
FPP(1L) Version 3.0.0 FPP(1L)

NAME
fpp − cpp-like rev ersible preprocessor filter for Fortran and SFTRAN3 code

SYNOPSIS
fpp [−?] [−author] [−copyright] [−Dname] [−Dname=value] [−debug] [−fixed] [−free]

[−help] [−Uname] [−version] [name1=value1] . . . [namek=valuek] [−−]
[infile(s)]

DESCRIPTION
fpp is a preprocessor for Fortran (77, 90, 95) and SFTRAN3, modelled on the ISO Standard C (1989 and
1999) and C++ (1998) preprocessor, but tailored for Fortran use, and forre versibility. The output always
contains the complete input, except that some code sections may have become comments, or vice versa.
This can be more useful than the non-reversible approach used by the C preprocessor.

Reversible preprocessing is convenient when a master source file must be maintained to generate multiple
versions, such as for different operating-system, compiler, and architecture variations. The source code for
any of these can serve as the master file to create any of the others.

Although several UNIX vendor Fortran compilers offer to run the C preprocessor,cpp(1), it cannot be used
reliably for Fortran code, because it does not know about Fortran line-length limitations, or Fortran syntax.
Fortran does not require type declarations, so from syntax confusion,cpp(1) could introduce subtle changes
that cannot be detected by the Fortran compiler, and would likely be quite hard to debug.

A similar problem exists with the more general and powerful macro processor,m4(1).

fpp follows the preprocessor syntax defined in three ISO language standards, but embeds directives in com-
ments and restricts its operation, so that both input and output files can be processed by any Fortran com-
piler, or any other Fortran software tool, such asd2s(1), dtoq(1), dtos(1), fsplit (1), ftnchek(1), pfort (1),
pretty (1), qtod(1), s2d(1), sf3lex(1), sf3pretty(1), stod(1), strsf3(1), struct(1), tidy (1), or toolpack(1).
Also, a human can see exactly the same post-processed source code that the compiler does.

In particular, this means that it is often possible to applyfpp just onceto a set of Fortran source files for a
given environment, rather than having to run it each time the code is compiled.

OPTIONS
Because the original version offpp was implemented in theawk(1) language, which has its own command-
line options,fpp options were originally prefixed with a+ instead of a−. That syntax is still recognized, as
is the GNU/POSIX form with a leading double hyphen. Also, long option names may be abbreviated to
any unique leading prefix. Thus,+author, −author, −−author, and−a are equivalent.

−− The preceding word on the command line is the last option; all following words are to be
interpreted as filenames, even if they begin with a hyphen, or contain equal signs.

−? Display brief usage information onstderrand exit with a success status code before pro-
cessing any input files.

This is a synonym for−help.

−author Show author information onstderrand exit with a success status code before processing
any input files.

−copyright Show copyright information onstderrand exit with a success status code before process-
ing any input files.

−Dname Define the symbolnameto the value 1.

−Dname=value Define the symbolnameto value.

−debug Turn on debugging output, which is sent tostderr. This produces helpful intermediate
output from the expression evaluator. Macro definitions are also displayed onstderr
when they are executed.

−fixed Input is in Fortran 77 fixed form. If this option is specified, it overrides any assumptions
based on input file extensions.

17 May 2001 1

FPP(1L) Version 3.0.0 FPP(1L)

Fixed-form input is the default.

In the absence of a command-line option to set the input form, fixed form is automati-
cally selected for files with names ending in.F, .f , .F77, .f77, .FOR, .for, .FPP, .fpp,
.FTN, or .ftn, or any unrecognized extension.

−free Input is in Fortran 90 and 95 free form. If this option is specified, it overrides any
assumptions based on input file extensions.

In the absence of a command-line option to set the input form, free form is automatically
selected for files with names ending in.F90, .f90, .F95, or .f95.

−help Display brief usage information onstderrand exit with a success status code before pro-
cessing any input files.

This is a synonym for−?.

−Uname Undefine the symbolname. If the name is subsequently referenced, it willsilentlyevalu-
ate to zero. The existence of a definition can be checked with thedefinedoperator, or in

C#ifdef name
C#ifndef name

statements; see below for details.

−version Display the current version number offpp on stderr, and exit with a success status code
before processing any input files.

name=value Define the symbolnameto value. This form is deprecated, and may not be supported in
the future. Use−Dname=valueinstead.

If no input file names are given on the command line, input is assumed to come fromstdin. In that case,
since no filename is available to select the input form, it will be necessary to specify−free for free-form
source code.

LANGUAGE OVERVIEW
fpp statements, or directives, are specially-formatted Fortran comments of the forms

C#name
C#name args

Since allfpp directives are encoded as comments, both input and output files should be compilable without
any preprocessing byfpp.

Blanks may optionally surround the initial# to permit indentation for better visibility, or to reflect condi-
tional statement nesting.

The first column may contain any valid Fortran comment starter:C, c, * , or !.

UnrecognizedC # word sequences aresilentlycopied to the output, so as to permit the rare case of a# in
the initial text of a Fortran comment.

Preprocessor names in conditionals and definitions, or set on the command line, consist of letters, digits,
and underscores; the first character may not be a digit.

