
AWKLEX(1) AWKLEX(1)

NAME
awklex − lexically analyze awk program files

SYNOPSIS
awklex −f awk-program-file >outfile

DESCRIPTION
awklex lexically analyzes anawk(1) program file, and produces onstdouta token stream, one line per
token. The output stream can then be further filtered by other programs, such as the one embedded in
awkpretty (1).

The companion program,awkunlex(1), turns its input lexical token stream back into anawk(1) program.

Typical uses of these tools look like this:
awklex file(s) | cmds
cmds | awklex -f - | cmds
awklex file(s) | cmds | awkunlex >new-awk-file
cmds | awklex -f - | cmds | awkunlex >new-awk-file

OPTIONS
Although awklex accepts all of the command-line options recognized byawk(1), the only relevant option
is:

−f awk-program-file Specify the name of the file containing theawk(1) program.

Multiple −f options can be used, if required; their files are then treated as if logi-
cally concatenated in the order that they were specified.

The filename can be a hyphen, −, meaning that input should be taken fromstdin,
allowingawklex to be used in the middle of a command pipeline.

LEXICAL ANALYSIS
The output stream produced byawklex has lines of the form

line nnn "filename"
arbitrary comment text
<token-number><tab>STRING<tab>"<token-value>"
<token-number><tab><token-type-name><tab><token-value>

Each output line is either a line number directive identifying the source of the original tokens, or a com-
ment, or else contains a single complete token, identified by an integer number for use by a computer pro-
gram, a token type name for human readers (and programs), and a token value.

Errors detected during the lexical and grammatical analyses produce messages onstderr, but unless a catas-
trophic error has occurred, processing will normally continue until all input has been processed, and it will
not be evident from the token stream that errors have occurred. Therefore, in order to permit subsequent
applications to detect such errors, and take suitable recovery action, a special error comment directive

ERROR
is produced immediately following the line for the token at which the error was first reported.

If the type name is STRING, the valueincludesthe surrounding quotes. Special characters in the token
value string are represented with ANSI/ISO Standard C character and octal escape sequences, so all charac-
ters other than NUL are representable, and multi-line values can be represented in a single line. Tab char-
acters will not appear literally: they will always be represented by the escape sequence\t .

It is possible for a non-STRING value to contain literal tab characters, so programs that process theawklex
output stream must be prepared to handle that.

The special case of a newline (NL) token has an empty value string, rather than a literal newline character.

Except for token types NL and STRING, all other token values are represented literally; they arenot con-
verted to use Standard C escape sequences, and cannot contain newline characters. They extend from
immediately after the second tab character on the line, up to, but not including, the following newline char-
acter.

Version 1.00 29 March 1999 1

AWKLEX(1) AWKLEX(1)

Except forgawk(1), mostawk(1) implementations do not properly handle NUL characters, and thus,awk-
lex does not either. This is a consequence of their implementation in the C programming language using
NUL-terminated C character strings to holdawk(1) strings. Te xt files, by definition, do not contain NUL
characters, so this restriction is seldom of any consequence.

Here are the token numbers and token type names that can appear in the output, ordered first by increasing
token number:

258 PROGRAM 281 EQ 304 NEXT 327 POSTDECR
259 PASTAT 282 GE 305 NEXTFILE 328 PREDECR
260 PASTAT2 283 GT 306 ADD 329 VAR
261 XBEGIN 284 LE 307 MINUS 330 IVAR
262 XEND 285 LT 308 MULT 331 VARNF
263 NL 286 NE 309 DIVIDE 332 CALL
264 ARRAY 287 IN 310 MOD 333 NUMBER
265 MATCH 288 ARG 311 ASSIGN 334 STRING
266 NOTMATCH 289 BLTIN 312 ASGNOP 335 REGEXPR
267 MATCHOP 290 BREAK 313 ADDEQ 336 COMMENT
268 FINAL 291 CLOSE 314 SUBEQ 337 WHITESPACE
269 DOT 292 CONTINUE 315 MULTEQ 338 GETLINE
270 ALL 293 DELETE 316 DIVEQ 339 RETURN
271 CCL 294 DO 317 MODEQ 340 SPLIT
272 NCCL 295 EXIT 318 POWEQ 341 SUBSTR
273 CHAR 296 FOR 319 PRINT 342 WHILE
274 OR 297 FUNC 320 PRINTF 343 CAT
275 STAR 298 SUB 321 SPRINTF 344 NOT
276 QUEST 299 GSUB 322 ELSE 345 UMINUS
277 PLUS 300 IF 323 INTEST 346 POWER
278 AND 301 INDEX 324 CONDEXPR 347 DECR
279 BOR 302 LSUBSTR 325 POSTINCR 348 INCR
280 APPEND 303 MATCHFCN 326 PREINCR 349 INDIRECT

