A Complete Bibliography of *ACM Transactions on Architecture and Code Optimization*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

12 January 2015
Version 1.48

Title word cross-reference

3 [ZSLX13]. 3 [CCZ13]. Z [SLM12].

-polytopes [SLM12].

/node [LCL+14].

2014 [Ano15].

6 [KWM+08]. 64-bit [BWLR06, VED07].

754 [LDG+13].

Abstraction [RLBBN15, RCV+12].

Accelerated [HS05]. Accelerating

[GÁSA+13, JYJ+13, RMA14, HWX+13].

Acceleration [HAC13, WFKL10].

Accelerator [MCB+12, LHWB12, VDSP09].

accelerator-based [LHWB12].

Accelerators

[KCA+13, KMG14, BKA13, CI13]. Access

[CG15, GFD+14, HK14, FTLG11, HLR+13, HCC+14, JSH09, KCKG14, LWH11].

accounting [DEE13, LMCV13]. accurate

[LMJ+13b]. ACM [Ano13a, Ano15]. Across

[FDF+14]. activations [JLCR13]. Active

[KHS+14]. Adapt [DGI+14, PGB13].

adaptation [DJB13, LGAZ07, SS04].

Adapting [LBJS05]. Adaptive

[CG14, FQRG13, GFD+14, HWX+13, WM11, AGI+12, MAN+08, SW13, ZK05].

address [CCZ13, VS08, ZPC06].
Addressing [WA08, CWCS13], affine [NCC13, SLM12]. against [BVIB12]. Aging [DG1+14]. agreement [GMW09]. Aho [CW13, PLL10]. Algorithm [BC13, DG1+14, BRSJG12, CW13, CDPD13, HAJ+12, PLL10, XCO6, ZGC+12].

Analysis [GAM12, MMdS06, VTN13, ARS04, AFD12, FER+13, JOA+09b, Nas13, SV05, SMK10, ZCW10]. analytic [XMM04]. Analytical [BEE15, AFD07, CA11].

approximation [LTG12]. arbitration [XCC+13]. Architecting [CPB+07].

Architectural [DCP+12, ME15, IMS+08, SB09, ZQ+05, CWCO6]. Architecture [HK14, SHY14, ARS04, BVIB12, BWG+12, CPB+07, DJX13, GKP14, GSZI10, JYJ+13, JA+14, LNLK13, PM12, STLM12, SNL+04, SRLPV04, SSPL+13, ZK06].

architecture-independent [BVIB12].

Architectures [LAS+13, RMA14, BBG13, BWLR06, BTO10, CG14, CK11, CDM13, KCP13, LKL+13, OGK+12, RCV+12, SSK11, SD12, SB09, TC07, TDG13, VE13, YXK+12].

asymmetric [CG14, CCPG13, PCT12, SW13]. attacks [BVIB12, CDD12, DJL+12]. automata [VW11]. automatable [AFD07].

Automated [BSSS14]. Automatic [JLER12, LBO14, LT13, NC15, RB13, WLZ+13, WGO15, WM10, SPS12, WKCS12].

Autonomously [DG1+14]. autotuning [KB+13, LFC13]. Aware [DG1+14, DHD+14, WLZ+13, CG14, CWCS13, EEO9, GGFRG12, NB13, SSS+04, SEP07, WYJL10, WSC+13, WDX14, ZYCY10, ZDC+12, ZK06]. awareness [LKL+13].

Based [CG15, FDF+14, GAM12, NC15, WGO15, WDX15, AvRF07, BCVT13, CPP08, CW13, GK13, HLR+12, HAJ+12, HWM14, HWX+13, JYJ+13, KBR+13, LBO14, LTG12, LCL+14, LHWB12, RLS13, SS04, TKJ13, WSC+13, WTXF04, ZHD+04, ZGC+12].

Bit-split [TBS06]. bitwidth [NB13].

bitwidth-aware [NB13]. Block [GFD+14, ZK06]. Block-aware [ZK06].

Blocks [HWJ+15, SYX+15]. Bones [NC15].

BPM/BPM [LCL+14]. branch
[CZ07, HWH+11, Jim09, JSM+04, LB05, MG12, TS05]. branch-predictor [JSM+04].
branch-target [LB05]. bridging [HCC+14]. buddy [KWCL09]. buffer
[LB05, RB13]. Buffering
[YMM+15, GPL+05]. build [SSH+13]. Building
[WDX15].

