
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

23 May 2015
Version 1.233

Title word cross-reference

(2, 2) [KSSY12]. (k, n) [YC11]. (n, t, n) [LHYZ12]. 2 [DBPS12, ESS12, JR13, MCDB12, PGLL10, WY12]. 22 [MNP12]. 3 [AP10, CG12b, DWWZ12, FWS13, GZHD12, GH11a, KWS+12, LJ15, MKH+12, SS10a, SS12a, SGS14, WSSO12, tWmC12, YT11a, YI14]. 3 [AMVZ12]. 4 [COP14, DWZ12, HLYS14]. 49.00 [Sch15a]. 9 [APPVP15]. = [JJUW10]. 3 [LHM14]. α [TTL10]. c [KRDH13]. t [ZTL15]. γ [DWZ12]. GF((2)[x] [SF12]. GF((2^m) [SKH15]. GF(2^μ) [LBOX12]. K [FXP12, CHX13]. L(1/4 + α(1)) [Jou13]. M [MMSD13]. F_{35569} [AMORH13]. F_q [SS13]. N/P [HN10]. GF(q) [LPdS10]. LWE [BV14]. μ [Jia14a]. $n \times k(k \geq n/2)$ [MC11]. O(n^2) [KS11]. ±1 [HZW+14]. q [GMS11]. S [LJ15]. t [HJM+11, Oba11]. w [Kre13].
/ [Ran10, Ran14].

0.13um [KLM+12].

1 [AAE+14, Ful10, MSas12]. 1—58488—551—3 [Ful10], ‘10 [Ano10], 10th
LGL+12, LLY+12a, LWCJ14, MD12b, MNP12, NDNR13, SEY14, SD12, TLL13, WHN+12, Yon12, ZLQ15. **Age** [Bla12, Sto12]. **Agency** [ABJ13, agent [GPVCdBRO12]. **Aggregate** [CCT+14, LLY15, ZQWZ10]. **Aggregated** [NLY15]. **Aggregated-Proof** [NLY15]. **Aggregating** [DP12]. **Aggregation** [LHKR10]. **Aging** [SKV12]. **Agreement** [HCL+14, HEC+12, MNS11, TM12, WSS12, XLM+12, XGLM14, BGAD12, CTL13, IB11, KS11, LLLS13, LLY06, Nos11, Nos14, TLL12, XCL13, XMHD13, YZZ+14, ZWQ+11, OHJ10]. **Aided** [BGK12, BCGK12, BGB12, GMSV14, Vua10, ABBD13, SSAF11]. **AK** [XHC+12]. **AK-PPM** [XHC+12]. **AKA** [LLLS13]. **AKF** [KDH15]. **al** [MWZ12, PLPW13, SBS+12]. **al.** [ABJ13]. **Alan** [CS12, Don14, LCKBJ12]. **Algebra** [Xie12, BS15, Bul10b, CFR11, DWZ12, FGPGP14]. **Algebraic** [Gas13]. **Algorithms** [AB10b, BCG12a, BJ10, CN12, KRDH13, MR14a, TKM12, ZW15, Fri0a, Mac12, NC13, Xie12]. **Ali** [ABJ13]. **Alignment** [Don14]. **all-seeing** [Tox14]. **Allowing** [PRC12]. **Almost** [FFL12, Oba11]. **Alterna** [SMOP15]. **alternate** [ZW+12]. **Alternating** [BKLS12, KDH15]. **AMBTC** [KSSY12]. **America** [AB10a]. **American** [Sch15a]. **Americans** [ABJ13]. **among** [BP11]. **amount** [EEAZ13]. **Amplification** [ABF12, HMR14]. **Analog** [KOP12]. **Analysis** [GRL12]. **Analysis** [ABS+12, ARP12, BC14, BS14, CGL+12, FSWF11, GZZ+13, GLG12, HC12, HHH+13, IBM13a, IS12, KOP12, Kre13, LPS12, LCK11, LGLL12, MD12b, MRTV12, MR10, NDC+13, NSA15, PH12a, PFS12, RZZ+15, Rao10, SR12a, Shi11, SZDL14, SCGW+14, VKC15, WDDW12, YZLC12, ZH15, CFH+13, DHW+13, DMT12, FTV+10, FHM+12, HM10, MFH13, NLYZ12, RITF+11, TQL+14, TLMH13, Tso14, Ven14]. **Analysis-Based** [RZZ+15]. **Analytic** [Kuz11, Sha10, Shp03, ZW15]. **analytical** [TKMZ13]. **Analyzing** [HREJ14]. **Ancient** [Fox13, Rao10]. **and/or** [YLA+13]. **Android** [Chi13b, EBFK13, FHM+12, SFE10]. **Android-Powered** [SFE10]. **Anisotropic** [ZZCJ14]. **Annual** [Ano10, IEE10, IEE11b, PJ12, Gil10, Rab10]. **Anonymity** [CDFS10, HEC+12, MR10, SCGW+14, BAG12, HLR11, Par12b, WW14, ZK11]. **Anonymity-Based** [HEC+12]. **anonymization** [XTK10]. **anonymized** [BDK11, TG12]. **anonymizing** [TMK11]. **Anonymous** [CG12a, CZL12a, Chi12, DK12, FHM10b, LZC14, Per13, RSN14, TAKS10, Wan14, ZJ14, ATK11, CCSW11, Chi13a, CGH11, FSGW12, HL14, LHM14, LY14, MYYR13]. **ANSI** [Ano11b]. **anti** [QZ14]. **anti-forensics** [QZ14]. **Antispoofer** [MR14b]. **Antoine** [AY12]. **Apache** [Lit14]. **API** [FLW12]. **Append** [YNR12b]. **Append-Only** [YNR12b]. **Application** [AKP12, AK14, BRT12, CKLM13, CCW+10, CLCZ10, CHS15, Kiep15, LW11a, LWKP12, MNS11, O012, SEHK12, SS13, YWK10, YTS12, ZH15, Abe10, BBBP13, GLIC10, Jia14b, LGKY10, LWKP14, XHH12, YY11, ZWQ+11]. **Application-Level** [CCW+10].
Applications [ÁMVK12, Ana14, BKPW12, BCG+12b, BSV12, CZL12a, CZL12b, DK02, DK07, FSK10, GRL12, HvS12, HN10, Nac12, Nie02, PJ12, SCPSN10a, SCPSN10b, Sha10, Shp03, Ter11, TYK+12, YR11, Ano11a, CFR11, CSZ+11, CDA14, Dur15, EBK13, FES10, Fri10a, Gil10, LR15, LBOX12, LTT10, MI10c, MM14b, NV10].

Applied [BSS11, MR10, Xie12].

Applying [Bar12, Elb09].

Approach [HLAZ15, HLW12, MKN13, RP12, SLGZ12, Sia12, SH15, SC12, TLW12, Vle12, VKC15, WYCF14, ZW15, AT10, BSS11, CO11, DZS+12, KL13, LGCGCRP14, MCP15, NC13].

Approaches [LC15, SBV14, MKH+12].

Approximate [CN12, SGS14].

April [GLIC10, PJ12, vDKS11].

Arab [Bro11].

Arbitrary [FHR14, DWZ12, Gen10].

Arbitrary-State [FHR14].

Arbitration [Kip15].

Architectural [MD12b, VCK+12, ZWT13].

Architecture [BCE+10, HKL+14, KCR11, LGR14, MCDB12, MJGS12, MC11, RMP10, SWM+10, SLI11, Ao11b, BV1B12, LXMW12, MJ13, SSS13, SSPL+13, SAB10].

architecture-independent [BV1B12].

Architecture [BGG+13, CHS15, FPBC14, HL14, MK11, Nov10].

Area [LZCK14, LMJC11, Nov10].

Areas [MV12, YJ14].

Arguments [BC1+13].

ARIA [PH12a].

Arithmetic [A1K14, Frel0, GH11a, HSA14, KHF10, PG12, DZZ12, MO14].

Array [BL12, MCDB12, NKWF14].

Arrays [LB13, TRD11, KM10a].

Art [ABJ13, BDK11].

ARX [KN10].

ASIACRYPT [LW11a, Abe10].

ASM [Vle12].

ASM-Based [Vle12].

ASP.NET [DR11].

Assessing [CBL13].

Associated [Sar10b].

associative [BS15].

 Associativity [ABR12].

Assumption [LZC12a, LZC14, ZG10].

Assumptions [CZ12, DN12, KM10c, ABW10].

Assurance [KMP+11, WL11].

Assured [Tan15].

Asymmetric [HG12, XLM+12, XGL14, ZWQ+11, CSS+13].

asymmetric-histogram [CSS+13].

asymptotic [DTZZ12, TD14].

Asymptotically [LPS12].

Attack [BMS12, DS15, zGXR12, GV14b, HCTPT1+12, HLA15, JH12, JKP12, LGL+12, LWK12, LWPF12, Pud12, SP13, SDM+12, WLC12, XJWW13, DDFR13, FLZ+12, Goo12, LLY+12a, LC13, LYHH14, LWK14, MB11, MN1, NZL+15, WYL13].

Attacks [ARP12, BGG12, BKBK14, Che15, CMA14, DGI12, DHLAW10, EWS14, GPT14, Hay13, N10, LLC11, LWZ12, LW14, MD12b, PYM+13, PS12, Sac12, SEY14, SP15, SH15, WW14, WHN+12, YCM+13, ZLQ15, BBBBB13, BV1B12, BSR+14, dCCSM+12, DCAT12, DJL+12, EA12, FTV+10, GBNM11, KM10a, KPS10, LW11, ND13, PX13, TLL13, WWBC14, WWD12].

attempt [Fel13].

ATtiny [EGG+12].

Attribute [AHL+12, BFK+10, Boy13, FHR14, GZZ+13, Gil12, HSMY12, HR14, KGP12, LW11b, LW11c, LW12, LJLC12, LYZ+13, LHL+14, OT12, PB12, SSW12, XML13, ZHW15, YCT15, ZWM14].

Attribute-Based [BFK+10, Boy13, FHR14, GZZ+13, HSMY12, LW11b, LW11c, LW12, LJLC12, LYZ+13, LHL+14, PB12, SSW12, XML13, AHD+12, HR14, YCT15].

Attribute-Hiding [OT12, ZWM14].

Attributes [CG12a, Yon11].

Attribution [XH+12, FNP+15].

Auction [Con10, HJM+11].

auctions [MR14c].

Audio [DA12, GCK12, KD12a, KD12b, LSL12b, TC10, ZS12, LSQ11, yWpNyL11, YQH12].

Audit [YN12b].

August [AB10a, JY14, MV12, Rab10].

authentic [SZMK13].

Authentic [HM12].

Authenticated [Alo12, BCO13, CLY14, CCS14, CRE+12,
DS11, EAA12, FFL12, GTT11, GL12, GZ12, HC12, HL10a, HCL+14, HEC+12, LH11b, LC13J, LTT11, MR14a, MMY12, MHKS14, MSU13, Sar10b, Smi11b, TW14, XLM+12, XGLM14, YS12, YLW13, Yon12, CTL13, FA14b, GPN+12, HL11, LWS10, LHH11, LML+13, Nos11, Nos14, PPTT15, SMBA10, TCS14, Tso13, TKHK14, WZM12a, WZM12b, WTT12, WXCl14, XCL13, YC12, YZZ+14, ZG10].

Authenticating [CHX13, GRL12, OKG+12, RPG12, WY12, LFGCGCRP14, PGLL10].

Authentication [ASO14, BL12, BCE+12, BCM12, BSSV12, BCD+12, BF11, BJKP12, BSV12, CGCGPDMG12, CCW+10, CJ13, CD12, CLH13, DBPS12, DFKW12, DP12, FLH13, FMTR12, FD11, GHS14, Gli12, GI12, GM14, GU13, GCK12, HZC+12, HvS12, HLLC11, Har13, Hay13, HBC13, HM10, HCPLSB12, HETPL+12, HKL+12, HX+11, HCL11, JN12, JCM12, JAE10, KP12, KPC+11, KLY+12, KTA12, GKP12, KPKS12, KLM+12, KH10, LCC11, LCLL15, LN+13, LZCK14, LNX15, LLZ+12, MWZ12, MEFO12, MKH+12, MLBL12, Mor12, NR12, NLLJ12, NLY15, OdH12, OO12, OS12, PCDG14, PPRT12, PDT12, PWVT12, RS11, RWL11, RSN14, Saa12a, SBS+12, Sar12, SKV12, ST14, SD12, Shi11, SGC14, SSA13, SC12, SZDL14, SHS12, SAA12b, TYK+12, TM12, Vet10, WgmDZ1Z12, WHZ12, WZXL12, WgMW12, WSS12, WT10b, Xio12, YTP11, ZBR11, ZLDD12, ABK13, AZF+12, ACM12].

authentication [BS13a, BGAD12, BAL10, BMM12, BM11, CLM+12, CFF13b, CT12, CH10, CCSW11, CHS11, CLHJ13, CZ15, Chi13a, Chol14, CL11, DCAT12, DSCS12, DLN13, DZ12, DMT12, EA12, EA11, FPBG14, FHH10a, FLL+14, FXP12, Far14, FA14a, GI13, GMSW14, GCSAdD11, HDP1C, HZC+14, HL14, HCC10, HS11, IG11, IB11, JAS+11, KKG14, Kim11, LLLS13, LLY06, LH11a, LT13, LH10c, LNM+11, LMJC11, LXM12, LNKL13, LJJ14, LHM14, LH13, Lt14, LWL11, LBR12, LTT10, MM12, Mk12a, NCCG13, NLYZ12, NB13, OCGS11, OYHS14, PYP10, Par12b, PA10, Sar10a, SA15, SSS11, Tan12b, TLL12, Wan13, WW14, WT10a, WKH11, XHH12, XWDN12, XHC14, XMH13, YSL+10, YMM13, ZYL+10, ZW120, ZCLL14, XZ11, OHJ10].

authentication-chaining [EA11].

authenticity [ADF12].

Authority [LNXY15, JB11, ZZ12].

Authorization [CS14, JAE10, JAS+11].

authorship [BAG12].

Automata [Gas13, dRSdI1C12, SS11, WOLS12].

automata-based [SS11].

Automated [CCK12, GLLS12, YSS14, BJR+14].

Automatic [WW12].

Authentication [BGK12, IEE11a].

Auxiliary [DL12, XXZ12, YCY12].

Auxiliary-Input [XXZ12].

availability [ADF12].

average [Lim11, YL11].

avoid [CFZ+10].

avoiding [BHCdFR12].

Aware [LMHH14, MGP10, Wan13].

Awareness [MSas12, Li10].

axiomatic [AT10].

B [Tan12a].

B-Spline [Tan12a].

Back [YZLC12, Ran10].

Backdoor [Sch13, Fel13].

backup [Cor14a].

backward [BM11].

Bacterial [Kar12].

bad [RY10].

BAF [YNR12a].

Balanced [YTP11].

balancing [FXP12].

