A Bibliography of Publications of Yousef Saad

Yousef Saad
Computer Science Dept., University of Minnesota
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455
USA
Tel: +1 612 624 7804
FAX: +1 612 625 0572
E-mail: saad@cs.umn.edu (Internet)

11 June 2015
Version 2.45

Abstract
This bibliography records publications of Yousef Saad.

Title word cross-reference

3D [GHS10]. \(\exp(-\tau A)b \) [SSS10]. \(f(A)b \) [CAS11]. \(ILU \) [LSC03, OKLS15]. \(ILUS \) [CS97c]. \(k \) [CrFS09]. \(LU \) [CS97c, LS803b, Saa94d].

'02 [AGPS03].

1988 [BTS+89]. 1993 [BCEP94].

20th [Sv00].

5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b].

Acceleration [KS87, Saa84b, CS99, rFS09, KS92, ZSTC06a]. acceptors [SKBS88]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a]. algebraic [GHS10, LSS03a, SS02b, SST04, SSC04]. Algorithm [DS91b, Saa85a, SYEG00, ZS07, ESS86, GS87, GS88b, GS88a, GS89b, Saa74c, Saa80a, Saa82a, Saa86c, SS86c, SL86, SL88, SW93, Saa93a, SW96b, Saa91a]. algorithms [Saa74b]. Algorithms [AGPS03, ASSS11, BDG+10, CS92, CS85a, CS86, CTJ+95, CTSZ07, CZC+09, SS85g, Saa92a, Saa92b, Saa94a, Saa94b, Saa06, VS14, BGSS14, BS94, CS93, CS96, FRSY96, GS94, KS87, Saa90b, Saa94e]. Alternating [JSS87, SS85c]. Analysis [BSS09, BSS10, Saa92b, Saa94b, Saa97, BJF+09, Saa94e, Saa00b]. angle [LSS86, SL86, SL88]. Application [CS12, CTWS94]. Applications [AGPS03, ASSS11, BKS08, BDG+10, Saa06, SrFS08, BJF+09, CSS02, CCS10, CS98a, CS85b, Saa83a, Saa90b, Saa90d, SAD+00,
SS11, SSC04]. approach [GS90a].
 Approximate [BS02b, BS02c, CS94, CS97d, CS98b, Saa03a, BS02a, CrFS09, CS97f].
 Approximation [CS90b, GS92a, BS09, CS97a, CS08, GS90b, GS90a, GS92b, GSS03, ITS07, Saa84a, Saa86b, Saa86c, SS11].
 Approximations [CAS11, Saa92b, GHS10].
 Architectures [IS85, IS86b, IS86a, SS86b, GS89d, SS89b].
 arising [Saa84a, Saa86b, Saa86e, SMSW00].
 ARMS [SS02b, SST04].
 Arnoldi [BSS10, DS91b, Saa80c, SSW98].
 array [SSS85].
 Assignment [DS91b, Saa88d].
 Associated [DS91b].
 Atom [TZA+06].
 Augmented [Saa97, CS97b]. automatic [GS94, Saa92a].
 Banded [SS85e, SS87].
 Based [BS05b, HS06, KS07, SZ99b, SrFS08, JSS07, MOKS12, SW93, SW96b].
 Basic [PSWF93, Saa90a].
 basis [CTS93, CT94].
 Benchmark [SW88b, SW88a, SW90].
 Beresford [Saa83c].
 between [BS02c].
 BILUM [SZ99a].
 BILUTM [SZ99b].
 bisection [SrFS09].
 Block [LS03, LSS03b, MS93, SS80, SZ99a, SZ99b, Saa03a, ZS08, CS97d, GS87, GS88b, GS88a, GS89b, Saa08b, SZ01, MS92].
 Block-ADI [MS93, MS92].
 block-partitioned [CS97d].
 Boeing [SW89].
 Book [Saa83c, Saa95].
 bordered [CS85b].
 Bounds [Saa94b, Saa94e].
 brownian [ACSS12].
 Bulk [TZA+06].
 calculation [ZSTC06a].
 Calculations [OBS03, SCS10, AJT+07, CTS93, CT94, JKSC99, SSC+96, ZSTC06a].
 Carolina [BCEP94].
 Centenary [BCEP94].
 century [Sv00].
 CFD [CSW00, SST04].
 Chain [PSS92, Saa91c].
 chains [BGB+10, IGSB08].
 charge [BSTC05].
 charging [RGSB08].
 Chebyshev [ESS86, Saa84b, ZSTC06a, ZSTC06b].
 Chebyshev-class [ZSTC06a, ZSTC06b].
 Chebyshev-continuous [ZSTC06a, ZSTC06b].
 classes [rFS09].
 clusters [CTJ+95, JTD+94].
 CM [PSWF93, WS93].
 CM-5 [WS93, PSWF93].
 Coarse [MS07a].
 Coarse-Grid [MS07a].
 Coarsening [MS07b, OKLS15].
 codes [GS83, JKSC99].
 Communication [SS85a, Saa86b, Saa86c, SM95, SS89a, SS89b].
 Community [CS92].
 Compensation [MOKS12].
 Complement [BS05b, Saa99a].
 Complex [PS85, PS87, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c].
 complexities [GS90d].
 Complexity [ISS84, ISS86, Saa85a, Saa86c].
 Component [JSS07].
 Component-based [JSS07].
 Computation [BS05a, BKS08, Saa74a, LLC09, diGGS+05].
 Computational [SM95, Fit86].
 Computations [BTS+89, FWPS92, PSWF93, SW88a, Saa94a, SW88b, SW90, Saa90a].
 Computers [FWPS92, SS02a, AS88, AS89].
 Computing [BSTC05, CAS11, Saa92e, Saa95, SSS10].
 Concurrent [Saa95].
 condition [Saa84a, Saa86b, Saa86c].
 Conference [BCEP94, Fit86].
 Confined [BOB03].
 Conjugate [SS85g, SS85f, SS86a, SYEG00, Saa06, Saa85c].
 Conquer [LS13a].
 consistent [ZSTC06a, ZSTC06b].
 Constructed [BS05b].
 construction [CrFS09].
 continuation [BS85b].
 control [DS91a, Saa90d].
 Convergence [BS94, Saa80b].
 convergent [BS89].
 convex [BS09].
 Cornelius [BCEP94].
 correction [PS07].
 coupled [KS92].
 coupling [diGGS+05].
 Crout [LSC03, LS05a].
 cubic [SKBS88].
 cyclic [GS87, GS88b, GS88a, GS89b].
 dans [Saa74b].
 Data [SS85a, SS85d, SS86b, SS89a, Saa94a, SM95, CrFS09].
flows [LLCS02]. forces [CJWS96]. format [CS97c]. free [ZCS14]. function [SS11].