C [NC15, NED+13]. C-to-CUDA [NC15]. C/C [NED+13]. C1C [LZL+13]. Cache
[GFD+14, HK14, KAC15, APG13, AGVO05, AGI+12, AFD07, BSWLE13, CA11, CWS06,
DJL+12, FTGL11, GGFPGR12, GSZI10, HAJ+12, KS11, KWCL09, LCC11, LZL+13,
MMdS06, RDFD13, SS94, SBC05, SSH+13, TKJ13, VSP+12, WSC+13, WDXJ14,
ZHD+04, ZYNY05, Zha08, NTG13].
cache-coherence [MMdS06].
cache-coherent [APG13].
cache-content-duplication [KS11].
Caches [WDX14, AIVL13, DJL+12, HS06,
HL07, KS11, KWCL09, LJJG12, MSK05,
SSK11, SCC+13, VSP+12, WDXJ14,
WLZ+10, WM11, ZDC+12].
Caching
[SYX+15, DZC+13, JOA+09a, WFKL10].
call [MG12].
capability [DGI+14].
capacity [SSK11, WM11].
CART
[CPD13, CPD13].
case
[AFD12, RPS06, WK09, LB10].
CATCH
[KS11].
Causal
[SYX+15].
CAVA
[CC+13].
CC
[CCZ+13]. Cell
[YMM+15, STL12].
cells
[JSM+04].
centers
[AVG12].
CGRA
[HAC13].
chains
[SSH+13].
Chameleon
[WFKL10].
Change
[JDZ+13, YMM+15, ZDC+12].
channel
[BVIB12, DJL+12].
chaotic
[LTG12].
Characterization
[CVB15, DS12, FER+13, WV11].
Characterizing
[BCM11].
checking
[BWLR06, MG13].
Checkpoint
[GW09, ARS04, CST+06].
checkpoint-assisted
[CST+06].
checkpointing
[DXMJ11].
Chip
[LB13, AFD13, BKA13, CK11, EE11,
GSZI10, IWWH12, LT13, LNLK13, LAS+08,
LM05, LPM12, LMMM08, SKM10, TDG13,
XCC+13]. choices
[VE13].
circuit
[DJX13].
circuit-architecture
[DJX13].
Classification
[MCB+12, CDPD13, LMJ13a, NCC13].
client
[KWM+08].
Clock
[CCL+13].
cluster
[TC07].
clustered
[AGCG04, SW13].
clustering
[DS12, JLCR13, SB09].
Clusters
[KHS+14].
CMP
[CPB+07, LMVC13, SSK11, WM11].
CMPs
[LMJ13a].
co
[DJX13, YLM08].
co-location
[YLM08].
co-optimization
[DJX13].
coalescing
[SSU+13].
coalescing-lowering
[SSU+13].
coarse
[KCP13].
coarse-grained
[KCP13].
Code
[CZ07, AvRF07, CMD13, GNB08, HLR+13,
HS06, JLER12, KBR06, KMG14, LCC11, LZL
04, ZVYN05, Zha08, NTG13].
code-positioning
[ZWHM05].
codes
[AFD07, AFD12].
Codesign
[KCA+13].
Codesigned
[KMG14].
Coherence
[KAC15, MMdS06, SSH+13, VHKP11].
coherent
[APG13].
collaborative
[FT10].
collapse
[CWCS13].
Collective
[FT10].
collector
[WK09].
colocated
[DWDS13].
Coloring
[YWYW12, LFX09].
combinatorial
[SR13].
combined
[BW+12].
Combining
[VSP+12].
Commodity
[WDX15].
common
[WK09].
communication
[HXX+13, SSPL+13, TC07].
communications
[ACG04].
compact
[SHC13].
compaction
[WK09].
Comparability
[YXW12].
Comparative
[LAS+08].
Comparators
[YEI+14].
comparison
[FBWS13].
compilation
[CH13, JK13, KHL+13, LBO14, LZY09,
PC13].
compiled
[NED+13].
Compiler
[CDD12, DMG13, HYAR+15, KPP+15,
LMF09, MG12, NC15, ZSCM08, CYXF13,
DC07, HWM14, HLC10, JOA+09a].
detecting [KS11]. Detection
[YEI+14, LKL+13, TBS06, TDG13, VHKP11, WFT004]. Deterministic
[CCL+13, VW11]. Devectorization
[KMG14]. Device [RLBBN15].
Device-Level [RLBBN15]. Devices
[TKM14, NMK06, ZK05]. DFA [BC13].
diagnosis [BSO07]. die-stacking [ZSLX13].
different [YXK+12]. dimension [RTG+07].
Directed [HYAR+15, LFX09, NED+13, SEP07, WM10]. directives
[DVFS [EE11, GK13]. Distance
dispatching [LZ12]. Disjoint
[SJA12]. disparate [WLZ+10].
dispatching [LZ12]. dissemination
[LZYZ09]. Distance
[GGFPRG12, FER+13, FTG11].
Distance-aware [GGFPRG12]. Distilling
[JEBJ08]. Distinguished [Ano15, Ano13a].
distribute [RFD13]. Distributed
[KHS+14, ZCP06]. Divergence [SMKH15].
diversification [CDM13]. diversity
[KNBK12]. DJ [DDU12]. DJ-graphs
[DDU12]. DLP [SNL+04]. Doesn’t
[LKV12]. domain [GÁSA+13]. DPM
[GK13]. Dragonfly [CVB15]. DRAM
[HCC+14, JLCR13, LCL+14, TKM14].
Driven [ME15, CDM13, FTGL11, SLPO8,
WTFO14, XT09, ZCS06]. Dropping
[GFD+14]. duplication [KS11, LKL+13].
DVFS [EE11, GK13]. Dynamic
[DBJ13, FER+13, FTGL11, FSYA09,
GAM12, KPP+15, KMG14, LKL+13,
LPZI12, SV05, BBG13, DWDS13, GHS12,
HSO6, HWHH+11, HVJ06, JSH09, LWHH11,
LJMG12, LCL+14, MG12, NED+13,
WSC+13, XMM04, ZZQ+05]. Dynamically
[LZ12, PGB12, KS11].
eager [JLCR13]. early [JOA+09b, SLPO8].
Easy [TDG13]. Editorial [CT08]. Effective
[GMGZP14, HVJ06, KHHH+05, LWHH11,
RPS06, SBOC05]. Effects [MGI15, CK11].
Efficiency [AJK+12, CAMJ15, BSWLE13,
CWS06, RCG+10a, ZSLX13]. Efficient
[BC13, CC13, DDU12, GNB08, HAC13,
IMS+08, KMG14, LWHH11, LDC15, MCB+12,
MKKE15, NMK06, PS15, TDG15,
YMM+15, ZPC06, ZZQ+05, APG13, ARS04,
CW13, CWCS13, DCP+12, GW08, JSL13,
JOA+09a, KHHH+05, LZYZ09, LMJ13a,
LHZ13, NS13, PLL10, RFD13, SPGE06,
SHC13, SB09, TDG13, XCC+13, ZGC+12,
FSYA09, SLA+07]. Efficiently [PCT12].
EFG [TKM14]. Element [LVR+15].
elementary [LDG+13]. Eliminating
[RCG+10b]. elimination [JLCR13, LCL+14].
embedded [CPP08, CDM13, GHS12, MP13,
SHC13, SD12, XT09]. embedding
[KMK+13]. emergencies [RCG+10b].
emerging [DXMJ11, XCC+13]. empirical
[AvRF07]. Emulation [TKM15].
Emulators [TKM15]. Encoding [TDG15].
Endurance [WDXJ14]. Endurance-aware
[WDXJ14]. Energy
[AJK+12, GFD+14, JOA+09a, MCB+12,
MKKE15, RTK15, SB09, AVG12, BSWLE13,
CWS06, CWCS13, FBWS13, GWS13,
GKP14, LTG12, LGEO17, LZYZ09,
LMJ+13b, LHZ13, SPGE06, SHC13, TDG13,
ZHD+04, ZZYMN05, ZGC+12, ZSLX13].
Energy- [SB09]. Energy-Efficient
[MKKE15, JOA+09a, CWCS13, LZYZ09,
LHZ13, SPGE06, SHC13, TDG13, ZGC+12].
enforcement [GW07]. Engine
[RMA14, WLZ+13, CW13]. Engines
[MGI15, TBS06]. Enhance [GAM12].
Enhanced [TKM14]. enumeration
[SWH09]. Environment [MK14].
environments [RG+12, WWL13]. era
[LNLK13, PCT12]. Error
[DGI+14, YEI+14, CCZ13, LKL+13].
ecology [JME15]. estimation [LTG12].
Evaluating [CWS06, HWH+11, SSK11].
Evaluation
[BC13, CHE+14, AvRF07, KWT09,
LCC11, LAS+08, RGG+12, ZK05].
Evaluator [JSL13]. Evaluator-executor
[JSL13]. event [GW07]. exascale
exception [HWM14].
Execution [GMGZP14, HAC13, ME15, PS15, WLZ+13, GB06, LZ12, LH1Z12, SJA12, VTN13, XIC12, ZG05], executor [JSL13].

