Title word cross-reference

3 [ZSLX13], 3 [CCZ13], Z [SLM12]
-polytopes [SLM12]
/channel [LCL+14]
2014 [Ano15]
6 [KWM+08], 64-bit [BWLR06, VED07]
754 [LDG+13]
A-DFA [BC13], Aborts [RLS15], ABS [AGI+12], Abstracting [JSH09], Abstraction [RLBBN15, ZM15, RCV+12], Accelerated [HS05], Accelerating [GÁSÁ+13, GR15, JYJ+13, RMA14, HWX+13], Acceleration [HAC13, WFKL10], Accelerator [MCB+12, LHWB12, VDSP09], accelerator-based [LHWB12], Accelerators [KCA+13, KMG14, BKA13, CI13], Access [CG15, GFD+14, HK14, FTLG11, HLR+13, HCC+14, JSH09, KCKG14, LWH11], accounting [DEE13, LMCV13], accurate [LMJ+13b], ACM [Ano13a, Ano15], Across [FDF+14], activations [JLCR13], Active [KHS+14], Adapt [DG1+14, PGB13], adaptation [DJB13, LGAZ07, SS04], Adapting [GHH15, LBJ05], Adaptive [CG14, FQRG13, GFD+14, HWX+13, WM11, AGI+12, MAN+08, SW13, ZK05].
address [CCZ13, VS08, ZPC06].

Addressing [WA08, CWCS13], affine [NCC13, SLM12], against [BVIB12]. Aging [DG1+14, KKW+15], agreement [GMW09].

Aho [CW13, PLL10]. Algorithm [BC13, DGI+14, BRSJG12, CW13, CDPPD13, HAJ+12, PLL10, XCO6, ZGC+12].

Algorithmic [NCC13], algorithms [OGK+12, VTN13]. Allocation [DHDD, PS12, RTK15, BZS13, CS10, GW09, RB13].

allocator [DHC+13], ALP [SLA+07]. Analysis [GMAG12, MMdS06, VTN13, ARS04, AFD12, FER+13, JOA+09b, Nas13, SV05, SMK10, ZCW10]. analytic [XMM04].

Application [PLT+15, AS13, GÁSÁ+13, RCV+12, SB09, TDP15]. Application-Level [PLT+15].

Applications [GR15, RHLA14, RMA14, RLBNN15, CS13, DWDS13, HLR+13, KNK12, MBKM12, STL12, SV05, SLA+07, SLM12, YLTL04, ZG05]. Applied [LB10]. applying [ZWHT05]. Approach [EMR14, FDF+14, FT10, SSR13, WYJL10, YJTF13, ZCS06]. approachable [WHV+13]. Approximate [DS12].

approximation [LTG12], arbitration [XCC+13]. Architecting [CPB+07].

Architectural [DCP+12, ME15, IMS+08, SB09, ZZZ+05, CWC06]. Architecture [HK14, SHY14, ARS04, BVIB12, BWG+12, CBP+07, DJX13, GKP14, GZS10, JYJ+13, JA14, LNLK13, PM12, STL12, SNL+04, SRLPV04, SSPL+13, ZK06].

architecture-independent [BVIB12].

Architectures [GR15, LAS+13, RMA14, BBG13, BWLR06, BTT10, CG14, CK11, CDM13, KCP13, LKL+13, OGG+12, RCV+12, SSK11, SD12, SB09, TC07, TDG13, VE13, YXK+12].

asymmetric [CG14, CCPG13, PCT12, SW13]. attacks [BVIB12, CDD12, DJL+12]. automata [VV11]. automatable [AFD07].

Automated [BSSS14]. Automatic [JLER12, BLO+14, LT13, NC15, RB13, WLZ+13, WGO15, WM10, SPS12, WKCS12].

Autonomously [DG1+14]. autotuning [KBR+13, LFC13]. Aware [DG1+14, DHD+14, WLZ+13, CG14, CWCS13, EE09, GGFRG12, NB13, SSS+04, SEP07, WYJL10, WSC+13, WDZ14, ZYCC10, ZGC+12, ZK06].

awareness [LKL+13].

Baharupi [PM12]. bandwidth [DZC+13, WYJL10, XCC+13]. bank [LCL+14], bank- [LCL+14]. bank-/channel-level [LCL+14]. banked [AGI+12].

Based [CG15, DAP+15, FDF+14, GAM12, NC15, WGO15, WDX15, AFR07, BCVT13, CPP08, CW13, GK13, HLR+13, HWM14, HWX+13, JYJ+13, KBR+13, LBO14, LTG12, LCL+14, LHMB12, RLS13, SSO4, TKJ13, WSC+13, WTF14, ZHD+04, ZGC+12]. behavior [AFD07, LS10].

benchmark [BE13]. Benchmarking [DAP+15]. benchmarks [JEBJ08].

Benefits [LWWH12]. better [TBC+12]. Beyond [FER+13]. Binary [SHY14, CDMS13, GHLS12, HS06, HLC10, LWH11, PKC12]. bipartite [BS13]. Bit [TBS06, BWLR06, VED07]. Bit-split [TBS06].

bitwidth [NB13].

bitwidth-aware [NB13]. Block [GFD+14, ZK06]. Block-aware [ZK06].

Blocks [HWJ+15, SYX+15]. Bones [NC15].

Boosting [RSL13, BTT10]. both [BSWE13, HP+04, MP13]. bottlenecks [MMdS06]. bound [MBKM12]. bounded

Caches [WDX14, AIVL13, DJL+12, HS06, HL07, KS11, KWCL09, LJMGMG12, MSK05, SSK11, SSC+13, VSP+12, WDXJ14, WLZ+10, WM11, ZDC+12]. Caching [SYX+15, DZC+13, JOA+09a, WFKL10]. call [MG12]. Capability [DGI+14].

centers [AVG12]. CERE [DAP+15].

CGRA [HAC13]. chains [SSH+13].

Chameleon [WFKL10]. Change [JDZ+13, YMM+15, ZDC+12]. channel [BVIB12, DJL+12]. chaotic [LTG12].

checkpoint-assisted [CST+06]. checkpointing [DMX11]. Chip [LBM13, APG13, BKA13, CK11, EE11, GSZ10, LWHH12, LT13, LNLK13, LAS+08, LM05, LPZI12, LMMM08, SMK10, TDG13, XCC+13]. Chips [ZM15]. choices [VE13].

Code [CZ07, AvRF07, CDM13, GNB08, HLR+13, HS06, JLER12, KBR+13, LKL+13, LBJ05, LZYZ09, LHY+06, PK12, RCG+06b, VJC+13, ZK05, ZWHM05].

code-positioning [ZWHM05]. Codelet [DAP+15]. codes [AFD07, AFD12].

Codesigned [KCA+13]. Codesigned [KMG14].

Coherence [KAC15, MMdS06, SSH+13, WFKL10].

cohort [APG13]. collaborative [FT10].

collapse [CWCS13]. Collective [FT10].

collector [WK09]. collocated [DWS13].

Coloring [YXWW12, LFX09].

combinatorial [SSR13]. combined [BG+12]. Combining [VSP+12].

