Title word cross-reference

\((e, d)\) [LC12a]. \((K)\) [WWLX13, GLM13].
\((k + 1)\) [AEA97]. \((m, k)\) [Ram99]. \((N - 1)\) [LW95a]. \((t, k)\) [Cha11]. \((\text{UCON}_{ABC})\) [MSSB14]. 1.5 [LH05]. 2 [HY04, HWZE10, JKA07, ST99a, SY00, SJPS01, TSP08]. 3 [CLHW13, CCLW15, CYY00, DS05, WH03a, WJTZ14, XPL04, ZM13, ZYX+10]. 4 [IGEN11]. \(E_1\) [RRRM09]. \(d\) [SV97]. \(K\) [KPA13, LWJ06, WHC+14, Amin12, AH10, BP98, CW00, Chi98, DAA97a, DMR01, HY01, HY04, HNO98c, JCW+12, KP99, KH97b, Ku01, Li03, LWS04, LL12, LBS01, MLT+13, MDM13, PW99, PG07, RC95, SRB14, SX08, SX09, TLM04, Wan98, XS11, XHHC13, XQL+14, YW03a]. \(L_2\) [WH01].

\(LU\) [KLFD13]. \(m\) [ME93]. \(M^3\) [BEK+93]. \(N\) [CST02, OPZ99, Soh95, BP98, CW00, Chi98, DAA97a, HM90, KP99, LL12, PW99, PG07, RC95, SLM+10, SX08, SX09, TLM04, XS11]. \(n^2\) [NS95b]. \(n \times n\) [NS95b]. \(O((\log \log n)^2)\) [HNO98a]. \(O(1)\) [ACS13, WH03a, XL08, XL10]. \(O(n)\) [LM06]. \(p\) [Wan04, WLZ08]. \(\pm 2^b\) [Nas93]. \(r\) [JJ07, Wan04]. \(S^2\) [YXWW14]. \(\text{speedup}(n)\) [HM90]. \(wr\) [KH98].

-\textbf{Anycast} [WWLX13]. -\textbf{Approximate} [LC12a]. -\textbf{Arbiters} [Kuo01]. -\textbf{Ary} [SX08, TLM04, XS11, BP98, CW00, Chi98, DAA97a, KP99, LL12, PSK99, PW99, PG07, RC95, SX09, Soh95]. -\textbf{CAS} [AH10].

-\textbf{Centers} [Wan04]. -\textbf{Clique} [GLM13]. -\textbf{Connectivity} [LBS01]. -\textbf{Core} [MDM13].
BS08, BZA10, CLW03, CCFS11, CPM+10, CYL+14, CKWC08, CLJ11, DW04a, DW04b, DW06, DPH08, DAMK06, DB08, GJDA06, GYS05, GY07, GS03, HCj+10, ISRS06, JJ07, JJ11, JGj+11, LLGP13, LCWW03, LWS04, LH06a, LWC+09, LYW+12, LMSRS13, LJW+07, LNA+13, MM10, MOY11, NO00b, OSRS06b, PDDH06, Se14, SCC11, SLFW06, SZZF10, SJ14, TR06, WY07, WO04, WJTL13, WL14, Wu02, WCDY06, WD06, WYD07, WCF13, XAY+14, XP05, YWD08, Yj09, ZZL07b, ZHCW12.

Ad-Hoc [SJ14, XAY+14]. Ada [SMBT90, STMD96]. Adapt [MTL95, ZJTZ14]. ADAPT-POLICY [ZJTZ14]. Adaptable [GFMR13]. Adaptation [BES06, CMBAN08, KZN07, LLY04, MPS15, RPYO11, yWeH11, YZS13, dLCK05, JASA08]. Adaption [LSL14a]. Adaptive [APMG12, BCCP04, BWC03, BG09, CGH13, CLHW13, CWZ15, CO94, Chi00, CS02b, CLJ11, CCD+09, ZMC03]. Administration [HFY14]. Admission [CS02b, HYP02, JXT+04, LLY04, MSB11, PH11, STY09, XHYL05]. Advance [RRX09]. Advanced [CE95, KP09, MAS08, PNZ+02, ZHQ12]. Advancements [BP96]. Advances [CMR07, RBH+14]. Affinity [AAD08, ML94, SL93c]. affordable [NE93]. against [CS05, LW09a, MS12, PZZ09, QLC13, SX03, TC07, WMG15, WXY14, YY+14]. Agent [CWZ+15, CBK+10, HPG14, LJW05, MX03, SSyLY03, TCZL11, YZS13, ZSY14]. Agent-Based [HPG14, LJW05, MX03, SSyLY03]. Agents [CS02b, MKOK14]. Aggregate [CCSC09, CC03, CH08, sCCyW14, CCT+14, CB03, DZH05]. Aggregated [NLY15, SML13]. Aggregated-Proof [NLY15]. Aggregates [CPX06, TCLY07]. Aggregating [BcFGM08, LZY12]. Aggregation [CC10, CLLS12, FC10, HJPL14, LC12a, LWH+13, LLL+12, PLL14, RZW+13, TKS11, TF01, WJTL12, WLLL10, XLM+11b, XGZW14, YXG12, ZPY06]. Aggressive [KGMB94]. Agile [ZJLG14]. Aging [PAB13]. Aging-Aware [PAB13]. Agnostic [FSM+12]. Agreement [AKNR+04, FMR07, HCL+14, JKT11, SRB14, SCY98, STW00, WCY05, WYWZ08, KA94]. Aho [TVCM12]. Aho-Corasick [TVCM12]. AI [DM93]. aid [WG90]. Aided [JK99, SLL13a, TLJ+14, WCF13, SR91]. Air [ZLZ+14]. Airport [AWO+12]. Algebra [CHC04, KCS+99, LLCH12, AC93, EHJ94]. Algebraic [TH+97, CWL92]. Algorithm [ACT+97, AR97, Ano04c, AMP07, AB03,
BCVC05, BQF99, BMB+10, BT98, BS08, COP00, CS01a, CR06, CGK04, CY95, CFW98, CD08, CC13b, CY96c, DW04a, DA98, DTE07, DS05, DB08, DY05, Din01, EW97, EAF00, FE97, FG06a, FB01b, GMRC07, GW96a, GRY07, Gou03, GFF+99, GRT97, GY07, HNO98a, HH11, HT04, HLY10, HyH02, Hu14, JPP97, JGH10, JK99, KK08, KZ96, KR00, KKW13, Kum14, KA99, KC98, Lan95, LO95a, LH03, LLW09, LKT11, LY14, LLCL12, LK00, LC02b, LX12, MM98a, MM98b, MS03, McK98, MBM98, MF96, NO97, NO98, OZ96, OB00, Pre99, RCS01, SRD04, SAM14b, SFy99, SLG10, She10a, SWC95, SSSLY03, SOM05, TLP15, TW98, TQL11, tJ06, UK98, WCL97, WH03a. **Algorithm** [WR04, WLL07, WPKL13, WJTZ14, WMN99, WYJ04, XL10, XLM11b, XZT13, YJ97a, YJ97b, YXSS13, YR06, YC95, ZG11, ZY9+14, ZY07, ZH98, Zou14, BCBzC92, BW94, BLO+94, BP94, CC93b, CH92, CL94, FA94, GR90, HAR94, KSA94, LW95a, LG94, LK94, ME95, MC93, NZ95, NM92, NLM90, Omi90, OL92, Pan93, RST95, RJ94, Sin92, SY93, SC97, SW92, SR94, Var93, VJ93, VJ94, WL91, WYTD93, WDY93, YD94a, You93, YC96].

Algorithm-Architecture [GMRC07].

Algorithm-Based [CD08, YJ97a, YJ97b, BP94, RJ94, VJ93, VJ94].

Algorithm-Hardware [ZY07].

algorithm-machine [SR94].

Algorithm-Specific [GW96a].

Algorithm [CHC94, GAL01, LSVMW07].

Alignment [TG99].

Aligned [TG99].

Alignment [CHC94, GAL01, LSVMW07].

Alignments [RA04, dOSdM13, SA09].

Aliveness [MRT09].

All-Pairs [MBH+10].

All-Path [LZB14].

All-Port [HØ00, HK95, KLS00, tJ96, YW02, ZD12].

All-Prefix-Sum [KPA13].

All-To-All [SR98, SY98, BHK+97, CCY96, FYP07, FH97, GP03, SS01, TG96, YW00, YW01, YW02, CYW94, LS94].
[RWF94]. Alleviate [KZN07, RHDL11].
Alleviating [BP98, LA12]. Allocating [Bil94, CT94, HC97, KA96, Men05].
Allocation [AMSK04, BEDCR13, BSM+11, CB13, CW00, Che14, CC99, CYY00, CML05, CXN06, CNT05, DP02, DW13a, DW13b, DD95, FDFZB13, FLZ09, GBD07, GLV06, H099, HP07, HPT04, HKH+10, HPH08, HYXI1, JLS02, JZJW13, JG+12, KY98, LC95, LKHL03, LJCL08, LRJX13, LCW11, LMLN97, LGG+14, MEKOT03, MMJ03, MRD12, NMG15, PC07, PAB13, PC05, PCP14, RTS95, Ram95, RK08, SKJ07, ST10, SP95, SJ99, TF96b, VKS+09, WK11, WML08, WFS09, WHC03, WW12, XAY+14, XSC13, XQ08, YQZC12, YMPO8, YLL+07, YL08, YS09, YD95, YL97, ZX04, ZXW06, ZW02, AM91, CD94, CO95, CS94, KDL91, Lat94, PJC93, SST94, WM93, ZS95b].
Allocations [AT12, XCZ02, XCZ04].
Allocator [LGD14].
Allowing [KY97].
Almost [BP94, DNSC09]. ALOHA [WZFG13].
Alternatives [SP00, YV98, And90, DAF95]. Amazon [TYWL14]. Ameliorate [CL13]. Among [MAJ+07, RPW93, WYWZ08, YA93].
Amorphous [HH12]. Analysis [ATZZ14, AEA97, AM93, AKSS04, AT07, Bak05, BK96, BCG09, Bor00, CRL09, CGK04, CHJL04, CPX06, CH08, CY00a, CH95, CYD98, CCW+12, CF94, DW04b, DY97, EJRB13, FHA06, FE05, FJJ+09, FWL12, GFS+10, GZT97, GWC14, HCH+12, IOY+11, KGKL08, KMM12, KMMR13, KW08, LP96, LCB96, L07, LYW08, L08, LI3, LQK+13, LY15, LL11, LR96, LLLC10, LLG+13, MM98b, MC10, MRD12, MSB11, MTL95, ON06, PP96, PJGW14, PF08, PK04, RIW+07, RS12, RBSP02, SKJ07, SRT96, STH94, SV97, SRL98, S11J11, SK95, SOTN12, SLSLY03, SZ11, SM02, SMH02, TXWL11, TJI+14, TC06, TXL08, TL05, Tos07, TRS90, TKW98, TK96b, Var01, VXML04, VM12, VR05, WR04, WYW13, WH98, WMLJ12, WYCY14, XPL04, XTL06, XXWY10, YJ97a, Yan14, YFM98, YL11a, YJHG06, YZFZ10, YLR12, ZJLS12, ZD12].
Analysis [ZT14, ZH99b, ZFG+10, ADM92, AV94, AC92, AS92, BE92, BCJ90, BCS94, CH92, CTC93, DY93, HK91, KK93b, KGS94, KK92, KS93, LYZ90, ME92, MS94b, MRW92, MB02, MD96, Pad01, RB09, RM90, SMBT90, STMD96, SF09b, Tze93].
Analytic [AT12, XCZ02, XCZ04].
Analytics [ZT14, ZH99b, ZFG+10, ADM92, AV94, AC92, AS92, BE92, BCJ90, BCS94, CH92, CTC93, DY93, HK91, KK93b, KGS94, KK92, KS93, LYZ90, ME92, MS94b, MRW92, MB02, MD96, Pad01, RB09, RM90, SMBT90, STMD96, SF09b, Tze93].
Analyzing [BM12, FLP+07, MYA01, NL11, HMW93].
Anchor [KSP10, XLI]. Anchor-Free [PG10]. AND/OR [ZMM04]. Angle [NO97].
Angle-Restricted [NO97]. Annealed [GS95]. Annealing [CF98, HM95, LL06, SQH95, NZ95, WCF91].
Annual [Ano97a, Ano98a, Ano99b, Ano04a, Ano05b, Ano07a, Ano07b, Ano08d, Ano09d, Ano11a, Ano12a, Ano14a, Ano13a].
Anonymity [HL08, XXZ03, ZB09, ZFG+10].
Anonymization [ZL14].
Any [CSC07]. Any-source [CSC07].
Anycast [JXT+04, WWLX13, XZZ00]. AP [HST+11].
Aperiodic [GMM97, ZGL10].
APIs [dLCK+05]. Appearing [AJMW14]. AppLeS [BWC+03]. Appliance [KTK12].
Appliances [BRX13, C4JZ12]. Aperiodic [GMM97, ZGL10].
APIs [dLCK+05]. Appearing [AJMW14]. AppLeS [BWC+03]. Appliance [KTK12].
Appliances [BRX13, C4JZ12]. Application [AAS03, Agr98, AA14, BB05, BWWK00, CCCB14, DDV+07, GFLL15, HDRS00,
HJS, HP06, HALT95, KHM05, KEGM12, KPR05, LCWW03, MKVL12, OSS93, PHKC09, PK99a, QR07, RS12, STMD06, SkLC+03, SSRV99, SCP02, SQ04, TASL97, TSH98, TSN10, TSRS07, VSD01, Ven14, VJA97, XLT+14, XSTZ10, YMO9, Zha12, AM91, BCJ90, KK93a, MN92, SS90, XB93, You93. Application-Aware [XLT+14].
Application-Centric [SCP02].
Application-dependent [OSS93].
Application-Driven [SSRV99, BCJ90].
Application-Layer [TSN10].
application-oriented [MN92].
Application-Specific [HP06].
Applications [ASS95, BRS07, BCCP04, BKI06, BCF08, BM00b, BNO01, BES06, CLB08, CH04b, Che95b, CCT10, CN02, CN04, CHJ+07, CSR07, CG02a, CG02b, Din01, DO02, DZLC15, EGG11, FB01a, FLP07, GFS10, GIX12, Goh14, GN06, GB06, HOD99, HNO98b, HAD12, HCD97, HLI12b, HC14, JHYK11, KKC+05, KOPS10, KKKCB02a, KKKCB02b, KR00, Lai12, LCB00, LCG07, LH93, LSZ09, LWS04, LP07, LSB14, LHI12, LTBN+12, LJB+13, MDZC14, MLVD12, MVML11, N097, NSZ02, NTWL11, OZ96, PK95b, PM96, RBSS11, RCV+13, RNR+03, Ram99, RGRM14, RJ96, Rob04, RRG07, RD09, SKGC14, SMS+13, SL+10, VKS+09, WC09, WJTZ14, WSC+14, WGP11, WCCR+97, WH03b, WCDY06, XP07, XL96, YQLS14, YC12, ZSH+11, ZJS12, ZT14, ZYW+14a, dBK11, GH93, HKM+94, HB92, LO95b, MTSDA93, SA94, SSG91, TMTH96].
Applied [CDR98, GS11b, SKB04, DSF03].
Approach [ASB02, ASS95, AAB+00, BN12, Bar10, BZA10, BOC09, BRX13, BZBP10, CJW+15, CS01b, CS02a, CHCC14, CWLR09, CT97, CYC+15, CLS04, CCW+12, DHP+07, EN12, FO05, GG10, GLY07, GY95b, GMR98, GS08, HP03, HKH+10, IdM12, Iye14, JBW+08, JZ04, KN12, KEGM12, KP12, KPG+12, KH97b, LTW+14, LLZ14, LQZ09, LZTY09, MRLD01, NN10, PK00, PD95, RGL05, RAHM05, SP03, SL09, SKP12, SvV805, SQ08, TCLY97, TC07, TGV08, TXL+14, TF01, TLGP97, TWH99, TKP12, VKS+09, WT98, WTCY95, WYJ+04, WCR09, XYT+15, XSTZ10, YZZ00, YKS03, YM09, YY10, YLZ+15a, YHS+14, YZS14, YPL13, YCI14, YXY03, YYL+13, ZFM03, ZLN+13, ZYLC14, ZCLS14, ZYT+15, dSLMM11, dBL98, dBG98, CS90, KK93a, OHH1, SSG91, jTM97, YW93].
Approach-Based [BZA10]. Approaches [BKL11, MB07]. Approximate [BM00b, DFGG13, KPK09, LC12a, LCG14, LR96, THH08, Tse05, WMHX12, XTL08, KA94].
Approximated [XHG15]. Approximating [BM95, yCM98]. Approximation [CC13b, DPRT11, FH03, LH05, LY14, SP12, XQL+14]. Approximations [Gre98].
APTEEN [MZA02]. AQM [WLL+07].
Arachne [DR98]. Arbiters [Kuo01, ZY07, TC03]. arbitrarily [EA93].
Arbitrary [AMS97, Bar98, CHTW12, DWF12, HV11, JVV10, VB86, VM04, WM95, LS94a].
Aborting [Jia14a]. Arbitration [MLSS07, QLNN13]. Architectural [KBPD09, SKGC14, SP00, SKPS01].
Architectures [AGGD04, AGGD05, AAS03, AB03, BS96, CHM+13, DSY99, DBG+14, DZHG04, FV09, FC11, GMRC07, GM97, GSS06, ILL07, JHR+14, JPG14, KH04, KBS11, KW08, LC07, LK07, LWY96, LJ15, LOSW99, LNOZ03, LLA+06, MR03, MGA+09, MB12, OC05, PABD+99, RGRM14, SS08, SCL05, SP02, Ste96, USP+12, VGM1A10, WCLK12, WCCR+97, WZY08, YXY+09, YXYW14, YKDV02, ZYKG07, ZN04, ZHO7c, ZL10, AS92, AG96, ABZ94, BCJ90, CPA93, DFD03, Efe92, GP93, HISS94, Lee93, LWY93, MLL92, TC94, YZW94, ZAJ2].
Architectures [AFM02, AS96, CGM+07,
CF01, CGH13, CVM+15, CBDW96, CG02a, CG02b, Din01, EJGYAM14, FSS11, FPGAD08, FJY98, GR06, Ian14, IGEN11, IT07, JSMK11, Ito15, KPA13, LKD10, LBC03, MCG08, MYA01, OHRW99, RD98, SLEV03, SvAS04, TSG09, THB+14, TVCM12, WYY+12, WMLJ14, XZL05, YYS97, ZYC95, ZHQ12, AM93, KSA94, OD93, OS94b, PLW96, RB90, RP94, SP93, SL93a, SRT94, SM93, YD94b, ZY95, ZL96.

Area [CBD+01, CH13, FARH02, IvS10, LZCK14, SLGW14, SC05, YYK11a, ZWWF15, Ant94, CAB93, CCJ02].

Arrangement [HCH99, LC01, BGM94].

Array [BFL+01, CE95, CLPT02, CY00a, DSO02, DDP98, GWM97, GR06, HWZE10, HTS02, HCYD01, IGEN11, KKC+05, KP93b, KKC03, LHS03, LPZ98, LCL03, Par95, PPR99, RS97a, SK05, TCR96, TC95b, WHW05, XRY09, Cap92, GR94, JWC94, Lin93, O’H91, SC92, SA93].

Array-Intensive [KKC+05].

Arrays [AKN95, CHC04, Che95b, CM95, Din01, GW96a, JWJS14, LHSML95, LZC+12, PK99a, R99, TKP00, TC95a, VMXQ04, WHH+13, WLX13, WHO1, XS10, YL96, ZZG+11, vDSP96, GM94, LK90, Mar93, NJ94, SF92a, WC90, TL05].

Arrivals [KMM13b].

Articles [Sto10f].

Artificial [LLK+14, SZ03a, SSZ06].

Aspects [AF05, ZJ03, MJ94, NSD93].

Assembly [LPMB13, MTY+12].

Assessing [APCH+11].

Asset [BN12].

Assignable [PH05].

Assignment [AAB+00, BPT03, BRTM09, CTA14, CYC+15, CLHK11, CB00, CYD98, HTS02, JRP+10, KGM97, KM02, KA99, LS97, Lee06, NYD09, NN13, NLGQ14, RCV+13, SKS02, SZXS05, WZQ10, YWC11, ZT14, ZZT14, CWSN94, WW92].

Assignments [LO95a].

Assimilation [ELX+11].

Assisted [AYA09, CF01, CCS+12, CMG+14, HWC+14, LAMJ12, LFLW10, LSL+10, SAM14b, SLLL14, WMT+11, YLW07, YWC11, ZH07a].

associated [CO94].

Association [BS08, JZ04, PPBSA97, XLM+11a].

Associative [QZW14, SDFV96, WM95].

Assumption [XS11].

Assumptions [MRT06].

Assuring [CWYZ09].

Asymmetric [CLJ11, CB00, GCN+14, SHM+12].

Asymmetry [QGPZ13].

Asymptotical [LC02a].

Asymptotics [DF09].

Asynchronous [AR10, BCVC05, BCVC05, BKB96, BCCP04, BBS+09, CSLZ12, CF99b, DMR01, F01, GMRC07, GY95b, HHH+00, HH11, HLH04, HYC+12, LL06, LT97, LCB96, LH01, LJL+11, Lu14, MRT09, QRO7, SLG10, SW95, VM99, WDCK04, YHC+13, ZGGW14, CF94, MLS94, MD96, MMSA94].

Athenasia [JHYK11].

ATM [KS01].

Atomic [GLGLBM13, ZCZ+12, KST94, LG90, RP93].

Attached [MKR00, WW13, ZBJ+05].

Attached-RTS [WWH13].

Attacked [MS12, TJJ+14, WMGA15, WXY14, YWF+09].

Attackers [LLY05, YCTC13].

Attacking [HLY10].

Attacks [ALLR14, CQZ+12, CS05, CHK07, CPM07, DMT12, HPG14, LG912, PZZ09, QLC13, SL09, SILJ11, SX03, WS03, WBCX06, WXTL13, Wu14, XZG09, XTXH13, XSTZ10, YYY+14, YZDJ11, YZJ+12, YLR12, ZFG+10].

Attribute [CLH+14, GZZ+13, HSMY12, HN11, Hur13, LYZ+13, LHL+14, RWZ+13, KG92].

Attribute-Aware [RZW+13].

Attribute-Based [CLH+14, GZZ+13, HSMY12, HN11, Hur13, LYZ+13, LHL+14].

Attributes [HSY+99, PR05b].

Auction [CZW14, CZLM09, Guo14].
Auction-Based [CZLM09]. Auctions [CGM05, WLL08]. Auditability [WWR +11]. Auditing [Rao14, Xia14, YJ13].
Augmented [ABC +01a]. Authenticated [HCL +14, TW14, YLW13]. Authentication [DBAT11, FLH13, HXC +11, LNZ +13, LZCK14, LNY15, LHL +08, LLZ +12b, NLY15, RWL +14, RSN14, SGC14].
Authority [LNXY15, YJ14]. Authorization [KB13, MSSB14, WRB09]. Authorized [Rao14].
Auto [FO05]. Auto-Parallelizing [FO05]. Autocorrelated [ZMRS08].
Autogeneration [ZM13]. Automata [DBG +14, JASA08, SZ02, SZ03b, SSZ06, TK96a].
Automata-Based [SZ02]. Automated [CCW +12, LZL10, TC07, ZJLG14].
Automatic [AKN95, BW96, EHP98, Fos91, GP92, GETFL14, KCS +99, LL02, LMVS11, MSH00, PD00, RSP02, RR02, RKZC14, SK02, TR04, VGMA10, GB92, KKP91].
Autonomic [CSW +12, PKS14].
Autonomous [BQF99, PJC +13, YSDQ11, YQ11].
Autopipelining [TG13].
B [GM97]. B-Spline [GM97]. Back [AT01, KCD07, LLY05, SOM05, YY14].
Back-End [KCD07]. Back-Propagation [SOM05, YY14]. Backbone [BMPP06, DWX14, DWY +13, SY97, WYL06, WTL +14, YWD08, ZWLL12, AO12].
Backfilling [Fei05, MF01b, TEF07, ZFMS03]. Backoff [XLW +06]. backpropagation [KSA94].
Backtracking [LC01, PG01, RK93]. Backup [MAJ +07, XLT +14, ZJ99]. Bag [BCF +08, Ros02, TLH +14]. Bag-of-Tasks [BCF +08, Ros02].
Balance [HLCH11, LX10, PH05, ZWL +15].
Balanced [AOB93, BBR07, CTS06, CHHC06, DZHG04, HX10, HKH +11, WPT10].
Balancing [APG12, BCVC05, BCPP04, BBR07, CT08, CK02, CLHK11, CCJ02, DHB01, DHP +07, DB06, DvdMK09, GZ06, Gua14, GB06, HC99b, GGB94b].
Bandwidth [AA14, LKD10, WNSK96]. Band [AAC14, KMK10, WNSK96].
SHG13, SHY14, SY07, SSRV99, TCLY07,
TSK06, TLGP97, US04, WCH+08, WFS09,
WLL08, XLSR13, YL07, ZX04, MS94b,
ZS95b, LLZ+12b]. Bandwidth-Aware
[SHG13]. Bandwidth-Constrained
[CKWC08, GBD07, WCH+08]. Bandwidth-Efficient
[YL07, LLZ+12b].Bandwidth-Optimal
[TLGP97]. Bandwidth-Optimized
[XH10]. Bank
[BGMZ97, TSP+08]. Banker
[LM06]. Banyan
[YJHG06, SF95, YN90, YA93]. Banyan-Based
[YJHG06]. Banyan-hypercube
[YN90]. Bargaining
[WS14]. Bargaining
[PSK99]. Barriers
[SCP02, SSZ02, Sto04, SvVB05, SDDY00,
SSsLY03, Sun02, SS09, SZZF10, SWC+14,
SX03, SS00, SJ14, TJ08, TXWL11, TJH+14,
TC04a, TC06, TC07, TXL08, TXL+14, TF01,
TKR14, TAK06, TBC12, TCZL11, TN08, TRD13,
TPL96, TY99, TF96b, Tze04, Van14, VM99, VM12,
WC09, WHH+13, WCH+08, WL08a, WKK11,
WYW13, WPKL13, WJTZ14, WJWX14,
WSC+14, WSWY15, Wu98, Wu02,
WX+13, WJB14, XNZ08, XTH13,
XHHC13, XHG05, XTGD10, XLLZ11,
XLM+12b, XSYY13, XSTZ10, YJ97a,
YJ97b, YLSQ13, YK98, YK03, YL10,
YG13, YLW+14, YLW07, YZS13,
YW+15, YPL13, YI09, YK14, YJHG06,
YCW12, ZYKG07, ZJL+12, ZYC95, ZY13,
ZL+13, ZGGW14, ZYW+14a, ZWWF15,
ZGL+15, ZMS08, ZX13, ZL14, ZYT+15,
ZWX06, ZL07b, ZLKK07, ZH05, ZH07c,
ZJWX08, ZFG+10, ZCX+14, ZL05, ZCSY08,
ZASA10, ZCO98, ZBK+15, dSLMM11,
BW94, BP94, CR94, CH92, CTC93]. Based
[DK92, DD95, DI95, FHRT93, GDI93,
HM94, JF94, LB94, LSL14b, MXEN94,
MB92, NE93, RJ94, SMBT90, SSG91, VJ93,
VJ94, YK92, UBC13, DMTB93]. Baseline
[SZL+12]. Branch
[EAK95, MC95, UEA95, YD94a].
branch-and-bound [YD94a].
branch-and-combine [UEA95].
Branching [Lee95, YLSQ13].
Branching-Router-Based [YSQ13].
Breadth [SVP08]. Breadth-First [SVP08].
Break [JBW+08]. Break-In [JBW+08].
Breaking [LKM10]. Bridge [EF96].
Brief [YZS13]. Broadband [IG11, KBS11, LLK13, SA09].
Broadcast [BV10, BDD+96, CCFS11, CCY96, DW04b, GP03, HK95, HW11, JLM+12, KH04, KLS00, MSMA90, MQ97, NOS99, NOZ02, SR98, SPS98, SLM+10, SLFW06, SPC+02, TJ08, TM96, THT+97, WTL+14, XTL06, YW02, ZD12, ZLZ+14, CY94, LS94b, LG90, TM97, VB93, XUAS99].
Broadcast-Based [KH04].
Broadcast-Efficient [NOS99].
Broadcasting [Agr14, BNH99, BBG+95, CFKR98, DW06, FCD+13, HK98, ISRS06, LWS04, LC10, PC96, PS96b, SWC95, SSZ02, Sto04, TWH99, VB95, YW10, BLO+94, CCQS00, LA93, MS92].
Broadcasts [BLMR05, VB96, ST93].
Broker [DZHG04, TKR14].
Broker-Less [TKR14].
Brokering [BGJ06].
Brooks [Kum14].
Browsing [LA04, ZHZC15].
Browsing [LA04, ZHZC15].
Buddhist [SB94, HW97].
BSN [LQK+13].
BSR [Sto06, XUAS99, XU01].
Buffer [CY06, CCJ02, GLV06, NFD10, Par01, SML13, TLH+14, VV99, WX13, YZC08, ZCL04, DY93, MS93].
Buffered [CCQ+05, CCLW11, GLS07, LKK95, LY11, Mha09, MD96].
Buffering [CJZ12, LWY06, MLW06, ZY06].
Bufferless [SKL+15].
Buffers [LHM12, LW14, WHM09].
Bugs [LPZ12].
Building [BK09, HLL09, LNN07, YN00, ZMTL15].
Built [CXP09, WS03].
Built-In [WS03].
Bulk [FH03, RRX09, YXW03, ZGH14].
Bulk-Data [ZGH14].
Bump [TLJ+14].
Bump-Aided [TLJ+14].
Bumping [TLJ+14].
bundled [BR94].
 Bundles [CC10].
BURSE [YLZ+15].
Bursting [Zon14].
Bursts [LL11].
Bus [AV96, CG08, CS97b, DSO02, EAK97, FYS05, GP99a, HWZE10, HTS02, KH97a, LP96, LPP98, RMO+95, THT+97, TH01, WHW05, WSC+14, BIA+97, Lee93, TV92, WC90, WS93].
Bus-Based [FYS05, BC+14].
Bus-Networked [CG08].
Bused [Fd92].
Buses [Chu95, LOSW99, RS07a, WH01, GM94, LO95b, SP93].
Butterfly [HWSH00, WMN99, Tze93].
Bypass [CH09, ZPD11, ZD12].
bypassing [AB94].
Byzantine [ALLR14, AMPR01, BCdSLF09, MT15, NT09, SC98, WC95].
 C [Geh93, FO05, TFPK13, ZH99b].
C-MART [TFPK13].
C/C [Geh93].
CACAO [YWC11].
Cache [AJM12, CC03, CH04a, CGH13, CY00a, CY00b, Dan11, FPGAD08, FPGAD10, GCCC+04, HLY+12, HNY02, HCT+10, HK95, KSGS01, LSL+14, MWJ+14, MM07, MTL95, PNN+02, PPD04, PD14, PD95, PD00, PCR95, PC14, RLY+15, SSP+09, SPC+02, TCO01, TLH+14, VSGS01, WHH+13, WDC04, WDy98, WHC+14, YZZ00, YZC08, ZJS12, ZCL04, AH91, JF94, LY93a, MB92, NGL94, SG93, SL93c, SF92b, YTB92].
Cache-Based [PPR95, JF94].
Cache-Coherent [MWJ+14].
Cache-Cache [Dan11].
Cached [GS95].
Cacheminer [YZZ00].
Caches [WM95, ZML13, WFP90].
Caching [BJ13, BBO08, DD11, DSASSLP12, ET10, HN10, HGC12, HLW14, ILL07, LSB+07, LWY96, LA06, LAS04, SD04, SWH08, TCC05, WXLZ06, WH98, WCF13, WML14, ZZCD10, LWY93].
CAD [HB92].
Calculating [AI15].
Calculation [CHB98].
Calibrate [XY+15].
Calibrating
Checking [CGZQ13, LTW+14, Qad03, TNPK01].
Checkpoint [Qua01, WCLF95].
Checkpointing [AT01, BQF99, CS98, CS01b, CS02a, CCD09, PK92, PLP98, PS96c, QS03, SE98, TKW98, Tsa03, Vai99, WCLF95, KP93a, LNP94].
Checkpoints [CS01b, CS02a, MNS97].
Checks [ANKA99].
Chemical [KEGM12, LMVS11, XLL11].
Chief [Bhu06b].
China [TDLR13].
Chip [AJM12, AGGD04, ADMX12, Ano03c, BB05, BJM05, CHM13, CLT13, HD15, HYZ15, HGC12, HP06, JTS+11, JK12, KKC+05, LM06, LKBK11, LAMJ12, LW+13, MKY+09, MB12, PHKC09, PSDK05, PP05, RAG10, SHG11, SHG13, SKL+15, Sib12, WMW11, WOT+07, XL08, ZMF10].
Chip-Scale [BB05].
Chips [JIP14, KAY+06, WSC+14].
Chitra [ADM92].
Choice [FCF00].
Choices [Mit01].
Cholesky [KBD08].
Choose [KS08a].
Chord [SL09, YL11b].
Chordal [Ano99f, PK99b, YCTW07].
Chunk [SLL13a, dSLMM11].
Chunk-Driven [SLL13a].
Churn [BBR12, LXHL11, SX07, YCWL14].
Churn-Resilient [LXHL11, SX07].
Circuit [AR07, CDR98, CRWY15, HALT95, PC96, PS96b, SJM09, SV07, Bok92].
Circuit-Switched [PC96, PS96b, Bok93].
Circuits [HA13, ZMP07].
Circulant [TWL12].
Circular [FT97, HS98b, Tze93, WS93].
Circulation [IKOY02].
Cities [Iye14].
CLAM [GM98].
Clarifications [ME93].
Clarify [WJ+14].
Class [IB95, RJ06, WL00, YW01, YW03b, YW04, ZCFX09, AB91b, BL91, CAB93, CI92, CNNS94, LC94, ME92, ME93, Nic92, OW91, Sch91, YD94a, Zia93].
classes [Nas93].
Classical [BS96, O’H91].
Classification [GR06, JG14, JW94, Ksh03, KK03b, MS99a, PT11, WX+14, ZX+13].
Classifier [KGK08].
Classifiers [LG10].
Classify [MR02].
Classifying [BOPZ04, XLW+06].
Client [AFM02, CN04, ILL07, NN13, Rob04, TCC05, WX11, YWC11, ZT14, ICT93].
Client-Assisted [YWC11].
Client-Perceived [WX11].
Client-Server [AFM02, NN13, ICT93].
Client-Side [TCC05].
Clients [dLCK+05].
Clock [BCQ+10, CLSZ12, EAK95, SS08, ZL07b, dB98, Arv94, OS94a, UEA95, YM95].
Clocking [EA93, PN95].
Clocks [Her00, MB92, TKT92].
Cloud [AN07, BHEP14, EAK95, SS08, ZL07b, dB98, Arv94, OS94a, UEA95, YM95].
Clouding [EA93, PN95].
Clouds [CB14, CPGT14, DW13a, HCSC13, Jia14a, LPP13, MTY+12, NMG15, RSN14, TRD13, WVT13, Wu14].
Cloudy [TUS13].
Clusters [AAB+00, FHW11, FHBJ07, FG06b, GB06, HCC06, HPH+12, HJH02, JKR01, KB03, KLM07, KCD07, KWOA05, LNA+13, LLG14, MB12, MSM06, NGB+05, OXL06, RNR+03, SC05, TSSR07, VVR07, WRB11, XCS02, XHL+11, ZSM01, ZWWF15, ZN04, ZJWX08, Zou14, AT07].
Cluster-Based [FG06b, GB06, HCC06, KCD07, LNA+13, ...]
LLG14, NGB+05, ZWWF15, ZJWX08]. Cluster-on-a-Chip [MB12]. Cluster-Tree [HPH+12]. Cluster/Grid [VVR07]. Clustered [AF05, BP96, CB05, CJL11, DHBBI2, HÖD99, KP12, PSGD05, SJd+09, WWLJ14, YGE06, ZRS+05, ZH98]. Clusterer [WCW09]. Clustering [BMPP06, DAMK06, DO13, GRS99, HP03, JGW11, KABK03, KB06, RA05, RGL05, RS91b, SYC03, WXZ+14, XJ14, YYY09, YY93, PLW96]. Clustering-Based [JJW11]. Clusters [Ano04c, BP06, DMB05, CRS06, CJPW06, DDV+07, FYP07, FB01a, GKK05, HLQ+15, JZ04, KOKA11, LZ12, LLH+01, LBS05, MAS+07, MVML11, MY+12, Pan14, RK08, SH95a, TMJ14, US04, WW11, XP12, XCZ04, XQ08, YKDV02, ZM13, ZLW+14].
[Che07, CN04, HS98b, Rob04, SH97, TL05, Tho06, VS11a]. Comments [CL97, Sto04, YMP08, YP98]. Commerce [WMGA15, ZWX06]. Commercial [Bor00, FPF13]. Commit [HRG00]. Common [CLY08b, DWX14, YXSS13, LL94]. Communication [APMG12, AB99, ACS13, AKNR +04, ABK98, Ano04d, BBC +95, BS96, BV05, BC99, CB05, CS94, CBK +10, CCK12, DS03b, FYP07, FH97, GMR98, Gon03, Gon08, GDK09, GRT97, GS95, GSS96, HS99a, HSLA05, HMR99, HJB +09, HWKH01, JYVA05, JKP12, JKR01, KOPS10, KCKK00, KB03, KL99, KS03, KgCS04, LB00b, LNYY03, Li13, LQK +13, LGG +14, MS13a, MFLX01, MX03, MJ94, NOZ02, OSRS06a, ORS06b, PH04, QM97, RCK15, Res97, RMC95, STY09, SK02, SLGW14, SH96, SS05, SWH98, Sto97, SY98, SDDY00, SS01, SS00, TSL07, TTB +00, TKW98, Tsa03, TG96, TG99, VRKL96, VS15, WSC +14, WCDY06, WMLJ12, YW04, YMG03, ZSH +11, ZS98, ZHQ12, AS92, Ant94, BGM94, Bi94, GR90, Gup92, KSF94, LC91a, LR93, LN93, MXEN94, NZZ5, RV90, RW94, SS94, SC93, TC93]. Communication-Aware [GDK09, JKP12]. communication-efficient [LC91a]. Communication-free [CS94]. Communication-Induced [HMR99, TKW98, Tsa03]. Communications [BHK +97, GT02, GBC +07, GZ14, GCL14, HCYL06, LAK11, LI03, LA12, LLL +12, PDF1J3, SS95, IJM09, XLM12a, YL08, Zh14, QM94]. Communicators [DFKS01]. Communities [JRV +13, OMMZ14, RKKC14, WZSL12]. Community [BJ13, DO13, GLM13]. Community-Based [BJ13]. Compact [MBW02]. Compaction [BOC09, TC98, NE93]. compaction-based [NE93]. Comparative [ZY95, ZYC95, ZWM99, DT94]. Comparator [CBE93]. Comparing [PBA03, WGH11, AGE94]. Comparison [BMPP06, DvdMK09, EN12, Fan02a, Fan02b, GBO00, ML06, SZ03a, SPF99, Tos07, BL91]. Comparison-Based [EN12]. Componentalized [Lee06]. Competition [CE10]. Competitive [WH98]. competitors [ÖD96]. Compilation [Agr98, KCRB03, MGS12, PSC +95, RSP02, SPF99, UZC97, PAM94]. Compile [AH91, ASS95, GS91, KA99, MTL95, OS02, RS99a, SL99a]. Compile-Time [ASS95, KA99, MTL95, AH91, GS91, RS99a, SL99a]. Compiled [YMG03, RK94b]. Compiler [BF04, CF01, CK08, CY00a, CY00b, FO05, Kan01, LC00, LAMJ12, MK98, NZP03, PNZ +02, SJM09, SCO +07, YLL +07, YYX +09, TMTH96]. Compiler-Assisted [CF01, LAMJ12]. Compiler-Directed [CK08, CY00b, Kan01, SCO +07]. compiler-parallelized [TMTH96]. Compilers [Ano97d, Ano97b, Ano97c, FS00, HCYL06, BE92, CS94, GB92, LZ90, SL90, TN93b]. Compiling [KM91, LC91a, Pre99, RP94]. Complement [HWKH01, Van14]. Complete [CTS96, CW00, FLH13, FO05, LC96b, LVA +11, LG00, SY00, SJPS01, TLGP97, CL93, FD94]. Completion [LL98]. Complex [CWZ +15, J09, LLZ14, TXZ +11]. Complexities [LC14]. Complexity [BBD00, CLS05, CWC11, JTS +11, KKW13, KA99, NL11, SK07, THW02, YC95, ZCFF90, AB91b, ORW93, KST94]. Component [KCK +06, PB12, RGK09, YLW +14]. Component-Based [YLW +14]. Component-Oriented [KCK +06]. Composing [GN06, TW14]. Composite [ADD +02, Kuo01, LA +10, NL02, SF95]. Composition [DZLC15, HJS +11, HL09b, KKS07, KN12, PS08, RGK09, TCZ11].
Confirmation [CJW+15]. conflict [BR91].
conflict-free [BR91]. Conflicts
[CLL11, TGAG13, YD95]. Congested [hKY08]. Congestion
[BLD05, CSH00, CY06, ESGQ+13, ESGG+15, FH97, GW06, KZN07, LCS95, LA12, RHDL11, SX10, SP05, TLM04, TR06, THTL13]. Conjugate [GKS95]. Conjunctive
[SK14]. Connected
[AD95, CL00, CXP09, Chu95, CY96c, DW04a, EHNS13b, GG95, HWC+14, KWL+09, Kla98, LW95b, LCG+13, LWLN97, MM10, MBM08, PZLS01, TPK00, WCY95, WXY13, WL00, Wu00, YNW13, dCVGG02, CCCS90, CT94, dCVGG02, CCY95, CY96c, MC93, PN93, SP93, TC94].
Connecting [Add97]. Connection
[AM06, CFJ15, NSZ02, AS92].
Connection-Limited [AM06].
Connectionless [CHA07]. Connective
[KH97a]. Connectivity [AYA09, AD09, HCS12, JLW+10, LBS01, LWXX06, SRZ04, WMT+11, WJXZ14, ZH11, Ahn95].
Connectivity-Based [JLW+10, WJXZ14].
Conquer [CPM07, LRTZ96]. Conscious
[LZ11, VKS+09, XTHD10]. Consensus
[AE12, CHCC14, CGKP11, DMR01, FIMR01, LC02a, MP91, NCV05, SCY96, TFK99, WCR09, ZG+15, AB91a, Fu97].
Consensus-Based
[CHCC14, FIMR01, ZG+15].
Consequence [ZBK+15].
Consequence-Centric [ZBK+15].
Conservation
[TSSR07, WW13].
Conservative
[BT00, HN93, Nic92, WHL95]. Conserve
[CDBQ12]. Consideration [CJH+14, SH96].
Considerations
[CY00b, KPC09, SZ95b, IC92].
Considering
[YJC15]. Consistency
[AK99a, CLS05, CLC+12, CH95, HBFI2, HCJ+10, KKG05, Lee91, LXL08, Qad03, SHe10b, SL13, TC04a, TC06, TCC07, TXL08, TZ10, WDC04, XHL+11, LH94].
Consistent
[AJF96, GMS09, HMR99, HK06, MNS97, MG09, NX95, RS08, TGT10, USP+12, Vai99].
Consolidation
[BB13, LWZ+13, YWW+15].
Constant
[Aln94a, ACPC12, BM00a, BG098, CL97, Gen00, HALT95, wJNPS97, SHY14, Sto96, WC09, Ahn95, EA93, KS91, VS96, ZA92].
Constant-Time
[ACPC12, BGOS98, Ahn94a, Ahn95].
Constrained
[BKS03, BBD00, BGOS98, CKWC08, GBD07, GAG96, HO999, JRP+10, KHM05, KSEM08, LG13, RBS811, TNZ+12, TX08, WCH+08, WXZ+14, WYY+12, ZLAV04, ZCJY14, ZPY06, AN95, AMAM94, CSC07, SS94, SL93a].
Constraint
[GLZ13, KN12, ZLN+13].
Constraint-Based
[ZLN+13]. Constraints
[AA00, BR07, BEYCR13, BB13, CC13b, CKC08, DWW+11, GL06, GLQ109, LT00, NLQ14, RC95, RS06, TSYW14, TCS11, ZMLT13, ZL08, ZLQ09]. Constructing
[BS14, HJPL14, JWJS14, KPK09, KWL+09, KWH03, KH97b, LS96, LY14, ST99b, WCL97, WJ12]. Construction
[AFAGR00, DXW14, DWY+13, HY05, JYVA05, Lai12, LC10, LCN+07, PH96, TSK06, WKC12, XP07, YWD08, ZASA10, Sch91, You93].
Constructions
[AM99]. Constructive
[DR94, WLH+15]. Consumption
[BP98, CM10, DSM14, KGLK08, KA09, LW15, ZS09]. Contact
[ZMF10].
Contained
[ZS13]. Containing
[LH93, MT15, WNK96]. Contaminations
[JBJ+08]. Contemporary
[ZJS12].
Content
[BFPB10, CL13, CHA07, CLB08, CSM+13, CF08, CE10, Dan11, HLWV14, HJM12, JKS13, KLW12, KYB08, LLLG13, LHL+13a, NFFK14, TX15, VR05, ZYKG07, ZL11, ZY13, ZCX10, ZH07c]. Content-Based
[ZYKG07, ZH07c].
Contention
[ASG+14, BGDMZ97, CCK12, CWCS15, DMKJ96, EHNS13b, HLZY15, KP99, LK06, MNS97, MC06, S08, TGT10, USP+12, Vai99].
ESGG+15, Fre13, GG09, GvG06, GMCB01, GF13, JLF03, KB03, KTK11, LW09a, LCLD13, LDYZ15, MLLW06, MRLE01, MAS+07, MKY+09, OZ96, OC05, PS96c, Qua01, RvG02, Ren14, Sar93, SYL+14, SWH98, TUS13, TC04a, TC04b, WKS01, WWL06, XXZ03, YW05a, YTZ+11, YHS+14, YJC15, YYL+13, ZS13, ZLN+13, BL91].

