linopt::Transparent::result -- get the
basic feasible solution belonging to the given simplex tableau
Introductionlinopt::Transparent::result(tableau)
returns the basic feasible solution belonging to the given simplex
tableau tableau.
Call(s)linopt::Transparent::result(tableau)
Parameterstableau |
- | a simplex tableau of domain type
linopt::Transparent |
Returnsa set containing the values of the user defined variables for the feasible solution.
Related
Functionslinopt::Transparent, linopt::Transparent::dual_prices
Detailslinopt::Transparent::dual_prices.
Example
1We first compute an edge for an initial simplex tableau:
>> k := [[x <= 1, y <= 1, x + y >= 2], 0, NonNegative]: t := linopt::Transparent(k): linopt::Transparent::result(t)
{x = 0, y = 0}
Now we compute the edge for the final tableau, which is
identical to the optimal solution of the linear program given by
k. We get the final simplex tableau by using linopt::Transparent::simplex:
>> t := linopt::Transparent(k): t := linopt::Transparent::simplex(t): linopt::Transparent::result(t)
{x = 1, y = 1}
>> linopt::minimize(k)
[OPTIMAL, {x = 1, y = 1}, 0]
>> delete k, t:
BackgroundPapadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, 1982.
Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization. New York, Wiley, 1988.
Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-Holland, 1989.
Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.
Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre Anwendungen. Munich, Hanser, 1992.
Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of Operational Research 72(1994)312-322. North-Holland, 1994.
Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston, Kluwer Academic Publishers, 1994.