Commodity [WDX15]. common [WK09].

communication [HWX+13, SSSP+13, TC07].

communications [ACGK04]. compact [SHC13]. compaction [WK09].

Comparability [YXWW12]. Comparative [LAS+08]. Comparators [YE1+14].

comparison [FBWS13]. compilation
Considerations

Conserving [LZZ09].

connected [BRSJG12].

Compiler [CCD12, DMG13, HYAR+15, KPP+15, LFX09, MG12, NC15, ZSCM08, CYXF13, DC07, HWM14, HLC10, JOA+09a, JOA+09b, KBR+13, KWM+08, LZL+13, LCH+04, TR13, YXK+12, ZHD+04].

compiler-based [ZHD+04].

Compiler-Directed [HYAR+15, LFX09].

compiler-guided [LZL+13].

Compiler/Runtime [KPP+15].

computers [CDM13, HEL+09, SD12].

Complexities [GHH15, ZBH+13].

Complexity [KAC15, CPP08, DJL+12, RPS06, SRLPV04].

complexity-effective [RPS06].

component [LGAZ07].

compressed [DZC+13].

Compression [BC13, KGG10].

computation [DDU12, LFJC13].

computations [CYXF13].

Computing [KHZ+14, AVG12, LM05].

conceived [APG13].

Concurrency [GMGZP14].

conditional [JSL13].

configurable [HVJ06, LZL+13].

conflicts [TGAG+12].

connected [BRSGJ12].

conscious [LZZ09].

Conserving [LYYB07].

Considerations [HMYZ15, LM05].

considering [AVG12, HP04].

constrained [MSF+07, NMKS06, ZK05].

Constraints [KCA+13, WJL10].

Consumption [GF+14, LTG12, LYYB07, VED07, ZHD+04].

content [KS11].

contention [CWCS13].

context [DMG13, LS10].

continual [JA14].

Continuous [TR13].

Control [BRMJ15, HAC13, SMKH15, CWC06, FSYA09, IWP+04, MBKM12, TG07].

Control-Flow [SMKH15], controlled [RCV+05].

controller [AGI+12].

conversion [CS13].

Converting [HLC10].

convolution [FBS13].

Convolutional [TDP15].

cooling [AVG12].

cooling-computing [AVG12].

Cooperative [JDZ+13, LBM13, SHLM14].

coprocessor [LDG+13].

Corasick [CW13, PLL10].

Core [CHE+14, FMY+15, LBM13, LNLK13, OGK+12, PM12, ZGC+12].

cores [GB06, NTG13, PCT12, SW13, WYJL10, WFKL10].

Correction [DGI+14, LDC15].

correlating [TKJ13].

coscheduling [PGB13].

Cost [YCI+14, AGI+12, DC07, FBHN04, MA08].

COTS [RRG+12].

counters [RLS13].

counting [RBMI10].

coupled [PCT12].

covering [PJ13].

CPU [BSS14, LMVC13].

critical [RGG+12].

CRNS [AS13].

Cross [LGAZ07, LR+15].

Cross-component [LGAZ07].

Cross-Loop [LVR+15].

Crown [MKKE15].

cryptography [AS13].

CUDA [KBR+13, NC15, VJC+13].

cycle [DEE13, RLS13].

D [ZSLX13].

DAPSCO [GGFPRG12].

dark [PCT12].

Data [ESR+15, GAM12, ME15, RMA14, RTK15, TDP15, WGO15, YMM+15, AVG12, BSWE13, CS10, CA11, CDPD13, CWC06, FER+13, FLG12, HLR+13, HL07, LWYH11, LJMG12, PC13, RB13, RFD13, SLM12, TG07].

Data-Driven [ME15].

data-flow [PC13].

Data-Traversal [RMA14].

Dataflow [KPP+15, MMT+12, VTN13].

Datapath [IWP+04].

DDR4 [TKM14].

deadlock [BRSGJ12].

deadlock-free [BRSGJ12].

decoding [VDS09].

decay [JSM+04, SS04].

decoders [Zha08].

Decoding [CAMJ15].

Deconstructing [CFH+12].

decoupled [BZLS13, DHC+13, RVOA08].

DEFCAM [LCC11].

defect [LCC11].

defect-tolerant [LCC11].

defined [TGAG+12].

DeFT [VHK11].

Delta [DZC+13].

Delta-compressed [DZC+13].

Demand [BRMJ15].

Dependence [BRMJ15, DHD+14, SL09, TG07, VTN13].

Dependence-Aware [DHD+14].

dependences [BCVT13].

Dependency [WLZ+13].
Directed [HYAR+15], LFX09, NED+13, SEP07, WM10. directives [CXW+12].
discard [LWWH12]. DisIRer [HLC10].
Disjoint [SJAI12]. disparate [WLZ+10],
dispatching [LZ12], dissemination [LZZY12].
Distance [GGFPRG12, FER+13, FTLG11].
Distance-aware [GGFPRG12]. Distilling [JEBJO8].
Distinguished [Ano15, Ano13a],
distribute [RFD13]. Distributed
[KS+14, ZPC06]. Divergence [SMKH15].
Divergent [GR15]. diversification
[CDM13] diversity [KBNK12]. DJ
[DDU12]. DJ-graphs [DDU12], DLP
[SNL+04]. Doesn’t [LKVI12] domain
[CVB15]. DRAM
[HCC+14, JLCR13, LCL+14, TKM14].
Driven [ME15, CDM13, FTLG11, SLP08,
WTFO14, XT09, ZCS06]. Dropping
[GFD+14], duplication [KS11, LKL+13].
DVFS [EE11, GK13]. Dynamic
[DJBI3, FER+13, FTLG11, FSYA09,
GM12, KPP+15, KMG14, LKL+13,
LPZI12, SV05, SHD15, BBG13, DWDS13,
GHS12, HS06, HWH+11, HVJ06, JSH09,
LWH11, LJMGG12, LCL+14, MG12, NED+13,
WSC+13, XMM04, ZZQ+05]. Dynamically
[LZ12, PGB12, KS11].
eager [JLCR13]. early [JOA+09b, SLP08].
Easy [TDG13]. Editorial [CT08]. Effective
[GMGZP14, HVJ06, KHW+05, LWH11,
RPS06, SBC05]. Effects [MG15, CK11].
Efficiency [AJK+12, CAMJ15, BSWLE13,
CWS06, RCG+10a, ZSLX13]. Efficient
[BC13, CC13, DDU12, GNB08, HAC13,
IMS+08, KMG14, LWH11, LDC15, MCB+12,
MKKE15, NMM+06, PS15, TDP15,
YMM+15, ZPC06, ZZQ+05, APG13, ARS04,
CW13, CWCS13, DCP+12, GW08, JSL13,
JOA+09a, KHW+05, LZZY09, LMJ13a,
LUH13, Nas13, PLL10, RFD13, SPGE06,
SCH13, SB09, TDG13, XCC+13, ZGC+12,
SYA09, SLA+07]. Efficiently [PCT12].
EFGR [TKM14]. Element [LVR+15],
elementary [LDG+13]. Eliminating
[RCG+10b]. elimination [JLR12, VED07].
embedded [CPP08, CDM13, GHS12, MP13,
SCH13, SD12, XT09]. embedding
[KKM+13]. emergencies [RCG+10b].
emerging [DXMJ11, XCC+13]. empirical
[AvRF07]. Emulation [TKKM15].
Emulators [TKMK15]. Encoding [TDP15].
Endurance [WDXJ14]. Endurance-aware
[WDXJ14]. Energy
[AJK+12, GFD+14, HMYZ15, JOA+09a,
MCB+12, MKKE15, RTK15, SB09, AVG12,
BSWLE13, CWS06, CWCS13, FBWS13,
GWS13, GKP14, LG12, LGZ07, LZY09,
LJMJ+13b, LHZ13, SPGE06, SCH13, TDG13,
ZHD+04, ZVY05, ZGC+12, ZSLX13].
Energy- [SB09]. Energy-Efficient
[MKE15, JOA+09a, CWS13, LZZY09,
LHZ13, SPGE06, SCH13, TDG13, ZGC+12].
enforcement [GWM07]. Engine
[RMA14, WLZ+13, CW13]. Engines
[MGI15, TBS06]. Enhance [GAM12].
Enhanced [TKM14], enumeration
[SWH09]. Environment [KMG14].
environments [RCC+12, WWHL13]. era
[LNLK13, PCT12]. Error
[DGI+14, YET+14, CCZ13, LKL+13].
essencc [JEBO8]. estimation [LTG12].
Evaluating [CWS06, HWH+11, SSK11].
Evaluation [BC13, CHE+14, AVRF07, KWTDO9, LCC11, LAS+08, RGG+12, ZK05].
Evaluator [JSL13].
Evaluator-executor [JSL13].
event [GWM07]. exascale [DXMJ11].

