
LCC(1) LCC(1)

NAME
lcc − ANSI/ISO C compiler

SYNOPSIS
lcc [option | file]. . .

DESCRIPTION
lcc is an ANSI/ISO C compiler for a variety of platforms.

Arguments whose names end with ‘.c’ (plus ‘.C’ under Windows) are taken to be C source programs; they
are preprocessed, compiled, and each object program is left on the file whose name is that of the source
with ‘.o’ (UNIX) or ‘.obj’ (Windows) substituted for the extension. Arguments whose names end with ‘.i’
are treated similarly, except they are not preprocessed. In the same way, arguments ending with ‘.s’ (plus
‘.S’, ‘.asm’, and ‘.ASM’, under Windows) are taken to be assembly source programs and are assembled,
producing an object file. If there are no arguments,lcc summarizes its options on the standard error.

lcc deletes an object file if and only if exactly one source file is mentioned and no other file (source, object,
library) or−l option is mentioned.

If the environment variableLCCINPUTS is set,lcc assumes it gives a semicolon- or colon-separated list of
directories in which to look for source and object files whose names do not begin with ‘/’. These directo-
ries are also added to the list of directories searched for libraries. IfLCCINPUTS is defined, it must con-
tain ‘.’ in order for the current directory to be searched for input files.

lcc uses ANSI/ISO Standard header files (see ‘FILES’ below). Include files not found in the ANSI/ISO
header files are taken from the normal default include areas, which usually includes/usr/include. Under
Windows, if the environment variableINCLUDE is defined, it gives a semicolon-separated list of directo-
ries in which to search for header files.

OPTIONS
lcc interprets the following options; unrecognized options are taken as loader options (seeld(1)) unless−c,
−S, or −E precedes them. Except for−l, all options are processed before any of the files and apply to all of
the files. Applicable options are passed to each compilation phase in the order given.

GNU/POSIX style−−option syntax is recognized as equivalent to−option.

−c Suppress the loading phase of the compilation, and force an object file to be produced even if only
one program is compiled.

−copyright
Display copyright information on the standard output, and exit immediately with a success status
code.

This option may be abbreviated to any unique prefix at least as long as−co.

−g Produce additional symbol table information for the local debuggers.lcc warns when−g is unsup-
ported.

−Wf,−gn,x
Set the debugging level ton and emit source code as comments into the generated assembly code;
x must be the assembly language comment character. Ifn is omitted, it defaults to 1, which is sim-
ilar to −g. Omitting ,x just sets the debugging level ton.

−w Suppress warning diagnostics, such as those announcing unreferenced statics, locals, and parame-
ters. The line#pragma ref idsimulates a reference to the variableid.

−d f Generate jump tables for switches whose density is at leastf , a floating-point constant between
zero and one. The default is 0.5.

−A Warn about declarations and casts of function types without prototypes, assignments between
pointers toints and pointers toenums, and conversions from pointers to smaller integral types.

A second−A warns about unrecognized control lines, nonANSI/ISO language extensions and
source characters in literals, unreferenced variables and static functions, declaring arrays of incom-
plete types, and exceedingsomeANSI/ISO environmental limits, such as more than 257 cases in

local − $Date: 2001/04/02 13:52:16 $ 1

LCC(1) LCC(1)

switches. It also arranges for duplicate global definitions in separately compiled files to cause
loader errors.

−P Writes declarations for all defined globals on standard error. Function declarations include proto-
types; editing this output can simplify conversion to ANSI/ISO C. This output may not corre-
spond to the input when there are severaltypedefs for the same type.

−n Arrange for the compiler to produce code that tests for dereferencing zero pointers. The code
reports the offending file and line number and callsabort(3).

−O This option is ignored (with a warning):lcc does not provide additional optimization levels.

−S Compile the named C programs, and leave the assembler-language output on corresponding files
suffixed ‘.s’ or ‘.asm’.

−E Run only the preprocessor on the named C programs and unsuffixed file arguments, and send the
result to the standard output.

−o output
Name the output fileoutput. If −c or −S is specified and there is exactly one source file, this
option names the object or assembly file, respectively. Otherwise, this option names the final
executable file generated by the loader, and ‘a.out’ (UNIX) or ‘ a.exe’ (Windows) is left undis-
turbed. lcc warns if−o and−c or −S are given with more than one source file and ignores the−o
option.

−Dname=def
Define thenameto the preprocessor, as if by ‘#define’. If=def is omitted, the name is defined as
"1".