Functional [BKS08, BSK+03, RGSB08, SS11, dIGGS+05]. Further [BSS10, Saa00b].

Gaussian [Saa86d, CS94, Saa86c, Saa86a].

General [CS92, CS94, LSC03, Saa94b, Saa96, SZ99a, SZ99b, SS99a, SS02a, CS93, CS96, Saa92a, Saa92c, Saa94c, Saa94e, SSZ98, SZ99c, SZ01, SS02b, Saa07].

generalized [SS86c]. Globally [BS89]. GMRES [Saa91a, SS86c, Saa93a]. GPU [LS13b]. GPU-accelerated [LS13b].

Gradient [SS85g, SSS85f, SS86a, SYEG00, Saa85c]. Gradient-like [SS85g]. Gram [Saa86e].

Graph [HS06, OKLS15, SrFS08, VSS14, CrFS09, GS94]. Graph-Based [SrFS08]. Greedy [MS07b, MS07a]. Grid [MS07a].

Hand [Saa87d]. Harnessing [BGB+10].

Harwell [SW89]. Harwell-Boeing [SW89]. held [GGL94]. Helmholtz [KSS03, KSSG04, OKS10]. Hermitian [Saa74a]. Heuristic [GS94]. Hierarchical [HS06]. High [CSW00, CrFS09].

High-order [CSW00]. Higher [CTWS94, SKBS88, JTD+94].

Higher-order [CTWS04, JTD+94]. Highly [Saa94c]. Houston [Fit86]. Hybrid [BS87, BS90, ESS86, GHS10].

hydrodynamic [ACSS12]. Hypercube [CS85a, CSS85, CS86, CSS87]. Hypercubes [SS85a, SS85d, SS85b, Saa86a, SS88, Saa86d, SSS89a].

ILU [CSW00, CS97e, HS06, LS05a, MS94, Saa92d, Saa92c, Saa96, SZ99a, SZ99c, SZ01, Saa03a, Saa05]. ILUM [Saa92e, Saa96]. ILUs [BS02c, BS05b]. ILLUT [Saa92d, Saa94d, SZ99b]. IMA [GGL94]. Impact [IS85, IS86b, IS86a].

implementation [BSK+03].

Implementations [SS85f, SSS86a, Saa91b, Saa93b]. Implicitly [SWM98]. Incomplete [LS06, MOKS12, CCS10, CS97c, Saa92d, SW93, Saa94d, SW96b]. Incremental [CS10]. indefinite [CS97e, Saa83d, Saa84c, Saa88a, Saa88b, Saa88c]. Indexing [SrFS08, VS14]. industrial [SAD+00].