Execution [GMGZP14, HAC13, ME15, PS15, WLZ+13, GB06, LZ12, LH13, SJA12, VTN13, XIC12, ZG05].
exhaustive [KWTDO9]. Existing [YEI+14].
explicit [STLM12].

Feedback-directed [NED+14].
Feedback-driven [CDM13].

Fair [LMCV13]. Fairness [GWM07]. false [BCVT13].
Fast [BC13, CCPG13, KCP13, KHW+05, MKKE15, NTG13, PRMH13, LMJ13a, SPGE06, TDG13].
fat [BRSGJ12, PRMH13]. fat-trees [BRSGJ12].

Fault [RHLA14, RCV+05]. faults [BS007, SSC+13]. Feature [TKM14, LBO14].
Feedback [CDM13, NED+13, WM10].
Feedback-directed [NED+13, WM10].

Feedback-driven [CDM13].
fetch [EE09, GWS13, JLER12, SRLPV04].

File [KPG14, SJV08]. Files [YWXW12].
filter [BSWE13]. Finding [PJ13].

Fine [BSSS14, EE11, TKM14, WM11, YEI+14, LT13]. Fine-Grained [BSSS14, YEI+14, EE11, WM11, LT13].
Finite [LVR+15, VW11].
fixed-point [CS13].

Flash [DGI+14].

Flexible [CC13, OAB12, SHC13, ZZQ+05]. FlexSig [OAB12].
flight [SSH+13]. floating
[LBW+12, CS13]. floating-point [LBW+12]. Flow
[BRIM15, GRS12, HAC13, MMT+12, SMKH15, FSYA09, JA14, KHL+13, MBKM12, Nas13, PC13, TG07].

flow-sensitive [Nas13].

fly [VHKP11, WWY+12].

Formulating [MAN+08].

FPGA [CS13, CPD13]. FPGA-processor [CS13]. FPGAAs [FBWS13, GNB08, PI12].
fractal [KYM+13]. fractal-based [KYM+13].

Full [MVT+12].

Fully [LBW+12, RSRJG12].

fundamental [VE13].

Future [GB06, DXMJ11, LMJ13a].

Gap [HCC+14].

Gating [KMG14, WWAI11, YCCY11].

General [CAM15, LHY+06].

General-Purpose [CAM15].

Generalized [FDF+14].

Generalizing [Jim09].

generate [KBR+13].
generation [GNB08, HLR+13, JLER12, LBO14, LHY+06, VJC+13].

Global [CCL+13, BZS13].

GP [MY15].

GPGPU [MBKM12, YXK+12].

GPU [HLR+13, LRC13, RB13, TBC+12, WGO15, ZSLX13].

GPU-Based [WGO15].

GPUs [FBWS13, NC15, SHLM14, WWCC11].

Gradient [HAY+12].

Graded [BSSS14, YEI+14, EE11, KCP13, LT13, WM11].

Granularity [TKM14].

Graph [YWXW12, DS12, LFX09].

Graphics
Graphs
[BRJM15, BZS13, DDU12, MG13]. gshare
[TS05]. Guarded [PS15], guided
[CS13, LZL+13, RCG+10b, SSU+13].

Hadoop [KHS+14], halting [ZVYN05].

Hamming [CVB15]. handling
[HWM14, HWH+11, LWH11]. hard
[BS007]. Hardware
[JDZ+13, KAC15, LMJ+13b, RHLA14,
TGAG+12, ATGN+13, CS10, CI13, FSYA09,
GBN08, HCC+14, MMdS06, OAB12, RLS13,
RPE12, YJTF13, ZSCM08].

Hardware-Assisted [JDZ+13]. hardware/
software [CS10, HCC+14, MMdS06]. HC
[CDPD13]. HC-CART [CDPD13]. header
[VED07]. heap [WWY+12]. heterogeneity
[SB09]. Heterogeneous [DFD+14, GHH15,
HYYZ15, WGO15, BBG13, KNBK12,
LHZ13, PM12, TDG13, VE13, WFKL10].
Heuristics [MKKE15, TR13], hide
[CST+06]. Hiding [GW08]. Hierarchical
[ZGP15, SW13]. hierarchies [DJX13]. High
[CHE+14, CAMJ15, TKM14, ASK13,
BCVN10, CK11, CDM13, GW08, KBR+13,
OGK+12, SRLPV04, SD12, ZVYN05].

High-Efficiency [CAMJ15]. High-Level
[CHE+14, BCVN10]. High-Performance
[TKM14, CK11, CDM13, GW08, KBR+13,
SRLPV04, SD12, ZVYN05]. high-radix
[ASK13], high-throughput [OGK+12].

hits [CA11]. HMTT [HCC+14].
HotSpot\[\text{TM}\] [KWM+08]. HPPar [ZH+13].
HPC [MP13, PLT+15]. HRF [GHH15].
HRF-Relaxed [GHH15]. HTML
[ZBH13]. HW [KMG14]. HTML
[KMG14]. Hybrid [AR13, CA11, DXMJ11,
HW+15, CS13, DCZ+13, HCC+14,
MMdS06, RBM10, WLZ+10].

I/O [CDP+12, RHLA14]. IATAC
[AGVO05]. Idiom [KKM+13]. idle
[WFKL10]. IEEE [LDG+13]. IEEE-754
LDG+13]. ILP [SNL+04]. image [CI13].