Cost-Driven [ANE12]. Cost-Effective [ESGG+15, JLF03, KTK11, MRLD01, MAS+07, YW05a, YTZ+11, ZLN+13]. Cost-Efficient [MKY+09]. Cost-Optimal [OZ96, WKS01].

Costs [ABK98, Dan11, KDW01, KM02, SRL98, SY98, TF96a, Bil94, Gup92].

Coterie [HY01, HY05, NM92].

Coteries [BI95, HY97, HY01, HY04, KH97b, KH98, IK93].

Could [Dan11]. Count [ZMA12].

Count [ZMA12]. Counter [WS03, WPKL13, WLX13, XLW+06].

Counter-Based [WPKL13].

Coupling [BCQ+10, YD94b].

Coupling-Based [BCQ+10]. COUPON [ZMTL15].

Covariance [XHG15, LH93].

Cover [Amm12, MM10]. Cover-Sense-Inform [Amm12].

Cover1 [Amm12d]. Cover2 [Amm12].

Cover3 [Amm12f]. Cover4 [Amm12g].

Coverage [AD09, BSCB09, CMC+15, DWLY15, GCN+14, HCS12, HCY+12, HCL+12, HA10, JZH+14, KZLL14, LVA+11, LWX06, LM12, LDNT13, LWZ12, ML+13, RLV+07, WT08, XLPH06, ZYY+14b].

Covered [Amm12, FG06b].

Covering [ERSR13, GLJ12, TF96b].

Covers [PKL06].

CPS [PKL+12, Ano11c, Ano12h, LTW+14].

CPU [PD14, US04, WRB11].

CPUs [SL06].

CRAP [KHWT95]. Crash [RCS01, VJA97].

Cray [VTSM12].

CRCW [WH03a].

Creation [LLGP13, MKH91].

Credibility [LTBN+12].

CRESP [CGT14].

Criteria [Tse13].

Critical [ANE12, AD09, GJZZ12, HK06, Hol98, KA96, XTL06].

Critical-Path [KA96].

Cross [APK14, BZA10, DAA97b, DZLC15, SF10, THL13, ZCF09, ZCLS14].

Cross-Cloud [DZLC15].

Cross-Domain [SF10].

Cross-Layer [APK14, BZA10, THL13, ZCF09, ZCLS14].

Crossbar [MHa09, WLO, TC93, YC93].

Crossbar-Connected [WLO].

Crossed [CTHL14, LLZ+12a].

Crowd [YZJ+12].

Crowdsourcing [ZYW+14, ZYW+14a].

Crowdsourcing-Based [ZYW+14a].

Cryptography [BRTM09, EP05].

Cryptosystem [CCT+14].

CSI [Amm12, WXY+13].

CSI-Based [WXY+13].

Cube [BP98, CL00, Chi98, CY96c, HGC05, JYVA05, Kla98, LCRW98, LL12, LMLM13, PW99, PN93, SCL00, TLM04, TF96b, Wu98, CW00, DAA97a, Efe92, KP99, MC93, OC93, OD96, PSK99, PG07, SG94, SB94a, TC94, ZL96].

Cube-Based [Wu98].

Cube-Connected [CL00, CY96c, Kla98, MC93, TC94].

Cubes [CSH00, Fan98, Fan02a, Fan02b, FLJ05, LMLM13, RAY98, RC95, Sca99, SX08, Wan08, Wan12, Wu97a, XS11, SX09].

Cubic [CP00, GD95, SP95, YP98].

Cubical [LW95b, Cap92, SC94].

CUDA [WJB14, vdLJR11].

Curves [GM97, PB96].

Customers [GPF12].

Customized [BJM+05].

Customizing [SHS+99].

Cut [BCKSN12, CJKR98, Dua96, KP01, QNR99].

Cut-Through [CFK98, Dua96, KP01, QNR99].

CUTS [NZWL14].

Cyber [Ano08c, Ano11c, CTX+12, HGY+14, LQY+12, LCSC12, MV12, RXD12, TGV08, YQZ12, PKL+12].

Cyber-Physical [Ano08c, Ano11c, CTX+12, HGY+14, LQY+12, LCSC12,
MV12, RXD12, TGV08, YQZC12, PKL+12.
Cycle [CHB98, GW06, IMH12, LH05, Ros02, RH04, ZKB08, SKF94].
Cycle-Stealing [Ros02].
Cycled [GCN+14, HCS12, JLM+12].
Cycles [BT98, CL00, HCH99, Kla98, LW95b, LKM10, LHJ12, MS03, Wan08, MC93, TC94, YM95].
Cyclic [DDP+98, cFC98, GS11b, HWSH00, LW09b, MJRS06, PPR99, PD99, TG99].
Cyclic-Cubes [cFC98, HWSH00].
Cycling [Li14b].
D [CCLW15, CLHW13, CYY00, DS05, GR90, HWZE10, JKA07, LMN94, ST99a, SY00, SJPS01, TSP+08, TC95b, WH03a, WJTZ14, ZM13, ZYX+10].
D2P [MBO15].
DaAgent [MX03].
Daemon [KY97].
DAG [BOC09, CJ10, KLH07, KGS94, MLS94, WSG01].
Dags [CMR07, SFL+14].
Daisy [VM04].
DASH [LLJ+93].
Data [ASG+14, AKN95, AMY09, AMS97, ACNP11, AM06, AB14, AKSS04, AA14, Bapo12, BG13, BcFGM08, BH13, BB13, BW96, BE98, BSM+11, Brun14, BZBP10, CJI+14, CWL+14a, CW02a, CDBQ12, CHC04, CS97a, CL09, CHTW12, CLLS12, sCCyW14, CL14, CY00a, CIH13, CCT+14, CB989, CJPW06, CN02, CN04, CGM05, CAZ04, CSR07, CWC+13, DY97, DGFR03, DW+15, DZLC15, EHWX10, EBS02, EDO06, EVW07, ELX+11, FC10, FCD+13, FGEL14, GLF115, GAL01, GL07, GETFL14, GLV06, GYX+10, GG11, GJPMP+12, GF13, GGF+14, GHL14, GSS96, HV07, HOZ12, HQL+91, HJLP14, HCYL06, HBF12, HH95, HZ06, HC14, HN11, Hur13, IBC+11, IdM12, JSK11, JBR+14, JGG+11, JCL12, JLDC05, JJJW11, JYVA05, KK04, KCS+99, KCW09, KW11, KAY+06, KXL+14, KPG+12, KCP96, KET06, LAV03, LGD14, LC95, Lee97, LRG99, LSCZ07, LXLH11, LAMJ12, LYGX12, LLL+13].
Data [LCS14, LWZ14, LWY+15, LCL03, LT12, LRS02, LWP07, LZWY13, LLZ+12b, LCA13, LLG14, LTMD11, MY07, DLL14, MDCZ14, MV12, MMN04, MBV11, MVB13, MBH+10, MTL95, NZP03, NNKL13, NSD93, NTLW11, ON06, OXL06, PK99a, Par95, PHP03, PD14, PC05, PP96, PS03, PSC+95, PPBSA97, PLT00, PKW05, QGPZ13, ROHM06, RSB97, Raso14, RZH+11, RZW+13, Ren14, RD98, Rob04, RJD05, RSN14, Sah00a, SF08, SML13, SMS+13, SKB04, SkLC+03, SVBB05, SPF09, SF10, TS98, TK11, TG08, TVG13, TF96a, TTB+00, Tic14, THB+14, TP13, WWR+11, WW11, WMYH12, WCR12, WJTL12, WCLK12, WVT13, WX+13, WW13, WZ14, WKT11, WLL10, WCF13, WSSZ13, XCC04, XL04, XRY09, XSZ+10, XS10, XTL06, XLM+11b, XSZ13, XLSR13, Yan14, YNW13, YJ13, YJ14, YYYY+14, YXWW14, YLZ+15a, YHS+14, YWW+15, YK11a, YYY+14, YYY+15, YLZ+15a, YWW+15, YYK11a, YK11b, YKP08, YRL11, XYG12, YQLS14, YJC15].
Data-Centric [ASG+14, GHL14, SMS+13].
Data-Driven [KET06, PK99a, ZZZ+09].
Data-Flow [CS97a, CY00a, EG93].
Data-Intensive [HC14, KCW11, MBH+10, ON06, OXL06, XZ04].
Data-Parallel [GSS96, JSKK11, LC95, SP99, HQL+91].
Database [DRSL15, FCF00, ZBJ+05, GD94, Om90, TB93, Var93].
Databases [FCM14, GLV06, HCY97, LC04, Men05, WH98, PK92].
Datacenter [AOV+12].
Dataflow [BG90, EJGYAM14, PBD+13].
AM93, Lee91, LHS92, PAM94]. Dataflow/ von [EJGYAM14]. Dataflow/ von-Neumann [EJGYAM14]. Dataspace [SvVB05, CR90]. Datasets [MA14]. Datatypes [JDB+14]. DAW [CT07]. dBCube [CAB93]. dbx [NE01]. DCMP [ZKB08]. DCNS [GMF13]. DCS [CLSZ12]. DDC [KWZ+12]. DDFCharts [RSR11]. DDoS [CS05, CHK07, LLY05, SX03, WS03, Wu14, YZDJ11, YZJ+12]. Deadline [KGM97]. Deadlines [CB14, PP12]. Deadlock [ADMX+12, BC96, CBD+01, DA93, Dua95a, Dua95b, Dua96, DP01, DLPP05, FF98, GFG+99, JKA07, LMN94, LX12, LPD05, MRLD01, PPD03, RGBC11, RLD03, SHG11, SP03, SP05, TW00, VS11a, VS11b, VS14, WP00, XL08, XL10, Bir93, Dua93, GPBS94, PGDS94, PGFS94, PN93, STMD96]. deadlock-and [GPBS94, PGDS94]. deadlock-avoidance [Bir93]. Deadlock-Free [BC96, CBD+01, Dua95a, Dua95b, Dua96, DP01, DLPP05, FF98, GFG+99, JKA07, LMN94, LX12, LPD05, PPD03, RGBC11, SHG11, SP03, SP05, TW00, VS11a, VS11b, VS14, WP00, XL08, XL10, Bir93, Dua93, GPBS94, PGDS94, PGFS94, PN93, STMD96].

Deflection-Routed [FR96]. Degradable [JWJS14]. Degradation [YJ97b, HW91]. Degree [BEDCR13, CL97, EF05, HALT95, KMM13b, LSW04, LMSRSR13, LY14, WMN99, YV98, PN93, VS96]. Degree-Dependent [LY14]. Degrees [CF98]. Delaunay [LCWW03, LSW04, SZ12]. Delay [ANN+13, AH06, BRS07, BGMZ97, BC95, CS01a, CCCB14, CLSZ12, DF09, EHSNJ3a, Fu97, FQWL12, GJLZ13, HL12b, LLY04, LAV+10, LCZ13, LW12, LLA+06, PCKB11, PLZW14, PNAK11, RBSS11, RS12, SJKC06, TYK99, TSJ07, WBPF11, WYW13, XL+11b, XGZW14, YHS+14, YXG12, ZGH14, ZYWC12, ZMTL13, ZDG+14].

Demands [XCZ02]. Demonstration [GB92], Denial [CPM07, SL09, TJH+14, XSTZ10].
Denial-of-Service [CPM07, SL09, TJH+14, XSTZ10]. Dense [FGEL14].
Density [AD09, WCF10].
Departure [CHL09], Departures [LW14].
Dependability [PPD03, ZJLS12, DK92], Dependable [Ano98c, ABC01b, HSH+99, PABD+99, SR99].
Dependence [BE98, PP96, PK04, TN93a, KKP91, LYZ90, SF92a, VJ93, WT92].
Dependences [PW95, XC01, KS91].
Dependent [AOW+12, CASM07, Fre13, LY14, SP03, AT07, OSS93].
Deployment [CBM+07, CCS+12, MVML11, SAM14b, SKCL09, SHX+10, WT08, WLL11, WSY15, YLW07, YG08].
Depths [CS90, HH13, Hen14, PWW00, FHRT93].
Depth-First [PWW00, CS90].
Depth-Optimal [HH13]. Deregulated [Ren14, ZCJY14].
Derived [JDB+14, WL97]. Deriving [Abr97, XP07].
DESCEND [Nas93]. Description [Q903].
Design [ANKA99, AS96, ABS01, AKP14, Ano04c, ACD+09, BDD+96, CRS06, CCS+12, CSR+09, CJHG08, CV08, CY00b, CL05, CS03, Din06, EAMEGI11, Fen14, FV03, GG10, GV09, GMP01, GMR98, HCM09, HP06, HY07, HSX+12, HA13, IBC+11, ICD92, JKA07, KYD+07, KCN90b, KL14, LB00a, LRW12, LL11, kLCC+06, kl11a, LLC10, LG08, LLZ+12a, LK04, LAS04, LLA+06, Lu14, MCM04, MB92, MCG08, MYA01, Pad91, Pak07, Pan14, PSL+11, PGBI03, RSR11, RB90, RLW+07, RLY+15, SKJ07, SBF00, SVM07, SMBT90, SH94, SF09, SHX+10, SP07, SZ11, SM02, TBL13, TC95a, VJ94, WMXZ06, WLL+13, WFO6, WZGR10, WCF13, WML14, XPL04, XXWY10, YJ97a, Yan14, YTB92, YN00, ZD12, ZYZ+14, ZGL+15, ZZC10, ZW14, LKG92, TV92, WF94].
Design-Space [MCG08]. Designing [Ano98b, BP96, BC96, CCCC90, GFL97, KHWT95, THH96, WA99, WCR09, YK98].
Designs [HYX11, LHL+13a, QGPZ13, TC95b, YW05a]. Desired [LTMD11].
Destination [TCS13].
Destination-Oriented [TCS13]. Detailed [MMBdS14], Details [Ano12h].
Detecting [CQZ+12, HZ97, ISAZM09, LPZ12, MCM09, SM97, SWWJ08, WWBC14, XSTZ10, YLZ+15a, ZQA14].
Detection [ALLR14, ADMX+12, ANKA99, AMPR01, BCVC05, BCSK12, BT98, CWS12, CHK07, CC15, CK96, DTE07, D013, DL02, EK10, FMG02, GW94, GW96b, GLM13, HS99a, HST+11, HYC+12, HH12, KKK11, LT97, LLS06, LCN+07, LWG+12, MS03, MSG07, NO00a, NFFK14, PLZ14, PK00, RLW+07, RLD03, RNKZ03, SK14, TWL11, TJH+14, Tic14, TT01, WFA13, WW+13, XL08, XL10, XHHC13, XHG15, XXY+10, XL96, XGZW14, YCTC13, YHC+13, ZLKK07, ZYW+14b, ZDG+14, GMG96, HYX11, LHL+13a, QGPZ13, TC95b, YW05a].
Detectors [SRB14, YTZ+11].
Detector [SRB14, YTZ+11].
Detection [CH01, sFC12, HMR99, KCS+99, KL99].
Detrending [HMW93, Tho93].
Deterministic [BRS97, CF95, FSC+12, HA10, KHL07, KWOA05, LW14, PF96, ZY95a, XB98, AV94].
DEUCON [WJL07]. Developing [GMS09, LPD05].
Development [HAD12, TS98, WZGR10, Gab90].
Device [KN12, LZW+14, ZYW+14b].
Device-Free [ZYW+14b].
Devices [CQK+04, KHK15, LG+13].
DFTs [GR90].
DHT [CSC07, LQZ09, SX10, SL13a, ZH05].
DHT-Aided [SL13a].
DHT-Based [LQZ09, ZH05]. DHTs [AAAK+14, YL11a, TXZ+11].
Diagnosabilities [CCC05]. Diagnosability [CH14, Fan98, Fan02a, Fan02b, HC09, HT07, LKL11].
Diagnosing [TKC+15]. Diagnosis
Diagonal-Propagation [TLGP97].

Diagram [AD08, EW97].

Diameter [DAA97a, DAA00, EF95, Sib12, MC93, TR93].

Diatoms [KWL+09, TCT14].

Diagonal [TLGP97, YFJ+01].

Diagonal-Propagation [TLGP97].

Diagram [AD08, EW97].

Diameter [DAA97a, DAA00, EF95, Sib12, MC93, TR93].

Diatoms [KWL+09, TCT14].

Diagonal [TLGP97, YFJ+01].

Diagonal-Propagation [TLGP97].

Diagram [AD08, EW97].

Diameter [DAA97a, DAA00, EF95, Sib12, MC93, TR93].

Diatoms [KWL+09, TCT14].

Diagonal [TLGP97, YFJ+01].

Diagonal-Propagation [TLGP97].
GG09, GGS10, GMS09, GY95b, GBD07,
GFG +99, GLV06, GG11, GY07, GCZ15,
HGY +14, HDRS00, HOZ12, HY05, HP14,
HHM +00, HGC12, HSH +99, HKM +94,
HM95, HPT04, HCSC13, HCD97, HKH +10,
HXC +11, HPP +12, HCL +14, HHJ02, dM12,
JR96, JNGS06, JHMV12, JKS13, JKVA11,
JS90, JXT +04, JLS02, JZW +14, JCWB10,
JW00, KMW95, KKS01, KKM08, KHM05,
KGM97, KN12, KH04, KR00, KPK09,
KK93a, KL99, KCW09, KA05, KTK11,
Ksh10, Kuh14, KW07, LTB +07,
Lee97, Lee06, LJCL08, LZ11, Li07, LJ15,
Li11, LC99, LCL03, LLL09, LT10, LHM12,
LJW +07, LNZ +13, LCS +15, LK00, Lop02,
LC04, LWK05, Lu14, LC02b, MZ05, MJ98,
MNS97, MJRS06, MBTPV06, MB13,
MMJ03, Men05, MPM15, MDM13, MG09,
MLVD12, MOF05, MROD07, MP97,
NSU97]. Distributed
[NNKL13, NCKL14, NN13, PAM95, PKS14,
PR05a, PDH10, PH12, PN95, QD05, RSR11,
RV02, RKHM06, RSB07, RGL05, RMO +95,
RGK09, RHM09, RBSP02, RLD03, RRFH98,
SF08, SST12, SM97, SKS02, SKCLO9, SBK02a,
SBK02b, SH95a, SGB08, SL13, SLGW14,
SCK00, SW96, SLM +10, SE98, SP05, SCW07,
SVAS04, SJ99, SB04, SNI02a, SNI02b, SS09,
SF10, SM02, SMH02, TZN +12, TCLY07,
TZ10, TF01, TSDK06, TD01, TF96a, TM97,
Th06, TH06, TCKL11, TP95, Tsa13, Tse05,
TT01, TKP12, TVCM12, WWDM14, VVR07,
WXLZ06, WWL06, WCX06, WJLK07,
WTO8, WZQY14, WOT +07, WUM10,
WH98, WZGR10, WSSZ13, WL14,
WYCZ14, WLZC15, XHYL05, XP12, XL04,
XLW +06, XCZ08, XJY +10, XB98, XR00,
YF97, YNW13, YHS +14, YZS13, YW98,
YC14, YYY +11b, YRL11, YJC15, YWC11,
YC12, ZG11, ZJL+12, ZGL10, ZZR12].
Distributed
[ZZGW13, ZT14, ZSY14, ZGL+15, Zha03,
ZS98, ZHQ12, ZHI98, ZPY06, ZKB08,
ZJWX08, Zou14, vDSP96, vdmDM07,
ADM92, Arv94, BGM94, BIA+97, Bil94,
CR94, CO95, CY92, CYW94, CF94,
Fm97, GW94, GG94a, GW96b, HMR94,
IK93, KP93a, KK93b, KM91, Kumb92, KH93,
LW95a, LKV92, LY94, LY93b, MN92,
MSMA90, MR92, MSSA94, OSS93, PJ93,
PLW96, PK92, RS94, RS91a, RP94, SST94,
SH93, SC93, SH94, SM94, SSG91, Sin92,
SR91, SY93, SW92, Th93, TKT92, Var93,
VB93, WCSS92, WS93, WM93, YJ97, YK92,
ZSL92, MBO15]. Distributed-Memory
[DA98, RV02, TVCM12, SST94].
Distributed-Parallel [MJ98].
Distributed-Shared-Memory [Bor00].
Distributed [AF05, Bar98, BGJ06, BMB +10,
CHA07, CTLH14, CF08, CWCC07, CN02, CN04,
Dan11, DDV +07, GAL01, GLQL09,
HLWV14, KLW12, KM02, KVB08, Lee97,
LLLG13, Li03, LAMJ12, LHL +13a, LLC10,
LA12, MZ05, NZP03, PNAK11, Rob04,
SF08, SCBOOK11, SVB05, TC04a, TX05,
THB +14, VR05, WFA13, WCD08, XHL +11,
XH08, XZ14, YM09, ZL11, ZY13, ZCX10,
ZJITZ14, dSLMM11, CV92, RS91a].
Distributions [LR99, PSC +95, TG99].
Distributed [CY96c]. Divergence [AB14].
Diverse [LG08, TH +15]. Diversity
[MY11]. Diversity-Based [MY11]. Divide
[CPM07, LRTZ96, YPL13].
Divide-and-Conquer [CPM07].
Divide-and-Merge-Based [YPL13].
Dividing [KKK11]. Divisible
[Bar98, BCL+05, CG08, CWCC07, DW03,
DW10, GKK05, HV11, JWV010, LIO3,
SRL98, VM04, YvRC05]. division [QM94]. DNS
[WZP +03]. DOACROSS
[CY96a, CY99, KS91, XC01]. Document
[Tse05]. Documentation [GM09].
Documents [BV05]. Does [LHL +13b].
Doing [SF09]. Domain
[BJM +05, GMS09, GJLZ12, kL11a, NWL14,
Pak07, Pre99, PLT00, SK02, SKB04, SCP02,
SF10, XXWY10, BGO +97, XZ13].
Domain-Based [SCP02].
Domain-Oriented [GMS09].
Domain-Specific [Pak07, Pre99, BGO+97].
Domains [CHK07, ADM92]. Dominating [CHD+15, DW04a, KWL+09, MM10, SSZ02, Sto04, Wan04, Wu02, WCDY06, YC14, jTM97]. Dominating-Set-Based [Wu02].
Domination [yH02]. Domino [LNOZ03]. Double [CZWZ14, DY05, GYX+10, LWZ12, SZ95a, TTJX12]. Double-Edged [GYX+10, TTJX12]. Double-Loop [DY05].
Down [KP01, PT11, SKP12, ZYLC14, KDL91]. Downlink [MSM06]. Download [LA04, SJKC06]. DP [JKR01]. dQUOB [PS03]. DRAGON [HH12]. DRAM [WHM09]. Draw [COP00]. Driven [ANE12, BO98, CML05, CWCS15, GIX+12, KET06, LZTY09, PK99a, PPR95, RBSP02, SLL13a, SSRV99, SJKC06, SJ99, SHM+12, TZB+14, WR04, ZXZ+09, BCJ90, HE92, HB92, NGL94]. Drivers [LQY+12].
Droppers [WFK+12]. DRP [GJDA06].
DSC [YG94]. DSDM [AMH08]. DSM [CH04a, LBS05, PBA03]. DSP [FO05, GR94, SZX05]. DSystemJ [MG14]. Dual [CDV+06, JCLJ12, LSZ09, MGDZ07, OC05, RMO+95, SCY96, BR91, CV92, KGM96, MP91]. Dual-Core [MGDZ07]. dual-network [CV92].
Duplication-Based [BOC09]. Duration [XHX+13]. during [SAH15, ZWL+15]. Duty [GCN+14, HCS12, JLM+12, Li14b]. Duty-Cycled [HCS12, JLM+12].
Duty-Cycling [Li14b]. Dynamic [AMP07, BCVC05, BCQ+10, BH13, BB13, BM00a, CJW+15, CdMB05, CBD+01, CO95, sCCyW14, CYC+15, CCLW15, CRN09, CCCB14, CCK08, CCK12, CHB98, CAZ04, CWC+13, DM11, DW+15, DB08, DHP+07, DW13a, DB06, DvdMK09, DIM97, DWF12, DLPP05, DMKJ96, DRK11, EHWX10, FPF13, GZW14, HKL00, HV07, HCYL06, HLWV14, HW08, HH12, HS99b, JL90, JCBW10, KKS07, BKC+01, KM10, KSME08, KPC09, KA96, LW95b, LLY04, LCB96, Li08, LC12a, LMSRSL12, LBS01, LLWC09, LDNT13, LZY13, LCA13, LPD05, MWZ+14, MM98a, MM98b, MG14, MMJ03, MOB15, MGR12, NIP11, NMG15, NL11, OB00, PPR10, PP96, PB96, PP03, PS03, Pre99, Rao14, RHD11, RZV+13, RCC+14, RRMM09, RGB11, RPW93, SSK01, SGC14, STW00, SVC12, SB04, SS00, TSG09, TC04b, TYS+12, THH08, TF96a, TJLL12, Van14, VB95, WL08a, WQY14, WK11, WT98].
Dynamic [WLL08, yWeH11, WS14, Xia14, XC02, XZL05, XSC13, XSO1, YC01, YJ13, YHC+13, YZS13, XYW03, ZFG+14, ZX13, ZT13, ZH14a, ZMC03, ZLP09, ZL10, ZT01, AM93, GDI93, HK93, HLV94, Lee93, LC94, OSS93, Sin92, WLR93]. Dynamically [AJMW14, DDY99, LX10, TW98].
E-Commerce [WMGA15, ZWX06].
E-Kernel [MS94a]. E-SmallTalker [CYZ+13]. e-Transaction [QR07].
Economies [CB13, WZS12]. Ecosystem [ZDWR11]. EDCA [MR12]. EDF [ATZZ14, Bak05]. Edge [CSP00, CLH13, DLL+11, FH97, HL09b, KWH03, RS08, SLH97, WY07, LR93].
Editing [SS09, WUM10]. Editor [Sto11c, ACM08, Ano11e, BKK11, Bad15, Bhu06b, Bhu06a, Bhu07a, Bhu07b, Bhu08, Bhu09b, Bhu09c, KMT91, Sto10f, Sto10a, Sto10b, Sto10c, Sto10d, Sto10e, Sto11b, Sto12a, Sto12b, Sto13c, Sto13a, Sto13b, Yew03, Yew04a, Yew04b, Yew05a, Yew05b]. Editor-in-Chief [Bhu06b]. Editorial [AA06, Bhu06b, Bhu06a, CRS06, IT07, Law95, Law97, PP05, Sta98, Sta99, Sta00, Sta01, Sta02, Sto11a, SR99, Yew02, Yew06, Ano99g, GZ03, Zha03]. Editors [LL07, CLL+14, MBMC13, ON02, PKL+12, RFZ11, WA99, ZH99a]. Effect [CC03, CHL09, ZLE91]. Effective [CC93a, SH94]. Effectiveness [WCBX06, Sar93]. Effects [HWWX99, KSP09, PB12, WSNA95]. Efficiency [CW06, CTF09, EK10, HD15, LH06b, MGD207, MT97, MJK14, RK93, WKK11, XLM+11a, ZQSY13, TT94]. Efficient [APMG12, AFA12, ACT06, AFB12, Ara08, AD95, AB03, BCC05, BN12, BGBP01, BHJ02, BG09, BHK+97, BXXC12, BS12, CF99a, CHA07, CF00, CDBQ12, CCSC09, yCM98, CC03, CBE93, Che95a, Che95b, CW00, CT02, CPhX04, CJL+12, CY96b, CC98, CC99, CIH13, CTD+09, CH98, CMG+14, CLS04, CMDP09, CRD11, DW06, DWX14, DM11, DZ04, DW+11, DS94, DBG+14, DSASSLP12, DDV+07, EBS02, EHH11, EDO06, ESGG+15, FC10, FLH13, FHW11, Fnn14, FJY98, FARH02, GBD+13, GGS10, GPST09, GVV09, Gon03, GJDA06, GA03, GW06, GLV06, GG11, GJLZ13, GDM+13, GKG06, HH13, H000, HML+14, HHL08, HCY+12, HA10, HGC12, HP06, yH02, HW97, HN11, Ian97, IRS06, IB95, JHR+14, JZXX99, JTP+08, JJW11, JCW+12, JGZJ14, JTC08, JB01, KABK03, KZ96, KSP02, KHW79, KLWK12, KP01, KWK13, KB06, KP93a, KXC11, KKK11]. Efficient [KYB08, KPG+12, Ksh10, LZ12, Lee97, LDC008, Lee12, LWY96, LPP13, LMS04, LYZ90, LPZ98, LRG09, LXL08, LWC+09, LA+10, LC10, LDSS+13, LLY+14, LTL14, LHR+15, LOSW99, LCL03, LH03, LNOZ03, LKT11, LJW+07, LWP07, LWW+13, LZF+13, LS14, LLM+14, LLL+14b, LVD11, LLL+12, LLG14, LC02b, LX12, MGZ07, MY07, MB07, MZ05, MM98a, MS03, MTX+11, MA14, MKY+09, MQ97, MRGR12, NO98, NOS99, NO00a, NOZ01, NOZ02, NSU97, NLGQ14, Par95, PH96, PPR99, Par01, PM02, PF12, PAB13, PDC94, Pre99, PH02, Raj05, RSS90, Rao14, Re09, RJ90, SS96, STY09, SVP08, SJL08, SO95, SZXS05, SJM09, SP95, SCP99, She10a, SLL13a, SLGW14, SP98, SKPS01, ST93, SW92, SCH11, TKS11, TGV08, TYS+12, TSK6, TCR96, TD01, TS08, TGA13, TC95a, TWH99, Ven14, WHH+13, WW92, WHW05, WXLZ06, WYL06, WLZ08, WLS+11]. Efficient [WCR12, WK11, WMWL08, WSG01, WLLL10, WKC12, WSSZ13, WH+14, XAY+14, Xia14, XUAS99, XJ14, XJY+10, XL96, XH08, XLM+11b, XLM+12b, XLM12a, XL13, XQL+14, XAYM14, YL07, YLL+07, YW08, YW10, YJ13, YXSS13, YJ14, YLZ+15a, YK03, YV98, YLW13, YYS97, YL96, YQLS14, YCW12, ZWD+10, ZS10, ZPDI12, YZ13, ZQH13, ZH05, ZHCW12, ZDG+14, Zia93, dB98, AM91, CC93b, CCCS90, CAB93, Cor92, Gab90, KN95, LG94, LC91a, MS93, MM06, LLZ+12b]. Efficiently [ZSH+11]. Effort [HY07]. EIC [BH09a, Sto13c, Yew06]. Eisenstein [FB10]. EKMR [LCL03]. Elastic [sCCyW14, GJPPM+12, KSP02, SX10, THB+14]. Election [CC93a, DB08, DIM97, NO02, Sin96, YK99, AAG94]. Electric
[QLC13]. Electrical [JMZD12]. Electricity [CJZ12, GF13, Ren14, ZCJY14].
Electrocardiogram [JNGS06]. Electronic [LZ05, SF10]. Element [LC99].
Elementary [ADD+02, CHC04]. Elements [LLH14, PKL06]. ELIAS [KXC11].
Eligibility [LMS04]. Eligibility-Based [LMS04]. Eliminate [GP99a, NSD+91, WWH13]. Elimination [Agr98, ABK98, CY99, FRGJ07, MGA+09, SSZ02, Sto04]. Elimination-Based [SSZ02, Sto04]. Embedded [ADMX+12, BB05, CCT10, CCL13, CLS04, FDC00, GG10, GVV09, JNGS06, KHM05, KB06, KM08, LA04, MZ05, MRGR12, NLGQ14, RSR11, RGRM14, YW98, ZBM09, Tak93].
Embedding [Ano99h, Avr99, BS96, FLJ05, GW06, GM94, HS97, JHK97, LC96b, LH05, LH12, LC01, SBS08, SX08, TCS07, Wan08, Wan12, YR96, CARW93, CL93, MS94a]. Embeddings [FJL07, GS95, dBL98].
Emergency [LLS13, WZQY14]. Emphasis [GMCB01]. Empirical [JKVA11, KCYM10, SLY90, DF97].
Employing [ADG06]. EMPOWER [ZN04]. Emulation [WLZ07, ZN04]. Emulations [OHWR99]. En-Route [LYGX12]. Enable [XAY+14]. Enabled [BB08, CKK+04, LYY04, MSM06, Pan14].
Enabling [BH13, CL14, KPC+12, LLS14, WWR+11, WCR+12, ZY13, ZLCZ14].
Enclosure [WCF10]. Encoding [HW13, SP98, THH96, WXYX14, RJ94].
Encoding/Decoding [THH96]. Encrypted [CWL+14a, FCM14]. Encryption [GZZ+13, HSMY12, LYZ+13, LHL+14, She14, TKR14].
End [ASB02, HKA12, HWX12, JTC08, KOPS10, KCD07, KM08, LZ12, LCZZ13, LWK05, SF07, SS07, WJL07]. End-Host [SF07]. End-Systems [ASB02].
End-to-End [HWX12, JTC08, KM08, LZ12, LCZZ13, LWK05, SS07, WJL07].
Energy [AD08, Amm12, BCTB13, CHA07, CJZ12, DBCQ12, CKK+04, CTF09, CM10, CLHK11, D CW+15, DZ04, DKK04, DG12, FHA06, FLP+07, GFS+10, GVY09, GY07, GF13, GGF+14, HLZY15, HCY+12, HA10, HJS+11, HGC12, IRS06, JHR+14, JW11, JGZZ14, KAO9, KSM08, KPG+12, KM08, LTTW08, LCD008, LZ11, Lee12, LWC+09, LAV+10, LXY+13, LQK+13, LG13, LdSS+13, LTL14, LCLL15, LW15, LRS02, LH06b, LW07, LA12, LGG+14, MGZ07, MY07, MZ05, MTX+11, MK14, MRGR12, NO00a, NOZ01, NOZ02, NLGQ14, PAB13, RZH+11, Ren14, SJPL08, SCO+07, SOTN12, TM06, TGG08, TSK06, TSS07, WPT10, WLS+11, WW13, WMW08, WDC08, WLL10, XLM+12b, XLM12a, YK03, YJC15, YZC08, ZS09, ZS10, ZQH13, ZHWC12, ZSB+13].
Energy-Aware [AD08, Amm12, GVV09, ZHLC15].
Energy-Balanced [RZH+11, WPT10].
Energy-Cognizant [ZSB+13].
Energy-Constrained [LG13].
Energy-Efficiency [MK14].
Energy-Efficient [DZ04, HCY+12, HA10, JHR+14, JW11, JGZZ14, KPG+12, LCD008, Lee12, LWC+09, LAV+10, LdSS+13, LTL14, LW07, MGZ07, MY07, MZ05, MTX+11, MRGR12, NO00a, NOZ01, NOZ02, NLGQ14, PAB13, RZH+11, Ren14, SJPL08, SCO+07, SOTN12, TM06, TGG08, TSK06, TSS07, WPT10, WLS+11, WW13, WMW08, WDC08, WLL10, XLM+12b, XLM12a, YK03, YJC15, YZC08, ZS09, ZS10, ZQH13, ZHWC12].
Energy-Limited [FHA06].
Energy-Oriented [YZC08]. Energy-Time [FLP+07]. Enforced [BCdSFL09].
Enforcement [LC11, MTL95]. Enforcing [LW09a, TF96a]. Engine [GI11, WTL10, ZKSY14, KBS11, SA09].
Engineering [ABE+11, SY07, Sto10f, TP13]. Engines [DSASSLP12, FHW11]. Enhance [OHWR99, XL04]. Enhanced [AAAK+14, BJ13, BGO+98, BGOS07, CMV+10, HCHM09, KK03b, LYGX12, MZA02, RYLZ10, SM03, BGO+97, KS94].
Enhancement [GDM13, IB14].
Enhancements [SKP12]. Enhances [WYX15].
Enhancing [AA09, BCF13, CLY08b, CK96, LK07, RPY011, RD09, WSWY15, ZH06].
Enough [BKL11, CL13].
Ensure [WT08].
Ensuring [CLHK11, KK03a, QR07].
Enterprise [sCCyW14, XHZ13].
Entropies [GIP13, YZDJ11].
Enumeration [BDL95, RMG14].
Envelope [CW02b].
Environment [BA04, DS02, DvdMK09, Gon03, GZWN14, KKH02, LLJ13, LZZP13, LC02b, MOFD05, MROD07, RPYH08, SGB08, YLZ13, ZLX14].
Environments [AJF96, AKSS04, BZA10, CJ10, CLY08a, CBK10, EHI11, EDO06, EVW07, FPF13, FGPL10, GR099, GN06, HYC12, HC14, HS99b, JRF10, KA06, KW08, LSKZ13, PFO1, SVM07, SWH98, SB04, TNZ12, TC001, TZ10, WDC04, WTL10, XH11, XTHD10, YHC13, ZFG14].