Inexact [WSS98]. Initio [OBSC03, JTD+94]. inner [Saa91a, Saa93a]. inner-outer [Saa91a, Saa93a]. Institute [BTS+89]. interactions [ACSS12]. Interior [rFS12]. International [BCEP94].

intervals [Saa83d]. Invariant [BKS08, PS07]. Inverse [BS02b, BS05b, CS94, CS98b, TS11, BS02a, CS97d, CS97f, TS12]. Inverse-Based [BS05b]. Inverses [BS02c]. Invert [PS87, PS85]. Iron [TZ+06]. irregularly [FRSY96]. issue [ASSS11, BDG+10]. iteration [ZSTC06b, ZCS14].

iterations [BKS08, CS98b, Saa00b]. Iterative [BTS+89, CS95b, GS83, SS81, Saa83d, SM95, Sv00, Saa03b, CS02, GGL94, JSS07, LS13b, SW94, SW95, SW96a, SKL+97, Saa01].

J. [Saa92h]. Jacobi [SS98b]. January [Fit86].

Kernels [SM95]. kit [Saa00a]. Kohn [SCL12, ZS14]. Krylov [Saa89a, Saa90b, ACSS12, BS009, BS87, BS89, BS90, BS94, CS99, CCSY98, CS97b, CS14, ES86, GS92b, GS92a, Saa81, Saa84c, Saa90d, Saa91b, Saa92b, Saa92e, Saa92f, Saa93b, Saa97, Saa98, Saa11a, ZS08].

Lagrangian [SS10]. Lanczos [BCEP94, BGB+10, BSTC05, BKS08, CrFS09, CS09a, rFS12, RGSB08, Saa80a, Saa80b, Saa82a, Saa87d, Saa94b, Saa94e].

Lanczos-Type [Saa94b, Saa94e]. Large [BKS08, BTS+89, DS91b, IS86a, LS06].
OBSC03, PS89, Saa82b, Saa85b, Saa11b, SSF93, ZS07, DS91a, Saa74a, Saa80a, Saa80c, Saa81, Saa82a, Saa83b, Saa83e, Saa89b, Saa90c, Saa92g, SSC93, ZS07, DS91a, Saa74a, Saa80a, Saa80c, Saa81, Saa82a, Saa83b, Saa83e, Saa89b, SSC93, SAD96, SAD90, SSF95, WSS98, ZS08]. Latent [SrFS08, VS14]. Least [CAS11, LS06, Saa83a, Saa87c, Saa84a, Saa86b, Saa86e]. Least-Squares [LS06]. Level [SSZ98, SZ99c, SZ01]. Library [SW94, SW95, SW96a, SKL+97]. Like [DS91b, SS85g]. Linear [ITS07, ISS84, ISS86, MS92, MS93, MS94, SS85g, SS85e, SS87, SS98a, SZ99a, SS99a, SS99c, SS02a, AS88, DS91a, ESS86, GS83, GS83c, JSS07, LS13b, OKS10, Saa81, Saa83d, Saa84c, SS85, SS86c, Saa87c, Saa88d, Saa88a, Saa88b, Saa88e, SS98, SS99c, SS99b, Sv00, ZS01, Saa01, Saa02b, Saa03b, Saa07, SMSW00]. Liquid [LLCS02]. Localized [CJWS96]. Low [CS09b, LS13a, CS08]. Low-Rank [LS13a]. LR [Saa74b]. LU [CCS10]. Lyapunov [Saa90c]. Magnetism [TZA+06]. March [GGL94]. Markov [PSS92, Saa91c]. Massively [FWPS92]. Material [SÖS+00]. Materials [SCS10]. Mathematical [Fit86, Fit86]. Matrices [CS92, CS94, LSC03, LS13a, ÖBOC03, PS87, Saa85b, SW89, Saa96, SSZ99b, BS09, CS93, CS96, CS97d, CS97e, LS05a, PSS85, Saa74a, Saa80e, Saa84a, Saa86b, Saa86e, Saa92c, Saa94c]. Matrix [AGPS03, ASSS11, AKEK90, BG9+10, FWPS92, IS86a, OKLS15, PSWF93, SW88a, Saa92b, Saa94a, SW94, TS11, VSS14, BJR+09, BK507, BGSS14, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW95, SW96a, SAD+00, TS12, dLGGS+05]. Memory [Saa87b, SM95, Saa87a]. Message [Saa87b, Saa87a, WS93]. Method [SS80, Saa87d, CTZ93, CTZ94, CTWS94, JTD+94, KS03, KSZG04, LS86, Saa80e, Saa85c, SC12, TS12, ZS08, ZCS14]. Methods [BTS+89, CCSY98, CS14, DS91b, GS92a, PSS92, SS81, SS85c, SS85e, SS85f, SS86a, Saa87b, SS87, Saa91b, Saa92e, Saa93b, Saa97, SCS10, Saa11a, Saa11b, SSW98, SÖS+00, TS11, ACSS12, BSS09, BS87, BS89, BS90, BS91, CSS02, CS85b, rFS09, Fit86, GS90b, GS92b, GGL94, JSS87, JSS07, KS92, KCS09, KCS11, Saa80a, Saa80b, Saa81, Saa82a, Saa82b, Saa83d, Saa83b, Saa83e, Saa84c, Saa87a, Saa88d, Saa89a, Saa90b, Saa90d, Saa91c, Saa92g, Saa92f, Saa98, Saa01, Saa03b, SS99b]. Minimal [SS86c, SW93, SW96b]. Minimum [Saa00b]. Minneapolis [BTS+89, GGL94]. Minnesota [BTS+89, GGL94]. MIQR [LS06]. Modeling [PSS92, Fit86]. Models [Saa91c]. Modern [CSS02, SSC04]. Modification [MOKS12]. Modified [CS99, Saa84a, Saa86b]. Module [SW94, SW95, SW96a]. Molecular [CJWS96, BGB+10, JTD+94]. Molecular-dynamics [JTD+94]. Molecules [CTWS94]. Moment [Saa84a, Saa86b]. Multi [Saa96, Saa92c, SZZ98, SZZ99c, SZZ01]. Multi-Elimination [Saa96, Saa92c]. Multicolor [SS99b]. Multielimination [SZ99a]. Multigrid [CS85a, CS86]. Multilevel [BS05b, LS06, OKLS15, SZZ99a, SZZ99b, Saa05, SrFS08, LSS03a, SSS2b, SST04, SSC04]. Multiprocessor [CS85a, CS85b, CS86, ISS84, ISS86, CSS87]. Multiprocessors [SS85c, Saa85a, SZZ87, SZZ81, Saa86c]. Multisecant [rFS09]. Multistage [HS06]. Multivariate [CS14]. N [Saa83c]. Nanocrystals [CTSZ07, CZC+09]. Neighborhood [KS07, KS05b]. News [Saa95]. Newton [BS94, WS98]. NN [CrFS09]. Non [SZZ99c]. Non-standard [SS99c]. Nonlinear [BS87, BS89, BS90, BS91, BS94, rFS09, KS92].
Nonsymmetric
[LS03b, MS93, MS07b, Saa84b, SS85g, Saa85b, ESS86, Saa83a, Saa84c, SS86c, Saa87c, Saa88a, Saa88b, Saa88c, Saa89b]. normal [BSS09], North [BCEP94], null [ITS07], null-space [ITS07], number [Saa86e].