−Uname
Remove any initial definition ofname.

−Idir ‘#include’ files whose names do not begin with ‘/’ are always sought first in the directory of the
file arguments, then in directories named in−I options, then in directories on a standard list.

−Ldir Add directorydir to the library search path.

−lname Add library nameto the list of libraries to be searched. The library is searched before all default
libraries. On UNIX systems, this usually maps to the filelibname.a(static linking), orlibname.so
(dynamic linking), found first in the library search path.

−dynamic
Request dynamic linking with shared libraries, instead of static linking. This is the default. This
option is recognized on all platforms, but may be silently ignored on some.

−static Request static linking, instead of the default dynamic linking with shared libraries. This option is
recognized on all platforms, but may be silently ignored on some.

−M Suppress normal preprocessor output, compilation, and linking, and produceMakefileobject file
dependencies instead.

If −M is given at least once, generate a list of dependencies on quoted header files (#include
"myfile.h"), and write them on the standard output unit.

If −M is given more than once, the output also includes dependencies on angle-bracketed header
files (#include<sysfile.h>).

−N Do not searchanyof the standard directories for ‘#include’ files. Only those directories specified
by subsequent explicit−I options will be searched, in the order given.

−Bstr Use the compiler componentstrrcc instead of the default version. Note thatstr often requires a
trailing slash.

This option is deprecated, and may disappear in a future release, since its job can be done by the
−Wo,−rcc=path-to-alternate-rccoption, one of four that permit changing any of the compiler’s
internally-invoked components.

local − $Date: 2001/04/02 13:52:16 $ 2

LCC(1) LCC(1)

On Sun Solaris systems only,−Bstatic and−Bdynamic are recognized and passed to the loader;
seeld(1). They are provided only for compatibility with native compilers; thelcc-standard options
−dynamic or −static should normally be used in their place.

−Wxarg
−Wx,arg

Pass argumentarg to the program indicated byx; x can be one ofp, f (or 0), a, l, or o, which refer,
respectively, to the preprocessor, the compiler proper, the assembler, the loader, or a system-spe-
cific option. arg is passed as given; if a− is expected, it must be given explicitly.

POSIX uses a comma in the fourth character; its use withlcc is optional. Documentation of other
−W options here includes that comma.

−Wf,−a
Read aprof.outfile from a previous execution and use the data therein to compute reference counts
(see−b).

lcc assigns the most frequently-referenced scalar parameters and locals to registers whenever pos-
sible. For each block, explicit register declarations are obeyed first; remaining registers are
assigned to automatic locals if they are ‘referenced’ at least 3 times. Each top-level occurrence of
an identifier counts as 1 reference. Occurrences in a loop, either of thethen/elsearms of anif
statement, or acasein a switch statement each count, respectively, as 10, 1/2, or 1/10 references.
These values are adjusted accordingly for nested control structures.

−Wf,−C
Produce code to count the number of function calls. See also−b.

−Wf,−html
When used with−Wf,−target=symbolic, this option causes the text rendition to be emitted as
strictly grammar-conformant HTML, complete with hypertext links for cross references in the
code!

−Wf,−target=architecture/os
lcc is also a cross compiler; this option causes it to generate code forarchitecturerunning the
operating system denoted byos. The supportedarchitecture/oscombinations may include

alpha/linux Compaq/DEC Alpha, GNU/Linux
alpha/osf Compaq/DEC Alpha, OSF/1 3.2, 4.x
mips/irix big-endian MIPS Rx000, IRIX 5.2, 6.x
mips/linux big-endian MIPS Rx000, GNU/Linux
mips/ultrix little-endian MIPS Rx000, ULTRIX 4.3
null no output
sparc/linux Sun SPARC, GNU/Linux
sparc/solaris Sun SPARC, Solaris 2.x
sparc/sun Sun SPARC, SunOS 4.x
symbolic text rendition of the generated code
symbolic/osf text rendition of the generated code for Compaq/DEC OSF/1
symbolic/irix text rendition of the generated code for SGI IRIX
x86/freebsd Intel x86, FreeBSD
x86/linux Intel x86, GNU/Linux
x86/solaris Intel x86, Sun Solaris 2.x
x86/win32 Intel x86, Windows NT 4.0/Windows 95/98/2000