Evidence [XP12]. Evil [AS00]. Evolution [LLY14, Wan14]. Evolution-Cast
[Wan14]. **Evolutive** [DSASSLP12].
Evolving [CMPS11, SZ03b]. **Exact** [AV96, HH95, LC14, PF96]. **Exact-MBR** [LC14]. **Example** [Abr97, LBS05, PK95b, BCBzC92]. **Examples** [SS12]. **Exception** [XRR00].
Exchange [DD98, DD01, SY00, SJP'S01, TLGP97,YW00, YW01, YLW13, ZSY14, BCH94, Pad91]. **Exchanged** [Che07, LMLM13, LHP05, TCT14].
Execution [ABR97, AKSS04, CF00, CY96a, DH996, DÖ02, HÖ99, HCF03, HCY97, KL01, KBS11, KPR05, MGDZ07, MGS12, MT97, PH02, SP12, TSAL97, TRD13, WSB09, CIW91, KK93a, KM91, MLS94, RK94a, RK94b, RM90, Uht92, WCS92]. **Executing** [FB01a, GVGD95, WW92].
Executions [MJRS06, ZH14a]. **Existing** [dLCK+05]. **Expand** [MWZX14].
expanding [JS93]. **Expansion** [TL14, dBL98]. **Expansive** [CMR07].
Expected [WWW09]. **Experience** [CSR+09, DCSM96]. **Experimental** [BCJ90, Fei05, HS99a, KKCB02a, KKCB02b, NN96, PK04]. **Experiments** [GMR98].
Expiration [TC04a, TC06]. **Expiration-Based** [TC04a, TC06].
Explicit [YL08]. **Exploit** [RSP02, WX07, YZZ00]. **Exploitation** [LYW+12, PLT00]. **Exploiting** [AGGD04, AK98, BS12, CW06, CZYL14, DT14, GBD+13, GHL+13, HT06, HYZ15, JVMK11, JZH+14, JZWN15, LCB00, LLL+13, LG13, LL90, LWP07, LLXC12, MA01, Pre99, RSB97, RM90, RH00, TLM04, WLT+12, WK11, XAY+14, TT94].
Exploration [ABE+11, CL05, MCG08, Yan14].
Exploring [CC03, CH04a, HHK10, KYD+07, PC05, SP07, WL12a, WL12b]. **Exponential** [BCP+14, ZLF+11, MM96]. **Exponentiations** [Loui14]. **Exposed** [WWH13]. **Exposure** [ZZN07].
Expression [CT97, WPKL13]. **Expression-Based** [CT97]. **Expressive** [YJ14]. **Extended** [DW04a, KGK+13, KP92, Sca99, WU97a, Wu00, Wu02, WCDY06, YJ97a, ZMS08, LH93, jTM97, VGGD94]. **Extending** [FPGAD08, MJK14].
Extensibility [FGEL14]. **Extensible** [Din06, GETFL14, RFDS97]. **Extension** [CMC+15, HYX11, FD94]. **Extensions** [UZCZ97]. **Extent** [kL11a]. **Extent-Based** [kL11a]. **Externally** [LMR10]. **Extraction** [CTF09, JNS06, JLB+10, JLB+13, WJTZ14, Go93, GP92]. **Extrema** [BAMJ12]. **Eyeball** [XZH14].
F [Ahu93]. **F-channels** [Ahu93]. **Fabrics** [HDF07, Tze04]. **Face** [WWCB14]. **Factor** [GZ09, HXC+11]. **Factorization** [AHJ+11, CRWY15, FJY98, GKK97, KBD08, KLF13]. **Fading** [THL13, ZMA12]. **Fail** [CD08]. **Fail-Stop** [CD08]. **Failed** [Wan12]. **Failure** [DÖ02, FCF00, HSM09, HMK+00, KHM05, LM02, PS96c, SCY96, WYWZ08, YTZ+11, ZS95a, ZLKK07, ZYSH14, MP91].
Failure-Detection [HS99a]. **Failures** [BV10, CD08, CS96, HP14, MT15, Par95, PDH10, RCS01, Sin96, SS07, TKC+15, TCS97, YQZC12]. **Fair** [DVV07, HS08, IKOY02, KSP02, LMS04, LRJX13, LL00, MEKOT03, TYLG13, TCS11, WLX+15, TB94]. **Fair-Progress** [WLX+15]. **Fairness** [AMY09, CJH+14, JS98, Kar01, KYY11, LZWY14, NN10, XLM+11a]. **Faithful** [GG09]. **False** [KCRB03, LYGX12]. **Families** [TH01]. **Family** [BL05, CL97, CFC98, GY95a, Kop96, Tak93, OSZ92, VS96, Zia94]. **FAN** [AV96]. **FAN-INV** [AV96]. **Farewell**
Farther [XSZ+10, Fast [AD95, BAMJ12, BC06, BLO'94, CLPT02, CSS'13, DSO02, DCSM96, GVV09, Hsi03, JZW'14, JK99, KTK11, Ksh10, LZ02, LO95a, LAK11, LPZ98, MM96, PJC93, QC14, SLG10, SP95, SZ04, TCS13, THL13, TC98, VTSM12, WM93, ZY07, ABZ94, BCBCz92, CH92, ZA92]. Fast-Fading [THL13]. FASTEST [KA99]. Fat [CMDP09, KEGM12, MKY'09, RRRM09]. Fat-Tree [CMDP09]. Fault [AOK09, AB99, AM95, AMPR01, Ano98b, BG13, BM99, BHL'07, BC99, BCH94, CYW08, CL93, CLJ'04, CL95, KCO1, CD08, CXP90, CLH13, CC98, CCD'09, DTY99, DC98, DAA97a, DAA00, DAMK06, DY05, Dua97, EN12, FD94, FPGAD08, FIMR01, GY95a, GMM97, GN96, GMCB01, HØD99, HY99, HDF07, Her00, HCH99, HL90b, JZXX99, JHYK11, KIBW99, KH04, KT912, KLC97, KH97a, Lan95, LDCO08, LMR10, LH06a, LLGS09, LL12, LHSM95, LH03, LKT11, MGZ207, MM98b, MJRS06, MM98b, OS94a, OS94b, PG07, RO99, RST95, RRRM09, SFL99, SC99, SB04, SDDY00, SN02a, SN02b, SLH97, TJ07, THH96, TLO6, TCT14, TB94, TCS97, TH01, VDS99, WC09, WMWL08, Wu98, Wa99, Wu00, Xia01, XS11, YJ97a, YJ97b, YDW'09, ZJL'12, ZS98, ZCX'14, dB98, AM91, BS95, BP94, CS90, Chu96, GM96, KA99, fault [LG90, MN92, OC93, Rao96, RJ94, SB94a, SM94, Tez93, TC94, VJ93, VJ94, WF94, YZW94]. Fault-Aware [LG90]. Fault-Containing [LH03]. Fault-Free [HCH99]. Fault-Local [DAMK06]. Fault-Resilient [AOK09]. Fault-Tolerance [GMM97]. Fault-Tolerant [AB99, AM95, Ano98b, BM99, BC99, CYW08, ICL95, CC01, CC98, CCD'09, DDY99, DY05, Dua97, FIMR01, GY95a, GN96, GMCB01, HY99, ZJXX99, JHYK11, KH04, KLC97, Lan95, LDCO08, LH06a, LHSM95, MM98b, MJRS06, MB98, PG07, RO99, RRRM09, SC99, SDDY00, SN02a, SN02b, THH96, TCS97, TJ01, VDS99, Wu98, WA99, Wu00, Xia01, YDW'09, ZS98, ZCX'14, dB98, BCH94, CL93, FD94, OS94a, OS94b, RST95, TB94, BS95, CS90, KKO3a, LGO9, SM94, Tez93, VJ93, VJ94, WF94, YZW94]. Fault/ Intrusion [ZJL'12]. Fault/ Intrusion-Tolerant [ZJL'12]. Faults [CBE93, CC01, CIH13, FPGAD10, NT09, RCS01, SCY98, KA94]. Faulty [Ano99b, Avr99, CCE95, CT97, CH01, Fu05, GP99b, HCH99, JHK97, KY98, LH14, LC01, PKL06, SR98, SX08, TW00, WHH'13, XS11, YR96, TR93]. Favors [JJK13]. FC3D [RLD03]. FDAC [YRL11]. FDDI [BDS94, KZ96, SZ95a, ZS95b]. FDDI-Based [KZ96]. FDDI-M [SZ95a]. Feasible [ESGQ'13]. Feature [EK10, JNGS06, WYW13, WJWX14, GO93]. Feature-Based [WJWX14]. Federated [CSP13, WSSZ13]. Federation [Sam14a]. Feedback [FZGC06, LZY12, LWK05, LLA'06, PC07, PH11, SC05, SCH11, SS90]. Feedback-Based [PC07, SC05]. Feedforward [EAK97]. Feeding [LYG14]. Fei [YYX'09]. Femtocells [AJMW14]. Fermi [KTD12]. Ferry [ZH07c]. Fetching [WB98]. FFT [GK93, Har91, SBF00, TH93, WJB14]. FFT-Based [WJB14]. fiber [AAG94]. fiber-optic [AAG94]. Fibonacci [Hsu93, JHK97, Sca99, Wu97a]. Fidelity [CTX'12, SHX'10]. Fidelity-Aware [CTX'12]. Field [LCP14]. File [CTLH14, FV09, FBD96, HCSS13, HZJ'11, HJZ'12, HZJ'14, HY96, IRSNF11, JO95, LYW08, Li14a, kL11a, LLC10, MMJ03, NKP'96, She10a, She10b, SL13, SJKC06, WX07, WYCY14, XHL'11, XAYM14.
AGE94, BL91, KE90]. **File-Access** [NKP+96]. **Files** [DP02, HZ97, KA06, PM02, RY14, WJ12]. **Filling** [AB07]. **Filter** [LH93, QZW14, TSP+08, XXXY10]. **Filtering** [LKK02, LZR09, LYGX12, LLZ+12b, SX03, WH03b, SMJ92]. **Filters** [GHL14, MLVD12, QLC14, WH01, WMJ99]. **Find** [XZG09]. **Finding** [ACS13, HNO98b, KBHS14, LH03, MNS97, MLT+13, Pan98, Pan04, CF94]. **Findings** [HSX+12]. **Fine** [IMH12, KMM13a, Ksh03, LKBK11, MWJ+13, PKJ97, Rao14, RH00, RH04, Sun02, WJWX14, YRL11, ZF07, DAF95]. **Fine-Grain** [RH04, Sun02]. **Fine-Grained** [KMM13a, Ksh03, LKBK11, MWJ+13, PKJ97, Rao14, RH00, RH04, Sun02, WJWX14, YRL11, ZF07, DAF95]. **Finessing** [GAKR11]. **Fingerprinting** [LJG12, SL11, ZJL+12]. **Finite** [GLS07, LKK95, LC99, PBD+13, SKB04, TK96a, MD96]. **Finite-Buffered** [GLS07, MD96]. **Finite-Degree** [PBD+13]. **Firewall** [LG08, LG09, LC11, LDY15]. **Firm** [Ram99]. **First** [BMR99, PWW00, SV08, CS90]. **First-Fit** [BMR99]. **Fit** [BMR99, KY98, DCL+10]. **Fixed** [EF95, cFC98, OP99, QF14, WMWL08, PN93]. **Fixed-Degree** [cFC98]. **Fixed-Priority** [QF14, WMWL08]. **Flash** [CTLH14, HYZ15, LLZ+12a, Ven14, YZJ+12]. **Flat** [TC04b]. **Flexible** [DSY99, DCL+10, FPFP05, HCJ+10, HKS+07, JKT11, LDC08, SDFV96, TL06, Ts13, XZG99, RFDS97]. **Flexible-Schedule-Based** [LDC008]. **Flexibly** [PH05]. **Flexi** [LDC008]. **FlexRay** [Fen14]. **Flip** [CBM+07, KSP10]. **Flip-Based** [CBM+07]. **Flip-Error-Resistant** [KSP10]. **Floating** [ZP07]. **Floating-Point** [ZP07]. **Flood** [rCHG10]. **Flooded** [BCP+14, DP06, GS11a, KCK14, LJW+07, YK14]. **Flooding-Based** [DP06]. **Flooding** [SWW08]. **Floor** [BRSS08]. **Floow** [AAS03, ANK99, BÖ98, BJM+05, CS97a, CGZQ13, CY00a, DDY99, DF99, EHWX10, FY+09, HH11, hKYY11, LL06b, LNM95, MWJ+14, RLD03, SILJ11, WL13, XJY+10, YZJ+12, ZBK+15, AN94, Bok93, Dal92, EG93, KGS94, MS94b, NSD93, SMS93, TB93]. **Flow-Based** [FY+09, LL06b, ZBK+15]. **Flows** [DW+15, HL12b, JXT+04, LW09a, WSSZ13, ZMRS08]. **Floyd** [MF96]. **Fluid** [dSLMM11]. **Fly** [KS06, MRT09, PK00]. **Fold** [YW03a]. **Folded** [DCF95, ÖD96, Tan12, EAL91, KS94]. **Footprint** [CQZ+12]. **Force** [LW99c]. **Forced** [SL14]. **Forests** [VRK11]. **Fork** [Che01, Che11, LMT98, KS93, TR90]. **Fork-Join** [LMT98, KS93, TR90]. **Fork/Join** [Che01, Che11]. **Form** [Bar98, HCH+12, LKD10, ME95]. **Format** [GT02, MGS12, PD00, SL11, WP00, YHC+13]. **Formalization** [AH93]. **Format** [EBS02, KGK+13]. **Formation** [BMPP06, DW04a, KP12, LS04, MG14, SLM+10, WWL06, YS13, YC14]. **Formats** [JHMV12]. **Formed** [MS11]. **Formulation** [PK01, Tak14, KSA94]. **Formulations** [VS15]. **Fortran** [SLY90]. **Fortran/HPF** [UZCZ97]. **Forward** [Du96, FLH13, MTM02, WYD07]. **Forwarding** [BSCB09, Cha14, Fre13, HWX12, JGG+11, KCD07, LWY+15, LT12, LW12, WCBX06, WHB08, YL08, YXG12, KCPT96]. **Four** [CL07, CH95, WMN99, AH93, VS96]. **Fourier** [FA94, ZA92]. **FPF** [SHY14]. **FPFG** [HA13, RCK15, ZM07]. **FPS** [WLX+15]. **Fractional** [SVC12]. **Fragment** [MMJ03, SY93]. **Fragmentation** [NSD+91, YW93]. **Fragments** [Men05]. **Frame** [GYX+10, LW15]. **Frame-Based** [LW15]. **Framework** [Agr99, AAAK+14, Amm12, AKP14, BCCP04, BF04, BC96,
SGGB14, SZ08, Tak14, XZNX08, ZYSH14, CC93b, EF96, ATML08, BA07, BGJ06, DVV07, KHS07. **Ground** [ZS13]. **Group** [AKNR+04, AMP07, DS03a, DS03b, FB01b, GLL11, JKT11, Jou03, KKM08, LM01, LNY03, LL07, LC12b, MFLX01, SJd+09, SPB+10, TXL+14, TW14, XP07, XSTZ10, YW04]. **Group-Based** [SJd+09, SPB+10]. **Group-Strategyproof** [LC12b]. **Group-Testing-Based** [XSTZ10]. **Grouping** [ANN+13, CH08, LWX+11, LYGX12, LNZ+13, TKP00]. **Grouping-Enhanced** [LYGX12]. **Grouping-Proofs-Based** [LNZ+13]. **Groups** [JCWB10, LZWY13, STW00]. **Growth** [GZ09]. **Growth-Restricted** [GZ09]. **GSPNs** [BSP10]. **GT** [Tak14]. **GT-CFS** [Tak14]. **GTS** [HPH08]. **Guarantee** [LZ12, LZY14, LCW11, NTWL11, Ram99, XP05]. **Guaranteed** [Dwy+13, DZHG04, KS01, LGD14, LWXS06, NLGQ14, SL01a]. **Guaranteeing** [GMA+09]. **Guarantees** [ASB02, FZGC06, HH08, KCK+06, LCSC12, LPA+06, NK08]. **GUARDS** [PABD+99]. **Guest** [CRS06, PP05, ACM08, BKK11, CLL+14, GZ03, MBMC13, ON02, PKL+12, RFZ11, WA09, Zha03, ZH99a]. **Guided** [LJLS09]. **Guidelines** [TGT10].

H [MKY+09]. **H-Tree** [MKY+09].

Hamiltonian

[HCH99, JP12, LC01, Wan08, Wan12].

Hamiltonicity

[HL09b, CLHL13, Fu05, LLH14]. **Handheld** [JGZZ14]. **Handle** [XCZ04]. **Handles** [Ano12b]. **Handling** [BCQD07, MRLD01, SKGC14, SP03, TCLY07, XRR00, YD94b]. **Handoff** [MM12]. **Hard** [BM99, GM97, HS99b, WMW08]. **Hard-Real-Time** [BMR99]. **Hardware** [AFA12, ASG+14, CHM+13, CWS12, CY06b, CD13, CMDP09, DDS95, DS96, EHH11, LLS06, LNO+00, MC14, QGPZ13, RSV90, RX11, TGN+13, TGAG13, WGHP11, XL08, XL10, ZY07, vDlJR11]. **Hardware-Algorithms** [LNO+00]. **Hardware-Based** [CMDP09, DS96]. **Hardwarewired** [SH95a]. **Harmonic** [QF14, ZC04, ZCSY08]. **Harmonic-Aware** [QF14]. **Harnessing** [WRWW13]. **HARP** [DFD93, PT11]. **Hartley** [AD95, ZA92]. **HARTS** [SH96, ZS95a]. **Harvesting** [LRXJ13]. **Hash** [HCY97, KHK15, RRS12, RHM09, TP95, OL92, WYTD93]. **Hashing** [DPH08, GZX14, MD97, PT11, RRS12]. **Hazard** [Mic04]. **HBA** [ZJWX08]. **HDR** [YTL+10]. **HDR-WPAN** [YTL+10]. **Healing** [SAM14b]. **Health** [HGY+14, LYS+13, LCS+15, SF10]. **Healthcare** [LTS13]. **Hector** [RFH98]. **Height** [YCTW07]. **Hellinger** [SSWJ08]. **Helper** [LJLS09]. **Heritage** [CB03]. **Hereditary** [YH02, HS03]. **HERO** [ZLZ09]. **Heterogeneity** [AD08, LP07, LCL15, SGL06, WX07]. **Heterogeneity-Aware** [GSL06]. **Heterogeneous** [Agr14, AAD08, AJMJS03, Ano04c, AA09, BA04, BDvD98, BC+04, BBRR01, BLR03, BEDCR13, BGJ06, BP06, BSM+11, CJ10, CWL14b, CY08, CF00, CR06, CTS13, CZW21, CVT+15, DR98, D00, GVV09, GLQL09, HP14, HL12a, HL12b, HC07, KA06, KLH07, KSMX98, LZ08, LXL08, LAY+10, LTL14, LW15, MC10, MA13, OOA+14, PH12, RSR11, RDG12, SXZ05, TSAL97, TS98, TH02, VM04, XQ08, ZCLC06, ZM13, ZSLW92, CR94, SL93a]. **Heuristic** [AMS97, CHC09, HH11, MM10, PK95a, PK95b, YF97, MS93, SL93a]. **Heuristics** [BSM+11, CTA14, EDO06, H000, JSWB97, JTS+11, KA06, TTB+00, GD93]. **Heuristics-Based** [JTS+11]. **Hexagonal** [ABF12, DS05, NSZ02, YL96]. **hiCUDA** [HA11]. **Hidden** [Hur13, JTP+08, XHX+13]. **Hide** [LLY05]. **Hiding** [MLW06, SL09]. **Hierarchical**
Hierarchically [HZ96, SS07, ZH98]. Hierarchize [WCD +11].

High-Accuracy [XSYY13].
High-Availability [FHW11].
High-Bandwidth [BGM297, LHM12, XLSR13].
High-Density [WCF10]. High-End [KOPS10]. High-Fidelity [SHX +10].
High-Latency [GRS99]. High-Level [ATML08, EAMEG11, HA11, MLW06, RJ96, YR14]. High-Performance [AGGD04, AAB06, Ano09c, BKK11, BCTB13, EAMEG11, ESGQ +13, FG06a, FLP +07, GFS +10, GMCB01, HDF07, JG14, LLGS09, LHM12, LBS05, LCS +15, MLW06, MJ98, MC14, MC10, MNN04, MB12, MA13, MLD06, MRGR12, NLC12, ON06, OC05, PH11, PGBI03, RK08, R9J6, SS08, SCL +03, SLLL13b, SD00a, SSP02, SHX +10, TCLY07, TG0V8, TF96a, WCF10, WL13, WOT +07, WJ12, WWWL14, WCCR +97, WZQ10, XSYY13, XLSR13, YR14, ZH14a, ZMP07, Ant94, AB91b, WS93].
High-Quality [XSYY13].
High-Availability [FHW11].
High-Bandwidth [BGM297, LHM12, XLSR13].
High-Density [WCF10]. High-End [KOPS10]. High-Fidelity [SHX +10].
High-Latency [GRS99]. High-Level [ATML08, EAMEG11, HA11, MLW06, RJ96, YR14]. High-Performance [AGGD04, AAB06, Ano09c, BKK11, BCTB13, EAMEG11, ESGQ +13, FG06a, FLP +07, GFS +10, GMCB01, HDF07, JG14, LLGS09, LHM12, LBS05, LCS +15, MLW06, MJ98, MC14, MC10, MNN04, MB12, MA13, MLD06, MRGR12, NLC12, ON06, OC05, PH11, PGBI03, RK08, SCL +03, SD00a, SSP02, TG0V8, ZMP07, WS93]. High-QoS [SLLL13b]. High-Quality [LCS +15].
High-Speed [CBD +01, EHWX10, FZGC06, MNN04, Ant94]. High-Throughput [MB12, WJ12, WCCR +97, WZQ10, ZH14a].

High-Utilization [WWL14]. Highly [AGGD05, CB00, DAA00, DB08, GKK97, HK94, SBC +10, WL00, YYL +13, WLR93].
Hint [TRD13, WHC +14]. Hint- [WHC +14].

[MBW02, HIPIQS [SSP02].

HiPER [MBW02].

[HZL15].

HLA [SF08].

HiPER [MBW02].

[SSP02].

HiPER [MBW02].

[SSP02].

HiPER [MBW02].
MBV13, SMS+13. HPF [JB01, vDSP96].
HRing [ZCSY08]. HSPA [TTXJ12].
HTTP [XTXH13]. Hull [BGO+96, HNO98a, GCZ15]. Human [LQY+12, WYX+15, ZW14, ZYW+14b].
Hybrid [ADG06, Che01, CJLN09, CKC08, ESGG+15, EJGYAM14, FV09, HS14, LP07, LDSS+13, LTW+14, LSL+14a, LOSW99, MMSM06, PRS+11, SE98, SvAS04, SL01a, SL04, SJPS01, SS00, WO04, WYWZ08, WPT10, X510, LH92, Gua14].
Hydrodynamic [HC99b]. Hydrodynamics [RBH+14].
Hyper [GP93, LSBS98, TXL+14, THT+97]. Hyper-Bus [THT+97]. Hyper-deBruijn [GP93].
Hyper-Sphere [TXL+14]. Hyper-Systolic [LSBS98].
Hyperbolic [CYX+14]. Hyperchannel [CWYZ09].
Hypercube [AD95, ICL05, Che07, CC98, FYS05, FMG02, GVDG95, HS97, KP96, KC98, Lan95, LH05, LWN98, MR06, PKL06, RSB95, SP95, SV97, WL97, WYW13, Xioa01, dCVC9G02, AOB93, BJS90, CS90, DK92, GDJ94, HB92, IS90, JR93, KDL91, KLDR94, KP92, MB94, Nas93, OL92, PGDS94, RS91b, RB90, RJ90, SRT94, SF92b, YW93, YZW94, YN90, ZA93, Zia94].
Hypercube-Based [WYW13]. Hypercube-Connected [AD95].
Hypercube-Derived [WL97]. Hypercube-Related [PKL06].
Hypercubes [Ano99b, Akr99, CCP95, CT97, DPs96a, DPs96b, DCf95, GP99b, H000, HK95, HKWH01, JHK97, KLS00, Li12, OKSA01, SR98, SLH97, TW98, TCT14, TK96b, TC98, YR96, dBl98, AM01, CL93, CC93b, DT94, EAL91, Fd92, KIK93a, KS94, KP92, KS94, LS94b, ODe94, PGF94, RS90, ST93, TR93, UE95, VB93].
Hypercycle [DD95]. Hypercycle-Based [DD95]. Hyperedger [LH05]. Hypergraph [BA07, CA99, GW06, YW10].
I/O [Bar00, BHEP14, GDM+13, HHJ02, JSWB97, KKC02a, KKC02b, KP01, KB03, LLJ+13, LSh+06, LMFS11, NLC12, OPZ99, RB90, TR04, VV99, YZC08].
I/O-Centric [HHJ02]. I/O [HLQ+15].
IaaS [Bru14]. IBA [KYD+07]. IBM [BGBP01, HX96, MS94a, MF01b]. IC [CMR07]. IC-Scheduling [CMR07]. ID [BRTM09]. Identification [JR03].
Identification [ACCP12, Che96, CT97, FHB97, GG13, GIP+13, JGZZ14, LSL10, LLM+14, MLSS07, RX11].
Identifying [LQZ09]. Identifier [LQZ09].
Identifying [HP03]. Identity [BRTM09, PZZ09, SZZF10, TK14, YK99].
Identity-Based [BRTM09, SZZF10, TK14].
Idle [LMH12, RH00].
IEEE [Ano11d, Ano11c, Ano12i, Ano15a, BCG04, FLH13, GYX+10, HPH08, JASA08, MGZN07, MRM12, NK08, PDFJ13, WYW+14, XL04, XL+06, ZL15, ZL07b].
II [DZL15, KCN90b, LL06b, LPD05, OSRS06b, PK95b, RK94b, YK96b].
ILB [LX10]. ILP [VS15]. Image [BA07, Bar10, EAF00, JS93, LHS03, PSL+11, SKB04, WS00, WCH+08, Anh94a, CL94, G039].
Image-Space-Parallel [BA07].
Imageries [MWZ+14]. Images [EAF00, Li14a].
Imaging [WZQY14]. IMGPU [LL+14a].
Immucube [PG07]. Immune [SSZ06, SZZ95a]. Immunization [GLZ11].
Impact [BIWK00, CH04b, CTF09, CY00a, DMT12, DMK96, EK10, Kum14, Li94, MRM12, PP12, SG94, SCL05, SPP00, VSD01, Wan14, XLH06, ZSMF01, ZLF+11, D195].
Impacts [Li10]. Imperfect [HLCH11].
Implementation [ATG92, ACT+97, BRSS08, BGBP01,
BDD+96, CL14, Din06, EBS04, Fen14, FVR03, JTP+08, JLF03, LCB10, LAS04, MNM04, MR94, ON06, Pak07, Pan14, PDH10, QS03, RLX+15, SKJ07, SBF00, SA11, SOM05, TSP+08, WR04, WMXZ06, XUAS09, XL08, XL10, YK92, ZZCD10, ZL14, vDSP96, Aku93, AIK91, HK91, LKG92, LH93, LA93, SMBT90, SMJ92.

Implementations [AH10, CHM+13, DMS+12, kLCC+06, PKJ97, PG01, GO93].

Implementing [AGWFH97, BBR12, BA90, F01, SSP00].

Implications [CGM+07, HWWX99, LLZ+12].

important [KLDR94].

Imposed [PDH06].

Improve [HCL+12, JSMK11, Kin06, SRD04, WHH+13, XZT+13, ZQSY13, TT94].

Improved [BSK03, CWCC07, KYD+07, Klia98, Li03, LLS06, LH06b, MBV11, PZLS01, PPP04, SRT94, TLP12, KKP91].

Improved [BKS03, CWCC07, KYD+07, Klia98, Li03, LLS06, LH06b, MBV11, PZLS01, PPP04, SRT94, TLP12, KKP91].

Improving [BA04, BHEP14, CTA14, CK08, CGZQ13, CD13, DBAT11, GYS05, HYZ15, HWX12, KK04, KCRB03, KA05, LY93a, LLX06, LLK+14, LXBZ13, MOFD05, NZWL14, PPR10, PH05, SF07, TJO7, TSG09, Tz10, TSN10, TGAN+13, TP13, WLH+15, GS91].

IMS [BCF13].

IMDS [BCF13].

In-Kernel [LSB05].

In-Network [DSL09, PCP14, ZMLT13].

In-Order [WSB09].

In-Situ [HHK10, MCL+07].

Inbound [EX10].

Incast [ZRTL15].

Incentive [TJO8, TzB+14, WZQ10, WML14, XZNX08, ZY+14].

Incentive-Based [XZNX08].

Incentive-Driven [TzB+14].

Incentives [CLL11, XZSG12].

Incentivized [LFIW10].

including [MM96].

Incomplete [CT96, CT97, LB94, NCKL14, TK96b, SCD97].

Incorporating [LC11].

Incorrectly [SCL05].

Increased [PPD03].

Increasing [MKH91].

Incremental [OR97, PB12, SW96, WYJ+04, YN00].

incrementally [LB94].

Independence [Gen00].

Independent [AAD08, BF1+01, CTA14, CFJ15, FCM14, HP07, LH03, PG01, TIC14, TSE13, YCTW07, BA90, RK94a, RK94b].

Index [Ano97a, Ano98a, Ano99b, Ano01e, Ano02a, Ano03b, Ano04a, Ano07a, Ano08a, Ano08d, Ano09d, Ano11a, Ano12a, Ano14a, Ano15a, BQF99, Din01, EH94, Hsi14, Ano13a, TXZ+11, Ano05b].

Index-Based [SDF99].

Indexed [BAH01].

Indexing [WSB09].

Indirect [BH13, LSKZ13].

Indoor [GZWN14, TLJ+14, WXY+13, YLX13].

Induced [BBH05, HMR99, LWW+13, TKW98, Tsa03].

Industrial [SS12].

Inertial [TLJ+14].

Inexpensive [HNY02].

Inference [BBH05, BFFG11, HML+14, HM98, JTC08, YGL13, ZFG+14].

InfiniBand [ASD04, BC06, BCQD07, LK07, NYD09, LBS05].

Influence [LL+14a, WJWX14].

Influxes [ZLF+11].

InfoBeacons [SC07].

Inform [Amm12].

Information [AA03, AB14, CZYL14, CMPS11, Dah00, DWLY15, FRGL09, GCZ15, HLCH11, LW09a, LJW+07, LTBN+12, LC04, MZA02, MPS15, Mit00, PCP14, SC07, SGC14, TL14, TYG+14, Xia01, ZWX+13, ZW14, ZB09, ZASA10, ZBK+15, BFP96, Sin92, SL13].

Information-Based [BCF13].

Information-Centric [PCP14].

Information-Flow [AA03].

information-structure [Sin92].

Information-Theory-Based [ZASA10].

Informed [K14, TM06].

Infrastructure [AJMJS03, KIBW99, PJC+13, QTD+14, SLGW14, XZ13, ZQQ12].

Infrastructures [GI03, SCW07, TGG13, Zou14].

Inherent [AH06].

Inherently [PK95a, PK95b, PN93].

Initialization [CLW03, NO00a, NO00b, Rav07, OW91].

Injected [dBK11].

Injection [LYG12, LLZ+12b].
Injective [LF03].
Injector [CLJ+04].
Injured [TW98].
Innocuous [PFMR13].
Input
[CCQ+05, GCCC+04, HS08, LY11, MR02, MBV13, SV97, SSP02].
Input-Buffered
[CCQ+05, LY11].
Input-Queued [HS08].
Input/Output [GCCC+04, MR02].
Insertion [PK99a].
Inside-Out [SyFL99].
Inspection [YP13].
Installment [CWCC07].
Instruction
[AGWFH97, AF05, CF01, CC95, EP05, PSGD05, WB08, WS09, XUAS99].
Instruction-Level [EP05].
Instructions
[USP+12, BG90].
Integer
[KBC+01, PW95, SK95, TG99].
Integrated
[ESS5, BeFGM08, CH07, CG02a, CG02b, LGD14, RNKZ03, SKCL09, Shc10b, Sol02, SPFZ99, VKS+09, ZFMS03, GH93].
Integrating
[DD11, GAL01, TCC05].
Integration
[AGGD04, HYP02, LBS05, Mha09].
Integrative [ZSY14].
Integrators [Mur12].
Integrity
[CLLS12, CL14, ZHAY12].
Intel [FBD96].
Intelligent
[JGJ+12, SX03, WCBX06, WWX+13].
Intensive
[EK95, GG11, HYZ15, HC14, KKC+05, KCW11, MBH+10, NTW11, ON06, OX06, XZ104].
Intentions
[LPZ12].
Inter
[CH13, KKW13].
Inter-WBAN
[CH13].
Interaction
[HC97, JS98, LI08, LSZ13].
Interactions
[WL08a].
Interactive
[KLWK12, KMT91, LJJ15, RR+03, ZT14, dB98].
Interactivity
[TN+12].
Interactivity-Constrained
[TN+12].
Interagent
[MX03].
Interbatch
[LG13].
Interconnect
[KOPS10].
Interconnected
[QM17].
Interconnecting
[Sib12, YQZC12].
Interconnection
[APG12, ABF12, CMV+10, CFB02, CL97, DC98, DAA97b, DD98, ESGG+15, FR96, FPAGD10, FB10, cFC98, GS95, HS07, HP03, K096, Lai00, LKK02, LMM13, LR97, LSC95, LWN98, LK04, PR05a, PKL06, RO99, SS96, SPS98, SP07, SDFV96, SCL00, VDS99, WL97, WP00, WL00, XP07, YN00, YFJ+01, AV94, AGa91, BDS94, CAB93, CI92, CO94, Chu96, HC92, Hsu93, KP92, LS94a, LC94, MB94, MR92, MJ94, MD96, Sch91, SL93a, VS96, YM95, Zia94].
Interconnection-constrained
[SL93a].
Interconnections
[FG06a].
Interconnects
[ADG+08, HP06, JW08, PS05, YW03b, YW05a, ZY04, ZY06].
Intercontact
[BCP+14, ZFL+11].
Interdependence
[QZC12].
Interest
[CLY08b, ERSR13, MFO+13].
Interface
[DHN95, DFK01, WOT+07].
Interactions
[ZLKK07].
Interference
[BPT03, HC14, IY+13, Li14c, TCS11, WWL508, WLH+15, YN95].
Interference-Aware
[HC14, WWL508].
Interlaced
[ZH12].
Interlacing
[ZP11].
Interleaved
[HDF07, LS94b, SL94, WLX13].
Interleaving
[CY92, KHY90].
Interlocking
[OZ96].
Intermediaries
[KYB08].
Intermediate
[ZLN+13].
Intermittent
[AR10].
Intermittently
[EHNS13b, HWC+14, WXY13, YN13].
Internal
[BCQ+10].
Internet
[TW14, AJM014, GS06, HKA12, HY07, IB14, LKKS05, LG+13, LA06, LQZ09, NLY15, NN13, PKS14, Ren14, Sun02, SX03, TC07, TDLR13, WX+14, WSY15, WX11, XLL11, YFW+09, YJC15, YZK07, ZCJ14, ZR13].
Internet-Based
[Sun02, Z13].
Internet-Scale
[WSYW15, ZYK07].
Interoverlay
[LLN07].
Interplay
[CM10].
Interpolation
[MSW+12].
Interpreters
[AGWFH97].
Interpreting
[Dah00].
Interprocedural
[AG98, Agr99, CHJL04, CY00a, HK91].
Interprocess
[KB03, RSV90, TB94].
Interprocessor
[KL99, PH04, SO95, GR90].
Interrupt
[GDM+13].
Intersection
[WZL515].
Intertask
[SS94].
Interval
[FCF00, XJL+14].
Intervals
Intrabatch [LLC13].

Introduction
[ACM08, ABC01b, BKK11, Blu09a, CLL+14, MBMC13, ON02, PKL+12, RFZ11, Sto13c, WA99, Yew06, ZH99a].

Intrusion [EK10, KKK11, RNKZ03, SBC+10, WFA13, ZKSY14, MRW92].

Intrusion-Tolerant [SBC+10].

Invalidation [TC001].

Inverse [DFG13].

Inversion [YWF09].

Investigate [Bru14].

Irregularities [QNR99, SD00a, SD00b, SKPS01, TW00, IRRWBF15].

Isolation-Based [CCKF15].

Isomorphism [Che96, HWSH00, WNN99].

Isotach [LLC10].

Isomorphic [CWCC07].

Jitter [SKGC14].

Join [HCY97, SY93].

Joint [BB05, CWC11, KA09, LLY10, YF97, YPL04, ZGGW13, dLCK+05, AH91, AC92, EG93, Pan93].

Iterative-Improvement-Based [KA06].

ITA [SA11].

Iyengar [Kum14].

Jacobi [FB10, KGK08, MA13].

Jammer [LLX12].

Jamming [LLX12].

January [Ano99g].

Java [BA90].

Java-Enabled [AM06, CV08, CVM07, BA90].

Java-Friendly [KLDR94, LC91b, LZWY14, MBV13, SP98, ZA93].

Jobs [BG06, HJS+06, KW98, XCZ02, XCZ04, XQ08, KGM96, KS93].

Join [CST02, CY96c, HY01, LR96, LMT98, TP95, CY92, KS93, NM92, OL92, TRS90, WYTD93, WDY93].

Join [HY01, LR96, LMT98, TP95, CY92, KS93, NM92, OL92, TRS90, WYTD93, WDY93].

Join [HCY97, SY93].

Join [BB05, CWC11, KA09, KK13, LQK+13, LWXS06, RPYO11, SKJ07, WWLS08].

Journal [Bad14].

JSQ [LR96].

Jump [LLCL12].

Jump-Stay [LLCL12].

Jump [XH08].

Jump [YL+07].

Jump-In-Time [YL+07].

k-ary [SG94].

k-Dimensional [CWCC07].

k-splitting [XB93].

KAD [CSM+13].

KASR [MDZ14].

Kautz [GWL+11].

Kerberos [TW14].

Kernel [LB805, MS94a, ZH14a, ABDZ94].

Kernel [ZH14a].

Kernels [KTD12, LMVS11, NN99].

Kestrel [DDD+05].

Key [AKNR+04, BKL11, CCT+14, EP05, GZZ+13, HSMY12, HCL+14, JKT11, LLY+14, LLL+14b, MCL+07, RM11, STW00, TXL+14, XH08, YLW13, YGE06, YG08, ZQH13].

Key-Aggregate [CCT+14].

Key-Policy [GZZ+13, HSMY12].

KEYing [TW14].

Keys [OMMZ14, RM11, TW14].

Keyword [CWL+14a, MDZ14, SWC+14, WCR12].

Keyword-Aware [MDZ14].

Knapsack
Knots [BT98, MS03]. Knowledge [LHL+08, TLM04, WZ14, YG08, MLL92]. Known [XCZ02, ZJTW14]. Kong [TTJX12].
Kutta [Mur12].

laboratory [BEK+93]. ladders [PN93]. Lambda [BeFGM08]. Lamport [BBQ92, JK99]. LAN [LJZA04, LWY96].
Language [ATML08, ABJ+93, MGS12, Pak07, GR94, JWC94, NSD93]. language/compiler [NSD93]. Languages
[Ano97d, Ano97b, Ano97c, BT00, CE95, KBS11, PG01, WMB96, MR94]. LANs [BCG04, FLH13, NK08, XLW+06, XHZ+13].
LAPI [BGBP01]. Large [Agr99, Agr14, AM99, BG09, BXXC12, CJW+15, CC10, CY00b, CASM07, DSO3a, EDO06, FT97, GGS10, GMB01, GLM13, GP99b, Guo14, HJZ+14, HS98b, HZ97, IsV10, JZMD12, JKAV11, JGZZ14, KMG03, KCW99, KCW11, Ksh01, LZZ10, LC07, LC95, Li10, LZ12, LHL+13a, LCS14, LSL+10, LLM+14, LLL+14a, LK04, MY07, MWZ+14, MA01, MMJ03, MLD06, OXL06, PM02, QNL11, QLNN13, RD08, SKLC+03, SK14, ST90a, SGL06, TNZ+12, TVG13, TKC+15, TZZ+14, Ts13, TTJX12, Van14, VVR07, WCL012, WRW13, WJZ14, WXTL13, WKC12, XHYL05, XCL04, XHL+11, YPL13, YQLS14, ZSH+11, ZLM+14, ZWX08, ZLX+14, dSLM11, dB98, CO95, CT93, EA93, OS94a, SC93, YTB02].

Large-Scale [BCQ+10, BG09, CJW+15, CC10, CY00b, EDO06, GMB01, GLM13, Guo14, HLO9a, JZMD12, JGZZ14, KMG03, KCW09, KCW11, Ksh01, LZZ10, LCG07, LC95, Li10, LZY12, LHL+13a, LCS14, LLM+14, LLL+14a, LK04, MY07, MWZ+14, MA01, MMJ03, QNL11, SKLC+03, SK14, TNZ+12, TVG13, TKC+15, TZZ+14, Ts13, TTJX12, Van14, VVR07, WCL12, WRW13, WJZ14, WKC12, XHYL05, XHL+11, YPL13, YQLS14, ZSH+11, ZLM+14, ZLX+14, dSLM11, SG93]. LARPBS [CPhX04]. LASS [LVW+15]. Latency [AJM12, Ag99, CC15, GR399, HWDP10, JLM+12, KKG03, LHY+13, MROD07, PBA03, QM97, RS10, SOA15, LNP94].

LDPC [FSS11, TBC12, ZL14]. Leader [AR10, DB08, DIM97, NO02, Sin96, YK99, AAG94]. Leadership [MR06]. Leading [MSW+12, OB00]. Leakage [NFFK14, ZL+13, ZB09]. Leapfrog [WHC03]. Learning [BRX13, HZC12, IRPvdS12, MR02, YY14, ZLLG14]. Learning-Based [HCZ12]. Least [YPL13]. Length [BBDO0, hKY11, VB93]. Lengths [FJL07]. Less [TKR14]. Level [AGGD05, ATML08, ANK99, CB05, DMS+12, DCF95, EAMEG11, EP05, EN12, FPGAD10, GY95b, HA11, HC99a, IBC+11, JRV+13, LWS+12, MLW06, RJ96, SKB04, SL03, SZ04, WZP+03, WLT+12, XRY09, YYK+1a, YR14, ZCL04, BGM94, EG93, LA03, ME92, ME93]. Levels [Wu00]. Leveraging [BRTM09, HCL+12, KI14].
LFSR [CCSC09]. Libraries [CGZQ13]. Library [BBC+95, LB00a, Tc14]. Library-Independent [Tc14]. LID [NYD09]. Life [SZ03a]. Lifetime [GCL14, HXY11, LWJ06, LCL+11, LCLD13,
Lifetime-Constrained [TX08]. Lifetimes [YL11a]. Lifting [TSP+08, vdLJR11]. Light [JGG+11, ZLLZ13]. Light-Traffic [JGG+11]. LightFlood [JGZW08]. Lightly [Lee12]. Lightweight [CY06, DCL+10, EBS04, She14, TXZ+11, WG13, ZBM09, LBK11]. Like [BK09, LYW08, PK99a, VM04, WN98, ZPY06, FHRT93]. Limits [AS00, AM06, BS14, CBM+07, FHA06, GY09, LSW04, PH05, ZY04, ZY06, FHRT93]. Linear [AAD08, CHC04, DSO02, FC10, Gre98, HWKH01, KBD08, LLCH12, LPZ98, MBM98, PK99a, VM04, WNKS96, WHW05, WRWW13, WYL+13, WXY14, YL11a]. Linearization [MF96]. linearly [GDJ94]. Lines [NE01]. Link [CWLR09, DGF12, DLZ+14, GHL+13, hKY08, Li14c, MLL14, MFO+13, Sin96, THH08, TCS97, WWLS08, YW03b, YL11a]. Link-Disjoint [YW03b]. Link-Stability [DGFI92]. Link-State [THH08]. Linked [LWN98]. Links [Add97, BV05, LWC+09, SCY98, SW08, Xen12, Wu02, YQZC12]. Liquid [Li14a]. List [Ano99a, Ano00a, Ano01a, Ano03a, Ano04e, Ano05a, Ano06, Ano07b, Ano08b, Ano09a, Ano10, Ano11b, Ano12b, Ano15b, FT97, HS98b, PKJ97, WL08a, Ano14b, Rj90, Ano13b]. List-Based [FT97, HS98b, WL08a]. Lists [LTM11, SH95b]. Little [BKL11, CC99]. Live [BSS09, DF09, GLQI09, LJL07, LJL+11, LLZ+12a, SLL13a, ZML13]. Live-Time [ZML13]. Lived [STV09, TWZW11]. livelock [GPBS94, PGDS94]. livelock-free [GPBS94, PGDS94]. LMSR [SKK01]. Load [BCVC05, BCCP04, Bar98, BBR07, CWCC07, CT08, CHHC06, CK02, Dah00, DPS96a, DPS96b, DBH01, DP02, DHP+07, DB06, DvdMK09, DW03, FGLP10, GZ06, GZ09, GQ93, GKK05, GB06, HIPL14, HLCH11, HCSC13, HC99b, JJ09, KTK11, LRRV04, LL06a, LL06b, L03, LC99, LJW05, MRM12, Mit01, PH05, PNAK11, Ren14, RRS12, SS08, SVM07, SX07, SH96, SR98, SZ08, TP95, Tsc09, WT98, Wu97b, YL112, ZRS+05, ZMR08, ZWL+15, ZH05, ZT01, AT07, Bok93, GT09, GDJ03, KJ92, LY94, LK94, SH93, SH94, WLR93]. Load-Balanced [CHHC06, GZ06, HIPL14]. Load-Balancing [GZ09, KTK11, LRRV04, LC99, SX07, ZT01]. load-dependent [AT07]. load-sharing [GDJ93]. Loaded [Lee12]. Loads [BCL+05, CG08, HV11, JMV10, VM04, YvdRC05]. LOBOT [ZS13]. Local [BT98, CBD+01, DAM06, HT07, KM01, KAY+06, LPP13, LWS04, LWT+15, LWT+15, MD97, PC05, WSG01, Xia01, XLT+14, PAM94]. Local-Activity [LWT+15]. Local-Global [XLT+14]. Local-Spin [KM01]. Locality [CW06, HT06, KK04, KCRK00, KCR03, MA97, MCMR12, PLT00, SX07, SYL+14, TSG09, VSK+09, WL12a, XTXH13, YZ00, ZH99b]. Locality-Aware [SX07, MCMR12]. Locality-Conscious [VKS+09]. Localization [CYL+14]. Location-Oriented [CYL+14]. Localized [Ano04d, BWPM06, DW04a, GY07, LCWW03, LSW04, LW06a, LMSR13, Li14c, MGZN07, OSR06a, OSR06b, SAM14b, SLFW06, SL01b, TKS11, WLS+11, ZPY06]. Localizing
[NN96]. Made [YY14]. MAGIC [GD94].
Main [TP95]. Maintain [NN10].
Maintaining [HCC+12, HBF12].
Maintenance [BM12, HJC+10, LXLO8,
LB10, SL10, TS10]. Maiter [ZGGW14].
Making [LJ15, NE93].
Malicious [GG13, MSM99]. Malleable
[CC13b]. Malware [PLZW14].
Manage [KKGS01]. Manageability
[Gua14]. Managed [LMR10]. Management
[ASG+14, BCTB13, BIWK00, CC10,
CSM+13, ICL05, CY06, CCLW15, CCB14,
CLJ11, DRS015, ESQ+13, FGEL14,
GPF12, GGF+14, HDRS00, HLZY15,
HZJ+11, IvS10, KK10, KHY09, KMMR13,
KSME08, hKYY11, KMW08, LLS06, LP07,
LZY12, Li13, LdSS+13, LCS12, LIW+13,
LLL+14b, LVD11, MA14, MBO15, NFD10,
P14, PCP14, Ram99, Ren14, SF08, SML13,
SBK02a, SBK02b, SJ+09, SY07, SYC03,
SR08, SZ03b, SSLY03, TC04a, TC06,
TXL+14, TGNA+13, TGA13, VV99,
WW11, WL13, XPL04, XZL05, XLZL11,
XL13, XAYM14, YGEO6, YG08, ZX13,
ZQH13, ZCL04, ZJWX08, JS90, LEH92,
NSD93, RST95, TT94]. Managing
[BB13, MZT08, RD98, TLH+14, US04,
SB94b, WYTD93, WDY93].
Manchester [BG90]. MANET [QTC+14]. Manets
[AMH08, LW09c, STY09, TYG+14,
WLH808, WCR09, YW10, ZYCN12]. Many
[AFA12, ABE+11, AN09b, BRS97, CC97,
DMC12, ELX+11, IOY+11, PKL06,
RFZ11, RAG10, YYK+11b, KST94, RWF94].
Many-Core [AFA12, DCMN12, RAG10].
Many-Task [ABE+11, RFZ11, YYK+11b].
Many-Tasks [IOY+11]. Many-to-Many
[BR97, PK06]. Map [KS08b, KP10].
Mapping [AB07, AB03, BB05, CM95,
CSR07, DPS06a, DPS06b, EAK97, Goh14,
GETFL14, HZW+14, HWKH01, HCYD01,
HW08, LK90, LRRV04, LPP13, LG+13,
LGX+11, LQZ09, MA13, RRG07, TDLR13,
YLL+07, Zou14, CC93b, CA93, IS90, KN95,
MS94a, SF92a, ST91, SA94, Zia93].
Mapping/Interconnect [BB05].
Mappings [LF03, DS94]. MapReduce
[CPGT14, FHLG11, MDZC14, SMS+13,
XQL+14, ZYLC14]. Maps
[DW10, ZMTL15]. Mar [ME93]. Margin
[HY07]. marked [WY94]. Marker [HM98].
Market [CLL11, FL09, XZNO8, ZL11,
ZYZ+14, MLL92]. Market-Like [XZNO8].
market-propagation [MLL92]. Markets
[DM11, Ren14, ZCY14]. Marking
[ADG06, G08, PC07, XZNO9]. Markov
[HN93, JTP+08, LL96, MMSM06, XH+13].
Markovian [BZBP10, CMS11, PH12].
Mars [HFG11]. MART [TFPK13].
Martini [WOT+07]. Maskable [WL97].
Masking [IB14]. MasPar [ACT+97].
Massive [BM12, EJRB13, LXH11,
MWZ+14, ZCX10]. Massively
[CFW98, FS11, GE12, JTP+08, LMFS11,
LWN98, NIP11, NGL94, XLSR13, YFJ+01,
GMG96, HIS94, LC09a, MB94, RJ14].
Master [BBC+04, BLR03, KA06, PF12].
Master-Slave [BBC+04, BR03, KA06].
Master/Worker [PF12]. Match [DP02].
Matching [ACT+97, BM00b, CYC+15,
D02, HL09b, KK11, MC14, NCKL14,
St06, TVCM12, WP21, YP13, PDC94].
Matchmaking [SL06]. Mathematical
[TTB+00]. Matrices [BOP20, Ch06,
FLV95, HCYL06, YZS14]. Matrix
[AAD97, BBRR01, BW96, CA99, Chat96,
CLPT02, GWC14, GKK97, KK+13,
KBS11, LKH03, LPZ98, Li07, KLD10,
PM96, RCK15, RGD12, Sah00a, SOA15,
SR08, TLP12, THH96, TC05a, TC06b,
XHG15, YR14, Zha12, ZP07, DFD93, ME95].
Matrix-Vector
[GWC14, KGK+13, RCK15, YR14, Zha12].
Max
[GCL14, HS08, HPT04, TCS11, WP21].
Max-Min [GCL14, HS08, HPT04, TCS11].
Maximal [ACS13, LH03, LW06, LCL+11].
Maximally [CXP09]. Maximization
Maximize [HP07, ZS09, WL91].
Maximized [CLJ11].
Maximizing [CCFS11, JGZW08, KHK15, LKBK11, LWS+12, PDH10, SM97, WWL11, ZWLL12].
Maximum [BC95, CHCC14, CT97, HH11, KGLK08, LGD04, TYK99].
MaxMin [CTA14].

