
BIBPARSE(1) General Commands Manual BIBPARSE(1)

NAME
bibparse − verify a bibclean or biblex lexical token stream, or BibTeX files

SYNOPSIS
bibparse [−d] <infile
or
bibparse [−d] file1 file2 file3 . . .

DESCRIPTION
Compilation of a computer language is traditionally divided into three steps:

• Lexical analysis is the grouping of consecutive characters into units, calledtokens, that are meaningful
in a particular language.bibclean(1) andbiblex(1) are two programs that do this job for BIBTEX data.

• Parsing is the processing of the lexical analysis token sequence to verify that tokens appear in an order
permitted by the language rules, called thegrammar. bibparsedoes this for BIBTEX data.

• Semantic analysis, or code generation, is the interpretation of a grammar-conformant token stream to
perform an intended task. For example,bibtex(1) transforms BIBTEX data according to rules in a user-
specified style file into formatted bibliographic data suitable for a typesetting system.

Although bibtex(1) includes internal implementations of lexical analysis and parsing, it does not make
them available to the user.

bibparse takes a lexical token stream frombibclean(1) or frombiblex(1), or BIBTEX files directly, and ver-
ifies their conformance to a proposed grammar for BIBTEX, published in the articles

Nelson H. F. Beebe,Bibliography prettyprinting and syntax checking, TUGboat (ISSN 0896-3207)
14(3) 222, October 1993, and TUGboat14(4) 395--419, December 1993.

The text of the latter is included with thebibclean(1) distribution.

The only output normally produced bybibparse is on the standard error unit,stderr, and then only if gram-
matical errors are detected. Silent execution means a successful parse.

The program exit code is zero on a successful parse, and non-zero otherwise.

For example, you can syntax check a bibliography collection by any of these three UNIX pipelines:
bibclean -no-prettyprint *.bib | bibparse
biblex *.bib | bibparse
bibparse *.bib

bibparse distinguishes between lexical token streams and BIBTEX files by examination of thefirst charac-
ter of each input file: if it is a sharp sign, ‘#’, then it is assumed to be the start of a line-number directive in
a lexical token stream. Otherwise, it is assumed to be a BIBTEX file. bibparse then selects one of two
internal lexical analyzers: a simple one that reads a lexical token stream from a file, or the complex one
from biblex(1) linked into thebibparseexecutable.

OPTIONS
−d Write debug output to the standard output stream,stdout. This output is extremely verbose: it

includes a record of each lexical token found, and how it is parsed according to the BIBTEX gram-
mar.

If you are puzzled by an error message reported bybibparse, you are advised to extract the
BIBTEX entry at, and possibly, immediately preceding, the line number in the diagnostic, then save
that data in a temporary file and runbibparse −d on that small file, so as not to be overwhelmed
by the output.

BIBTEX GRAMMAR
Here is a slightly-reformatted listing of the BIBTEX grammar, defined in detail in the articles cited above,
and taken directly from thebibparse source code, which is transformed by aparser generatorlike UNIX
yacc(1), or GNUbison(1), into a C-language program which can then be compiled by either C or C++
compilers, and then linked to produce thebibparseexecutable program.

The tokens, also calledterminals in a grammar, that are recognized bybibclean(1) andbiblex(1) are
spelled inUPPERCASEletters.

Version 1.09 18 February 2015 1

BIBPARSE(1) General Commands Manual BIBPARSE(1)

Nonterminals, which are intermediate stages in the grammar processing, are spelled inlowercase letters.
Each nonterminal referred to in the grammar eventually defines a grammar rule, which takes the form of a
nonterminal, a colon, and one or more alternative expansions, separated by a vertical bar.

Interspersed in the rule expansions are bracedactionswhich are to be invoked when the input token stream
matches that rule. Here, they are simply calls to a functionRECOGNIZE() which, when debug output is
requested, prints its argument, followed by a newline, and then returns silently.

Internally, the parser does not deal with character strings at all: both terminals and nonterminals are simply
small integer values that it manipulates on stacks using highly-efficient pattern matching to determine
whether they match grammar rules.

The first three lines of the grammar below define the precedence of four tokens, so as to disambiguate cases
where two rules would match the current token sequence.

The first rule, also called thestart symbol, says that afile is either optional space, or anobject_list
optionally preceded and followed by space. Thus, an empty file, or one consisting only of space, is a valid
BIBTEX file.

The remaining rules are read similarly.

Most programming language grammars omit specification of rules for comments and spacing, assuming
merely that they are permitted anywhere between tokens; this assumption simplifies the grammar signifi-
cantly.