and then alphabetically by token type name:
306 ADD 309 DIVIDE 265 MATCH 346 POWER
313 ADDEQ 294 DO 303 MATCHFCN 328 PREDECR
270 ALL 269 DOT 267 MATCHOP 326 PREINCR
278 AND 322 ELSE 307 MINUS 319 PRINT
280 APPEND 281 EQ 310 MOD 320 PRINTF
288 ARG 295 EXIT 317 MODEQ 258 PROGRAM
264 ARRAY 268 FINAL 308 MULT 276 QUEST
312 ASGNOP 296 FOR 315 MULTEQ 335 REGEXPR
311 ASSIGN 297 FUNC 272 NCCL 339 RETURN
289 BLTIN 282 GE 286 NE 340 SPLIT
279 BOR 338 GETLINE 304 NEXT 321 SPRINTF
290 BREAK 299 GSUB 305 NEXTFILE 275 STAR
332 CALL 283 GT 263 NL 334 STRING
343 CAT 300 IF 344 NOT 298 SUB
271 CCL 287 IN 266 NOTMATCH 314 SUBEQ
273 CHAR 348 INCR 333 NUMBER 341 SUBSTR
291 CLOSE 301 INDEX 274 OR 345 UMINUS
336 COMMENT 349 INDIRECT 259 PASTAT 329 VAR
324 CONDEXPR 323 INTEST 260 PASTAT2 331 VARNF
292 CONTINUE 330 IVAR 277 PLUS 342 WHILE
347 DECR 284 LE 327 POSTDECR 337 WHITESPACE
293 DELETE 302 LSUBSTR 325 POSTINCR 261 XBEGIN
316 DIVEQ 285 LT 318 POWEQ 262 XEND

Version 1.00 29 March 1999 2

AWKLEX(1) AWKLEX(1)

In addition to these 92 uppercase names, token type names can also be of the formtoken nnn , where
nnn is the decimal ASCII value of a single-character token, separated by a single space from the preceding
word. The token number is alsonnn , which is why token numbers 0 . . . 255 were unavailable for the
named tokens listed above.

The token stream ends with a null token:
0 token 0

The token numbers are generated automatically, and althoughawk(1) is quite a stable program, it is possi-
ble that they could change in futureawk(1) versions, so programmers, beware. The tokentype names
should never change, but the set of token types may grow if theawk(1) language is ever changed.

The following short example gives a flavor of what the lexical token stream looks like for this simple
awk(1) program:

BEGIN { initialize() }
{ print FNR ":" $0 }

END { terminate() }

function initialize()
{

print "Hello, world"
}

function terminate()
{

print "Goodbye, world"
}

Here is the output ofawklex -f simple.awk , displayed in two columns for compactness:
line 1 "simple.awk" 337 WHITESPACE
261 XBEGIN BEGIN 332 CALL initialize
337 WHITESPACE 40 token 40 (
123 token 123 { 41 token 41)
337 WHITESPACE 263 NL
332 CALL initialize # line 6 "simple.awk"

40 token 40 (123 token 123 {
41 token 41) 263 NL

337 WHITESPACE # line 7 "simple.awk"
59 token 59 } 337 WHITESPACE

125 token 125 } 319 PRINT print
263 NL 337 WHITESPACE
line 2 "simple.awk" 334 STRING "Hello, world
337 WHITESPACE 337 WHITESPACE
123 token 123 { 263 NL
337 WHITESPACE # line 8 "simple.awk"
319 PRINT print 59 token 59 }
337 WHITESPACE 125 token 125 }
329 VAR FNR 263 NL
337 WHITESPACE # line 10 "simple.awk"
334 STRING ": " 263 NL
337 WHITESPACE # line 10 "simple.awk"
349 INDIRECT 0 297 FUNC function
333 NUMBER 0 337 WHITESPACE
337 WHITESPACE 332 CALL terminate

59 token 59 } 40 token 40 (
125 token 125 } 41 token 41)
263 NL 263 NL

Version 1.00 29 March 1999 3

AWKLEX(1) AWKLEX(1)

line 3 "simple.awk" # line 11 "simple.awk"
262 XEND END 123 token 123 {
337 WHITESPACE 263 NL
123 token 123 { # line 12 "simple.awk"
337 WHITESPACE 337 WHITESPACE
332 CALL terminate 319 PRINT print

40 token 40 (337 WHITESPACE
41 token 41) 334 STRING "Goodbye, wor

337 WHITESPACE 337 WHITESPACE
59 token 59 } 263 NL

125 token 125 } # line 13 "simple.awk"
263 NL 59 token 59 }
line 5 "simple.awk" 125 token 125 }
263 NL 263 NL
line 5 "simple.awk" 0 token 0
297 FUNC function

