MAKE (1) CB-UNIX 2.1 MAKE (1)

"F’. Thus, $(@D) refers to the directory part of the string $@. If there is no directory part, "./"
is generated. The only macro excluded from this aiternative form is $2. The reasons for this are
debatable.

Suffixes
Certain names (for instance, those ending with *.0’) have inferable prerequisites such as ‘.¢’,
‘.s’, etc. If no update commands for such a file appear in makefile, and if an inferable prere-
quisite exists, that prerequisite is compiled to make the target. In this case, Make has inference
rules which allow building files from other files by examining the suffixes and determining an
appropriate inference rule to use. The current default inference rules are: .

€ ¢ sh sh™ co "o c".c 5.0 570 .yo .y0 lo S0 .yc y.e le ca
c".a .s".a .h"h

(The internal rules for make are contained in the source file "rules.c” for the make program.
These rules are expected to be locally modified. To print out the rules compiled into the make
on any machine in a form suitable for recompilation the following command is used:

make -fp - 2>/dev/null </dev/null

The only peculiarity in this output is the "(null)" string which printf(3) prints when handed a
null string.)

The tilda in the above rules refers to an SCCS file. Thus, the rule ".c”.0" would transform an
SCCS C source file into an object file (".0"). Since the "s." of the SCCS files is a prefix it is
incompatible with the "suffix" point of view of make. Hence, the tilda is a way of changing any
file reference into an SCCS file reference.

A rule with only one suffix (i.e. ".c:") is the definition of how to build "x" from "x.c". In effect,
the other suffix is nuil. This is useful for building targets from only one source file. (e.g. shell
procedures, simpie C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant; the
first possible name for which both a file and a rule exist is inferred as a prerequisite. The
default list is: '

SUFFIXES: oc.y.l.s

(Here, again, the above command for printing the internal rules will display the list of suffixes
implemented on the current machine.) Multiple suffix lists accumulate; .SUFFIXES: with no
dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly:

pgm: a.0 b.o
cc a.0 b.o —o0 pgm
a.0 b.o: incl.h

This is because make has a set of internal rules for building files. The user may add rules to
this list by simply putting them in the makefile.

Certain macros are used by the default inference rules to permit the inclusion of optional
matter in any resulting commands. For example, CFLAGS, LFLAGS, and YFLAGS are used
for compiler options to cc, lex and yacc(1) respectively. Again, the previous method for exa-
mining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix .o from a
file with suffix .c is specified as an entry with ".c.0:" as the ‘target’ and no dependents. Shell
commands associated with the target define the rule for making a ".0" file from a ".¢" file. Any
target which has no slashes in it and starts with a dot is identified as a rule and not a true target.

November 1979 Page 3 i November 1979

MAKE (1) CB~UNIX 2.1 MAKE (1)

Libraries

Options

If a target or dependency name contains parenthesis, it is assumed to be an archive library, the
string within parenthesis referring to a member within the library. Thus "lib(file.0)" and
"$(LIB) (file.0)" both refer to an archive library which contains "file.0". (This assumes the "LIB"
macro has been previously defined.) The expression "$(LIB) (filel.o file2.0)" is not legal. Rules
pertaining to archive libraries have the form " XX.a" where the "XX" is the suffix from which
the archive member is to be made. An unfortunate byproduct of the current implementation
requires the "XX" to be different from the suffix of the archive member. Thus, one cannot
have "lib(file.0)" depend upon "file.o" explicitly. The most common use of the archive interface
is as follows (Here, we assume the source files are all C type source):

lib: lib(file1.0) lib(file2.0) lib(file3.0)
@echo lib is now up to date
.c.a:
$(CC) -c $(CFLAGS) $<
arrv $@ $*.0
rm -f $*.0
In fact, the ".c.a" rule listed above is built into make and, thus, is unnecessary in this example.
A more interesting, but more limited example of an archive library maintenance construction
follows:

lib: lib(filel.0) lib(file2.0) lib(file3.0)
$(CC) -¢ S(CFLAGS) $(?.0=.c)
ar rv lib §?
rm $?
@echo lib is now up to date

c.a;

Here the substitution mode of the macro expansions is used. The $? list is defined to be the
set of object file names (inside "lib") whose C source files are out of date. The substitution
mode translates the ".0" to ".c". (Unfortunately, one cannot as yet transform to ".c™; however
this will come also.) Note also, the disabling of the ".c.a:" rule, which would have created each
object file, one by one. This particular construct speeds up archive library maintenance consid-
erably. This type of construct becomes very cumbersome if the archive library contains a mix
of assembly programs and C programs.

and Other Stuff .
The following is a brief description of all options and some special names:

-f file Description file name. The next argument is assumed to be the name of a
description file. A file name of ‘‘-’’ denotes the standard input. The contents
of the description files override the built-in rules if they are present.

-p Print out the complete set of macro definitions and target descriptions

-i Ignore error codes returned by invoked commands. This mode is entered if
the fake target name ‘. IGNORE” appears in the description file.

-k abandon work on the current entry, but continue on other branches that do
not depend on that entry.

-8 Silent mode. Do not print command lines before executing. This mode is
also entered if the fake target name ‘‘.SILENT™ appears in the description
file.

November 1979 Page 4 . November 1979

MAKE (1)

-r
-

.DEFAULT:

.PRECIOUS:

SILENT:

JGNORE
FILES

CB-UNIX 2.1 MAKE (1)

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them. Even lines
beginning with an ““@”’ sign are printed.

Compatability mode for old makefiles.
Environment variables override assignments within makefiles.

Print a memory map showing text, data, and stack. This option is a no-op on
systems without the getu(2) system call.

Touch the target files (causing them to be up to date) rather than issue the
usual commands.

Debug mode. Print out detailed information on files and times examined.

Question. The make command returns a zero or non-zero status code
depending on whether the target file is or is not up to date.

If a file must be made but there are no explicit commands or relevant built-in
rules, the commands associated with the name “.DEFAULT” are used if it
exists.

Dependents of this target will not be removed when quit or interrupt are hit.
Same effect as the -s option.
Same effect as the -i option.

makefile, Makefile, s.makefile, s.Makefile

SEE ALSO
sh(1)

S. L. Feldman Make — A Program for Maintaining Computer Programs, Bell Laboratories Com-
puting Science Tech. Rep. No. 57, April, 1977
E. G. Bradford — An Augmented Version of Make, TM 79-5255-1, July, 1979

BUGS

Some commands return nonzero status inappropriately. Use =i to overcome the difficulty.
Commands that are directly executed by the Shell, notably cd(1), are ineffectual across new-

lines in make.

The syntax "(lib(filel.o file2.0 file3.0)" is illegal.
lib(file.o) cannot be built from file.o.
The macro $(a:;.o=.c") doesn’t work.

November 1979

Page 5 November 1979

MAN (1) CB—UNIX 2.1 MAN(1)

NAME
man — print pages of this manual

SYNOPSIS
man [section] [—options] [all] [title ...]

DESCRIPTION
Man is a shell command file that will locate and run off individual pages of this manual. The
meaning of the parameters are:

section Sections of the manual to be searched for title(s). If no secrion(s) are specified man
assumes that it was called with:

man 12345678 title ...

If no sections are specified, man looks for titles in the current directory before look-
ing at any regular manual sections. Section(s) are searched in the order given and
only those sections given are searched. All sections to be searched must be specified
before any titles are given.

= options The following options have special meaning to man:

t causes output to be prepared for use with the phototypesetter simulator rc(1)
using troff(1).

g causes output to be prepared for use with the gcar(1) program which produces
output from the phototypesetter.

T43 causes output to be prepared for printing on the TTY43 teleprinter. The width
is set to 51 and the length is set to 100.

TVP causes output to be prepared for printing on the Versatec printer. The width is
set to 100.

[L1] causes man to search only the local section(s) /usr/man/local/man?.
[Cc] causes man to search only the general section(s) /usr/man/cbunix/man?.