MBR [LC14].
MDP [MGR12].
MDP-Based [MGR12].
Means [KPA13, XQL+14].
Measure [HT07].
Measured [WB98].
Measurement [DI95, KK03b, DI95, LC95, LHD+04, LHL+13b, LLG+13, WLL+07, HB92, LKG92, MRW92, MCH+90, TV92].
Measurement-Based [KK03b, DI95]
measures [LEH92].
measuring [AMSK04, WX11].
Mechanism [BÖ98, CRD11, FPF13, GG09, HML+14, LSKZ13, MY07, MG14, NLC12, RLD03, WS03, WXZ06, WXTL13, YZS13, ZSY14, ZYZ+14, CR94, Geh93, GD94].
Mechanisms [BLD05, BFIF11, CG08, DD11, Lop02, NMG15, ZSMF01].
Media [BV05, CDBQ12, CZLM09, ILL07, KSWR03, LI02, SBK02a, SBK02b, Sto11a, TJO7, WL08a, yWeH11, XYH05, YK09, ZL07a].
Median [WH01, WH03b, XB93].
MediaPort [AOK09].
Mediator [SBG08].
Mediator-Free [SBG08].
MediaWorm [YKD02].
Medical [LTW+14].
Medium [JGA08, LJZA04].
Medusa [ZH14b].
Meet [HY05].
Meeting [CB14, PP12].
MegaBase [dOSdM13].
Membership [DS03b, FO01b, MMSA94, YK96b].
Memories [CSR07, WLX13, BC92, GS91].
Memory [AD98, AGGD04, ASG+14, AAS03, AKN95, Agr98, ADD+02, AA12, BCdSFL09, BIWK00, BGMZ97, Bor00, CLS05, Cha96, CH04b, CH07, CLC+12, CD13, CH95, CCK08, CSR07, DDS95, D96, DA98, DD11, DKKS04, Deb96, DMKJ96, FFMR10, FT97, FJY98, GAL01, GPST09, GP99a, GLGLBM13, GMR98, HTA10, HGC12, Ho98, HS98b, JR96, JSMK11, JYWA05, KHK15, KH04, KL01, KHY09, KKK11, KA05, LW11, Lee97, LAK11, LT97, Li07, LC99, LCL03, LKL+14, Lop02, LBC03, MS94b, MA01, McK98, Mic04, MP97, MJK14, NN96, OXL06, PAM95, PH96, Par01, PHP03, PH04, PD00, PPBSA97, Qd03, QD05, RVG02, RSB97, SHY14, SKGC14, SCL05, SW96, SLT03, SLEV03, SN02a, SN02b, S95b, TD01, TF96a, TGNA+13, TGAG13, TP95, TVCM12, WH95, WSC+14, WCCR+97, WLX+15, XCZ02, XCZ04, YY95, YF97, YL97].
Memory [YR14, ZYC95, AH93, AM93, ABI+93, BIA+97, CF94, DC95, DF97, Don91, Geh93, GH93, Gup92, Har91, HE92, IT93, IC92, Kop94, KCP96, LEH92, LY93a, Li94, LH94, ML94, MR92, NSD+91, PLW96, PAM94, RS91a, RP94, SST94, SL93c, SA93, TMTH96, VGGD94, WFP90, YJZ97, ZLE91, ZSLW92].
Memory-Aware [WSC+14].
Memory-Efficient [KKK11].
Memory-Mapping [CSR07].
Memoryless [SZ12].
Merge [HY05, HNO98e, LB95, MG14, YPL13, WCY93].
Merge-and-Split [MG14].
Merging [WZQY14, Wen96, XB93].
Mesh [AJMW14, ABF12, BM00b, CT02, CLHW13, CHD+15, Chu95, EF96, EW07, FA06, FZVT98, GG95, wPPJ97, KY98, Ky09, KCK14, LS+09, WSC99, WLW97, LGG+14, MDSS09, MB98, NO97, PZLS01, PC96, RS98, RYLZ10, SV97, SP98, SS01, TW00, TK00, W98, W98, WXL01, Wu00, WHC03, YK98, YSS97, ZWD+10, ZX13, dLMM11, dCVGG02, AV94, Cap92, CCCS90, CT94, CS92, GG94b, wNPS97, LC91b, LM94, OS94b, SC94, SP93, jTM97].
Mesh-Based [dLMM11].
Mesh-Connected [Chu95, GG95, LWL97, MB98, PZLS01, TKP00, Wu00, EF96, CCCS90, GG94b, SP93].
Mesh/Relay [FA06].
Meshes [Aro00, BBG+95, BGO+96, BGO+98, BG97, BG98,
Mismatch [HLH09, HLY10, Liu08].
Mitosis [MGQS+08]. Mix [FYJ+09]. Mixed [CSW+12, DP01, GS11b, SCY98, VKS+09, KA94]. mixed-mode [KA94]. Mixed-Parallel [VKS+09].
Mixed-Precision [GS11b]. Mixi [LZP+13]. Mobi-FuzzyTrust [HML+14]. Mobile [ALLR14, AE12, ABS01, Ano01b, Ano01c, Ano01d, BN12, BHJ02, BZA10, BS12, CS01b, CS02a, CYZ+13, CKK+04, CH13, CBK+10, DB08, DS02, EHNS13b, ERSR13, FCD+13, GJDA06, GJLZ13, GYS05, GY07, GS03, HL08, HMC14, HWC+14, Iye14, IIKO13, JJ11, JLS02, KK10, KXC11, KPG+12, LJJG12, LLS13, LSW12, MD08, MKOK14, MS13b, MX03, MPS15, MSB11, NOS99, NSZ02, ON02, PJC+13, PS08, PAB13, PC05, PS96c, RBM15, RM11, RM12, RKZC14, SF03, SLY+14, SLG10, She14, SWH98, SZ03a, SZ03b, SsLs13, SJ14, TZB+14, TR06, TT01, TTX12, WDKC04, WO04, WT08, WPT10, WD06, WYD07, yHe11, WXY+15, WXY+10, XTHD10, YW08, YSDQ11, YQSL14, ZY+14, ZYW+14a, ZMTL15, ZW02, dLCK+05].
Mobile-Healthcare [LLS13]. Mobility [AD08, CBM+07, FCF00, HWC+14, LMSRSR12, LCS14, LZW12, MZ07, TM06, TTX12, WCD+11, WD06, WXY+15, YLSQ13]. Mobility-Assisted [HWC+14]. Mobility-Resilient [LCs14].
Mobility-Sensitive [WD06]. Möbius [Fan98, PN93]. MoD [Hu14].Modal [DLY15]. Modality [Ksh03]. Mode [Gon08, WYZW08, KA94]. Model [Ag14, AMH08, BNBH+95, BNH99, BCTB13, BSC09, BES06, BP06, BDD+96, Bru14, BRX13, Cha11, CH14, CPhX04, Chi98, Chi00, CF99b, Fan02a, Fan02b, FB01a, GT02, GFG+99, Gre98, HY99, HKA12, HC09, JR06, JKA07, KLO1, KS08a, KMM13a, KPR05, LJSZ09, LL12, LL1+13, LTD+14, Lii14c, LMN95, LKT11, MZA02, NOZ02, OKSA01, Qad03, Qua01, RS10, RMO+95, RRG07, RJ05, Sam14a, SK02, SSS06, SE98, SA11, TS98, TTB+00, TCZL11, TPL96, TNPK01, WH03a, WMW11, WP00, XHYL05, XZH12, XHY+13, YJ97a, YY95, YZSC14, ZB09, AAG94, AIK91, Bok93, CIW91, DK92, DMTB93, DI95, LH94, MS94b, NJ94, TV92, VGGD94].
Model-Based [BES06]. Model-Free [BRX13]. Model-Predictive [BCTB13].
Modeled [WB98, OSZ92]. Modeling [AJMW14, CTLH14, CRWY15, CMG+14, CWCS15, DO05, FYJ+09, GB00, GLPLBM13, GWC14, HM90, HKS07, LKM10, LLYW08, Li10, LQK+13, LYL15, LJ05, LMMA15, MNE14, MBdB14, MF01a, PDF13, PBD+13, PF06, SSP+09, S096, SsAS04, TR04, WWL+13, WZ+13, WMLJ12, WSS13, XWC14, XHY+13, YYY+14, YZZF10, ZRTL15, ZMF10, vG03, BCBz92, KCN90a, LEH92, ZY95].
Modelling [MAJ+07]. Models [AAS03, AJMJS03, Ano04c, BDvD98, BA07, BC92, CRSO6, CWZ+15, CH95, CG02a, CG02b, DSM14, DMCN12, GY95b, JKV11, Lee06, LsS+13, LO04, MS09a, OA+14, PD00, SRB14, WSC97, WJ1L13, WF06, YCWL14, AH93, CO95, Ost90, SH93]. Moderately [LCG+13]. Modes [SCY96, MP91]. modifications [DI95].
Modified [LK04, Chu96]. Modifiers [WFK+12]. MODLoc [GZWN14].
Modular [AM95, HA13, IGEN11, JGP14, LF03, Lou14, MF96, WCR09, ZP07, AM91, YZ9W4]. modularity [SM94]. Modules [DCF95].
Modulo [LGY+11, PP95, VGMA10, ZLAV04].
Molecular [DB06, SGTP08]. Mona
[LZKY13]. money [And90]. Monitoring
[DLL+11, GJJZ12, HGY+14, HCS12, HCY12, HSX+12, LAX+10, LRXJ13, LZX+12, LCS+15, MVL12, MG09, PM13, SHX+10, TVG13, YSDQ11, YQLS14, YC12, ZBM09, HKM+94, OSS03]. Monitors
[YWF+09]. Monotonic
[BMR99, CYX+14, LDG04]. Monte [You93].
Montgomery [IGEN11]. Mosaicking
[BMR99, CYX+14, LDG04]. Monticore
[You93]. Montgomery
[IGEN11]. Mosaicking
[BMR99, CYX+14, LDG04]. MotionCast
[WBPF11]. Motion-Assisted
[AYA09, SAM14b, WMT+11, YLW07]. Movements
[WWCB14]. Moving
[QD05, XZC08]. mPath
[XLSR13]. MPEG
[KS01]. MPI
[BGBP01, CGZQ13, JDB+14, kLCC+06, kL1a, NE01, Pan14, TGT10, WC09].
MPI-LAPI
[BGBP01]. MPLS
[THH08]. MPP
[HWWX99]. MPSoC
[HYX11]. MPSoCs
[JIP14, CK08]. mRACER
[RE09]. MST
[LWS04]. MTC
[MVML11]. Mtool
[GH93]. mTreebone
[WXL10]. Much
[XZSG12]. Multi
[ATZZ14, Agr14, CWL+14a, Cha14, CWCC07, CCKF15, CGM+07, CZWZ14, DWLY15, DMCN12, FO05, GFL15, GCL14, HYZ15, His14, LKKB11, Li14b, LZYW13, PJA+14, QF14, RGRM14, RBH+14, SHY14, SL14, SWC+14, YJ14, YC14]. Multi-Application
[GFL15]. Multi-Authority
[YJ14]. Multi-Channel
[GCL14]. Multi-Chip
[HYZ15]. Multi-Core
[CCF15, CGM+07, PJAGW14, QF14, RGRM14, SL14]. Multi-Demand
[CZWZ14]. Multi-Dominating
[YC14]. Multi-DSP
[FO05]. Multi-FPGA
[SHY14]. Multi-GPU
[RBH+14]. Multi-Index
[His14]. Multi-Installment
[CWCC07]. Multi-Keyword
[CWL+14a, SWC+14]. Multi-Modal
[DWLY15]. Multi-Owner
[LZKW13]. Multi-Path
[Cha14]. Multi-Port
[Agr14]. Multi-Priority
[ATZZ14]. Multi-Task
[Li14b]. Multi-Threading
[LKKB11]. Multiaccess
[CS95, CS97b]. Multiagent
[CW02, JZW13, Jia14b]. Multiattribute
[DW13a, XH10, GD94]. Multibus
[Ad97]. Multicast
[APMG12, ABS01, BRS07, BCR98, CHA07, CGK04, CSC07, CxHG08, CC98, CH98, CMDP09, CXN06, DPH08, Du95b, FIMR01, FWR99, GLL11, GY07, GS03, GKG06, H000, Jia95, JZXX99, JZWN15, KP09, KP01, LCG17, LW09a, LXHS12, LC12h, LG13, LGYV14, LN03, LY14, Mha09, QTC+14, RMC95, SHG11, SH97, SPS98, SP+02, T07, TSN10, TCS13, Ven14, WX10, XJY+10, XG97, XH08, YMP08, YLSC13, YW99, YW03a, YL07, YL08, YWY08, YY10, ZWD+10, ZCLC06, ZL07a, ZLP09, dbK11, LMN94, MXXN94].
Multicasting
[CFK98, Fre13, Gon03, Gon08, SKPS01, TL06, VM99]. Multicast
[KWOA05, SS00]. Multichannel
[FW13, JCLJ12, LY+12, LCCZ13, LW98, ZWD+10]. Multiclass
[CGL07, KK03a, TT94]. Multicomputer
[lCL95, CYY00, HSWB07, CF94, DA93, HB92, KS93, LM93, OS94a, OL92, RS91b, RFDS97, SF92b]. Multicomputers
[Ad95, CC98, GVG05, KY98, Lan95, LC89, LCL03, LWLN97, RS97, SP95, SP98, Ste96, TD01, TW00, TH99, Wu98, Wu00, Xia01, XL96, dB98, dCVG02, Bok93, CS90, CS94, GDJ94, GB92, LMN94, SA94].
Multicoloring
[WH95]. Multicomputer
[ICL95, CY00, HSWB07, LCR90, CF94, DA93, HB92, KS93, LM93, OS94a, OL92, RS91b, RFDS97, SF92b]. Multicomputers
[Ad95, CC98, GVG05, KY98, Lan95, LC99, LCL03, LWLN97, RS97, SP95, SP98, Ste96, TD01, TW00, TH99, Wu98, Wu00, Xia01, XL96, dB98, dCVG02, Bok93, CS90, CS94, GDJ94, GB92, LMN94, SA94].
Multicopy
[LW12]. Multicore
[CGH13, CLT13, CVM+15, FSS11, HLZ15, Ian14, JHR+14, KFLD13, Lee12, LMVS11, LKD10, MSW+12, MCG08, MRGR12, PD14,
RCV+13, RDG12, SJPL08, TSG09, TMJ14, WLT+12, WYY+12, WW12, WDC12, YP13, Zha12, ZML13, ZYX+10. **Multicore/Multiprocessor** [WDC12].

Multithreaded [RCV+13]. **Multicores** [BCTB13, MJK14]. **Multidestination** [APMG12, PSK99, SSP00]. **Multidimensional** [AfAGR00, AA00, CW02a, DP02, DD98, Din01, FHBJ97, JCW+12, LCL03, MMSM06, PS96a, SS01, TXZ+11, YW02, Aln94b, LK90]. **Multidomain** [SS07]. **Multigrid** [GS11b, MT97]. **Multigroup** [TSJ07]. **Multihomed** [LX10]. **Multihop** [CWJS11, DSY99, GHL+13, JGA08, JLM+12, Li14c, MY07, MS13a, SCP99, SKP12, TCS11, WLS+11, XLM+11b, YYY09, ZMA12, ZL07b, KSF94]. **Multilayer** [AB03, NJ94]. **Multilayered** [LC02a]. **Multilevel** [GETFL14, JLF03, MMBdS14, WHC+14]. **Multimedia** [BHJ02, BSS09, CSZ+12, EKOAW02, GB06, HDRS00, LSCZ07, LWCG10, LA04, MEKOT03, PAB13, SD04, CCQ+05, TW14]. **Multimicroprocessor** [VGGD94]. **Multimode** [M25]. **Multinode** [VB93]. **Multiorganization** [DPRT11]. **Multioverlay** [WLL08]. **Multipacket** [CWJS11]. **Multipath** [BZBP10, MDSS09, PNAK11, So96, TCS11, WNSA95, WYW13, XLLZ11, XLM+12b, XLM+12a, XLSR13]. **Multiplexer** [GE12, NIP11]. **Multiprocessors** [AJM12, AGGD04, AGGD05, AKN95, BB05, BGMZ97, CYX+14, CS08, CW00, CY00b, CH95, CKC08, CCK12, CY96c, DD95, DS96, DD95, DMKJ96, FT97, GAL01, GP99a, GMR98, HCG12, HS98b, JTS+11, KKC+05, KL01, KB06, KA96, KA99, LP96, LAMJ12, LLH+01, LK04, LL98, MA01, McK98, PNZ+02, PD00, PGBI03, Qao03, QD05, RTS95, RAG10, SCH11, WH95, WMW11, WHC03, WLX+15, YL97, AOB93, ABJ+93, And90, BJS90, CS92, DMTB93, Gab90, HM92, JF94, KOP94, KE90, KCPT96, LS94a, MS94b, ML94, Pad91, PAM94, RB90, SS90, SG93, SS94, TRS90.
WW92, WFP90, YTB92, YW93, YD94a].

Multiprogrammed [YL97, SST94].

Multiquery [YJLY97, SST94].

Multitasking [TP96, LS96, NO97, WH05].

Nearly [CC97].

Near-Optimal [HY90, KLS00, TP13, YW02].

Negotiation [JJ09].

Negotiation-Based [JJ09].

Negotiations [SP97].

Neighbor [KKK99, SL99, ST91, WW92].

nests [DR94].

NETRA [CP92].

Nets [SL99, ZJLS12, BCBzC92, WF94].

Network [AFE94, ADMX12, Ano04d, ABC01b, AB03, BAMJ12, BBH05, BA97, BIWK00, BFFG11, Bok93, BHEP14, CL13, CHM13, CFB02, CH04a, CHK07, CHL09, CYL14, CHD15, CS95, CJHG08, CE10, CZLM09, DCF95, DRK11, EK95, EN12, FYS05, FV09, FPGAD10, Fu05, GLZ11, GKK05, GBC07, GDM13, GGF14, GS95, HY04, HSWB07, HY99, HCY12, HH08, HGC05, HH95, HW08, HSX12, JGD10, JTC08, KHK15, KLWK12, KK13, KCW11, KSWR03, KL11b, KPB09, KSP10, LCRM98, LB95, LMR10, LLLG13, LAMJ12, LMLM13, LG13, LGV14, LCL15, LR93, LLK13, LMN17, LWW13, LHL13b, LLZ14, LWN98, CK04, LPD05, MKR00, MZT08, MKY09, MRM12, MF01a, NT09, NL11, OPZ99, Pak07, PPR10, PDP03, Pre99, PC14, PD06, RCV13, RKZC14, RCC14, Ros02, Sahl00a, Sahl00b, SS96].
SHX + 10, Ste96, SOTN12, SSSLY03, TYG + 14, TTB + 00, TZ97, THT + 97, TWH99, TP13, TF96b, US04, VB96, WCY95, WSNA95, Wan98, WPT10, WXL10, WCD + 11, WLT + 12, WWL + 13, WJTL13, WLL + 13, WOT + 07, WZZ + 13, WF06, WLL08, WXYX14, XYT + 15, XH10, XHH + 13, XSZ13, YW99, YFJ + 01, YWD08, YW10, YY10, YSZ13, YWJJ11, YY14, ZJL + 12, ZGXJ14, ZL07a, ZS09, ZL11, ZMLT13, ZWX + 13, ZSY14, ZN04, ZLKK07, Aga91, AN94, Aln94a, Aln95, CV92, Chu96, KP92, LB94, LS94a, MR92, MJ94, PGDS04, PN93, SSG91, YW99, YFJ + 01, YWD08, YL07, YZZ13, WF06, WLL08, WXYX14, XYT + 15, XH10.

Network-Attached [MKR00].
Network-Based [Ste96]. Network-Coded [She14]. Network-Coding-Based [CJHG08]. Network-on-Chip [CHM + 13]. Network-Partitioning [TWH99]. Network-Supported [ZL07a]. Networked [BES06, CG08, HOZ12, KMW08, LPP13, LSKZ13, LT10, RY14]. Networking [CYZ + 13, Iye14, TL14, XGZW14].

Networks

[APG12, AYA09, AO12, ALLR14, ANN + 13, ABC + 01a, ADMX + 12, AB99, ABF12, ACNP11, AE12, AV96, AS00, ALW +03, AD08, AD09, Ammi12, AA00, AKP14, Ano98b, Ano10b, Ano10c, Ano01d, Ano03c, AA14, AA09, BO98, BK09, BR90, BRSS08, BCSK12, BBS + 09, BLD05, BSCB09, BCL + 05, BCP + 14, BWS + 05, BRSS08, BC06, BM00a, BP103, BV10, BHL + 07, BS08, BZA10, BC95, BBR07, BZBP10, BS12, BS14, CLW03, CJH + 14, CCS11, CF99a, CMV + 10, CHA07, CWL14b, CHH +14, CPM + 10, CYW08, CDV + 06, CLBS08, CBD + 01, Ch14, CCC05, CWCC11, CTX + 11, CQZ + 12, CBM + 07, CL97, CC97, CY06, CPX06, CSC07, CH08, CLY08b, CJL09, CH09, CTF09, CXP09, CJL + 12, CHTW12, CLLS12, Che14, CYL + 14, CYC + 15, CHD + 15, CH13, CNC + 14, CJF15, CJHG08, CC15, CWWCO8, CCCB14, CS02b, rCHG10, CLSZ12, CS97b, CLJ11, CIH13, CLHK11].

Networks [CFKR98, CMDP09, CWJS11, CWC + 13, CMC + 15, CNT05, DW04a, DW04b, DW06, DWX14, DSY99, DP08, DZ04, DAA97b, DAA97a, DA00, DA02, DGF12, DAMK06, DLS09, DWLY15, DB08, DY05, DRSL15, DD98, DWX09, DWW + 11, DLL + 11, DLZ + 14, DWY + 13, DWF12, Du95a, Du95b, Du96, Du97, EF95, EAK95, EAK97, EKOA02, EHNS13a, EHSN13b, ESGG + 15, FHA06, FCD + 13, FCC00, FR96, FE07, FB10, FF98, FLMD02a, FLMD02b, FG06b, eFC98, FYJ + 09, FQWL12, FW13, GS11a, GZ06, GBD + 13, GFL15, GY95a, GLY07, GRY07, GD95, GLS07, GL11, GJDA06, GLM13, GP03, GBC + 07, GJLZ12, GJLZ13, GCN + 14, GY09, GYS05, GY07, GBL + 11, GJZZ12, GHL + 13, GCL14, Gou14, GCZ15, GS03, GSS06, HG + 14, HOD09, HS07, HS09a, HML + 14, Hö99, HSLA05, HCHM09, HL09a, HCS12, HL12a, HCL + 12, HCC + 12, HJPL14, HA10, HP03, HTTPS02, HYP02, HPT04, HLL09, HLH09, HLY10, HS12].

Networks [HL09b, HC09, HW97, HCD97, HLWV14, HZ96, HC99a, HJ + 10, HWDP10, HPH + 12, HWX12, HWII2, HWC + 14, HH12, HC97, HWSH00, HTHK10, IRS06, JL99, JGA08, JWA10, JJ07, JJ11, JGG + 11, JCLJ12, JVV01, JL02, JW + 10, JJW11, JCM + 12, JZW13, JZH + 14, JW + 14, Jia14b, JZWN15, JLM + 12, JNO8, JK12, JG + 12, JASA08, JKA07, KZ96, KZ07, KK10, KP99, KP01, KP09, KKW13, KWL + 09, KyK9, KCK14, KKY + 14, Kla98, KAY + 06, KP12, KXL + 14, KZLL14, Kop96, KWH03, KL11b, KS01, KS08b, LLGP13, Lai00, LKK02, LC96a, LKK95, LO95a, LSS08, LKM10, LL06a, LL06b, LKM10, LCCW03, LWS04, LH06a, LSF + 09, LW + 09, LAV + 10, LXHL11, LVA + 11, LC12a, LHX12, LJ12, LWY + 12, LL12, LRW12, Li13, ILY + 13, LQK + 13, LLL + 13, LMSRSR13, LG13, LCZZ13, LVA12, LMSRSR13, LG13, LCZZ13, LMSRSR13, LG13, LCZZ13, LMSRSR13, LG13, LCZZ13.
Networks [LLS14, LR97, LMN95, LLWC09, LWCG10, LCL12, LHJ12, LRS02, LSC95, LWXS06, LH06b, LJW'+07, LP07, LW09b, LX10, LZN10, LC11, LZN11, LM12, LCL12, LW12, LNA'+13, LDNT13, LJB'+13, LCLD13, LZP'+13, LLZ14, LCK14, LXXC14, LLL'+14a, LZ05, LLZ'+12b, LLG14, LTM11, LW12, LWG'+12, LGG'+14, LSRT06, MGZN07, MCL'+07, MY07, MM12, MLL14, MS12, MS13a, MEKOT03, MZA02, MMSM06, MLT'+13, MLRD01, MKOK14, MR06, MMSS15, MS13b, Mis14, MM10, MPS15, MTK06, MY11, MSB11, MMSAZ11, MAJ'+07, MGR12, NOS99, N000a, NO00b, NOZ01, NO02, NGM97, NYD09, NN10, NFKF14, NL11, NS02, ON02, ORS08a, ORS06b, PHKC09, PS99, PB12, PFMR13, PK01, PR05b, PR05a, PK06, PKL06, PKCR11, PP05, PKG14, PLZW14, PS96b, PF96, PW99, PNAK11, PCP14, PG07, QNR99, RBM15, RO99, RRX09, RGL05, RGRM14, RCFW10, RM11].

Networks [LM12, Rav07, RLW'+07, RYLZ10, RZH'+11, RHDL11, RZW'+13, RWLL14, Res97, RS12, RWW07, RE09, RMC95, RGB11, RXD12, RLD03, RH00, RH04, SHG11, SHG13, SKS02, SJ0'+09, SRZF04, SO95, SJM09, SCP99, SX07, SX10, SLL13b, She14, SLL14, SCC11, SKL'+15, SD00a, SD00b, SP989, SKPS01, So96, SY97, SC05, SLFW06, SP07, SGL06, SILJ11, SKP12, SS07, Sto97, SL01a, SL01b, SSZ02, St04, SMH'+12, SZ03b, SS01, SDFV96, SCL00, SCL01, SZZF10, SOM05, SJ14, TKS11, TXW11, TX08, TXL08, TYLG13, Tan12, THH08, TKC'+15, TSB'+14, TLM04, TCS11, TJJL12, TWZ11, TR06, TN08, THL13, jTM96, TPL96, TLG97, TKP12, TTXJ12, TH01, TS07, UBC13, VDS99, VM04, VM12, VWD14, VS11a, VS11b, VS14, WY07, WL97, WO04, WWL06, WCH'+08, WT08, WL08, WWLS08, WWWA09, WLS'+11, WMT'+11, WWL11].

Networks [WMHX12, WFK'+12, WJTL12, WY13, WWH13, WXLX13, WFA13, WXY13, WJTL13, WJTZ14, WTL'+14, Wan14, WJWX14, WL14, WP00, WRB11, WL00, WG13, WXTL13, WUM10, WJX'+14, WA99, Wu02, WCDY06, WD06, WYD07, WLZN07, WCD08, WZ010, WMLJ12, WCF13, WCWB14, XAY'+14, XXZ03, XPL04, XP05, XP07, XCZ08, XSZ'+10, XHHC13, XJ14, XHG15, XWY'+10, XJL'+14, XJY'+10, XGN97, XTL08, XLM'+11b, XLM'+12b, XLM12a, YK99, YOWA14, YK08, YNO0, YW00, YW01, YW03a, YW04, YW05b, YW08, YY10, YGL13, YNW13, YCTC13, YLW'+14, YLW07, YV98, Y09, YK14, YGE06, YY09, YJHG06, YKP08, YG08, YRL11, YWJJ11, YCW12, YP08, ZWD'+10, ZJLS12, ZH14, ZGJX14, ZCLC06, ZF07, ZS09, ZS10, ZZF10, ZPD11, ZD12, ZZR12, ZMA12, ZMLT13, ZWWF15, ZRLT15, ZZCD10, ZZLL12, ZX13, ZQH13, ZW14, ZMTL15, ZCXX90, ZCLS14, ZYT'+15, ZY14, ZL07b, ZH98, ZPY06, ZKB08, ZL08, ZLP09, ZB09, ZFG'+10].

Networks-on-Chip [ZHCW12, ZDG'+14, ZL05, ZASA10, AAG94, AV94, Ahn94b, Ant94, BR91, BR94, BFP96, BGM94, BCA'+97, BHC94, CAB03, CI92, CO94, Cor92, DA93, DGB'+96, DS94, Dua93, FD94, Fid92, GP93, GPHS94, HC92, HK94, JR93, KSF94, LS94a, LC94, LN93, MXEN94, MD96, NJ94, Nie92, NLM90, OC93, ÖD96, Pad91, PGFS94, RS94, RWF94, RFD97, Sch91, SG94, SB94a, SC93, SR91, SD97, Tak93, TH93, jTM97, UEA95, VS96, YK96a, YK96b, YC93, YM95, YNO0, YA93, ZS95b, Zia94].

Networks-on-Chips [ADMX+12, SHG11, SHG13, SKL'+15].

Neumann [EJGYAM14].

Neural [AB03, CHM'+13, EAK97, EN12, Pre99, YY14, NJ94].

Newsletter [Ano12j].
Offline [LTW+14]. Offloading
[CKK+04, MBV11, SF08]. Offs
[CKK+04, DZH05, GZ09, GAKR11, MYA01,
ZYC12, ZCFX09, DF97]. Offset
[LCRW98]. OLAP [LA06], Old [Mit00].
Omega [PW95, BR91, BR94].
Omnidirectional [ZYW+14b]. On-Chip
[AGGD04, Ano03c, HD15, HP06, JKP12,
KKC+05, LKBK11, LW+13, MKY+09,
PSGD05, PP05, Sib12]. On-Demand
[AGGD04, Ano03c, HD15, HP06, JKP12,
KKC+05, LKBK11, LW+13, MKY+09,
PSGD05, PP05, Sib12]. On-Line
[ANKA99, Bir93]. On-the-Fly
[KS06, PK00]. On/Off [SP07].
One [AJF96, CC97, FMR07, LWJ06, RHM09,
XP05, ZLZ+14]. One-Directional
[AJF96]. One-Hop [RHM09, XP05].
One-Shot [FMR07], One-to-Many [CC97].
One-View [ZLZ+14]. Online
[CHL09, CLT13, CCK12, EDO06, GE12,
HKL00, HHL08, HCZ12, IdM12, IRPvdS12,
KTK11, LGD14, LSL+10, NIP11, PX11,
SZL+12, SLLL14, SZ12, TH+15, TSRS07,
Tse09, Tse13, WMW11, WJWX14, WJX+14,
XHHC13, YGL11, ZLZ+14]. Only
[YLN13, ZQSY13], onto [EAK97, Goh14,
HR99, IS90, KB06, MA13, SS94, TKP00].
OPAM [BS96]. Open [Ano12i, BCL+05,
YLL+12], Open-Source [YLL+12].
OpenMP [ACD+09, MM07]. Operand
[BWS+05, SS08]. Operand-Load-Based
[SS08]. Operated [NK08]. Operating
[LZ11, LBS05, TLH+14, VGGD94].
Operation [HY01, HY05, Iao97, SOTN12,
ZCZ14, KST94]. Operational
[LL07, SLG10, SS09]. Operationally
[KS94]. Operations
[Agr99, BNBH+95, Bar98, BDD+96, CCFS11,
GY07, JSWB07, LCL03, PKG14, Sah00b,
SCL05, TLP12, THH96, WS98, MR92].
Operator [RSP02]. Operators [ZMP07].
Opportunistic
[BCP+14, CWYZ09, CNC+14, LGYV14,
LW12, LLS13, MTX+11, MPS15, PKCB11,
RBM15, XSZ13, ZMTL15]. Opportunities
[CW02a]. Opportunity [ABB+00, KB03,
LYW+12, LZN10, WTL+14].
Opportunity-Based [LZN10], optic
[AAG94]. Optical [CFB02, CWYZ09,
DS03a, FR96, GP03, HSWB07, LY11,
LWN98, LK04, MR06, MAJ+07, RS97a,
Sah00a, Sah00b, SCP09, WL00, WH01,
YW01, YW05a, YJHG06, ZY06, ZY06].
Optically [QM97]. Optics [LCRW98].
Optimal [AWZ15, Anh94b, AR97, ABRY03,
ADD+02, BF96, BBG+95, BGO+96,
BGO+98, BGM94, BMB+10, BGOS97,
BNO+01, CS01a, CHLZ13, CC93a, CCP95,
CGK04, CYW94, CC97, CPGT14, CC95,
CL11, CNNS94, CXN06, DA98, DPS96a,
DPS96b, DP02, De96b, DS05, DY05, DD01,
DD05, Din01, EK95, FLJ05, FJ07, FCF00,
FI95, GW96a, GRS99, GAG96, GPF12,
HH13, HNO98b, HNO98c, HWE10, HK95,
HS02, HTPS02, HKW01, HYL0, HNL0,
HZ96, ISRS06, JR93, JR03, LJ13, LL13,
LYA05, JEG07, KD01, LZ96, KCS+99, KR00,
KLS00, Lai12, LC96a, LC95, LS97, LM90,
LT97, LWX+11, LYW+12, LS+05, LS92,
LY93, MA07, MA13, SS94, TKP00].
Optimal [WKS01, WWL+13, WMN99,
WL08b, WL12b, XJL+14, XG97, YQZC12,
YMP08, YW00, YW01, YW02, YL08,
YYK11a, YYW03, ZY04, ZJL96, ZCZ10,
Zhu14, Zon14, AGE94, BGO+97, Fid92,
Ft97, JR94, LK94, LNO93, SB94b, Uh92].
Optimality [LC02a, XU01]. Optimally
[BSS09, LWS+12]. Optimistic
[JZW+14, Q503, VJA97]. Optimization
[BCG04, CJ10, CWC11, CWJS11, DW13a,
FC11, GCL14, GWC14, HKL00, HPH+12,
IB14, IdM12, KOPS10, KGK+13, KTK12,
KA09, KM02, LW11, LKKS05, LSZ09].
LMPR12, LQK +13, LYL15, LJJN07, LCW11, LDYZ15, MSW +12, McK98, MGR12, PDFJ13, PC05, PJAGW14, RCK15, SKB04, SCO +07, TM06, TKVD02, TK96a, XP05, XXWY10, XLL11, YYK +11b, YWC11, ZCXF09, AT07].

Optimizations [CE95, GIX +12, KK04, KKCB02a, KKCB02b, KBC01, dOSdM13].

Optimized [BV05, CFKR98, HX10, WJ12, WJB14].

Optimizing [AMY09, AKSS04, Bar10, COS00, GSS96, HS12, KP12, LCGC07, LMR10, LMPR12, LLSZ08, LC10, LZY12, LXN07, MM12, MCMR12, PDH06, SLL13a, SL09, TSJ07, WCBX06, WL08a, WXL10, YMP08, YL07, ZCLC06, ZL08, ZLP09, ZCSY08].

Overloads [BK09, FRGL09, MFO +13, MG09, PZZ09, TSN10].

Overutilized [CWS12].

Overflow [SFP03].

Overhead [BG02, CWC11, CC99, FPGAD08, KB03, MS13a, PF08, SRT96, SOA15, WSC +14, ZRQA14, Kum92, LLJ +93, NZ95, ZLE91].

Overhears [LLG13, SSRV99].

Overhearing [WC13].

Overhearing-Aided [WCF13].

Overlaid [FC11].

Overlapping [hLCC +06, YY09].

Overlays [BK09, FRGL09, MFO +13, MG09, PZZ09, TSN10].

Overload [Ram99].

Overloaded [BB13].

Overconstrained [TTB +00].

Owner [LLY07].

Outsourcing [HN11, LHL +14, Lou10, WRWW13].

Owner [LZWY13].

Outsourcing [JB01].

Overall [COS00, YJHG06].

Overcommitted [CWS12].

Overflow [SFP03].

Overhead [BG02, CWC11, CC99, FPGAD08, KB03, MS13a, PF08, SRT96, SOA15, WSC +14, ZRQA14, Kum92, LLJ +93, NZ95, ZLE91].

Overheads [LLG13, SSRV99].

Overhearing [WC13].

Overhearing-Aided [WCF13].

Overlaid [FC11].

Overlapping [hLCC +06, YY09].

Overloads [BK09, FRGL09, MFO +13, MG09, PZZ09, TSN10].

Overload [Ram99].

Overloaded [BB13].

Overconstrained [TTB +00].

Owner [LLY07].

Outsourcing [HN11, LHL +14, Lou10, WRWW13].

Owner [LZWY13].

Outsourcing [JB01].

Overview [LZY07].

Owner [LZY07].

Overlaid [BB13].

Overconstrained [TTB +00].

Owner [LLY07].

Outsourcing [HN11, LHL +14, Lou10, WRWW13].

Owner [LZWY13].

Outsourcing [JB01].
SML13, SX03, Tze06, WR04, WLL+07, WFK+12, WL13, WH+15, WW12, XZG09, YP13, MS93, PGFS94. Packet-Based [LL06a]. Packet-Switching [LL06a, LL06b].

Packets [LZ02, ST99a, VB93]. Packing [BW94]. Packings [dBL98].

Page [DYJ97, Bir93]. Page-parallel [Bir93].

Pairs [MBH+10]. Pairwise [MCL+07, MDL06, RM11, SZA11, TC94].

pancake [BFP96]. Pancyclicity [LL12].

PAPADS [Ano07c, ACM08]. Papers [Ano97d, Ano97b, Ano97c, Ano98c, Ano01b, Ano01c, Ano01d, Ano02b, Ano04b, Ano04c, Ano04d, Ano05c, Ano07c, Ano09c, Ano09b, Ano11d, Ano11c, Ano12c, Ano98b, Ano99c, Ano99e, Ano03c].

Paradigm [BLR03, HJZ+12, JKR01, OC05, WSC97, ZL05, MN92]. Paradigms [OB00].

Paragon [FBD96]. Paralex [DGB+96].

Parallel [AKN95, AK98, ACM08, AM90, AFAGR97, AJMJS03, AFAGR00, ATML08, ACT+97, Ahn95, AGL+98, AM06, ABK98, AKSS04, Ano97d, Ano97b, Ano97c, Ano02a, Ano11d, Ano11c, Ano15a, ABDZ94, AH06, ADD+02, AIK91, BT00, BCVCV05, BBC+05, BDD+98, BJS90, BK96, BAO7, Bar10, BAH01, BA97, BP06, BSM+11, COP00, CMB05, CLL+14, CA99, CATC11, CARW93, CFB02, CC93b, Cha96, CH07, Che95b, Che96, CC97, CFW98, Che91, CW02b, CPX04, CWZ+15, CV08, CY96c, CB00, CJPW06, CN02, CN04, CSR07, DPS96a, DPS96b, DHB01, DGB+96, Deb96, DHN95, DFGG13, DWV+15, DDD+05, DMCN12, DHN96, Din01, DBG+14, DL02, DCSM96, DNSC09, sFC12, FE97, FHBK97, FDC00, FFPF05, FA94, FB96, FGEL14, FI95, FARH02, GMRC07, GRS99, GCCC+04, GyG06, Gy95b, GLM13, GKS95, GSS96, GKK97]. Parallel [HH13, HMO8, HNO98b, HAD12, HCF03, HCY97, HW13, yH02, HS03, HLV94, HH95, HX96, IA95, JMN92, JMK11, JTP+08, JZ04, JYVA05, JHYK11, KAB03, KHW+95, Kao15, KM10, KLO1, KKK11, KG92, KPA13, KBHS14, KPR05, KA99, LB00a, LH93, LO95a, LC95, LL96, Lee97, LKHL03, LHS03, LM06, LCB96, LPZ98, L07, LP07, LLM13, LZWY14, LT00, LBS01, LC99, kLCC+06, LOS99, LLH+01, LCL03, LNO03, MFS11, LSBS98, LS06, LW+13, LPMB13, LRTZ96, LWN98, LKD10, LL94, LZ05, LMT98, MSW+12, MR02, MD97, MJ98, MC14, MT97, MT12, MN04, MNE14, MS99b, NZ95, NLW99, Nas93, NL02, NKP+96, OHRW99, OXL06, OR97, OA11, PR05a, PF12, PK97, PWW00, PJAGW14, PG01, PK95a, PK95b, Pre99, PH02, QC99, QA01, Q03, RL98, RAj05, RA04, RMG14, RK93, RR02, Rob04].

Parallel [SFL+14, SKGC14, SA09, SKB04, SOA15, SZ02, SW96, SSP00, SSV99, Soh95, SCO+07, SP03, SA11, SCP02, SPF99, SZ04, SP12, SOM05, TYS+12, TSP+08, TBC12, TP95, TVCM12, Van14, Var01, VV99, VB95, VS15, VKS+09, WC97, Wan98, WKS01, Wan04, WHM90, WL+12, WK11, WLO0, WCF91, WDY93, WTCY95, WHL95, WYD98, MB96, Wu97b, WKC12, XL01, XH10, XQ08, XB93, YFJ+01, YDW+09, XYWX14, YFM98, YZC08, YR14, ZSH+11, ZFMS03, Zha12, ZY07, ZH98, ZH99b, ZASA10, ZCO98, ZWM99, dSF03, vG03, vDSP96, AOB93, AH91, ADM92, Ah94a, AN93, AC93, BS95, BW94, Bir93, BCJ90, CA93, CCO90, CIW91, CWL92, DM93, Don91, DFD93, Efe92, GO93, GR90, GM96, GS91, GKS93, HSS94, Har91, HQL+91, HN93, HE92, HB92, HK93, IT93, JS90, KK94, KMT91]. parallel [KCN90a, KNC09b, KM91, KG094, KSA94, Lee93, LC91a, LNP94, LIL94, LL90, MS91, ML90, MB94, MM96, ME95, MCH+90, MKH91, MTSDA93, NSD93, Nic92, NGL94, OSS93, OW91, OSZ92, Omi90, PLW96,
RK94a, RK94b, Rao96, RJ94, SP93, SST94, SL94, SW95, SR94, SMJ92, Tak93, TB93, TN93b, Tze93, WW92, WCS92, Wen96, WLR93, WYTD93, WM93, YJZ97, YG94, YD94a, You93, YC96, ZLE91, KP93b.

parallel-acting [MM96].

Parallel-Pipeline [KPR05].

Parallel-Systems [SF09].

Parallelepiped [RR02].

Parallelepiped-Shaped [RR02].

Parallelism [AGWFH97, HYZ15, KCRK00, LLCH12, LKBK11, LWS+12, MA97, MA01, PAM95, PS96a, RSP02, RSB97, SCH11, TSG09, WLT+12, WHL95, YYK11a, GP92, Lar93, MR94, RM90, WL91].

Parallelization [CM10, CL05, EHP98, Gre98, KP09, MS00, OB00, PPBSA97, RP99, SJKC06, XC01, YXSS13, YR06, JW94, KK91, NE93, TN93a].

Parallelized [DHN96, PPR10, TMTH96].

Parallelizing [ASS95, AK99b, FS00, FO05, HN90, HCYL06, Lee95, BE92, CS94, CL94, GB92, LYZ90, SLY90].

Parameter [ABE+11, XL04, ZJLG14].

Parameterized [CWLR09].

Parameters [sFC12, ZSMF01].

ParaScope [KMT91].

parentheses [PDC94].

parentheses-matching [PDC94].

Parenthesis [Sto96].

Pareto [Zom14].

Pareto-Optimal [Zom14].

Parity [MWZX14, Par+95, WHH+13].

Parity-Based [MWZX14, WHH+13].

Parking [AW+12].

Parsing [EH11, NLW99].

Part [DLPP05, LPD05, OSRS06b, PK95a, PK95b, RK94a, RK94b, YK96a, YK96b].

Partial [ANE12, Agr98, DP02, FJY98, GJC+13, HLY+14, KLFD13, LSW04, LVA+11, RLW+07, ZH07a, Zou14, You93].

Partition [AW+12].

Particle-to-Grid [MSW+12].

Partition [GETFL14, HY04, RL98].

Partitioned [DWF12, CPA93, JS90, LC91b, NSD+91, WS93].

Partitioned [BC99, DS03a, MR06, RJ94, Sah00a, Sah00b].

Partitioners [SCP02].

Partitioning [AKN95, BA07, BR94, ÇA99, CATC11, Cha96, CM95, COS00, CT02, D'H92, DWX09, Ian14, IB95, JÖ95, Kao15, LPP13, klL11a, LC02b, MROD07, OR97, PPR10, PB96, RR02, ST91, SVB05, TKP00, TWH99, Tze06, WKK11, AH91, GB92, Gup92, LC91b].

PASQUAL [LPMB13].

Passing [BHK+97, CBDW96, DFKS01, DHN96, HK98, Ho98, MF01a, MRT09, PS99, RRG07, WCL95, vDSP96, ATG92, AMAM94, WG90].

Passive [DS03a, GP99a, KCW11, LZZP13, MR06, Sah00a, Sah00b, WRB11, WZFG13, YNW13, ZYW+14b, ZCX+14].

Password [HCL+14, YLW13].

Password-Authenticated [HCL+14].

Password-Only [YLW13].

Patch [KSP09].

Patch-and-Stitch [KSP09].

Patch [Cha14, FLJ05, FJY98, GC94, HL95, JO95, Kao15, LPP13, KL11a, LC02b, MROD07, OR97, PPR10, PB96, RR02, RL98].