Impact
[BCVN10, SMKH15, RGG+12, SSC+13].
implants [SSPL+13]. implementation
[CDPD13, LHZ13, PLL10, SSS+04, ZK05,
AvRFO7]. Implementing
[JS04, MAN+08, OAB12]. Implications
[CVB15, KAC15, LS10]. Implicit
[BWLR06]. improve
[ATGN+13, BSWLE13, KGK10, LBJ05,
LZ12, MG12, RWY13, SPS12]. Improved
[BCVT13, GMSZP14, NB13].

Improvements [LBM13]. Improving
[AJK+12, CG15, HWJ+15, KLMP12,
ZWHM05]. in-flight [SSH+13]. In-Order
[BEE15, BB04]. in-order/out-of-order
[BB04]. inclusive
[AIVL13, TKJ13], independent [BVIB12].
indexing [TS05]. indirect
[HWH+11, MG12]. in-direcions
[AFO07, AF12]. Industrial [GHH15].
Infer [HW15], inference [LB10].
Information [CAM12, KHL+13, MMT+12,
LMJ13a, VSP+12]. Informed [SYX+15].

inputs [BE13]. Instruction
[SPGE06, ACGK04, AR13, BVIB12, CS10,
CSVM04, GWS13, HL07, KS11, SSR13,
VS11, XL07, ZHD+04, ZK06]. instructions
[MG12, RDF13, SCJ13]. Integer
[SLM12, BWG+12]. integrated [YJTF13].
Integrating [WTFO14]. Integration
[JDZ+13]. intelligent [TBC+12]. Intensity
[LVR+15]. Intensive [RHLA14, YLTL04].

Inter [LBM13, TC07]. Inter-cluster
[TC07]. Inter-Core [LB13]. Interaction
[FBHN04]. intercommunication [MP13].
interconnection [SMK10, SEP07].
interconnects [XCC+13]. interface
[ZSLX13]. interfecences [LCL+14].

Internal [HWJ+15]. Internet [AVG12].
interpreter [RWY13]. interprocedural
[SV05]. interval [SV05]. Intraprogram
[XMM04]. Introduction
[CT04, CT05, CT06, CT07, SD12].
intrusion [TBS06]. IOV [CDP+12]. IP
Isolation [LDC15]. Irregular [WYJL10].
ISA [CG14, SHC13, VE13]. ISAs [PS15].
Isolation [LDC15]. issue
[BB04, CDM13, GWS13, PI12, SD12]. iterative [CFH+12].
Java [HWM14, KWM+08, LBJ05, VED07, WHV+13, YLW08]. JavaScript [MGI15].
JIT [HWM14, JK13, NED+13]. job [EE12].
Joint [LGAZ07], jump [MG12]. just
[KHL+13], just-in-time [KHL+13].

kilo [CSVM04].
kilo-instruction [CSVM04].

L1 [HK14, LHZ+13].
L2 [AGVO05, CST+06, SLP08, SBC05].
L2-miss-driven [SLP08]. Languages
[DHD+14, NED+13]. large
[KWC09, RCV+12, SMK10]. large-scale
[RCV+12, SMK10]. Last [LBML13, WDX14, AGI+12, AIVL13, VSP+12, ZDC+12].
Last-Level [LBML13, WDX14, AGI+12, AIVL13, VSP+12, ZDC+12]. Latency
[HK14, KCA+13, MP13, SW13, WYJL10, YLTL04]. Lattice [CG15]. Lattice-Based
[CG15]. Layout [CYXF13]. Layout-oblivious [CYXF13]. leakage
[HLO7, MSK05]. Learning
[MCB+12, DJB13, LBO14, SPS12, TR13, WO13, WTF014]. legalization [AR13].
Level [CHE+14, HK14, LBM13, MGI15, PLT+15, RLBBN15, WDX14, AGI+12, AIVL13, BCVN10, EE09, GMW09, GPL+05, LCL+14, PCT12, VSP+12, ZDC+12].
Level-1 [HK14]. Leveling [JDZ+13]. levels
[RCV+12, SLA+07]. Leveraging
[GAM12, LMJ13a, SHLM14]. libraries
[BCM11]. Library [FDF+14].
Library-Based [FDF+14]. lifetime [XC06].
LIGERO [APG13]. Light
[CBD15, APG13]. lightweight
[BWG+12, DMG13, LNLK13]. limitation
[DZC+13]. limited [CZ07]. limits

[JOA+09b, MBKM12, MSK05]. line
[WDX14]. lines [AGVO05]. linked
[FLG12]. List [Ano13a, Ano15]. liveness
[BSZ13, DDU12]. LLC [FQRG13].
LLC-memory [FQRG13]. LLVM
[DAP+15]. LLVM-Based [DAP+15]. Local
[LRV+15, DHC+13]. locality
[AVL13, FER+13]. location [YLW08].
Lock [CWS13]. Lock-contention-aware
[CWS13]. Loop [LRV+15, BCVT13, NCC13, SHLM14, SL12, ZYL+10].
loop-dependent [ZYL+10]. loops
[JSL13, KLMP12, RTG+07]. Low
[CAMJ15, DDL+12, RKT15, SW13, YEA+14, AGI+12, BB04, CCZ13, GKP14, MA08, SLP04, ZVYN05]. Low-complexity
[DDL+12, SLP04]. Low-Cost
[YEA+14, AGI+12, MA08]. low-energy
[GKP14, ZVYN05]. Low-latency [SW13].
Low-Power [CAMJ15, BB04, CCZ13].
Lower [ESR+15]. lowering [SU+13]. LP
[GFD+14].