~ All other options given to man are passed to nroff. The default options are set up to
be as general as possible, thus man will work for most devices without the need for
any options. Also, man makes use of the post-processing program, over, to prepare
its output for the most general case (except that over is disabled for CRTs); if any
options are specified then over is not used.

all All instructs man to print all the manual pages in the specified sections. However, if
no section(s) are supplied, al/ is an error. This forces the user to specifically request
sections to be printed under the alf option.

title Names of the manual page(s) to be printed. Generally, the title of a ‘thing’ is simi-
lar to the name which must be used to access the ‘thing’. For instance:

man man
will reproduce this page.
General Information:

There are several options with special meaning. The —t option causes output to be prepared
for use with the phototypesetter simulator t«c(1). The —g options causes output to be prepared
for use with the gcar(1) program which produces output from the phototypesetter. Finnally,
the —T43 option causes output to be prepared for printing on a tty43 teleprinter.

The manuai usually resides on a mountabie file system which may not always be mounted. If it
is not mounted the diagnostic message:

November 1979 Page 1 November 1979

MAN (1) CB—UNIX 2.1 MAN (1)

Manual pack not mounted
will be printed on the error output device (usually the terminal from which man is run).

The manual is organized into 8 sections; some of which have various sub-sections. Each sec-
tion has one section which is reserved for use by local groups. The current sections are:

UNIX Commands.

System Calls.

Subroutines.

Device Interfaces and Special Files.
File Formats, Tables and Macros.
UNIX System Explanations.

Kinks and Conventions.
Stand-alone Utilities.

OO0 ~3 O\ W B WD) e

The man command may be used to print manual pages in your own directory. If a manual
page:
junk.3
exists in the present working directory (see pwd(1)) and a man command of the form:
man junk.3
will print the junk manual page — without looking through the ‘normal’ manual sections.

If there is both a ‘local’ and a ‘basic’ version of a manual page then man will print the ‘local’
version unless the search order built into man is overridden by the user.

FILES
present working directory
/usr/man/local/ section/* ‘local’ versions of manual pages
/usr/man/cbunix/ section/* ‘basic’ versions of manual pages
SEE ALSO

over(1), col(1), nroff(1), manmac(5)

BUGS

The manual is supposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

November 1979 Page 2 November 1979

MESG (1) CB-UNIX 2.1 MESG (1)

NAME
mesg — permit or deny messages

SYNOPSIS
mesg [n][y]

DESCRIPTION
Mesg with argument n forbids messages via write(1) by revoking non-user write permission on
the user’s terminal. Mesg with argument y reinstates permission. All by itself, mesg reports
the current state without changing it.

FILES
/dev/In=

SEE ALSO
write (1)

DIAGNOSTICS
Exit status is 0 if messages are receivable, 1 if not, 2 on error.

November 1979 Page 1 November 1979

MHDUMP (1M) CB—-UNIX 2.1 MHDUMP (1M)

NAME

mhdump — incremental file system dump

SYNOPSIS

mhdump [key [arguments] filesystem]

DESCRIPTION

Mhdump makes an incremental file system dump on magtape of all files changed after a certain
date. The key argument specifies the date and other options about the dump. Key consists of
characters from the set abcfiu0hdsn.

a Normally files larger than 500 blocks are not incrementally dumped; this flag forces
them to be dumped.

b The next argument is taken to be the density of the dump tape (i.e., 800 or 1600).

c If the tape overflows, increment the last character of its name and continue on that
drive. (Normally it asks you to change tapes.)

f Place the dump on the next argument file instead of the tape.

i the dump date is taken from the entry in the file /etc/dtab corresponding to the last
time this file system was dumped with the —u option.

u the date just prior to this dump is written on /etc/dtab upon successful completion of
this dump. This file contains a date for every file system dumped with this option.

0 the dump date is taken as the epoch (beginning of time). Thus this option causes an
entire file system dump to be taken. '

h the dump date is some number of hours before the current date. The number of hours
is taken from the next argument in arguments.

d the dump date is some number of days before the current date. The number of days is
taken from the next argument in arguments.

S the size of the dump tape is specified in feet. The number of feet is taken from the

next argument in arguments. When the specified size is reached, the dump will wait for
reels to be changed. The default size is 2200 feet.

n Normally, a name list generated by ncheck(IM) is placed on the tape so that
mhrestor(IM) may extract files by name. This flag suppresses the generation of names.

If no arguments are given, the key is assumed to be i and the file system is assumed to be
/dev/rp0.

Full dumps shouid be taken on quiet file systems as follows:
mhdump OQu /dev/rp0

Incremental dumps shouid then be taken when desired by:
mhdump

When the incremental dumps get cumbersome, a new complete dump should be taken. In this
way, a restore requires loading of the complete dump tape and only the latest incremental tape.

DIAGNOSTICS

FILES

Page |

If the dump requires more than one tape, it will ask you to change tapes. Reply with a new-
line when this has been done. If the first block on the new tape is not writable, e.g., because
you forgot the write ring, you get a chance to fix it. Generally, however, read or write failures
are fatal.

/dev/rmt0: magtape
/dev/rp0: default file system
/etc/dtab: record of last full dump
/etc/ncheck
November 1979

MHDUMP (1M) CB—UNIX 2.1 MHDUMP (1M)

SEE ALSO
mhrestor(1M), ncheck(1M), dump(5)

BUGS
It’s slow.
It does not work for file systems larger than 64K blocks.

November 1979 - Page 2

MHRESTOR (1M) CB—UNIX 2.1 MHRESTOR (1M)

NAME

DESCRIPTION

FILES

DIAGNOSTICS

BUGS

Page 1

mhrestor — incremental file system restore

SYNOPSIS
mhrestor key [argument ...]

Mhrestor is used to read magtapes dumped with the madump command. The key specifies what
is to be done. Keyis one of the characters rxt optionally combined with £.

f
r

t

Use the first argument as the name of the tape instead of the defaulit.

The tape is read and loaded into the file system specified in argument. This should not
be done lightly (see below).

Each file on the tape named by an argument is extracted. The file extracted is placed in
a file with a numeric name supplied by mhrestor (actually the inode number). In order
to keep the amount of tape read to a minimum, mhrestor asks you to ‘mount the
desired tape volume’ and tell mhrestor which volume you put on the drive. On a mul-
tivolume dump the recommended procedure is to mount the last through the first
volume in that order. Mhrestor checks to see if any of the files requested are on the
mounted tape (or a later tape, thus the reverse order) and doesn’t read through the
tape if no files are. If you are working with a single volume dump or the number of
files being restored is large, respond to the query with ‘1’ and mhrestor will read the
tapes in sequentiai order.

Print the date the tape was written and the date the filesystem was dumped from.

The r option should only be used to restore a complete dump tape onto a clear file system or to
restore an incremental dump tape onto this. Thus

/etc/mkfs /dev/rp0 40600
mhrestor r /dev/rp0

is a typical sequence to restore a complete dump. Another mhrestor can be done to get an
incremental dump in on top of this.

A mhdump followed by a mkfs and a mhrestor is used to change the size of a file system.

default tape unit varies with installation

SEE ALSO
mhdump(I1M), mkfs(1M), dump(5)

There are various diagnostics involved with reading the tape and writing the disk. There are
also diagnostics if the i-list or the free list of the file system is not large enough to hold the

dump.

If the dump extends over more than one tape, it may ask you to change tapes. Reply with a
new-line when the next tape has been mounted.

There is redundant information on the tape that could be used in case of tape reading problems.
Unfortunately, mhrestor doesn’t use it.

November 1979

MHSTTY (1)

CB—-UNIX 2.1 MHSTTY (1)

NAME

mhstty — set the options for a terminal
SYNOPSIS

mhstty [—g] [option ...]
DESCRIPTION

Mhstty sets certain 1/0 options on the current input terminal. With no argument, it reports the
current settings of the options. With the —g flag, it reports current settings in a format that
can be used as arguments to another mAsay command. The option strings are selected from the

following set:

even
—even
odd
—odd
raw
—raw
cooked
nl

—nl

echo
—echo

allow even parity.

disallow even parity.

allow odd parity.

disallow odd parity.

raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back).
negate raw mode.

same as —raw.

accept only new-line to end input lines.

allow carriage return for new-line, and output CR-LF for carriage return or
new-line.

echo back every character typed.

do not echo characters.

lcase or LCASE

map upper case to lower case.