Additional combinations that may be supported in the future, if code-generation support is com-
pleted, include

ia64/freebsd HP/Intel IA-64, FreeBSD
ia64/linux HP/Intel IA-64, GNU/Linux
ia64/win32 HP/Intel IA-64, Windows NT 4.0/Windows 95/98/2000
ia64/win64 HP/Intel IA-64, Windows-64

local − $Date: 2001/04/02 13:52:16 $ 3

LCC(1) LCC(1)

parisc/hpux HP PA-RISC, HP-UX 10.x, 11.x
parisc/linux HP PA-RISC, GNU/Linux
ppc/aix PowerPC, IBM AIX 4.x
ppc/linux PowerPC, GNU/Linux
ppc/macosx PowerPC, Mac OS X (Darwin, Rhapsody)

lcc can be built even on platforms for which no code generator is yet available. In this case, you
can use it for fast syntax checking, e.g., with−Wf,−target=null −S, and for cross assembly. You
can also use it to link existing object files produced by another C compiler.

For user convenience, when a−Wf,−target=xxx option requests nonnative code generation,
assembly and linking are automatically suppressed, as if an explicit−S option had been given.
With −Wf,−target=null , no .sfile is produced at all.

−Wf,−unsigned_char=1
−Wf,−unsigned_char=0

Make plainchar an unsigned (1, or nonzero) or signed (0) type.

By default,char is signed on all platforms on whichlcc runs. Note that this may differ from the
choice made by other C compilers on the same platform.

You can test at runtime for the signedness ofchar: the expression(char)(-1) will be negative if
char is signed, and positive if it is signed.

An alternate test, using the sign of the value ofSCHAR_MIN from <limits.h>, is known to fail
with other compilers on a few platforms because of implementation errors.lcc handles that test
correctly.

Since preprocessor symbol values in<limits.h>, and possiblytypedefs as well, may depend on
the signedness ofchar, care should be taken to ensure that the same value of this option is used if
preprocessing is done separately from compilation.

−Wf,−wchar_t=unsigned_char
−Wf,−wchar_t=unsigned_short
−Wf,−wchar_t=unsigned_int

Makes wide characters the type indicated.

By default, forlcc, wide characters areunsigned short int, andwchar_t is a typedef defined in
<stddef.h>. The definition forwchar_t in <stddef.h> changes according to the setting of this
option. For that reason, care should be taken to ensure that the same value of this option is used if
preprocessing is done separately from compilation.

−Wo,−o32
−Wo,−32
−Wo,−n32
−Wo,−64

This option applies only to SGI IRIX systems, and specifies one of the four memory models sup-
ported. IRIX 5.x has only−o32 and−n32, while IRIX 6.x treats−32 as equivalent to−o32, and
adds−64.

The default for both IRIX 5.x and 6.x is−o32.

lcc support for the−n32 model is incomplete, so although the option is recognized, and accepted,
the resulting code is likely to fail at assembly or link time.

lcc does not yet have 64-bit code-generation support, so although−Wo,−64 is recognized, it raises
an error.

For further description of these memory models, seecc(1).

−Wo,−as=path-to-alternate-assembler
Use the specified assembler, instead of thelcc default one.

local − $Date: 2001/04/02 13:52:16 $ 4

LCC(1) LCC(1)

The assembler can also be defined by setting theLCCAS environment variable, but any such value
is overridden by an explicit command-line−Wo,−as=xxxoption.

−Wo,−cpp=path-to-alternate-cpp
Use the specified C preprocessor, instead of thelcc default one.

On many systems, the C preprocessor is not expected to be invoked directly by users, so it is not in
the defaultPA TH. Consequently, this option normally requires the full path to the C preprocessor.

The defaultlcc preprocessor strictly conforms to the ANSI/ISO C89 Standard, but some platforms
have preprocessor language extensions in system header files, preventing their use by Standard-
conformant preprocessors. The proper way to handle this is to writelcc-specific versions of those
header files for installation inlcc’s own includedirectory. Howev er, until that can be done, during
installation and bootstrapping on a new system with extended header files, this option provides a
way to use an extended preprocessor. Oncelcc has been properly installed, ordinary user pro-
grams shouldneverrequire this option.

The preprocessor can also be defined by setting theLCCCPP environment variable, but any such
value is overridden by an explicit command-line−Wo,−cpp=xxxoption.

−Wo,−lccdir=dir
Find the preprocessor, compiler proper, and include directory in the directorydir/ or dir\. If the
environment variableLCCDIR is defined, it gives this directory.lcc warns when this option is
unsupported.

−Wo,−ld=path-to-alternate-ld
Use the specified loader, instead of thelcc default one.