machine [DJB13, LBO14, SCEG08, SPS12, WO13, WTF014, WHY+13].
machine-learning-based [WTFO14].
Machines [BSSS14, JK13, RB13, VED07].
MAGIC [KKW+15]. main
[DSZ+13, WSC+13, ZDC+12].
Maintaining [YCCY11]. Making
[CRSP09, PLT+15, PI12]. Malicious
[KKW+15]. Managed [YXW12].
Management [GMGZP14, HYA+15, HMYZ15, AVG12, FQRG13, GSZ10, HV06, KCKG14, LGZ07, LFX09, LPZI12, RCG+10a, RB13, SW13, VS08, WWWL13, WSC+13, WDX14, WM11, ZYCZ10].
Managing [HS06, KBBK12, VS11, SSK11].
Many [FMY+15, LNLK13, OGK+12].
Many-Core [FMY+15, LNLK13, OGK+12].
Manycore [LAS+13, MKKE15, BTS10].
map [WYJL10]. Mapping
[DWWS13, MKKE15, WGO15, YMM+15, CCZ13, WYJL10, WTF014]. MapReduce
[CC13]. MAPS [RLBBN15]. Massively
[MCB+12, RLBBN15]. Matching
[HJW15, CW13, PLL10, TBS06, VW11].
matrix [CYXF13, SJV08]. maximize
[RCG+10a]. Maxine [WHV+13]. McPAT
[LAS+13]. Measuring [FMY+15].
mechanism
[GB06, HWX+13, KS11, RFD13, SBC05].
mechanisms
[HWH+11, LCL+14, LMMM08].
Mechanistic [BEE15, CHE+14]. media
[SLA+07]. meets [KHL+13]. Memories
[DG1+14, WDX15, YMM+15, CCZ13, DXMJ11, LCCL11]. Memory
[AJK+12, CG15, DHD+14, EE09, FMY+15, GHH15, GMGZP14, GHS12, JDZ+13, MYG15, RLBBN15, SMKH15, TKKMI15, AFD12, ATGN+13, CS10, CCZ13, DHC+13, DJX13, DZC+13, FQRG13, GPL+05, JSH09, JSM+04, KGK10, KCKG14, LAS+08, LGAZ07, LFX09, LCL+14, LHWB12, MA08, PLL10, PCT12, RLS13, SV05, SL09, TBC+12, TGAG+12, VDSP09, VED07, WKCS12, WWWL13, WSC+13, WLZ+10, YJTF13, YLTL04, YLW08, ZPC06, ZSLX13, ZDC+12]. memory-efficient [PLL10].
Memory-level [EE09]. MemTracker
[VDSP09]. merge [DDU12]. Merging
[TS05, SSU+13]. Message [ZM15].
Message-Passing [ZM15]. metafunctions
[LT13]. metering [LMJ+13b]. method
[CWCS13, SHC13]. Metrics [EMR14].
Microarchitectural
[FMY+15, DJB13, LB10].
microarchitecture
[ASK13, HS05, RPS06, SSS+04].
microarchitectures [ACGK04].
Microbenchmarking [FMY+15].
Microprocessor
[KCA+13, BE13, YCCY11].
microprocessors [BS07, RCG+10a].
migration [LMJ12, MSF+07]. MIMD
[FSYA09]. miniature [JEBJ08]. minimal
[XL07]. minimization [CH06, SSR13].
mapping [CDPD13]. Minos [CWC06].
MIPS [SHD15]. misaligned [LWH11].
misprediction [GW08]. miss [SLP08].
misses [CST+06, LS10, VHKP11, Zha08].
Mitigating [SYX+15, LCL+14]. mitigation
[DJL+12]. mitigations [CCD12]. Mixed
[XIC12]. mobile [AvRF07, TBC+12]. mode
[SW13]. Model [ESR+15, DC07, MG13].
Modeling
[BEE15, LAS+13, SSC+13, AF07, CA11, EE12, IMS+08, XMM04, SSS+04]. Models
[CHE+14, GHH15, LAS+08, XIC12].
modern [CCD12, JK13, KNKB12]. Modify
[RLS15]. modulo [KCP13]. Moldable
[MKKE15]. monitoring
[LMMM08, VDSP09, ZZQ+05].
monopolizable [DJL+12]. Most [PLT+15].
Movement [ESR+15]. MP [WLZ+13].
MP-Tomasulo [WLZ+13]. MPI
[HWX+13, MP13]. MRAM [WDX15].
MRAM-Based [WDX15]. MSHRs [CA11].
Multi [FMY+15, CDPD13, GWS13, LFC13, PMI12, RB13, RPE12, ZGC+12]. Multi-
[FMY+15]. multi-core [PMI12, ZGC+12].
multi-FPGA [CDPD13]. multi-GPU
[LFC13, RB13]. multi-issue [GWS13].
multi-server [RPE12]. Multibank [CG15].
multicharacter [CW13]. Multicore
[CC13, HMY15, LAS+13, CG14, CK11, CWCS13, DEE13, FBWS13, HWX+13, LMJ+13b, LCL+14, LHZI13, RCG+10a, VE13, WFKL10, ZCW10]. Multicores
[HK14, MSF+07]. multidimensional
[RTG+07]. Multilevel
[YMM+15, JK13, TKJ13]. multimedia
[SV05]. multiobjective [CPP08].
multiplatform [HLC10]. multiple
[GB06, HVJ06, RCV+12]. multiprocessor
[BBG13, GSZI10, LT13]. Multiprocessors
[LBMI13, APG13, GPL+05, LAS+08, LM05, LPZI12, LMMM08, SMK10].
Multiprogram [EMR14]. multithreaded
[DWDS13, GMW09, NTG13, PGB13, RCG+12, RCG+10a, XIC12].
multithreading [EE09, GWM07].

NAND [DGI14]. native [RPE12]. Near [HK14, KCA+13, KCKG14, RPE12].
Near-Optimal [KCA+13, KCKG14].
Near-Threshold [HK14]. nest [SLM12].

Network
[TDPM, ZM15, ASK13, LNLK13, LYYB07].
Network-on-Chips [ZM15]. Networks
[CBV15, GR15, BKA13, LWWH12, PRMH13, SMK10, SEP07].
networks-on-chip [LWWH12]. Neural
[GR15, TDP15, JMo09]. no [HL07]. NoC
[HWX+13]. NoC-based [HWX+13].

Non-taken [PS12], novel [CCZ13]. NUCA
[GFD+14, HK14, LWMG12]. NUCA-L1
[HK14]. NVM [WSC+13]. NVM-based
[WSC+13].

O [DCP+12, RHLA14]. Object
[YLW08, TDG13, VED07, WM10]. objects
[WWY+12]. oblivious [CYXF13].
Obstruction [WDXJ14]. ODE [HLR+13].

ODE-based [HLR+13]. off
[AVG12, AGV05]. offset [CZ07]. on-chip
[BKA13, CK11, EE11, LNLK13, SMK10, TDJ13, XCC+13]. On-the-fly
[WWY+12, VHVP11]. Online [BS007].
onto [WYJL10]. OpenCL [WGO15].
OpenMP [PC13]. OpenStream [PC13].

Operating [HK14]. opportunities
[GKG10, XM04]. Optimal
[CH06, CBD15, GK13, KCA+13, SWH09, ZGP15, KCKG14, XC06]. optimising
[LBO14]. Optimization [DAP+15, LVR+15, RMA14, CFH+12, CXW+12, CYXF13, DJX13, FT10, GHS12, HS06, HEL+09, HVJ06, KHW+05, KWW09, PJ13, SLM12, SRR13, SL09, VW11, ZWHM05, ZCS06].

optimization-phase [KHW+05].

optimizations [LCH+04, LHY+06].

optimized [GS12]. Optimizing
[RLBBN15, STLM12, TJKM15, WDX15, YWXW12, YRHL13, ZSLX13, YXK+12, WK09].

optimum [HP04]. Orchestrating
[MG13]. Order [BEE15, PS15, BB04, KVTD09, SIA12, YFTF13]. order/out
[BB04]. organization [AS13, GGFPGR12].
optimized [BTS10, CXW+12]. OS-
[CRSP09]. Out-of-Order [PS15, SIA12].

overcoming [DZC+13]. overflow
[CH06].

overhead [MP13]. overheads
[BCM11, SSS+13]. overlay
[SL12].

packet [LWWH12]. packing
[NB13, SPGE06]. page
[LM13]. Parallel
[DHD+14, HWW15, MCB+12, RLBBN15, WLZ+13, WGO15, CDIP13, JYJ+13, LM05, NCC13, STLM12, VJC+13, ZBH+13].

Parallelism [CG15, HWW+15, SDH+15, EE09, FLG12, PCT12, SLA+07, WFTO14].
Parallelization
[BCM11, KPP+15, DC07, LT13, PKC12, YRHL13]. Parallelogram
[ZGP15]. Parameter
[MGI15]. parametric
[SLM12]. parser
[ZBH+13]. parsing
[ZBH+13]. PARTANS
[LFC13]. partially
[GGFPGR12, JLER12]. partition
[WO13]. partitioned
[RPS06]. Partitioning
[CG15, FLG12, HAJJ12, LCL+14, ZDC+12].