—lcase or —LCASE

tabs
—tabs
erase ¢
kill ¢
ek

do not map upper case to lower case.

preserve tabs when printing.

replace tabs by spaces when printing.

set erase character to c.

set kill character to c.

reset erase and kill characters back to normal # and @.

er0 crl cr2 er3

select style of delay for carriage return (see ioct/(2)).

nl0 nil ni2 nl3

tab0 tabl
bs0 bsl
Ifke
-1fke
ffo ff1
tty33
tty37
vt0S
tn300
ti700
tek
hup
—hup
0

select style of delay for line-feed (see iocri(2)).

select style of delay for tab (see ioct/(2)).

select style of backspace delay.

echo an LF after a kill character.

do not echo an LF after a kill character.

select style of delay for form-feed (see ioct/(2)).

set all modes suitable for the TELETYPE® Model 33 terminal.
set all modes suitable for the TELETYPE Model 37 terminal.

set all modes suitable for Digitai Equipment Corp. VT0S terminal.
set all modes suitable for a General Electric TermiNet 300.

set all modes suitable for Texas Instruments 700 series terminal.
set all modes suitable for Tektronix 4014 terminal.

hang up DATA-PHONE® connection on last close.

do not hang up DATA-PHONE connection on last close.

hang up phone line immediately.

50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb

Set terminal baud rate to the number given, if possible. (These are the
speeds supported by the DH-11 interface).

November 1979

MHSTTY (1) CB—UNIX 2.1 MHSTTY (1)

SEE ALSO
tabs(1), ioctl(2).

November 1979 ; Page 2

MEKCONF (1) CB-UNIX 2.1 MKCONF (1)

NAME

mkconf — create configuration table and low core

SYNOPSIS

mkconf [—nta] [address]

DESCRIPTION

Page 1

Mbkconf creates two files, one which contains the low core vectors (l.s) and one which contains
the configuration tables (c.c), needed in creating a UNIX. It is an interactive program which
creates these two files from the input specifications supplied by the user. The specifications
allow the input of the type of device, the number of a given type and the vector address if the
device is in the floating vector area. The root and swap devices may be specified along with the
minor device number of the devices, and the location and size of the swap area (swplo and
nswap) values may also be specified. The first input to mkconf must be the type of processor.
The following is an example of how mkconfis used. Notice that the devices specified as the
root and swap must already be configured.

mkconf

70

hp

hs

ht

2de

root hp 1
swap hs 8
swpilo 1
nswap 4000

Typing list before hitting CTL D will produce a list of vector addresses and the devices at those
locations. Typing an EOT (CTL D) terminates input and causes l.s and c.c to be generated.

Mkconf automatically adds a jump to a routine whenever there is an empty location in low core.
This routine prints the message

stray interrupt at XXX

when an interrupt occurs at one of these locations. An interrupt occurring at any of these loca-
tions is treated similarly to a device interrupt. The stray interrupt routine will print the location
(modulo 128) of the interrupt, thus making it possible to narrow the number of locations down.
The arguments to mkconf alter the use of the jump to the stray interrupt routine in the follow-
ing ways.

—n No stray interrupt vectors are produced.

—t A jump to trap+15 is used instead of stray. This is not quite so useful but it is better
than nothing.

—a Currently, the stray interrupts are produced up to location 0400. The second argument
(address) can extend or shorten this area.

November 1979

MKDIR (1) CB-UNIX 2.1 MKDIR (1)

NAME

mkdir — make a directory
SYNOPSIS

mkdir dirname ...
DESCRIPTION

Mkdir creates specified directories in mode 777, possibly modified by the current umask(1).
Standard entries, ., for the directory itself, and ‘.., for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO
rm (1), umask(1)

DIAGNOSTICS

Midir returns exit code 0 if all directories were successfully made. Otherwise it prints a diag-
nostic and returns nonzero.

November 1979 Page | November 1979

MKFS (1M) CB—-UNIX 2.1 MKFS (1M)

NAME

mkfs — construct a file system

SYNOPSIS

/ete/mkfs special proto [—=b [numbers]]

DESCRIPTION

Mkfs constructs a file system by writing on the special file special according to the directions
found in the prototype file proto. The prototype file contains tokens separated by spaces or new
lines. The first token is the name of a file to be copied onto block zero as the bootstrap pro-
gram (see bproc(6)). The second token is a number specifying the size of the created file sys-
tem. Typically it will be the number of blocks on the device, perhaps diminished by space for
swapping. The next token is the i-list size in blocks (remember there are 16 i-nodes per block).
An optional third token is the keyword badblocks followed by a list of numbers(decimal) and
terminated with the token $. The list specifies blocks that are to be left out of the file system.
The next set of tokens comprise the specification for the root file. File specifications consist of
tokens giving the mode, the user-id, the group id, and the initial contents of the file. The syn-
tax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first character specifies the type of the
file. (The characters —bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or — to specify set-user-id mode or
not. The third is g or — for the set-group-id mode. The rest of the mode is a three digit octal

number giving the owner, group, and foreigner read, write, execute permissions (see
chmod(1)).

Two decimal number tokens come after the mode; they specify the user and group ID’s of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are
copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkf5 makes the entries . and .. and then reads a list of names and
(recursively) file specifications for the entries in the directory. The scan is terminated with the
token $.

If the prototype file cannot be opened and its name consists of a string of digits, mk/s builds a
file system with a single empty directory on it. The size of the file system is the value of proro
interpreted as a decimal number. The i-list size is the file system size divided by 50. (This
corresponds to an average size of three blocks per file.) The boot program is left uninitialized.

The —b option allows specification of bad block numbers on the command line. This may be
used in combination with the badblocks keyword in the prototype file.

November 1979 Page 1 November 1979

MKFS (1M) CB-UNIX 2.1

A sample prototype specification follows:

/usr/mdec/uboot
4872 55
d—-=-77731
usr d=--77731
sh ~ = =755 31 /bin/sh
ken d—-75561
$
b0 b=—64431090
c c——6443100

$
$
or for a file system with 3 bad blocks,
/usr/mdec/util/uboot
4000 55
badblocks 67 106 2004 $
d=--=77731
$
SEE ALSO
mkpt(1M), dir(35), fs(5), bproc(6)
DIAGNOSTICS

MKFS (1M)

There are various diagnostics for syntax errors, inconsistent values, and sizes too small. Also,

badblocks specified in the ilist or outside the file system are not accepted.

BUGS

It is not possible to initialize a file larger than 256K bytes.

There should be some way to specify links.

Check does not yet know about bad blocks. They are reported as missing and a salvage opera-

tion will replace them in the file system.

November 1979 Page 2

‘November 1979

MKFST (1M) CB-UNIX 2.1 MKFST (1M)

NAME
mkfst — construct a file system on mag tape

SYNOPSIS
/ete/mkfst special proto [recsiz]

DESCRIPTION
Mkfst constructs a file system by writing on the special file special according to the directions in
the prototype file proto. See the description of mkfs(1M) for the details on building a proto file.

In fact, this program works exactly like mkfs with the following two exceptions:

1) Mkfst builds the inodes for the tape file system in a disk file before copying them to tape.
Since, for large file systems, this temporary file would get very large, it is not recom-
mended that mk/fst be used as a general replacement for mkfs. It is anticipated that tape file
systems will be fairly smail.

2) Mkfst allows the user to specify the size of the records to be written on the tape. The
optional argument recsiz specifies the number of disk blocks per tape record (a disk block
is 256 words). If recsizis not "1, the special file must be capable of physical I/0, for exam-
pie /dev/rmt?. This feature is useful for generating file systems which are meant to be
eventually copied onto a mass storage device (eg RP03). The stand-alone utility used to
dump and load the device to and from tape may require that tape records be larger than
one disk biock.