Numerical
[PSS92, Saa83b, Saa89c, Saa90c, Saa92g, SCS10, Saa11b, Saa87a, Saa91c].

oblique [Saa80a, Saa82a]. Observer [DS91b], October [BTS+89], ODE [GS83]. Operator [Saa92b, CS98a], OPRA [KS05a], OPRA-faces [KS05a]. Optimal [CS99b, CS08]. Optimization [NBS10, NBS12, BSS09, KCS09, KCS11]. order [CSW00, CTWS94, JTD+94], origin [Saa74c]. Orthogonal [CS99b, KOS05b, KOS07, CS96, LS05b]. orthogonalization [SW93, SW96b], other [Saa80a, Saa82a], outer [Saa91a, Saa93a]. Overlapping [CS92, CS93, CS96, LS05b]. overview [Saa90d].

P_SPARSLIB
[SW94, SW95, SW96a, SKL+97]. Package [SW88a, SS02a, SW88b, SW90]. papers [GGL94]. Parabolic [GS92a, GS92c, GS92a, GS90b, GS90a, GS92b]. Parallel [BDG+10, BGS914, BS9+03, CSS02, CS97f, FWPS92, FRSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, SS86a, Saa87b, SSS87, SW94, SS99c, Saa01, Saa02a, SÖS+00, ZSTC06a, AS88, AS89, CS89, GS87, GS88b, GS88a, GS89b, GS90c, GS89a, GS89d, GHS10, LS03a, LLCS02, SS80, Saa87a, Saa89b, Saa92c, Saa94c, SW95, SW96a, SKL+97, Saa99b, SCS04, AGPS03, ASSS11], Parlett [Saa83c], pARMS [LS03a, Saa02a].