However, grammars for prettyprinters need to include rules for spacing because there may be circumstances
where such spacing is significant for program layout and human readers. Space information is also
required by unlexers, likebibunlex(1), which take a possibly-modified lexical token stream, and recon-
struct a source program from it. Thus, this grammar includes precise rules for where spaces are permitted.
%nonassoc EQUALS

%left SPACE INLINE NEWLINE

%left SHARP

%%

file: opt_space {RECOGNIZE("file-1");}

| opt_space object_list opt_space {RECOGNIZE("file-2");}

;

object_list: object {RECOGNIZE("object-1");}

| object_list opt_space object {RECOGNIZE("object-2");}

;

object: AT opt_space at_object {RECOGNIZE("object");}

;

at_object: comment {RECOGNIZE("comment");}

| entry {RECOGNIZE("entry");}

| include {RECOGNIZE("include");}

| preamble {RECOGNIZE("preamble");}

| string {RECOGNIZE("string");}

| error RBRACE {RECOGNIZE("error");}

;

comment: COMMENT opt_space LITERAL {RECOGNIZE("comment");}

;

entry: entry_head assignment_list

RBRACE {RECOGNIZE("entry-1");}

| entry_head assignment_list

Version 1.09 18 February 2015 2

BIBPARSE(1) General Commands Manual BIBPARSE(1)

COMMA opt_space RBRACE {RECOGNIZE("entry-2");}

| entry_head RBRACE {RECOGNIZE("entry-3");}

;

entry_head: ENTRY opt_space

LBRACE opt_space

key_name opt_space

COMMA opt_space {RECOGNIZE("entry_head");}

;

key_name: KEY {RECOGNIZE("key_name-1");}

| ABBREV {RECOGNIZE("key_name-2");}

;

include: INCLUDE opt_space LITERAL {RECOGNIZE("include");}

;

preamble: PREAMBLE opt_space

LBRACE opt_space

value opt_space

RBRACE {RECOGNIZE("preamble");}

;

string: STRING opt_space

LBRACE opt_space

assignment

opt_space RBRACE {RECOGNIZE("string");}

;

value: simple_value {RECOGNIZE("value-1");}

| value opt_space {RECOGNIZE("value-1-1");}

SHARP {RECOGNIZE("value-1-2");}

opt_space simple_value {RECOGNIZE("value-2");}

;

simple_value: VALUE {RECOGNIZE("simple_value-1");}

| ABBREV {RECOGNIZE("simple_value-2");}

;

assignment_list: assignment {RECOGNIZE("single assignment");}

| assignment_list COMMA opt_space

assignment {RECOGNIZE("assignment-list");}

;

assignment: assignment_lhs opt_space

EQUALS opt_space {RECOGNIZE("assignment-0");}

value opt_space {RECOGNIZE("assignment");}

;

assignment_lhs: FIELD {RECOGNIZE("assignment_lhs-1");}

| ABBREV {RECOGNIZE("assignment_lhs-2");}

;

opt_space: /* empty */ {RECOGNIZE("opt_space-1");}

Version 1.09 18 February 2015 3

BIBPARSE(1) General Commands Manual BIBPARSE(1)

| space {RECOGNIZE("opt_space-2");}

;

space: single_space {RECOGNIZE("single space");}

| space single_space {RECOGNIZE("multiple spaces");}

;

single_space: SPACE

| INLINE

| NEWLINE

;

PERFORMANCE
As a demonstration of the efficiency of parsing, tests were carried out on a Sun 336MHz UltraSPARC sys-
tem, with all programs compiled at the highest optimization level, and present in the current directory, using
a 4MB test file (the largest from the TEX User Group bibliography archive) present in the memory-mapped
/tmp directory for fast access. The tests were run ten times inside a shell script to amortize the script
startup time, and the total wall-clock time (from the UNIXtime(1) command) for each script’s execution
was then divided by ten to produce these results:

Program pipeline Time Relative

time

bibclean -no-prettyprint -no-warnings | bibparse 3.786s 3.67
bibtex 3.313s 3.21
biblex | bibparse 2.403s 2.33
bibparse 1.030s 1.00

The BIBTEX run used the TEX \nocite{*} command to generate citations in theis-alpha style of
ev ery entry in the bibliography.

The addition of support inbibparse version 1.04 for direct processing of BIBTEX files via an internal copy
of thebiblex(1) lexical analyzer has thus produced a 2.3-times speedup over previous versions that required
biblex(1), and at data rates of 4MB/s, the programs are fast enough on 1999-vintage desktop computers to
require only a small fraction of a second to process a typical BIBTEX bibliography, so they can be used rou-
tinely to validate such files.

SEE ALSO
bibcheck(1), bibclean(1), bibdup(1), bibextract(1), bibjoin (1), biblabel(1), biblex(1), biborder (1), bib-
search(1), bibsort(1), bibtex(1), bibunlex(1), citefind(1), citesub(1), citetags(1), latex(1), scribe(1),
tex(1).

AUTHOR
Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Email:beebe@math.utah.edu , beebe@acm.org , beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/˜beebe
Telephone: +1 801 581 5254
FAX: +1 801 581 4148

Version 1.09 18 February 2015 4