SEE ALSO
mkfs(1M)

FILES
/tmp/mtmp

DIAGNOSTICS
See mkfs.

November 1979 Page 1 -. November 1979

MKLFS(1) CB—UNIX 2.3 MKLFS(1)

NAME
mklifs — construct a Logical File System (LFS)

SYNOPSIS
Jetc/mkifs [options] device nlfn ncyl trkf secf blkf

DESCRIPTION
MKIfs constructs a Logical File System on disk. The LFS software is implemented as a pseudo —
device driver which provides a simple file system implemented through the UNIX raw I/O facil-
ity. The LFS consists of a set of contiguously allocated files, specified by their logical file
numbers, which are manipulated by LFS operations.

Options:
An optional character string consisting of a dash (—) followed by any combination of the char-
acters y, m, or v whose meanings are as follows:

y unconditionally make the LFS (no user interaction)
n don’t make the LFS (no user interaction)
] verbose output (LFS header information).

device The block-special file corresponding to the physical disk area upon which the LFS will
be built. Before executing mkifs, device must be created by the mknod(1) command.

nlfn The maximum number of logical file numbers (Ifns) to be allowed. Legal Ifns start at
1 and range up to and including nifn. There is currently a limitation of 65,535 Ifns per
file system.

ncyl The number of cylinders in the LFS disk area.

trkf The number of tracks per cylinder.

secf The number of 512 byte sectors per track.

blkf The size of a LFS block; i.e., all files will be allocated in multiples of blkf sectors.
An example of mkifs follows:

/etc/mklfs /dev/Ifs 40000 156 19 22 2

creates an LFS with 40,000 files spanning 156 cylinders for a DEC RPO4/5/6 disk (under CB-
UNIX, 156 cylinders is the maximum size file system possible).

SEE ALSO
1fs(3C)

DIAGNOSICS

Diagnostics are given if device cannot be opened or is not a block device, if the wrong number-—

of arguments are given, or if parameters are unintelligible.

LIMITATIONS
At most 65,535 logical files are allowed per file system. Each logical file system must be less
than 32,768 LFS blocks in size. This is since the system malloc routine is used to manage free
space, and the size is stored in a short integer. Making blkf larger can help compensate for this
limitation.

May 15, 1981 Page 1 May 15, 1981 -

MKNOD (1M) CB—UNIX 2.1
NAME

mknod — build special file
SYNOPSIS

/etc/mknod name [¢] [b] major minor
DESCRIPTION

Page 1

MKNOD (1M)

Mknod makes a directory entry and corresponding i-node for a special file. The first argument
is the name of the entry. The second is b if the special file is block-type (disks, tape) or ¢ if it
is character-type (other devices). The last two arguments are numbers specifying the major

device type and the minor device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each system. For reference, here are the
numbers for the CB Operating System Group machine. Do not believe them too much.

Block devices:

B a W N = O

6

RXO01 Floppy Disk

Not used. Reserved for RP03 disk.
Not used. Reserved for RF disk.
Not used. Reserved for TM11 tape.
Not used. Reserved for DECtape.
RP06 Disk.

TE16 Tape.

Character devices:

0

W @ 3 N B W e

P N o T S O e O N
O 0 3 N W b W=D

System Console.
DZ11 Asynchronous Interface
Not used. Reserved for line printer.

Not used. Reserved for DC11 asynchronous interface.

DHI11 Asynchronous Interface.

Not used. Reserved for DP interface.

Not used. Reserved for DJ11 asynchronous interface.
DN11 auto dial interf....ace.

Memory Access.

Not used. Reserved for raw RK disk interface.
Raw RX disk interface.

Not used. Reserved for raw RPO3 disk interface.
Not used. Reserved for raw TM11 tape interface.
Raw RPO06 disk interface.

Raw TE16 tape interface.

Not used. Reserved for HS interface.
Controlling TTY Interface.

Not used.

Named pipe Interface.

Not used.

November 1979

MKNOD (1M) CB—-UNIX 2.1 MKNOD (1M)

20 Error log interface

SEE ALSO
mknod(2)

November 1979 Page 2

MKPT (1M) CB—UNIX 2.1 MKPT (1M)

NAME
mkpt — make proto
SYNOPSIS
mkpt primer name
DESCRIPTION ,
mkpr produces a proto file in the output file, "name", based on a starting or primer file, "pri-
mer”. The resulting proto in "name" can be used with the mkfs(IM) command. The primer
consists of ACSII tokens separated by new line characters. All the tokens except the last one
are copied as is to the output file. They have no meaning to the mipr command. See the
mkfs(IM) command for a more detailed description of the first six tokens. The tokens and
B their meanings are:
< bootfile> The name of the boot file program.
< file size> The number of blocks of the proto.
<i-list size > The size of the i-list in blocks.
<mode > The mode of the root directory of the proto.
<user id> ’ The user id of the root directory of the proto.
<group id> The group id of the root directory of the proto.
<starting directories > One or more directories from which the proto will be made. These
are the only strings that have any meaning to mkpt. All the other
strings are copied as is to the output file.
The mkpt command will ignore directory names beginning with a ".". A typical primer file is:
/usr/sys/mboot
4872
55
d——755
1]
1
/bin
/usr/bin
SEE ALSO
mkfs(1M)

-

Page 1 : November 1979

MM (1) CB—UNIX 2.1 MM (D)

NAME

mm — type out documents that use the PWB/MM macros
SYNOPSIS

mm [options] [files]
DESCRIPTION

Mm can be used to type out documents using uroff(1) and the PWB/MM text formatting codes.

It has options to specify preprocessing by r6/(1) and/or neqn(1) and postprocessing by various

terminal-oriented output filters. The proper pipelines and the required arguments and flags for

nroff(1) and PWB/MM are generated, depending on the options selected.

Options for mm are given below. Any other arguments or flags (e.g., —rC3) are passed to

aroff(1) or to PWB/MM, as appropriate. Such options can occur in any order, but they must

appear before the files arguments. If no arguments are given, mm prints a list of its options.

~Trerm Specifies the type of output terminal; recognized values for rerm are (see rerm(7)):
300, 300s, 450, 300-12, 300s-12, 450-12, 37, 4014, hp, 1520, 745, 43, tn300, and lp.
If this option is nor used, mm will use the value of the shell variable STERM from the
environment (see profile(5) and environ(7)) as the value of rerm, if STERM is set;
otherwise, nun will use 300 as the value of term. If several terminal types are
specified, the last one takes precedence.

-12 Indicates that the document is to be produced in 12-pitch. May be used when
STERM is set to one of 300, 300s, and 450. (The pitch switch on the DASI 300 and
300s terminals must be manually switched to 12 it this option is used.)

- Causes mun to invoke co/(1); note that if jerm is one of hp, 1520, 745, 43, tn300, and
Ip, then coi(1) is automaticaily invoked by num.

—e Causes mm to invoke negn(l).

==} Causes mun to invoke tb/(1).

-E Invokes the =e option of nroff(1).

- Causes mm to use the not pre-compiled version of the macros (see mm(7)).

As an example (assuming that the shell variable STERM is set in the environment to 450), the

two command lines below are equivalent:

mm =t —rC3 —12 ghh=
tbl ghh+ | nroff —cm —T450—12 —h —rW80 —r0O3 —rC3

Mm reads the standard input when — is specified instead of any file names. (Mentioning other

files together with — leads to disaster.) This option allows pun to be used as a filter, e.g.,

“cat dws | mm ="

HINTS

1. mm usually invokes nroff(1) with the —h flag. With this flag, aroff(1) assumes that the

terminal has tabs set every § character positions.

2. Use the =—o/iss option of uroff(1) to specify ranges of pages to be output.

3. If you use the —s option of uroff(1) (1o stop between pages of output), use line-feed

(rather than return or new-line) to restart tiie output. _
4. If you lie to mm about the kind of terminal its output will (finally) be printed on. vou'll
get what you deserve: more or less subtle garbage. '
SEE ALSO

col{1), env(1), egn(l), nroff (1), thi(l), profile(5), environ(7), mm(7), term (7).
PWBIMM — Programmer's Workbench Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documens with PWBINVIM by D. W. Smith and E. M. Piskorik.