SAMPLE APPLICATIONS
Here are some possibly useful things you can do simply withawklex:

check spelling:
awklex -f myfile.awk | grep STRING | spell

check for doubled words:
awklex -f myfile.awk | grep STRING | dw

count static references to each function:
awklex -f myfile.awk | grep CALL | sort | uniq -c

find functions that are defined, but never called:
awklex -f myfile.awk | grep CALL | sort | uniq -c | \

awk ’$1 == 1’

capitalize function names:
awklex -f myfile.awk | \
awk ’$2 == "CALL" {printf("%s\t%s\t%s\n", $1, $2, \

toupper(substr($3,1,1)) tolower(substr($3,2)))}’ | \
awkunlex > newfile.awk

Becauseawk was designed for writing simple programs simply, it does not require variable declarations,
and except for function arguments, variables are normally global throughout the entire program.

The standard idiom for declaring a local variable in a function is to give it as an extra function argument.
Failure to do this in a large program could result in a local variable overwriting a global variable of the
same name, producing a nasty bug that can be quite hard to detect by reading the code.awk(1) itself can-
not diagnose the problem, since it is legal to do this in the language.

Here is a how you can find such problems, using just fifteen lines ofawklex andawk(1):

find global variables in functions:
awklex -f myfile.awk | \
awk ’
BEGIN { FS = "\t"; fcn = "-OUTER-" }

($2 == "FUNC"),($3 == ")") { if ($2 == "CALL") fcn = $3; next }

$2 == "VAR" { GlobalVars[fcn,$3]++ }

END {
for (fv in GlobalVars)

Version 1.00 29 March 1999 4

AWKLEX(1) AWKLEX(1)

{
split(fv,vars,SUBSEP)
printf("%-31s\t%s\n", vars[1], vars[2]) | "sort"

}
}’

This program collects the names of all functions, and global variables referenced inside them, and uses
them as index pairs inGlobalVars[] to count the number of such pairs. After all of the input stream
has been processed, a sorted list is printed to display the pairs.

TheBEGIN pattern handles initialization and defines a name for the outer level ‘function’. The following
range pattern matches the function header, and extracts from it the function name. The third pattern records
references to variables which are not arguments, and thus, are global. The finalENDpattern handles the
output.

Straightforward removal of unneeded newlines and whitespaces could reduce the above code to just five
lines, but with a loss in readability.

While this example is somewhat more complex than the one-liners for whichawk(1) is justly famous, it is
surprising how little code is needed to produce a perfectly-reliable result for what would otherwise be a
rather difficult job in most other programming languages, and oneimpossibleto do reliably with simple
pattern matching on theawk(1) program source text.

This example is so generally useful that it is provided via the−−globalsoption inawkpretty (1).

SEE ALSO
awk(1), awkpretty (1), awkunlex(1), gawk(1), mawk(1), nawk(1).

AUTHORS
The awk(1) implementation on whichawklex is based was written by, and is maintained by, Brian
Kernighan of Lucent Technologies (formerly, AT&T) Bell Laboratories. The source code is freely available
on the World-Wide Web at:

http://cm.bell-labs.com/cm/cs/awkbook/index.html
and theawk(1) programming language is completely described in the excellent book:

Alfred V. Aho, Brian W. Kernighan and Peter J. Weinberger
The AWK Programming Language
Addison-Wesley, 1988
ISBN 0-201-07981-X

The minor modifications (6 lines of changes, plus about 165 new lines) of the originalawk(1) code (about
12,000 lines) to produceawklex, and this documentation, were done by:

Nelson H. F. Beebe
Center for Scientific Computing
University of Utah
Department of Mathematics, 322 INSCC
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Email:beebe@math.utah.edu , beebe@acm.org , beebe@ieee.org
WWW URL: http://www.math.utah.edu/˜beebe
Telephone: +1 801 581 5254
FAX: +1 801 585 1640, +1 801 581 4148

It is a tribute to the great skill and care with whichawk(1) has been implemented thatawklex could be cre-
ated with such tiny changes.

COPYRIGHT
Almost all of the code inawklex is derived from theawk(1) distribution, for which a copyright applies, and
as required by that copyright, it is reproduced verbatim here in this documentation:

/**
Copyright (C) Lucent Technologies 1997

Version 1.00 29 March 1999 5

AWKLEX(1) AWKLEX(1)

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name Lucent Technologies or any of
its entities not be used in advertising or publicity pertaining
to distribution of the software without specific, written prior
permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DAT A OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.
**/

Version 1.00 29 March 1999 6