Partial
[CSS85, DS91b, Saa85b, CSS87, Saa88d]. partially [BSTC05]. Particle [LLCS02]. partitioned [CS97d]. Partitioning [VSS14, GS94, LLCS02, Saa74a]. Passing [Saa87b, Saa87a, WS93]. Performance [WS93]. periodic [AJT+07], physical [CSS02, CS804]. Pivoting [S02b, BS02a, LS05a]. plane [JKSC99]. Saa83a, Saa84a, Saa86b, Saa86c, Saa87c]. plane-wave [JKSC99]. PMAA [AGPS03]. PMAA’10 [ASSS11]. Point [LS03, LSS03b]. pole [Saa88d]. Polynomial [BKS98, CAS11, GS90b, Saa85c]. polynomials [Saa83d, Saa83a, Saa87c, SSS10]. portable [SKL+97]. Positive [S880, VSS14]. potential [CTS93, CTS94]. Practical [BTS+89, Saa84c, Saa85c, BSS+89]. Preconditioned [CSSY98, CS14, SS85f, SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a]. Preconditioner [S02b, BS02b, BS02a, LS06, Saa96, SZZ09a, SZZ09b, SZZ02a, SZZ07c]. Preconditioners [BS05b, CS94, CS98b, LS13a, LS03, LS03b, MS92, MS93, MS94, CS97a, CSW00, CS97e, CS97f, GSS03, Saa94c, SZZ09c, Saa07]. Preconditioning [CS98a, KSS03, KSSG04, OKS10, OKLS15, Saa88a, Saa88b, Saa88c, SZZ0+00, Saa03a, MSSW00, SSF93, VSS14, SSS99b, SZZ01, SZZ05, WSS98]. preconditionings [Saa85c]. Predicting [SÖS+00, CTJ+95]. Preserving [CSSY98, KS07, KS05b]. primitives [WS93]. principles [AJT+07]. probing [TS12]. Problem [NBS10, NBS12, CKV+03, SCS12, Saa83c]. Problems [BSS10, DS91b, rFS12, GGL94, IS85, LS06, LS03, LS03b, MS07b, PS89, Saa84b, Saa11b, SSF93, CSW00, DS91a, FRS96, IS86b, Saa82b, Saa83a, Saa83b, Saa83e, Saa89b, Saa90d, Saa92c, SZZ09c, SZZ09c, SZZ09c]. Procedure [rFS12]. Proceedings [BTS+89, Fit86, BCEP94]. Process [BSS10]. processors [SS85]. Projection [BSS10, KSS07, Saa82b, Saa83c, Saa88d, Saa91c, Saa92h, ITS07, Saa80a, Saa82a].
Projection-Based [KS07]. Projections [KS07, KS05b]. Properties [SS85b, SS88, SOSf+00, CTJ+95, CTSZ07, CZC+09].

pseudo [CTS93, CTS94]. pseudo-potential [CTS93, CTS94]. pseudopotential [CTS94, JTD+94]. pseudopotentials [CKV+03]. PSPARSLIB [SS98a]. purpose [Saa92a].

QR [LS06, Saa74b]. quantum [CJWS96]. Quasi [SW93, SW96b]. Quasi-minimal [SW93, SW96b].

Raleigh [BCEP94]. Rank [CS09b, LS13a, CS08]. rates [Saa80b].

Ratio [NBS10, NBS12]. Rational [GS03, SS11, GS90a]. Real [PS87, CKV+03, PS85]. recognition [KS05a]. recursive [CrFS09, LSS03a, SS02b, SST04, SSC04].

Reduction [CS09a, KS07, NBS10, SrFS08, GS87, GS88b, GS88a, GS89b, KS09, KCS11]. Relations [BS02c]. Reordering [OKLS15]. Reorderings [Saa05]. reorthogonalized [BSTC05]. reservoir [Fit86]. Residual [Saa06, SS86c, SW93, SW96b, Saa00b].

Residual-type [Saa06]. Restarted [SW98]. Restarting [SS98, S98b]. Restricted [LS05b]. Review [Saa83c, Saa92b]. Reviews [Saa95]. Right [Saa87d]. Right-Hand [Saa87d]. Ring [SS84, IS86]. Robust [SSF93, SSF95, SZ99c].

Saddle [LS03, LSS03b]. Sampling [CS14]. Scale [BTS+89]. Schur [Saa07, BS05b, GHS10, LS05b, SS99a, ZS08].

SchurRAS [LS05b]. Scientific [Saa95]. seismic [Fit86]. Selection [MS07a]. Self [ZSTC06b, ZSTC06a]. Self-consistent-field [ZSTC06b, ZSTC06a]. Semantic [SrFS08, VS14]. semiconductor [KS87]. semiconductors [KBSS88]. Several [Saa87d]. Sham [SCS12, ZCS14]. Shared [Saa87b, Saa87a]. Shift [PS87, PS85]. Shifts [Saa74c]. S1 [JTD+94]. Sides [Saa87d].

simulation [KS87]. simulations [ACSS12, JTD+94]. Singular [CS09a].

skyline [CS07c], slicing [CS12]. Smallest [BS05a]. SNAP [IT807]. Software [AEKS90, Saa92a]. solid [LLCS02].

solid-liquid [LLCS02]. Solution [DS91a, GS92a, ISS84, ISS85, ISS86, ISS86b, SSC+96, SS98a, SS99c, GS87, GS88b, GS88a, GS89b, GS89c, GS89a, GS90b, GS90a, GS92b, GS83, ITST07, KS03, KSSG04, SS81, Saa83d, Saa83b, Saa89b, Saa90c, Saa91c, S915, SW96a, S900, SST04]. solver [LS03a, S902b, S9C04]. Solvers [SM95, GS89d, GHS10, LS13b, SW94, SKL+97, SST04].