Part [BC99, DS03a, MR06, RJ94, Sah00a, Sah00b].

Partitioners [SCP02].

Partitioning [AKN95, BA07, BR94, ÇA99, CATC11, Cha96, CM95, COS00, CT02, D'H92, DWX09, Ian14, IB95, JÖ95, Kao15, LPP13, klL11a, LC02b, MROD07, OR97, PPR10, PB96, RR02, ST91, SVB05, TKP00, TWH99, Tze06, WKK11, AH91, GB92, Gup92, LC91b].

PASQUAL [LPMB13].

Passing [BHK+97, CBDW96, DFKS01, DHN96, HK98, Ho98, MF01a, MRT09, PS99, RRG07, WCL95, vDSP96, ATG92, AMAM94, WG90].

Passive [DS03a, GP99a, KCW11, LZZP13, MR06, Sah00a, Sah00b, WRB11, WZFG13, YNW13, ZYW+14b, ZCX+14].

Password [HCL+14, YLW13].

Password-Authenticated [HCL+14].

Password-Only [YLW13].

Patch [KSP09].

Patch-and-Stitch [KSP09].

Patch [Cha14, FLJ05, FJY98, GC94, HL95, JO95, Kao15, LPP13, KL11a, LC02b, MROD07, OR97, PPR10, PB96, RR02, RL98].

Part [BC99, DS03a, MR06, RJ94, Sah00a, Sah00b].

Partitioners [SCP02].

Partitioning [AKN95, BA07, BR94, ÇA99, CATC11, Cha96, CM95, COS00, CT02, D'H92, DWX09, Ian14, IB95, JÖ95, Kao15, LPP13, klL11a, LC02b, MROD07, OR97, PPR10, PB96, RR02, ST91, SVB05, TKP00, TWH99, Tze06, WKK11, AH91, GB92, Gup92, LC91b].

PASQUAL [LPMB13].

Passing [BHK+97, CBDW96, DFKS01, DHN96, HK98, Ho98, MF01a, MRT09, PS99, RRG07, WCL95, vDSP96, ATG92, AMAM94, WG90].

Passive [DS03a, GP99a, KCW11, LZZP13, MR06, Sah00a, Sah00b, WRB11, WZFG13, YNW13, ZYW+14b, ZCX+14].

Password [HCL+14, YLW13].

Password-Authenticated [HCL+14].

Password-Only [YLW13].

Patch [KSP09].

Patch-and-Stitch [KSP09].

Patch [Cha14, FLJ05, FJY98, GC94, HL95, JO95, Kao15, LPP13, KL11a, LC02b, MROD07, OR97, PPR10, PB96, RR02, RL98].

Part [BC99, DS03a, MR06, RJ94, Sah00a, Sah00b].

Partitioners [SCP02].

Partitioning
GN06, GWYS08, GY09, GLQL09, GWL+11, GSS06, HL09a, HN10, HH08, HLL09, HLY10, HLCH11, HS12, HCC06, JGZW08, JCWB10, KLWK12, KXK11, KI14, LXL08, LYW08, LLSZ08, LWX+11, LFWL0, LLWC09, LXL+05, LLX06, LSL+10, LIHW1, MKT06, PDH06, RS10, RGL05, RCFW10, SC07, SX07, SLL13a, SLL13b, SGL06, STW00, TJ08, TXL08, TJLL12, WL12a, WL08b, XZ03, XZ+10, XSZG12, YTZ+11, YZSC14, YK09, ZH07a, ZF07, ZZX+09, ZH07b, ZKB08.

Peer-Assisted [CMG+14, LFLW10, LSL+10].

Peer-to-Peer [BFPB10, BMB+10, BS14, CW06, CTLH14, CW06, CJL09, CHC09, CE10, CHHC06, CGM05, DF09, Dan11, FRGJ07, FRGL09, GS11a, GG13, GE12, GIP+13, GN06, GWYS08, GY09, GLQL09, GWL+11, GSS06, HL09a, HN10, HH08, HLL09, HLH09, HLY10, HLCH11, HS12, HCC06, JGZW08, JCWB10, KLWK12, KXK11, KI14, LXL08, LYW08, LLSZ08, LWX+11, LLWC09, LXL+05, LLX06, LSL+10, LIHW1, MKT06, PDH06, RS10, RGL05, RCFW10, SC07, SX07, SLL13a, SLL13b, SGL06, STW00, TJ08, TXL08, TJLL12, WL12a, WL08b, XZ03, XZ+10, XSZG12, YTZ+11, YZSC14, YK09, ZH07a, ZF07, ZZX+09, ZH07b, ZKB08].

PeerCluster [HCC06].

Peers [CNMA11].

peerTalk [GWYS08].

Penalty [WHH+13].

Penalty-Aware [WHH+13].

Penalty [WHH+13].

Performance [APG12, AD98, ASB02, AFM02, ATZZ14, Abr97, AGGD04, AV94, Aga92, AC92, AJMW14, AS92, AMAM94, AS96, AAB06, AA00, Ano05c, Ano09c, BKK11, BT00, BDvD98, BJ13, BKB96, BCTB13, BMPP06, BIA+97, BIW00, BE92, BCG04, BCR98, BRF10, Bru14, BSY15, CT14, CE00, CL05, CL13, CM10, CY99, CY00, CH95, CCW+12, CML05, CS03, CG02a, CG02b, CM00, DMA01, DN02, DR03, DR04, FR05, FR06, FR07, GH99, GL00, GvG06, GFS+10, GMCB01, GLGLBM13, GDM+13, Gua14, GWC14, GKS95, HDF07, HJS+11, HC02, HB92, HNY02, HK93, HWX12, HWX99, ICT93, IYO+11, ITW+14, JG11, JSM11, JF94, JIP14].

Performivity [NGB+05].

Perfect [HHM+00, LC10, PR05b, PR05a, BE92, EHP98].

Perfect [HHM+00, LC10, PR05b, PR05a, BE92, EHP98].

Perfect [HHM+00, LC10, PR05b, PR05a, BE92, EHP98].

Perfect [HHM+00, LC10, PR05b, PR05a, BE92, EHP98].
MWZ+13, MSM06, MD96, MSB11, MOFD05, MA13, MKJ14, MDL06, MRGR12, NJ94, NGM97, NLC12, NTWL11, OHRW99, ON06, OC05, Pak07, PR05b, PHP03, PPP04, PSL+11, PH11, PH12, PPR95, PGBI03, QNR99, RK08, RX11, RPYO11, RS12, RBSP02, SRD04, SG93, SFP03, SkLC+03, SX10, SD00a, SSP02, SvAS04, SZ95b, SM02, SMH02, TSG09, TXWL11, TGV08, TM97, TL05, Tho06, THW02, TZ97, TGT10, TKVD02, TK96b, VSD01, VMXQ04, Var93, VR05, WSC97, WB98, WHH+13, WW11, WKK11, WTF06, WHYZ10].

Performance
WCF13, WYCZ14, XC04, XTL06, YTL+10, YW98, YD94b, YWJJ11, ZYC95, ZMR08, ZCXF09, ZH06, ZBM09, ZMP07, ZL10, ZWM99, dBL98, vG03, Aga91, And90, DF97, DI95, DAF95, EAL91, EM90, GH93, GS91, HKM+94, LLJ+93, ML90, RS94, SMS93, SF92b, WS93, YC93, ME93].

Performance-Based
AA00, EHWX10, KL99].

Performance-Driven
[ML05].

Performance-Effective
[THW02].

Performance-Guided
[DF97].

Performance-Oriented
[Kao15, dBL98].

Performance-per-Watt
[KHY09].

Performances
[LHL+13a].

Perimeter
[CSC05].

Perimeter-Based
[CS05].

Period
[SC94].

Periodic-processor-time-minimal
[SC94].

Periodic
[CPM+99, HCY+12, HLY+14, JR03, Lee12, MLW06, RSM90, SA94].

Periodically
[Ano99f, PK99b].

Periods
[RH00].

Permutation
[CT02, CFF15, DZ04, NOZ01, NS95a, SSE00, SYFL09, WMN99, MS93, RW94, YC96].

Permutation-Based
[CT02].

Permutations
[Lai00, YW03b, YW05b].

Persistency
[GE12].

Personal
[LYZ+13, XLT+14].

Personalized
[FYP07, SS01, TG96, YW00, YW01, RW94].

Perspective
[Jia14b, MTSDA93].

Perspectives
[LPZ12].

Perturbation
[CL09, MRW92].

Pervasive
[HYC+12, KKS07, WTL10, YHC+13].

Pessimistic
[SB94b].

Petersen
[OD96].

Petri
[BCBz92, CTC93, JK99, MSB11, SMBT90, STMD96, VGGD94, WF94, ZJLS12].

PF
[PKG14, BE92].

pFusion
[ZYGK07].

pGraph
[WKC12].

Phased
[KKC03].

Phenomena
[JN08].

PHEVs
[MBO15].

Phoenix
[PJC+13].

Phone
[WAY+15].

Photonic
[LZ05].

Phylogeny
[MDB12].

Physical
[ANO08c, Ano11c, CYZ+13, CTX+12, HGY+14, LQY+12, LCGC14, Li14c, LCSC12, MV12, RXD12, SCC11, TGV08, YQZC12, PKL+12].

Physical/Virtual
[SCC11].

PI
[HY07].

Pica
[WCTR+97].

Piece
[LXBB13].

Piece-Related
[LXBB13].

Pin
[Fid92].

Pinpointing
[AY00].

Pipeline
[BXXC12].

Pipelined
[BR05].

Pipelining
[BXXC12].

Pivot
[FJY98, KLDF13].

Pivoting
[Ano99f, PK99b].

Periods
[RH00].

Placement
[CT12, CFF15, DZ04, NOZ01, NS95a, SSE00, SYFL09, WMN99, MS93, RW94, YC96].

Placements
[Tese13].

Planar
[LMSRSR13, ZZF10].
HLY+14, IdM12, JJW11, LZYW14, LT00, SMS09, SA11, TAKB06, WSWY15, WHYZ10, YYK11a, YYK+11b, YCW12, ZWZ+13.

Prediction-Based

Prediction-Based

Prediction-Based

Privacy-Aware [ACCP12, Ano12c, CLW+14a, CL09, GZZ+13, GZX14, HSMY12, LLY+14, LNXY15, LLL+12, LLS13, SWC+14, TZB+14, ZZR12]. Privacy-Conscious [XTHD10].
MTSDA93, RS94, SST94, SMJ92, Tho93, YD94b. **Processor**

[BBC+04, Bar98, BE07, CA13, CBE93, CW00, CYY00, C95, CML05, D+05, D95, EP05, GW96a, GL97, GR06, HK06, HWKH01, HCYD01, HV11, HW08, IGEN11, IG11, KN95, KBD08, LKHL03, LKKS05, LPZ98, LHSM95, LWLN97, MG95+08, MMS94, OC05, PP99, RTS95, SVP08, SP95, SME10, TBC12, TKP00, UKY98, VM04, VKS+09, WSC97, WF06, WY98, Wu97b, WTC03, YK99, YL96, ZC098, ZWM99, AN94, Cap92, CD94, CN94, GR94, GM94, KL91, KLR94, Mar93, ML94, SC92, SC94, SST94, SF92a, SL93a, SMS93, SL93c, SA93, WC90, WW92, YW93]. processor-cache [SL93c]. processor-time-minimal [Cap92, SC92].

Processors

[AFO5, BLR03, BF04, DSM14, DF99, FHLG11, GY95b, HTPS02, HC97, JR03, Lee12, LPE+99, MMB98, PD14, RCV+13, SF08, SZA11, SJPL08, SCY98, SA11, WB09, WKK11, YP13, Zha12, ZYX+10, Agha92, Ahn94a, Ahn95, HK93, YG94]. **Produce** [TK96a]. **Product** [AA14, CLH13, DAA97b, DAA00, FE97, HC09, KH03, LLH14, Li07, LHJ12]. **Production** [MWZ+13, ATG92, AG96]. **Products** [EF95, LKHL03]. **Profiles** [RMO+95]. **Profiling** [GFS+10, Hol98, YWW+15]. **Profiling-Based** [YWW+15]. **Profit** [CHLZ13, ZXH14]. **Program** [Abr97, AK98, AN93, CLC+12, CM10, KP09, BC92, MS94a, MCH+90, RM90, TRS90]. **Programmable** [LK97]. **Programming** [AAD08, AJM93, AGL+98, Ara11, BM00a, CdMB05, DMCN12, HAI1, JZ04, KBC+01, LCB96, LdSS+13, MGS12, OBO0, PG01, PW95, RNR+03, SK95, TSG09, TYS+12, YYY+09, BS95, CR90, HQL+91, HLV94, KMT91, WG90]. **Programming-Based** [AAD08]. **Programs** [CC13a, CJW+15, CF00, DHN96, FO05, GSS96, Ho198, KA99, LRG99, LMT98, MF01a, NE01, OXL06, PH02, WNKS96, WYY+12, WWLJ14, WBO+01, ZRA14, ZH99b, ADM92, BI94, BE92, CI90, CR90, Fos91, Gab09, GW94, GW96b, GP92, HW90, Lar93, LC91a, LNP94, MKH91, RS94, RK94a, RK94b, SLY90]. **Progress** [LSL+14a, WWW+15]. **Progressive** [HOZ12, SP03, YXSS13, ZZMN07]. **Project** [SOTN12]. **Promoting** [AD08]. **PROMPT** [HRG00]. **Prone** [BBR12]. **Proof** [NLY15, ZY14, CG08]. **Proofs** [LNZ+13]. **Propagation** [BAMJ12, CH98, DYJ97, GG13, Jia95, PBD+13, SH97, SOM05, TLGP97, WZZ+13, XP12, YY14, ML99, Ru96]. **Propagation-Based** [GG13]. **Propagations** [HM98]. **Properties** [Abr97, CSH00, CH14, DAA02, DS95, DCF95, EAL91, EAK95, GIP+13, HC99a, Pre99, Sto97, TL14, Tsa03, TCT14, YHC+13, DT94, Ost90]. **Property** [HYC+12, SyFL99, BR91, LC94]. **Proportional** [FLZ09, HKH+10, LLY04, LCA13, PC07, TYL13, ZX04]. **Proportional-Delay** [LLY04]. **Proportional-Fair** [TYL13]. **Proportional-Share** [FLZ09]. **Protected** [ZML13]. **Protecting** [MS12, WZP+03]. **Protection** [CL14, DHBB12, WS03, WLZ08, WFS09, XRY09]. **Protein** [YTZ+11]. **Proteins** [FARH02]. **Protocol** [ANN+13, ACCP12, ABS01, CBK+10, CHHC06, DZ04, DGF12, EHN13b, EBS04, FL13, FPGAD08, GFM13, GCCC+04, Gen00, GP99a, GD96, HRO00, HSLA05, HA10, HJB+09, Jia95, JZXX09, JCB10, KL02, LLGP13, LDC008, LMR12, LY07, LXHL11, kL11a, LC02a, LLC10, LW09c, LNZ+13, LNXY15, LK04, LXZ13, MEK03, MZA02, MKT06, MY11, PDFJ13, PK00, RZH+11, RE09, RAG10, ...
SH97, SCC11, SL11, SMC0+02, TF96a, WO04, WL14, Xia14, XLLZ11, XJZZ00, YLSQ13, YNY08, YJ13, YK03, ZMMS08, ZL07b, ZKB08, AB91a, KP93a, LG90, YTB92.

Protocol-Centric [PK00]. Protocols [AEA97, AK99a, Ano04d, BRSS08, BBS09, BMPP06, CH04a, Che14, rCHG10, CLJ11, CFKR98, DW04b, FRGJ07, GY95a, GKG06, ISRS06, LSL14a, LW12, LLM14, MLSS07, NO00a, NO00b, NO02, OSRS06a, OSRS06b, PD95, PDH06, SRT96, SS12, TJLL12, TKW98, Tsa03, TT01, WCR09, XXZ03, MSMA90].

Provider [DM93, LLJ93]. Provable [DM93, LLJ93]. Provable [DM93, LLJ93]. Provably [SX10, WZ14, ZHAY12]. Provenance [GM09, JBW0+08].

Provenance-Preserving [JBW0+08]. Provide [MAS08], Providers [Sam14a]. Providing [CSP13, FZGC06, MMACS10, RAHM05, YOWA14]. Provisioning [CLY08a, CSP13, MGA0+09].

Proxy [HN098b]. Proximity [CLY08a, CSP13, MGA0+09]. Proximity-Aware [CLY08a, CSP13, MGA0+09]. Proximity-Aware [CLY08a, CSP13, MGA0+09].

Proxy-Based [XTHX13]. Proxy-Client [ILL07]. Pruned [XO90]. Pruning [CB00, DW04b, MD97, SG93].

Query [HL90]. Query-Log [TOA13].

Queue [ATZ94, KL90, LR90]. Queueing [Nic92]. Queues [Che95, DPO96, DPO96]. Queues [Che95, DPO96, DPO96]. Queuing [DS96, DPO96, OW91]. Queuing [DS96, DPO96, OW91].
[AH06, Che11, FHA06, FZGC06, KMM12, PF96, RS10, SV07, SSP02, TH06].
Quiescence [DTE07]. Quiver [RS08].
Quorum [AEAZ97, AMPR01, AMP07, CS01a, CY95, Jou03, MTK06, NW98, TYK99, YC95, AB91a, Fu97].
Quorum-Based [AEA97, AMP07, CS01a, Jou03, MTK06, TYK99]. Quorums [KKM08].
R [BFPB10, KMM12]. R-Trees [BFPB10].
Race [PK00, Tic14]. Races [ZRQA14].
RAID-4 [ZWL +15]. RAID-5 [MWZX14]. RAID5 [Tho06, TM97]. Rail [ZMF10].
RAIN [BFL01]. Random [BG06, CCFS11, CH08, LKK02, LLL09, LWXS06, PDH10, Rav07, SGGB14, VB96, WLS +11, YZT +15, RS94, You93].
Randomization [JS98]. Randomized [AS00, CPX06, FRGJ07, IKIO13, MKOK14, Mit01, NO00b, RS98, UFS96, YJ97a, BL91].
Randomly [CH08, VB93]. Range [CST02, KTK11, MA14, SPF99, WWWA09, ZY04, ZY06, ZH11]. Range-Based [MA14]. Range-Free [WWWA09, ZH11].
Range-Join [CST02]. Range-Queriable [KTK11]. Ranked [CWL +14a, WCRL12].
Ranking [PKJ97, SS96, SWC +14, ZWZ +13, RJ90]. Rapid [PT11, HNY02]. RAPID-Cache [HNY02]. RASS [ZLGN13]. rasterizer [Bir93]. Rate [BMR99, CYX +14, CCL13, EKOAW02, GAG96, HY07, HPT04, Hu14, JASA08, KCK14, LRJX13, LCW11, LGG +14, SS08]. Rate-Based [EKOAW02].
Rate-Monotonic [BMR99]. Rate-Optimal [GAG96]. Rateless [SGGB14, WL08b].
Rates [HJBB +09]. Rather [TEF07]. Rating [AI15]. Ratio [GZG99, KS01, WLL +07].
RDMA-Enabled [Pan14]. RDT [Tsa03]. Reaching [KJ09, TYK99, WYWW08].
Reaction [XLL11]. Reactions [KEGM12]. Reactive [SBC +10]. Read [DMS +12, KDW01]. Read-Copy [DMS +12].
Reader [GFM13, JGZZ14, ZCX +14]. Reader-to-Reader [GFM13]. Reading [KST94]. Real [AS99, An098c, AA09, BO98, BVEAGVA10, BMR99, BMB +10, CCKF15, CLT13, CCL13, CRN09, CS97b, CS03, DCL +10, EDO06, EX +11, FWDC +00, GMM97, HS99a, HZW +14, HLZY15, HJS +06, HSH +99, HKH +10, HSX +12, HS99b, KSF94, KGM97, KM10, KMW08, Km14, KWH02, KKC03, KS01, KS03, KgCS04, Lec12, LL07, LTW +14, LHSML95, LWK05, MZ05, MM98a, MM98b, ME95, PM13, PABD +99, QF14, Ram99, SFL +14, SS12, SJPL08, SCK00, SL14, SHX +10, SR99, TXWL11, TL05, VMXQ04, WJL07, WCHQ08, WMWL08, XZG09, XP05, XYQ08, YW98, YC12, ZGL10, ZLGN13, ZS95a, ZS98, ZMF10, ZMC03, ZMM04, ZLZN09, ZJ99, CD94, KGM96, RSS90, SRS93, SH93, SH94, SA94, SMS93]. Real-Time [AS99, An098c, AA09, BO98, BVEAGVA10, BMB +10, CCKF15, CLT13, CCL13, CRN09, CS97b, CS03, DCL +10, EDO06, EX +11, FWDC +00, GMM97, HS99a, HZW +14, HLZY15, HRS00, HJS +06, HSH +99, HKH +10, HS99b, KGM97, KM10, KMW08, KWH02, KKC03, KS01, KS03, KgCS04, Lee12, LL07, LTW +14, LHSML95, LWK05, MZ05, MM98a, MM98b, ME95, PM13, PABD +99, QF14, Ram99, SFL +14, SS12, SJPL08, SCK00, SL14, SHX +10, SR99, TXWL11, TL05, VMXQ04, WJL07, WCHQ08, WMWL08, ZG09, XP05, XYQ08, YW98, YC12, ZGL10, ZLGN13, ZS95a, ZS98, ZMF10, ZMC03, ZMM04, ZLZN09, ZJ99, CD94, KGM96, RSS90, SRS93, SH93, SH94, SA94, SMS93].
Regularity [LCB00]. Regularization [CLC+12, TC95a]. Regularity [Lai00, YY95]. Regulating [SP07].
Regulatory [ZASA10]. Reinforcement [ZCO98]. Reinforcement-Based [ZCO98].
Relabeling [HH11]. Related [BBG+95, PR05a, Ram95, TLP15, THT+97, WK801, JR93, KSA94, WC90].
Release [HV11, VM04]. Reliability [yCM98, CH92, CGZQ13, CI92, GB00, GAKR11, GYS05, HPL14, JHR+14, LZX11, LTMD11, PDH10, PH12, SJ99, TS10, ZQSY13, SR91, SRT94].
Reliability-Oriented [LZX11]. Reliable [ABS01, BV10, BFL+01, CBK+10, DHN95, GPST09, GKG06, HNY02, KMG03, LWC+09, LGYV14, LLL+14, MN92, PDFJ13, RE09, RMH09, ST99b, Ven14, XZX03, XLM12a, ZGH14, ZF07, HK94, LS94b]. Relaying [THS8]. Remapping [BA07, YXW03].
Remote [JKR01, LWY96, LZCK14, MWZ+14, PM13, LWY93, Tho93]. Removal [KS91, LG10]. Rendering [BA07, LLL+01]. Rendezvous [KPG+12, LLCL12, Mis14]. Rendezvous-Based [KPG+12].
Replenishment [NNKL13]. Replica [AMY09, BR508, CSR+09, MMJ03, SRT96, TX05, TC06, TCC07, XAY+14, ZG11]. Replicas [KDW01, QR07]. replicate [SY93]. Replicated [GAKR11, HZ97, KSC03, PM02, RSG06, Tos07, TOA13, AB91a, RST95, SB94b, TT94]. Replication [AJ95, BKY06, CB14, CDD+09, DvM09, FHW11, F01, GLV06, HY96, JKS13, LLDC05, LTZS06, LWY93, LSCZ07, LJ+11, MBTPV06, NTWL11, OUA11, SYC03, She10a, She10b, TC04b, THT+15, WC09, WL12b, ZJ99, TT94]. Replication-Based [CW09]. Reporting [SZ03a]. Representation [Abr97, CDV+06, EBS02, LZ10, XH10]. represented [IA95]. Reprogramming [PB12]. Reputation [AAAK+14, RBM15, ST10, SLL13b, SCW07, ZF07, ZH07b]. Reputation-Based [ST10, SCW07]. Reputation-Enhanced [AAAK+14]. Request [CCY03, CB03, DDV+07, LS94a, LPP13, RK08, SL12, WW13]. Requests [JR03, TTB+00]. Required [LCLD13]. Requirement [HV11, KPR05]. Requirement-Aware [HV11]. Requirements [HY02, KOP91, SSRV99, Uat92, GO93, MS93, SMS93]. Rerouting [NSZ02, SDDY00]. Rescheduling [SSZ06]. Research [RRX09, Sto10]. Reservation [CS02b, LW14, SP05, VM12, XL+06, ZMMS08]. Reservation-Based [LW14, SP05, VM12, ZMMS08]. Reservations [RRX09]. Reshuffle [Din01]. Resident [JDB+14]. Residential [GP12]. Residue [BM00b, PP95]. Resilience [HLW14, NL11, TJ07, YCW14]. Resilience-Complexity [NL11]. Resilient [AOK09, CWLR09, CC93a, DAA00, LMPR12, LXHL11, LYGX12, LCS14, MSSB14, NLM90, SX07, TVG13, WL08b, YK90, LW95a]. Resistant [BSS09, KSP10]. Resisting [XTXH13]. Resolution [GFG+99, SP05, WP00, XRR00]. Resolving [HLH09]. Resource [ANN95, AOK09, AMSK04, BEDCR13, BCR98, BSM+11, CC10, CB13, CGP14, CXN06, CNT05, DW13a, DW13b, DP06, Dn06, GAG96, HKA12, HCZ12, HLW14].
Resource-Aware [MKVL12, VVR07].
Resource-Constrained [GAG96, ANN95].
Resources [BcFGM08, DP01, FLZ09, GKK05, HZW14, LDYZ15, SJKC06].
Respect [SLH97].
Respective [FMR07].
Response [AWZ15, CN04, KA09, LLTW08, LZ12, LLY14, LLX06, Var01, WWCZ11, WX11, ZKSY14, TRS90, WCS92].
Responsive [LAV03, Sun02, WLL07].
Restart [CLS04].
Restoration [AYA09, FCF00, MAJ07, WMT11].
Restoration-Based [MAJ07].
Restraining [WJX14]. Restricted [FZVT98, GZ09, NO97, CCJ02].
Restructuring [CK08, DKKS04, SMS13].
Resubmission [PP12]. Result [MBV11].
Result-Data [MBV11]. Results [BCL05, CCY96, FCF00, Fei05].
Retiming [CDR98, CS97a, PS96a]. Retirement [USP12].
Retrieval [CJL12, HOZ12, LC04, MZA02, SC07, ZYKG07].
Retrieving [dOSdM13]. Retry [CF01].
Reuse [GHH13, Guo14, PDH06]. Revealing [ZLF11, ZYSH14]. Revenue [LJCL08].
Reverse [APCH11]. Reversible [LF03].
Reviewer [Ano11b, Ano13b]. Reviewers [Ano99a, Ano00a, Ano01a, Ano03a, Ano04e, Ano05a, Ano06, Ano07b, Ano08b, Ano09a, Ano10, Ano12b, Ano14b, Ano15b].
Revisiting [TJLL12]. Revocable [YJ14].
Revocation [HN11, LNA13]. Rewarding [WML14, LSL14b].
Rewriting [SF07]. RF [NML14]. RF-Based [NML14].
RFID [ACCP12, BXXC12, sCCyW14, CCS12, GFMR13, JGZZ14, KWZ12, KZW12, LNZ13, LLM14, MLSS07, QNLI11, QNN13, SL14, WZFG13, WSSZ13, YNW13, ZZZ11, ZCX14]. RH [Zia94].
RHINET [KWOA05]. RHINET-2 [KWOA05]. Rich [HJMVI2].
Riding [LYW08, LHW11]. Right [SF09].
Ring [ABC91, BK09, CC93a, LW95b, MKOK14, TCS97, UKY98, ZY95].
Ring-Based [ZY95]. Ring-Connected [LW95b]. Ring-Like [BK97].
Rings [Ano99f, HG05, HLH04, KY97, LH01, PK99b, SCL00, YCTW07, ZPD11, VB93].
RIPS [SW96]. Risk [JRV13, ZCJY14, ZYSH14].
Risk-Constrained [ZCJY14]. Risk-Graph [ZYSH14].
Ritz [Gre98]. RLE [EAF00].
RLE-Compressed [EAF00]. Road [JGHD10].
Robotic [ZS13]. Robots [IKO13]. Robust [AI15, AKR10, BSM11, CPX06, C1H13, EVW07, FC10, FGLP10, JKT11, LCL14, MS13b, MY11, WLL10, WLX13, YOAW14, YP13, YLW14, ZYW14a, ZH07b, LY94].
Robustness [AMSK04, CJ10, CNMA11, MLVD12, PR05b, YQZC12].
Rogue [HST11]. Role [CHC09]. Role-Based [CHC09].
Rollback [CY96b, TKT92, TKW08].
Rollback-Recovery [CY96b]. Rolling [AT01, LM12]. Root [Fei05, CF94, LH93].
Rotating [AR10]. Rotation [SY97].
Rotations [MBM98]. Rotator [Cor92].
Round [KSP02, LMS04, PT11, ZY07].
Round-Down [PT11]. Round-Robin [ZY07].
Rounds [ACS13, Gen00]. Routable [YW00, YW03b].
Route [FC11, LYGX12, PDH06, SCK00].
Routed [BP98, CFWK98, FR96, FF98, H000, HK95, KLS00, LNMN95, RMC95, SS07, SCL01, jTM96, TG96, TPL96, TGLP97, TWH99, XGN97, ZL06, MXEN94, jTM97].
Router [CCQ505, DSY99, MBW02, PGB103, SDFV96, WHM09, YLSQ13, YKD02].
Routers [BC99, Chi98, HDF07, LHM12, LBC03, Tze04, Tze06, WS03, WFS09].

Routes [MAJ+07, WZP+03]. Routing [ANN+13, AM95, AS00, Ano98b, Aro00, BcFGM08, BRS07, BC06, BFPB10, BHL+07, BC96, BCR98, BRS97, BC95, BS12, ÇF99a, Cha14, CWC11, CC97, CC01, CHLW13, CHD+15, CNC+14, Chü00, CKWC08, CCCB14, MAJ+07, WZP+03].

Routing [ANN+13, AM95, AS00, Ano98b, Aro00, BcFGM08, BRS07, BC06, BFPB10, BHL+07, BC96, BCR98, BRS97, BC95, BS12, ÇF99a, Cha14, CWC11, CC97, CC01, CHLW13, CHD+15, CNC+14, Chü00, CKWC08, CCCB14, MAJ+07, WZP+03].

Routingin [MMSS15]. Routings [KWOA05]. Row [LC96b, NO98, SP93]. Row-Column [LC96b]. Row/column [SP93]. Rows [BOPZ04]. RPC [CSS+13].

RRE [ZKSY14]. RS [BGBP01]. RS/6000 [BGBP01]. RSD [ZH11]. rStream [WL08b].

satisfaction [SS90]. Saving [GF13]. Savings [TUS13]. Scalability [AF05, BCF13, BG02, DF09, GKS95, HD15, JW00, Kwo98, LZTY09, SR94, GK93].

ScalaBLAST [ON06]. Scalable [AGGD04, AGGD05, Add97, AK99a, ACCP12, AGL+98, AAB+00, BBC+95, BS96, CHM+13, CCSC09, CF08, CDH+04, CHHC06, CCT+14, CYD98, CMDP09, CRD11, DP08, DAJ14, DO13, DBG+14, DZH04, FBD96, FMG02, GWL07, GJPPM+12, GKK97, GKG06, HH13, HK98, HDF07, HZJ+11, IGEN11, JPC14, JTC08, KSWR03, KSA94, LGCG07, LXX08, LZY12, LZY+13, Li14a, LCS14, kLCC+06, LLLN07, LLN+00, LXX07, LW09b, LW09s, LQZ09, MD97, MA14, MWZ+13, MMB+14, MG09, M+12, MJ06, ON06, PAM95, PKJ97, PG07, QLNN13, RS08, SZL+12, SH98a, SYC03, SLL13a, Slb12, TGAG13, Tze04, Tze06, WDC04, WJTL12, WCLK12, WL00, WH03b, XHH13,
XAYM14, YOWA14, YN00, YP13, YC12, ZLGN13, ZYLC14, ZL07b, ZH07b, ZHQ12, ZP07, GP93, KCPT96, LB94, MB92. Scalar [BWS+05, GS91]. Scale [Agr+14, BCQ+10, BB05, BG90, BS14, CJW+15, CC10, CY00b, DvD90, EDO06, GMB01, GLM13, Gy09, Guo14, HL09a, HZJ+11, HjZ+14, JMZD12, JGZZ14, KMG03, KCW09, KCW11, Ksh10, LZ10, LG07, LC07, LC95, Li10, LZY12, LHL+13a, LCS14, LSL+10, LHL+13b, LLM+14, LLL+14a, LK04, MA01, MMJ03, MS13b, QNLN11, SKLC+03, SK14, TNZ+12, TVG13, TKC+15, TZB+14, Ts11, TTXJ12, Van14, VVR07, WH09, WZSL12, WCL12, WRW13, WJZT14, WSW15, WKC12, XHYL05, XHYL11, XAYM14, YHS+14, YPL13, YQLS14, ZYKG07, ZSH+11, ZLW+14, ZLX+14, dSLMM11, SG93, YTB92].

 Scalar-Free [BS14, Gy09]. Scaling [FZVT98, FW13, GDM+13, GJC+13, HWWX99, KS93, LC91b, Lil94, ML94, OD93, PLW96, RSS90, SL93a, SL93b, SL93c, TN93b, YJZ97, ZLE91, ZA93]. Scenarios [BHJ02, BG09, CCSC09, ICL95, CC01, CCLW15, CC98, CC99, CL05, DS05, DWX09, EKO+02, FY07, FT97, FJ95, GZZ+13, HST+11, HLZY15, HCHM09, HGC12, HS98b, HPH08, JG+12, KWZ+12, KLWK12, KMMR13, KCD07, LC10, LLY+14, LCL03, LJW+07, LLL+12, WKL09, WSL09, WZL09, WHQ13, WJL14, WZQY14, WSC+14, WSWL08, WWLJ14, WF03, WTCY95, Wu97b, WSG01, WYJ+04, WLL10, WLX+15, XU01, XZZX08, XZ+10, XYW+10, XXWY10, XL11, YG94, YF97, YKS03, YvdRCP05, YTL+10, ZLAV04, ZSMF01, ZFMS03, ZY04, ZF+14, ZQQ+14, ZWLL12, ZT13, ZHI14, ZC098, ZWMM99, AM93, AMAM94, DR94, EG93, Fos91, HAR94, KLDR94]. Scheduling [LDG04, MLL14, MWZ+14, MSL94, MM98a, MM98b, MB13, Mha09, MF01b, PAM95, PD14, PM96, QF14, RvG02, RRX09, Ram95, RKZC14, RL+07, RJ96, RBSP02, SFL+14, SD04, SMS+13, SS94, SJPL08, SZ02, SZXS05, SP08, SM96, SS05, SS06, SP05, SCW07, SVC12, SOTN12, SCH11, SS00, SSZ06, TSAL97, TVG08, TZh, TYYL13, TD10, TTB+00, THW02, VRKL96, VM04, VM12, VS15, VVR07, VGMA10, VKS+09, WR04, WWLS08, WSBO9, WL13, WZQY14, WSC+14, WMW10, WWLJ14, WF03, WTCY95, Wu97b, WSG01, WYJ+04, WLL10, WLX+15, XU01, XZZX08, XZ+10, XYW+10, XXWY10, XL11, YG94, YF97, YKS03, YvdRCP05, YTL+10, ZLAV04, ZSMF01, ZFMS03, ZY04, ZF+14, ZQQ+14, ZWLL12, ZT13, ZHI14, ZC098, ZWMM99, AM93, AMAM94, DR94, EG93, Fos91, HAR94, KLDR94]. Scheduling [KS93, LC91b, Li09, ML94, OD93, PLW96, RSS90, SL93a, SL93b, SL93c, TN93b, YJZ97, ZLE91, ZA93]. Scheme [BHJ02, BG09, CCSC09, ICL95, CC01, CCLW15, CC98, CC99, CL05, DS05, DWX09, EKO+02, FY07, FT97, FJ95, GZZ+13, HST+11, HLZY15, HCHM09, HGC12, HS98b, HPH08, JG+12, KWZ+12, KLWK12, KMMR13, KCD07, LC10, LLY+14, LCL03, LJW+07, LLL+12, WKL09, WSL09, WZL09, WHQ13, WZQY14, WSC+14, WSWL08, WWLJ14, WF03, WTCY95, Wu97b, WSG01, WYJ+04, WLL10, WLX+15, XU01, XZZX08, XZ+10, XYW+10, XXWY10, XL11, YG94, YF97, YKS03, YvdRCP05, YTL+10, ZLAV04, ZSMF01, ZFMS03, ZY04, ZF+14, ZQQ+14, ZWLL12, ZT13, ZHI14, ZC098, ZWMM99, AM93, AMAM94, DR94, EG93, Fos91, HAR94, KLDR94].
MCL^+07, MM12, MS12, MS13a, NLY15, PAM95, PK99a, RM12, RBGC11, SJd^+09, SFP03, She14, SZ95a, TS98, TJ08, TD01, WDCK04, WX07, WJTL12, WZ14, WML14, WXYX14, XJY^+10, XTL08, YYS97, YGE06, YG08, ZJL^+12, ZQH13, ZQA14, ZDG^+14, vdMDM07, AM91, CA93, HMR94, JS90, KDL91, LHS92, LC91b, MB92, SB94b, TH93, TN93b, YK92, LLZ^+12b. Schemeof [WWLJ14]. Schemes [AJ95, ADG06, CSR07, DF99, FC10, GBD07, HS99a, HW97, JO95, LRW12, LCL^+14, LZCK14, PSGD05, PPD03, RM11, SS96, Tos07, TYK99, VB96, WT08, CYW94, CO94, RJ94, SL94, SH93, ST93]. Schur [ME95, Van14]. Schur-Complement-Based [Van14]. Science [ABE^+11]. Scientific [CB14, CH04b, CMBAN08, HT06, IOY^+11, KOPS10, MLW06, NKP^+96, NTWL11, PP12, PF08, SkLC^+03, WZSL12, WGHP11]. Scope [JGZW08]. Scores [AI15]. Scratch [MBV11]. Scratchpad [GLGLBM13]. Search [AAGR00, CW06, CWL^+14a, Che95b, CLY08b, CJLN09, CBWD96, DT14, DSASSLP12, HS12, IHIL12, JTP^+08, JGZW08, KLH07, KBHS14, LPP13, LLSZ08, LCS14, LLWC09, LMFS11, MD97, MB12, PM13, PWW00, RBSP02, SVP08, SWC^+14, WX07, WZZ09, WTL10, WCRL12, WSG01, YQ11, ZYKG07, ZH07a, ZH06, AM90, CS90, KK94]. Search-Based [KLH07, LPP13]. Searching [MTK06, RY14]. Seclius [ZBK^+15]. Second [ZCL04, MCH^+90]. Second-Level [ZCL04]. Secondary [WRB09]. Secret [NW98]. Section [ACM08, AAB06, ABC01b, CRS06, GZ03, IT07, ON02, OSRS06a, OSRS06b, PP05, RFZ11, SR99, Zha03, HK91]. Sections [HK06]. Secure [AKNR^+04, CHCC14, CPM^+10, CLH^+14, CCBB14, FLH13, GBC^+07, GZX14, HCHM09, Hur13, ITW^+14, KYB08, LLGP13, Lee06, LAK11, LYZ^+13, LT10, LT12, LZKY13, Lou14, LLL^+14b, LLL^+12, LLS13, LLG14, MS13a, MMJ03, STY09, SGB08, TXL^+14, UBC13, WCBC06, WCRL12, WWL^+13, YJ13, ZZMN07, vdMDM07]. Securely [LHL^+14, WRWW13]. Securing [BKL11, PZZ90, TKR14]. Security [Ano12c, BHL^+07, CLL^+14, GZZ^+13, HXC^+11, KPC09, LAV03, LK07, RM12, RYLY10, RXD12, SF07, SZFF10, WWR^+11, Xia14, XQ08, Zha03, ZBK^+15, LSL14b]. Security-Aware [XQ08]. Segment [Hu14, XHG15]. Segment-Based [XHG15]. Segments [CW02b]. Select [SLL13b]. Selectable [HJB^+09]. SelectCast [WJTL12]. Selecting [HAD12, Qua01]. Selection [AWZ15, AFA97, AMY09, BW96, CH04a, CB03, GS03, KGW09, NSU97, RS97a, RS98, SHG13, SCK00, SJ14, TP14, WH03b, XZT^+13, XHZ^+13, YL11a, YK09, YR06, ZF07, BLO^+94, AO12]. Selective [CKC08, OUA11, LA93]. Self [BCTB13, BRX13, CDV^+06, DW04b, DHHB12, DAMK06, DB08, DW13a, DIM97, DS03b, DLL^+11, EHNS13b, FG06a, IvS10, KY97, Kar01, LH03, MS99b, SP07, TVG13, TLM04, TH06, TG010, TNPK01, TK96a, UKY98, WLZ08, YW099, YW00, YW03b, YZ13, YC14, YLZ^+15b, YZFZ10, ZS13, ZSY14, Fos91, SH95b, TN93b]. Self-Adaptation-Based [YZS13]. Self-Adaptive [EHNS13b]. Self-Calibrating [BCTB13]. Self-Compressive [TVG13]. Self-Configuration [BRX13]. Self-Consistent [TGT01]. Self-Contained [SZS13]. Self-Control [TK96a]. Self-Disciplinary [YZS10]. Self-Management [IvS10]. Self-Monitoring [DLL^+11]. Self-Optimization [TK96a]. Self-Organisation [ZSY14]. Self-Organizing [CDV^+06, DW13a, SH95b]. Self-Protection [DHB12]. Self-Pruning [DW04b]. Self-Regulating [SP07].
Self-Routable \cite{YW00,YW03b}.
Self-Routing \cite{FG06a,YW99}.
self-scheduling \cite{Fos91,TN93b}.
Self-Similar \cite{YLZ+15b}.
Self-Stabilizing \cite{DAMK06,DB08,DS03b,KY97,Kar01,TH06,TNPK01,UKY98,YC14}.
Self-Synchronization \cite{MS99b}.
Self-Similar \cite{YLZ+15b}.
Self-Scheduling \cite{Fos91,TN93b}.
Self-Similarity \cite{YLZ+15b}.
Self-Synchronization \cite{MS99b}.
Self-Tested \cite{MS99b}.
Self-Tuned \cite{TLM04}.
Selfish \cite{KHS07,LTZS06,LSB07,LS94,LT96}.
Semantic \cite{HJZ+12,HJZ+14}.
Semantic-Aware \cite{HJZ+12,HJZ+14}.
Semantics \cite{ET10,MGS12}.
Semi \cite{ABRY03,KCK14}.
Semi-Directional-Flooding \cite{KCK14}.
Semi-Oblique \cite{ABRY03}.
Semiconductor \cite{DBG+14}.
semijoins \cite{CY92}.
Semipersistent \cite{LSL+10}.
SenCar \cite{MY07}.
Sense \cite{Amm12,KZW+12,SCC11}.
Sensed \cite{MWZ+14}.
Sensing \cite{CLW03,CIH13,CLK11,FG06b,GCN+14,HCC+12,HK03,Kum14,LCL+14,LCS+15,PM13,RLW+07,XJ14,CHL06,XJL+14,YSG+14,ZSG+11,ZZG+11,ZZG+115,ZMLT15,ZYT+15,ZLLZ13}.
Sensing-Covered \cite{FG06b}.
Sensitive \cite{CS02b,WDO6,YK03}.
Sensor \cite{AYA09,AO12,ACNP11,AD08,AD09,AM00,BCS12,BBS09,BSS08,CHA07,CWL14,CHC14,CYW08,CTX+11,CBM+07,CY06,CPX06,CH08,CTF09,CHL06,CL12,Chc14,CYL+14,CYC+15,CNC+14,CC15,CHG10,CIH3,CLK11,DL09,DWL15,DSRL15,DWX09,DCL+10,DL+11,DLZ+14,DWY+13,DRK11,FC10,GBD+13,GFLL15,GL07,GBC+07,GJZL2,GJLZ13,GCN+14,GJZZ12,GC+15,GHY+14,HS05,HCME9,HS12,HL12a,HCL+12,HCC+12,HJPL14,HA10,HXX12,HX+12,HHL2,HHK10,ISRS06,JCL12,JLW+10,JWW11,JCW+12,JZW+14,JN08,JRP+10,KZ07,KK10,KPK09,XXL+14,KZLL14,KS08b,KSP10,LDC08,LAV+10,LVA+11,LCL2a,LMRSR2,LJG12,LRW12,LWY+13,LLL+13,LCGC14,LHD+14,L44b,LCL15,LC+17,LLL1,LRX13,LCW11,LRS02,LWJ06,LWX06,LH06b,LW07,LZ011,LCL+11,LN211,LML2,LLW+13,LDNT13,LJB+13,LHL+13b,LCLD13,LZP+13,LZL14}.
Sensor \cite{LLZ+12b,LLG14,LTMD11,LWZ12,LWG+12,GMZ07,MC+17,MY07,MR08,MLL14,MZ12,MZ10,MTX+11,MLT+13,VM12,MM10,GMR12,PB12,GRM14,MR11,MR12,RLW+07,RZH+11,RHL11,RZ+13,RCC+14,RLL14,RE09,SKS02,SAM14b,SJ+09,SZP04,SHX+10,SHM+12,TK11,TX11,TX08,TWZ11,TN08,UTC13,WT08,WWL08,WWWA09,WPT10,WMT+11,WW11,WMHX12,WFK+12,WTJL12,WWL13,WFA13,WWX+13,PLL+13,WJTZ14,WG13,WWZ07,WC08,WWCB14,XC08,XHHC13,XJ14,XHG15,WXY+10,XTL08,XLM+11b,XLM+12b,XLM12a,YLZ+15a,YLW07,Y09,YK14,YSDQ11,YGE06,YY09,YK08,YG08,YRL11,ZL+12,ZSO9,ZS10,ZZ12,ZMLT13,ZWLL12,ZQH13,ZT13,ZYT+15,ZPY06}.
Sensor-Actuator \cite{RE09}.
Sensor-Mission \cite{JRP+10}.
Sensor-Target \cite{JRP+10}.
SensorNets \cite{IvS10}.
Sensors \cite{CCT10,ERSR13,LTJ06,WPT10}.
Sensory \cite{KPG12,SG14}.
separable \cite{SP93}.
Separating \cite{BOPZ04}.
Separation \cite{BPT03}.
Sequence \cite{ACS13,IM12,TP08,LMFS11,LSVM10,LPMB13,MC10,MS14,MQ97,RA14,WKC12,YFM98,YK92}.
Sequence-Based \cite{MS14}.
Sequence-Search \cite{JTP+08}.
Sequences \cite{CCSC09,MDL06,DSdM13}.
Sequencing \cite{Bar98,CHG10,BGM94}.
Sequential \cite{BGJ06,CH+07,DS95,DS96,Qd03,QCC99,SZ02,HMW93}.
[USP⁺¹²]. serializable [AG96]. Series [DL02, LCN⁺⁰⁷, TR04, ZCSY08, MM96].
Series-Parallel [DL02]. Serve [JCBWB10].
Server [ASB02, AFM02, CB05, CT08, CGL07, CYD08, DDV⁺⁰⁷, GB06, HJS⁺¹¹, LZ12, LLY04, NN13, QR07, RSG06, RJ05, SBK02a, SBK02b, TNZ⁺¹², THB⁺¹⁴, VR05, WW11, WWX⁺¹³, XWY10, YLW13, ZLLG14, ZJTTZ14, CR94, ICT93].
server-based [CR94].
Servers [DSM14, GB00, GMCB01, KK03a, KCD07, LL02, LKKS05, LLA⁺⁰⁶, RAHM05, RLY⁺¹⁵, RNKZ03, SD04, SLL13b, Tse05, WZP⁺⁰³, WCF10, WWCZ11, ZRS⁺⁰⁵, ZX04, ZWX06, KGM96].
Service [AWZ15, AOK09, AMH08, BVEAGVA10, BB13, BDL13, CPM07, CSP13, CZY14, DHN95, DAMK06, DT14, DS03b, DZLC15, FZGC06, FGLP10, GMS09, KKS07, KSC03, LQY⁺¹², LLS14, LJLN07, LZXN11, LLG⁺¹³, LLA⁺⁰⁶, LZYTY09, MAS08, MDZC14, PS08, PKCB11, PDH10, RAHM05, RHT13, RE09, SY07, SL09, SS07, SJ14, TJ08, TJH⁺¹⁴, TCZL11, WSWY15, XZSG12, XSTZ10, YWY08, YYY⁺¹¹b, ZF07, ZX04, ZWX06, ZZN07, ZJTTZ14, ZJ99, AT07, CR94, MCMR12, CSR⁺⁰⁹].
Service-Based [BDLS13]. Service-Centric [YW08]. Service-Driven [RE09].
Service-Oriented [LLS14]. Serviceability [MBV11]. Services [AK99a, BFC13, CLY08a, DZHG04, GRY07, HX10, HKH⁺¹⁰, Hu14, IOY⁺¹¹, KSC03, KSWR03, LFLW10, LAS04, NGB⁺⁰⁵, PKS14, RS08, RD09, SRL⁺¹², SYC03, SBC⁺¹⁰, WZ09, WX11, XH10, XLT⁺¹⁴, ZCY⁺¹², ZWZ⁺¹³, ZH07c].
Session [ZWX06]. Session-Based [ZWX06]. Sessions [GIP⁺¹³]. Set [AMP07, BSCB09, CHD⁺¹⁵, DW04a, DMR01, DP01, LH03, MM10, QA011, SRB14, WM95, Wu02, WCDY06].
Shared [AD98, AGGD04, AAS03, AKN95, Bor00, Chaa96, CH04b, DDS95, DS96, FB01a, FT97, GP09a, GMR98, HZW⁺¹⁴, Hol98, HS98b, KH04, KL01, KA05, LP96, LAK11, LT97, LNX015, LBC03, MA01, McK98, MP97, MKJ14, PC05, PPBSA97, Qad03, QD05, RGK09, RD98, SKGC14, SLEV03, SN02a, SN02b, SZ95b, TFM2a, TP14, TVCM12, US04, VGHD94, WH95, WVT13, WLX⁺¹⁵, YL97, YR14, ZY95, ZML⁺¹³, Zou14, AH93, ABJ⁺⁹³, And90, BIA⁺⁹⁷, CR90, DC95, Don91, Geh93, GH93, Gup92, IT93, IC92, KCPT96, LIL19, ML94, SL93c, WFP90, YJZ15, ZL91, ZSLW92].
Shared-Bus [GP99a, LP96].
Shared-Memory [AGGD04, AKN95, DDS95, DS96, FT97, GP09a, Hol98, HS98b, KL01, LT97, MA01, McK98, PPBSA97, Qad03, QD05, SLE03, WH95, WLX⁺¹⁵, YL97, YR14, ZY95, AH93, DC95, Gup92, IT93, KCPT96, LIL19, ML94, SL93c, YJZ15].
shared-money [And90]. Shared-Nothing [RD98].
Sharing [BCdSFL09, CSZ⁺¹², CCT⁺¹⁴, DY97, GFLL15, GG09, GP09a, HK9⁺⁰⁷, Hur13, IRSRF11, IMH12, KCRB03, KA06, KyK09, LKK05, LL06a, LL06b, LYW08, ZLY⁺¹³, LZ014, LS14, MFO⁺¹³, MTL95, NW98, RS08, Sam14a, She01a, SLL14, SH96, SF10, VR05, WX07, WS14, ZJS12, ZW14, DY93, GD93, HK93, KK92, LY94, SH93, SH94].
Sherlock [YSG⁺¹⁴]. shift [LO96b]. Shifts [PB12, RS90]. Ship [LW8⁺¹², WCL12].
Short [GZ06, JWS14, STY09, KGM94].
Short-Lived [STY09]. Short-Path [GZ06].
Shortcut [KKY⁺¹⁴]. Shorter [UF96].
Shortest [FH97, KBHS14, Lai12, LZB14, LR96, ZH98, SCD97, TR93]. Shortest-Path [LZB14]. Shortest-Span [KBHS14]. Shot [FMR07]. Shrinking [JL99, JSS93, SKF94].
Shuffle [FG06a, BCH94, Pad91]. shuffle-exchange [BCH94, Pad91]. Shut [WJX+14]. Side [GDM+13, TCC05]. Sided [LKD10]. Signal [GG10, HXA96, KK03, PRS+11, DFD93].

