:2011:VDM] Brecht Verstichel, Helen van Aggelen, Dimitri Van Neck,
Paul W. Ayers, and Patrick Bultinck. Variational density
matrix optimization using semidefinite programming. *Computer Physics Communications*, 182(9):2025–2028, Septem
science/article/pii/S0010465510005278.

[Verstichel:2011:PDS] Brecht Verstichel, Helen van Aggelen, Dimitri Van Neck,
Patrick Bultinck, and Stijn De Baerdemacker. A primal-

REFERENCES

REFERENCES

Wang:2010:PMH

Wittek:2013:SOD

Wang:2014:YPC

Wu:2011:SMM

Wendt:2011:TLS

REFERENCES

[WL11b] M.-C. Wu and W.-C. Liu. Non-perturbative time-dependent numerical simulation for electromagnetically induced trans-
REFERENCES

Wang:2013:UVM

Wei:2012:ESM

Wickersham:2014:CFP

Wei:2013:NVB

REFERENCES

REFERENCES

Wu:2010:EER

Whitehorn:2013:PSS

Wu:2010:MAR

Wang:2012:TIE

Wang:2013:GIV

[XYK12] Shu-Sen Xie, Su-Cheol Yi, and Tae In Kwon. Fourth-order compact difference and alternating direction im-

[Xu:2013:NID]

[Xu:2012:ADI]

[Xiong:2012:PSH]

[Yang:2009:FAM]

Yuasa:2012:NCT

Youssef:2014:CNK

Youssef:2014:NFP

Yuan:2012:DAV

Yang:2015:OPS

Yi:2012:FCM

Young:2011:CQA

Yin:2012:MPW

Yang:2010:PFA

Yan:2013:GPU

REFERENCES

Yu:2011:TDD

Yang:2009:ERT

Yu:2015:ENC

Yang:2014:SNT

REFERENCES

REFERENCES

REFERENCES

Zuccaro:2011:MMP

Zhao:2013:IHA

Zhao:2012:MMC

Zlokazov:2013:VGD

Zlokazov:2014:CIO

V. B. Zlokazov. Confidence interval optimization for testing hypotheses under data with low statistics. *Computer Physics Communications*, 185(3):933–938, March 2014. CODEN CPCHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
Zheng:2012:MPC

Zierenberg:2013:SPP

Zheng:2013:MVN

Zwart:2013:MPS

REFERENCES

Zhang:2015:DFD

Zhang:2015:SSL

Zhang:2015:QUP