Ballots [CW12b, LHF12].

balls [Svo14].

band [MMSD13].

Bandwidth [GST13, LLZ+12].

Bandwidth-Eficient [LLZ+12].

Baptiste [Dew11].

Barbara [Rab10].

Barcodes [WY12].

Barrier [JR14, KS11].

barriers [LKL13].

base [MS12, XSWC10].

Based [ADM12, ASM12, Ano11b, ASS15, BL12, BSSV12, BHH12, BKPW12, BRT12, BS13b, BFK+10, Bon12, BS15, Boy13, BKPJ12, BCF+14, CGMO14, CZLC12a, CZLC12b, CLHC12, CLY14, CZLC14, CGL+12, CDD13, CD12, Chi12, DSSM14, DA12, EM12,
Based on [RR11, RVRSCM12, SSW12, SS13, SJ12, SGP12, SSA13, SH15, TKR14, TWZ11, TW12, TWZ1+12, TT12, TTH15, TC10, Vle12, Wan10, WSSO12, WgMW12, Wan14, WT10b, WMS1+12, XXZ12, XMLC13, Xio12, XGLM14, YE12, YZLC12, YZX1+12, YGF15, YTS12, YKNS12, YMWS11, YCZY12, ZZJ1, ZZX1+11, ZDL12, ZLH1+12, ZHW15, ZHL15, AY1+1a, ASO14, AKG13, ASVE13, AHI1+12, BS15, BBBP13, BGAD12, BAAS13, BOB13, BWR12, BW13, BWA1, BMIM12, BK12b, CFY1+10, CQLL11, CTR1, CLS12, CG12b, CSZ1+11, CX13, CSS1+13, CW14a, CTHP13, CCG10, CT13, Chol14, Con12, dCCSM1+12, Cra11, DSCS12, DZ14, DNN13, EZ15, FHI13, Far14, FA14a, FA14b, Gal13, GJ13, GMRT1+15, GKCK11, GCSAdP11, GMS11, HT11, HGWW11, HSM13, HZC1+14, HF14a, HLRI11, Her14, HB13, HL14, HLI11, HLC12, HYWS11, HCC10, Hwa11, IM14, IB11, JK13, JLT1+12].

Based on [ZHW15]. Bases on [EVP10, TSH14, FES10]. Basing on [Mat14, MN10]. basis on [CG12b].

Based on [CCG10]. batch-based on [CCG10]. Batters on [Ch13b]. battles on [Sch15b].

Based on [DSMM14, Par12a, AZH11, Ana14, RK11]. BECAN on [LLZ1+12]. Becomes on [Bra13].

been on [Ana14]. before on [GST12, Goo12]. behavioral on [HT11]. Behind on [Fre10].

Beijing on [BYL10, Yan10]. Beissinger on [Ayu12]. Belief on [BT12]. Benford on [AOT13].

Bessel on [GJ13]. Beth on [CH13]. Between on [LRW14, CLM1+12, HLRI11, PBCC14, WDDW12].

Beyond on [LST12, MJS13, FNP1+15, JR14]. BGV on [GHPS12]. BGV-Style on [GHPS12].

Biclique on [BKR11, KDH13]. Big on [Mal13, LSBN14, WS14]. Biggs on [Low12].

bilateral on [JT12]. Bilinear on [AHC12, ASS15, YS12]. billions on [SBMA10].

Binary on [AD11, AK14, MBR15]. Binary-Ternary on [AD11]. Binding on [HEC1+12, ZLQ15]. bio on [GPVcBro12].

bio-inspired on [GPVcBro12]. Biometric on [DBW12, JN12, KHMB13, Sar12, SKV12, Vet10, DIMT12, GCSAdP11, HT11, LK12, MLBL12, Sar10a, SR10]. biometric-based on [SR10]. Biometrics on [BW13, SP13, LXYL12, LH10c, LNM1+11].

capability [LT13]. capacity
[GZHD12, PWLL13, WH13]. Capture
[NYS+14]. Card
[BDFK12, HMR12, HCL+14, PDT12,
CLHJ13, GLIC10, LNLK13, Cho10, SD12].
CARDIS [GLIC10]. Cards [BSJ15, LA10,
PWVT12, WgMdlZ12, WgMW12, CHS11,
HCC10, KY10, LH10c, LNM+11, LXWM12,
MM12, YZZ+14, YSL+10]. Carlo [CR12].
Carol [Xie12]. Carved [LC15].
Cascading [GT12]. Case
[DR11, SBS+12, LKKL13, MD12a]. Cash
[YMWS11]. Casting [CW12b]. cat [Pow14].
CCA [CZLC14, MSA12, SYL13, SLZ12].
CCA-Secure [CZLC14, SYL13]. CCA2
[Gal13, GV14b, MVVR12, RG10, ZZ12].
CCM [SKK10]. CDH [ZG10]. cell
[LLY+12a]. cell-counting-based
[LLY+12a]. Cellular
d[RSlV12, SS11, WOLS12]. centre
[McK10, McK11]. Centric
[BC11, BP10, PN10]. centroid [LWY12].
Centuries [Gri15, McG11]. Cerf [Cer15].
Certificate [HP12, LTH+15, WMS+12,
BJR+14, Lan13, MBB+13, NPH+14, JB11].
Certificate-Based
[HP12, LTH+15, WMS+12]. Certificateless
[LZCK14, SZS14, TCL15, WMS+12, YT11a,
YT11b, ZQWZ10]. Certificates
[SC12, GLJ+12, HREJ14]. Certification
[LDB+15]. Certified
[ABBD13, STC11, HL14, LH13, WXW14].
CertShim [NPH+14]. chaff [KHM13].
Chain [KWP13, CR12]. chaining [EA11].
chains [HLYS14]. Challenge
[AD12, GHS14, ZCC15]. Challenges
[CN12, Fra15, SBV14, WS14]. change
[ZWT13]. Changeable [FGM10, ZCL+12].
changed [Mac12]. Channel [ASN11,
CDK+10, CBL13, EWS14, GPT14, KOP12,
LRG14, NDC+13, PRC12, TT12, BVIB12,
DMWS12, DJL+12, JLT+12, MFH13].
Channels [ASN12, KW14, Vua10, SRB+12].
Chaos [LW13c, RR11, RVRSCM12,
CCL11, LW13b, JLT12, ZLW+12].
chaos-and-Hamming [CCL11].
Chaos-Based
[RR11, RVRSCM12, LW13c, ZLW+12].
Chaotic
[BCGH11, NES+14, WZG+12, ZT14].
Chapman [Full]. Character [SS12b].
Characteristic
[BGJT14, SR10, BGJT13, Jor13].
Characterization
[ALR13, BS13b, YZLC12, DDD14].
Characterizing [Ash14, JR13]. Chattarjee
[Kat13]. cheat [WS12]. cheat-preventing
[WS12]. Cheater [WI11, Oba11].
Chebyshev [LP1510]. Check [GST12].
Check-before-Output [GST12].
Checkability [LHL+14]. Checkable
[WI14]. Checking [FYMY15]. Chen
[LLLK10]. Chennai [BC11]. China
[BYL10, IEE11a, LTW11, Yan10]. Chinese
[LF14a]. Chip
[MDAB10, RAB+13, BGG+13]. Chips
[Man13]. Chirp [OWS12]. chocolate
[Svo14]. Choquet [SH11, SM11, SNM14].
Chosen [FSGW12, zGXW12, HLW12,
LCT+14, LZC12a, LLML12, MH14, RS10,
WWHL12, LZC14]. Chosen-Ciphertext
[RS10, FSGW12, LCT+14, LZC14]. Church
[ABJ13]. Cipher
[BCG+12b, DG12, DWWZ12, GLSN12,
GCS+13, HZ11, IOM12, JKP12, KWS+12,
LPS12, LWZ12, LWKP12, LWPF12,
MRTV12, MHC12, PH12a, PRC12,
WSSO12, WHN+12, AMS+10, CR12,
HT11, Hol11, Jor13, KDH15, Lew10, LC13,
LYHH14, LWKP14, MNP12, RS14, Sar11,
WYL14, WWBC14, LGL+12]. Ciphers
[ABS+12, BMS12, BKLS12, BrU12, CW12,
DG12, EGG+12, GT12, GST12, GNL12,
IS12, Kla10, LLL12, ML12b, NN12, Pud12,
Sas12, SEHK12, Vua10, WW12, Xie12,
ZH15, ZSW+12, Zha12, Bay10, Bla12, Bor10,
Die12, KM10a, LW11, MRT10, SKK10,
TQL+14, WB12]. Ciphertext
Ciphertext-Policy [XMLC13, ZHW15].
Ciphertexts [Sta12, AHL+12, LCT+14].
Circle [SC10].
Circuit [Kar12, MTY11, Lau12, MS13a].
Circuit-Size [MTY11].
Circuits [AIK14, BR14, GH11a, SS10a, SS12a].
Circumventing [BAG12].
CISSP [STC11].
Claims [SKGY14].
Class [BCG12a, XYXYX11, Goo12].
Classical [MSU13, CR12, RK11].
Classification [HPC10, SGP+12].
Classroom [Pow14].
Claudius [Hol12].
CLEFIA [LWZ12, TSL11, WB12].
CLEFIA-128 [TSL11].
CLEFIA-type [WB12].
Client [ASM12, FD11, Vle12, FA14a, FA14b, WT10a].
Client-Based [ASM12].
Client-Centric [Vle12].
client-server [FA14b].
clients [LH13].
cloaking [NZL+15].
Cloud [BCQ+13, CWL+14, CCT+14, DXA14, FCM14, JLS12, KMSM15, Kui+15, LA15, LYZ+13, LGR14, LL+15, LNY15, Pet12, RSGG15, Vle12, XMCL13, ZDL12, AZPC14, ASO14, BK12b, FH13, HSM13, Jee+13, KKA14, KKM+13, KKM+14, LXX+14, LW13a, NB13, PP11, SL10, TL1M13, WL12, YWT+12].
cloud-based [ASO14, BK12b].
Cloud-of-Clouds [BCQ+13].
Clouds [BCQ+13, RSN14].
Clustered [DS11].
Clustering [KRDH13, VSV15].
CMAC [SKK10].
Co [MBR15].
Co-Processor [MBR15].
cocktail [OH10].
Code [AD12, CCL+13, Fox13, HG12, KSSY12, PYM+13, SS13, War11, ABB13, Ant14, Bri11, CL1L11, GIJ+12, MCP15, MCG11, Mool14, PA10].
Code-Based [HG12, SS13, MCP15].
code-breaking [Ant14, Bri11].
Code-cracking [War11].
codebreaker [Car11].
codebreakers [Ano11c, Smi11a].
codebreaking [Cop10, McK10, McK11].
Coded [She14].
Codes [BBC+13, Bay10, BP06, Big08, DBPS12, FMV14, Gri15, KW14, MBR15, OTD10, SEY14, ST14, TL1W12, WSS12, Xie12, YTP11, Bul10a, CZ15, Chi13a, Hea15, LTT10, MG15, YSJL14, Ayu12, Low12].
Coding [Che11, CJ13, CG14, Hes12, LCLL15, Per13, AZF+12, Bul10b, DTZZ12, JZS+10, KM11, NDN+13, YTM+14].
CoDiP2P [NCCG13].
Coercion [CW12b].
Cognitive [PP11, Kim11, RPG12].
Coin [ALR13, CLP13a, DSMM14, Mat14, BB14].
Coins [Fok12].
Colbert [Dew11].
Collaboration [CRE+12, PCPK14].
Collaboration-Preserving [CRE+12].
collaborative [LLY06, LT14b, HB13].
collect [Sch15b].
Collision [BK12a, ZL12, AKY13].
Collision-based [ZL12].
Collision-Resistant [BK12a].
Collusion [MMS13, FLZ+12, GMRT+15].
collusion-resistant [GMRT+15].
Collusions [GV12].
Color [BCPV11, DD13, YNNW15, SNM14, yWpWyypN13, WGZ+12].
Colossus [Cop10].
combating [FTV+10].
combinational [MS13a].
Combined [PP10b].
Combining [Chi13a, PDF+10].
Coming [SG15].
Comment [LCLL15].
Comments [TCL15].
Commerce [HvS12, Ano11a].
Commitments [Pas13a, CSZ+11, LP11].
Common [CN12, ESRI14].
Communication [Big08, CCW+10, FMS12b, Gas13, GPVCdBO12, KW14, Low12, OKG+12, Wan13, ZC13, HCCC11, HLYS14, LT13, LyWSZ10, RK11, SSAF11, SSPL+13, Tso13, YLGK13, Zhn13, vDKS11].
communication-efficient [Tso13, Zhn13].
Communication-resource-aware [Wan13].
Communications [QO12, SMS14, FHH10a, LGCCRP14, WDZL13].
Commutative [CLHC12, SLGZ12].
Commutativity [ABR12].
Commuting [Fuc11, AKG13].
Compact
Comparison [DWB12, HPC10, KU12, ST14, HM10].

Compartmented [EZ15]. Compensation [JSZS12]. Competition [jCPB+12].

Compilation [CHS15]. compiler [LWS10].

Compiling [CR10]. Complete [Ash14, BS14, FLH13, GHKL11].

Completeness [FKS+13]. complex [BW13]. Complexity [BIKK14, BW12, DP12, Gas13, Shp03, DJL+12, Jon13, KGO10, LWW+10, SDM14].

Compliance [SOF12]. compliant [BP10].

Components [RITF+11]. Composable [DN12, KMO14]. Composing [TW14].

Computable [FWS13]. Computation [ARH14, Ash14, BDOZ11, Fri10b, GST12, GVW12, GHKL11, HP14, IEE11a, KW14, KMO14, LHM+15, MMP14, Mal13, NSMS14, PST13, WS10, AB10b, LDDAM12, TG12, vDKS11].

Computational [BCO13, TBCB15, HRS13, SDM14].

computations [BK12b, LR15, SSAF11, TLMM13].

Compute [Vai12]. Computer [BGK12, BCGK12, BGB12, Bu10b, Gas13, IEE10, IEE11b, LL15, Nie02, Ter11, Vua10, ABBD13, DK12, FGPGP14, Sta11b].

Computer-Aided [BGK12, BCGK12, BGB12, ABBD13].

Computers [Cop10, LCKBJ12, Mac12].

Conditionally [ZJ14]. Conference [BC11, CGB+10, Che11, Cra12, Dan12, Dun12b, FM12, GLIC10, IEE11a, JY14, LCK11, LW11a, LTW11, Lin14b, PJ12, SN11, Sah13, Yan10, AB10b, Abe10, BYL10, BL10, Gil10, GG10, HWG10, Kia11, LH10a, Pie10, Rab10, vDKS11].

Confidential [HS11, AZPC14].

Confidentiality [BFK+10, HLLC11, WDDW12, Bia12, CHX13]. Configurable [CVG+13]. Configurations [SS10a].