Signature [CCSC09, QGPZ13, RY14, TC07]. Signature-Based [TC07]. Signatures [CLH+14, CD13, NW98]. Significance [ZJS12]. sim [RFDS97]. SIMD [AGWFH97, AS96, BCJ90, CFW98, KK94, Nas93, NSD+91, NSD93, PH96, RS90, SR98, SW95]. SIMD/MIMD [BCJ90]. SIMD/SPMD [NSD+91, NSD93]. Similar [YLZ+15b]. Similarity [DT14, JKS13, LKW+15, SWC+14, WZZ09, WMGA15]. Similarity-Based [SWC+14]. Simple [Ara11, BAH01, COP00, EW97, Hsi03, KM01, KAY+06, LCA13, SC93]. SimpleFit [MYA01]. Simplified [GG11, HWZE10, ZH14b]. Simulated [CFW98, HM95, LL96, Soh95, BJS90, EG93, NZ95, WCF91].

Simulation [BT00, BG09, CCP95, CRWY15, CWZ+15, DHN96, FZVT98, GY95b, JMJZ12, JZW+14, KEGM12, LNMMA15, MT12, NL02, OOA+14, PF12, PJAGW14, QC99, Qua01, Q903, SSP+09, SF90, SE98, TK96b, Van14, VTS12, WLT+12, WHL05, X04, HN93, HE92, HB99, KM92, KH93, LL90, Nic92, RB90, ZL96]. Simulations [MLW06, RBH+14, Soh00b, SF08, SGTP08, NGL94, PGFS94]. Simulator [CWCS15, PPR95, RFDS97]. Simultaneous [LPE+99, FC91]. sine [MM91]. Single [CLW03, DZ04, GB07, GS08, N000a, SL01a, XL10, ZQSY13, BGM94, Rao96]. single-fault [Rao96]. Single-Hop [CLW03, DZ04, N000a, ZQSY13]. single-level [BGM94]. Single-Packet [GS08]. Single-Path [SL01a]. Single-Path/Flooding [SL01a]. Single-Unit [XL10]. Single/Multiclass [GBD07]. Sink [GJLZ13, KK10, RM11].

HML$^{+14}$, Iye14, JKS13, JZW13, Jia14b, LWY$^{+15}$, LLS14, LWCG10, LTBN$^{+12}$, LLL$^{+14a}$, MMSS15, RKZC14, SLLL14, THT$^{+15}$, WYW13, Wan14, WJWX14, WXTL13, WZZ$^{+13}$, WX$^{+14}$, XAY$^{+14}$, XGZW14, YGL$^{+13}$. Social-Aware \\
[MMSS15, THT$^{+15}$]. Social-Based \\
[LWCG10]. Social-Similarity [LWY$^{+15}$]. Sociality [XHZ$^{+13}$]. Sociality-Aware [XHZ$^{+13}$]. Socially-Informed [K14]. SocialTube [SLLL14]. SocioNet [LWCG10]. SOCNs [WL00]. Soft [HJS$^{+06}$, JHR$^{+14}$, KGM97, KgCS04, PP12, CD94, KGM96]. Soft-Error [JHR$^{+14}$]. Software \\
[AA12, CDR98, CL05, EBS04, FMR10, GAC96, JJ09, KIBW99, KABK03, KA05, LPE$^{+99}$, LBC03, MBTPV06, PB12, PBA03, SDDY00, WYY$^{+12}$, WDY98, XGN97, ZLKK07, ANN95, WF94]. Software-Based [SDDY00, ZLKK07]. Software-Directed [LPE$^{+99}$]. Solar [LA12]. Solution \\
[Ara11, BSCB09, Che01, Che11, Gua14, LC99, Lin08, LCL$^{+11}$, WRB11, WS14, ZX13, CARW93, You93]. Solution-Adaptive [LC99]. Solutions [Bar98, BAH01, CCQ$^{+05}$, JTS$^{+11}$, LLY07, Sto96, KST94]. solvable [YK96a]. Solve [CHC04, FM07]. Solvent [FAR02]. Solver [MA13, WJB14]. Solvers [GS11b, SOA15, SZ04, WD95]. Solving \\
[KBD08, Liu08, MSG07, MBM08, NCV05, PK95a, PK95b, THT$^{+97}$, YPL13, ZRTL15, O91, R90]. Some \\
[Lee06, THT$^{+97}$, TC95b, O91, WC90]. SORD [AOK09]. Sort \\
[LB00b, OPZ29, AOB93, WDY93]. Sorted [Che95b, HNO98a]. Sorter [PK99a]. Sorting [BGO$^{+98}$, CS92, DSO02, DCSM96, FE97, HWZE10, HW97, KPA13, LB95, NS95b, OPZ99, RS97a, RS98, CO94, GG94b, Lin93, MN92, XB93]. Soundness [WZ14]. Source \\
[CTF09, GYS05, LRW12, MS12, MM07, RWLL14, RGBC11, XZG09, XLSR13, XLT$^{+14}$, YLL$^{+07}$, CSC07, UBC13]. SOurce-BAsed [UBC13]. Source-Code-Correlated [MM07]. Source-Location [LRW12, MS12]. SP [BGBP01]. SP2 [HXA96, MF01b]. Space \\
[AB07, AH10, BA07, CDV$^{+06}$, CL05, GJ12, KABK03, KY$^{+07}$, LB00a, LP07, MCG08, RA04, SP07, WCLF95, KM91]. Space-Time [LB00a, LP07]. Spacefilling [PB96]. Spaces [BCd09, GAK03]. Span [CWLR09, LZR09]. Spam-Resistant [CWLR09. Span [KBHS14]. Spanners [ALW$^{+03}$]. Spanning [Ano99b, Avr99, CTS96, CFJ15, DPN09, EVW07, KPK09, KWH03, LS96, LWN98, YCTW07, GM94. spare [AM91. Sparing [TM97, Tho06]. Sparse [AE12, BW96, ÇA99, CRW15, DFG13, FEL14, FJ98, GWC14, GKK97, JZWN15, KG$^{+13}$, RCK15, SOA15, UZC97, YLW$^{+14}$, YR14, Zha12. Sparse-Matrix [ÇA99, SOA15]. Spatial \\
[GH$^{L+13}$, Guo14, JN08, KCRB03, LSKZ13, LHR$^{+15}$, NZWL14, WDY98, XTXH13. Spatial-Temporal [LHR$^{+15}$]. Spatio \\
[APK14, WMLJ12. Spatio-Stochastic [AKP14]. Spatio-Temporal [WMLJ12]. Spatiotemporal \\
[HSLA05, HAD12, IWP07, XWY$^{+10}$]. Special [ACM08, AAB06, Ano97d, Ano97b, Ano97c, Ano98c, Ano98b, Ano01b, Ano01c, Ano01d, Ano02b, Ano03c, Ano04d, Ano05c, Ano07c, Ano08c, Ano09c, Ano09b, Ano11d, Ano11c, ABC01b, BKK11. CLL$^{+14}$, CR06, GZ03, IT07, MBMC13, ON02, OSRS06a, OSRS06b, PKL$^{+12}$, PP05, PBD$^{+13}$, RFZ11, SR99, Za93, Ano12c. Special-Purpose [PBD$^{+13}$]. Specialization [ZYLC14. Specific \\
[BJM$^{+05}$, GW96a, HP06, Pak07, PHKC09, Pre99, BGO$^{+97}$. Specification \\
[FB01b, GCCC$^{+04}$, YHC$^{+13}$]. Specified \\
[PSC$^{+95}$]. Specifying [HW91, SPC$^{+02}$]. Spectrum [Guo14, HLY$^{+14}$, LCL$^{+14}$, WS14, XJL$^{+14}$, ZGL$^{+15}$. Spectrums
Strategies [BBC+04, CB13, GB00, GKK05, GLV06, HV11, LLGS09, LiSS+13, MD97, NF10, SH13, SP95, TCO01, TX07, VRR07, WLR93, YR14, BL91, CV92, LY94, LiL94].

Strategy [BKS03, CG08, CW00, CPM07, DP02, GBD07, GF13, KKS01, LWX+11, MPS15, MTL95, Taki4, TWL14, WJ12, WL12b, YL07, AGE94, HC92, SC93].

Strategy-proof [CG08].

Stream [FHW11, GN06, LXHS12, RNR+03, RGK09, SKCL09, TG13, TBC12, WYY+12, WWLJ14, YY95, YYX+09].

Stream-Based [TBC12].

Stream-Oriented [RNR+03].

StreamCloud [GJPPM+12].

Streaming [BMB+10, BSS09, CDBQ12, CZLM09, DF09, DWW+15, GG13, Goh14, GJPPM+12, Hu14, ILL07, JCWB10, KLW12, LFL12a, LLG+13, PS03, SLL13a, SCCC11, SY07, WL08a, WL08b, yWeH11, XSZ+10, XZSG12, YM09, YK09, ZL07a, ZZ+09, ZX04, dSLMM11].

Streamline [BMB+10].

Streams [AB14, BHJ02, CW02a, CH07, Lu14, WWL+13, WSSZ13].

Strict [LZWY14].

Strict-Oriented [LZWY14].

Subject [ZMA12].

subject [KST94].

Subarrays [JZ04].

Subarray [APMG12, HKS+07].

Subcubes [ASD04].

Substrate [APMG12, HKS+07].

Subsystem [LP96].

Subsystem-Oriented [LP96].

Subtasks [TSAL97].

Subtree [RBSS11].

Successful [Dua95, Dua96, NX95, VS11a, VS11b].

Successful-Incentive [WZQ10].

Supported [ZL07a].

Supporting [BS95, CWS12, DR98, HZJ+11, SMS+13, SY07, SZ95a, SWC+14, YDW+09, YMG03, ZN04].

Surfaces [AB07, GM97].

Survey [CTX+11, CTX+12, CC15, JGH10, LWJ06, LCL+11, LCLD13].

Surveys [DZ12, ZSM14].

Surveys [AB14, BHJ02, CW02a, CH07, Lu14, WWL+13, WSSZ13].

Surveillance [CTX+11, CTX+12, CC15, JGH10, LWJ06, LCL+11, LCLD13].

Surveys [DZ12, ZSM14].
Survivable [THH08], Sustainable [GGF+14], Swapped [CXP09], Swarming [LTBN+12, ZCX10].

Swarm [CL13, CNMA11], Sweep [GRS99].

Switch [KP01, KOKA11, Lai00, MGA+09, NGM97, PD14, SSP00, SSP02, YA93].

Switch-Based [KP01, NGM97, SSP00].

Switch-Tagged [KOKA11].

Switched [FYP07, HÖD99, LSC95, MMSS15, PC96, PS96b, SHG11, SJM09, VM99, WR04, Bok03, HC92].

Switches [AH06, CCLW11, HS08, LHM12, Mha09, QNR99, TC93].

Switching [DSY99, FZGC06, HDF07, LMS04, LL06a, LL06b, LZ05, MAS08, SO95, SV97, TZ97, Tze04, YW04, YL11a, YJHG06, LO95b].

Sword [GYX10, TTJX12].

Symbiotic [HY96].

Symbolic [BE98, FS00, KP09, TNPK01, vG03, Lar93].

Symbolic-Key [EP05].

Symmetrical [CF99a, HCYL06, Ts13a].

Symmetries [JK99].

Sync [LZP+13].

Synch [AFA12, BCIJ02, CHCC14, CPM+10, CY99, Che01, CS05, CLS12, CS96, CLS04, FR96, Gup92, HTA10, HM95, HLH04, JZW+14, LCLL15, LH01, LJL+11, LZP+13, LLK+14, LPZ12, MX03, MS99b, NL02, OS02, SH59a, SC05, SCL01, UBC13, XSYY13, YK98, Y114, ZL07b, dB98, Arv94, OS94a, TB94].

Synchronized [WLH+15, AC92, RS94, TK92].

Systems [AS99, ASB02, AJ95, AAD08, AJMJS03, AM95, ACCP12, AMPR01, ABS01, Ano98c, Ano07c, Ano08c, Ano11d, Ano11c, ADD+02, BG13, BQF99, BCQ+10, BDw98, BJ13, BGBP01, BKS03, BBD00, BH13, BP96, BP98, BM99, BJM+05, BHH02, BG09, BHK+97, BDL13, Br14, BXXC12, BE07, BRTM09, CW06, CS96, CS01a, CS01b, CS02a, CLI14, CCY03, CG08, CDBQ12, ICL15, CT02, CT08, CCT10, Che11, CTX+12, CSP13, CCL13, CLHW13, CCS+12, CY96b, CRN09, CY00, CGL07, CMG+14, CLS04, CYD98, DYM17, DMR01, DHN95, DHP+07, Dn06, DL02, ET10, EAK07, EK10, EBS04, FRGJ07, FH07, FZGC06, FG06a,
FO05, GG10, GCCC+04, GGS10, GFS+10, GAKR11, GMM07, GBD07, GV09, Goh14, HL08, HZW+14, HLZ15, HP14, HHM+00, HSH+99, HLCH11, HCS13, HCD97, HT07, HNY02, HBF12, HJZ+12.

Systems
[H]Z+14, HW08, HXC+11, HCL+14, HN11, IBC+11, IdM12, IRIPdS12, Jl99, JNG06, JMZD12, JKVA11, JO95, JZ97, JZJ97, JZJ98, JZJ99, KHM05, KHW+12, KZW+12, KM10, KMG03, KMM12, KL+99, KLL10, KSEM08, KCW09, KX11, KKK11, K114, Ksh10, KHM97a, KM09, KMW08, K114, KBD08, KKD03b, KCH08, LLL11, LKH03, Lee06, LZ08, LJS09, LZ11, LA11, LT07, LLS06, LSH08, LYL08, LY08, LWX+11, LQB+12, LTL14, LTW+14, LCSC12, LLL09, LK11, LHL12, LXL+05, LLL06, LS06, LSH11, LGX+11, LLZ+12, LNZ+13, LLM+14, LWK05, LCO12b, MKR00, MZ05, MM98a, MM98b, MB13, MMJ03, MWZ+13, MV12, MG09, MOFD05, MR0D07, MP97, MS90b, MJ06, NL1C12, NN13, NLQG14, PAM95, PKL+12, PRe05a, Par95, PF12, PDH10, PH12, PBA03, PJAGW14, PP95, PAB03, PS96c, PPR95, QLNL11, QLNN13, QM97, QF14, RSR11.

Systems [RS10, RKG09, RDG12, ST10, SS12, SLY+14, SO95, SXX05, SJ09, She10a, She10b, SL13, SK14, SLGW14, SF09, SGC14, SSP00, SOC+17, SP03, SME10, SPB+10, SJ99, SvV05, SPF99, SUn02, SZ04, SS09, SF10, SR99, TLH+14, TFO1, TKR14, THT+15, Tsa13, TTO1, TF96b, Van14, Var01, VV99, VS15, VVR07, WCL95, WXL206, WCBX06, WJLK07, WLT+12, WRW13, WL00, WMML08, WDY98, WLI12b, WMLJ12, WW12, WDC12, WML14, WYCZ14, XHYL05, XL08, XL10, XHL+11, XBO98, XRR00, XAYM14, YQZC12, YJ97a, YJ97b, YW98, YLR12, ZGL10, ZL11, Zha03, ZS98, ZMC03, ZMM04, ZH05, ZH06, ZJWX08, ZLX+14, ZP07, ZCO98, ZWM99, dSF03, dSLMM11, vG03, vDSP96, ATG92, AC92, AMAM94, AG96, Arv94, CARW93, CR94, CO95, CH92, CTC93, CYW94, CPA93, CT94, DC95, EMS90, Fu97, GMG96, Gup92, Har91, HK93, systems [IK93, ICT93, IC92, KP93a, KK93b, KE90, LS94c, ME92, MB94, MS94, MMS94, OSS93, OS94a, Pan93, R89, R94, R94, SST94, SRS93, ST91, SH93, SH94, SM94, Sin92, SW92, TKT92, VJ93, VJ94, WC90, WS93, WM93, WG90, YJZ97, YK92, ZLE91, Zia93, Ano02a, Ano12c, Ano15a.

Systems-on-Chip [BJM+05]. Systolic [CW02a, EAF00, LSBS08, MF96, SH95b, BW94, Cap92, IS90, LK90, SC92]. systolic-based [BW94].

Table [A00n0b, Ano01c, Ano01g, Ano01h, Ano01i, Ano01j, Ano01k, KKY+14, MMACS10, RBSP02, SX10, T06]. Tables [KKH15, RRS12, RHM09]. Tag [BXXC12, ESGQ13, LZC12, LM+14, MLSS07, WZFH13, WXYX14, ZZG+11].

Tag-Based [ESGQ+13]. Tag-Free [ZZG+11]. Tag-Splitting [MLSS07].

Tagged [KOKA11]. Tags [SLY+14, ZCX14]. TAMES [CZW14].

TARA [KZN07]. Target [CC15, LWJ06, LCL+11, LCL13, WWC14]. Targets [GJZL12, KKS03a]. TASA [ZZG+11]. Task [AS09, ABE11, AK08, Ano09b, CT14, CCKF15, CLT13, CKN80, CKC12, CDD+09, CYD98, DNS09, ELX+11, FH03, GvG06, HKL00, HO99, HW08, HYX11, HC97, JR03, JL99, JZ09, JW13, JJG+12, K05, KMM13b, KA96, Lat94, LS97, LKHL03, Lee06, Li08, LTL14, Li14b, LGX+11, MWZ+14, NLQG14, PLW96, RGV02, RFZ11, RSB97, RRG07, SS05, SS06, SJ99, TGV08, TH02, VS15, WQY14, WSC+14, WW12, XLL11, YF97, YK11b, YSS97, YD95, ZYX+10, ZJTZ14, CO95, DC95, DK92, GY93, MKH91, SS94, SW92]. task-based [DK92]. Task-Tree [MWZ+14]. Tasking [BBC+04, SMBT90, STM96]. Tasks
[AAD08, ACD+09, BA04, BCF+08, CB14, CC13b, CFR99, EK95, GMG97, HP07, IOY+11, KA06, Lee12, LW15, LWK05, PH05, Ram95, Ros02, SJP08, WQY14, ZGL10, ZJTZ14, GO93, KK93a, YG94].

Taxonomy [HPG14]. **TCAMs** [LG10]. **TCP** [LLY07, FYJ+09, WFS09, ZRTL15]. **TDMA** [CLS04, LDC08, WWLS08]. **TDOA** [XSYY13, LZZP13]. **TDOA-Based** [XSYY13]. **Team** [BKB96]. **Technique** [CY96b, CHB98, CN02, CN04, DMB96, DDD+07, EHL11, ESG+13, GG13, GAK03, HCYD01, KA09, KHY09, KCK14, KAY+06, KA96, MZ05, MAS+07, PF96, RB04, SX03, TL06, CTC93, KGS94, MKH91, RM90, SL93b, TN93a, TC94]. **Techniques** [An04c, BB05, CR06, CATC11, DRS15, JZXX99, KB06, LPMB13, LMM015, MT12, NZZ03, PP96, PK04, SMS+13, SC07, SJM09, SZ03a, TMJ14, XHL+11, ZSB+13, CS94, GS91, GB92, KN95, R91a].

Technological [BP96]. **Technologies** [EGQ11, NML+14]. **Technology** [BHCR07, MJK14, XZH14]. **Temperature** [CCL15]. **template** [SSG91]. **template-based** [SSG91]. **Templates** [ADD+02]. **Temporal** [CW06, LWY+12, LHR+15, Wani19, WMJ12, TXH13]. **Teng** [YYX+09]. **Tensor** [AHJ+11]. **Term** [HSX+12]. **Terminal** [WWH13].

Termination [DTE07, LT97, TT01, XL96, LW95a]. **Terrain** [SA11]. **Terrains** [LM12].

Terrestrial [LZZP13]. **Test** [FI95, PW95, RP99, TTXJ12, HISS94, KPK91, PKK93, WT02, KPK91]. **Test&Set** [ST99b]. **Testbed** [NN96, VDS99]. **Tested** [MS99b]. **Testing** [BE98, HAL15, KR00, LC94, Pak07, XSTZ10]. **tests** [UH92]. **Text** [CJL+12, HM08, SWC+14]. **Textured** [HH95]. **Their** [HCD97, LW95b, LHJ12, QLC14, SSP00, UZC97, WMN99]. **Them** [WJX+14]. **theorem** [WY94]. **Theoretic** [BHL+07, KP12, KHS07, SZ08, Tak14, TKP12, YM09, YC14, YK09, ZKSY14]. **Theoretical** [ASB02, KA09, TKW98]. **Theory** [CL14, CMT07, DHP+07, DD98, Du95b, Du97, DP01, DLP05, FFW98, GBD07, IK93, LL06a, LZZB14, LGX+11, PDD10, SHG11, ZASA10, DU93, WL91]. **Theory-Based** [GDB07]. **Thermal** [BCT13, CGM+07, CCL15, GFF+14, TGV08, ZGY+10]. **Thermal-Aware** [TGV08, ZGY+10]. **Thin** [KEGM12]. **Thing** [SF09]. **Things** [NLY15]. **Thousands** [Sib12]. **Thread** [KL01, LSL+14a, OC05, RCV+13, SL03]. **Threading** [KEGM12, LKK11]. **Threads** [CASM07, DR98, HS99b, LLLS09]. **Threat** [YWW+09]. **Threats** [ISA09]. **Three** [AD09, HXC+11, LCRW98, LHS03, MBTPV06, OB00, RM12, SZ03a]. **Three-Dimensional** [AD09, LCRW98, LHS03]. **Three-Factor** [HXC+11]. **Three-Tier** [MBTPV06, RM12]. **Threshold** [CGL07, vdMDM07]. **Threshold-Based** [CGL07]. **Threshold-Multisignature** [vdMDM07]. **ThriftStore** [GAKR11]. **Throttle** [CCL15]. **Throttle-Based** [CCL15]. **Throttled** [CLHW13]. **Throttling** [TCLY07]. **Through-Wafer** [LCR15]. **Throughput** [CWJS11, FQWL12, GFM13, GLS97, HP07, HPH+12, KHH15, L14c, LY11, MB12, VWD14, WJ12, WCCR+97, WZQ10, XZT+13, YKY+11b, ZGJX14, ZKZ+09, ZH14a]. **Thwarting** [CPM07]. **Tie** [XGW14]. **Tier** [MBTPV06, RM12]. **Tiered** [DTE07]. **Tight** [HK06, VV99]. **Tighter** [CL00, RO99]. **Tightly** [ADG+08]. **Tiled** [GAK03, HCF03]. **Tiles** [R02]. **Tiling** [ABRY03, JLF03, PHP03]. **Time** [AS09, ASS95, AWZ15, AMS97, ACCP12, An98c, APCH+11, AOW+12, AH10, AA09, AT01, BO98, BVEAG10, BSC09, BCP+14, BM99, BM00a, BBG+95, BGO+98, BMB+10, BGOS97, BGO+97, CG09, CR95b, CR98b, CTR98, DW03, DW97b, EAS96, ESS01, ESM99, FCR98, FMR13, GLC07, GMR13, GLS07, HP07, HPH+12, KHH15, L14c, LY11, MB12, VWD14, WJ12, WCCR+97, WZQ10, XZT+13, YKY+11b, ZGJX14, ZKZ+09, ZH14a].
Topologies
[BS96, BBH05, BS09, BS14, CMV+10, GY09, HS12, KWOA05, MDSS09, VB96].

Topology
[Ano04d, BCQD07, CYW08, CTF09, CLHW13, CJHG08, DWX09, DWW+11, DWF12, EVW07, FB10, FSM+12, GVGD95, HLF09, HLY10, JJ07, JJ11, JTC08, KZN07, LCRW98, LWS04, LH06a, LH06b, Liu08, LZN10, LLZ14, MGZN07, NT09, OSRS06a, OSRS06b, PFMR13, RHT13, RHM09, SD00a, SD00b, SLFW06, SGL06, SKP12, SCL00, TL14, TL06, TDLR13, WD06, ZZF10, ZHCW12, Zou14, Cor92, Hsu93, MB94].

Topology-Agnostic
[FSM+12].

Topology-Aware
[CLHW13, KZN07, Zou14].

Topology-Flexible
[TL06].

Tori
[CH01, JSR98, ST99a, SY98, TW98, YW02, UEA95].

Toroidal
[AB99].

Torrent
[WL12a].

Torus
[AB03, CMV+10, CYY00, GVGD95, JP12, LX12, PC96, PS96b, RMC95, SBS98, SS01, jTM96, TG96, TLGP97, YFJ+01, ZPD11, ZD12, GPBS94].

Total
[CH98, DD98, DD01, FIMR01, HS98a, Jia95, SH97].

TPDS
[Ano11d, Ano11c, Ano08d, Ano09d].

Traceback
[ADG06, GS08, SX03, ZXG09, YZDJ11].

Traceback-Based
[SX03].

Traces
[ZSH+11, HMW93, HE92].

Tracing
[JBW+08, SZL+12, WSSZ13].

Trackability
[TKW08].

Tracking
[BN12, DRK11, HH12, LH93, LHF+15, MS13b, NSZ02, PPBSA97, SLY+14, WSSZ13, WWC14, XTL08, ZLGN13, ZLN09, AIK91].

Trade
[CH14].

Trade-Offs
[FLP+07, QC99, WBPF11].

Traffic
[Aro00, BO98, CCQ+05, HN10, HY07, IB14, JGG+11, KK10, Kop96, KPB09, Kgs04, LKKS05, LZ10, LX10, MSM06, NFK14, OKSA01, RHDL11, RJ05, SY07, SZ95a, SYL+14, TSAL97, TLP15, TP13, TK96b, WWL11, WXZ+14, WMLJ12, WZL15, XP05, XH+13, XLZ11, YZSC14, ZXW+13, ZT13, ZFG+10, ZLF+11, ZLZ13, AH91, CV92, Kop94].

Traffic-Aware
[RHDL11, TLP15, WWL11].

Trail
[QNR99].

Trajectories
[JZWN15].

Transaction
[QR07, ZMMS08, Tho93, YD94b].

Transaction-Based
[ASG+14, AA12, CSW+12, CD13, DD11, FIMR10, GIX+12, QGPZ13, TGNA+13, TGAG13].

Transactions
[Ano11d, Ano11c, Ano12j].

Transceiver
[NML+14, ZLGN13].

Transceiver-Free
[NML+14, ZLGN13].

Transcoding
[CC03].

Transfer
[BZBP10, DCW+15, EHWX10, KAY+06, LC14, MS99b, RS10].

Transfers
[EEO06, FV09, RRX09, XLSR13, YYY11a].

Transform
[AD95, CPHX04, LHS03, LJB+13, SPS+08, WH03a].

Transform-Based
[LJB+13].

Transformation
[BW96, FLVG95, HS98a, LL07, SLG10, SS09, EHJ94, SC91, WL91].

Transformations
[RJ96, VGM10, D'H92, GMG96, SKF94, WW92].

Transforming
[LVA+11].

Transients
[Aln94b, ABDZ94, FA94, ZA92].

Transient
[FPGAD10, Her00, JZMD12, MG07, KK93b].

Transient-Fault
[MG07].

Transit
[SYL+14].

Translation
[QD05].
Unicast [GP99b, LO95a, MXEN94, Mha09, SLFW06, WWL+13].

Unicast-based [MXEN94]. Unidentifiable [QLC13]. Unidirectional
[HLH04, MKOK14, Wu02]. Unification [RM90]. Unified
[CHA07, FS00, GM97, GSS96, KCRK00, KCRB03, PK01, Y09, AH93, DK92].

Uniform [DIM97, HLH04, KY97, LH01, NO02, O091, PB96, RMO+95, WFA13,
Bi94, DR94, SF92a]. Unification [HN93, TN93a]. Unifying [AC93, YCW14].

Unimodular [D’H92]. Union [CMC+15].

Unit [BSCB99, MC95, XL10]. Units [DFGG13, RSP02, TSP+08]. UNITY
[CR90]. UNITY-style [CR90]. Universal
[AM99, GO97]. Unknown
[GKK05, LLM+14, XCZ02]. Unordered
[PWW00]. Unraveling [ZDW01].

Unreliable [BV05, IWC+09, SCW07]. Unstable [SK14, GW94, GW96b].

Unstructured [BA07, CLY08b, CJL+12,
CE10, GS11a, GY09, HLH09, HLY10, HS12,
KK94, LMPR12, LLWC09, LWCG10,
LXL+05, LHW11, OB00, PFMR13, SGL06,
TXL08, TJLL12, YCW14]. Unsupervised
[MWZ+13]. UnSync [JHR+14].

UnSync-CMP [JHR+14]. unused
[KK93b]. Up* [RGB11, SRD04]. Up/*
[RGB11, SRD04]. Up-Down
[KP01]. Update [DMS+12, FCF00, HYZ15,
TC04b, TZ10, LG94]. Update-Intensive
[HYZ15]. Updates
[CPM+10, Hsi14, Rao14]. Updating
[KPA13]. Upgradable [PABD+99]. Uplink
[KL02, MSM06, TKP12]. upon
[TXL+14, Tse13]. Upper
[CW02b, Che11, Fre13, ZLN+13, JR94].

Urban [CQZ+12, LWZ14, ZLF+11]. Use
[CT02, LSF+09, SD00b, SSZ06, SS90].

Useful [Mit00]. User
[CB05, CSZ+12, CLY08b, DMS+12, FLH13,
HJB+09, JRV+13, JHYK11, LJJG12, MS13b,
MF01b, PSC+95, SLT03, SZZF10, TEF07].

User-Level
[CB05, DMS+12, JRV+13, SLT03].

User-Selectable [HJB+09].

User-Specified [PSC+95].

User-Transparent [JHYK11]. Users
[LLL+13, NSZ02, ST10]. Using
[ANN+13, ABE+11, ANE12, ACT06,
AKNR+04, AD09, AHJ+11, AH10, BN12,
BG13, BWC+03, BR91, BcdSF10,
BDD+96, BRX13, CL13, CC10, CHC04,
CWCC07, CH14, COS00, CH98, CCJ02,
CHJ+07, DW06, DSASLP12, DP01, DRK11,
FLVG95, FMG02, GIP+13, GF13, GHL14,
GSS06, HKL00, HM98, IMH12, JWA10, Jia95,
JZW+14, JK99, KGL08, KBC+01, KSP02,
KMM12, KSEM08, KCW09, KKK11, Kin06,
KCYM10, KL00, KPA13, KAY+06, KBD08,
KET06, LCRW98, LLCH12, LRG99, LI03,
LYZ+13, LGYV14, LYL15, LRS02, LJW+07,
LZC+12, LCS+15, LL98, MZT08, MZA02,
MMMS06, MC14, ML94, MFO+13, MM10,
MSG07, MSB11, MQ97, OHRW99, OAA+14,
OP99, OB00, OC05, PJC+13, PH11, PS96a,
PD14, PP12, PDH06, QNR99, Ram99, RX11,
RZW+13, RBC11, RJ05, Sah00a, dOSdM13,
SMS+13, SWWJ08, SC07, SH97, SPS98].

Using [SSP02, SRL98, SY97, SP05, SA11,
SL93c. TLJ+14, TKR14, TEF07, Tse09,
TG99, TP13, TK96a, Van14, VWD14,
WSNA95, WLL+07, WWWW09, WHM09,
WXZ+14, WSWY15, WF04, Wu98, Wu00,
WHC03, WCDY06, WWC1B4, WHC+14,
Xia01, XCZ08, XH10, XSSC13, XJ14, XB08,
YN00, YW10, YSDQ11, YQ11, YL96, YG08,
YZDJ11, YJZ+12, YZC08, ZJLS12, ZGXJ14,
ZFMS03, ZGZ+11, ZXW+13, ZFG+14,
ZYLC14, ZWWL12, ZLY+14, ZMC03,
ZYSH14, ZMP07, ZT01, ZW02, dLCK+05,
vDJR11, BCBzC92, DA93, GS08, HN93,
HC92, KMT91, LS94c, LC91b, MS94b,
NML+14, SC91, SSG91, SMJ92, TKT92,
WCF91, WFP90, ZL96].

Utility
[CNT05, KM10, WR04]. Utility-Based
[CNT05]. Utilization

[82]
Utilization-Based [WKK11]. Utilize [LZWY14]. Utilizing [OXL06, SF07].

Utilization-Based [WKK11]. Utilize [LZWY14]. Utilizing [OXL06, SF07].

UWB [HKH+10, PRS+11].

Valid [RJ96]. validated [TV92]. Value [AS00, RCS01]. Values [KP96, LL98].

Validation [TV92]. Validated [RJ96].

Value [AS00, RCS01]. Values [KP96, LL98].

Validation [TV92]. Validated [RJ96].

Value [AS00, RCS01]. Values [KP96, LL98].

Various [FJL07]. VCR [HL09a, WL08a].

VCR-Oriented [HL09a]. Vector [CA99, sFC12, GWC14, KGK+13, MS99b, NCV05, RCK15, SOA15, TLP12, TN08, WNKS96, WH01, YY95, YR14, Zha12, PKK93].

vectorization [KKP91]. Vectors [Wu98].

Verifiable [Rao14, SWC+14]. Verification [CCT10, CLC+12, HCHM09, JK99, PD05, PD00, WG14, ZHAY12].

Verifying [CLS05, OM13, Qad03, SPC+02].

Versatile [XL13, GP93, Zia94]. Versioning [VGS01]. versus [BFC+08, KEG12, LZP13, SVC12, TB93, TSP+08, WFA13].

Vertical [MM12]. vGASA [ZYQ+14]. VI [ZBJ+05]. VI-Attached [ZBJ+05]. Via [JS98, CJZ12, CS97a, CGQ13, CZYL14, CMR07, JBG+08, KHH93, LLP13, LLJ+11, LA12, NW98, PT11, TSG09, TYG+14, TKP12, WLH+15, WS14, WML14, XYW03, ZRQA14, ZZN07]. Victor [MS94a].

Video [GB00, GLQ09, HL09a, HW13, KS01, LZY09, SLL14, SCCC11, TCS13, WXL10, WSWY15, XL04, YKS03, ZLCZ14].

Video-on-Demand [HL09a, LZTY09]. Vienna [UZCZ97]. Vienna-Fortran [UZCZ97]. Vienna-Fortran/HPF [UZCZ97]. View [Tan12, ZLCZ14]. Views [Hen14].

Vindication [LNA+13]. Virtual [BB13, BZA10, BRX13, IRS12, Cha96, CH04a, CS+13, DWX14, Dal92, DSM14, DWY+13, GN96, GD+13, IA14, JG10, KN12, KTK12, KY98, KW08, LW11, Lee93, Li14a, LSKZ13, LW09c, LLJ+11, MC11, LC02b, MG14, MOF10, MRO17, MP97, NMG15, SHG11, SD00b, SZ95b, SM02, TNZ+12, TZ10, TPL16, VSD01, WWZ13, XSC13, ZLCZ14].

Virtual-channel [Dal92]. Virtual-Channelless [SHG11].

Virtual-Force-Based [LL13]. Virtualization [BHEP14, GDM+13, KMM13b, Gua14].

Virtualized [HC14, LLJ+13, WW11, WWZ11, WW13, YQ+14]. Visibility [BBG+95]. Visibility-Related [BBG+95].

Visibility [BBG+95]. Visibility-Related [BBG+95]. Vision [BA97, RJ99, CPA93].

Visual [ABR97, ADM92]. VLAN [KOKA11].

VLIW [AB94, CF01, MC95, OC05, WWL14].

VLSI [Ach94b, AR97, BG+98, HAL95, JWJ14, TC93, ZA92].

VOD [GM13, CMG+14, KS05, WW12b, WML14]. Voice [LS12, LSS13, WMX06, XL04, GWS08]. Voice-over-IP [GWS08].

VoIP [GIP+13, SWWJ08, SIL11]. Vol [ano02a, ano15a]. Volcano [HSX+12, SHX+10]. Voltage [KSME08, Li08, ZMC03]. Voltage/Speed [ZMC03]. Volume [BA07]. Voronoi [AD08, EW97].

VOT [BBG+95]. Visibility-Related [BBG+95]. Vision [BA97, RJ99, CPA93].

Visual [ABR97, ADM92]. VLAN [KOKA11].

VLIW [AB94, CF01, MC95, OC05, WWL14].

VLSI [Ach94b, AR97, BG+98, HAL95, JWJ14, TC93, ZA92].

VOD [GM13, CMG+14, KS05, WW12b, WML14]. Voice [LS12, LSS13, WMX06, XL04, GWS08]. Voice-over-IP [GWS08].

VoIP [GIP+13, SWWJ08, SIL11]. Vol [ano02a, ano15a]. Volcano [HSX+12, SHX+10]. Voltage [KSME08, Li08, ZMC03]. Voltage/Speed [ZMC03]. Volume [BA07]. Voronoi [AD08, EW97].

REFERENCES

XLW+06, XZC08, XHHC13, XJ14, XHG15, XWY+10, XLM+11b, XHZ+13, YCTC13.

Wireless [YLW07, YI09, YK14, YYY09, YG08, YRL11, ZWD+10, ZS10, ZZF10, ZMA12, ZMLT13, ZCDS10, ZWLL12, ZX13, ZCF09, ZYT+15, WYLX13]. **within** [LCB00, NSD+91]. **without** [DWX14, Fu05, GN96, GCZ15, SWC95, VJA97, WLL+10, ZWD10, ZS10, ZZF10, ZMA12, ZMLT13, ZCDS10, ZWLL12, ZX13, ZCF09, ZYT+15, WYLX13]. **WK** [Fu05, SCD97]. **WK-Recursive** [Fu05, SCD97].

WLANs [GYX10, NZWL14, YWC11].

Word [CF01].

Work [CF99a, CGH13, HH13, HNO98c, RBSP02, XU01]. **Work-Efficient** [CF99a, HH13]. **Work-Stealing** [CGH13]. **Work-Time** [HNO98c, XU01].