[DXMJ11].

FPGA [HWM14].

Flow-sensitive [Nas13].

flow-sensitive [Nas13].

fly [HVP11, WWY+12].

gjit [HVP11, WWY+12].

formation [FSYA09].

Formulating [MAN+08].

FPGA [HWM14].

FPGA-processor [CS13].

FPGAs [FBWS13, GN80, PI12].

fractal [HJY+13].

fractal-based [HJY+13].

frame [HJY+13].

frame-based [HJY+13].

Framework [KPP+15, LAS+13, AS13, BCN10, CS10, DJX13, HEL+09, KKM+13, LCC11, LCH+04, LFC13, LHW1B12, PGB13, YXK+12].

free [BRSGJ12, GS12].

friendly [CRSP09].

FTL [HJY+13].

Full [MNT+12, TKKM15].

Fully [HJY+13, BRSGJ12].

functional [GASA+13, YCCY11].

functions [HJY+13, LDG+13].

fundamental [VE13].

fusing [WM10].

Future [BM06, DXMJ11, LM1J13a].

gap [HCC+14].

Gating [KMG14, WYCC11, YCCY11].

General [CAMJ15, LHY+06].

General-Purpose [CAMJ15].

Generalized [DFD+14].

Generalizing [JIM09].

generate [KBR+13].

generation [GNB08, HLR+13, JLR12, LBO14, LHY+06, VJC+13].

Global [CCL+13, BZS13].

good [PJ13].

GP [MYG15].

GP-gpu [MBK12, YXK+12].

GPU [HLR+13, LFC13, RB13, TBC+12, WGO15, ZSLX13].

GPU-Based [WGO15].

GPUs [FBWS13, NC15, SHLM14, WYCC11].

gradient [HAJ+12].

gradient-based [HAJ+12].

Grained [BSB14, YEE+14, EE11, KCP13, LT13, WM11].

Granularity [TKM14].

Graph [YXW12, DS12, LFX09].

graphics [FSYA09, ZSLX13].

Graphs [BPJ15, BZS13, DDU12, MG13].

gshare [TS05].

Guarded [PS15].

guided [CS13, LZL+13, RCG+10b, SSU+13].

Hadoop [KHS+14].

halting [ZVY05].

Hamming [CVB15].

handling [HWM14, HVB+11, LWH11].

hard [HBM11, HWM14].
[KHL+13]. just-in-time [KHL+13].

kilo [CSVM04]. kilo-instruction [CSVM04].

L1 [HK14, LZL+13]. L2 [AGVO05, CST+06, SLP08, SBC05]. L2-miss-driven [SLP08]. Languages [DHK+14, NED+13]. large [KWCL09, RCV+12, SMK10]. large-scale [RCV+12, SMK10]. Last [LBM13, WDX14, AGI+12, AIVL13, VSP+12, ZDC+12].

Level [CHE+14, HK14, LBM13, MGI15, PLT+15, RLBBN15, WDX14, AGI+12, AIVL13, BCVN10, EE09, GMW09, GPL+05, LCL+14, PCT12, VSP+12, ZDC+12].

Library-Based [FDF+14]. lifetime [XC06].

LLC-memory [FQRG13]. Local [LVR+15, DHC+13]. locality [AIVL13, FER+13]. location [YLW08].

Lock [CWCS13]. Lock-contention-aware [CWCS13]. Loop [LVR+15, BCVT13, NCC13, SHLM14, SLM12, YZL+10].

loop-dependent [YZL+10]. loops [JSL13, KLM+12, RTG+07]. Low [CAMJ15, DJL+12, RTK15, SW13, YEI+14, AGI+12, BB04, CCZ13, GKP14, MA08, SRLPV04, ZVYN05]. Low-complexity [DJL+12, SRLPV04]. Low-Cost [YEI+14, AGI+12, MA08]. low-energy [GKP14, ZVYN05]. Low-latency [SW13].

Low-Power [CAMJ15, BB04, CCZ13]. Lower [ESR+15]. lowering [SSU+13]. LP [GDF+14].

machine [DJB13, LBO14, SCEG08, SPS12, WO13, WTF014, WHV+13].

machine-learning-based [WTF014]. Machines [BSS14, JK13, RB13, VED07]. main [DZC+13, WSC+13, ZDC+12].

Maintaining [YCCY11]. Making [CRSP09, PLT+15, PI12]. Managed [YWXXW12]. Management [GMPZP14, HYAR+15, AVG12, FQRG13, GSZ10, HVJ06, KCKG14, LGAZ07, LFX09, LPZI12, RCG+10a, RB13, SW13, VS08, WWWL13, WSC+13, WDXJ14, WM11, ZYCZ10].

Managing [HS06, KBK12, VS11, SSK11].

Many [FMY+15, LNLK13, OKG+12]. Many-Core [FMY+15, LNLK13, OKG+12].

Manycore [LAS+13, MKKE15, BTS10].

map [WYJL10].

Matching [HJW15, CW13, PLL10, TBS06, WV11].

mechanism [GB06, HWX+13, KS11, RFD13, SBC05].

mechanisms [WHV+11, LCL+14, LMM08].

Mechanistic [BEE15, CH+14]. media [SLA+07]. meets [KHL+13]. Memories [DGI+14, WDX15, YMM+15, CCZ13, WSC+13].
Memory [AJK+12, CG15, DHD+14, EE09, FMY+15, GMGZP14, GHS12, JDZ+13, MYG15, RLBBN15, SMKH15, TKKM15, AFD12, ATGN+13, CS10, CCZ13, DHC+13, DJX13, DZC+13, FQRG13, GPL+05, JSH09, JSM+04, KGK10, KCKG14, LAS+08, LGAZ07, LFX09, LCL+14, LHWB12, MA08, PLL10, PCT12, RLS13, SY05, SL09, TBC+12, TGAG+12, VDSP09, VED07, WKC12, WWWL13, WSC+13, WLZ+10, YJTF13, YLTL04, YLW08, ZPC06, ZSLX13, ZDC+12]. memory-efficient [PLL10].

metering [LMJ+13b]. method [CWCS13, SHC13]. Metrics [EMR14].