Passing [ZM15]. PATCH
[RBM10]. path
[TS15]. paths
[PS12]. pattern
[CXW+12, PRMH13, VW11].

pattern-oriented
[CXW+12].

pattern-specific
[PRMH13]. patternized
[KCP13]. Patterns
[HWW15, HLR+13, SIB09]. PCantorSim
[JYJ+13]. penalties
[HL07]. penalty
[GW08]. adaptive
[RB10]. BPM
[LCL+14]. C
[NED+13]. channel-level
[LCL+14]. Cores
[KKW+15]. out-of-order
[BB04]. Runtime
[KPP+15]. software

Perfect [BRJ15]. Performance [BEE15, FDF+14, HMYZ15, RVOA08, TKM14, ZYCZ10, AFD12, ATGN+13, BSWLE13, BSH10, CK11, CRSP09, CDM13, FBWS13, GW08, HP04, HL07, KBR+13, KLMP12, KSK10, LMM05, PGB12, RWV13, SRLPV04, SD12, WKCS12, XT09, YCCY11, ZY05].

Performance-aware [ZYCZ10]. performance-driven [XT09].

Performance-Energy [HMYZ15].

placement [MA08, SSK11]. plane [ZGC+12]. PLDS [FLG12]. point [BWG+12, CS13]. pointer [SV05, YLTL04].

Power-Efficient [HAC13].

Power-performance [LM05]. Practical [KW05, BSHLE13, FT10, ZBH+13].

pre [YCCY11, XC06]. pre-wake [YCCY11].

predictor [AGV05, JSM+04, SL09]. Prefetched [SYX+15].

Prefetcher [SYX+15, LJJM12, SBC05].

Prefetcher-Caused [SYX+15].

Processing-in-Memory [MY15].

Processor [BEE15, HMYZ15, CS13, GW08, LGAZ07, LYY07, SJA12, SHC13, SSPL+13, WFK10].

Processors [CA15, SH15, YXW12, CRSP09, CCD12, CSVM04, DEE13, EE09, EE12, FBWS13, GMW09, GWS13, GKP14, HWX13, KLMP12, LMCV13, PL12, RGG+12, SRLPV04, SLO8, XT09, YZL+10].

Profile [CS13, SS04, SSS13, WFF014]. Profile-based [SS04]. profile-driven [WFF014].

Profile-guided [CS13, SS+13]. profiling [FBHN04, MAN+08, MMKS06, ZCW10].

profit [ZCS06]. profit-driven [ZCS06].

program [DS12, FJ13].

Programmable [MCB+12, AS13, Zha08].

programming [NCC13].

Programs [KPP+15, WLZ+13, WGO15, PC13, PGB13, WO13, YLW08].

promotion [LJ15].

proportionality [AVG12].

proprietary [EBJ08].

protect [BV12].

protecting [CWC06].

protection [CCZ13, MA08].

protocol [SSPL+13, SS+13]. Provisioning [BSS14].

pseudo-associativity [YJTF13]. Purpose [CAMJ15], push [YLTL04].

Sabrewing [BWG+12]. Salvaging [JDZ+13]. sampled [HS05]. sampling [JYJ+13]. scalability [CWCS13, RVOA08].

Sequential
[AR13]. special [CDM13, SHC13, SD12].
specialized [GASA+13]. species [NCC13].
specific [PRMH13]. Spectral [SBC05].
Speculation [MI15, GPL+05, SHLM14].
Speculative [VS08, DC07, GPL+05].
LCH+04, LHY+06, LZ12, LH13, NTG13,
VS11, XIC12, XC06, YRHBL13, ZSCM08.
speed [GB06, RPE12]. spill [XT09].
Spilling [CB15]. split [RFD13, TBS06].
splitting [WW+12]. SpMxV [KGK10].
sporadic [ZGC+12]. spurious [BCVT13].
SR [DCP+12]. SR-IOV [DCP+12]. SSA
[AvRF07, BZS13, CB15]. SSA-based
[AvRF07]. SSD [HWJ+15, KHS+14].
Stabilization [SHD15]. stack
[CH06, VS08, SCEG08]. stacking [ZSLX13].
state [GPL+05]. Static
[AFD12, SHY14, JSM+04]. statically
NED+13. stencil [LFC13]. store
[HLW12, SLO9]. strategies [WYCC11].
strategy [YCCY11, ZHD+04]. Stream
[XCC+13, YXWM12, MG13, YZL+10].
Streaming [MKKE15, PC13, WO13].
Strength [GAM12]. Strength-Based
[GM12]. string [CW13, PLL10, TBS06].
string-matching [CW13, PLL10, TBS06].
structure [WW+12]. structures [FLG12].
STT [LZL+13, RTK15, WDX14].
STT-RAM [LZL+13, WDX14]. studies
[LB10]. study [MSF+07]. Studying
[CB15]. subranked [CCZ13]. Subsetting
[AKJ+12]. subwords [SJY08]. Superscalar
[BEE15, SRLP04]. Superscalars
[HYR+15]. supplied [YZL+10]. Support
[ME15, CWC06, DMG13, LMLJ+13b,
SLA+07, ZSCM08, ZZQ+05]. supporting
[SHC13]. switch
[ASK13, BRSGJ12, CPB+07, GWM07, LS10].
switch-to-switch [BRSGJ12]. switching
[DMG13]. symbiosis [EE12]. SYmetric
[PS12]. synchronization
[CCPG13, ZSCM08]. SYRANT [PS12].
System [AKJ+12, PLT+15, TKKM15,
CDPD13, HCC+14, KBR+13, LWH11,
SSPL, TBC, WSC, Systematic [EMR14]. Systems [EMR14]. Systems
FMY, MMT, MKKE, WGO, CPP08, CWCS13, DXML1, GK13, GHS12,
HS06, HWH, KNBK, KGK, LMJ, LCL, LHJ, LFC, LHWB, MP, YHBL, ZYN05,
ZPC06, ZCW10, ZDC.