Solving [AS88, AS89, CSS85, CSS87, MS92, MS93, PS89, SS80, Saa84b, SS85g, SS85e, SS85s, Saa87d, SS87, SS02a, BS91, CS85b, ESS86, LSS86, Saa80a, Saa81, Saa82a, Saa82b, Saa83a, Saa83e, Saa84c, SS86c, SL86, Saa87c, SL88, ZCS14].

Some [GS89d, SW89, Saa92b, BS89, Saa84c, Saa86e]. SOR [MS94]. space [CKV+03, IT807]. SPARK [SW90]. Sparse [AEKS90, CS92, CS94, CS98b, FWPS92, GHS10, GGL94, IS86a, LSC03, LS86, MS92, MS93, MS94, PSWF93, PS89, SW88a, SW89, Saa94a, SW94, SM95, Saa96, SS89a, S99a, S99b, SS99a, SS99c, S99d, SS99e, SS99f, SS99g, SS99h, SS99i, SS99j, SS99k, SS99l, SS99m, SS99n, SS99o, SS99p, SS99q, SS99r, SS99s, SS99t, SS99u, SS99v, SS99w, SS99x, SS99y, SS99z, SAD+00, SAD+01, S901, S902b, Saa03b, Saa07, SSF95, ZCS14].

Sparse-Sparse [CS98b]. SPARSKIT [Saa90a]. Special [ASSS11, BJR+09, BDG+10]. spectra [CJWS96]. Spectral [BS05a]. Spectrum [DS91b, BS05a].

Spectrums [BS05a]. SchediCa [Saa92a]. Squares [CAS11, LS06, Saa83a, Saa84a, Saa86b, Saa86e, Saa87c]. standard [SS99c]. Standards [AEKS90]. state [Saa88d].
REFERENCES

states [BGB+10, SKBS88]. Statistics [SW89]. Stiefel [SS80]. Strategies [MS07b, MOKS12, PS87, SS99c, LCLS02, PS85, SZ01, SMSW00]. Strategy [MS07a, structural] [CTJ+95]. Structure [SCS10, AJT+07, CTS93, CTS94, CKV+03, JKSC99, SSC+96]. Structured [GGL94, FRSY96]. Structures [Saa94a, SM95, Saa03a]. study [CS97e]. Subgraph [CS12]. Subspace [CCSY98, CS14, Saa91b, Saa92b, Saa92e, Saa93b, Saa97, Saa11a, ACSS12, BSS09, BS89, C979b, ESS86, Saa81, Saa84c, Saa89a, Saa90b, Saa90d, Saa92f, Saa98, ZSTC06a, ZSTC06b, ZCS14]. Subspaces [BKS08, PS07]. sum [CS97a]. Supercomputer [BTS+89, Saa91b, Saa93b]. Supercomputers [PS89, Saa89a]. SVD [CS08, CS09b]. Sylvester [DS91b]. Sylvester-Like [DS91b]. Symmetric [LS13a, LSS03b, Saa83c, Saa87d, SSF93, VSS14, ZS07, LSS05a, Saa83d, SSF95, SSS90b, WSS98, ZS08]. Symmetry [CCSY98]. System [ISS84, ISS86, BS87, ITS07]. Systems [MS92, MS93, MS94, ÔBSC03, SS80, SS85g, SS85e, Saa87d, SS87, SS98a, SZ99a, SSS99a, SS99c, SS02a, VSS14, AJT+07, AS88, BS90, B91, CS85b, CJWS96, ESS86, GSS03, JSS07, KS92, OKS10, Saa80a, Saa81, Saa82a, Saa83d, Saa84c, SSS86c, Saa87c, Saa88a, Saa88b, Saa88c, SSS98, SS99c, SSS99b, Saa90b, SSS99c, SSS99d, SSS02b, Saa03b, Saa07, SMSW00].