Microarchitectural [FMY+15, DJB13, LB10].

microarchitecture [ASK13, HS05, RPS06, SS+04]. microarchitectures [ACGK04].

Microbenchmarking [FMY+15].

Microprocessor [KCA+13, BE13, YCCY11].

microprocessors [BSO07, RCG+10a].

migration [LMJG12, MSF+07]. MIMD [FSYA09]. miniature [JEJB08]. minimal [XL07]. minimization [CH06, SSR13].

mining [CDPD13]. Minos [CWC06].

misaligned [LWH11]. misprediction [GW08]. miss [SLP08]. misses [CST+06, LS10, VHKP11, Zha08].

Model [ESR+15, DC07, MG13].

Modeling [BEE15, LAS+13, SSC+13, AFD07, CA11, EE12, IMS+08, XMM04, SSS+04]. Models [CHE+14, LAS+08, XIC12]. modern [CCD12, JK13, KBK12]. Modify [RLS15].

modulo [KP13]. Moldable [MKKE15].

monitoring [LMM08, VDSP09, ZZQ+05].

monopolizable [DJL+12]. Most [PLT+15].

Movement [ESR+15]. MP [WLZ+13].

MP-Tomasulo [WLZ+13]. MPI [HWX+13, MP13].

MRAM [WDX15].

MRAM-Based [WDX15]. MSHRs [CA11].

Multi [FMY+15, CDPD13, GWS13, LFC13, PM12, RB13, RPE12, ZGC+12]. Multi-core [FMY+15]. multi-core [PM12, ZGC+12].

multi-server [RPE12]. Multibank [CG15].

multicharacter [CW13]. Multicore [CC13, LAS+13, CG14, CK11, CWC13, DEE13, FBWS13, HWX+13, LMJ+13b, LCL+14, LHZ13, RCG+10a, VE13, WFKL10, ZCW10].

Multicores [HK14, MSF+07]. multidimensional [RTG+07]. Multilevel [YMM+15, JK13, TKJ13]. multimedia [SV05]. multiobjective [CPP08].

multiplatform [HLC10]. multiple [GB06, HVJ06, RCV+12]. multiprocessor [BBG13, GSZ10, LT13].

Multiprocessors [LBM13, APG13, GPL+05, LAS+08, LM05, LPZL12, LMMM08, SMK10].

Multiprogram [EMR14]. multithreaded [DWDS13, GMW09, NTG13, PGB13, RGG+12, RCG+10a, XIC12].

multithreading [EE09, GWM07].

NAND [DGI+14]. native [RPE12]. Near [HK14, KCA+13, KCKG14, RPE12].

Near-Optimal [KCA+13, KCKG14].

Near-Threshold [HK14]. nest [SLM12].

nested [KLMP12]. nests [NCC13].

Network [TDP15, ASK13, LNLK13, LYYB07].

Networks [CVB15, BKA13, LWWH12, PRMH13, SMK10, SEP07].

networks-on-chip [LWWH12]. Neural [TDP15, Jim09]. no [HL07]. NoC [HWX+13]. NoC-based [HWX+13]. NoCs [WYJL10]. Non
Non-monopolizable [DJL+12]. Non-SSA [BZS13]. Non-Uniform [HK14].
non-volatile [WDXJ14]. nonuniformity [WA08]. nonvolatile [DXMJ11, DJX13].

O [DCP+12, RHLA14]. Object [YLW08, TDG13, VED07, WM10]. objects [WWY+12]. oblivious [CYXF13].
Obstruction [WDXJ14]. ODE [HLR+13].
OpenMP [PC13]. OpenStream [PC13]. Operating [HK14]. opportunities [KGK10, XMM04]. Optimal [CH06, CBD15, GK13, KCA+13, SWH09, ZGP15, KCKG14, XC06]. optimising [LBO14]. Optimization [LVR+15, RMA14, CHF+12, CXW+12, CYXF13, DJX13, FT10, GHS12, HS06, HEL+09, HVJ06, KHW+05, KWT09, PJ13, SLM12, SSR13, SL09, VW11, ZWHM05, ZCS06].
optimization-phase [KHW+05]. optimizations [LCH+04, LHY+06].
optimized [GS12]. Optimizing [RLBBN15, STLM12, TKKM15, WDX15, YXW12, YRHB13, ZSLX13, YXK+12, WK09].
optimun [HP04]. Orchestrating [MG13].
Order [BEE15, PS15, BB04, KWT09, SJA12, YYTF13]. order/out [BB04].
overhead [MP13]. overheads [BCM11, SSU+13]. overlay [JLER12].

Parallelism [CG15, HWJ+15, EE09, FLG12, PCT12. SLS+17, WTFO14].
PATCH [RBM10]. path [TS05]. paths [PS12]. pattern [CXW+12, PRMH13, VW11].
pattern-oriented [CXW+12].
watt [TBC+12]. write [JLCR13]. pending [CA11]. per-task [LMJ+13b]. Per-thread [DEE13, BRS10]. perceptron [TS05].
Perfect [BRJM15]. Performance [BEE15, FDF+14, ROA08, TKM14, ZYCZ10, AFD12, ATGN+13, BSWLE13, BSTS10, CK11, CRSP09, CDMS13, FBWS13, GW08, HP04, HL07, KBR+13, KLP12, KGK10, LM05, PGB12, RWY13, SRLPV04, SD12, WKCS12, XT09, YCCY11, ZVYN05].
permanent [SSC+13]. Perspectives [PLT+15]. Phase [JDZ+13, YMM+15, KHW+05, KWT09, ZDC+12].
Reconfigurable
[KHS+14, AS13, KLMP12, KCP13, ZSLX13].
Reconstructability [BRJM15]. Recovery
[LHY+06, RHLA14]. reduce [YZ08].
reduced [VED07]. Reducing [CPP08,
GWS13, JLCR13, SLPO8, ZHD+04, Zha08,
BCM11, MP13, PG12, ZSCM08, HL07].
reduction [MK05, XT09]. redundant
[BJR12]. references [YZL+10]. referent
[WK09]. Refresh [TMK14]. Register
[YWXW12, BZS13, CH06, GKP14, JOA+09a,
JOA+09b, JA14, SJV08, SLPO8, SSR13].
registers [SCG08, YZ08]. regression
[CDP13]. Regular [BC13, JSH09].
regulators [EE11]. relaxed [YJTF13].
relaxed-order [YJTF13]. release
[GW09, JOA+09b, SLPO8]. reliable
[CPB+07]. remapping [ZPC06]. remote
[NMK06]. removal [BCVT13]. Removing
[ACGK04]. renaming [JA14]. ReNIC
[DCP12]. reordering [CZ07].
replacement
[FTLG11, TKJ13, WM11, ZDC+12]. Replay
[CCL+13]. replication [ACGK04, DCP12].
representation [KCG14]. representative
[BE13]. requester [ATGN+13].
requester-wins [ATGN+13]. ReSense
[DWDS13]. Resource [PS12, ARS04,
DWS13, GW08, NMM06, VS11, ZK05].
resource-constrained [NMM06, ZK05].
resource-efficient [GW08]. resources
[RGG+12]. Retargetable
[SHY14, HEL+09, HLC10]. return [VS08].
reuse [AIU13, FER+13, YZL+10, YLW08].
Reviewers [Ano13b, Ano15, Ano13a].
revisited [MYB13, VS08]. ReVisiting
[GFD+14, KAC15, WWWL13]. RF
[TBC+12]. RF-I [TBC+12]. ROCCC
[BCVT10]. Roofline [ESR+15]. router
[APG13, ASK13]. routes [KCP13].
Routing [CVB15, BRSJG12, PRMH13].
row [JLCR13]. Runtime
[LTG12, YRHB13].