TACO [Ano15, Ano13a, Ano13b],
TACOMA [AVG12], taken [PS12, PS12],
taming [ZBH, target [LB05]. Task
[DHD, SDH, CG14, LMJ, VTN, ZYCZ10]. Task-Parallel
[DHD]. Tasks [MKKE, ZGC, technique [XT09]. Techniques
[ATGN, HAC, YMM, MMdS06, MG12, RCG, technologies [WLZ].
technology [NED, RDY].
Temperature [SSS, MSF, temperature-aware [SSS, temperature-constrained [MSF].
Template [HJW15], Temporal [TKJ13].
Temporal-based [TKJ13], tenue [RBM10], test [SV05], Tetris [XT09].
Tetris-XL [XT09], their [ZG05]. Thermal
[LMM08, CK11, WA08, ZYCZ10]. Thread
[MG15, PGB12, RCG, BTO, CCPG13, DEE13, GPL, LIHZ13,
MSF]. Thread-Level [MG15, GPL].
Thread-management [RCG].
threads [GB06, LZ12, ZSCM08].
Threshold [HK14], Timeout
[EMR14, KCA, BKA, BTO, OGK, TBC]. timeout-oriented
[BTO], throughput/watt [BTO].
Tile [MY13], Tiled [KPP, CC13].
Tiled-MapReduce [CC13]. Tiling
[CC13, ZGP, BCVT13]. Time
[BC13, Nas13, CCD12, G13, KHL, LMJ, LG12, LMC13, RCG, ZGC].
Time- [BC13, Nas13]. time-critical
[RCG, time-series [LG12].
timekeeping [WM11]. timestamp [RLS].
timestamp-based [RLS]. Timing
[LAS, TL, ZGC, TL-plane-based
[ZGC]. TLB [LMJ, LBM13]. TLBs
[LMJ, TLP, SNL, Token [RBM],
token-counting [RBM]. tolerance
[RCV]. tolerant [LCC]. Tolerating
[KWCL, YLLI]. Tomasulo [WLZ].
Tomography [MMA, Topological
[CVB15, KKM, Topology [DHD].
Topology-Aware [DHD].
TornadoNoC [LNLK]. Trace
[HWM, CWS06, HCC, SWH].
trace-based [HWM], traces
[TG07, ZG05]. tracing [HCC].
Tracking [MMA, KHL, VTN].
trade [AVG], trade-off [AVG].
Tradeoffs [GPL, traffic
[FQRG13, LYY], Tranquilizer [PGB].
transaction [SSU]. Transactional
[GMGZP, RLS13, ATGN, RLS13,
SSU, TGAG, WKS12, YJTF].
Transactions [LDC13, SSU], transfers
[STL12], transformation [JSL].
transformations
[BCVN10, RCG, SLM12], transition
[CW13], transitioning [HWM].
transitions [SW]. Translation
[TKK, HWH, LH11, LMM].
Translator [SHY, HLC, transators
[GS, transpose [GS12],
transpose-free [GS], Traversal
[RMA], tree [CDPD13, PRMH].
trees [BRHJ12], TRIPS [SNL],
Tuning [JA14, MGI, WKS],
turn [AGV], turn-off [AGV], type
[AR].
Understanding [LS11, MMT, VE13].
Unified [TG07, YYX], Uniform
[HK14]. units
[GA, HVJ, YCC], unloading
[ZK05], update [LZY].
update-conscious [LZY], usage [VS].
uses [GB06], Using
[CCL, ESR, FDF, GR, HJW15,
REFERENCES

RLBBN15, SYX+15, SPS12, SSH+13, WO13, ASK13, BZS13, CAMJ15, DDU12, DWDS13, DXMJ11, DJB13, EE11, HVJ06, JSH09, JSM+04, KKM+13, MG13, RCV+12, SHLM14, SWH09, SSR13, YCCY11, ZHD04, CST06]. Utilization [YWXW12, XCC+13]. Utilizing [TBC+12, KCP13].

x86 [CCD12]. XL [XT09].

References

Aleta:2004:RCC

Andrade:2007:PA

Andrade:2012:SA

Diego Andrade, Basilio B. Fraguela, and Ramón Doallo. Static analysis of the worst-case memory performance for irregular codes with indirections. ACM Transactions
Albericio:2012:ALC

Abella:2005:ISP

Albericio:2013:ERL

Ahn:2012:ISE

Anonymous:2013:LDR

Anonymous:2013:TR

Anonymous:2015:LDR

Abad:2013:LLE

Asher:2013:HTL

Akkary:2004:ARE

Abbasi:2012:TSW
REFERENCES

1544-3566 (print), 1544-3973 (electronic).

Amme:2007:SBM

Bai:2004:LPO

Belviranli:2013:DSS

Becchi:2013:DTS

Bhattacharjee:2011:PLC

Buyukkurt:2010:IHL

Baghdadi:2013:ILT
REFERENCES

REFERENCES

1544-3566 (print), 1544-3973 (electronic).

[Chen:2011:HAM] Xi E. Chen and Tor M. Aamodt. Hybrid analytical modeling of pending cache hits,

[Chen:2013:CME] Long Chen, Yanan Cao, and Zhao Zhang. E3CC: a memory error protection scheme with novel address mapping for subranked and low-power memories. ACM Transactions on Architecture and Code Optimization,
REFERENCES

Coelho:2013:ACI

Cher:2011:EEC

Catania:2008:RCM

Chhabra:2009:MSP

Chen:2010:HSF

Chen:2013:PGF

Doris Chen and Deshanand Singh. Profile-guided floating-to fixed-point conversion for hybrid FPGA-processor applications. *ACM Transactions
REFERENCES

[Drebes:2014:TAD] Andi Drebes, Karine Heydemann, Nathalie Drach, Antoniu Pop, and Albert Co-
hen. Topology-aware and
dependence-aware scheduling
and memory allocation for
task-parallel languages. *ACM
Transactions on Architecture
and Code Optimization*, 11(3):
30:1–30:??, October 2014. CO-
DEN ????. ISSN 1544-3566
(print), 1544-3973 (electronic).

[DJB13] Christophe Dubach, Timo-
thy M. Jones, and Edwin V.
Bonilla. Dynamic microarchi-
tectural adaptation using ma-
chine learning. *ACM Transac-
tions on Architecture and Code
December 2013. CODEN ????.
ISSN 1544-3566 (print), 1544-
3973 (electronic).

[Domnitser:2012:NMC]
Leonid Domnitser, Aamer
Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Pono-
marev. Non-monopolizable
caches: Low-complexity miti-
gation of cache side channel at-
tacks. *ACM Transactions on
Architecture and Code Opti-
mization*, 8(4):35:1–35:??,
January 2012. CODEN ????.
ISSN 1544-3566 (print), 1544-
3973 (electronic).

[Dong:2013:CA]
Xiangyu Dong, Norman P.
Jouppi, and Yuan Xie. A
circuit-architecture co-optimiza-
tion framework for exploring non-
volatile memory hierarchies.
*ACM Transactions on Archi-
tecture and Code Optimi-
zation*, 10(4):23:1–23:??,
December 2013. CODEN ????.
ISSN 1544-3566 (print), 1544-3973
(electronic).

[Dolan:2013:CSL]
Stephen Dolan, Servesh Mu-
ralidharan, and David Gregg.
Compiler support for lightweigh
t context switching. *ACM Trans-
cations on Architecture and
Code Optimization*, 9(4):36:1–
36:??, January 2013. CODEN
????. ISSN 1544-3566 (print),
1544-3973 (electronic).

[Demme:2012:AGC]
John Demme and Simha Sethu-
madhavan. Approximate graph
clustering for program char-
acterization. *ACM Transac-
tions on Architecture and Code
January 2012. CODEN ????.
ISSN 1544-3566 (print), 1544-
3973 (electronic).