Workflow [FPF13, LSZ09].

Workflows [ANE12, CB14, PP12, PF08]. **Worklist** [GIX+12]. **Workload** [GGF+14, Li10, LVD11, MNE14, PAB13, Ros02, WHYZ10, YLL+13, XJ14, YYY09, ZWLL12, ZX13, ZCF09, ZYT+15, XYT13].

Worklist-Aware [ZRS+05]. **Workloads** [CSW+12, CV08, HYZ15, LWZ13, MF01b, NKP+96, PB96, TRD13, YHS14, YZZ13].

Workstation [GKK05, LLH+01].

Workstations [AA09, CdMB05, EK95, FB01a, JL99, Ros02, RH00, RH04, SD00a, SD00b, SOM05, DGB96, SSG91].

World [HLL09, HSX+12, IRSNF11, LLSZ08, LCGC14]. **Worm** [JW97, WB99].

Wormhole [BP98, BL0D5, BC96, BCR98, Chi98, Dua95a, Dua95b, Dua97, FF98, GN96, GO97, HD99, HO00, HK95, KP99, KLS00, LMS04, LMN95, MRLD01, NCV05, NGM97, OKSA01, PK99, RMC95, RLD03, SHG11, SCL01, JT96, TG96, TPL96, TLGP97, TH99, VM99, VS11a, VS11b, VS14, XGN97, ZL05, Dua93, LMN94, MXEN94, JetTM97]. **Wormhole-Routed** [BP98, FF98, HO00, HK95, KLS00, LMN95, RMC95, SCL01, JT96, TG96, TPL96, TLGP97, TH99, VM99, VS11a, VS11b, VS14, XGN97, ZL05, Dua93, LMN94, MXEN94, JT97]. **Wormhole-Switched** [HÖD99, SHG11, VM99].

Worms [SSP00, TC07, WZZ13, YZF10]. **Worst** [GR97, MLT+13, TSJ07]. **Worst-Case** [TSJ07]. **WPAN** [YTL+10]. **WPANs** [HKH+10]. **Wraparound** [SV97]. **Wrapped** [HWSH00, WMN99]. **Write** [BW08, HNY02, KDW01, Sto10f].

Write-Enabled [BB08]. **Writing** [WW+01]. **WSN** [KSP09]. **WSNs** [LYG12, LCS15, ZQSY13].

X [GM94, LMP12]. **X-BOT** [LPR12].

X-trees [GM94]. **XML** [CF08, EHI11, ZLZ14].

XNet [CF08]. **XPLORE** [YY+14, ZZ15].

Yama [MJ06].

Zapping [TCS13]. **ZEBRA** [ASG14].

Zero [LHL+08, ME95]. **Zero-Knowledge** [LHL+08]. **ZigBee** [HP+12, KKY+14].

Zone [MMSAZ11, WW04]. **Zone-Ordered** [MMSAZ11]. **Zones** [MT15].

References

REFERENCES

[AAB+00]

Aydonat:2012:RCC

[AA12]

Aroca:2014:BBW

[AA14]

Akavipat:2014:RFR

[AAAK+14]

Amir:2000:OCA

[AAB06]

Aluru:2006:ESS

[AAD97]

Al-Ayyoub:1997:MDS

A.-E. Al-Ayyoub and K. Day. Matrix decomposition on the

Al-Azzoni:2008:LPB

Abu-Amara:1994:NMA

Adir:2003:IFM

Agrawal:1991:NQC

Aravena:1991:CLC

Abnous:1994:PBV

[AB94] Arthur Abnous and Nader

AlMohammad:1999:FTC

Ayoubi:2003:EMA

Ahmed:2007:MSF

Anceaume:2014:DID

Aiello:2001:ARN

Avresky:2001:ISS

D. R. Avresky, J. Bruck, and D. E. Culler. Introduc-

Arguello:1994:PAF

Abramson:2011:PES

Albader:2012:ECA

Alaghband:1993:LPA

Amoura:1998:SAP

Abrams:1997:EDP
Marc Abrams. An example of deriving performance

REFERENCES

Aykanat:1995:EFH

Abandah:1998:CDS

Ammari:2008:PHM

Ammari:2009:CDC

Adda:1997:SMC

Auletta:2002:OTA

[ADD+02] Vincenzo Auletta, Sajal K. Das, Amelia De Vivo, M. Cristina Pinotti, and Vittorio Scarano. Optimal tree access by elementary and composite templates in parallel memory systems. *IEEE Transactions on
REFERENCES

Al-Duwairi:2006:NHS

Al-Dujaily:2012:ETC

Alekeish:2012:CSM

Agrawal:1997:AQB

[AEA97] Divyakant Agrawal, Ömer Egecioglu, and Amr El Abbadi. Analysis of quorum-based protocols for dis-

REFERENCES

[AGL+98] G. A. Alverson, W. G. Gris-

Santosh G. Abraham and

Averbuch:1991:PIM

Agrawal:1995:CBR

Ammann:1996:GCE

Abousamra:2012:CNC

Al-Jaroodi:2003:MIP

Agrawal:2014:MPM

Ahmad:1998:ETD

Al-Kiswany:2013:GSS

Agarwal:1995:APP

Amir:2004:SGC

Yair Amir, Yongdae Kim, Cristina Nita-Rotaru, John L. Schultz, Jonathan Stanton, and Gene Tsudik. Secure group communication using robust contributory key
REFERENCES

Anifantis:2014:SSF

Andrade:2004:OEM

Abdelhakim:2014:DDM

Alnuweiri:1994:CTP

Alnuweiri:1994:OVN

REFERENCES

9219 (print), 1558-2183 (electronic).

Alnuweiri:1995:PCT

ALW+03

Akl:1990:PBS

Alm:1991:EMS

Al-Mouhamed:1993:AMD

Alam:1995:RMF

REFERENCES

[AMP01] Lorenzo Alvisi, Dahlia Malkhi, Evelyn Pierce, and Michael K. Reiter. Fault detection for Byzantine quorum systems.
REFERENCES

Al-Mouhamed:1997:HSM

Al-Mistarihi:2009:FOR

Alverson:1993:PSE

Agrawal:1994:CNF

Anderson:1990:PSL

Thomas E. Anderson. The performance of spin lock alternatives for shared-money

Abrishami:2012:CDS

Alkhalifa:1999:DES

Aiken:1995:RCS

Abdelkader:2013:SRP

Anonymous:1997:AI

Anonymous:1997:CPSb

Anonymous. Call for papers for special issue on compilers and languages for parallel and distributed computers. *IEEE Transactions on Parallel and Distributed Systems*, 8(10):1087–??, October 1997. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-
Anonymous:1997:CPSc

Anonymous:1998:CPSb

Anonymous:1998:CPSa

Anonymous:1998:AI

Anonymous:1999:RL

Anonymous:1999:AI

Anonymous:1999:CPa

Anonymous:1999:CPb

Anonymous:1999:CPc

Anonymous:1999:CPR

Anonymous:1999:CEJ

Anonymous:1999:ECE

REFERENCES

Anonymous:2000:RL

Anonymous:2001:RL

Anonymous:2000:TCPa

Anonymous:2001:CPSa

Anonymous:2000:TCPb

Anonymous:2001:CPSb

Anonymous:2000:CPSc

Anonymous:2001:CPSc

Anonymous:2001:1

Anonymous:2001:TCPa

Anonymous:2001:TCPb

Anonymous:2001:TCPc

Anonymous:2001:TCPd

Anonymous:2001:TCPe

REFERENCES

Anonymous: 2002: ITP

Anonymous: 2002: CPS

Anonymous: 2002: NE

Anonymous: 2003: RL

Anonymous: 2003: I

Anonymous: 2003: CPS

Anonymous:2004:AI

Anonymous:2004:CP

Anonymous:2004:CPSa

Anonymous:2004:CPSb

Anonymous:2004:RL

Anonymous:2005:RL

Anonymous:2005:AAI

Anonymous:2005:CPS

Anonymous:2006:RL

Anonymous:2007:AI

Anonymous:2007:RL

Anonymous:2007:CPS

Anonymous:2008:AI

[Ano08a]

Anonymous:2008:RL

[Ano08b]

Anonymous:2008:CPS

[Ano08c]

Anonymous:2008:TAI

[Ano08d]

Anonymous:2009:RL

[Ano09a]

Anonymous:2009:CPSb

Anonymous:2009:CPSa

REFERENCES

Anonymous:2009:TAI

Anonymous:2010:RL

Anonymous:2011:AI

Anonymous:2011:RL

Anonymous:2011:CPS

Anonymous:2011:CPI

Anonymous:2011:CEN

Anonymous:2012:AI

Anonymous:2012:RL

Anonymous:2012:CPS

Anonymous:2012:Ca

Anonymous:2012:Cb

Anonymous:2012:Cc

Anonymous:2012:Cd

Anonymous:2012:CHD

Anonymous:2012:IOA

Anonymous:2012:NTN

Index:2013:AI

Anonymous. 2012 annual index. *IEEE Transactions on Parallel and Distributed Systems*
REFERENCES

on Parallel and Distributed Systems, 24(1):web, January 2013. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-2183 (electronic).

Bulent Abali, Fusun Ozguner, and Abdulla Bataineh. Balanced parallel sort on hyper-

Al-Oqily:2009:SFR

Arif:2012:DAR

Araya-Polo:2011:AAB

Abad:2012:BPC

Abad:2012:ATM

Andonov:1997:KVA

Rumen Andonov and Sanjay Rajopadhye. Knapsack on VLSI: from algorithm to optimal circuit. *IEEE Transactions on Par-
REFERENCES

Anta:2010:AIR

Arazi:2008:CED

Aravind:2011:YAS

Aronson:2000:HRH

Arvind:1994:PCS

Ahuwalia:1992:PAC

Allen:1996:IDH
James D. Allen and David E. Schimmel. Issues in the

Abdelzaher:1999:CTM

Alleyne:2000:ETN

Abdelzaher:2002:PGW

Alfaro:2004:QIS

Acacio:2014:ZDC

REFERENCES

Abhaya:2014:PAE

Adve:1994:PAM

Ali:1996:EBR

Avresky:1999:ERS

Ahmed:2015:RTB

Abbasi:2009:MAC
Black:1990:ILI

Bhandarkar:1997:PCV

Bajaj:2004:IST

Barla:2007:HPB

Bader:2014:SJ

Bader:2015:EN

Ben-Asher:2001:PSS
Y. Ben-Asher and G. Haber. Parallel solutions of simple indexed recurrence equations.

Baker:2005:AES

Baquero:2012:EPF

Barlas:1998:CAO

Barlas:2010:AAO

Bambha:2005:JAM

Batsakis:2008:NCW

Alexandros Batsakis and Randal Burns. NFS–CD:
REFERENCES

Beloglazov:2013:MOH

Bala:1995:CPT

Banino:2004:SSM

Barcaccia:2000:CML

Bhagavathi:1995:TOV
Dharmavani Bhagavathi, Venkata Bokka, Himabindu Gurla, Stephan Olariu, James L. Schwing, Ivan Stojmenovic,
REFERENCES

REFERENCES

[Barker:2004:LBF] Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and...

Bessani:2009:SMB

Beaumont:2008:CVD

Bellavista:2013:EIS

Banerjee:2008:AIR

Bononi:2004:ROI

REFERENCES

REFERENCES

Bermudez:2007:HTC

Boppana:1998:RDP

Bartolini:2013:TEM

Bahi:2005:DLB

Bahi:2005:DCD

Barooah:2012:CDW

REFERENCES

Bruck:1996:DIB

Bagherzadeh:1995:WBE

Bruneo:2013:SEQ

Bucci:1994:PAT

Balsamo:1998:BPM

Blume:1992:PAP

W. Blume and R. Eigenmann. Performance analysis

REFERENCES

REFERENCES

Barsoum:2013:EDD

Bourguiba:2014:INV

Boukerche:2002:ESS

Bruck:1997:EAA

Bhuyan:2006:EN
REFERENCES

[BI95] Jan C. Bioch and Toshihide Ibaraki. Generating and approximating non-
REFERENCES

[BJ13] Davide Bertozzi, Antoine Jalabert, Srinivasan Murali, Rutuparna Tamhankar, Stergios Stergiou, Luca Benini, and Giovanni De Micheli. NoC synthesis flow for customized...

Banerjee:1990:PSA

Banerjee:2009:BRL

Baran:1996:PAT

Basile:2006:ARM

Bader:2011:GEI

Bruhadeshwar:2011:SKA

Bezawada Bruhadeshwar, Sandeep S. Kulkarni, and Alex X. Liu. Symmetric key approaches to securing BGP — a little bit [of] trust is enough. *IEEE Transactions on Parallel and Dis-
REFERENCES

Bansal:2003:IDS

Baydal:2005:FMC

Beaumont:2000:PBH

Bhagavathi:1994:FSA

Beaumont:2003:MSP
REFERENCES

[BM00a] A. A. Bertossi and A. Mei. Constant time dynamic programming on directed recon-
529–??, June 2000. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic). URL:

[BM00b] A. A. Bertossi and A. Mei. A residue number system on reconfigurable mesh with appli-

a computing cloud. IEEE Transactions on Parallel and Distributed Systems, 23(10):
1831–1843, October 2012. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

and Stefano Salsano. Streamline: An optimal distribution algorithm for peer-to-peer
real-time streaming. IEEE Transactions on Parallel and Distributed Systems, 21(6):

[BMPP06] Stefano Basagni, Michele Mastrogiovanni, Alessandro Panconesi, and Chiara Petri-
oli. Localized protocols for ad hoc clustering and backbone formation: a perfor-
mance comparison. IEEE Transactions on Parallel and Distributed Systems, 17(4):

[Bertossi:1999:FTR] A. A. Bertossi, L. V. Mancini, and F. Rossini. Fault-

S. Balakrishnan and F. Özgüner. A priority-driven flow control mechanism for real-time traffic in multiprocessor networks. *IEEE Transactions on Parallel and Distributed
Bozdag:2009:CST

Doruk Bozdag, Fusun Ozguner, and Umit V. Catalyurek.
Compaction of schedules and a two-stage approach for duplication-based DAG scheduling.

Bokhari:1993:NFM

Shahid H. Bokhari.
Network flow model for load balancing in circuit-switched multicomputers.

Bertossi:2004:CMS

Alan A. Bertossi, Stephan Olariu, M. Cristina Pinotti, and Si-Qing Zheng.
Classifying matrices separating rows and columns.

Bordawekar:2000:QCA

R. Bordawekar.
Quantitative characterization and analysis of the I/O behavior of a commercial distributed-shared-memory machine.

Blough:1994:ACF

Douglas M. Blough and Andrzej Pelc.
Almost certain fault diagnosis through algorithm-based fault tolerance.

Basak:1996:DCM

Debashis Basak and Dhabaleswar K. Panda. De-

References

SEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Baysan:2009:PTS

Briceno:2011:HRR

Bruneo:2010:PEG

Brinkmeier:2009:ORP

Boukerche:1998:DGA

Bagrodia:2000:PEC

R. L. Bagrodia and M. Takai. Performance evaluation of conservative algorithms in

Barlas:2005:ODD

Bhandari:2010:RBR

Basanta-Val:2010:SSS

Berkey:1994:SBP

Bik:1996:ADS

Berman:2003:ACG

Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly Dail, Marcio Faerman, Silvia Figueira, Jim Hayes, Graziano Obertelli, Jennifer Schopf, Gary Shao, Shava Smallen, Neil Spring, Alan Su, and Dmitrii Zagorod

Bedford:2005:SON

Bui:2010:MAM

Chaudhary:1993:GSM

Catalyurek:1999:HPB
Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decomposition for parallel

[CB14] Rodrigo N. Calheiros and Ra-

Casado:2001:PDF

Colbrook:1996:AST

Chen:1993:EAS

Choi:2010:RCP

Chellappan:2007:MLF

Chan:1993:ORD

M. Y. Chan and F. Y. L. Chin. Optimal resilient dis-

Chang:2003:EAE

Chen:2013:AAS

Chin:2015:LCT

Cai:2013:LTR
REFERENCES

Chang:2015:RTT

Chen:2013:SSR

Chang:2011:QOB

Chen:2015:RBT

Chen:1995:OSF

Caminero:2005:TSS

[CCQ⁺05] Blanca Caminero, Carmen Carrion, Francisco J. Quiles,

Cardellini:2003:RRA

Carlson:1994:SPA

Chen:2008:ABF

Choi:2013:IUH

Chai:2012:EDM

Canto:2005:PDP

Sebastián Dormido Canto, Ángel P. de Madrid, and Sebastián Dormido Bencomo. Parallel dynamic programming on clusters of workstations. *IEEE Transactions on
REFERENCES

Calland:1998:CRA

Carneiro:2006:TDA

Cann:1995:AAO

Chiu:2010:PCD

Cosnard:1994:AAP

Chandy:1995:NDC

K. Mani Chandy and Ian Foster. A notation for deterministic cooperating processes. IEEE Transactions on Parallel and Distributed Systems, 6(8):863–871, August 1995. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-
REFERENCES

Cam:1999:WER

Cristian:1999:TAD

Carothers:2000:EET

Chen:2001:CAM

Chand:2008:SDX

Chamberlain:2002:GOI

REFERENCES

Fu:1998:CCN

Cheng:2015:DPB

Cohen:1998:OBM

Chen:1998:PGS

Punit Chandra, Pranav Gambhire, and Ajay D. Kshemkalyani. Performance of the optimal causal multicast algorithm: a statistical analysis. *IEEE Trans-

Chang:2011:CDU

Chan:2014:MPR

Chung:1998:BCC

Chang:2004:UEL

Chen:2009:HDR

Cao:2014:STS

REFERENCES

Chen:2015:DSN

Chen:1995:EGA

Chen:1995:EPB

Chen:1996:GII

Chen:1995:EPB

Chen:2001:HSF

Chen:2007:CEH

REFERENCES

Chen:2011:UBS

Chen:2014:DCA

CHHC06

Chien:1998:CSM
A. A. Chien. A cost and speed model for k-ary n-cube wormhole routers.

Chen:2004:IPP

Chou:2006:SSL

Congy:2007:ASA

Chen:2004:IPP

Chen:2012:BEE

Chen:2009:DAH

Cohen:2006:MSP

Cai:2015:ADB

Cao:2012:REC

Chiou:1996:EDE

Chow:2002:LBD

[CK02] Ka-Po Chow and Yu-Kwong
REFERENCES

Chen:2008:CDC

Choudhury:2008:HSD

Chen:2004:SET

Chiu:2008:BCR

Chan:1993:FTE

Chen:1994:PEA

Chen:1997:CNF

Chen:2000:TLC

Chen:2009:PPM

Chen:2013:TBE

Chen:2014:EDI

[CL14] Henry C. H. Chen and Patrick P. C. Lee. En-

REFERENCES

Chandra:2004:GST

Chou:2011:OAM

Chen:2011:CIW

Cao:2014:GEI

Chen:2012:RRC

REFERENCES

REFERENCES

1045-9219 (print), 1558-2183 (electronic).

[CNNS94] Alok N. Choudhary, Bhagirath Narahari, David M.

Curescu:2005:TAU

Chien:1994:ABS

Chang:1995:DTA

Calamoneri:2000:SPA

Corbett:1992:RGE

Chen:2000:OOL

REFERENCES

Chang:2012:FDS

Cunningham:1990:USP

Chang:1994:SAM

Cuesta:2011:ESS

Cho:2009:GCS

Casanova:2006:GES

Chao:1997:SDF Liang-Fang Chao and E. Hsing-Mean Sha. Scheduling

Chou:1997:SRT

Cao:1998:CCD

Cao:2001:DOQ

Cao:2001:MCN

Cao:2002:CMC

Cao:2002:CMC
REFERENCES

Choi:2002:ABR

Corsaro:2003:DPR

Chen:2005:PBD

Chandra:2008:HSS

Chang:2000:ECT

Carra:2013:CMP

Chen:2013:SPC

Chervenak:2009:GRL

Chen:2013:FRS

Chen:2007:DDA

Chen:2008:SRP

Chen:1993:DAP

Chen:2009:ITP

Carbunar:2012:POC

Cambazoglu:2014:IPI
REFERENCES

Chen:1996:BST

Chang:2011:SPA

Chen:2012:FAU

Chalasani:1992:ETT

Chiang:2008:DPP

Chiesi:2015:PAJ

REFERENCES

2183 (electronic) ITDSEO.
URL http://www.computer.
org/csdl/trans/td/2015/
03/06782408-abs.html.

efficient recognition-complete
processor allocation strategy
for k-ary n-cube multipro-
cessors. *IEEE Transactions
on Parallel and Distributed
Systems*, 11(5):485–??, May
2000. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-
2183 (electronic). URL http:
//dlib.computer.org/td/
books/td2000/pdf/l0485.
pdf; http://www.computer.
org/tpds/td2001/l0485abs.
htm.

[CW02a] Sek M. Chai and Scott
Wills. Systolic opportunities
for multidimensional data
streams. *IEEE Transactions
on Parallel and Distributed
Systems*, 13(4):388–398, April
2002. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-
2183 (electronic). URL http:
//dlib.computer.org/td/
books/td2002/pdf/l0388.
pdf; http://www.computer.
org/tpds/td2002/l0388abs.
htm.

[CW02b] Wei Chen and Koichi Wada.
On computing the upper en-
velope of segments in parallel.
*IEEE Transactions on Parallel
and Distributed
Systems*, 13(1):5–13, January
2002. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-
2183 (electronic). URL http:
//dlib.computer.org/td/
books/td2002/pdf/10005.
pdf; http://www.computer.
org/tpds/td2001/10005abs.
htm.

[Cai:2006:EGT]
Hailong Cai and Jun Wang.
Exploiting geographical and
temporal locality to boost
search efficiency in peer-to-
peer systems. *IEEE Trans-
actions on Parallel and Dis-
tributed Systems*, 17(10):
1189–1203, October 2006.
CODEN ITDSEO. ISSN
1045-9219 (print), 1558-2183
(electronic).

[Chang:2011:JOC]
Shih Yu Chang, Hsiao-Chun
Wu, and John M. Cioffi.
Joint optimization of com-
plexity and overhead for the
routing in hierarchical net-
works. *IEEE Transactions on
Parallel and Distributed Sys-
tems*, 22(6):1034–1041, June
2011. CODEN ITDSEO.
ISSN 1045-9219 (print), 1558-
2183 (electronic).

[Cui:2013:DSW]
Yong Cui, Hongyi Wang,
Xiuqian Cheng, Dan Li,
and Antti Yla-Jaaski. Dy-
namic scheduling for wireless
data center networks. *IEEE
Transactions on Parallel and

REFERENCES

[CY92] Ming-Syan Chen and Philip S. Yu. Interleaving a join sequence with semijoins in dis-
REFERENCES

Chang:1995:PCT

Chen:1996:EEN

Chiu:1996:ERR

Chung:1996:PDJ

Chen:1999:RSE

Choi:2000:CAC

Choi:2000:HCD

Choi:2000:HCD

Chen:2006:CAB

Chen:2006:CAB

Chen:2014:LON

Chen:2014:LON
REFERENCES

Day:1997:CPI

REFERENCES

REFERENCES

[Dan:2011:CCC]

[DB08]

[DBG+14]

DiFatta:2006:DLB

[DB06]

[Derhab:2008:SSL]

[DBAT11]

REFERENCES

denBurger:2011:CRI

dBk11

deAzevedo:1998:LEP

dBL98

Duh:1995:APN

DCF95

Dandamudi:1995:HTQ

DasBit:1998:FDB

Dong:2010:FFL

DC98

[DC95]

DCL+10

[DC95]

Dusseau:1996:FPS

deCerio:2002:HAM

Dai:2015:QEP

Dimakopoulos:1995:OSP

Dimakopoulos:1998:TTE

V. V. Dimakopoulos and N. J. Dimopoulos. A theory for total exchange in multidimensional interconnection networks. *IEEE Transactions on Parallel and Distributed Systems*, 9(7):639–??, July 1998. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-
REFERENCES

Dimakopoulos:2001:OTE

Dash:2011:ICP

DiBlas:2005:UKP

Desprez:1998:SBC

Dahlgren:1995:SHP

[DDS95] Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. Sequential hardware prefetching in shared-memory multiprocessors. *IEEE Transactions on Parallel and Distributed Systems*, 6(7):733–

[DFGHR03] Carole Delporte-Gallet, Hugues Fauconnier, Jean-Michel Hélay, and Michel Raynal. Early

[DHOLLANDER:1992:PLL]

[DAS:2001:PPA]

[DICKENS:1996:PDE]

[DHAKAL:2007:DLB]

[DEPALMA:2012:SPC]

[DHBB12]

Dimpsey:1995:MBM

Dolev:1997:UDS

Dinda:2006:DIP

Das:1992:UTB

DeLaLuz:2004:APR

Victor De La Luz, Ismail Kadayif, Mahmut Kandemir, and Uger Sezer. Access pat-

[Dumais:2002:DPD]

[DL02]

[dLCK+05]

[DLL+11]

[Duato:2005:PTD]

Dong:2014:LQA

DeMara:1993:SPA

Danak:2011:EBD

Diaz:2012:SPP

DURAND:1996:IMC

DePrisco:2001:SCP

Desnoyers:2012:ULI

[DMSC12] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern,

Kevin Donovan. Performance of shared memory in a parallel computer. *IEEE
REFERENCES

Sandes:2013:RSW

Duato:2001:GTD

Dimakopoulos:2006:PFB

Das:2002:LBO

Das:2008:DHS

Dutot:2011:AAM

DPRT11

Das:1996:COL

Das:1996:OLB

DR94

Dimitrov:1998:APT

Duttagupta:2011:TDB

Subhasri Duttagupta, Krithi Ramamritham, and Pu-

Diallo:2015:DDM

Dingle:1994:EMP

Dahlgren:1996:EHB

DiStefano:2002:LMA

Datta:2003:SRP

Amitava Datta and Subbiah Soundaralakshmi. Summation and routing on a partitioned optical passive stars network with large group size. *IEEE Transactions on Parallel and Distributed Systems*, 14(12):1275–1285, December 2003. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (elec-

DS03a

REFERENCES

Dolev:2003:CAS

Decayeux:2005:HNM

Dominguez-Sal:2012:UES

daSilva:2003:PPA

daSilva:2011:CDM

Dargie:2014:PCE

REFERENCES

Datta:2002:FSA

Daniel:1999:RAF

Day:1994:CST

Dewri:2014:ESS

DeMara:2007:TAD

Duato:1993:NTD
REFERENCES

9219 (print), 1558-2183 (electronic). See [Dua95a] and comment [VS11a].

Drozdowski:2003:CDL

Dai:2004:ELA

Dai:2004:PAB

Drozdowski:2010:IMD

Di:2013:DOM

Yong Ding, Chen Wang, and Li Xiao. An adaptive partitioning scheme for

Dai:2014:EVB

Dharmasena:2005:OFT

Dan:1997:RAD

Datta:2004:EEP

[DZ04] Amitava Datta and Albert Y. Zomaya. An energy-efficient

Duan:2005:FTO

Duan:2004:CSB

Dou:2015:HIT

El-Amaway:1993:CAL

Ercal:2000:SID

Ezhilchelvan:2004:TBM

Eltayeb:2006:CSE

Efe:1995:PNL

Efe:1996:MCT

Efe:1992:CCA

Evripidou:1993:BSI

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

Ben Eckart, Xubin He, Qishi Wu, and Changsheng Xie. A

Etsion:2014:HDN

Ediger:2013:GMA

Efe:1995:OSC

El-Khatib:2010:IFR

El-Kadi:2002:RBB

Evangelinos:2011:MTC

Constantinos Evangelinos, Pierre F. J. Lermusiaux, Jinshan Xu, Patrick J. Haley, and Chris N. Hill. Many task

Ezhilchelvan:1990:PES

Elhadeff:2012:CBS

Elbirt:2005:ILD

Erdelj:2013:CP1

Escudero-Sahuquillo:2015:ECE

Escudero-Sahuquillo:2013:EFC

Jesus Escudero-Sahuquillo, Pedro J. Garcia, Francisco J. Quiles, Jose Flich, and Jose Duato. An effective and feasible congestion management technique for high-performance MINs with tag-based distributed routing.

Eberhard:2010:SBO

England:2007:RST

ElGindy:1997:SVD

Fan:1998:DMC

REFERENCES

Fan:2002:DCCa

Editor’s Note: This paper unfortunately contains some errors which led to the paper being reprinted in the October 2002 issue. Please see IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 10, October 2002, pp. 1099-1104 for the correct paper.

Fan:2002:DCCb

Franceschetti:2001:GMA

Massimo Franceschetti and Jehoshua Bruck. A group membership algorithm with a
Flahive:2010:TGE

Freedman:1996:SSP

Fan:2013:GBB
REFERENCES

REFERENCES

REFERENCES

Frey:2006:GCB

Fresno:2014:BEP

Folling:2010:RLD

Fiduccia:1997:ECS

Fujimoto:2003:ABS

Fallahi:2006:QET
Afshin Fallahi, Ekram Hos- sain, and Attahiru S. Alfa. QoS and energy trade off in distributed energy-limited

Fink:1997:PCI

Fang:2011:MAM

Fiduccia:1992:BHO

REFERENCES

Flich:2002:BPMb

Fernandez:1995:LTU

Feldman:2009:PSA

Friedman:2002:SSD

REFERENCES

Friedman:2007:RPL

Franke:2005:CCA

Foster:1991:AGS

Fard:2013:TDW

Fernandez-Pascual:2008:ETC

Fernandez-Pascual:2010:DTF

[Flich:2012:SET] Jose Flich, Tor Skeie, Andres Mejia, Olav Lysne, Pe-
REFERENCES

Falcao:2011:MLD

Fu:1997:CLB

Fu:1997:DOQ

Fu:2005:HWR

Fang:2009:HNA

Ferreira:2003:ODI

REFERENCES

REFERENCES

[GAL01] J. García, E. Ayguadé, and

Gao:2013:ECE

Garcia-Carballeira:2004:ACC

Gu:2014:AAS

Gu:2015:DTC

Ghandeharizadeh:1994:MMD

Shahram Ghandeharizadeh

Gao:2013:ECE

Garcia-Carballeira:2004:ACC

Gu:2014:AAS

Gu:2015:DTC

Ghandeharizadeh:1994:MMD

Shahram Ghandeharizadeh

Ghose:1995:HCN

Goswami:1993:PBD

Ghosh:1994:CPL

Goumas:2009:CAS

Guan:2013:PEN

Gilmore:2012:SSP

REFERENCES

REFERENCES

[GG10] Abdoulaye Gamatie and

REFERENCES

DEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Guo:2014:FGB

Gomes:2013:IPP

Goes:2012:ASD

Gu:2012:CTS

Gossain:2006:DED

Guo:2013:PPS

Debasish Ghose, Hyoung Joong Kim, and Tae Hoon Kim. Adaptive divisible load scheduling strategies for workstation

Gupta:1995:PSP

Gomez-Luna:2013:PMA

Gopinathan:2011:GSM

Gregori:2013:PCC

Guo:2009:PPL

Giaccone:2007:TRF

REFERENCES

Gravano:1994:ADL

Guo:2012:OPM

Gidenstam:2009:ERL

Gertner:1990:PAD

Glinski:1994:SLR

Gebali:2006:PAA

REFERENCES

REFERENCES

Glazer:1993:PML

D. W. Glazer and C. Trop- [GT93]

Gibaud:2002:CDB

Guan:2014:HHV

Guo:2014:TQA

Gupta:1992:SCC

Gautama:2006:LCS

REFERENCES

Gonzalez:1995:EAH

Goh:2009:DFE

Ganapathy:1996:OSA

Garg:1996:DSU

Gu:2006:EAM

Guo:2014:PMO
Ping Guo, Liqiang Wang,

REFERENCES

[GY93]

Ganapathy:1997:DSP

[GW97a]

Guo:2011:QKD

[GWYS08]

[GY95b]

Ghosh:1995:ADA

REFERENCES

Jie Gao and Li Zhang. Trade-offs between stretch factor and load-balancing ratio in
REFERENCES

Guo:2014:MLM

Guo:2014:CHS

Ge:2013:SAP

Hefeeda:2010:EEP

Han:2011:HHL

Huang:2013:MDF

Hoffmann:2012:SSP

Huang:1995:DAC

Harr:1991:BMV

Hou:1994:GAM

Hsiao:1992:PEC

Shuo-Hsien Hsiao and C. Y. Roger Chen. Performance evaluation of circuit switched mul-

[Hui:1997:ATI]

[Huang:1999:CPT]

[Huang:2006:PCB]
Xin-Mao Huang, Cheng-Yue Chang, and Ming-Syan Chen. PeerCluster: a cluster-based

REFERENCES

SEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

He:2009:DVE

Huang:2010:FCC

Hsiao:2013:LRD

He:2012:CCD

Hsiao:1997:PEH

[HCY97] Hui-I Hsiao, Ming-Syan Chen, and P. S. Yu. Parallel execution of hash joins

He:2012:EEC

Hsu:2001:GPM

Hu:2012:OSG

Harting:2015:CAM

Holliday:1992:AMR

Honglui Hu, Naijie Gu, and Jing Cao. A note on recursive cube of rings network. *IEEE Transactions on
Herrero:2012:DCC

Hsiao:2008:TBP

Huang:1995:ECP

Hubbell:2012:DDT
Nicholas Hubbell and Qi Han. DRAGON: Detection and tracking of dynamic amorphous events in wireless sensor networks. *IEEE Transactions on Parallel and Distributed Systems*, 23(7):1193–1204, July 2012. CODEN ITDSEO. ISSN 1045-

Hwang:2002:OSM

He:2014:CLB

Hua:2012:SAM

He:2006:ANR

Heo:2011:OPC

Hua:2014:SSA

Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Xu. SANE: Semantic-aware namespace in ultra-large-scale file systems. *IEEE Transactions on Parallel and Distributed Systems*, 25(5):1328–1338, May 2014. CODEN ITDSEO. ISSN 1045-
REFERENCES

9219 (print), 1558-2183 (electronic).

[Havlak:1991:IIB]

[Huang:1993:PED]

[Huisman:1994:HRS]

[Ho:1995:OBA]

[Hambrusch:1998:SPB]

[Higham:2006:TBC]
REFERENCES

Han:2008:MAM

He:2009:VVO

Hsieh:2009:CEF

Hsiao:2011:LBI

Huang:2004:APS

REFERENCES

Hsiao:2009:RTM
Hung-Chang Hsiao, Hao Liao, and Cheng-Chyun Huang.
Resolving the topology mismatch problem in unstructured peer-to-peer networks.

Hsiao:2009:BSW
Hung-Chang Hsiao, Yung-Chih Lin, and Hao Liao.
Building small-world peer-to-peer networks based on hierarchical structures.

Huang:1994:PDP
Shou-Hsuan Stephen Huang, Hongfei Liu, and Venkatraman Viswanathan.
Parallel dynamic programming.

Hu:2014:PRP
Menglan Hu, Jun Luo, Yang Wang, and Bharadwaj Veeravalli.
Practical resource provisioning and caching with dynamic resilience for cloud-

Harabagiu:1998:PST

Hao:2014:MEF

Helary:1999:CID

Helmbold:1993:DPE

Hendren:1990:PPR

Heidelberger:1993:CPS

Hefeeda:2010:BCP

Hur:2011:ABA

Hayashi:1998:TAC

Hayashi:1998:OPA

Hayashi:1998:WTO

REFERENCES

Han:2012:PDR

Ho:2003:CAI

Ho:2006:DME

Hong:2007:AAI

Hayat:2014:RHD

Hu:2014:TAa

REFERENCES

[Hodzic:1998:STM]

[Huang:1998:CCL]

[Hodzic:2002:TOS]

[Humphrey:1999:PTD]
REFERENCES

Hosaagrahara:2008:MMF

Hsiao:2012:OOT

Hiltunen:1999:RTD

Hsieh:2003:SFP

Hsieh:2014:MIH

REFERENCES

org/csdl/trans/td/2014/10/06585242-abs.html.

He:2005:SCP

Han:2012:PPD

Han:2011:TBS

Hsu:1993:FCN

Hawkins:2007:DVA

Huang:2012:RWS

Han:2006:ELI
REFERENCES

Hu:2011:RAS

Herlihy:1991:SGD

Hsu:1997:ERS

Huang:2008:EDT

Hsiao:2013:BPS

Huang:2014:MAR

REFERENCES

[Huang:2012:IEE] Pei Huang, Chen Wang, and Li Xiao. Improving end-to-end routing performance of greedy forwarding in sensor networks. *IEEE Transactions on Parallel and Dis-
REFERENCES

[Huang:2012:RDC] Yu Huang, Yiling Yang, Jian-nong Cao, Xiaoxing Ma, Xianping Tao, and Jian Lu.

Hua:2011:SSA

Han:2014:MRT

Ibaroudene:1995:PDO

Iannello:1997:EAR

Iancu:2014:CPV

Iqbal:1995:EAC
REFERENCES

[Iacovazzi:2014:ITP]

[Isaila:2011:DEM]

[Islam:1992:DCS]

[Ibe:1993:PEC]

[Ishii:2012:ODA]

[Ismail:2011:PEC]

[Ibrahim:2011:PAA]
Izumi:2013:FPT

Ibaraki:1993:TCM

Ikeda:2002:FCT

Ip:2007:CAC

Ino:2012:SHS

Iosup:2011:PAC

Izhak-Ratzin:2012:OLB

Iamnitchi:2011:SWF

Ibarra:1990:MSA

Imani:2009:DTS

Ingelrest:2006:OTR

Imai:1993:EPC

Iyer:2007:ESS

REFERENCES

Iskander:2014:BPA

Iwanicki:2010:GBS

Iyengar:2014:TSC

Joshi:2008:SSA

Joisha:2001:ECO

Jiang:2008:TWB

REFERENCES

2008. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Ji:2012:CDC

Jiang:2012:GFE

Jin:2010:DPS

Jenkins:2014:PMD

Jung:2007:ODC

Janssens:1994:PCB

Jain:2008:DMA

Jeong:2011:TBD

Jeong:2010:VSA

Jiang:2008:LMR

Jiang:2014:EEI

Johnson:1997:PMS

Jiang:1997:EGF

[Feng-Shu Jiang, Shi-Jinn Horng, and Tzong-Wan Kao. Embedding of general-

J. C. Jiang. Understanding social networks from a multiagent perspective. IEEE Transactions on Parallel...
REFERENCES

REFERENCES

Jorgensen:1999:CAV

Jouraku:2007:EDD

Jin:2012:CAG

Johnson:2001:DPA

Jaho:2013:SSF

Jarecki:2011:FRG

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

REFERENCES

REFERENCES

REFERENCES

Johnson:2010:SMA

Jia:2013:SRU

Jeng:1990:DMS

Jenq:1993:ISE

Joung:1998:SIF

Jang:2011:EMA

Juurlink:1998:GMT

B. H. H. Juurlink, J. F.

Jain:1997:HSO

Jin:2008:SEE

Tsai:1996:BAA

Tsai:1997:EDN

Jiang:2008:EPI

REFERENCES

REFERENCES

Kaya:2006:IIB

Khan:2009:CGT

Kalyanaraman:2003:STE

Kandemir:2001:CDC

Kao:2015:POP

Karaata:2001:SSS

Koibuchi:2006:SDT

Keren:2003:OCA

Kianzad:2006:ETC

Kini:2013:SA

Kandemir:2001:SDL

Kurzak:2008:SSL

Kowarzyk:2014:OPT

Khoury:2011:AEM

Kwon:1998:ASJ

Kim:2007:SBE

Kuo:2006:COR

K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal

[Karaka:2013:ECF] Vasileios Karakasis, Theodoros
REFERENCES

Kamal:2008:PCA

Kao:1996:SSR

Kao:1997:DAD

Kao:1994:ATS

Kramer:1994:CDT

Kumar:1993:SAS

[KH93] D. Kumar and S. Harous. A study of achievable speedup in distributed simulation via
REFERENCES

Ku:1997:CFT

Kuo:1997:GAC

Kuo:1998:RNC

Katsinis:2004:FTD

Kanizo:2015:MTH

Kandasamy:2005:TCF

Kwok:2007:SGG

Kao:1995:DEP

Khargharia:2009:AIT

Kourtellis:2014:LPC

Kalbarczyk:1999:CSI

Kuzmanovic:2003:MBC

Kadayif:2004:QLO

Kadayif:2005:OAI

Karenos:2010:TMS

Kuo:2003:RTD

Kandaswamy:2002:EEOa

[KKCB02a] Meenakshi A. Kandaswamy, Mahmut Kandemir, Alok Choudhary, and David Bern-

2008. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Kong:1991:TID

Kalasapur:2007:DSC

Khreishah:2013:LCP

Kim:2014:NTB

Kim:1999:PBP

Kazi:2001:CGT

REFERENCES

Raju Kumar and Thomas F. La Porta. Cooperative channelization in wireless networks with network coding.

Wei keng Liao, Kenin Coloma, Alok Choudhary, Lee Ward,

Krueger:1994:JSM

Kurzak:2013:FPP

Kim:2007:PPD

Kao:2012:NCE

Koelbel:1991:CGN

Charles Koelbel and Piyush Mehrotra. Compiling global

Keane:2001:SLS

Knoop:2002:DAP

Kargahi:2010:UAD

Kermarrec:2003:PRD

Khazaei:2012:PAC

REFERENCES

Khazaei:2013:FGP

Khazaei:2013:PCC

Khazaei:2013:APM

Kennedy:1991:IPP

Kafura:1995:CDG

Kumar:2008:EEE

Kalns:1995:PMT

[KP12] Georgia Koloniari and Evaggelia Pitoura. A game-theoretic ap-

REFERENCES

Kazmierczak:2000:ODE

Krothapalli:1991:RRD

Kumar:1993:PAS

Kim:1994:OEF

Kweon:2001:RTT

Kweon:2003:SRT

REFERENCES

REFERENCES

Kshemkalyani:2003:FGM

Kshemkalyani:2010:FME

Kim:2008:DRM

Kwon:2009:ESO

Kwon:2010:AFL

Kirousis:1994:RMV

Krishnamurthy:2003:NCS

Kucera:2001:WFD

Konstantinou:2011:FCE

Kecskemeti:2012:VAS

Kurzak:2012:AGK

REFERENCES

REFERENCES

Kim:1998:SAM

Kim:2007:EID

Koglin:2008:ESC

Kamat:1996:EOR

Kong:2014:SCS

W. K. Lai. Performing

REFERENCES

Latifi:1994:TAS

Latifi:1994:ISI

Lee:1995:MMS

Lebak:2000:DPE

Lee:2000:MCB

Luo:2003:SMM

Liang:2001:FDM

Liss:2005:KIO
[LBS05] Liran Liss, Yitzhak Birk, and...

Li:1991:CCE

Li:1991:JSP

Lee:1994:TDF

Lee:1995:OHS

Lau:1996:OLM

Lee:1996:ECB

REFERENCES

Lo:2001:EHP

Lin:2002:AOM

Lui:2002:EPA

Losee:2004:IRD

REFERENCES

td/2004/01/l0018abs.htm;

[LCB96] Gary Lewandowski, Anne

Lain:2000:CRT

Li:2013:IGM

Lao:2007:SOM

Li:2014:APW

Chen:1995:FTD

Lin:2003:EDP

Liu:2013:MCS

Li:2015:IEH

Lian:2007:GBD

Li:2013:RMM

Lee:2008:FFS

Lopez:2004:MMU

Liu:2013:DCM

Li:2013:SEE

Liu:2015:DCF

Lee:1991:CDG

Lee:1997:EAD

Lee:2006:SCS

Chao Liang, Zhenghua Fu, Yong Liu, and Chai Wah Wu. Incentivized peer-assisted streaming for on-demand services. *IEEE Transactions on Parallel and Distributed Systems*, 21(9):1354–1367, September 2010. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

REFERENCES

REFERENCES

Liu:2001:PSA

Lee:2005:AAE

[LHS92] Ben Lee, A. R. Hurson, and Behrooz Shirazi. A hybrid

Lee:2003:PCE

Libeskind-Hadas:1995:ORA

Liu:2011:RRA

Li:2003:IMD

Li:2007:APA

David J. Lilja. Impact of parallel loop scheduling strategies on prefetching in...

REFERENCES

[LJZA04] Dhananjay Lal, Vivek Jain, Qing-An Zeng, and Dharma P.

Lee:1990:MNL

Li:1994:DAO

Lodha:2000:FDM

Louri:2004:OIN

Lee:2007:CFE

Manhee Lee and Eun Jung Kim. A comprehensive framework for enhancing security in InfiniBand architec-
REFERENCES

352

Li:2011:LCM

Ltaief:2010:PTS

Lange:1992:JDI

Lakamraju:2002:FRG

[LK02] Vijay Lakamraju, Israel Koren, and C. M. Krishna. Filtering random graphs to synthesize interconnection net-

REFERENCES

Transactions on Parallel and Distributed Systems, 7(10): 993–1008, October 1996.