Sabrewing [BWG+12]. Salvaging
[JDZ+13]. sampled [HS05]. sampling
[YYJ+13]. scalability [CWCS13, ROA08].
Scalable [ASK13, CWCS13, KCG14,
LNLK13, LMK13a, SSH+13, VW11]. scale
[RCV+12, SMK10]. Scaling
[MKKE15, XMM04]. scheduler
[CWCS13, KCP13]. Scheduling
[DHD+14, MKKE15, BBG13, CG14, EE12,
MBKM12, SPGE06, SW09, SSI13,
TBC+12, XLO7, ZGC+12, ZYCZ10].
scheme [BBG13, CCZ13]. schemes
[KCG14]. SCIN [NTG13]. SCIN-cache
[NTG13]. Scratchpad
[RTK15, CS10, LFX09]. script [KBR+13].
script-based [KBR+13]. Seamlessly
[HNK12]. searches [KHW+05]. secure
[CRSP09, SSPL+13]. Selecting [BE13].
Selection [ZGP15, MBY13]. Selective
[KMG14, LWHH12, MA08, VSP+12]. self
[BBG13]. self-scheduling [BBG13].
semantic [HCC+14]. sensitive [Nas13].
sensitivity [DWDS13]. sequences
[KHW+05, PJ13]. Sequential
[WLZ+13, LIZ12]. series [LTG12]. Server
[AV12, LTG12, RPE12]. Service
[GMW09, GSI10]. set
[AR13, HL07, KWC09, ZK06].
set-associative [HL07, KWC09]. sets
[DDU12]. setups [RPE12]. sFtree
[BRSJG12]. Shared
[GK14, LB13, AGI+12, AIVL13,
GGFPR12, GSI10, HLR+13, KMG14,
LHW12, RGG+12, WM11, ZPC06].
shared-data [HLR+13]. shared-memory
[ZPC06]. Shared-port [GK14]. sharing
[SSK11]. shotgun [FBH04]. showdown
[SCG08]. shuffler [BVIB12]. side
[BVIB12, DJL+12]. side-channel [BVIB12].
signatures [OAB12]. Significantly [MP13].
silicon [PCT12]. SIMD
[AR13, FSYA09, GS12, HEL+09, KMG14,
MYG15, RMA14, SMK15]. Simulating
[RPE12]. simulation
simultaneous
[EE09, RCG+10a]. Simultaneously
[LAS+13]. Single
[RTG+07, CG14, GB06, JK13, VE13, WK09]. Single-dimension
[RTG+07]. single-ISA
[CG14, VE13], single-referent
[WK09]. size
[MBY13]. Skeleton
[Skeleton-Based [NC15]. smart
[AGVO05]. SMT
[EE12, LMCV13, PLT+15, SL08, VS11, WA08]. Snapshot
[LD15]. Snug
[HL07]. SoCs
[FDF+14]. soft
[KL+13]. Software
[ASA+15]. specialized
[LCH+13]. Speculative
[VS08, DC07, GPL+05, LCH+14, LHC+12, LHZ13, NTG13, VS11, XIC12, XC06, YHRBL13, ZS07]. speed
[GB06, RPE12]. spill
[XTO09]. Spilling
[CBD15]. split
[RFD13, TBS06]. splitting
[WWY+12]. SpMxV
[KGK10]. sporadic
[ZGC+12]. spurious
[BCVT13]. SR
[DPC+12]. SR-IOV
[DPC+12]. SSA
[AvRF07, BZS13, CBD15]. SSA-based
[AvRF07]. SSD
[HWJ+15, KHS+14]. stack
[CH06, VS08, SCEG08]. stacking
[ZSLX13]. state
[GPL+05]. Static
[AFD12, SHY14, JSM+04]. statically
[NED+13]. stencil
[LFC13]. store
[LHWB12, SL09]. strategies
[WYCC11]. strategy
[YCC11, ZHD+04]. Stream
[XCC+13, YWWX12, MG13, YZL+10]. Streaming
[MKE15, PC13, WO13]. Strength
[GAM12]. Strength-Based
[GAM12]. string
[CW13, PLL10, TBS06]. string-matching
[CW13, PLL10, TBS06]. structure
[WWY+12]. structures
[FLG12]. STT
[LS+13, RTK15, WDX14]. STT-RAM
[LS+13, WDX14]. studies
[LB01]. study
[LSF+07]. Studying
[CBD15]. subranked
[CCZ13]. Subsetting
[AJK+12]. subwords
[SV08]. Superscalar
[EEE15, SLR01]. Superscalars
[HYAR+15]. supplied
[YZL+10]. Support
[ME15, CW06, DMG13, LMJ+13b, SLA+07, ZS08, ZZQ+05]. supporting
[SCH13]. switch
[AS11, BRSJG12, CPB+07, GWM07, LS10]. switch-to-switch
[BRSJG12]. switching
[DMG13]. symbiosis
[EE12]. SYmmetric
[PS12]. synchronization
[CCG13, ZS07]. SYRANT
[PS12]. System
[AJK+12, PLT+15, TKKM15, CDPD13, HCC+14, KBR+13, LH11, SSPL+13, TBC+12, WSC+13]. System-
[PLT+15]. Systematic
[EMR14]. Systems
[FM+15, MMT+12, MKKE15, WGO15, CPP08, CWCS13, DXMJ11, GKS12, HS06, HWH+11, KNK12, KGG10, LMJ+13b, LCL+14, LH11, LFC13, LHWB12, MP13, YRHB13, ZVY05, ZPC06, ZYW10, ZDC+12].