The preprocessor can also be defined by setting theLCCLD environment variable, but any such
value is overridden by an explicit command-line−Wo,−ld=xxxoption.

Becauseld(1) implementations vary so widely in their command-line options, and becauselcc has
a long built-in list of options to pass to the loader, it is unlikely that this option will work, unless
you choose a loader implementation that is command-line compatible with the default one, which
you can determine by examining the output from the−v option.

−Wo,−rcc=path-to-alternate-rcc
Use the specified lexer, parser and code-generator component,rcc(1), instead of thelcc default
one.

The component can also be defined by setting theLCCRCC environment variable, but any such
value is overridden by an explicit command-line−Wo,−rcc=xxxoption.

−v Print commands as they are executed; some of the executed programs are directed to print their
version numbers. More than one occurrence of−v causes the commands to be printed, butnot
executed.

−version
Display version information on the standard output, and exit immediately with a success status
code.

This option may be abbreviated to any unique prefix at least as long as−ve.

−help or −?
Print a message on the standard error summarizinglcc’s options and giving the values of the envi-
ronment variablesLCCINPUTS andLCCDIR , if they are defined. Under Windows, the values
of INCLUDE andLIB are also given, if they are defined.

−b Produce code that counts the number of times each expression is executed. If loading takes place,
arrange for aprof.outfile to be written when the object program terminates. A listing annotated
with execution counts can then be generated withbprint (1). lcc warns when−b is unsupported.
−Wf,−C is similar, but counts only the number of function calls.

local − $Date: 2001/04/02 13:52:16 $ 5

LCC(1) LCC(1)

−p Produce code that counts the number of times each function is called. If loading takes place,
replace the standard startup function by one that automatically callsmonitor (3) at the start and
arranges to write amon.outfile when the object program terminates normally. An execution pro-
file can then be generated withprof (1). lcc warns when−p is unsupported.

−pg Causes the compiler to produce counting code like−p, but invokes a run-time recording mecha-
nism that keeps more extensive statistics and produces agmon.outfile at normal termination.
Also, a profiling library is searched, in lieu of the Standard C library. An execution profile can
then be generated withgprof(1). lcc warns when−pg is unsupported.

−tname
−t Produce code to print the name of the function, an activation number, and the name and value of

each argument at function entry. At function exit, produce code to print the name of the function,
the activation number, and the return value. By default,printf does the printing; ifnameappears,
it does. For nullchar* values, "(null)" is printed.−target nameis accepted, but ignored.

−tempdir=dir
Store temporary files in the directorydir/ or dir\. The default is usually/tmp.

Other arguments are taken to be either loader option arguments, or C-compatible object programs, typically
produced by an earlierlcc run, or perhaps libraries of C-compatible routines. Duplicate object files are
ignored. These programs, together with the results of any compilations specified, are loaded (in the order
given) to produce an executable program with namea.out(UNIX) or a.exe(Windows).

LIMITATIONS
lcc accepts the C programming language as described in the ANSI/ISO Standard. Iflcc is used with the
GNU C preprocessor, the−Wp,−trigraphs option is required to enable trigraph sequences.

Plain int bit fields are signed. Bit fields are aligned like unsigned integers but are otherwise laid out as by
most Standard C compilers. Some compilers, such as the GNU C compiler, may choose other, incompati-
ble layouts.

Likewise, calling conventions are intended to be compatible with the host C compiler, except possibly for
passing and returning structures. Specifically,lcc passes and returns structures like host ANSI/ISO C com-
pilers on most targets, but some older host C compilers use different conventions. Consequently, calls
to/from such functions compiled with older C compilers may not work. Calling a function that returns a
structure without declaring it as such violates the ANSI/ISO Standard and may cause a fault.

ENVIRONMENT VARIABLES
The behavior oflcc can be influenced by these environment variables:

LCCAS Path to alternate assembler. This can be overridden by an explicit command-line
−Wo,−as=xxxoption.

LCCCPP Path to an alternate C preprocessor. This can be overridden by an explicit com-
mand-line−Wo,−cpp=xxxoption.

LCCDIR Alternate directory tree in which to find the preprocessor, compiler, and include
directory. To see the default directory tree, runlcc with the−v option:cpp(1) and
rcc(1) will share a common path that is the default.

LCCDIR is used beforeLCCAS, LCCCPP, LCCLD , andLCCRCC , so that
they can override it.

LCCINPUTS Directory search path, separated by colons or semicolons, in which to look for
source and object files whose names do not begin with ‘/’. These directories are
also added to the list of directories searched for libraries.