[Dey:2013:RMD]
Tanima Dey, Wei Wang,
Jack W. Davidson, and Mary Lou
Soffa. ReSense: Mapping dy-
namic workloads of collocated
multithreaded applications us-
ing resource sensitivity. *ACM
Transactions on Architecture
and Code Optimization*, 10
CODEN ????. ISSN 1544-3566
(print), 1544-3973 (electronic).
REFERENCES

REFERENCES

Fung:2009:DWF

Fursin:2010:COP

Feng:2011:DAD

Ghandour:2012:LSB

Gonzalez-Alvarez:2013:AAD

Ganuso:2006:FEP

Gracia:2014:RLN
Darío Suárez Gracia, Alexandra Ferrerón, Luis Montesano Del Campo, Teresa Mon-

García-Guirado:2012:DDA

Gaster:2015:HRA

Guha:2012:MOD

Gerards:2013:ODD

Goel:2014:SPR

Gonzalez-Mesa:2014:ETM

REFERENCES

Golander:2009:CAR

Gabor:2007:FES

Gavin:2013:RIF

Han:2013:PEP

Hasenplaugh:2012:GBC

Huang:2014:HHH

Hohenauer:2009:SOF

Huda:2015:UTM

Hijaz:2014:NLN

Hwang:2007:SSA

Hwang:2010:DCR

Hagiescu:2013:GCG

Holey:2015:PEC

Hartstein:2004:OPD

REFERENCES

Libo Huang, Zhiying Wang, Nong Xiao, Yongwen Wang, and Qiang Dou. Adaptive communication mechanism for accelerating MPI functions in NoC-based multicore processors. *ACM Transactions on Ar-

REFERENCES

[Jeong:2013:EET] Yeonghun Jeong, Seongseok Seo, and Jongeun Lee. Evaluator-executor transformation for efficient pipelining of loops with

Juang:2004:IBP

Jiang:2013:PAP

Komuravelli:2015:RCH

Khan:2013:SBA

Kritikakou:2013:NOM

Kritikakou:2014:SNO

REFERENCES

Kim:2013:FMS

Kourtis:2010:ECO

Kerschbaumer:2013:IFT

Kaitoua:2014:HED

Kulkarni:2005:FES

Kawahito:2013:IRF

Karimi:2015:MMA

Kim:2012:IPN

Kumar:2014:EPG

Kicherer:2012:SPA

Kong:2015:CRF

Kleanthous:2011:CMD

Koh:2009:TPV

Cheng-Kok Koh, Weng-Fai Wong, Yiran Chen, and Hai Li. Tolerating process variations in large, set-associative caches: The buddy cache. ACM Transactions on Architecture and
REFERENCES

Kotzmann:2008:DJH

Kulkarni:2009:PEO

Leverich:2008:CEM

Li:2010:AIC

Li:2005:ABT
REFERENCES

CODEN ?? ?? ISSN 1544-3566 (print), 1544-3973 (electronic).

Yangchun Luo, Wei-Chung Hsu, and Antonia Zhai. The design and implementation of heterogeneous multicore systems for energy-efficient speculative thread execution. ACM Transactions on Architecture and Code Optimization, 10(4):26:1–26:??, December 2013. CODEN ?? ?? ISSN 1544-3566 (print), 1544-3973 (electronic).

Javier Lira, Timothy M. Jones, Carlos Molina, and Antonio González. The migration prefetcher: Anticipating data

REFERENCES

[Mysore:2008:FIP] Shashidhar Mysore, Banit Agrawal, Rodolfo Neuber,

Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg. The effects of parameter tuning

Melot:2015:FCS

Marathe:2006:ACC

Mazloom:2012:DTI

Mattheakis:2013:SRM

Michaud:2007:STM

Meng:2005:ELL

Morad:2015:GSP

Nasre:2013:TSE

Nandivada:2013:IBA

Nugteren:2013:ASC

Nuzman:2013:JTC

Nagpurkar:2006:ERP

REFERENCES

[PI12] Madhura Purnaprajna and Paolo Ienne. Making wide-

[PS12] Nathanael Premillieu and Andre Seznec. SYRANT: SYmmetric Resource Allocation on

Premillieu:2015:EOE

Ramashekar:2013:ADA

Raghashekar:2010:TTP

Rakvic:2010:TMT

Reddi:2010:EVE

Reis:2005:SCF

REFERENCES

REFERENCES

Ren:2014:POE

Ryckbosch:2012:VSM

Rochecouste:2006:CCE

Rong:2007:SDS

Rodriguez:2015:VSR

Rangan:2008:PSD

Rohou:2013:VTI
Erven Rohou, Kevin Williams, and David Yuste. Vectorization technology to improve interpreter performance. *ACM Transactions on Architecture

Strozek:2009:EAE

Sharma:2005:SPE

Shi:2008:VMS

Stenstrom:2012:ISI

Streit:2015:GTP

Soteriou:2007:SDP

She:2013:EEM

Dongrui She, Yifan He, and Henk Corporaal. An energy-efficient method of supporting flexible special instructions in an embedded processor with compact ISA. ACM Transactions on Architecture and Code Optimization, 10(3):15:1–15:??, September 2013. CODEN ???
Suh:2015:DMR

Samadi:2014:LGU

Shen:2014:RSB

Sharafeddine:2012:DOE

Subramaniam:2009:DOS

Sasanka:2007:AES

REFERENCES

Santana:2004:LCF

Sankaranarayanan:2004:PBA

Sanchez:2013:MIP

Subramaniam:2013:UFC

Samih:2011:EPP

Strydis:2013:SAP

Shobaki:2013:PIS

Skadron:2004:TAM

Stipic:2013:PGT

Saidi:2012:OED

Salami:2005:DMI

Shifer:2013:LLA

Shobaki:2009:OTS

REFERENCES

Titos-Gil:2012:HTM

Tian:2013:TBM

Tong:2015:OMT

Taw:2014:EEF

Tartara:2013:CLC

Tarjan:2005:MPG

Venkataramani:2009:MAM

VanCraeynest:2013:UFD

Venstermans:2007:JOH

Venkataramani:2011:DDS

Verdoolaege:2013:PPC

Vandierendonck:2008:SRA

Vandierendonck:2011:MSR

Valero:2012:CRI

Alejandro Valero, Julio Sahuquillo, Salvador Petit, Pedro López, and José Duato. Combining recency of information with selective random and a victim

Vandierendonck:2013:ADT

Vespa:2011:DFA

Winter:2008:ATN

Wang:2014:PSR

Wang:2015:BOM

Wang:2014:EAC

Woo:2010:CVI

Dong Hyuk Woo, Joshua B. Fryman, Allan D. Knies, and Hsien-Hsin S. Lee. Chameleon: Virtualizing idle acceleration cores of a heterogeneous multicore processor for caching and prefetching. *ACM Transactions on
REFERENCES

[WM10] Christian Wimmer and Hanspeter Mösenböck. Automatic feedback-directed object fus-

REFERENCES

Yiapanis:2013:OSR

Yang:2012:CGC

Yang:2012:UOC

Yan:2008:EVR
Zhao:2010:PPP

Zhou:2012:WAP

Zhang:2005:WET

Zhang:2004:RIC

Zhang:2008:RCM

Zhang:2012:TPB

Zhang:2005:DIE

Zmily:2006:BAI

Zimmer:2015:NSM

Zhao:2013:OGE

Zhang:2005:WHC

Zhao:2005:IWA
Wankang Zhao, David Whalley, Christopher Healy, and