TACO
[Ano15, Ano13a, Ano13b]. TACOMA
[AVG12]. taken
[PS12, PS12]. taming
[ZBH+13]. target
[LBJ05]. Task
[DHD+14, CG14, LMJ+13b, VTN13, ZYCZ10]. Task-Parallel
[DHD+14]. Tasks
[MKKE15, ZGC+12]. technique
[XT09]. Techniques
[ATGN+13, HAC13, YMM+15, MM06, MG12, RCG+10a]. technologies
[WLZ+10]. technology
[NED+13, RWY13]. Temperature
[SSS+04, MSF+07]. Temperature-aware
[SSS+04]. temperature-constrained
[MSF+07]. Template
[HJW15]. Temporal
[TKJ13].
Temporal-based [TKJ13]. tenure
[TBM10]. test [SV05]. Tetris [XT09].
Tetris-XL [XT09]. their [ZG05]. Thermal
[LMM08, CK11, WA08, ZYCZ10]. Thread
[MGI15, PGB12, RCG+10a, B_RS10,
CCPG13, DEE13, GPL+05, LHZ13,
MSF+07]. Thread-Level [MGI15, GPL+05].
Thread-management [RCG+10a].
threads [GB06, LZ12, ZSCM08].
Threshold [HK14]. Throughput
[EMR14, KCA+13, BKA13, BTS10,
OGK+12, TBC+12]. throughput-oriented
[BTS10]. throughput/watt [TBC+12].
Tile [MBY13]. Tiled [KPP+15, CC13].
Tiled-MapReduce [CC13]. Tiling
[CC13, ZGP15, BCVT13]. Time
[BC13, Nas13, CCD12, GK13, KHL+13,
LTG12, LMVC13, RCG+12, ZGC+12].
Time- [BC13, Nas13]. time-critical
[RCG+12]. time-series [LTG12].
timekeeping [WM11], timestamp [RLS13].
timestamp-based [RLS13]. Timing
[LAS+13]. TL [ZGC+12]. TL-plane-based
[ZGC+12]. TLB [LMJ13a, LBM13]. TLBs
[LBM13]. TLP [SNL+04]. Token [RBM10].
token-counting [RBM10]. tolerance
[RCV+05]. tolerant [LCC11]. Tolerating
[KWCL09, YLTL04]. Tomasulo [WLZ+13].
Tomography [MMT+12]. Topological
[CVB15, KKM+13]. Topology [DHD+14].
Topology-Aware [DHD+14].
TornadoNoC [LNLK13]. Trace
[HWM14, CW506, HCC+14, SWH09].
trace-based [HWM14]. traces
[TG07, ZG05]. tracing [HCC+14].
Tracking [MMT+12, KHL+13, VTN13].
trade [AVG12]. trade-off [AVG12].
Tradeoffs [GPL+05]. traffic
[FQRG13, LYYB07]. Tranquilizer [PG12].
transaction [SSU+13]. Transactional
[GMGZP14, RLS15, ATGN+13, RLS13,
SSU+13, TGAG+12, WKCS12, YJTF13].
Transactions [LDC15, SSU+13]. transfers
[STLM12]. transformation [JSL13].
transformations
[BCVN10, RCG+10b, SLM12]. transition
[CW13]. transitioning [HWM14].
transitions [SW13]. Translation
[TKKM15, HW+11, LWH11, LMJ13a].
Translator [SHY14, HLC10]. translators
[GS12]. transpose [GS12].
transpose-free [GS12]. Traversal
[RMA14]. tree [CDPD13, PRMH13]. trees
[BRSG12]. TRIPS [SNL+04]. Tuning
[JA14, MGI15, WKCS12]. turn [AGVO05].
turn-off [AGVO05]. type [AR13].
Understanding [LS10, MMT+12, VE13].
Unified [TG07, YXK+12]. Uniform
[HK14]. units
[GASA+13, HVJ06, YCCY11]. unloading
[ZK05]. update [LZYZ09].
update-conscious [LZYZ09]. usage [VS11].
uses [GB06]. Using
[CCL+13, ESR+15, DFD+14, HJW15,
RLBBN15, SYX+15, PS12, SSH+13, W013,
ASK13, BZS13, CAMJ15, DDU12, DWDS13,
DXMJ11, DKB13, EE11, HVJ06, JSH09,
JSM+04, KK+13, MG13, RCV+12,
SMLM14, SWH09, SSR13, YCCY11,
ZHD+04, CST+06]. Utilization
[YWXW12, XCC+13]. Utilizing
[TBC+12, KCP13].
Value [GAM12, CST+06]. variability
[LYYB07]. variable [NB13]. variation
[CK11, PGB12, XL07]. variations
[KWCL09]. Vectorization [RWY13, SPS12].
vectors [SLL09]. Versatility [SVJ08].
versioning [NTG13]. versus [SCEG08]. via
[IMS+08, LFX09, RCG+10b, ZYCZ10].
viable [PJ12]. victim [VSP+12]. Video
[CamJ15]. Virtual [BSSS14, HWJ+15,
SCEG08, JA14, VED07, WHV+13, YZ08].
virtualization [DCP+12]. virtually
[WWWL13]. Virtualizing [WFKL10].
Visually [RFC13]. Visualizing
[MMT+12]. VLIW
REFERENCES

[CPP08, GKP14, LKL+13, LDG+13, PI12, TC07, XL07, XT09]. VLIW-based
[CPP08]. Volatile [RTK15, WDXJ14].
\[AFD07\]
\[AFLD+13\]. Voltagess
[HK14]. vs [SV05]. VSIm [RPE12].
vulnerability [LKL+13].