Technique [KS07]. Techniques [IS86a, Saa4b, SS99a, CS97b, CS97d, KS89g, KS90G, KS87, Saa74a, Saa88a, Saa88b, Saa88c, SS98, SZ99c, SZ99b, SAD+00, SS98h, WS98]. Tensor [CS97a, CS09b, CS08]. Tensors [CS09b, CS08]. Texas [Fit86]. their [GS98d, Saa87c]. Theoretical [Saa94b, Saa94e]. Theory [BKS08, BSS09, BS94, BSK+03, RGSB08, Saa90b, SS11, dGGS+05]. Thick [SSW98]. three [LSS86]. three-dimensional [LSS86]. Threshold [MOKS12, Saa92d, Saa94d, SZ99c]. Threshold-based [MOKS12]. time [BSK+03, RGSB08, dGGS+05]. time-dependent [BSK+03, RGSB08, dGGS+05]. tire [SMSW00]. tool [Saa90a]. Tools [SÖS+00, Saa92a]. Topological [SS85b, SSS88]. Trace [KCS09, KCS11, NBS10, NBS12]. translations [Saa74b]. trends [Saa92f]. triangular [AS88, AS89]. Turbo [RGSB08]. Two [FS09, Saa83d]. Type [Saa94b, TS11, Saa94e, SSZ98, Saa06].

Unstructured [MS94]. unsymmetric [Saa80a, Saa80c, Saa81, Saa82a]. Updating [VS14]. use [Saa84c, Saa85c, Saa87c]. Using [BKS08, CKV+03, OKLS15, SSS98a, SSC04, VSS14, BS05a, JTD+94, KS05a, Saa83d, ZSTC06b].

Values [VSS14]. Variations [Saa80c, SST04]. Vectors [CS09a]. Velde [Saa95]. Version [LS05b, SYEG00, LSS03a]. Versions [LSC03, SS99a, LS05a]. versus [CS09a]. via [BSS09, CrFS09, CAS11, CS98b, ZSTC06a]. Vibrational [CJWS96, C4CZ+09]. volume [BJR+09].

References

[ACSS12] Tadashi Ando, Edmond Chow, Yousef Saad, and Jeffrey Skol-

import re

REFERENCES

Brown:1990:HKM

Brown:1991:PMS

Brown:1994:CTN

Bollhofer:2002:FAI

Bollhofer:2002:RBI

Bekas:2005:CSE

Bollhofer:2005:MPC

1650, September 2005. CO-
DEN SJOCE3. ISSN 1064-8275
(print), 1095-7197 (electronic).
URL http://epubs.siam.org/
volume-27/art_60837.html.

[BSTC05] W. Russell Burdick, Yousef Saad,
Leeor Kronik, Igor Vasiliev,
Manish Jain, and James R. Che-
lrikowsky. Parallel implemen-
tation of time-dependent den-
sity functional theory. Computer
Physics Communications, 156
CODEN CPHCBZ. ISSN 0010-
4655 (print), 1879-2944 (elec-
sciencedirect.com/science/
article/pii/S0010465503004132.

[BSS09] M. Bellalij, Y. Saad, and
H. Sadok. Analysis of some
Krylov subspace methods for
normal matrices via approxima-
tion theory and convex optimiza-
tion. Electronic Transactions
on Numerical Analysis, 33:17–
30, 2008/2009. CODEN ?????
ISSN 1068-9613 (print), 1097-
4067 (electronic). URL http:
//etna.mcs.kent.edu/vol.33.
2008-2009/pp17-30.dir/pp17-
30.pdf.

[BSS10] M. Bellalij, Y. Saad, and
H. Sadok. Further analysis of the
Arnoldi process for eigen-
value problems. SIAM Journal
on Numerical Analysis, 48(2):
393–407, ???? 2010. CODEN SJ-
NAAM. ISSN 0036-1429 (print),
1095-7170 (electronic).

[Bekas:2005:CCD] Constantine Bekas,
Yousef Saad, Murilo L. Tiago,
and James R. Chelikowsky. Com-
puting charge densities with par-
tially reorthogonalized Lanczos. Computer
Physics Communications, 171
CODEN CPHCBZ. ISSN 0010-
4655 (print), 1879-2944 (elec-
sciencedirect.com/science/
article/pii/S0010465505003103.

Donald G. Truhlar, Youcef Saad,
Robert E. Wyatt, and Lee A. Collins,
editors. Practical Iterative Meth-
ods for Large Scale Computa-
tions: Proceedings of the Min-
nesota Supercomputer Institute
Workshop on Practical Iterative
Methods for Large Scale Computa-
tions, Minneapolis, 23–25 Oc-
tober 1988. North-Holland Pub-
lishing Co., Amsterdam, The
Netherlands, 1989. ISBN 0-444-
88023-2. LCCN QA297.8.M56
1988. Reprinted from Computer
Physics Communications, 53(1–

[Chen:2011:CLS] Jie Chen, Mihai Anitescu,
and Yousef Saad. Computing f(A)b
via least squares polynomial ap-
proximations. SIAM Journal
on Scientific Computing, 33(1):
195–222, ???? 2011. CO-