Consecutive [Tan12a]. consideration [KM10b]. Considerations [KD12b].

considering [MLMSMG12]. Consolidated [KKA14]. Constant [CWWL12, KMO14, LP11, Pan14, AHH+12, DWZ12, LCT+14].

Constant-Round [KMO14, LP11]. constant-size [AHL+12, LCT+14].

constants [DWZ12]. Constrained [BSJ15, EAA12, YNR12a, Yon12, KAS15].

Construct [SGY11, WT13]. Constructed [ZH15]. Constructing [CDSLY14, ZSW+12, HRV10].
Construction [DF11, EM12, FZT14, KMO14, MSas12, Sar10b, ST14, WZ15, WMS+12, YT11b, YKC+12, ZCLL14].
Constructions [BCF+14, DQFL12, HL10b, SNJ11, CZ15, Zim10]. Constructive [Mau12, WB12], constructs [BP10].
Containing [XWDN12], contemporaries [LCKBJ12], Contemporary [Opp11].
Content [BCP14a, MHT+13, PMZ13, PZPS15, WHZ12, WZXL12, YT12, ZXZ+11, GPN+12].
Content-based [MHT+13], contest [Cra14].
Contextual [Svo14]. Continual [BKKV10, XZY+12, YZ12, YCZY12].
Continual-Leakage [YZ12]. Continually [DLWW11]. Continuous [DHLAW10, FMNV14, PYP10, Yam12].
Continuous-Tone [Yam12], contract [Men13].
Control [BFK+10, MK12b, NA10b, RSN14, SGC14, TBCB15, XMLC13, AMHJ10, CO11, Cra11, JAS+11, NZM10, Sch15b, SA15, Tan12b, XHH12].
Controlled [FMTR12], controls [CGH11].
Conversion [BJ10]. Convertible [HL11b, HL11, LHH11, XWXC14].
Convolutional [MG15], cookies [DCAT12].
Cooperative [LLZ+12, WQZ+13].
Coprocessor [ABC+12, BGG+13, IBM13b].
Copy [YT12, MHT+13]. Copyright [SJ12, GJ13]. Core [LB13, HLYS14].
Correct [PST13]. CorrectDB [BS13a].
correcting [LTT10, MCP15], correction [Chi13a]. correctness [WS13]. Correlated [RS10].
Correlation [BW12, SDM+12, WWWC14, XHH12].
correlations [Sar14]. Correspondence [SY14], corresponding [DWZ12].
Corrigendum [WZM12a]. cosmography [Pet11].
Cost [GI12, Man13, CZ14, Sar10a, YL11].
Countermeasure [MD12b].
Countermeasures [EWS14, PZPS15], counting [LLY+12a], Coupling [SMS14].
Cover [UUN13]. Covert [NSA15, LT13, LyWSZ10, SRB+12].
CRC/Taylor [Joh10]. credential [KKM+13, XMHD13]. Credentials [CG12a, SSW12].
Cropping [SR12b]. Cross [CLY14, DSB15, LHM+15, YGFL15, ZTSR12, der10].
Cross-Site [DSB15]. Cryptanalysis [BW12, Bor10, CWP12, DG12, Far14, GST13, Gor10, Hin10, IOM12, Jee13, Kha10, KN10, KWS+12, LH10b, LNM+11, MWZ12, NXB13, OTD10, PSOMPL13, SM10a, SM10b, Vua10, Wad10, WWY11, WWYY11, WSSO12, WY14, YMWS11, AP11, BKR11, Bull0a, Bul0b, Con12, Eisi0, Her10, KDH13, LLLK10, Nov10, RITF+11, SD10, SDM14, Sun11, SvT10, TSS11, WYL14, WWBC14, YJ12].
Cryptanalyzing [ZLW+12]. CryptDB [PRZB12].
Cryptography [Goo12, Pfi10, Rab10, SCPSN10a, SCPSN10b, WL11, BR+14, BGG+13].
Cryptoclub [Ayu12, BP06]. cryptograms [Shy15]. Cryptographer [Dun12b, Kla11, Pie10].
cryptographers [Goo12]. Cryptographic
[Abe12, AD12, AMVZ12, App15, BMP12, BCGK12, BGB12, BIKK14, BLS12, BDP11, BFCZ12, Bla12, BKL+13, BSJ15, CCK12, jCPB+12, CBL13, Cor14b, Des10a, DQFL12, DR11, FKS+13, FY11, FLW12, Gir15, GM11, GLR10, GG11, HN10, HHH+13].
Ana14, Ano11a, BTPLST15, BKV13, CDGC12, CDF+10, DFJ+10, DTZZ12, Gen10, HSM13, HMCK12, JHCC14, LSBN14, LT14b, LKX+14, MHKS14, Sch15b, TMK11, TKMZ13, WLH13, WZLW13, WS14, ZMM+10, ZWY+13, HLYS14, Sch15b].

Data-Compression [DA12].

Data-Minimizing [BCD+12].

Data-Oriented [NNAM10].

Decentralizing [LW11b]. Deciding [CLCZ10, Sch12c]. Decipher [Cor14b]. decision [RPG12]. Decisional [LZC14].

Defensive [PH10]. definition [LWL10a, YKC+12]. Definitions [GLW12, Mau12, KM14, KGO10, XWXC14]. Delay [LBR12, JLT+12, CXW13].

Delegatable [WZ11]. Delegated [MZH15, TMC15]. Delegation [FMTR12, SSW12, YZ12, YAM+15, ZWM14].

Delfs [Mur10]. Delivery [PSS+13, SPPC12].

Dependency [SGP+12]. deployed [MFH13, SY10]. DepSky [BCQ+13].

derived [ZMM+10]. description [PLCGS11]. Design [ABc12, ADD10, BKL+13, DR11, FSK10, HSA14, KW14, Lop12, MSL13a, NVR+14, RYF+13, Sch13, SAAB10, SZDL14, CZ14, Gor10, KHF10, MAK+12]. designated [HYWS11, RPSL10]. Designation [Che15].

designed [Goo12]. Designing [CDK+10, FLW12, MRT10, SR10]. Designs [BGK12, KDH15]. Detect [ASA15].

Detecting [BKBK14, HLW12, KW14, SH15, YSC+15, LWLW11]. Detection [DSB15, DF11, HDWH12, KU14, LGL+12, LC15, MKRM10, NDC+13, NSMS14, SBV14, SP15, SGS14, AOT13, BM13, HB13, KLC+10, Maz13, MHT+13, WYL13].

Detective [Che10]. Determine [FSWF11, StO12]. Determining [NN12].

Deterministic [MPRS12, NIS12, XXZ12, DTTZ12].

Deterring [WGJ10]. DEUCE [YNQ15].

Device [KLM+12, TYK+12, KKG14, Par12b, XHH12]. Devices [DLWW11, EGG+12, GPT12, GMSV14, HHH+13, HDWH12, SFE10, WT10b, CLP+13b, CTL12, Chi13a, FRT13, IB11, LKAT12, OYHSB14]. DFT [DDFR13].

DHA [AKY13]. DHA-256 [AKY13].

DHTs [YKG13]. dictionary [MBB11].

Diego [Ano10, Lin14b]. Difference [BS14, YTP11, JKH13].

Different
[BAB+13, Die12, JK13, Pet11].

Expectations [DY13]. Experience [AD12].
experiences [JAE10]. experimental
[DHW+13]. Experts [Stol12]. Explicit
[AQD12, FHS13]. exploitability [CFN+14].
exploitation [MAK+12, NCCG13].

exploration [RYF+13]. Exploring
[Cil11, FNP+15, WHC+15]. exponent
[SM10a]. exponentially [RK11].
exponents [SM10b]. Exposing
[OF12, YQH12, YSC+15]. Exposure
[BVS+13]. Extend [TMC15]. Extended
[DGP10, HZW+14, SH15, Yam12].

Extending [ZSW+12]. Extensible [YZ12].

F5 [LLY+12b]. Fa [FMS12a]. fabricating
[WW13]. Face [AQD12, XHH12]. Facial
[KRB12]. facilitate [Chien13a]. Factor
[HXC+11, LLC11, CLP+13b, DMWS12, HC12, Lit14, WW14]. Factoring
[APPVP15, LLML12, MM13].

Factorization
[Con12, Kuz11, YAM+15, Mes15]. Failing
[Cer14]. Fails [ABD+15]. Fair
[ALR13, CSV15, DSSM14]. Fairness
[ALR13, Ash14, GHKL11]. Fake [KU14].

Fallen [HCPLSB12]. False
[LLZ+12, CDGC12]. Families [KU12].

Family
[BMS12, DGIS12, FLS+10, FFL12, GNL12].

Fanin [SS12a]. Fast
[Bru12, CHS15, NR12, WHZ12, WQZ+13, FHH10a, KHMB13, MBB11]. Fast AD
[SMBA10]. Faster [CN12, Ant14]. Fault
[BMS12, GST12, JKP12, LGL+12, LGLL12, MKRM10, PHI12a, RZZ+15, SEY14, BBBBB13, PBCC14]. fault-resistant
[PBCC14]. FC [DDS12, Dan12]. FEAD
[ZWM14]. Feasibility [FKS+13, WHC+15].

Feature
[SGP+12, FTV+10, GJ13, MHT+13].
Features [YI14, ZTL15, FNP+15].

February [Ane10, DDS12, Dan12, Dun12b, Kla11, Lin14b]. FedCohesion [CCFM12].

Federated
[BS13b, CCFM12, CSL+14, JAS+11].

Federated [NB13]. Feedback
[HZ11, PYM+15, SKG14, ZH15, LWK11].

Feedback-Based
[PYM+15]. Feistel
[KDH15, Sasa12, SEHK12]. FHSD [SP15].

FI [YNR12a]. FI-BAF [YNR12a]. Fiat
[BDSG+13]. Fidelity [BCP14a]. Field
[ASA14, SS12a]. Fields
[ARH14, BGT14, BGT13, C15, LBOX12].

Filling
[BWR12]. Filtering
[LLZ+12, CDGC12]. Financial
[Ane11b, Ber12, DDS12, Dan12]. Fine
[CDD13, FSGW11]. Fine-Grained
[CDD13]. FinFET [ZJ11]. FinFET-Based
[ZJ11]. Finger
[KLY+12]. Fingerprint
[MRS14b, KKG14]. Fingerprinting
[ZS12, FLZ+12]. Finite
[BGT14, CHS15, BGT13, C15, LBOX12].

Finite-State-Machine
[CHS15]. First
[DR10, AB10a, BCV12, Kim11, LCKBJ12, Mic10a, Zet14]. Fischlin [ABGR13]. fit
[KGO10]. fix [HLV10]. Fixed
[Chen10, Lim11]. Flame [Goo12]. Flaw
[Moo12, SH15]. Flaws [DR11, HLV10].

Flexible
[LGWY12, BGG+13, ZL12]. flow
[KL13, LWY12, PPR+12, SRB+12]. Flows
[CDD13, HKB14, WYL13]. Foolproof
[FFL12]. Force [JR14], forensics
[AKM+11, QZ14, SM13]. forged [HREJ14].

forgerys [YQH12]. Forgery
[LC15, BM13, LWLW11]. forgotten
[And13]. form [DWZ12, Kre13]. Formal
[EWS14, HSA14, KGO10, PLGSI11, ZW15]

FPGA [BCE+10, CFZ+10, CHS15, GFBF12, HF14b, MM14a, MAK+12, ZLQ15].

FPGA/ASIC [CFZ+10], FPGAs [DGP10, SMOP15, VMV15]. fractal [KM11]. fractional [BW13, VM14]. Fragment [CHHW12, MCDB12, SSA13, CCLL11, PGLL10, WHZ12]. fragment [BPP10].

Fraud [Ber12]. Fred [Xie12]. Free [App13, TWZ+12, TTH15, ZLH+12, ATK11, SA12, YT11b]. Free-View [TWZ+12].

French [Ant14]. Frequency [LWCJ14, TC10, EA12, NLYZ12].

Frequency-Based [LWCJ14]. Friendly [SZDL14, ACM12, WOLS12]. FSR [MD12b].

FSR-Based [MD12b]. Fugue [AP11]. Full [ALR13, HEC+12, LW12, WLC12, BKR11, LC13]. Fully [AKP12, BV11, BV14, CN12, CFZ12, CNT12, GH1a, GH1b, GHS12, HLLC11, LSC12, MVV12, NCCG13, PB12, Vai11, WHC+15, ZZ12, GH13, ZXJ+14].

Fully-Homomorphic [GH11b].

Fully-Homomorphic-Encryption [CN12].

Fun [APPVP15]. Function [FLS+10, SGY11, WSSO12, AKY13, AP11, LK14, LP11, RS14, Sar11, TQL+14, WYW14]. Functional [BSW12, Boy13, GVV12, MVV12, Wat12, ZYT13, ZWTM15, ZWM14].

Functionalities [JR13]. Functions [ALR13, BBC+14, BIKK14, BKPK12, BK12a, DSSM14, DQFL12, FY11, NR12, Rja12, SMS14, Tan12a, YTP11, AY14a, BDP11, CG12b, CW12a, ESR14, Gen10, HRV10, Li10, WT13]. Fundamentals [Joh10]. Further [HCL+14, WHY+12]. Fus [FMS12a]. Future [BCE+12, BKBK14, Bon12, GCK12, Mon13, Ano13b, FPBG14, Mac12, MJS13]. Future-proof [Mon13]. Fuzzy [KRDH13, NC12, SH11, JXWW13, KHM13, MMSD13, SM11, SNM14].

Gateway [WZM12a, WZM12b, WL11].

Gateway-oriented [WZM12a, WZM12b].

GCD [KI11]. GCM [SKK10].

GCM/GMAC [SKK10]. GDL [MMZ12].

General [FJHJ12, GFBF12, HP12, PB12, YFF12, HQZH14, LWS10, WS12, YC11].

generalisation [LR15]. Generalised [Hes12]. Generalized [PC14, KL11, NC13, YMSH10]. Generated [ADD10, NN12, XXYYXX11, LW13b].

Generation [ABS+12, BCGH11, MR14a, MJGS12, NIS12, GMRT+15, KHM13, KKM+13, XW13].

Generator [ADD10, BK12a, CDK+10, MVV12, NNAM10, NWKF14, CFY+10, LGKY10, MRT10, PLSDLE10, SH11, SM11, XSWC10].