WADE [WSC+13]. wakeup [YCCY11].
warmup [HS05]. warp [FSYA09]. way
[ZVY05]. way-halting [ZVY05]. WC
[ZWHM05]. WCET [ZWHM05]. Wear
[JDZ+13]. Wear-Leveling [JDZ+13].
weighting [VS11]. Wide [ZG05]. wide
[PI12]. wide-issue [PI12]. With
[SMKH15, RPS06]. width-partitioned
[RPS06]. window [VS11]. wins [ATGN13].
\[AFD12\]
\[AFD12\]. workload
[AVG12, CG14]. workload-aware [CG14].
workloads
[DWDS13, JEB08, LTG12, WA08]. Works
[LKV12]. worst [AFD12]. worst-case
[AFD12]. Write [RLS15, DZC+13].
Writeback [WSC+13, ZDC+12].
Writeback-aware [WSC+13, ZDC+12].
WSNs [LZY09].

x86 [CCD12]. XL [XT09].

References

Aleta:2004:RCC

Andrade:2007:PAA

Andrade:2012:SAW

Albericio:2012:ALC

Abella:2005:ISP

Jaume Abella, Antonio González, Xavier Vera, and Michael F. P.

Albericio:2013:ERL

Ahn:2012:ISE

Anonymous:2013:TR

Anonymous:2015:LDR

Abad:2013:LLE

Asher:2013:HTL

REFERENCES

Belviranli:2013:DSS

Becchi:2013:DTS

Bhattacharjee:2011:PLC

Baghdadi:2010:IHL

REFERENCES

Bakhoda:2013:DCN

Bahmann:2015:PRC

Bogdanski:2012:SFC

Bower:2007:ODH

Bartolini:2014:AFG

Bardizbanyan:2013:DPD

Boyer:2010:FBP
REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Bayrak:2012:AI

Bruinjes:2012:SLA

Bentley:2006:IAB

Barik:2013:DNS

Chen:2011:HAM

Chi:2015:LPH

Colombet:2015:SOS

REFERENCES

Chen:2013:TME

Chen:2013:CME

Coppens:2013:FDB

Chrysos:2013:HCP

Grigorios Chrysos, Panagiotis Dagritzikos, Ioannis Papaefstathiou, and Apostolos Dallas. HC-CART: a parallel system implementation of data mining classification and regression tree (CART) algorithm on a multi-FPGA system. ACM
REFERENCES

Chen-Yong Cher and Eren Kursun. Exploring the effects of on-chip thermal variation on high-performance multicore architectures. ACM Transactions on Architecture and Code Optimization, 8(1):2:1–2:??, April 2011. CODEN ????, ISSN
REFERENCES

1544-3566 (print), 1544-3973 (electronic).

Constantinides:2007:ARC

Catania:2008:RCM

Chhabra:2009:MSP

Chen:2010:HSF

Chen:2013:PGF

Ceze:2006:CUC

Cristal:2004:TKI

REFERENCES

CODEN ????. ISSN 1544-3566 (print), 1544-3973 (electronic).

REFERENCES

Das:2012:ELC

DuBois:2013:PTC

Carlo:2014:FAA

Diouf:2013:DLM

Dreibes:2014:TAD

Dubach:2013:DMA

Domnitser:2012:NMC

REFERENCES

REFERENCES

REFERENCES

[Feng:2011:DAD] Min Feng, Chen Tian, Changhui Lin, and Rajiv Gupta. Dy-

Ghandour:2012:LSB

Gonzalez-Alvarez:2013:AAD

Ganusov:2006:FEP

Gracia:2014:RLN

Garcia-Guirado:2012:DDA

Guha:2012:MOD

REFERENCES

[Huang:2013:PEP] Yongbing Huang, Licheng Chen, Zehan Cui, Yuan Ruan, Yungang Bao, Mingyu Chen,

Hartstein:2004:OPD
A. Hartstein and Thomas R. Puzak. The optimum pipeline depth considering both power and performance. *ACM Trans-

Haskins:2005:A
John W. Haskins, Jr. and Kevin Skadron. Accelerated warmup for sampled microar-

Hazelwood:2006:MBC
Kim Hazelwood and Michael D. Smith. Managing bounded code caches in dynamic binary optimization systems. *ACM Trans-
actions on Architecture and Code Optimization*, 3(3):

Hu:2006:EMM
Shiwen Hu, Madhavi Valluri, and Lizy Kurian John. Effective management of multiple configurable units using dynamic optimization. *ACM Trans-
actions on Architecture and Code Optimization*, 3(4):

Hiser:2011:EIB
Jason D. Hiser, Daniel W. Williams, Wei Hu, Jack W. Davidson, Jason Mars, and Bruce R. Childers. Evaluating indirect branch handling mechanisms in software dynamic translation systems. *ACM Trans-
actions on Architecture and Code Optimization*, 8(2):

He:2015:IHF
Dan He, Fang Wang, Hong Jiang, Dan Feng, Jing Ning Liu, Wei Tong, and Zheng Zhang. Improving hybrid FTL by fully exploiting internal SSD parallelism with virtual blocks. *ACM Transactions on Archi-

Haubl:2014:TTE
Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. Trace transitioning and exception handling in a trace-based JIT compiler for Java. *ACM Trans-
6:1–6:??, February 2014. CO-
Huang:2013:ACM

Haj-Yihia:2015:CDP

Ipek:2008:EAD

Isailovic:2004:DCQ

Jothi:2014:TCF

Jiang:2013:HAC

Joshi:2008:DEP

Ajay Joshi, Lieven Eeckhout, Robert H. Bell, Jr., and Lizy K.

Jimenez:2009:GNB

Jantz:2013:ESM

Jeon:2013:RDR

Jang:2012:ACO

Jones:2009:EER

Jones:2009:ELE

Jeon:2009:AAP

Jinseong Jeon, Keoncheol Shin, and Hwansoo Han. Abstract-

Jeong:2013:EET

Juang:2004:IBP

Jiang:2013:PAP

Komuravelli:2015:RCH

Khan:2013:SBA

Kritikakou:2013:NOM

[Kim:2013:FMS]

[KCP13]

[KGK10]

[KHL+13]

[KHS+14]

Kawahito:2013:IRF

Kim:2012:IPN

Kumar:2014:EPG

Kicherer:2012:SPA

Kong:2015:CRF

Kleanthous:2011:CMD

Koh:2009:TPV

KWCL09 Cheng-Kok Koh, Weng-Fai Wong, Yiran Chen, and Hai Li. Tolerating process variations in large, set-associative caches: The buddy cache. *ACM Trans-

REFERENCES

[

Lustig:2013:TIC

[Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. TLB improvements for chip multiprocessors: Inter-core cooperative prefetchers and shared last-level TLBs. ACM Transactions on Architecture and Code Optimization, 10(1):2:1–2:??, April 2013. CODEN ???: ISSN 1544-3566 (print), 1544-3973 (electronic).]