DIAGNOSTICS
“*mm: no input file” if none of the arguments is a readable file and »un is not used as a Alter.

Page 1 : November 1979

MMKDIR (1) CB—UNIX 2.1 MMKDIR (1)

NAME
mmkdir — made path names

SYNOPSIS
mmkdir relative_path_name relative_path_name ...

DESCRIPTION
The mmkdir command will make all the directories in a relative path name input argument. If
the directories already exist, then mumkdir does nothing. When successful, the relative path
name for each input argument is printed on the standard output.

SEE ALSO
mkdir(1)

DIAGNOSTICS

All diagnostics are printed on file descriptor 2, and are hopefully self explanatory.

Page | November 1979

MO(1) CB—UNIX 2.3 MO(1)

NAME

mo, mo90, nmo, nmo90 — nroff, nnroff mm interface for preprinted letterhead
SYNOPSIS

[n]mol90] file [[FDIT[PS]] [LPFADT]]] [—x] {—[et]] [=s] [nroff options]
DESCRIPTION

Mo and nmo, which are based on commands developed on the CB PWB systems, are used for
document preparation in Division 594. M090 and nmo90 use a page length of 90 lines. Mo
eventually invokes nroff(1) with the —mm macro package; nmo invokes nnroff with the —em
compacted memorandum macro package. (Nnroff is-based on UNIX 3.0 nroff and can use the
newer macro packages, including the souped-up memorandum macros (mm), in their com-
pacted form.) Mo is designed for use with pre-printed letterhead and thus always invokes nroff
with —rA4l —rN2. Correct format for these forms is insured by inclusion of the special file
/usr/lib/macros/mo.h, containing mm macro calls, when nroff is called; if a file named meo.h
exists in the current directory, it will be used instead. Mo also expects the STERM shell vari-
able to be set to the current terminal type for the —Tterm nroff argument.

Multiple files can be specified by including the list in double quotes, e.g., intro partl part2 .
The capital letter keyletters can be interpreted as follows:

F The copy is intended to be a final copy, not a draft.

DIT The copy is a temporary or draft copy. (The existence of two flags for the same output
is a historical accident.) Nroff will be invoked with the —~C3 argument.

PS The output is destined for a DTC-382 terminal with a proportional spacing print wheel.
Nroff is invoked with the —e argument and terminal type ps96.

LP The output is to be sent to col(1) and over(1) and the line printer spooler lpr(1).
The other mo arguments have the following interpretations:

—X The file will be sent through the crypt(1) program before being sent to nroff. The user
will be asked to correctly enter the encryption key.

—eft The file will be preprocessed by the neqn(1) andjor tbl(1) nroff preprocessors.

—s The —sI argument will be sent to nroff to cause it to pause after every complete output
page and wait for a line feed indicating that the next output form has been correctly
positioned.

nroff options
Any trailing nroff options will be passed along to the nroff program. None of the

options mentioned above can be overridden by trying to change them with options.
Options should seldom be necessary.

FILES
/usr/lib/macros/mo.h

SEE ALSO
col(1), crypt(1), lpr(1), neqn(1), nroff(1), over(1), tbi(1)

April 15, 1981 Page 1 April 15, 1981

MORE{L:

HMORE(1Z

NAME

_ BYNOPGIS
more Do~ 0L

H
--h
!

H
ot

i

. L o o = B £ ninl
0 owgd 30 =P 3 5L ~1 3 L e 3L HLinsy

1
40 3 W

il

sty

RSN

Bk

wmaEyel 1

MORE (1)

-~

e

X

PRI

LA

Lsimp

lnmd

SOLURYIER S

TEEYY e :

:
HALA) N

BT + vl
Feerm & Tal i L g

HrEd LA veap

MORE (L)

D T RYY RTany

-

FILES

£

Y ll
R0Y 2 et o)

MOO (1X) CB—UNIX 2.1 MOO (1X)

NAME
moo — guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a number consisting of
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A ‘cow’ is a correct digit in an incorrect position. A ‘bull’ is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

BUGS
Watch out for the random number generator.

Page 1 November [979

MOUNT (1) CB—UNIX 2.3 MOUNT (1)

NAME

mount — mount file system
SYNOPSIS

mount special file [ro] [restricted]
DESCRIPTION

Mount announces to the system that a removable file system is present on the device
corresponding to special file special (which must refer to a disk or possibly DEC tape). The file
must exist already; it becomes the name of the root of the newly mounted file system.

Mount maintains a table of mounted devices; if invoked without an argument it prints the table.

The optional argument ro indicates that the file is to be mounted read-only. Physically write-
protected and magnetic tape file systems must be mounted in this way or errors will occur when
access times are updated, whether or not any explicit write is attempted. The mount command
is reserved by the operating system to the super-user. However, if the set-user-ID bit is turned
on, the command has global use. If the third argument is not given, then the device indicated
by special is checked to see if the writer permission mode is on for the owner, the owner’s
group, or for anyone. If no one had write access, then the file system is mounted as read-only
and a message to this effect is printed to remind the user he had mounted a read-only file sys-
tem.

The restricted argument indicates that the file system is to be marked so that the "set
user/group id" feature of the exec system call is disabled. Programs marked to set the user or
group id upon execution, if found on a file system so marked, will execute, but the setuid or
setgid will not take place. Furthermore on a restricted file system, it is not possible to open
character or block special devices.

All file systems mounted by users who are not root and who are not a part of the privileged sys-
tems groups, currently group sys and superg, will automatically have the restricted flag turned
on if they mount a file system.

Furthermore, the mount command will only mount files systems for the unprivileged on the
directories listed in the file /etc/mountpts. Only the privileged users may mount on any direc-
tory and without the restricted feature being specified.

FILES
/etc/mtab,
/etc/mountpts

SEE ALSO
umount(1), mount(2), mountpts(5), mtab(5)

April 1, 1981 Page 1 April 1, 1981

MOVE (1) CB—UNIX 2.1 MOVE (1)

NAME

move — move a file and set the mode

SYNOPSIS

move source mode uid gid [destl dest2 ...]

DESCRIPTION

FILES

The move command will move the given source file to the first destination file and link the des-
tination file to all other destination files. The move command will also set the mode, user id,
and group id (mode, uid, and gid, respectively) of the destination. If there are no destination
files specified or if one of the destination files is the same as the source file move will leave the
original file intact but change the mode, user id, and group id. Otherwise the source file is
removed. The c¢pmv command exists to do the same function as move without removing the
source file.

The mode is a three to six character string of the form abcdef where:
a is a u (for set user id), — (for no-op), or missing (same as -
b is a g (for set group id), — (for no-op) or missing (same as —).

cde is a three digit octal string specifing the read/write/execute permissions for self,
group, and others.

! is a s (for save text) or missing.
For example:
644 or u=705 or ——773s.

The user id and group id may be ASCII strings or numerical id's. Unlike the mv command, the
destination arguments may not be directories.

/bin/ls

SEE ALSO

cpmv(1)

DIAGNOSTICS

All diagnostics are printed on file descriptor 2.

November 1979

MTM (1) CB—UNIX 2.1 ' MTM (1)

NAME
mtm — magnetic tape manipulation

SYNOPSIS
mtm [=sn] [=Im] [=bp] [unit]

DESCRIPTION
Mim helps in the processing of multifile magnetic tapes. The optional arguments are:

—sn Forward space the magnetic tape for n files.

—1m Produce a list of the number and sizes of the records on the magnetic tape for m
files. If m is missing mtm will analyze records up to a double EOT.

—bp Define the maximum record size as pK bytes. If b is missing, then the maximum
record size is assumed to be 2K bytes.

unit Unit specifies the drive on which the tape is mounted. If unit is missing, drive 0 is
assumed.