Generators [NIS12, PFS12, CP13, HRV10, MG15, Sti11, Zi10]. Generic
Guangdong [IEE11a]. Guaranteed [TBCB15]. Guess [FSWF11, Fok12].
Chi12, dCCSM+12, FHH10b, FZT14, FSX12b, FSX12c, FSX12a, GOPB12, GY13, GJJ15, HZC+12, HvS12, HSM13, HSM14, HYWS11, KKA14, KRB12, Kzu11, LMB12, LSL12a, LKAT12, LXJ14, LLC+15, LH1b, LSC12, LBR12, MBF+13, MJGS12, MR10, OdH12, Par12a, PSS+13, PWVT12, SS10a, SS12a, SAAB10, Sch11, SSPC12, SKGY14, TKR14, Tian15, TMGP13, Vlc12, Wan14, XZX12, YZX+12, YTM+14, Yon11, YCZY12, ZLH+12, ZTSR12, Ano13b, BOBI3, BMM12, BBGT12, CTHP13, DZ14, DWZ12, FA14b, GMRT+15, GPVCdBR012, HZC+14, HLR11, Hwa11, JZS+10, KKGK10, KKM+13, KL11, LKKL13, LK12, LXMW12, LCT+14, MGP10, MJS13, MM13, PLCGS11, RG10, SSY12, SE14, SR10, SSAF11, SSS11].

Known [DWWZ12, JLH12, SEHK12]. Known-Key [DWWZ12, SEHK12]. Kobitz [BJ10].
Korea [LH10a, LW11a]. KP [FJHJ12, HQZH14]. KP-ABE [FJHJ12, HQZH14]. Kryptografie [Blö12].
Kryptographie [Buc10]. Kuala [HWG10].

Languages [MX13, Wat12]. LANs [FLH13]. Lapin [HKL+12]. Laptop [GPT14].
Large [AN12, JLS12, JKHeY12, KCR11, KU12, MC11, SP13, EEAZ13, FXP12, LBOX12, SR10]. Large-Scale [JKHeY12, FXP12, SR10]. LARK [DS11].
Lattice [ADM12, Ano11b, BSJ15, EM12, FGM10, HPO+15, PG12]. Lattice-Based [ADM12, Ano11b, BSJ15, EM12, HPO+15, PG12].
look [AY14a]. look-up [AY14a]. Looks [KTA12]. lookup [LDDAM12].
lookup-table [LDDAM12]. loop [DWZ12].
losing [SLZ12]. Lossless [DA12, LZC+12b, GJ13, TTL10, WLH13].
Lossy [BKWP12, CW12a, DN12, ASO14].
love [FHM+12a]. Low [BCO13, BCG+12b, DJL+12, FHS13, GSTR13, GL12, LBR12, Man13, WT10b, ZJ11, C2Z14, Chi13a, LGKY10, LKAT12].
Low-Bandwidth [GST13].
Low-complexity [DJL+12]. Low-Cost [GI12, Man13].
Low-Distortion [FHS13].
low-end [Chi13a]. Low-Latency [BCG+12b]. Low-Power [WT10b]. Lower [LJ15, Sha10, Shp03].
lp231 [LK14]. LPN [HKL+12]. LPSNR [LP12]. LR [YZ12, ZWM14].
LR-FEAD [ZWM14]. LR-UESDE [YZ12]. LTE [CLM+12, LLLS13, TM12].
LUT [HF14b]. Luther [ABJ13].
LWE [BV11]. LZZS [CFY12].
magic [PHN+12]. main [CS11]. Make [Ayu12, BP06].
Making [Gel13, LA10]. Malaysia [HWG10].
Malicious [AAE+14, BK12b, WTT12]. malleability [KTT12]. Malleable [CKLM13, MSas12, CG14, FMNV14, LP11, OOR+14, Pas13a]. Mallory [FHM+12]. malware [Goo12].
Mapping [CBL13, MM14a]. Mappings [MC11]. MapReduce [LJLC12]. maps [BAAS13]. March [Ano10, Cra12, DDS12, Dan12, Dun12b, IEE11a, Pie10, Sah13, WZM12a].
Masking [HF14b, PYM+13]. Mass [BPR14a, BPR14b]. Masses [Ano15b].
mean [TTL10]. Means [KRDH13, AMHJ10]. Measure [DDD14]. Measure-independent [DDD14].
Multiple-Parameter [NDC‡13].
Multiple-Precision [HZSL05, MN14].
Multiple-Secret [SC10]. Multiplication
[AK14, SK12b, YTS12, SKH15, SF12].
Multiplicative [KHHH14]. Multi-receiver
[FHH05b]. multisecret [FGMP12].
Multitone [GL10]. multiwatermarking
[W12]. mutiwavelet [PWW10]. Munich
[Wat10]. musical [Ana14]. Mutt [Ran14].
Mutual
[GI12, GM14, SBS‡12, WT16b, Cho14, CL11,
FHH10a, Far14, HDPC13, IB11, XMHD13].
MVP [CD12]. My [GPT14].
Name [YCM‡13]. Names [ABJ13].
National [ABJ13]. nature [KL13]. Naval
[Don14]. Nazis [Hea15]. NDSS [Ano10].
nearest [LVRY10]. nearest-neighbor
[LVRY10]. necessary [TD14]. needs
[Sch12b]. Negligible [DF11]. neighbor
[LVRY10]. Neighborhood [DA10].
[ZMM‡10]. nested [FHH10a]. Net [LHF12].
Network
[Ano10, CJ13, CLH13, Hay13, HDWH12,
LCL15, LTIW11, MJGS12, NNA10,
NRZQ15, She14, TLW12, VKC15, YZLC12,
YSJL14, AKM‡11, Ano11a, AZF‡12, CL11,
FPBG14, HWG10, HB13, HKB14, JZS‡10,
LH11a, LKKL13, MZA‡13, MIJS13, NDNR13,
Sta11a, WYL13, WS14, YLS12, Ste15].
network-based [YLS12]. Network-Coded
[She14]. Networking
[LCK11, ZHL15, Kim11]. Networks
[BN14, CS14, DS11, FMS12b, HZC‡12,
HBCC13, HK14, KH10, LLC11, LL15,
LHM‡15, LZCK14, IWC14, LLZ‡12,
NSA15, NDR‡14, OO12, OKG‡12,
PYM‡15, PCPK14, RWLL14, SWYP12,
She14, Smit11b, SL11, WLY‡15, XHC‡12,
ZC13, ZW15, Zha15, ZLDD12, ZSA12,
ASO14, ADF12, BDK11, CDGC12, CLM‡12,
CLSW12, CL11, DCS12, DK12, DLN13,
EEAZ13, FA14b, HGWW11, HZC‡14,
One-Sided [HP14]. One-Time [NA10a, DCAT12, BM15, FHH10a, LWI13b, LML+13].
One-Time-Password [FD11]. One-Way [DSMM14, Mat14, HRV10, LP11, RK11].
Onion [KZG10]. Online [SKGY14, ZHL15, CCG10, LKAT12].
online/offline [LKAT12]. open [BB10, YNR12b, YLW13, Bul10a, Sar11].
open-source [ABF+14, Pow14, ZWQ+11].
Opening [LZC12a, LZC14]. Openings [SP13]. openness [Bia12].
OpenPGP [MBB11]. OpenStack [CSL+14]. Operating [KMP+11, CDA14].
Optimally [DSMM14, GT12]. Optimally-Fair [DSMM14]. Optimising [EVP10].
optimization [FLZ+12, GCSAddP11, KHF10, PTK14, RYF+13]. Optimized [MBF+13, MBR15].
Oracle [HKT11]. Oracles [FZT14, FSXi2a, YS12, YLA+13, LLY15, RG10, SYL13, WWYY11].
Order [KS12, LWKP12, PRC12, YKKL12, ZDL12, ZSW+12, AYK13, LW13a, LWKP14, YL11].
Order-Preserving [KS12, YKKL12, YL11]. Organization [RSGG15]. Orientated [TJZF12]. Oriented [NNAM10, RSGG15, WW12, WZM12a, WZM12b].
Outsourcing [DR12, LJLC12, LHL+14]. Outwitted [Car11]. Overcoming [BKKV10, DY13]. Overhead
[CCW+10, GHS12, ZJ11]. Overlay [CHS15, MJS13]. overview [BDP+12].
Ownership [FMTR12, RR11, HWYW14]. Oxford [Che11].

Pairing-Based [Bon12, KZG10, LGPRH14, YTS12, Con12]. pairing-free [YT11b]. Pairings
Pan [GOPB12]. Pan-European [GOPB12]. paper [SK14]. Papers
[LW13a, XW13, DDS12, Dan12, MV12, BYL10, JY14, LH10a, vDKS11]. Paradigm
[ABGR13, BSV12, Mau12, MP12, WQZ+13]. Parallel [CGB+10, LB13, MDCB12, MC11, SMDS11, YE12, MRT10, RG10, WWYZ11].
Parameter [NDC+13]. parametric
[Bul10a]. Paranoia [Cor14a]. Park [Ano11c, Bri11, Cop10, McK10, McK11, Pea11, Sni11a]. part [VM14]. Partial
[GFBF12, LG12, SGS14, WDDW12, Bax14]. Partially [KB10]. participants
Party [Ash14, HL10b, HP14, JR13, KMO14, NSMS14, GVW12, LyWSZ10, LML+13, Tso13, TKHK14, XCL13, YC12, YZZ+14, GHKL11]. Passau [GLIC10]. PASSERINE
[Saa12a]. passive
[BM13, LWLW11, MK12a]. passport [LZJX10]. Password
[BRT12, CLY14, FD11, HCL+14, Lop15, RS11, SD12, Shi11, WgMW12, YLW13, ABK13, CTL12, DSCS12, FA14a, HCC10, LWS10, LNKL13, MM12, Tso13, TKHK14, WZM12a, WZM12b, YC12].
Password-Authenticated
[HCL+14, LWS10, WZM12a, WZM12b].
Password-Based [BRT12, CLY14, WgMW12, DSCS12, FA14a, TKHK14].

Permutations [CGB+10]. Peaks [TC10].

Pecherskii [Kuz11]. peer [LLYO6, NCCG13, ZWY13]. peer-to-peer [NCCG13, ZWY13]. [Ran10, Ran14].

Stateful [NTY12]. Subscribe [TKR14].

Performance [Alo12, AB15, CGL12, CCG10, DBPS12, EGG+12, ESR14, FFPBG14, GLG12, GCS13, HKL14, LCK11, MHC12, SKY12, TPKT12, WDDW12, Xio12, ZLDD12, MS13c]. periodic [KPS10]. periodical [CLSW12]. permutation [GMSW14, LK14]. mutation-based [LK14].

Perspective [RSGG15, JW14, Suc12, ZWT13].

Perspectives [SPM+13]. Pervasive [BGC+12b, Tan12b]. Phase [ZWT13].

Phase-change [ZWT13]. Phone [SAA12b]. photo [OF12]. Photographic [YSC15].

photos [Pow14]. Phrases [WBC10].

Plaintext [BM15, JHLH12, MSas12].

Plaintexts [YKKL12]. Plane [YLL12].

Platform [YE12, ABF+14, NCCG13].

Platforms [HTZR12, SOG15, LT14b].

pollution [NDNR13]. Polylog [GHS12].

Polynomial [Ano11b, BGTJ14, NKF14, WSSO12, BGJT13, Bul10a, Bul10a].

Polynomial-Advantage [WSSO12].

Polynomials [CMLRHS13, SS12b, TWZ11, LPdS10].

Post [ZCC12, Sen10, Yan11].

Potential [Cil11, ZW15]. Power [ARP12, HHR11, MMP14, MD12b, SDM12, TQL14, WT10b, YAM15, ZH15, ZJ11].
Propagating [WWC+11, YZLC12].
Properties [CCK12, DQFL12, FY11, JR13, KU12, Sch12c, CLCZ10, WT13]. Property [HEC+12, PR12, Rja12]. Proportions [Ber12]. proposed [Bax14]. protect [BVIB12, CDF+10, dCCSM+12].
Protecting [BCP14a, CDA14]. Protection [CDD13, GST12, Lop12, RR11, SEY14, SJ12, HLYS14, KKM+13, IVRY10, TLL13, YWT+12]. protection-key [HLYS14].
Protocol [BL12, BC14, BSSV12, FLH13, FMTR12, GI12, HvS12, HC12, HL10a, HCPLSB12, HCEP12+12, HKL+12, KMO14, LNZ+13, LCCJ13, LNXY15, MR10, PSS+13, SBS+12, TYK+12, WT10b, YS12, YWZ+12, XZX+11, AKG13, BGAD12, CCSV11, EA12, FA14b, GMSW14, HL14, Kim11, LLLS13, LDDAM12, LKKL13, LSW0, LXMW12, LY14, LML+13, NLYZ12, OHJ10, Par12b, SSS11, SSPL+13, Tso13, TKKH14, WZM12a, WZM12b, WT10a, WTT12, XCL13, YC12, YWZ+14, YMM13, ZWQ+11, ZG10, ZK11, BOB13, LFCCGCR14, Ste15].
Protocols [AP13, BMP12, CCK12, Con10, Fra15, GRL12, GM11, GLR10, HLLC11, HL10b, MT12, NYR+14, NMS14, SBS+12, Sch12c, SOF12, TM12, Xio12, ACM12, CR10, CLCZ10, FTV+10, GBMN11, GLR13, HPDC13, HST14, KSU13, LLY06, LKKL13, MN10, Nos11, Nos14, SD10, YSL+10].
Provable [BKL12, YSMS10, ZK11, FA14a, HRS13, LH11, WB12, XCL13].
Providing [BKL12, YSMS10, ZK11, FA14a, HRS13, LH11, WB12, XCL13].
Provable [BCGAPM12, BCM12, BHJP14, FHH10a, LH11a, WMS+12, XJWW13, YC12, YWZ+14, ZG10, ABB13, XXW14].
Principle [An10a].
Provided [KS12].
Provided [Sch15a]. providers [BK12b, YWK10].
Providing [DLN13, HTWZ12].
Proving [Sar14].
Proximity [IW14].
Py-Family [DGIS12]. pyramid [MHT+13].

region-duplication [LWLW11]. Regions [AQD12], register [LWK11]. Registers [ZH15]. Regular [Wat12], regulating [DFJ+10], regulatory [BP10], regulatory-compliant [BP10]. Rekeying [DT13, CLSW12, DS11]. Related [Cil11, CMA14, DGLS12, Pud12, WLC12, MNP12].

Robust

EWS14, GPT14, KOP12, NDC+13, PRC12, SR12a, Vua10, BVIB12, DJL+12, MFH13.

Side-Channel
[CBL13, EWS14, GPT14, KOP12, NDC+13, PRC12, DMWS12, BVIB12, MFH13].

Sign-On [LL15, MEFO12, SPM+13].

Signature [Ano13a, ABF12, ASS15, BHG12, FGM10, GJJ15, GMSV14, HPO+15, LTH+15, LGPRH14, MNN12, NXB13, PH12b, TTH15, WZXL12, XGLM14, YMW11, YLA+13, ZJ14, ZHL+12, CLS12, CC10, DZ14, DNN13, HYWS11, Hwa11, JZS+10, Nos14, RSM10, SL10, YLS12, YKC+12, ZLY10].

signature-based [DLN13].

Signcryption [CMA14, DYZ10, FZT13, FTZ14, LSL12a, EZ15, HS11, KL11, LK12, LST12, LKT12, YM110]. signer [Hwa11].

