
Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 1 - PA-1C600-0l
Section 4 (II)

Issue 1, 1 October 1977
AT&TCo SPCS

EXEC(II) EXEC(II)

NAME
exec, execl, execv - execute a file

SYNOPSIS
(exec = 11.)
sys exec; name; args

name: < ... \0>

args: arg0; argl; ... ; 0
arg0: < \0>
argl: < \0>

execltname, arg0, argl, ... , argn, 0)
char *name, *arg0, *argl, ... , *argn;

execv (name, argv)
char *name;
char *argv[I;

DESCRIPTION
Exec overlays the calling process with the named file, then transfers to the beginning of the
core image of the file. There can be no return from the file; the calling core image is lost.

Files remain open across exec calls. Ignored signals remain ignored across exec, but signals that
are caught are reset to their default values.

Each user has a real user ID and group ID and an effective user ID and group ID. The real ID
identifies the person using the system; the effective ID determines his access privileges. Exec
changes the effective user and group ID to the owner of the executed file if the file has the
"set-user-ID" or "set-group-ID" modes. The real user ID is not affected.

The form of this call differs somewhat depending on whether it is called from assembly
language or C; see below for the C version.

The first argument to exec is a pointer to the name of the file to be executed. The second is
the address of a null-terminated list of pointers to arguments to be passed to the file. Conven-
tionally, the first argument is the name of the file. Each pointer addresses a string terminated
by a null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of
pointers to the argument strings. The arguments are placed as high as possible in core.

sp--+
arg0

argn
-1

arg0:

nargs

argn:

<arg0\0>

<argn\0>

From C, two interfaces are available. exec/ is useful when a known file with known arguments
is being called; the arguments to exec/ are the character strings constituting the file and the ar-
guments; as in the basic call, the first argument is conventionally the same as the file name (or

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 2 - PA-1C600-0l
Section 4 (II)

Issue 1, 1 October 1977
AT&TCo SPCS

EXEC(Il) EXEC(II)

its last component). A O argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the ar-
guments. The last argument string must be followed by a O pointer.

When a C program is executed, it is called as follows:

main (argc, argv)
int argc;
char **argv;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file.

Argv is not directly usable in another execv, since argviargcl is -1 and not 0.

SEE ALSO
fork (II)

l)IA<;NOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407, 410,
or 411 octal as first word), if maximum memory is exceeded, or if the arguments require more
than 5120 bytes a return from exec constitutes the diagnostic; the error bit (c-bit) is set. Even
for the super-user, at least one of the execute-permission bits must be set for a file to be exe-
cuted. From C the returned value is -1.