As an example,
mtm —sl =121
gives as output:

File 2:
Record 1 — 14 bytes
Record 2 — 512 bytes
23 Records

File 3:
Record 1 — 512 bytes
68 Records

DONE

This means that file 2 contains one 14—byte record and twenty-two 512 —byte records.

The two arguments can be combined to skip some files, then list some number of remaining
files. If neither argument is given, mtm will list the entire tape.

FILES
/dev/rmt?

Mtm assumes the names of the tape unit special files that match their minor device numbers;

thus it will try to add 4 to the specified unir number to obtain the corresponding device with no
rewind.

November 1979 Page | November 1979

MVYDIR (1M) CB—UNIX 2.1 MVDIR (1M)

NAME

mvdir — move a directory
SYNOPSIS

/ete/mvdir dirname name
DESCRIPTION

Mvdir renames directories within a file system. Dirname must be a directory; name must not
exist. Neither name may be a sub-set of the other (/x/y cannot be moved to /x/y/z, nor vice
versa).

Only super-user can use mvdir.

SEE ALSO
mkdir(1)

Page | November 1979

NAR(1)

NAME

CB—UNIX 2.3 NAR(1)

nar — new format archive and library maintainer

SYNOPSIS

nar key [posname] afile name ...

DESCRIPTION

Nar maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the loader. It can be used, though, for any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibel. A4file is the archive file. The names are constituent files in the archive file. The mean-
ings of the key characters are:

d

r

FILES

Delete the named files from the archive file.

Replace the named files in the archive file. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an
optional positioning character from the set abi is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

Quickly append the named files to the end of the archive file. Optional positioning
characters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files in the
archive are tabled. If names are given, only those files are tabled.

Print the named files in the archive.

Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are to
be moved.

Extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file.

Verbose. Under the verbose option, nar gives a file-by-file description of the making of
a new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with p, it precedes
each file with a name.

Create. Normally nar will create afile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

Local. Normally nar places its temporary files in the directory /tmp. This option
causes them to be placed in the local directory.

Jtmp/v* temporaries

SEE ALSO

ar(1), arcv(1), 1d(1), lorder(1), nar(5)

BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.

March 20, 1981

Page 1 March 20, 1981

NCHECK (1M) CB—UNIX 2.1 NCHECK (1M)

NAME

ncheck — generate names from i-numbers
SYNOPSIS

ncheck [—i numbers] [—u numbers ids] [—a] [filesystem]
DESCRIPTION

Ncheck with no argument generates a pathname vs. i-number list of all files on a set of default
file systems. The —i flag reduces the report to only those files whose i-numbers follow. The
—u option reduces the report to files owned by the specified user ids. The report produced by
—u contains the i-number, size of the file in blocks, the name of the owner of the file (f
known) and the pathname of the file. All entries are separated by a tab character to facilitate
sorting by size, owner, i-node or pathname. If no numbers or ids are supplied with the —u or
—1i option, ncheck will read numbers or ids from the standard input. The ids or numbers may
be separated by tabs, blanks or newlines. —a allows printing of the names ‘.’ and ‘..", which
are ordinarily suppressed. A file system may be specified as an argument. The raw device
which references the filesystem should be specified for efficiency.

SEE ALSO
check(1M), dcheck(IM), sort(1)

BUGS
It is slow.

Page 1 November 1979

NEWGRP (1) CB—UNIX 2.1 NEWGRP (1)

NAME
newgrp — log in to a new group

SYNOPSIS
newgrp [group]

DESCRIPTION
Newgrp changes the group identification of its caller, analogously to login(1). The same person
remains logged in, and the current directory is unchanged, but calculations of access permis-
sions to files are performed with respect to the new group ID.
If no argument is supplied the group in the password file for the current user is used. If the
group specified is the same as the group in the password file, further permission checking is
required. Otherwise a check is made to see if the user is present in the member list of the
group file before the newgrp is allowed. If the user is not in the member list, and the group has
a password, then the user is required to enter the password. In all other cases the newgrp
attempt will fail.
When most users log in, they are members of the group named ’other.’

FILES

/etc/group, /etc/passwd

SEE ALSO
login(1), group(3)

BUGS
Since the current user’s shell is replaced, any shell variables are lost.

Page 1 November 1979

NEWSOHEDK (1)

ees Bad

{

SERIFTION

RO LE T RS

" i

FIuEg

i 1%

NEWS (1) CB—-UNIX 2.1 NEWS (1)

NAME

news — print news items

SYNOPSIS

news [—a] [—g grpname] [=n] [items]

DESCRIPTION

FILES

News is used to keep the user informed of current events. By convention, these events are
described by files in the directory /usr/news.

When invoked without arguments, news prints the contents of all current files, owned by group
"other"” or owned by the user’s group, in /usr/news, most recent first, with each preceded by an
appropriate header. If the —g grpname option is specified (any number of times) files owned
by the named groups are also printed. The group name a/f is special and means all groups, or
in other words all current news items. News stores the ‘‘currency’ time as the modification
date of a file named .news_time in the user’s home directory (the identity of this directory is
determined by the environment variable SHOME); only files more recent than this will hen-
ceforth be considered ‘‘current.”

The —a option causes news to print all items, regardless of currency. In this case, the stored
time is not changed.

The —n option causes news to report the names of the current items without printing their con-
tents, and without changing the stored time. It is useful to include such an invocation of news
in one’s .profile file, or in the system’s /etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next item is
started. A second defere within a second of the first causes the program to terminate.

/etc/profile
/usr/news/*
SHOME/.news_time

SEE ALSO

profile (5), environ(7).

November 1979

NICE(1) CB—UNIX 2.1 NICE (1)

NAME

nice — run a command at specified priority
SYNOPSIS

nice [—prio] command [arguments]
DESCRIPTION

Nice executes conmmand at the priority specified by prio which is a number in the range 20 to
—127. If the number is missing the default is 10. A negative number is accepted only if the
user is the super-user.

SEE ALSO
nohup(1), nice(2)

BUGS
Requiring the typing of:
nice ——10 cmd
to set a negative priority is a kludge.
Page 1

November 1979

e T

| R

NM(1)

NAME

CB—-UNIX 2.3 NM(1)

nm — print name list

SYNOPSIS

nm [—gnoprsuta] [file ...]

DESCRIPTION

Nm prints the name list (symbol table) of each object file in the argument list. If an argument
is an archive, a listing for each object file in the archive will be produced. If no file is given,
the symbols in a.out are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U
(undefined), A (absolute), T (text segment symbol), D (data segment symbol), B (bss segment
symbol), R (register symbol), F (file symbol), or C (common symbol). If the symbol is local
(non-external) the type letter is in lower case. The output is sorted alphabetically.

Options are:

SEE ALSO

Print only global (external) symbols.
Sort numerically rather than alphabetically.

Prepend file or archive element name to each output line rather than only once. This
option can be used to make piping to grep(1) more meaningful.

Don’t sort; print in symbol-table order.
Sort in reverse order.

Sort according to the size of the external symbol (computed from the difference
between the value of the symbol and the value of the symbol with the next highest
value). This difference is the value printed. This flag turns on —g and —n and turns
off —u and —p.

Print only undefined symbols.

Print the namelist including a field that indicated which switchable text area a symbol is
in. The following information is printed for each symbol: NS (symbol is in a

NonSwitchable text area), SO (symbol is in Switchable text space 0). (S1 for spacel, S2
for space2 and S3 for space3) and ... (not a text symbol).

Sort according to text space. May be used with the —n option to sort by address after
sorting by text space. This option turns on —t.

ar(1), a.out(5), ar(5)

November 4, 1980 Page 1 November 4, 1980

NNROFF(1) CB—UNIX 2.3 NNROFF(1)

NAME

nnroff — format text
SYNOPSIS

nnroff [option] ... [file] ...
DESCRIPTION

Nnroff is the UNIX 3.0 nroff subsystem. It corrects several bugs in the CB-UNIX nroff(1) and uses
newer macro packages for mm and mmh, which contain several new macros (see document
referenced below). Compacted macros work correctly for nnroff; one can say nnroff —cm to use
the compacted version of the memorandum macros mm. Nnroff will run slightly faster with
compacted macros. Nnroff has been enhanced to work with the Virtual Terminal Protocol (see
vip(4)); nnroff will accept the terminal option —Tvirtual. See nroff(1) and the document below
for options available.