Signing [YAM+15].

Simple [CZF12, Ros11, Sar10b, TDTD13, ZH15, Zim10, CLM+12].

Simplified [PS12].

simulation [MS13a]. simulations [Ana14].

Simultaneous [YWZ+12].

Single [ABK13, LL15, MEFO12, Sas12, SPM+13].

Single-SP [Sas12].

Singular [LS12b, BWA13].

sins [HLV10].

SIP [KKGK10].

Site [DSB15, SS10b].

Size [CJ13, CSW12, EAA12, LCLL15, MTY11, AHW+12, LCM+14, PPTT15].

Size-Constrained [EAA12].

Skein [FLS+10, KN10].

Skin [AQD12].

skyline [BK13].

Slantlet [TK14].

Slide [IOM12, LC13].

SLMAP [HCETPL+12].

Slow [SMi11b].

Small [BGJT14, BKLS12, BB10, CJ13, LCLL15, BGJT13, Jou13].

Smart [BSJ15, HCL+14, LA10, PDT12, WGM12, WGM12, CHS11, CHJ13, HCC10, LHI0c, LNM+11, LXM12, LNL13, MM12, YZZ+14, YSL+10, Cho10, GLIC10, SD12].

Smart-Card-Based [HCL+14].

Smartphones [Cor14b].

Smooth [XYXY11, YCI11, ZBR11].

SMS [PSdO+13].

SMART [PS12].

SMSCrypto [PSdO+13].

Snowden [Fox14].

Social [KTA12, NSA15, NRZQ15, FMY+15, SKGY14, WLY+15, ZW15, Zha15, ZHL15, BDK11].

Society [Sch15a, Sch12b].

Socio-Rational [S12].

Softw [WZ12].

Software [EWS14, LRVW14, ADB+14, CFH+13, GLJ+12, Hly10, KHF10, LBOX12, SF12, YWT+12].

Solom [CGB+10].

Solution [Fra15, KAM13, NA10b, Cor14a].

solutions [KAS15, WW14].

Solved [IBM13a].

Solving [BB10, Bul10a].

Some [AD12, Ber12, Dur15, LWL10b].

Song [Cou12].

Sood [MWZ12].

Sound [COP14, LSR13, Sav15].

Source [RWLL14, ADB+14, PX13, Pow14].

sources [SSY12].

South [BL10, LW11a].

SP [Sas12, SEHK12].

Space [BWR12, BKL+13, NRY+14, RYF+13].

Space-Filling [BWR12].

Spaces [SH15].

Spanish [Pet11].

Sparse [BBC+13].

SpartanRPC [CS14].

Spatial [AV12, CZF12, PDM12, CW14b, NZL+15].

Spatiotemporal [DIMT12].

Speaker [PPRT12].

Special [Ano13b, AB10b, LW13a, XW13].

Specific [BDFK12, KME+12]. specification [SD10].

Specifications [BMP12].

Spectrum [KD12a, TWZ+12, LW12, MMD13].

Spectrum-Based [TWZ+12].

Speed [GL12, HZ11, BDL+11, KLI3].

Speeding [RVRS12].

SPEKS [Che15].

Splicing [YSC+15].

Spline [Tan12a].

Split [CG14, XZY+12].

Split-State [CG14, XZY+12].

Splittable [CP13].

Spoken [WBC+10].

Sponge [BDP11].

SPONGENT [BKM+13].

spongy [RS14].

Spoof [SP15].

Spread [KD12a, TWZ+12, LW12, MMD13].

spreadsheets [LT13].

Springer
[Mei10, Mur10]. Springer-Verlag [Mei10].

[YS14, Lit14, Ran10, der10]. SSL

[BJR+14, Dav11, FHM+12, GJ+12, HREJ14, NH+14, PP11]. SSL/TLS

ST-Numbering [MNS11]. Standard

[Azo12, Azo13a, App13, BCM12, BV11, BV14, GJ15, MVR12, SZS14, TCL15, WWH12, Yon12, ZC13, Kim11, LIT12, WZM12a, WZM12b, WWBC14, YC12, MKRM10]. Standardization [TRD11].

standards [DHW+13, NIS13]. State

[BVS+13, CG14, CL+13, CHS15, Dew11, FHR14, ZXS+12]. Stateful

[BVS+13, VSR12]. Stateless

[GM11, NTV12, VDO14, DCAT12]. Stateless/Stateful [NTY12]. statement [NIS13]. static [TLMM13]. Station

[Smi11a]. stationary [ZLD12]. Statistical

[Bro11, DBPS12, HZ11, OR+14, SP13, Sim15, Böhl0]. Statistical-Attack [SP13].

Statutory [PH12b]. Stealing [RWZ12].

Stealthy [BRPB13]. Steering [HR13].

Steganalysis [DA12, Fri12, JHHN12, KD12b, LC15, SGP+12, Tani12a, YLL+12, YI14, Böh10, LSQ11, Sch12a].

Steganographic [DA10, LLC10, CAC14]. Steganography

[BCG12a, FMS12b, Fri10a, Fri12, HZW+14, Jio10, LLY+12b, PDMR12, Pan10, SK12a, SR12b, TJZF12, ZSA12, AOT13, BDK11, BHdFR12, EEAZ13, GKK11, LyWSZ10, LRW13, LWW+10, Maz13, PHN+12, SI12, WKH11, WOLS12, ZMS14]. Stego

[YLL+12]. Stego-Image [YLL+12].

Stellenbosch [BL10]. step [AKY13].

Steven [Sch15a]. Stopping [Sav13a].

StopWatch [LGR14]. Storage

[BCQ+13, CTT+14, GLG12, HSM14, Küp15, LCK11, LWCJ14, ZDL12, AY14a, BP10, CFZ+10, CDF+10, FH13, HSM13, LBOX12, Sar10a, WS13]. Stored [RSN14]. Storing

[DLW11]. storm [ACM12]. Story

[Cer14, Hein15, Pea11, Pet11]. Strand

[SH15]. strange [Azc11]. Strangeness

[RR12]. Strategic [Sch12c]. Strategies

[DSSDW14, TJZF12, YCM+13, AZF+12]. Strategy

[NRZQ15, FL+12]. Stratix

[SMOP15, SMOP15]. Stream

[ABS+12, BMS12, DG12, DGS12, GCS+13, HZ11, IOM12, Kla10, MD12b, MHC12, NN12, WHN+12, ZH15, Die12, KM10a, LW11, LW13b, MRT10, OCGD11, RS14]. Streaming [ZSA12, ZC12]. Streams

[PCDG14, HM10, PYP10]. Street

[Gli12, KGP12]. Street-Level

[Gli12, KGP12]. Strengthen [BL12].

Stribog [AY14b]. strikes [Ran10]. Strong

[ADD10, KFOS12, PYM+15, SAA12b, Yon12, HYWS11, OYHSB14]. stronger [RK11]. Strongly [KW14, YS12].

structural [BDK11]. Structure

[HP12, LMHH14, LJ15, MKRM10, WYCF14, LLY12, ZLW+12]. Structure-Independent [MKRM10].

Structured [PMZ12]. Structures

[GGT11, HHH+13, LHKR10, PB12, DDFR13, MHKS14, Shy15, WS12]. Studies [PP10a]. Study

[STMC11, CCG10, EBFK13, VGN14]. Stuxnet [Zet14]. Style [GHPS12].

[BS14, RP12, ZK11]. subspace [ZWM14].

Substitution [DA10]. substructure [MRT10]. Succinct [BC13, CKLM13].

sufficient [TD14]. suitable [Joe13]. Sums

[SS12b]. sun [Cer15]. support

[CZ14, JAS+11, PW10, TTL10, VCK+12, ZMM+10, ZBR11]. Supporting

[FMTR12, HCDM12]. surfaces [CDLY14].

Surprises [Bow11]. Suppressed

[SFK12].

Third-Round [jCPB+12]. Thirteen [AP13]. thou [BDK11]. threat [Ven14]. Threats [LJS+14]. Three [CZ15, HXC+11, LZC+12b, Shi11, YKNS12, LML+13, Tso13, TJKH14, XCL13, YC12, YZZ+14].

Three-Dimensional [LZC+12b]. Three-Factor [HXC+11]. three-party [LML+13, Tso13, TJKH14, XCL13, YC12, YZZ+14]. Threshold [CT11b, Ci11, FGM10, GLW13, LWL10b, Sta12, WYCF14, YFF12, YLA+13, ZCL+12, DZ14, FGMP12, HF14a, Shy15, TD14, ZJX+14].

Tight [LPS12]. Time [FD11, KME+12, NA10a, Nov10, Ste15, WLZL12, YE12, AY14a, BM15, DCA12, FHH10a, LW13b, LML+13, MK11].

Top-Fanin [SS12a]. Top-Secret [SS10b].

Topics [SCPSN10a, SCPSN10b, AB10b, DUN12b, KIA11, Piek10]. Topology [HMK14]. Topology-Preserving [HMK14]. Tor [LLY+12a]. Toronto [MV12].

Trace [ABR12, WGT10]. Traceability [HCETPL+12, Chi13a]. traceback [LYW12, WYL13]. traces [MYYR13].

Tracing [PPS12b, MFH13, PPR+12]. Track [Dun12b, KIA11, Pie10]. Trade [BS14, SR10]. Trade-Offs [BS14, SR10]. Tradeoff [WDDW12]. Trading [TW12].

traffic [AZH11, FTV+10, PPR+12]. traffic-feature [FTV+10]. Training [HM12]. Traitor [PPS12b]. trajectory [LVRY10].

Transform [AN12, BCPV11, LSL12b, OWHS12, YWNW15, BW13, MO14, NES+14, PC14, TK14, YWPYWP13].

Transformation [CRE+12, FJHJ12, NXB13, tWmC12, GZHD12, HQZ14, PGLL10]. transmission [PSdO+13, WQZ+13]. Transparency [TJZF12]. Transparency-Orientated [TJZF12]. Transparent [CCW+10, XTK10].

Transport [RBHP15, TW14]. Trapping [BKPW12, CW12L, Mat14, RPSL10, CSZ+11, CW12a]. TREE [BS14, BW13].

Trends [BTPLST15].

trees [BTPLST15].

Triangular [AMVZ12]. Tricks [GY13]. trimmed [TTL10]. TRIMS [MGP10]. Triple [LW13b, MS12]. triple-base [MS12].

Truncated [KWS+12, WW12]. Trust [GK11, GMS14, KMP15]. True [LA10].

Trusted [EAA12, HTC+10, KUP13]. trustworthy [YZZ+14].

REFERENCES

White-Box [Mic10b]. who [Bat10, Car11, Hea15, Mck10, Mck11, Moo14, XTK10].

Widespread [HGWY11, HZC+14, HCCC11, HTC+10, HLYS14, ILMJC11, NDNR13, SA12, SZMK13, SKK10, TKHK14, Wan13, WW14, XCH14, XMH13, ZBR11, ZCLL14].

Wiring [HTZR12]. Wise [CG14, SSA13].

WISP [PPH12]. Without [ASS15, CCL+13, FZT14, NA10a, YLA+13, AZH11, BT12, BF11, CCW+10, FSX12a, GH11a, GST12, HDPC13, LLY15, LGWY12, RG10, SYL13, SLZ12, TAKS10, WWYY11, YS12].

Workshops [DDS12]. World [FKS+13, KM10c, Con12, G12+12, Goo12, LCKBJ12, Pet11, Sch15b, Zet14].

world-class [Goo12]. Worm [WWC+11].

Worst [BIKK14]. would [McG11]. Write [YNQ15]. Write-Efficient [YNQ15].

writing [LT14]. wrong [LHA+12]. WSN [DL12]. WSNs [ZYL+10]. Wu [LLLK10].

WW2 [Don14].

XOR [App13]. XTEA [CWP12, IS12].

XTS [Mar10]. xviii [Sch15a].

Zero [BW12, CLP13a, COP14, GJO+13, GOS12, IW14, MX13, MT12, OOR+14, Pan14, SJ12, Zet14, TLL13, WWBC14]. Zero-Correlation [BW12, WWBC14]. Zero-Knowledge [CLP13a, GOS12, IW14, MX13, MT12, Pan14]. Zero-Watermark [SJ12, TLL13]. ZIDS [NSMS14]. Zodiac [SDM10].

ZUC [WHN+12].

References

Arora:2012:ILM

Abdalla:2010:PCL

Atallah:2010:ATC

Anand:2015:ICL

Alleaume:2014:UQK

Almeida:2013:CCA

Arnold:2012:ICC

Adrian:2015:IFS

Abe:2010:ACA

Abe:2012:TBG
REFERENCES

10.1007/978-3-642-33272-2_1.

Arriaga:2012:JSS

Almeida:2014:COS

Aid:2013:DIO

Acar:2013:SP

Arapinis:2012:RET

ALMashrafi:2012:AIM

Applebaum:2010:PKC

ACM:2010:PAI

ACM:2011:PAI

Avoine:2012:PFS

Gildas Avoine, Xavier Carpent, and Benjamin Martin. Privacy-friendly synchronized ultralightweight authentication protocols in the storm. *Journal of Network and Computer Ap-

Aczel:2011:SWL

Aizatulin:2012:VCC

Anyanwu:2010:DCS

Ayday:2012:DAA

Adikari:2011:HBT

Abdalla:2012:LBH

REFERENCES

Attrapadung:2012:ABE

Applebaum:2014:HGA

Azarderakhsh:2014:NDP

Almulla:2013:CKE

Afanasyev:2011:PPN

Armknecht:2012:STH

Gora Adj, Alfred Menezes, Thomaz Oliveira, and Francisco Rodriguez-Henriquez. Weakness of \(F_{36509} \) for discrete logarithm cryptography. Report, University of Waterloo, Waterloo, ON,
Ahmadian:2010:PDS

Alvarez:2012:CAB

Albrecht:2012:SDL

Anawis:2014:ARR

Anderson:2013:MNF
Anonymous:2010:NDS

Anonymous:2011:AIS

Anonymous:2011:AXL

Anonymous:2011:MCB

Anonymous:2012:SHS

Anonymous:2013:DSS

Anonymous:2013:SIS

Anon:2015:BSU

Anonymous:2015:CEB

Anthes:2014:FTI

Andriotis:2013:JSD

Agarwal:2010:BRW

Aumasson:2011:CHF

Jean-Philippe Aumasson and Raphael C.-W. Phan. On the cryptanalysis of the hash function Fugue:

[G. Adj and F. Rodriguez-Henriquez. Square root computation over even ex-]
REFERENCES

Ambrose:2012:RII

Asharov:2014:TCC

Al-Sinani:2012:UCB

Ahmadi:2012:SKE

Ahmadi:2011:SKC

Ahmad:2014:RTN

Apavatjrut:2012:EEA

AlTawy:2014:IDR

Alshammari:2011:CET

Ayub:2012:BRB

Alavi:2014:RQE

REFERENCES

August 2014. CODEN ????. ISSN 2150-8097.