LCCLD Path to an alternate loader. This can be overridden by an explicit command-line
−Wo,−ld=xxxoption.

LCCRCC Path to an alternate lexer, parser, and code generator. This can be overridden by
an explicit command-line−Wo,−rcc=xxxoption.

local − $Date: 2001/04/02 13:52:16 $ 6

LCC(1) LCC(1)

TEMP Directory in which temporary files should be written. If specified, this variable
overrides the settings of anyTMPDIR variable, but is itself overridden byTMP .

TMP Directory in which temporary files should be written. If specified, this variable
overrides the settings of anyTEMP or TMPDIR variables.

TMPDIR Directory in which temporary files should be written. This variable is overridden
by bothTMP andTEMP .

Under Microsoft Windows only,lcc recognizes two additional variables:

INCLUDE
Semicolon-separated list of directories in which to search for header files.

LIB Semicolon-separated list of libraries to search.

FILES
The file names listed below aretypical, but vary among installations; installation-dependent variants can be
displayed by runninglcc with the−v option.

file.{c,C} input file
file.{s,asm} assembly-language file
file.{o,obj} object file
a.{out,exe} loaded output
/tmp/lcc* temporary files
$LCCDIR/cpp preprocessor
$LCCDIR/rcc compiler (lexer, parser, and code generator)
$LCCDIR/liblcc.{a,lib} lcc-specific library
/lib/crt0.o runtime startup (UNIX)
/lib/[gm]crt0.o startups for profiling (UNIX)
/lib/libc.a standard library (UNIX)
$LCCDIR/include ANSI/ISO Standard headers
/usr/local/include local headers
/usr/include traditional headers
prof.out file produced forbprint (1)
mon.out file produced forprof (1)
gmon.out file produced forgprof(1)

lcc predefines the macro__LCC__ on all systems. It may also predefine some installation-dependent sym-
bols; option−v exposes them. For a nice sorted list, try

csh/tcsh:
lcc -v -v -E foo.c |& tr ’ ’ ’\n’ | grep -e - | sort
sh/ksh/bash:
lcc -v -v -E foo.c 2>&1 | tr ’ ’ ’\n’ | grep -e - | sort

SEE ALSO
as(1), bprint (1), c89(1), cc(1), collect2(1), cpp(1), gas(1), gcc(1), gprof(1), lcc-cpp(1), ld(1), pgcc(1),
prof (1), rcc(1).

C. W. Fraser and D. R. Hanson,A Retargetable C Compiler: Design and Implementation,Addison-Wesley,
1995. ISBN 0-8053-1670-1.

The World-Wide Web page athttp://www.cs.princeton.edu/software/lcc/ .

S. P. Harbison and G. L. Steele, Jr.,C: A Reference Manual, 4th ed., Prentice-Hall, 1995.

B. W. Kernighan and D. M. Ritchie,The C Programming Language, 2nd ed., Prentice-Hall, 1988.

American National Standards Inst.,American National Standard for Information Systems—Programming
Language—C, ANSI X3.159-1989, New York, 1990.

International Organization for Standardization,ISO/IEC 9899:1990: Programming languages — C,
Geneva, Switzerland, 1990.

local − $Date: 2001/04/02 13:52:16 $ 7

LCC(1) LCC(1)

BUGS
Mail bug reports along with the shortest preprocessed program that exposes them and the details reported
by lcc’s −v option to lcc-bugs@princeton.edu . The World-Wide Web page at URL
http://www.cs.princeton.edu/software/lcc/ includes detailed instructions for reporting
bugs.

The ANSI/ISO Standard headers conform to the specifications in the Standard, which may be too restrictive
for some applications, but necessary for portability. Functions given in the ANSI headers may be missing
from some local C libraries (e.g., wide-character functions) or may not correspond exactly to the local ver-
sions; for example, the ANSI/ISO Standard<stdio.h> specifies thatprintf , fprintf , andsprintf return the
number of characters written to the file or array, but some existing libraries don’t implement this conven-
tion.

On the MIPS and SPARC, old-style variadic functions must use<varargs.h> from MIPS or Sun. New-style
is recommended.

With −b, files compiledwithout−b may causebprint to print erroneous call graphs. For example, iff calls
g calls h and f andh are compiled with−b, but g is not,bprint (1) will report thatf calledh. The total
number of calls is correct, however.

local − $Date: 2001/04/02 13:52:16 $ 8