SEE ALSO
nroff (1), vtp(4)
N. E. Bock, Changes to Text Processing Software for UNIX Release 3.0 3646-800407.01MF PY
April 7, 1980

May 21, 1981 Page 1 May 21, 1981

NOHUP(1) CB-UNIX 2.1 NOHUP(1)

NAME

nohup — run a command immune to hangups
SYNOPSIS

nohup command [arguments]
DESCRIPTION

Nohup executes command with hangups, interrupts, and quits ignored. If output is not re-
directed by the user, it will be sent to nohup.out.

SEE ALSO
nice(1), signal(2)

Page 1 November 1979

b

|

L

NROFF (1) CB—UNIX 2.3 NROFF(1)

NAME
nroff, troff — format or typeset text

SYNOPSIS
nroff [option] ... [file] ...
troff [option] ... [file] ...

DESCRIPTION
Nroff formats text in the named files (standard input by default) for printing on typewriter-like
devices; similarly, troff formats text for a Wang-Graphic Systems, Inc. C/A/T phototypesetter.
Their capabilities are described in the first manual cited below.

An argument consisting of a single minus (—) is taken to be a file name corresponding to the
standard input. The options, which may appear in any order so long as they appear before the
files, are:

—olist Print only pages whose page numbers appear in the comma-separated /list of numbers
and ranges. A range N—M means pages N through M; an initial —N means from
the beginning to page NV; and a final N— means from N to the end.

—nN Number first generated page N.

—sN Stop every N pages. Nroff will halt prior to every N pages (default N=1) to allow
paper loading or changing, and will resume upon receipt of a new-line. Troff will
stop the phototypesetter every N pages, produce a trailer to allow changing cassettes,
and resume when the typesetter’s start button is pressed.

—mname Prepend the macro file /usr/lib/tmac/tmac.name to the input files.

—raN Set register @ (which has a one-character name) to N.

—i Read standard input after the input files are exhausted.

—q Invoke the simultaneous input-output mode of the .rd request.
Nroff only

—Tname Prepare output for specified terminal. Known names are 37 for the (default) TELE-
TYPE® Model 37 terminal, tn300 for the GE TermiNet 300 (or any terminal without
half-line capability), 300s for the DASI 300s, 300 for the DASI 300, 450 for the DASI
450, and lp for a (generic) line printer.

—e Produce equally-spaced words in adjusted lines, using the full resolution of the par-
ticular terminal.

—h Use output tabs during horizontal spacing to speed output and reduce output charac-
ter count. Tab settings are assumed to be every 8 nominal character widths.

Troff only ‘

—t Direct output to the standard output instead of the phototypesetter.

—f Refrain from feeding out paper and stopping phototypesetter at the end of the run.

—w Wait until phototypesetter is available, if currently busy.

—b Report whether the phototypesetter is busy or available. No text processing is done.

—a Send a printable ASCII approximation of the results to the standard output.

—pN Print all characters in point size N while retaining all prescribed spacings and

motions, to reduce phototypesetter elapsed time.

—g Prepare output for the Murray Hill Computation Center phototypesetter and direct it
to the standard output (see gcar(1C)).

April 15, 1981 Page 1 April 15, 1981

NROFF(1) CB—UNIX 2.3

FILES
/Jusz/lib/suftab suffix hyphenation tables
/tmp/ta8 # temporary file
/usr/lib/tmac/tmac.* standard macro file pointers
/Jusr/lib/macros/* standard macro files
Jusr/lib/term/# terminal driving tables for nroff
Jusr/lib/font/* font width tables for troff

SEE ALSO

NROFF/TROFF User’s Manual by J. F. Ossanna
A TROFF Tutorial by B. W. Kernighan

eqn(1), tbl(1),

col(1), mm(1) (nroff only)

geat(1C), tc(1) (troff only).

nnroff(1)

April 15, 1981 Page 2

NROFF(1)

April 15, 1981

ocCc (1) CB—UNIX 2.1 oCcCc(1)

NAME
occ — old C compiler

SYNOPSIS
occ{ —cl [-pl [~-f1[-01[~-8S1[-P][~-E][—Dsymbol ...] [—Usym-
bol ...] [—Iprefix] [—=C] file ...

DESCRIPTION
Occ is functionally identical to the C compiler which was supplied with CB UNIX Release 1. Its
options and actions are identical to cc(1). The default libraries which it assumes are those
which provide a user interface almost identical to that provided in Release 1. An executable
module produced using occ will be version stamped so that an appropriate system interface is
provided by the operating system.

The intent of supplying occ is that existing modules may continue to be compiled and executed
in the environment it provides, allowing gradual conversion of all code to use cc. All new code
should be written using cc.

FILES
/1ib/oc[01] compiler
/lib/oc2optional optimizer
/lib/crt0.0 runtime startoff
/lib/mert0.0 runtime startoff of profiling
/lib/liboc.a C library
/lib/liboa.a Assembler library
/1ib/liboS.a Standard 1/0 library; see stdio:0(3S)

SEE ALSO
cc(1), stamp(1), ostdio(3S), intro(2), monitor(3), prof(1), 1d(1),
Programming in C— a tutorial, ‘
C Reference Manual.

Page 1 November 1979

7=

oD (1) CB—-UNIX 2.1 oD(1)

NAME
od — octal dump

SYNOPSIS
od [-abedho] [file] [[+] offset [.1[b1]]

DESCRIPTION
Od dumps file in one or more formats as selected by the first argument. If the first argument is
missing -0 is default. The meanings of the format argument characters are:

a interprets words as PDP-11 instructions and dis-assembies
the operation code. Unknown operation codes print as ?77.

b interprets bytes in octal.

¢ interprets bytes in ASCII. Unknown ASCII characters are
printed as ?.

d interprets words in decimanl.
h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the
standard input is used. Thus od can be used as a filter.

The offset argument specifies the offset in the file where dumping is to commence. This argu-
ment is normally interpreted as octal bytes. If °.’ is appended, offSet is interpreted in decimal.

If ‘b’ is appended, offSet is interpreted in blocks (A block is 512 bytes). If file is omitted, offSet
must be preceded by ‘+’.

Dumping continues until end-of-file.

SEE ALSO
adb(1)

Page | November 1979

OVER (1) CB—-UNIX 2.1 OVER (1)

NAME
over — overstrike optimizer
SYNOPSIS
over
DESCRIPTION
Over reads the standard input and writes the standard output. It interprets and then removes
backspaces, constructing line buffers which contain only forward motions and are separated by

carriage returns. This greatly reduces print time for printing devices incapable of backspaces
(such as LP11 printers). Overis generally used to filter the output produced by nroff .

SEE ALSO
nroff(1), col(1)

BUGS
Maximum line length is 500 characters. Won’t handle more than 10 overstrikes. Over should
be built into the output device as needed; the same comment applies to col.

Page 1 November 1979

PACK (1) CB—-UNIX 2.1 PACK (1)

NAME

pack — compress files

SYNOPSIS

pack [—] name ...

DESCRIPTION

Pack attempts to store the specified files in a compressed form. Wherever possible (and use-
ful), each input file name is replaced by a packed file name.z with the same access modes,
access and modified dates, and owner as those of name. If pack is successful, name will be
removed. Packed files can be restored to their original form using unpack(1) or pcaz(1).

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the — argument
is used, an internal flag is set that causes the number of times each byte is used, its relative fre-
quency, and the code for the byte to be printed on the standard output. Additional occurrences
of — in place of name will cause the internal flag to be set and reset.