Lundberg:1998:URV

Lee:2002:ARD

Leung:2006:GLSa

Leung:2006:GLSb

Li:2007:NOT

Liang:2011:DAD

Lu:2014:SED

Lacuesta:2013:SPS

Li:2009:FAR

Lin:2001:APR

Lee:2014:HPN

Lenoski:1993:DPL

[LLK13] Lu:2012:EEP

[LLL09] Li:2013:EUD

Liu:2014:IGA

Liu:2014:EUT

Lou:2014:SDE

Li:2006:SDH

Lee:2013:UPO

Lu:2013:SSP

Liang:2014:ETS

Li:2008:SSW

Lam:2008:NMS

Lin:2009:DSA

Liu:2006:IQR

Liu:2012:EJC

Liu:2014:EMF
 ary 2014. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

[LLZ+12b] Rongxing Lu, Xiaodong Lin, Haojin Zhu, Xiaohui

[Liu:2014:CNA]

[LLZ14]

Lee:2006:NPB

[LM06]

[LMFS11]

Li:2013:ECC

[LMLM13]

REFERENCES

804, August 1994. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Lin:1995:MFM

[LMN95]

Leitao:2012:XBP

[LMPR12]

Lee:2010:TON

[LMR10]

Lenzini:2004:EBR

[LM04]

Li:2012:DBM

[LMSRSR12]

Li:2013:HBD

[Xu Li, Nathalie Mitton, Isabelle Simplot-Ryl, and David Simplot-Ryl. Hypocomb: Bounded-degree localized geometric planar graphs for...]

[LMSRSR13]

REFERENCES

Lin:2003:EPP

Li:1994:LLC

Liu:2015:SAB

Lee:2003:OBG

Liu:2013:GPB

Hong Liu, Huansheng Ning, Yan Zhang, Daojing He, Qingxu Xiong, and Laurence T. Yang. Grouping-proofs-based authentication protocol for distributed RFID systems. IEEE Transactions
REFERENCES

REFERENCES

[LPZ98] K. Li, Y. Pan, and S. Q. Zheng. Fast and processor efficient parallel matrix multiplication algorithms on a...

Lu:2012:DCB

Li:2013:CEM

Lin:1996:AAJ

Hwa-Chun Lin and C. S. Raghavendra. An approximate analysis of the join

Ligon:1997:TMR

Li:1999:SEC

Liang:2013:MQM

Legrand:2004:MLB

Lindsey:2002:DGA

REFERENCES

REFERENCES

Lee:1997:OTA

Liu:2006:PPB

Liu:2014:ETR

Laoutaris:2007:DSC

Lippert:1998:HSP

Liu:1995:PCP

Li:2007:MOP

[LS14] Keqiu Li, Hong Shen, Frank

Fangming Liu, Ye Sun, Bo Li, Baocun Li, and Xinyan Zhang. FS2You: Peer-assisted semipersistent online hosting at a large scale. *IEEE Transactions on Parallel and Distributed Systems*, 21(10):1442–1457, October 2010. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Olav Lysne, Tor Skeie, Sven-Arne Reinemo, and Ingebjorg Theiss. Layered routing in irregular networks. *IEEE

Liu:2007:SAB

Li:2004:PDT

Lee:2009:PDO

Leung:1997:OAG

Liang:2000:PPP

REFERENCES

Tao Li, Feng Tan, Qixin Wang, Lei Bu, Jian-Nong Cao, and Xue Liu. From offline toward real time: A hy-

Laoutaris:2006:DSR

Lu:2014:DSW

Li:2011:TCC

[Lu14]

[TZS06]

[LW95b]

Li:2009:EMC

Liu:2009:SRC

Liu:2009:VFB

Le:2011:EMO

Liu:2012:MOF

Lin:2014:RBP

Li:2015:MEC

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

Li:2011:SOG

Liu:2006:RCG

Leff:1996:ELB

Li:2013:ALE

Leff:1993:RAR

Li:2015:LLA
REFERENCES

Luo:2012:DMP

Liu:2013:PBC

Li:2014:TID

Luo:2012:EAD

Luo:2013:UIP

Li:2011:CRP

[LXHL11] Zhenyu Li, Gaogang Xie, Kai Hwang, and Zhongcheng Li. Churn-resilient protocol for massive data dissemination in P2P networks. *IEEE Transactions on Parallel and Distribu-
REFERENCES

[Li:2012:AAV]

REFERENCES

Young Choon Lee and Albert Y. Zomaya. Energy

Lama:2012:ESP

LZ12

Li:2014:SPA

LZB14

Liu:2010:OBT

LZC+12

LZL10

LZL14

Liu:2011:ROT

Luo:2009:TDA

Liu:2013:MSE

Luo:2009:TDA

Li:2012:SFA

Xiaoyong Li, Feng Zhou, and Xudong Yang. Scalable

[MAJ+07] M. Mostafa, A. Azim, Xiaohong Jiang, Pin-Han Ho,

Niti Madan and Rajeev Balasubramonian. Power efficient approaches to redundant multithreading. IEEE Transactions on Parallel and Distributed Systems, 18(8):1066–1079, August 2007. CODEN ITDSEO. ISSN 1045-
Mintz:2012:CCA

Martelli:2013:MMW

Moretti:2010:APA

Murthy:1998:NAB

Misic:2013:GEI

Misra:2015:DDD
Marchetti:2006:FDT

Monti:2011:TRD

Monti:2013:TSH

May:2002:HCN

Meliksetian:1993:ORA

Moon:1995:GMB

Meng:2010:HPH

Margara:2014:HPP

Monchiero:2008:PPT

Ma:2007:ISP

Manzillo:2012:CCL

Mohapatra:1996:PAF

Mahapatra:1997:SGL

Mueller:2006:HPD

Montresor:2013:DKC

Mamidisetty:2009:MDR

REFERENCES

Myoupo:1996:MSL

Moritz:2001:LMN

Mishra:2001:GCS

Mualem:2001:UPW

Morales:2009:AOS

Ramses Morales and Indranil Gupta. AVMON: Optimal and scalable discovery of consistent availability monitoring overlays for distributed systems. *IEEE Transactions
REFERENCES

Ma:2007:EEL

Mhamdi:2009:IUM

Michael:2004:HPS

Mitzenmacher:2001:PTC

Misic:1994:CAS

Malluhi:1998:CHA

Muthukumar:2006:YSG

Morris:2014:EPE

Marcelin-Jimenez:2006:CSF

Mohr:1991:LTC

Masuzawa:2014:RGM

Ma:2000:PES

Meng:2012:RAA

Matsutani:2009:FHT

Mak:1990:PPP

Markatos:1994:UPA

Moldovan:1992:SMP

Dan Moldovan, Wing Lee, and Changhwa Lin. SNAP: a market-propagation architecture for knowledge processing.

Ma:2014:CLS

Ma:2006:HLB

Malloy:1994:SDA

Myung:2007:TSA

Moreira:2012:CRT

Ma:2013:FBW

REFERENCES

Martinez-Morais:2010:PQD

Mohror:2014:DME

Mei:2003:SDF

Moser:1994:PMA

Moraveji:2011:MTZ

Manoj:2006:UMM

[MOFD05] Pedro Morillo, Juan M. Orduna, Marcos Fernandez, and Jose Duato. Improving the
performance of distributed virtual environment systems.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic)

Meyer:1991:CDF

CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic)

Morin:1997:SRD

C. Morin and I. Puaut. A survey of recoverable distributed shared virtual memory systems.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Misra:2015:DIB

CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).
URL http://www.computer.org/csdl/trans/td/2015/03/06781642-abs.html

Moore:1997:GEB

J. A. Moore and M. J. Quinn. Generating an efficient broadcast sequence using reflected gray codes.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Miguet:1992:ROD

Serge Miguet and Yves Robert. Reduction operations on a distributed memory machine with a reconfigurable interconnection network.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Murthy:1994:ISP

P. V. R. Murthy and V. Rajaraman. Implementation of speculative parallelism in
Madhyastha:2002:LCP

Ma:2003:MAS

Mei:2006:HCP

Munir:2012:HPE

Martinez-Rubio:2001:CEA

Misic:2012:AIT

REFERENCES

REFERENCES

Mahmoud:2012:CBS

Mahmoud:2013:SPS

Min:2013:RTS

Mokdad:2011:CAC

Mittal:2007:SCS

Moon:2000:EAP
REFERENCES

[406] References

REFERENCES

Meraji:2012:OTP

Maurer:2015:CBF

Miura:2006:QBP

Mounes-Toussi:1995:PCT

McKinley:2002:SAF

Mueller-Thuns:1993:BPP
947–954, August 1993. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Miloslav:2012:SDF

Moreno-Vozmediano:2011:MDC

Ma:2014:NFC
Mi:2013:TFG

Ma:2014:TTB

Mao:2014:NPB

Mishra:2003:ICS

McKinley:1994:UBM

Ma:2007:SEE

Moh:2011:CDB

Moritz:2001:SFA

Ma:2008:MMM

Mahapatra:2005:EES

Manjeshwar:2002:AMI

MZA02

[Naz93] David Nassimi. Parallel algorithms for the classes of $\pm 2^b$ DESCEND and AS-
REFERENCES

Nagaraja:2005:QPC

Nicol:1992:CPS

Nag:2011:DRP

Naylor:1994:PMM

Nafaa:2008:SQG

Abdelhamid Nafaa and Adlen Ksentini. On sustained QoS

Nagumo:1999:PPA

Ning:2015:APB

Neilsen:1992:CJA

Nejad:2015:TGM

Ni:2014:FGL

Nanda:1996:MKE
Arun K. Nanda and Lionel M. Ni. MAD kernels: An experimental testbed to study multiprocessor memory system behavior. *IEEE Transactions on Parallel and
Nishida:2010:GCA

Nakano:1997:OAA

Nakano:1998:EAR

Nakano:2000:EEI
REFERENCES

REFERENCES

computer.org/comp/trans/td/2002/12/11201abs.htm;
http://csdl.computer.org/dl/trans/td/2002/12/11201.htm;

[Nigam:1995:SNM]

[Nichols:1991:EMF]

[Nichols:1993:DMC]

[Negro:1997:EDS]

[Nocetti:2002:ARH]

REFERENCES

REFERENCES

Olson:1994:FTC

Olson:1994:FTR

OB0yle:2002:CTB

Olariu:2006:LCTa

Olariu:2006:LCTb

Ogle:1993:ADD

Ostroff:1990:DPT

Olariu:1992:OPA

Ozkural:2011:PFI

Olariu:1991:OPI

Oleszkiewicz:2006:EUG

Olariu:1996:TCO

Paterna:2013:AAE

Francesco Paterna, Andrea Acquaviva, and Luca Benini. Aging-aware energy-efficient workload allocation for mobile multimedia platforms. IEEE Transactions on Par-

Powell:1999:GGU

Padmanabhan:1991:DAE

Pak:1993:CIA

[Scott Pakin. The design and implementation of a domain-specific language for network performance testing. IEEE Transactions on Parallel and Distributed Systems, 4]
Panda:2014:GAM

Park:1995:EPP

Park:2001:EBM

Pilkinson:1996:DPN

Panta:2012:MES

Pinto:2003:CLT

Pell:2013:FDW [PC07]

Park:1996:CSB [PC96]

Peng:2005:SDA [PD95]

Park:2007:FBA [PC07]

Psaras:2014:NCM [PCP14]

Pong:1995:NAV [PD95]

Fong Pong and Michel Dubois. A new approach for the verification of cache coherence protocols. IEEE Transactions on Parallel and Distributed Systems, 6
REFERENCES

Pezoa:2010:MSR

Picker:1996:SST

Prodan:2008:OAS

Park:2012:EMW

Papadakis:2013:IIT

Pontelli:2001:BIP

Puente:2007:ISF

Puente:2003:DHP

Pifarre:1994:ADL

Pifarre:1994:FAM

Park:1996:EMS

Prechelt:2002:EPE

Pinar:2004:ICL

Pinar:2005:ILB

Park:2011:PHP

Pezoa:2012:PRN

Palesi:2009:ASR

Park:2003:TBD

Neungsoo Park, Bo Hong, and Viktor K. Prasanna.

Ira Pramanick and Jon G. Kuhl. An inherently parallel method for heuristic problem-solving: Part II: Ex-

Parhami:1999:DDC

Parhami:1999:PRC

Psarris:2004:EED

REFERENCES

Pantazopoulos:2014:DPA

Plank:1998:DC

Prieto:2000:DLE

Peng:2014:BMD

Prasanna:1996:GMS

Park:2002:ELD

Pei:2013:SSR

Pritchard:1993:CCM

Prabhavat:2011:EDC

Paek:2002:ACF

Posch:1995:MRR

Petersen:1996:SDE

Peh:2005:GES

Plankensteiner:2012:MSD

Popp:1997:SMP

Pinkston:2003:DFD
Timothy Mark Pinkston, Ruoming Pang, and José Duato. Deadlock-free dynamic reconfiguration schemes for increased network dependability. *IEEE Transac-
REFERENCES

Parhami:2005:PDN

Parhami:2005:PDN

[PS96c] Ravi Prakash and Mukesh Singhal. Low-cost checkpointing and failure recovery in mobile computing systems. *IEEE Transactions on Parallel and Distributed Systems*, 7(10):1035–1048, Octo-
Plale:2003:DQS

Park:2008:RSC

Panda:1999:MMP

Ponnusamy:1995:RSC

Pong:2011:HRP

Pugh:1995:GBI

Pinkston:1999:CDA

Peng:2000:RUD

Pan:2001:IGM

REFERENCES

[QGPZ13] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Hardware signature designs to deal

[QGPZ13] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Hardware signature designs to deal

Qin:2013:DAU

Qiao:2014:FBF

Qian:2013:ASC

Qiao:1994:RTD

Qiao:1997:RCL

Qian:2011:CEL

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

Qiao:1999:ATR

Quaglia:2007:ETA

Quaglia:2003:NCO

Quaglia:2001:CMS

Qian:2014:BFB
Jiangbo Qian, Qiang Zhu, and Yongli Wang. Bloom filter based associative deletion. *IEEE Transactions on
REFERENCES

[Rashid:2005:AAP] Mohammad M. Rashid, Attahiru Sule Alfa, Ekram Hosain, and Muthucumaru Maheswaran. An analytical approach to providing control-

REFERENCES

Romein:2002:PAT

Radhakrishnan:2011:DCS

Ramanathan:1995:RPM

Ren:2014:DAP

Rao:2010:ORP

Choi:2010:SFS

REFERENCES

[RdG12] Florian Ries, Tommaso De Marco, and Roberto Guerri-

Rezgui:2009:MRA

Ren:2014:OLB

Rescigno:1997:OPC

Rexford:1997:PMS

Raicu:2011:GEI

Robles-Gomez:2011:DFD

Antonio Robles-Gomez, Aurelio Bermudez, and Rafael Casado. A deadlock-free dynamic reconfiguration scheme for source routing networks using close up*/down*

Repantis:2009:QAS

Ramaswamy:2005:DAN

Ranka:2014:MCE

Ryu:2000:EFG

Ryu:2004:RPS

Ren:2011:TAD

Fengyuan Ren, Tao He, Sa jal K. Das, and Chuang Lin.

Rubio:2005:RSD

Rao:1993:EPB

Ramanam:2008:HPR

Ramachandran:2006:DGC

REFERENCES

Raychoudhury:2014:AES

Rajasekaran:1998:PAR

Rubio:2003:FFC

Ren:2007:DAS

Ren:2015:DIE

REFERENCES

Ryutov:2003:IAC

Ramachandran:2003:SCP

Rai:1999:TBF

Robertazzi:2004:CND

Rosenberg:2002:OSC

REFERENCES

[Rastello:2002:APP] Fabrice Rastello and Yves

Russ:1998:HDR

Roig:2007:NTG

[RRRM09]

Renda:2012:LBH

Rajah:2009:ARS

REFERENCES

Ranka:1990:OES

Ramanujam:1991:CTT

Ranka:1991:CHM

Rajsbaum:1994:PSP

Rajasekaran:1997:SSR

Roberts:1997:GMD

Rajasekaran:1998:RRS

[RS98] S. Rajasekaran and S. Sahni. Randomized routing, selection, and sorting on the

Reiter:2008:QCS

Ramachandran:2010:QME

Resta:2012:FRP

Ramaswamy:1997:FET

Rodolakis:2006:RSP

Ruj:2014:DAC

Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. Decentralized access control
REFERENCES

Ramasubramanian:2002:ACL

Radojevic:2011:DDH

Rangarajan:1995:FTA

Ramachandran:1990:HSI

Rai:1995:PAH

Radulescu:2002:LCT

Ranka:1994:SRT

Ren:2014:HHM

Rao:2011:OCI

Roy:2012:SDS

Ren:2013:AAD

Ren:2010:PNP

Sunwoo:1993:SMP

Shukla:1994:FMP

Sarje:2009:PGA
Abhinav Sarje and Srini-vas Aluru. Parallel ge-

[SAM14b] Mustapha Reda Senouci, Khalid Assnoune, and Ab-

Shahabi:2002:DRMa

Shahabi:2002:DRMb

Saikia:1998:ETS

Sheu:1991:SNL

REFERENCES

207, February 2011. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

REFERENCES

Sun:2000:RCR

[SCL00]

Sun:2001:BSW

[SCL01]

Sendag:2005:IIS

[SCL05]

Son:2007:CDE

[SCP02]

Steensland:2002:ACC

[SCP99]

Shen:1999:EFT

Johan Steensland, Sumir Chandra, and Manish Parashar. An application-centric characterization of domain-based

Sonnek:2007:ARB

Siu:1996:NCD

Siu:1998:BAP

Silla:2000:UVC

REFERENCES

Stunkel:1992:ACP

Seo:1995:CBN

Song:2007:UBR

Santororo:2008:ODD

Shmueli:2009:SDP

Sun:2010:CDD

Feng:2012:DWN

Sereno:2014:RCR

Srivatsa:2006:LSU

Scrofano:2008:AMD

Shin:1993:AMA

Shin:1994:DEE

Shang:1995:DHB

Stauffer:1995:SSO
L. M. Stauffer and D. S. Hirschberg. Systolic self-organizing lists under transpose. IEEE Transactions on

Shin:1996:ELS

Shieh:1997:CTO

Shen:2010:EAD

Shen:2010:IIF

Shen:2014:LES

Samman:2011:NTD

REFERENCES

Singhal:1992:DIS

Singh:1996:LEP

Srinivasan:1999:SRD

Surobh:2014:CAM

Shaikh:2009:GBT

Sohail:2006:QDP

Shao:2009:CTE

Seo:2008:EES

Sundar:2001:HAC

Subhlok:1995:IPA

Seinstra:2002:PPP

Shen:2014:HDS

REFERENCES

Seinstra:2004:FSM

Seshadri:2009:DSQ

Shang:1994:LTG

Sarangi:2014:ASH

Sabrina:2007:DAI

Schloegel:2001:WDL
K. Schloegel, G. Karypis, and V. Kumar. Wavefront

Shpiner:2015:CBN

Shen:2003:HPA

Stai:2012:TEW

Sivaram:2001:ASE

Schurgers:2002:DDA

Curt Schurgers, Gautam Kulkarni, and Mani B. Srivastava. Distributed on-demand address assignment
Sih:1993:CTS

Sih:1993:DNM

Squillante:1993:UPC

Stojmenovic:2001:LFH

Stojmenovic:2001:PAL

REFERENCES

Sodan:2006:LLM

Srivatsa:2009:MDS

Shu:2011:FMN

Shen:2013:GAP

Shin:2014:IRT

Sorin:2003:AES

REFERENCES

Song:2006:LTC

Shao:2010:FOT

Shen:2014:PBI

Sung:1997:MEF

Shen:2013:DAC

Shen:2013:RRT

Haiying Shen, Yuhua Lin, and Ze Li. Refining reputation to truly select high-QoS

Shen:2014:SPA

Smaragdakis:2010:DNF

Solihin:2003:CPU

Shen:1990:ESF

Shangguan:2014:OTO

Shrivastava:1994:SFT

Santosh K. Shrivastava and Daniel L. McCue. Structuring fault-tolerant object systems for modularity in

Schollmeyer:1997:GMM

Surdeanu:2002:DPA

Shim:2003:SPE

Shatz:1990:DIP

Sonmez:2010:BPC

Surdeanu:2002:PAD

Sung:1992:MID

Scalosub:2013:BMA

Som:1993:PPP

Schorish:2013:SHA

Sultan:2002:LGCa

Editor’s Note: This paper unfortunately contains some errors which led to the paper being reprinted in the October 2002 issue. Please see IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 10, October 2002, pp. 1085–1098 for the correct paper.

Song:2003:PAH

Song:2005:DRN

Soteriou:2007:EDS

Sun:2012:EET

Squicciarini:2010:GBN

REFERENCES

Sorin:2002:SVB

Sun:1999:IRC

Sivaram:1998:EBM

Soh:1991:CCA

Sun:1994:SPA

Sengupta:1998:AAB

A. Sengupta and C. S. Raghavendra. All-to-all broadcast and matrix multiplication in faulty SIMD hypercubes. *IEEE Transac-

Suri:1999:ESS

Schmid:2014:GLD

Sancho:2004:EMI

Srivatsa:2008:PET

Sohn:1998:OCC

Shen:1993:RRM

Soh:1994:ILB

Saha:1996:AAM

Shang:2004:LCS

Scott:1990:UFM

Selvakumar:1994:SPC

Saikia:1996:TRS

Su:2001:AAP

SS96

SS00

SS01

SS05

SS07

SS08

Sinnen:2005:CCT

Steinder:2007:MDE

Sangireddy:2008:OLB

REFERENCES

Sivasubramaniam:1999:ADS

Sinnen:2006:TRT

Sum:2003:AMA

Stojmenovic:2002:DSN

REFERENCES

Stankovic:1998:E

Stankovic:1999:E

Stankovic:2000:E

Stankovic:2002:E

Steenkiste:1996:NBM

Shatz:1996:APN

Sol M. Shatz, Shengru Tu, Tadao Murata, and Sastry Duri. Application of Petri net reduction for Ada tasking deadlock analysis. *IEEE Transactions on Parallel and

Stojmenovic:1996:CTB

Stojmenovic:1997:HNT

Stojmenovic:2004:CCD

Stojmenovic:2010:ENa

Stojmenovic:2010:ENb

Stojmenovic:2010:ENC

REFERENCES

Stojmenovic:2013:ENb

Stojmenovic:2013:ENE

Steiner:2000:KAD

Saxena:2009:ENA

Sun:2002:ORF

Sharma:1997:CSI

Spinnato:2004:PMD

Stillwell:2012:DFR

Shah:2007:DAD

Scarpazza:2008:EBF

Storms:2005:PDA

Suen:1992:ETM

REFERENCES

[SWWJ08] Hemant Sengar, Haining Wang, Duminda Wijesekera,

[SY93] James W. Stamos and Honesty C. Young. Symmetric fragment and replicate algorithm for distributed joins. *IEEE Transactions on Parallel and Distributed Systems,*
REFERENCES

Song:1997:BNU

Suh:1998:AAC

Suh:2000:CAC

Shan:2007:BMS

Shen:2003:CSR

Seo:1999:PRF
S.-W. Seo, T. y. Feng, and H.-I. Lee. Permutation re-

REFERENCES

td/2003/02/10142abs.htm;
http://csdl.computer.org/
dl/trans/td/2003/02/10142.htm; http://csdl.computer.
org/dl/trans/td/2003/02/10142.pdf.

Subrata:2003:ECA

[SZ03b] Riky Subrata and Albert Y.
Zomaya. Evolving cellular
automata for location man-
agement in mobile comput-
ing networks. IEEE Trans-
actions on Parallel and Dis-
tributed Systems, 14(1):13–
26, January 2003. CODEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
computer.org/comp/trans/
td/2003/01/10013abs.htm;
http://csdl.computer.org/
dl/trans/td/2003/01/10013.htm; http://csdl.computer.
org/dl/trans/td/2003/01/10013.pdf.

Sun:2004:PTL

[SZ04] Xian-He Sun and Wu Zhang.
A parallel two-level hybrid
method for tridiagonal sys-
tems and its application to
fast Poisson solvers. IEEE
Transactions on Parallel and
Distributed Systems, 15(2):
97–106, February 2004. CO-
DEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
computer.org/comp/trans/
td/2004/02/10097abs.htm;
http://csdl.computer.org/
dl/trans/td/2004/02/10097.
pdf.

Subrata:2008:GTA

[SZ08] Riky Subrata and Albert Y.
Zomaya. Game-theoretic ap-
proach for load balancing in
computational grids. IEEE
Transactions on Parallel and
Distributed Systems, 19(1):
66–76, January 2008. CODEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

Sun:2011:DAR

[SZ11] Song Sun and Joseph Zam-
breno. Design and analysis
of a reconfigurable platform
for frequent pattern mining.
IEEE Transactions on Paral-
lel and Distributed Systems,
22(9):1497–1505, September
2011. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-
2183 (electronic).

Si:2012:NMO

[SZ12] Weisheng Si and Albert Y.
Zomaya. New memory-
less online routing algorithms
for Delaunay triangulations.
IEEE Transactions on Par-
allel and Distributed Sys-
tems, 23(8):1520–1527, Au-
gust 2012. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-
2183 (electronic).

Sarje:2011:APC

[SZA11] Abhinav Sarje, Jaroslaw Zola,
and Srinivas Aluru. Accelera-

Sang:2012:PSO

Shao:2005:EAS

Sun:2010:IBS

Takesue:1993:FPP

Takeuchi:2014:GCG

Taufer:2006:PPS

Michela Taufer, Chahm An, Andreas Kerstens, and Charles L. Brooks, III. *Predictor@Home*: a “Protein Structure Prediction Supercomputer” based on global computing. *IEEE Transactions on Parallel and Distributed Systems*, 17(8):786–
796, August 2006. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

REFERENCES

[Tsay:1995:SND]

[Tzeng:1998:FCH]

[Tang:2004:MCR]

[Tang:2006:ARP]

Tang:2007:ASB

Teng:2005:IWC

Tang:2007:ORP

Tan:2007:DTA

Tan:2001:ECI

Thakur:1996:EAA

Tseng:1997:FTR

Thulasiraman:2011:MRM

Thulasiraman:2011:MRM

Tian:2013:FCZ

Tian:2013:FCZ

Tian:2013:TMG

Tsafrir:2007:BUS

Theel:1996:DCP

Turner:2013:CMB
Andrew Turner, Andrew Fox, John Payne, and Hyong S. Kim. C-MART: Benchmarking the cloud. *IEEE Transactions on Parallel and Distributed Systems*, 24(6):1256–1266, June 2013. CODEN ITDSEO. ISSN 1045-
Tseng:1996:AAP

Tseng:1999:CGA

Tang:2013:ADS

Titos-Gil:2013:EEM

Titos-Gil:2013:EBL

Traff:2010:SCM

Tang:2008:EET

Qinghui Tang, Sandeep Kumar S. Gupta, and Geo-

Tao:1993:NCE

Tao:1996:NED

Tirado:2014:CFC

Tao:1993:NCE

Tirthapura:2006:SSD

Tirthapura:2006:SSD

János Tapolcai, Pin-Han Ho, and Anwar Haque. TROP: a novel approximate link-state dissemination framework for

[Tran:2013:CLD]

[Tho93]

[Tho06]

[THW02]
H. Topcuoglu, S. Hariri, and
REFERENCES

Tzeng:1996:TAS

Tati:2015:AAD

Tsiropoulou:2012:DUP

Tariq:2014:SBL

Tsanakas:2000:CGM

REFERENCES

TalebiFard:2014:EPT

Tseng:1997:BOC

Tan:2014:BMG

Thottethodi:2004:EGK

Tai:2012:AMO

Tang:2015:RPC

Tang:2006:EOU

Thomasian:1997:RPD

Torrie:1996:CMB

Tzen:1993:DUL

[TN93a] Ten H. Tzen and Lionel M. Ni. Dependence uniformiza-
REFERENCES

Tzen:1993:TSS

Tran:2008:LWS

Tsuchiya:2001:SMC

Ta:2012:ICS

Turk:2013:QLA

Tosun:2007:ACR

REFERENCES

REFERENCES

[TS98] Jichiang Tsai. Flexible symmetrical global-snapshot al-

[Tsai:2013:FSG] Jichiang Tsai. Flexible symmetrical global-snapshot al-

[Tsai:2013:FSG] Jichiang Tsai. Flexible symmetrical global-snapshot al-

Tan:1997:MAE

Tse:2005:AAD

Tse:2009:OBL

Tse:2013:OBT

Tan:2009:IPD

Tu:2007:WCD

REFERENCES

SEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Theys:2000:MMS

Tso:2012:MDE

Tumeo:2012:ACS

Tan:2013:RSC

Tasi:1998:FAR

Tsai:2000:ADF

Tripunitara:2014:CKM

Tseng:1999:EBW

Tang:2012:GRC

Tong:2011:NRR

REFERENCES

Bin Tang, Baoliu Ye, Song

Umasankar:1995:GAS

Upfal:1996:RRS

Uht:1992:ROE

Umemoto:1998:SSR

Urgaonkar:2004:SMC

Ubal:2012:SCM

REFERENCES

REFERENCES

REFERENCES

Venkatasubramanian:2014:ERA

vanGemund:2003:SPM

Vallejo:1994:SMM

Vujic:2010:APM

Vijaykumar:2001:SVC

Vinnakota:1993:SAB

[VJ93] Bapiraju Vinnakota and Niraj K. Jha. Synthesis

Vinnakota:1994:DAB

Venkatesan:1997:OCR

Vydyanathan:2009:IAL

Varavithya:1999:ATB

Veeravalli:2004:SDL

Vejarano:2012:SAR

Varri:2004:ICP

Villela:2005:PAS

[VR05] Daniel Villela and Dan Rubenstein. Performance analysis of server sharing collectives for content distribu-

Varvarigou:1996:SFP

Vadapalli:1996:NFC

Verbeek:2011:CNS

[Freek Verbeek and Julien Schmaltz. A comment on “A Necessary and Sufficient Condition for Deadlock-Free Adaptive Routing in...
Wormhole Networks”. IEEE Transactions on Parallel and Distributed Systems, 22(10): 1775–1776, November 2011. ISSN 1045-9219 (print), 1558-2183 (electronic). See [Dua93, Dua95a].

Sarad Venugopalan and Oliver Sinnen. ILP formulations for optimal task scheduling with communication delays on parallel systems. IEEE Transactions on Parallel and Distributed Systems, 26(1):142–151, January 2015. CODEN ITDSEO.

P. J. Varman and R. M. Verma. Tight bounds for prefetching and buffer management algorithms for parallel I/O systems. IEEE
Viswanathan:2007:RAD

Vejarano:2014:DTM

REFERENCES

Wang:1990:CTA

Walters:2009:RBF

Wang:2006:ESO

Wang:2011:MIW

Wills:1997:HTL

Wu:2008:AEH

REFERENCES

ISSN 1045-9219 (print), 1558-2183 (electronic).

Wu:2012:TFN

Wang:2004:SAC

Wolf:1993:PSM

Wong:1998:SAA

Wen:1996:MMP

Wu:1994:UPN

[Jie Wu and Eduardo B. Fernandez. Using Petri nets for the design of conversation boundaries in fault-tolerant software. *IEEE Transac-
REFERENCES

REFERENCES

[WH03a] Yuh-Rau Wang and Shi-Jinn Horng. An $O(1)$ time algo-

Jang:1997:CTA
Ju wook Jang, Madhusudan Nigam, Viktor K. Prasanna, and Sartaj Sahni.
Constant time algorithms for computational geometry on the reconfigurable mesh.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Jang:1997:OMA
Ju wook Jang, Heonchul Park, and Viktor K. Prasanna.
An optimal multiplication algorithm on reconfigurable mesh.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Wang:2013:SLC
Cheng Wang, Changjun Jiang, Shaojie Tang, and Xiang-Yang Li.
Scaling laws of cognitive ad hoc networks over general primary network models.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Wang:2014:CBB
Chonggang Wang, Hongbo Jiang, Guang Tan, and Shengkai Zhang.
Connectivity-based boundary extraction of large-scale 3D sensor networks: Algorithm and applications.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Wang:2014:FGF
Guojun Wang, Wenjun Jiang, Jie Wu, and Zhengli Xiong.
Fine-grained feature-based social influence evaluation in online social networks.
CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Wang:1997:RMM

Webb:2000:CHS

Wang:2008:DSL

Wu:2008:RRO

Wang:2012:EPP

Wu:2012:EOR

Wu:2010:EEW

Willebeek-LeMair:1993:SDL

Wang:2011:EEL

Wang:2012:EEL

Wang:2013:RSC

Wu:2015:FFP

REFERENCES

Wang:2008:EAS

Wang:2007:VRE

Wu:1995:SEA

Wu:1996:DAP

Wang:2015:NST
Wang:2012:AAD

Wu:2014:DCR

Wu:2012:MAC

Wei:1999:IDF

Wang:2011:MAC

Wang:2011:APC

Xiaorui Wang, Kai Ma, and Yefu Wang. Adaptive power control with online model es-
timation for chip multipro-

Wei:2008:FPA

Wang:2006:DQ

Watanabe:2007:MNI

2007. CODEN ITDSEO. ISSN 1045-9219 (print), 1558-2183 (electronic).

Warnakulasuriya:2000:FMM

Wang:2013:MMC

Wang:2010:EBD

Wang:2004:TUF

Wei:2009:CSA

Watkins:2011:PSC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2007:EPS

Wei:2011:MCP

Wang:2010:MCT

Wei:2013:SDM

Wu:2013:CBI

Wu:2014:TES

Xiaohu Wu, Yinlong Xu, Chau Yuen, and Liping Xi-

Wu:2013:WWI

Wolf:1993:PHJ

Wang:2013:AHB

Wang:2013:LBN

Wu:2015:HME

Wei:2012:SPS

Wang:2014:KSC

Wu:2013:BTS

Wu:2010:SDA

Wu:2015:DME

Wang:2003:PBR

Lan Wang, Xiaoliang Zhao, Dan Pei, Randy Bush,

Wu:2010:SIH

Wang:2014:DSE

Wang:2012:CCS

Wang:2009:DMS

Wen:2013:MPD

Xia:2014:ESR

Feng Xia, Ahmedin Mohammed Ahmed, Laurence Tian-

REFERENCES

[XCZ02]

[XCZ04]

[XGZN97]

[XGZW14]

Xu:2008:CEM

Xiao:2010:UPB

Xie:2015:SBA

Xie:2013:SHN

Xiong:2011:MDC

Xia:2005:DAC

[XHYL05] Zhonghang Xia, Wei Hao, I-Ling Yen, and Peng Li. A distributed admission control model for QoS assurance in large-scale media delivery sys-

[XJY+10] Naixue Xiong, Xiaohua Jia, Laurence T. Yang, Athanasios V. Vasilakos, Yingshu Li, and Yi Pan. A distributed efficient flow control

REFERENCES

[XLM+11a] Lei Xie, Qun Li, Weizhen Mao, Jie Wu, and Daoxu Chen. Association control for vehicular WiFi access:

REFERENCES

Xing:2006:ISC

Xu:2013:MHB

Xiao:2006:OBC

Xiao:2005:DQG

Xiao:2007:GCM

Xu:2010:PCL

Xu:2006:TCD

Xu:2008:NSS

Xie:2013:RWP

Xiang:2001:TBW

Xiang:1999:EIB

[Yan14] Hong Yan. Design exploration of geometric biclustering for microarray data analysis in data mining. *IEEE Transactions on Paral-
REFERENCES

Youn:1993:CPE

Yuan:1995:MCT

Yu:1996:EPR

Yuen:2012:SRT

Yen:2014:GTA

Chang:1998:EMA
Yang:2013:DLM

Yang:2007:RHI

Yuan:2012:EPB

Yao:2014:UMC

Yang:1994:EPB

Yu:1994:PET

Yu:1995:DTA

Chansu Yu and Chita R.

Yang:2009:FSF

Yew:2002:E

Yew:2003:EN

Yew:2004:ENa

Yew:2004:ENb

Yew:2005:ENa

Yew:2005:ENb

Yew:2006:EEF

Yang:1997:HAS

Yang:1998:PCB

Yang:2001:RDT

Yu:2008:KMS

Younis:2006:LAC

Yang:2013:BIB

Hsieh:2002:EPA

Yang:2013:FSR

Yao:2014:PCR
Yuan Yao, Longbo Huang, Abhishek B. Sharma, Leana Golubchik, and Michael J. Neely. Power cost reduction in distributed data centers: A two-time-scale approach

Yi:2009:UAF

Yajnik:1997:ARD

Yajnik:1997:GDA

Yang:2013:ESD

Yang:2014:EER

Yu:2015:ECM

REFERENCES

Yu:2006:OBB

Yan:1997:ASP

Yang:1992:ICS

Yamashita:1996:CANa

Yamashita:1996:CANb

Yang:1998:DTB

Yamashita:1999:LEP

Yau:2003:EEO

Yeung:2009:GTP

Yildirim:2014:TSB

Yum:2002:MQC

Yu:2008:DGT

Yang Yu, Bhaskar Krish-

Yang:2003:PBA

Youn:1996:EDM

Yue:1997:EPA

Yang:2007:BEO

Yang:2008:OSA

REFERENCES

Yang:2010:QTC

Yao:2011:ALL

Yao:2011:UDS

Yuan:2012:QAL

Yao:2011:UDS

Yang:2007:SBM

Yi:2013:ETS

Yang:2014:RCB

Yang:2015:TEA

Yin:2015:BBS

Youn:1995:MIN

Yang:2009:HAP

Yuan:2003:ASC

[YMG03] Xin Yuan, Rami Melhem, and Rajiv Gupta. Algorithms for supporting compiled com-

Yan:2008:COR

Youssef:1990:BHN

Yang:2000:IDS

Yang:2013:DDQ

Youssef:1993:PAR

Yan:2014:TPS

Gongjun Yan, Stephan Olariu, Jin Wang, and Samiur Arif.

REFERENCES

Yang:1996:ERB

Yu:2006:AAS

Yzelman:2014:HLS

Yu:2011:FTF

Yoon:2011:CLM

Yang:2014:SME

Yang:1992:DAC

Yang:2010:PCA

Yang:2011:PPF

Yang:1998:MSN

Yang:2005:MAS

Yang:1993:NGA

Yen:1998:PER

Yang:1999:NSR

Yang:2000:OAA

Yang:2001:OAA

Yang:2003:NFM

REFERENCES

Yang:2003:RPL

Yang:2004:CMC

Yang:2005:CED

Yang:2005:RPB

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>Electronic ISSN</th>
</tr>
</thead>
<tbody>
<tr>
<td>[YWC11]</td>
<td>Xiaonan Yue, Chi-Fai Michael Wong, and Shueng-Han Gary Chan</td>
<td>CACAO: Distributed client-assisted channel assignment optimization for uncoordinated WLANs</td>
<td>IEEE Transactions on Parallel and Distributed Systems</td>
<td>22(9)</td>
<td>1433–1440</td>
<td>2011</td>
<td>1045-9219 (print), 1558-2183 (electronic)</td>
</tr>
</tbody>
</table>
Yang:2008:SCM

Yu:2012:AFD

Yang:2013:NPA

Yang:1995:MIM

Yin:2003:ORD

Yang:2014:RPR

Yang:1995:MIM

REFERENCES

Yang:2009:FTS

Youssef:2009:OMC

Yu:2011:TDA

Yu:2010:SDW

Yu:2012:DDA

Ye:2013:SAB

Ye:2014:MAE

Yang:1994:RMF

Yan:2000:CRA

Yan:2000:CRA

Yan:2000:CRA

Yan:2000:CRA

Zapata:1992:VCG

Zhu:1993:JSH

Zola:2010:PIT

Zhu:2009:ILM

Zhou:2005:VAD

Zonouz:2015:SIF

Zhu:2009:LOP

Zhang:2014:RCO

Qian Zhang, Yang Cao, Tao Jiang, and Liang Yu. Risk-

Zhu:2014:FTR

Zheng:2009:CCL

Zhang:2012:TCW

Zhang:2012:DAP

Zhu:2014:PMD

Zhang:2011:UBE

Zhang:2014:MAG

Zeng:2014:RBD

Zhang:2010:CMD

Zeng:2014:TTW

Zhu:1998:NPD

REFERENCES

Zhong:2011:RMA

Zhong:2014:KHT

Zhong:2014:MSG

Zhao:2003:GES

Zhang:2012:NPS

Zhu:2012:CPD

Zhu:2012:EET

Ying Zhu, Minsu Huang, Siyuan Chen, and Yu Wang.

Zhou:2012:SDC

Zhuang:2014:OTS

Zhao:2015:EAW

Ziavras:1993:EMA

Ziavras:1994:RVF

Zou:1999:RTP

REFERENCES

[102x681] REFERENCES

Charles Zhang and Hans-
Arno Jacobsen. Refactor-
ing middleware with as-
pects. IEEE Transactions
on Parallel and Distributed
Systems, 14(11):1058–1073,
November 2003. CODEN
ITDSEO. ISSN 1045-9219
(print), 1558-2183 (elec-
computer.org/comp/trans/
td/2003/11/l1058abs.htm;
http://csdl.computer.org/
dl/trans/td/2003/11/l1058.
pdf.

Rongfei Zeng, Yixin Jiang,
Chuang Lin, Yanfei Fan, and
Xuemin (Sherman) Shen. A
distributed fault/intrusion-
tolerant sensor data storage
scheme based on network cod-
ing and homomorphic finger-
printing. IEEE Transactions
on Parallel and Distributed
Systems, 23(9):1721–1730,
September 2012. CODEN
ITDSEO. ISSN 1045-9219
(print), 1558-2183 (elec-
tronic).

Eddy Zheng Zhang, Yun-
lian Jiang, and Xipeng Shen.
The significance of CMP
cache sharing on contempo-
rary multithreaded applica-
tions. IEEE Transactions on
Parallel and Distributed Sys-
tems, 23(2):367–374, Febru-
ary 2012. CODEN ITDSE.
ISSN 1045-9219 (print),
1558-2183 (electronic).

Albert Y. Zomaya, Malith
Jayasinghe, Zahir Tari, and
Panlop Zeephongsekul. ADAPT-
POLICY: Task assignment in
server farms when the service
time distribution of tasks is

[ZL96]

[ZKSY14]

[ZL07a]
REFERENCES

Zhou:2007:ASC

Zhu:2008:ONL

Zier:2010:PED

Zhang:2011:MPN

Zhao:2014:IDL

Zalamea:2004:RCM

Zhao:2014:EPO

Zahorjan:1991:ESD

Zhu:2011:ITI

Zhang:2013:PLU

[ZLN+13] Xuyun Zhang, Chang Liu, Surya Nepal, Suraj Pandey, and Jinjun Chen. A privacy leakage upper bound constraint-based approach for cost-effective privacy preserv-
REFERENCES

Zhu:2009:DMO

Zhang:2014:VFP

Zhu:2009:HOR

Zheng:2014:SLA

Zhang:2014:AID

Hongzi Zhu, Minglu Li, Yanmin Zhu, and Lionel M. Ni. HERO: Online real-time vehicle tracking. *IEEE Transactions on Parallel and Distributed Systems*, 20(5):740–
Zhang:2013:AAS

Zhang:2012:HCS

Zhu:2003:SDV

Zhang:2013:NED

Zhu:2010:RTM

ZhiBin:2013:LLT

REFERENCES

Zhao:2008:RBE

Zhu:2004:PAS

Zhang:2008:PGL

Zhao:2015:CCF

Zheng:2004:ECA

[Zhao:2013:IER] Jia Zhao, Chunming Qiao, Raghuram S. Sudhaakar, and Seokhoon Yoon. Improve efficiency and reliability in single-hop WSNs with

Zhang:2009:BEC

Zhang:2010:EEB

Zhan:2013:LLC

Zhuravlev:2013:SEC

Zhai:2011:EAC

Zhou:1992:HDS

Zhang:2001:IWS
Yanyong Zhang, Anand Sivasubramaniam, José Moreira,

Zhang:2014:CRE

Zhang:2014:CAP

Zomaya:2001:OUG

Zomaya:2002:OUG

Zomaya:2001:OUG

Zomaya:2002:OUG

Zhao:2014:DEI

Yaxiong Zhao and Jie Wu.
The design and evaluation of an information sharing system for human networks.

Zhao:2012:MLW

Zeng:2010:EMA

Zhang:2015:RDR

Zhang:2015:CBE

REFERENCES

[ZXW+09] Meng Zhang, Yongqiang Xiong, Qian Zhang, Lifeng Sun, and Shiqiang Yang. Optimizing the throughput of data-driven peer-to-peer streaming. *IEEE Transactions on Parallel and Dis-
Zhang:1995:CME

Zhang:2004:OSA

Zhang:2006:WOI

Zhang:2007:AHC

Zhang:2013:EEW

Zhong:2014:TCP

Zeinalipour-Yazti:2007:PPA

Zhao:2014:VAS

Zhao:2014:RCF

Zheng:2015:DGC

Haifeng Zheng, Feng Yang, Xiaohua Tian, Xiaoqing Gan, Xinbing Wang, and Shilin...

Zhang:2014:RTE

Zhou:2014:OCD

Zhou:2010:TAT

Zhang:2012:BTO

Zhang:2015:IX

Shurong Zhang and Xianwen Zhang. IEEE XPLORE.

Zhao:2010:CCW

Zhang:2010:LAP

Zhu:2007:PSS

Zhang:2012:DPP