Behnia:2013:IEB

Blaner:2013:IPP

Brennan:2012:ASC

Berbecaru:2010:FSM

Barbay:2012:BRB

Batey:2010:DMW

REFERENCES

Baal:2010:CC

Bulygin:2010:OSS

Bennett:2014:QCP

Barenghi:2013:FIT

Baldi:2013:ULC
REFERENCES

Barak:2014:OEF

Beimel:2014:MLS

Boldi:2012:IUG

Bernstein:2011:PCI

Basin:2014:KYE

Bichsel:2012:DMA

Badrignans:2010:SSA

Balfanz:2012:FA

Buhrman:2014:PBQ

Bahi:2012:SCS

Borghoff:2012:PLL

Baelde:2012:TPR
David Baelde, Pierre Courtieu, David Gross-Amblard, and Christine Paulin-Mohring.

REFERENCES

REFERENCES

CODEN CMSVAN. ISSN 0360-0300 (print), 1557-7341 (electronic).

Barthe:2014:PRV

Battistello:2012:TBA

Beimel:2012:SSS

Bobbia:2010:ABM

Barthe:2012:CACb

REFERENCES

Barthe, Benjamin Grégoire, and César Kunz. Automation in computer-aided cryptography: Proofs.

Biggs:2008:CII \[Big08\] Norman Biggs. *Codes: An introduction to Information Communication and
REFERENCES

Beimel:2014:CCW

Brumley:2010:CAI

Bogdanov:2012:UTC

Brubaker:2014:UFA

Boldyreva:2012:NPG

Alexandra Boldyreva and Virendra Kumar. A new pseudorandom generator from collision-resistant hash functions. Report, School of Computer Science, Georgia Institute of Technology, Atlanta,
REFERENCES

[BKLS12] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, and Francois-Xavier Standaert. Key-alternating ci-

Bellare:2012:IBL

Bogdanov:2011:BCF

Bothe:2013:EPS

Bernstein:2010:PCA

Byun:2011:SMC

Jin Wook Byun and Dong Hoon Lee. On a security model of conjunctive keyword search over encrypted relational database. The Journal
Bai:2012:SSR

Bernstein:2012:HEC

Blanchette:2012:BPC

Blomer:2012:TKG

Bernstein:2014:HEC

Burmester:2011:LRA

REFERENCES

[Babamir:2014:AKP]

[BOB13] Ben-Othman:2013:IHN
Jalel Ben-Othman and

Böhme:2010:ASS

Boneh:2012:PBC

Borghoff:2010:CLC

Bowyer:2011:WSD

Boyen:2013:ABF

Beissinger:2006:CUM

Janet Beissinger and Vera Pless. The Cryptoclub: Using Mathematics to Make and Break Secret Codes. A.
Burns:2010:SCR

Bohli:2011:RAP

Brooke:2010:DCX

Bellare:2014:SSEa

Bellare:2014:SSEb

Brakerski:2014:VBB

Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via generic graded encoding. Lecture Notes in Computer Science, 8349: 1–25, 2014. CODEN LNCSD9. ISSN 0302-9743
REFERENCES

Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.

REFERENCES

Batina:2012:HEB

Broustis:2012:GAN

Boneh:2012:FEN

Blasco:2015:HDT

REFERENCES

[102x681] REFERENCES

[BVS+13] Joonsang Baek, Quang Hieu Vu, Abdulhadi Shoufan,

Bogdanov:2012:ZCL

Bhatnagar:2013:BIW

Bhatnagar:2013:SRI

Bhatnagar:2012:IVE

Bao:2010:ISC

Chadha:2012:A

Chou:2013:UGS

Chang:2011:SFW

Cho:2014:DGA

Chen:2011:EAA

REFERENCES

Chu:2014:KA

Chen:2010:ALD

Ciriani:2010:CFE

Criswell:2014:VGP

Cheng:2013:DVB

Cheng:2013:DVB

Ciriani:2010:CFE

Ciriani:2010:TPA

Cao:2012:ITM

Chari:2010:DSC

Costello:2014:CAS

Ceruzzi:2014:HFT

Cerf:2015:CTN
Vinton G. Cerf. Cerf's up: There is nothing new under the sun. *Communications of the Association for Computing Machinery*, 58(2):7, February 2015. CODEN CACMA2. ISSN 0001-0782
REFERENCES

Coull:2011:ACO

Cheng:2012:PAI

Chen:2010:NUP

Chandran:2014:PBC

Chan:2013:OCK

Chang:2013:MPQ

REFERENCES

(2011): CCI

[Che11]

Cheswick:2013:RP

[Che13]

Chen:2015:SSS

[Che15]

Chien:2012:IAM

[Chi12]

Chien:2013:CR

Hung-Yu Chien. Combining Rabin cryptosystem and error correction codes

[CHHW12]

[Chien:2012:SRF]

Patrick Cooke, Lu Hao, and Greg Stitt. Finite-state-machine overlay architectures for fast FPGA compilation and application portability. *ACM*

Chen:2013:ATK

Cilardo:2011:EPT

Cheng:2013:EHM

Cao:2014:SCI

Chase:2013:SMN

Chuang:2011:LMA

Comon-Lundh:2010:DSP

Chong:2013:ASG

Chen:2012:NCF

Chen:2013:TSE

Cao:2012:SRH

Canetti:2013:PCC

REFERENCES

Chen:2012:FAA

CNRS:2014:NAS

Coron:2012:PKC

Conitzer:2010:AP

Constantin:2012:RSN

networkworld.com/news/
2012/061912-researchers-
set-new-cryptanalysis-
world-260338.html.

Copeland:2010:CSB

[B. Jack Copeland, editor. *Colossus: the secrets
of Bletchley Park’s code-
breaking computers*.
Oxford University Press, Walton
0-19-284055-X (hardcover),
0-19-957814-1 (paperback).
xvi + 462 + 16 pp. LCCN
D810.C88 C66 2010.]

Chung:2014:RRS

[Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, and
Muthuramakrishnan Venk-
tasubramaniam. 4-
round resettably-sound [Cor14a]
zero knowledge. *Lecture
Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
http://link.springer.
com/chapter/10.1007/978-
3-642-54242-8_9/.]

Cordova:2014:EBS

[Tim Cordova. Encrypted [CP13]
backup solution: Home
Paranoia Edition. *Linux
3,??, January 2014. CO-
DEN LJJOFX. ISSN 1075-
3583 (print), 1938-3827
(electronic).

Corthesy:2014:SSD

[Sébastien Corthé. Smart-
phones set out to decipher
a cryptographic system. *Sci-
cientific Computing*, August
www.sciencetech.co.uk/news/2014/08/smartphones-
set-out-decipher-cryptographic-
system. The article de-
scribes use of thousands
of mobile phones to at-
tempt a parallel brute-
force attack on elliptic-
curve and RSA algorithms,
in a research project by Ra-
masany Gowthami and Ar-
jen Lenstra at the LACAL
laboratory at EPFL, Lau-
sanne, Switzerland.]

Coutinho:2012:RPT

[S. C. Coutinho. Review of *Primality Testing
and Integer Factorization in
Public Key Cryptogra-
phy* by Song Y. Yan. *ACM
SIGACT News*, 43(2):33–
35, June 2012. CODEN
SIGNDM. ISSN 0163-5700
(print), 1943-5827 (elec-
tronic).

Claessen:2013:SPN

[Koen Claessen and Michal H.
Palka. Splittable pseudo-
dorandom number genera-
tors using cryptographic
hashing. *ACM SIGPLAN
Notices*, 48(12):47–58, De-
REFERENCES

Chhabra:2011:NSN

Clark:2012:RLA

Chapin:2014:SRP

Chadwick:2014:AFI

Chen:2013:RWM

Chong:2015:SID
REFERENCES

REFERENCES

Chen:2012:FSD

Chen:2012:AIB

Chen:2012:IBE

Dharwadkar:2010:SSG

Djebbar:2012:ASB

Fatiha Djebbar and Beghdad Ayad. Audio steeganal-

Danezis:2012:FCDb

Davies:2011:IST

Diong:2012:DAU

Dacosta:2012:OTC

Cordeiro:2012:IMB

Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Gustavo Huff Mauch, Marinho Pilla Barcelos, and Luciano Paschoal Gaspary. Identity management based on adaptive puzzles to protect P2P systems from Sybil attacks. *Computer Networks*

REFERENCES

[DG12] Ding:2012:CLS

[DGIS12] Ding:2012:NRR

L. Ding, J. Guan, and
REFERENCES

Drimer:2010:DBP

Dodis:2010:CAC

Driessen:2013:ESA

Diem:2012:UES

Drosou:2012:SAH

Domnitser:2012:NMC

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity mitigation of cache side channel attacks. *ACM*
REFERENCES

Delfs:2002:ICP

Delfs:2007:ICP

Dolev:2012:ATC

Durumeric:2014:MH

Dodis:2012:MAR

Dunkelman:2012:MCE

Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The Even–Mansour

Dong:2012:UAS

Dong:2013:PRS

Demme:2012:SCV

David:2012:UCO

Donovan:2014:ATM

Donald:2014:ATM

REFERENCES

Duncan:2012:CAI

Dong:2012:NCV

Daemen:2010:FYA

Duong:2011:CWC

Dautrich:2012:SLU

delRey:2012:EDI

REFERENCES

Deng:2012:VIA

Dunkelman:2012:MEK

Dunkelman:2012:TCC

Durcheva:2015:SAI

David:2012:PRE

Dorn:2012:ECE

Dong:2012:KGD

Dong:2012:NDI

Deng:2014:CCC

Dodis:2013:OFE

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical study of cryptographic misuse in An-
REFERENCES

Embar:2014:PWO

Estebanez:2014:PMC

Engels:2012:HLA

Ebadi:2015:DPN

Eibach:2010:OGB

Enos:2015:IBS

Farash:2014:ECC

Farash:2014:SEI

Farash:2014:CIE

Fischlin:2012:PKC

Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors. *Public Key Cryptography — PKC 2012: 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt,*
REFERENCES

Ferretti:2014:DCI

Fuglerud:2011:SIA

Fehr:2010:QC

Felten:2013:LBA

Faugere:2010:CLR

Fleischmann:2012:MFA

REFERENCES

REFERENCES

[Fan:2013:CEM]

[Forler:2012:DAC]

[Feng:2012:CAO]

[FLZ+12] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous non-malleable codes. *Lecture Notes in Computer Sci-
REFERENCES

Feng:2012:USD

Fraczek:2012:MSI

Fernandez-Mir:2012:SRA

Ferreira:2015:LPA
See also [?].

Fokkink:2012:TCG

Fox:2013:RLQ
Margalit Fox. The Rid-
REFERENCES

REFERENCES

Fridrich:2012:MTS

Frauchiger:2013:TRR

Feng:2011:ICP

Fang:2012:CCS

Ferguson:2010:CED

Feng:2011:GDA

Xiutao Feng, Zhenqing Shi, Chuankun Wu, and Deng-guo Feng. On guess and determine analysis of Rabbit. International Journal of Foundations of Com-
REFERENCES

Fujioka:2012:SHI

Fadlullah:2010:DCA

Fuchsbeuer:2011:CSV

Fulton:2010:BRB

Ben Fulton. Book review: Introduction to Modern Cryptography, by Jonathan

Jia Fan, Yuliang Zheng, and Xiaohu Tang. A new

REFERENCES

Lubos Gaspar, Viktor Fischer, Lilian Bossuet, and Robert Fouquet. Secure extension of FPGA general purpose processors for symmetric key cryptography with partial reconfiguration capabilities. *ACM Transactions on Reconfig-

REFERENCES

Gentry:2012:RSB

Gentry:2012:FHE

Gilad:2014:PHI

Georgiev:2012:MDC

Gilbert:2010:ACE

Henri Gilbert, editor. Advances in cryptology — Eu-
REFERENCES

REFERENCES

Gotzfried:2014:MAT

Garcia-Morchon:2015:HCR

Guo:2011:ISS

Guo:2014:SAS

Gao:2014:URA

Gong:2012:KNF

http://link.springer.com/chapter/10.1007/978-3-642-25286-0_1.

Goodin:2012:CBS

Dan Goodin. Crypto breakthrough shows Flame was designed by world-class scientists: The spy malware achieved an attack unlike any cryptographers have seen before. Web document., June 7, 2012. URL http://arstechnica.com/security/2012/06/flame-cryptobreakthrough/.

Garcia:2012:ERP

Gorski:2010:CDS

Groth:2012:NTN

Grosch:2012:EJI

Genkin:2014:GYH

Daniel Genkin, Itamar Pippman, and Eran Tromer. Get your hands off my laptop: Physical side-channel...
key-extraction attacks on PCs. Report, Technion and Tel Aviv University, Tel Aviv, Israel, July 31, 2014. 25 pp. URL http://www.cs.tau.ac.il/~tromer/handsoff/.

Gonzalez-Pardo:2012:CID

Greengard:2011:MRM

Girlichs:2012:ICD

Genkin:2013:RKE

REFERENCES

Gazi:2012:EOS

Goodrich:2011:EAD

Grosse:2013:AS

Galindo:2014:LCL

Ghosh:2014:BBB

Gorbunov:2012:FEB

REFERENCES

Houmansadr:2013:BCN

He:2013:HEH

Hao:2012:SAM

Hwang:2010:RIB

Hsu:2011:NL

Hore:2012:IED
Hernandez-Castro:2012:MTA

Hernandez-Castro:2012:AFH

Huang:2014:FOS

Huang:2014:FOS

Heninger:2012:MYP

Heath:2015:HNS

Nick Heath. Hacking the
REFERENCES

Hwang:2012:ABA

Hermelin:2010:MLC

Herranz:2014:ABS

Hess:2012:GJC

Harn:2014:MTS

Hoang:2014:IMD

REFERENCES

(1936-7414 (electronic).