The amount of compression obtained depends on the size of the input file and the character
frequency distribution. Because a decoding tree forms the first part of each .z file, it is usually
not worthwhile to pack files smaller than three blocks, unless the character frequency distribu-
tion is very skewed, which may occur with printer plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules, which use a
larger character set and have a more uniform distribution of characters, show little compres-
sion, the packed versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress. No packing will
occur if:

the file appears to be already packed;

the file name has more than 12 characters;

the file has links;

the file is a directory;

the file cannot be opened;

no disk storage blocks will be saved by packing;
a file called name.z already exists;

the .z file cannot be created;

an I/0 error occurred during processing.

The last segment of the file name must contain no more than 12 characters to allow space for
the appended .z extension. Directories cannot (and should not) be compressed.

SEE ALSO

Page |

peat(1), unpack(1).

November 1979

PADM(1S) CB—UNIX 2.1 PADM (1S)

NAME

padm — program administration system

SYNOPSIS

padm cmd [options | [files]

DESCRIPTION

Page |

Padm is a collection of shell programs which will assist a project in using the Source Code Con-
trol System (SCCS). Virtually all of the commands begin with the letter 'g’ and many of them
are just g’ prepended to the appropriate SCCS command.

The Padm allows a group of people to define a directory which subtends all SCCS source direc-
tories of interest. The shell variable SCCSOURCE is then set to this directory and exported.
The user then defines SUBSYSTEMS which are of interest. Specifically, the shell variable SUB-
SYSTEMS is set to the directories relative to SSCCSOURCE which are of interest.

As an example assume a project’s SCCS files are all under the directory /usr/proect. If one
wants to work on a specific subsystem in "project” one must do the following:

SCCSOURCE =/usr/project
SUBSYSTEMS ="dispatcher watchdog"
export SCCSOURCE SUBSYSTEMS

This would imply the directories /usr/project/dispatcher and /usr/project/watchdog exist and
contain SCCS files or directories. Assuming the directories contain SCCS files one may gger or
gdelia any file in either of the two directories. One need only refer to a file by its non-SCCS
filename. Thus if in /usr/project/dispatcher there is a file called s.startup.c he can get for the
purpose of editing s.startup.c by doing the following:

gget -e startup.c
In addition if one wanted a particular verson one could say:
gget -r3.4 startup.c

which would retrieve SCCS version 3.4 of s.startup.c in /usr/project/dispatcher. (This time no
edit is implied.) In addition if one wanted to find out what versions existed one could type:

gprt startup.c

Likewise, when it comes time to put the source code back into SCCS one types:
gdelta startup.c

The delta(1S) command will respond with normal run of the mill delta stuff ("comments?" and
"MR’S?" if the flag is set) and perform the deita.

The current version of the Padm allows the user to get a file no matter what directory one is in.
This might present a problem if more than one directory is specified in SSUBSYSTEMS. For
instance, if both /usr/project/dispatcher and /usr/project/watchdog have a "Makefile' and the
user’s environment is:

SCCSOURCE =/usr/project
SUBSYSTEMS ="dispatcher watchdog"

November 1979

PADM (18) CB—UNIX 2.1 PADM (1S)

and the user types:
gget -e Makefile

the user will get the ‘Makefile' from the first directory listed in SSUBSYSTEMS. To get the
*Makefile’ from watchdog the user can type:

gget watchdog/Makefile

However, when one deita’s the file *Makefile' if one does not specify watchdog/Makefile one
will get an error (unless one is also editing the dispatcher/Makefile). Hence, under certain cir-
cumstances one could delta a ‘Makefile’ into the wrong spot. This problem could be avoided by
allowing only one directory entry in SSUBSYSTEMS. However, at this time, we have had not
had this problem so no attempt has been made to solve it.

When a subsystem is "finished" (?) it is assumed that the programmer wants to mark it in some
way such that two months later when one has fixed a bug one can know what it was that went
to the field. For this purpose, the gmark(1S) command exists. One can type:

gmark subsys

and the latest release of every SCCS file in subsys is remembered in an SCCS file originated
and maintained completely by gmark(1S). Thus, if one were working on the shell in
/usr/project/sh and wanted to mark the shell one would type:

gmark sh

The mark file would contain the name and version of each SCCS file in /usr/project/sh. To see
this one could type:

gmark -L sh

which gives a partially formatted list of files with their versions. Note, the markfile is main-
tained in SCCS format and the only interface to it is through the gmark(1S) command. When
making a new markfile the gmark command ger's for the purpose of editing the markfile; notes
the most recent versions (with a ‘get -g .) of each SCCS file in the named directory (exctud-
ing the markfile itself); and delta’s this new information into the markfile. The *-L’ command
just does a ‘get -p’ on the markfile.

In addition, when one gmark’s a directory, all subtending directories are marked. Also. with
each mark the user must supply a comment which goes into each new delta’ed markfile.

For further, information on the various commands one is urged to read the individual manual
pages for the following commands: gget(1S), gdelta(1S), gadd(1S), gmark(1S), gprt(1S) and
gadmin(1S). Also note the convention of upper case letters for options meant specifically for
the padm commands. This is an attempt to avoid collisions with SCCS options which at present
are all lower case letters.

November 1979 Page 2

PASSWD (1) CB—UNIX 2.1 PASSWD (1)

NAME

passwd — change login password
SYNOPSIS

passwd name
DESCRIPTION

This command changes (or installs) a password associated with the login nane.

The program prompts for the old password (if any) and then for the new one (iwice). The
caller must supply these. New passwords should be at least four characters long if they use a
sufficiently rich alphabet and at least six characters long if monocase. Only the first eight char-
acters of the password are significant.

Only the owner of the name or the super-user may change a password; the owner must prove
he knows the old password. Only the super-user can create a null password.

The password file is not changed if the new password is the same as the old password, or if the
password has not "aged" sufficiently. (See passwd(5)).

FILES
/etc/passwd

SEE ALSO
login (1), passwd(5), crypt(3C)

Page | : November 1979

PASTE (1) CB—UNIX 2.1 PASTE (1)

NAME
paste — merge same lines of several files or subsequent lines of one file

SYNOPSIS
paste filel file2 ..
paste —dlist filel file2 ...
paste —s [—dlist] filel file2 ...

DESCRIPTION

In the first two forms, pastze concatenates corresponding lines of the given input files file!, file2
etc. It treats each file as a column or columns of a table and pastes them together horizontally
(parallel merging). If you will, it is the counterpart of car(1) which concatenates verticaily, ie.
one file after the other. In the last form above, pasie subsumes the function of an older com-
mand with the same name by combining subsequent lines of the input file (serial merging). In
all cases, lines are giued together with the /ab character, or with characters from an optionally
specified /isrz. Output is to the standard output, so it can be used as the start of a pipe, or as a
filter, if — is used in place of a filename.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or
last line in case of the =—s option) are replaced by a rab character. This
_option allows replacing the /ab character by one or more alternate charac-
ters (see below).

list One or more characters immediately following —d replace the default b
as the line concatenation character. The list is used circularly, i. e. when
exhausted, it is reused. In parallel merging (i. e. no —s option), the lines
from the last file are always terminated with a new-line character, not from
the /isz. The list may contain the special escape sequences: \n (new-line), \t
(tab), \\ (backslash), \O {empty string, not a null character). Quoting may
be necessary, if characters have special meaning to the shell (e.g. to get
one backslash, write "™ —d"\\\\!).

-s Merge subsequent lines rather than one from each input file. Use /b for
concatenation, unless a /ist is specified with —d option. Regardless of the
list , the very last character of the file is forced to be a new-line.

= May be used in place of any filename, to read a line from the standard
input. (There is no prompting).
EXAMPLES
Is | paste —d"" — list directory in one column
Is | paste — — = — list directory in four columns
paste —s —d"\t\n" file combine pairs of lines into lines
SEE ALSO

grep(l), cut(l), pr{l): pr —t —mnr ... works similarly, but creates extra blanks, tabs and new-
lines for a nice page layout.

DIAGNOSTICS
line 100 long : Output lines are restricted to 256 characters.
100 many files . Except for —s option, no more than 12 input files may be specified.

Page | _ November 1979