Leather:2014:AFG

Lee:2011:DDE

Lin:2004:CFS

Litz:2015:ECA

Lei:2013:VCI

REFERENCES

[LFC13] Lutz:2013:PAF

[LFX09] Li:2009:CDS

[LGAZ07] Li:2009:CDS

[LHBW12] Lyons:2012:ASS

[LHY+06] Lin:2006:RCG

Yangchun Luo, Wei-Chung Hsu, and Antonia Zhai. The design and implementation of heterogeneous multicore systems for energy-efficient speculative thread execution. ACM Transactions on Architecture and Code Optimization, 10 (4):26:1–26:??, December 2013. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

[LHZ13] Luo:2013:DIH

Javier Lira, Timothy M. Jones, Carlos Molina, and Antonio González. The migration prefetcher: Anticipating data

[LM08] Jieyi Long, Seda Ogrenci Memik, Gokhan Memik, and

Lee:2013:TLS

Li:2012:DQM

Liu:2010:UBI

Lee:2013:APF

Lewis:2012:REC

Luporini:2015:CLO

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>Digital Object Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>LWH11</td>
<td>Jianjun Li, Chenggang Wu, and Wei-Chung Hsu</td>
<td>Efficient and effective misaligned data access handling in a dynamic binary translation system.</td>
<td>ACM Transactions on Architecture and Code Optimization</td>
<td>8(2)</td>
<td>7:1-7:??</td>
<td>2011</td>
<td>CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).</td>
</tr>
<tr>
<td>LYB07</td>
<td>Yan Luo, Jia Yu, Jun Yang, and Laxmi N. Bhuyan</td>
<td>Conserving network processor power consumption by exploiting traffic variability.</td>
<td>ACM Transactions on Architecture and Code Optimization</td>
<td>4(1)</td>
<td>??</td>
<td>2007</td>
<td>CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).</td>
</tr>
<tr>
<td>LZL+13</td>
<td>Yong Li, Yaojun Zhang, Hai Li, Yiran Chen, and Alex K. Jones</td>
<td>C1C: a configurable, compiler-guided STT-RAM L1 cache.</td>
<td>ACM Transactions on Architecture and Code Optimization</td>
<td>10(4)</td>
<td>52:1-52:??</td>
<td>2013</td>
<td>CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).</td>
</tr>
<tr>
<td>MAN+08</td>
<td>Shashidhar Mysore, Banit Agrawal, Rodolfo Neuber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Malits:2012:ELG

Mehta:2013:TSS

Majumdar:2012:MPE

Matheou:2015:ASD

Mccandless:2012:CTI

Malik:2013:OSG

Martinsen:2015:EPT

Jan Kasper Martinsen, Håkan Grahn, and Anders Isberg. The effects of parameter tuning

Melot:2015:FCS

Marathe:2006:ACC

Mattheakis:2013:SRM

Meng:2005:ELL

REFERENCES

[PI12] Madhura Purnaprajna and Paolo Ienne. Making wide-

[PS12] Nathanael Premillieu and Andre Seznec. SYRANT: SYmmetric Resource Allocation on

Premillieu:2015:EOE

Ramashekar:2013:ADA

Raghavan:2010:TTP

Rakvic:2010:TMT

Reddi:2010:EVE

Reis:2005:SCF

Rico:2012:SLS

Rolan:2013:VSC

Radojkovic:2012:EIS

Ramachandran:2014:HFR

Rubin:2015:MOM

Ruan:2013:BTB

Ruan:2015:TRM

Ren:2014:POE

Ryckbosch:2012:VSM

Rochecouste:2006:CCE

Rong:2007:SDS

Rodriguez:2015:VSR

Rangan:2008:PSD

Rohou:2013:VTI
Erven Rohou, Kevin Williams, and David Yuste. Vectorization technology to improve interpreter performance. ACM Transactions on Architecture
REFERENCES

Strozek:2009:EAE

Sharma:2005:SPE

Shi:2008:VMS

Stenstrom:2012:ISI

Soteriou:2007:SDP

She:2013:EEM

Samadi:2014:LGU

1544-3566 (print), 1544-3973 (electronic).

Shen:2014:RSB

[SHY14] Bor-Yeh Shen, Wei-Chung Hsu, and Wuu Yang. A retargetable static binary translator for the ARM architecture.

Sharafeddine:2012:DOE

Shahbahrami:2008:VES

Subramaniam:2009:DOS

Sasanka:2007:AES

Seghir:2012:IAT

Sharkey:2008:RRP

REFERENCES

ISSN 1544-3566 (print), 1544-3973 (electronic).

Sanchez:2010:ACI

Schaub:2015:ISW

Sankaralingam:2004:TPA

Sankaranarayanan:2004:PBA

Shark:2006:IPT

Stock:2012:UML

Santana:2004:LCF

REFERENCES

Sanchez:2013:MIP

Subramaniam:2013:UFC

Samih:2011:EPP

Strydis:2013:SAP

Shobaki:2013:PIS

Skadron:2004:TAM

DEN 1544-3566 (print), 1544-3973 (electronic).

Yingying Tian, Samira M. Khan, and Daniel A. Jiménez.

[Tong:2015:OMT]

[Tawa:2014:EEF]

[Tartara:2013:CLC]

[Tarjan:2005:MPG]

[Venkataramani:2009:MAM]

[VanCraeynest:2013:UFD]

Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. Java object header

Vespa:2011:DF

Winter:2008:ATN

Wang:2014:EA

Woo:2010:CVI

Wang:2015:APM

Christian Wimmer, Michael Haupt, Michael L. Van De

REFERENCES

Gulay Yalcin, Oguz Ergin, Emrah Islek, Osman Sabri Unsal, and Adrian Cristal. Exploiting

REFERENCES

REFERENCES

Zhang:2005:WET

[ZG05]

Zhang:2012:TPB

[ZGC+12]

Zhang:2008:RCM

[Zha08]

Zhang:2004:RIC

[ZHD+04]

Zhang:2005:DIE

[ZGP15]

Zhang:2006:EAR

[ZK06]

Zmily:2006:BAI

[ZPC06]

Zhang:2005:OPS

[ZK05]

Zhang:2004:RIC

[ZHD+04]