Heyse:2012:TOC

Han:2011:PEB

Hayashi:2013:AEI

Huber:2014:TPW

Haitner:2011:PRI

Hinarejos:2015:MES

M. Francisca Hinarejos, Andreu Pere Isern-Deyà, Josep-Lluís Ferrer-Gomila, and Magdalena Payeras-Capellà. MC-2D: an efficient and scalable multi-coupon scheme. *The Com-
REFERENCES

Hinek:2010:CRV

Hinkelmann:2011:CPA

Hur:2014:SDR

Houmansadr:2014:NBW

Heyse:2012:LEA

Heil:2014:APH

Holenstein:2011:ERO

Harn:2010:AGK

Haza
[y:2010:EST

Hsieh:2014:AMU

Hmood:2015:ACA

Haider Salim Hmood, Zhitaung Li, Hasan Khalaf Abdulwahid, and Yang Zhang. Adaptive caching approach...
REFERENCES

143

Hu:2012:VMS

Huang:2011:ISL

Huffmire:2010:SPR

Herranz:2011:RBS

REFERENCES

[Hohenberger:2012:DDQ]

[Huang:2014:SWC]

[Herzberg:2012:TJA]

[Hore:2012:SMR]

REFERENCES

Hoang:2012:ESB

Hirt:2014:BA

Harnik:2010:CIC

Hyla:2012:CBE

Hazay:2014:OSA

Halder:2010:WTR

REFERENCES

[146]

REFERENCES

Herranz:2013:SMS

Haitner:2010:EIC

Hwang:2011:CDA

Homma:2014:TFD

Han:2013:IBD

Han:2014:IBS

Han:2012:PPD
Jinguang Han, Willy Susilo, Yi Mu, and Jun Yan. Privacy-preserving decen-
REFERENCES

REFERENCES

Islam:2011:MDA

Ioannou:2014:PKC

Isobe:2012:SAL

Isobe:2012:SCL

Isobe:2012:SAL

Jie:2010:AAI

Jie:2011:RGA

Prins:2011:DCA

Jakobsson:2012:AWD

Chang:2012:TRR

Jeong:2013:CBC

Jo:2014:ODE

REFERENCES

REFERENCES

REFERENCES

Jou13

JR13

JT12

JW14
Ari Juels and Bonnie Wong. The interplay of neuroscience and cryptography: technical perspective. Communications of the Association for Computing Machinery, 57(5):
REFERENCES

109, May 2014. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Katz:2013:RIB

Karthigaikumar:2010:PPV

Kallel:2011:SMM

Kim:2011:SSE

Koz:2012:ASE

Kraetzer:2012:PCS

REFERENCES

Karakoc:2013:BCL

Karakoc:2015:AKA

Kikuchi:2012:SSN

Kramer:2010:FDC

Kim:2012:SLT

Kwon:2010:SEB

REFERENCES

Khazaei:2010:NBS

Kastner:2010:AOT

Kim:2014:MBM

Khalil-Hani:2013:BEB

Kai:2011:CIS

Kiayias:2011:TCC
REFERENCES

REFERENCES

162

REFERENCES

[KLC+10] Ko, Jeonggil; Hyun; Lim, Yin; Chen, Rváz; Musvaloiu-E, Andreas; Terzis, Gerald M.; Masson, Tia; Gao, Walt; Destler, Leo; Selavo, and Richard P. Dutton. MEDiSN: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems, 10(1): 11:1–11:??, August 2010. CODEN ??? ISSN 1539-9087.

Ayesha Kanwal, Rahat Masood, Muhammad Awais Shibli, and Rafia Mumtaz. Taxonomy for trust

Khovratovich:2010:RCA

Khovratovich:2010:RRA

Koblitz:2010:BRB

Kasper:2012:SCA

Kang:2012:AKM

Kiltz:2011:EAH

Kocabas:2012:CPB

[KPKS12]

Keskinarkaus:2010:IWD

[KPS10]

Krenn:2013:CCR

[KPW13]

Krantz:2012:EAM

[Kra12]

Kostinger:2012:SBL

[KRB12]

Kannan:2013:NQF

[KRDH13]

REFERENCES

Krenn:2013:AWI

King:2011:BBB

Kolesnikov:2012:LPP

Kim:2012:SSS

Klingler:2013:UPT

Kim:2012:SAH

REFERENCES

Karpovsky:2014:DSS

Koyama:2012:NTD

Kamal:2010:EIN

Kate:2010:PBO

Lu:2010:MSC

Lathey:2015:IEE

Lackey:2015:UHP

REFERENCES

Langley:2013:EDC

Launchbury:2012:TBC

Liu:2013:PAE

Luo:2012:ESI
Jianqiang Luo, Kevin D. Bowers, Alina Oprea, and Lihao Xu. Efficient software implementations of large finite fields GF(2^n) for secure storage applications. ACM Transactions on Storage, 8(1):2:1–2:??, February 2012. CODEN ????. ISSN 1553-3077 (print), 1553-3093 (electronic).

Lupu:2012:IBK

Lu:2013:CSA

Liu:2015:IAC
Qingzhong Liu and Zhongxue Chen. Improved approaches with calibrated neighboring joint density to steganalysis and seam-carved forgery detection

Liu:2013:IAG

Lathrop:2011:SPI

Lavington:2012:ATH

Li:2015:CEH

Liang:2014:CCS

Li:2012:FDM

Li:2012:LFA

Liu:2012:FV

Lopez-Garcia:2014:PBB

Li:2014:SCA

Liu:2012:LF

Lee:2010:ISC
REFERENCES

Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten Kleinjung, and Christophe

[Li:2012:BVS]

[Li:2011:ICA]

[LHHR10]

[Jin:2014:SOA]

[LHM14]
REFERENCES

[176]

cross-layer reputation com-
putation model in wire-
less networks. The Com-
puter Journal, 58(4):656–
667, April 2015. CODEN
CMPJA6. ISSN 0010-4620
(print), 1460-2067 (elec-
tronic). URL http://
comjnl.oxfordjournals.org/content/58/4/656.

[LHYZ12] Yan-Xiao Liu, Lein Harn,
Ching-Nung Yang, and
Yu-Qing Zhang. Efﬁ-
cient (n, t, n) secret shar-
ing schemes. The Jour-
nal of Systems and Soft-
ware, 85(6):1325–1332,
June 2012. CODEN JS-
SODM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0164121212000234.

[Li10] Mengdong Li. Preimage
awareness proofs of two
compression functions. In
Yang [Yan10], pages 660–
664. ISBN 1-4244-6942-
2. LCCN QA76.9.A25.
URL http://ieeexplore.
ieee.org/servlet/opac?pu
number=5680738.

on the average number of
RSA ﬁxed points. Theo-
retical Computer Science,
412(35):4729–4737, August
2011. CODEN TC-
SCDI. ISSN 0304-3975
(print), 1879-2294 (elec-
tronic).

[Lin14a] Pei-Yu Lin. Impercepti-
ble visible watermarking
based on postcamera his-
togram operation. The
Journal of Systems and
Software, 95(??):194–208,
September 2014. CODEN
JSSODM. ISSN 0164-1212
(print), 1873-1228 (elec-
tronic). URL http://
www.sciencedirect.com/
science/article/pii/S0164121214001071.

[Li14b] Yehuda Lindell, editor.
Theory of cryptography:
11th Theory of Crypto-
graphy Conference, TCC
2014, San Diego, CA,
USA, February 24–26,
2014 proceedings, volume
8349 of Lecture Notes in
Computer Science. Spring-
er-Verlag, Berlin, Ger-
many / Heidelberg, Ger-
many / London, UK / etc.,
2014. ISBN 3-642-
54241-7 (paperback), 3-
642-54242-5 (ebk.). ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
URL http://www.springerlink.
com/content/978-3-642-
54242-8.

[Lin15] Pei-Yu Lin. Double veriﬁ-

Litton:2014:TFA

Liu:2015:LBD

Li:2012:OEA

Laszka:2014:STC

Li:2012:BIB

Lee:2014:SPB

REFERENCES

Li:2012:IBO

Lev:2013:ABN

[LKAT12]

Lee:2015:TSS

[LKCLKL13]

Lee:2010:PMB

Lee:2011:TA

Li:2015:IBE

Li:2012:RIB

Lee:2006:DCK

Lai:2013:SAS

Lu:2012:IEC

Lee:2006:DCK

REFERENCES

REFERENCES

CODEN CGFODY. ISSN 0167-7055 (print), 1467-8659 (electronic).

Li:2011:NRA

Lv:2011:NTP

Li:2013:ESC

Liu:2015:SAB
Liu:2013:GPB

Lopriore:2012:EPP

Lopriore:2015:PCR

Ling:2012:SHS

Lee:2013:CCM

Le:2014:IMX

Lee:2014:NDH

Li:2015:FSC

Lysanskaya:2010:AEC

Lin:2011:CNS

[LTW11] Dongdai Lin, Gene Tsudik, and Xiaoyun Wang, ed-

Allison Lewko and Brent Waters. Decentralizing attribute-based encryp-
REFERENCES

187

[LWCJ14] Hongbo Liu, Hui Wang, Yingying Chen, and Day-
REFERENCES

Liu:2011:SBA

Liu:2012:HOM

Liu:2010:NDC

Liu:2010:SET

REFERENCES

http://link.springer.com/chapter/10.1007/978-3-642-27890-7_3/

Li:2011:NIW

Li:2014:IBD

Li:2014:EMK

Lai:2012:RHB

Li:2012:ESD

Luo:2014:ARP

Jia Ning Luo and Ming Hour Yang. An anonymous e-rental protocol based on ID-based cryptography and NFC. The Journal of
REFERENCES

Lu:2014:DAN

Lu:2014:DAN

Liao:2010:MPC

Liao:2010:MPC

Li:2013:SSS

Li:2013:SSS

Liu:2012:SOCa

Luo:2012:LVT

Luo:2012:LVT

Liu:2014:PKE

Liu:2014:PKE

Shengli Liu, Fangguo Zhang, and Kefei Chen. Public-key encryption scheme with selective opening chosen-ciphertext security

Liu:2014:CRA

Li:2010:PES

Li:2012:ESS

MacCormick:2012:NAC

Michail:2012:EHT

Malkin:2013:SCB

Mangard:2013:KSL

Martin:2010:XMA

Matsuda:2014:IBP

Maurer:2012:CCN

Mazurczyk:2013:VSD

Milo:2011:FGB

Malone:2013:MOD

Massolino:2015:OSC

Mukhopadhyay:2011:PEA

Madanayake:2012:BPS

McGrayne:2011:TWH

McKay:2010:SLB

Sinclair McKay. *The secret life of Bletchley Park: the history of the wartime codebreaking centre by the men and women who were there*. Aurum, London,
REFERENCES

REFERENCES

cl.cam.ac.uk/~sjm217/papers/oakland10chipbroken.pdf.

REFERENCES

Marmol:2010:TPA

Matsuda:2014:CCS

Meziani:2012:IPS

Miller:2014:ADS

Mou:2013:CBC

Micciancio:2010:FGC

REFERENCES

Michiels:2010:OWB

Martinez-Julia:2012:NIB

Martinez-Julia:2013:BSI

Mohanty:2011:RTP

Moessner:2012:SAS

Muller:2012:HPC

Malik:2012:AIC
Sana Ambreen Malik, Asifullah Khan, Mutawarra

Marconato:2013:VLC

Mancillas-Lopez:2010:RHI

Manzanares-Lopez:2012:ICU

Pilar Manzanares-Lopez, Josemari Malgosa-Sanahuja, and Juan Pedro Munoz-Gea. The importance

Madhusudhan:2012:DIB

Meshram:2013:IBC

Maity:2014:FIR

Mondal:2014:DSM

Moldovyan:2012:BBD

Mahmoody:2014:PPK

Maity:2013:CRS

Matsuo:2012:MAK

Meshram:2012:IBC

Mukhopadhyay:2014:EMP

Minier:2012:RK1

Mizuki:2011:ASN

Maimut:2012:LCR

Minamoto:2014:BDI

Mone:2013:FPE

Moore:2012:RFF

Moo:2014:DMW

Morad:2012:OEA

Minier:2012:EEC

Mironov:2012:IDP

Mukhamedov:2010:IEP

Maimut:2014:AET

Marasco:2014:SAS

Emanuela Marasco and Arun Ross. A survey on antispooﬁng schemes for

Micali:2014:CMS

Moghadam:2010:DRN

Mendel:2012:DAL

Maitra:2012:NAC

Maitra:2013:DSM

Maitra:2013:HEM

Subhashis Maitra and Amitabha Sinha. High efficiency MAC unit used in digital signal process-

Maitra:2013:HPM

Myers:2012:BCM

Marton:2010:RDC

Mosca:2013:QKD

Morozov:2012:ZKP

Malkin:2011:ECS

Tal Malkin, Isamu Teranishi, and Moti Yung. Ef-
References

K. Preetha Mathew, Sachin Vasant, Sridhar Venkatesan, and C. Pandu Rangan. An efficient IND-CCA2 secure variant of the Niederreiter encryption scheme in the standard model. Lecture

Ma:2012:CIS

[MWZ12] Chun-Guang Ma, Ding Wang, and Qi-Ming Zhang.

Manshaei:2013:GTM

Ma:2015:PKE

[NA10a] Naya Nagy and Selim G. Akl. One-time pads without prior encounter. Parallel Processing Letters,
REFERENCES

Nagy:2010:QCS

Naccache:2012:CST

Noureddine:2013:AMT

Naskar:2012:FIR

Naskar:2013:GTL

Naranjo:2013:FD
J. A. M. Naranjo, F. Cores, L. G. Casado, and F. Guirado. Fully distributed authentication with locality exploitation for the CoDiP2P peer-to-peer computing

Narasimhan:2013:HTD

Newell:2013:PCD

Naeem:2014:EIC

Niev negotel:2002:FLM

NIST:2012:RRN

REFERENCES

Special Publication 800-90, National Institute for Standards and Technology, Gaithersburg, MD 20899-8900, USA, 2012. URL http://csrc.nist.gov/publications/PubsSPs.html#800-90A.

[NLY15] NIST:2013:CSS

[NLYZ12] Ning:2012:DCA

REFERENCES

Salman Niksefat, Babak Sadeghiyan, Payman Mohassan, and Saeed Sadeghian. ZIDS: a privacy-preserving...

Nguyen:2012:LRS

Nguyen:2010:LAS

Nie:2013:CHB

Newell:2014:NCR

Niu:2015:NAS

Ben Niu, Xiaoyan Zhu, Qinghua Li, Jie Chen, and Hui Li. A novel attack to spatial cloaking schemes in location-based services. *Future Generation Com-
REFERENCES

Oliveira:2012:STA

Ohtake:2012:AAH

Orlandi:2014:SCN

Oppliger:2011:CC

Orejel:2014:E

Owczarek:2012:LPL

Okamoto:2012:AAH

Otmani:2010:CTM

Ohzeki:2012:NWM

Ortiz-Yepes:2014:BSA

Praba:2010:MAC

Pandey:2014:ACR

REFERENCES

REFERENCES

Pippal:2012:SVU

Pearson:2011:NWC

Persichetti:2013:SAH

Peterson:2011:SWS

Petrlic:2012:PRE

Pfleeger:2010:CJD

Marios Papas, Thomas Houit, Derek Nowrouzezahrai, Markus Gross, and Wojciech Jarosz. The magic lens: refractive steganography. *ACM Transactions*
REFERENCES

on Graphics, 31(6):186:–
186:??, November 2012.
CODEN ATGRDF. ISSN
0730-0301 (print), 1557-
7368 (electronic).

Pieprzyk:2010:TCC

Josef Pieprzyk, editor. Topics in cryptology —
CT-RSA 2010: the 10th cryptographers’ track at
the RSA conference 2010,
San Francisco, CA, USA,
March 1–5, 2010. Pro-
cceedings, volume 5985 of
Lecture notes in computer
science. Springer-Verlag,
Berlin, Germany / Heidel-
berg, Germany / London,
UK / etc., 2010. ISBN
3-642-11924-7 (softcover).
LCCN ???.