Calgaro:2010:IL

Chan:1998:PSP

Chelikowsky:2003:URS

Chen:2009:FAG

Chen:1985:MAH

Chen:1985:IMS

Chen:1986:MAH

T. F. Chan and Y. Saad. Multi-grid algorithms on the hyper-

Chelikowsky:1996:MDQ

Chelikowsky:1998:MDQ

Chen:2009:FAG

Chen:1985:MAH

Chen:1985:IMS

Chen:1986:MAH

T. F. Chan and Y. Saad. Multi-grid algorithms on the hyper-

Chelikowsky:1996:MDQ

Edmond Chow and Yousef Saad. Approximate inverse tech-
REFERENCES

REFERENCES

ISSN 1041-4347. URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4674352

Chen:2009:TSO

Chen:2012:DSE

Chow:2014:PKS

Chapman:2000:HOI

Chan:1987:SEP

Chen:2009:TSO

Chen:2012:DSE

Chow:2014:PKS

Chapman:2000:HOI

[dlGGS+05] Emmanuel Lorin de la Grandmaison, Shivaraju B. Gowda, Yousef Saad, Murilo L. Tiago, and James R. Chelikowsky. Efficient computation of the coupling matrix in time-dependent
REFERENCES

REFERENCES

Giraud:2010:SAS

Gear:1983:ISL

Gallopoulos:1987:PBC

Gallopoulos:1988:PBCa

Gallopoulos:1988:PBCb

Gallopoulos:1989:PSPa

Gallopoulos:1989:PSPb

Gallopoulos:1989:PBC

Gallopoulos:1988:PBCb

Gallopoulos:1989:PSPa

E. J. (Efstratios J.) Gallopoulos and Y. Saad. On the parallel

Gallopoulos:1989:SFE

Gallopoulos:1990:PSP

Gallopoulos:1990:ESP

Gallopoulos:1992:ESPb

Gallopoulos:1992:ESPa

Goehring:1994:HAA

Guillaume:2003:RAP

REFERENCES

Johnsson:1987:ADM

Jones:2007:CBI

Jing:1994:IMD

Kokiopoulou:2005:FRU

Kokiopoulou:2009:TOE

Kerkhoven:1987:ATD

Kerkhoven:1992:AMC

Kokiopoulou:2011:TOE

Kokiopoulou:2011:TOE
REFERENCES

REFERENCES

Little:2003:BPSb

MacLachlan:2012:MCS

Ma:1993:BAP

Ma:1994:DIS

MacLachlan:2007:GSC

MacLachlan:2007:GCS

MacLachlan:2007:GCS

[MS07b] Scott MacLachlan and Yousef Saad. Greedy coarsening strategies for nonsymmetric problems. *SIAM Journal on Sci-

Ngo:2010:TR

Ngo:2012:TR

Ogut:2003:ICL

Osei-Kuffour:2015:MRU

Osei-Kuffour:2010:PHL

Parlett:1985:CSI

Parlett:1987:CSI

REFERENCES

REFERENCES

REFERENCES

[Saa85c] Youcef Saad. Practical use of polynomial preconditionings for the conjugate gradient method. SIAM Journal on Scientific and
REFERENCES

Saad:1986:GEHa

Saad:1986:CNM

Saad:1986:CCG

Saad:1986:GEHb

Saad:1986:CNS

Saad:1987:DPNa

Saad:1987:DPNb

Saad:1987:LSP

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saa90b</td>
<td>Youcef Saad. Krylov subspace methods: theory, algorithms,</td>
</tr>
</tbody>
</table>

REFERENCES

[Saa00a] Yousef Saad. Editorial. Numerical Linear Algebra with Ap-
REFERENCES

Berlin, Germany / Heidelberg, Germany / London, UK / etc., 2007.

REFERENCES

Saad:1980:PBS

Saad:1981:IMS

Saad85e

Saad:1985:TPH

Saad:1985:DCH

Saad:1985:DPM

Saad:1985:PIP

Saad:1985:CGL

REFERENCES

PAF. ISSN 0025-5718 (paper), 1088-6842 (electronic).

scale eigenvalue problems (Argonne, IL, 1997).

REFERENCES

305–327, November 2004. CODEN ANMAEL. ISSN 0168-9274 (print), 1873-5460 (electronic).

Stathopoulos:1998:DTR

Saad:1998:DDM

Saad:2000:ISL

Saad:1988:BPSb

Saad:1988:BPSa

Saad:1989:SSH

Saad:1990:SBP

Saad:1993:DQM

Y. Saad and K. Wu. DQGMRES: a quasi-minimal residual algorithm based on incomplete or-

Saad:1999:BDB

Saad:1999:DTT

Saad:2001:EML

Tang:2011:DDT

Tang:2012:PMC

Tiago:2006:EMI

Vecharynski:2014:FUA

Vecharynski:2014:GPU

Wu:1993:PCM

Wu:1998:INP

Zhou:2014:CFS

Zhou:2007:CD

Zhou:2008:BKS

Zhou:2006:PSC

Zhou:2006:SCF