Pointcheval:2012:ACE

David Pointcheval and
Thomas Johansson, editors. Advances in Crypt-
tology — EUROCRYPT
2012: 31st Annual In-
ternational Conference on
the Theory and Applica-
tions of Cryptographic
Techniques, Cambridge,
UK, April 15–19. Proceed-
ings, volume 7237 of Lec-
ture Notes in Computer
Science. Springer-Verlag,
Berlin, Germany / Heidel-
berg, Germany / London,
UK / etc., 2012. COD-
DEN LNCS9. ISBN 3-
642-29010-8. ISSN 0302-
9743 (print), 1611-3349
(electronic). URL http://

Peter:2012:AHE

Andreas Peter, Max Kron-
berg, Wilke Trei, and Ste-
fan Katzenbeisser. Add-
itively homomorphic en-
cryption with a double de-
cryption mechanism, re-
visited. Lecture Notes in
Computer Science, 7483:
242–257, 2012. COD-
DEN LNCS9. ISSN
0302-9743 (print), 1611-
3349 (electronic). URL
http://link.springer.
com/chapter/10.1007/978-
3-642-33383-5_15/.

Perez:2011:FDS

Alejandro Pérez, Gabriel
López, Óscar Cánovas,
and Antonio F. Gómez-
Skarmeta. Formal descrip-
tion of the SWIFT iden-
tity management frame-
work. Future Generation
Computer Systems, 27(8):
1113–1123, October 2011.
CODEN FGSEVI. ISSN
0167-739X (print), 1872-
7115 (electronic).

Pang:2013:IMA

Liaojun Pang, Huixian Li,
Qingqi Pei, and Yu-
mín Wang. Improvement
on Meshram et al.’s ID-
based cryptographic mech-
anism. Information Pro-
cessing Letters, 113(19-
21):789–792, September/
Peris-Lopez:2010:CSP

Poh:2012:SEC

Poursakidis:2010:TPC

Powers:2014:OSCa

Paar:2010:UCT

Papadopoulos:2010:TRM

Park:2011:ACC

Pendl:2012:ECC

Pyun:2012:IBF

Pathak:2012:PPS

Phan:2012:DDB

Duong Hieu Phan, David Pointcheval, and Mario Streifer. Decentralized dynamic broadcast encryption. Lecture Notes in
REFERENCES

Phan:2012:MBT

Papadopoulos:2015:PAP

Pandey:2012:PPS

Piret:2012:PBC

Popa:2012:CPQ

Priemuth-Schmid:2012:ASV

Deike Priemuth-Schmid. Attacks on simplified ver-
REFERENCES

com/chapter/10.1007/978-3-642-25261-7_9/.

Pereira:2013:SLC

Picazo-Sanchez:2013:CRS

Park:2013:PPM

Papamanthou:2013:SCC

Papakostas:2014:MBL

REFERENCES

Pudovkina:2012:RKA

[Pei2013:ARW]

[PWLL13]

Pongaliur:2013:SNS

[PWVT12]

[Poller:2012:EIC]

[Philippaerts:2013:CMC]

REFERENCES

Pei:2015:SWT

Papadopoulos:2010:CAR

Patsakis:2015:PSM

Qian:2014:IAF

Rabin:2010:ACC

Rankin:2010:HLH

Rankin:2014:HEY

[Ran14] Kyle Rankin. Hack and /: encrypt your dog (Mutt

Regev:2011:QOW

Rahaman:2010:STB

Rose:2011:KBT

Rao:2012:SSA

Rifa-Pous:2012:AHD

Rhee:2010:TSS

Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. Trapdoor security in a searchable public-key encryption scheme with a designated tester. The Journal of Sys-

See also news story [Ano15a].

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Authors</th>
</tr>
</thead>
</table>

[Sar12] Neyire Deniz Sarier. Security notions of biometric remote authenti-

REFERENCES

REFERENCES

Seberry:2010:CTAa

Seberry:2010:CTAb

Saleh:2010:GTF

Shen:2012:PAS

Shakiba:2010:ID

Souissi:2012:OCP

[YSC12] Youssef Souissi, Nicolas Debande, Sami Mekki, Sylvain Guilley, and Ali

Maalaoui.

[2012:MK]

Shakiba:2014:CCI

[SDM14]

Seo:2014:RHI

[SE14]

Sendrier:2010:PQC

Sasaki:2012:IKK

[SEHK12]

Savas:2014:SMQ
Su:2012:IIN

Shabtai:2010:SAP

Shankar:2012:BDF

Sipiran:2014:SCA
Shaolan:2011:EDE

Seyedzadeh:2011:IEA

Song:2015:ADT

Shallit:2010:BRB

Shen:2014:LES

Shim:2011:SAT

REFERENCES

Shparlinski:2003:CAA

Shparlinski:2010:NWP

Suoranta:2012:ASM

Shyu:2015:VCR

Satir:2012:CBT

Siad:2012:NAP
Amar Siad. A new approach for private searches on public-key encrypted data. Lecture Notes in Computer Science, 7394:160–173, 2012. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-

Seo:2015:AEC

Szalachowski:2010:CCG

Scheidat:2012:STT

Schmitz:2012:NAC

Srivatsa:2011:ESA

Schultz:2010:MMP
[SL10] David Schultz, Barbara Liskov, and Moses Liskov. MPSS: Mobile Proactive

References

Seyedzadeh:2014:RCI

Suriadi:2012:PCV

Shiaeles:2015:FI

Schaumont:2015:IEP

Serwadda:2013:ELK

Sun:2013:IUP

San-Tsai Sun, Eric Pospisil, Ildar Muslukhov, Nuray

Shaikh:2010:CTO

Schilling:2012:ATU

Sur:2012:SSU

Stefan:2012:ACT

Saxena:2010:SGC

REFERENCES

CODEN ???? ISSN 0219-4678.

Smith:2011:SMC

Shrivastava:2012:UIE

Sahai:2012:DCC

Sood:2011:SDI

Strydis:2013:SAP
REFERENCES

REFERENCES

Stipcevic:2011:QRN

Stolte:2012:EDA

Suciu:2012:SED

Sung:2011:DCE

Svozil:2014:NCC

Svaba:2010:PKC

Shoufan:2010:NCA

A. Shoufan, T. Wink, H. G. Molter, S. A. Huss, and

Sahillioglu:2014:SCM

Seo:2013:PIC

Jae Woo Seo, Dae Hyun Yum, and Pil Joong Lee. Proxy-invisible CCA-secure type-based proxy re-encryption without rand...

REFERENCES

Ferucio Laurentiu Tiplea and Constantin Catalin Dragan. A necessary and sufficient condition for the asymptotic idealness of the GRS threshold secret sharing scheme. Information...
REFERENCES

Tao:2013:SMS

Terai:2011:BRB

Tamir Tassa and Ehud Gudes. Secure distributed computation of anonymized views of shared databases. ACM Trans-

Tassa:2012:SDC

Tian:2012:TOE

Tian:2015:IBP

Tian:2012:TOE

Rasha Thabit and Bee Ee Khoo. Robust reversible watermarking scheme using Slantlet transform matrix. The Journal of Systems and Software, 88(??):74–86, Febru-

Thabit:2014:RRW

Tu:2014:EPB

[TKHK14] Hang Tu, Neeraj Kumar, Debiao He, and Jongsung Kim. An efficient password-based
three-party authenticated multiple key exchange protocol for wireless mobile networks. The Journal
of Supercomputing, 70(1): 224–235, October 2014. CODEN JOSUED. ISSN 0920-8542 (print), 1573-

Tani:2012:EQA

???? ISSN 1942-3454 (print), 1942-3462 (electronic).

Tu:2013:PAQ

[TKMZ13] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. Processing analytical
queries over encrypted data. Proceedings of the VLDB Endowment, 6(5): 289–300, March 2013. CO-
DEN ????. ISSN 2150-8097.

Tariq:2014:SBL

Tsaur:2012:ESM

[TLL12] Woei-Jiunn Tsaur, Jia-Hong Li, and Wei-Bin Lee. An efficient and secure multi-server authentica-
SODM. ISSN 0164-1212 (print), 1873-1228 (electronic). URL http://

Tsai:2013:ZWS

Hung-Hsu Tsai, Yen-Shou Lai, and Shih-Che Lo. A zero-watermark scheme with geometrical invari-
ants using SVM and PSO.

Tetali:2013:MSA

Tang:2012:RSS

Tsay:2012:VUL

Tormo:2013:IMP

Jia Tao, Giora Slutzki, and Vasant Honavar. A conceptual framework for secrecy-preserving reasoning in knowledge bases. *ACM

REFERENCES

REFERENCES

Ulutas:2013:ISI

Vaikuntanathan:2011:CBN

Vaikuntanathan:2012:HCE

Valamehr:2012:IRM

vanDam:2011:TQC

REFERENCES

January–February 2014. CODEN IBMJAE. ISSN 0018-8646 (print), 2151-8556 (electronic).

Venafi Labs: 2014: VLQ

Vetter: 2010: ABV

Viennot: 2014: MSG

Vu: 2015: NAN

Vleju: 2012: CCA

Vivek: 2014: CSC

Vliegen: 2015: SRD

Xiang Wang. A new SDVS based on NTRUSign. In...

Wang:2013:CRA

Wang:2014:IIA

Ward:2011:CCM

Watt:2010:IPI

Waters:2012:FER

Wang:2012:PCE

Qingju Wang and Andrey Bogdanov. The provable constructive effect of diffusion switching mechanism in CLEFIA-type

Yuechuan Wei, Chao Li, and Dan Cao. Improved related-key rectangle attack on the full HAS-160 encryption mode. International Journal of Foundations of Computer Science (IJFCS), 23(3):733–735, April 2012. CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Kan Wang, Zhe-Ming Lu, and Yong-Jian Hu. A high capacity lossless data hiding scheme for JPEG images. The
REFERENCES

Wu:2015:TRM

Wang:2012:RTC

Wu:2012:PSC

Wu:2010:IBM

Wang:2013:NMC

Wu:2012:RIB

Wu:2012:AST

Willis:2013:IFI

Wang:2014:ATF

Ding Wang and Ping Wang. On the anonymity of two-factor authentication schemes for wire-

Wen:2014:MZC

Wen:2014:MMW

Weng:2012:NCC

Wang:2011:CIB

Wang:2011:CHI

REFERENCES

2011. CODEN JSSODM. ISSN 0164-1212.

Weir:2012:AVC

Wang:2014:NAI

Weir:2012:IHV

Wang:2013:NSW

Wei:2014:IDC

Wang:2014:CGR
Wen:2011:DSH

Wei:2015:CPK

Weng:2013:VWI

Wei:2012:CSO

Wei:2012:GOP

Wang:2012:NIS

REFERENCES

[XCL13]

[XHCH14]

[XHCH12]
Xie:2012:RAA

Xiong:2012:PPK

Xu:2013:PKE

Xue:2013:TCB

Xie:2013:ECP

REFERENCES

Xin:2010:IEB

Xiao:2010:TAT

Xie:2012:ORI

Xie:2012:SCP

Qi Xie, Guilin Wang, Fubiao Xia, and Deren Chen. Self-certified proxy convertible authenticated en-
Xie:2012:DPK

Xing-Yuan:2011:PRS

Xiong:2012:CLR

Yamaguchi:2012:EVC

Yu:2015:SDS

Yang:2010:PII

[Yan10] Yixian Yang, editor. Pro-

Yang:2011:PQC

Yang:2011:GSS

Yang:2012:PST

Yuan:2013:PVQ

Yao:2015:LAB

Xuanxia Yao, Zhi Chen,

Yuen:2012:IBE

Yamada:2012:PBR

Yoshida:2012:OGT

Yang:2015:SHI

Yang:2014:MDF

Yo:2010:IRR

Yu:2012:IRI

Young:2013:TPC

Yum:2012:OPE

Yoshino:2012:SIP

Yum:2011:ACO

Yuen:2013:ELT

Yang:2012:WSI

You:2012:DDS

Yi:2013:ETS

Ying:2013:PPB

Yu:2010:PSI

Gang Yu, Xiaoxiao Ma, Yong Shen, and Wenbao Han. Provable se-

Yu:2011:CLE

Young:2015:DWE

Yavuz:2012:BFB

Yong:2011:SPP

Yoneyama:2012:ORA

Kazuki Yoneyama. One-

Yang:2012:EMA

Yengisetty:2011:AVC

Yang:2012:SAK

Yang:2015:EPS

Yao:2014:NCR

Yeh:2010:TRR

Kuo-Hui Yeh, Chunhua Su,

Ylonen:2014:SAA

Yang:2011:CCK

Yang:2011:CPK

Yang Yang, Xiaohu Tang, and Udaya Parampalli. Authentication codes from difference balanced functions. *International Journal...*
Yasuda:2012:ASM

Yao:2010:ASP

Yang:2015:RCI

Wang:2011:RDA

Wang:2013:RBC

Yu:2012:NWM

Zhiwei Yu, Chaokun Wang, Clark Thomborson, Jianmin Wang, Shiguuo Lian,

[Yu:2012:SME]

[Yoon:2011:SBC]

[Yang:2012:BPN]

[Yang:2012:NIB]

[Yang:2012:LUC]

Yang:2014:PST

[YZZ+14]

[ZC13]

Zhang:2011:TNT

[ZBR11]

[ZCC15]

[ZCL+12] Zhifang Zhang, Yeow Meng Chee, San Ling, Mulan Liu, and Huaxiong Wang. Threshold changeable se-

Zhang:2014:GCS

Zhang:2012:AOP

Zetter:2014:CZD

Zhao:2010:PSA

Gao:2012:DES

Zadeh:2015:ASP

Abdullah Abdulah Zadeh and Howard M. Heys. Application of simple power analysis to stream ciphers.

Zhang:2012:LDC

Zhang:2015:STR

Zhu:2015:IDM

Zhu:2013:TSC

Zhou:2015:EPP

Zimand:2010:SEC

REFERENCES

4, 2010. CODEN TC-SCDl. ISSN 0304-3975 (print), 1879-2294 (electronic).

[ZLQ15] Jiliang Zhang, Yaping Lin, and Gang Qu. Reconfigurable binding against FPGA replay attacks. *ACM Transactions on De-

Zhang:2012:CCB

Zhang:2010:ESP

Zhang:2010:NSS

Zielinska:2014:TS

Zafar:2010:GRN
REFERENCES

REFERENCES

Zwattendorfer:2012:CBL

Zhang:2015:FAA

Zhang:2014:LFL

Zilberberg:2013:PCM

Zhang:2015:FER

Mingwu Zhang, Bo Yang, and Tsuyoshi Takagi. Bounded leakage-resilient functional encryption with hidden vector predicate.
REFERENCES

Zhang:2011:EPK

Zhao:2012:FCS