Symbols beginning with two underscores, or an underscore and an uppercase letter, are reserved for the
local implementation; see thePREDEFINED SYMBOLSsection below for details.

Symbols beginning with two underscores are permanent: once defined, they can be neither undefined, nor
redefined, by the user.

Following standard Fortran practice, letter case is not significant in directives, or in constants and operators
in expressions.

For portability, it is recommended that lower-case letters be used for all directives, and upper-case letters
for all defined names; this conforms to three decades of widespread practice in the C programming lan-
guage.

17 May 2001 2

FPP(1L) Version 3.0.0 FPP(1L)

DEFINITION STATEMENTS
Definitions of names for preprocessor conditionals may be set on the command line:

fpp −D_OS_UNIX −D_SUN386
fpp −D_OS_UNIX=1 −D_SUN386=1
fpp _OS_UNIX=1 _SUN386=1

or in the input file text itself:

C #define _OS_UNIX 1
C #define _SUN386 1

Thecc(1)-like forms with define and undefine options are supported; these two inv ocations are equivalent:

fpp -D_OS_UNIX -DWORDSIZE=32
fpp _OS_UNIX=1 WORDSIZE=32

These two are roughly equivalent:

fpp -U_OS_VAXVMS
fpp _OS_VAXVMS=0

They differ in that, although the symbol_OS_VAXVMS will evaluate to 0 in a numeric context, a test for
definition with

C #if defined(_OS_VAXVMS)
or

C #ifdef _OS_VAXVMS
will select the else-branch in the first case, and the then-branch in the second case.

If the value is omitted, as in

fpp _OS_UNIX= _SUN386=

or

C #define _OS_UNIX
C #define _SUN386

a value of 1 is assumed.

Names can be undefined by

C #undef name
C #undefine name

If the name was not already defined, the request issilently ignored.

CONDITIONAL STATEMENTS
The conditional statements supported are:

C#if constant-expression
C#ifdef name
C#ifndef name
C#elseif constant-expression
C#elif constant-expression
C#else [optional comment]
C#endif [optional comment]

EachC#ifxxx statement must have a matchingC#endif following it. The two may be separated by any
number ofC#elseifstatements, which may be followed by a singleC#elsestatement.

A branch of a conditional is selected when the expression evaluates to a non-zero value; see theEXPRES-
SIONSsection below for details.

Code between these statements is preserved, but in the unselected branches of a conditional statement, a
non-comment statement will be altered to a comment by prefixing it with an initialC##, (or !## in free
form) shifting the statement right by three columns. In the selected branch, any initialC## in columns 1

17 May 2001 3

FPP(1L) Version 3.0.0 FPP(1L)

through 3 is stripped; lines without this prefix are copied verbatim.

Because of Fortran line-length limitations (72 in fixed form, 132 in free form), this means that inside anfpp
conditional, code lines may not exceed three characters less than the maximum length.

For example, the input

C#if _OS_UNIX
C##C UNIX code
C## CALL GETENV(...)
C#elseif _OS_VAXVMS
C VMS code

CALL LIB$TRNLNM(...)
C#endif

when_OS_UNIX=1produces

C#if _OS_UNIX
C UNIX code

CALL GETENV(...)
C#elseif _OS_VAXVMS
C##C VMS code
C## CALL LIB$TRNLNM(...)
C#endif

When neither_OS_UNIX nor_OS_VAXVMS are defined, the output is

C#if _OS_UNIX
C##C UNIX code
C## CALL GETENV(...)
C#elseif _OS_VAXVMS
C##C VMS code
C## CALL LIB$TRNLNM(...)
C#endif

When only _OS_VAXVMS is defined, the original input is sent to the output. If by chance both
_OS_VAXVMS and_OS_UNIX were defined, only the UNIX code would be selected, because only the
first branch of the conditional would be executed.

Preprocessor conditionals may be nested:

C # if _OS_UNIX
C # if _SUN
C # if _SUN4
C # elseif _SUN3
C # elseif _SUN386
C # endif
C # endif
C # elseif _OS_VMS
C # endif

Any text following #elseor #endif is ignored; it can be used to document the conditional, usually with the
test from the preceding#if:

C # if _OS_UNIX
C # else NOT _OS_UNIX
C # endif _OS_UNIX

While such trailing text is not permitted by the ISO Standard C/C++ preprocessor, many implementations
of the preprocessor silently ignore such text.

fpp directives are not executed if they are in a branch of a conditional that is not currently selected. How-
ev er, conditional statements are processed to keep track of the current nesting.

17 May 2001 4

FPP(1L) Version 3.0.0 FPP(1L)

On UNIX, the−Dnameoption fordiff (1) can be used to get output from the comparison of two files that is
almost correct input forfpp. A simple command pipediff -Dxxx file1 file2 | sed -e ’s/ˆ#/C#/’ >file3will
produce an output filefile3 from which fpp -Dxxx file3 will recoverfile2 andfpp -Uxxx file3 will recover
file1.

EXPRESSIONS
Expressions are recognized and evaluated in two circumstances: in the arguments ofC#if, C#elseif, and
C#elif, and inside the parentheses of#(. . .).

In expressions, primaries are Fortran integer, floating-point, logical, and character constants, and preproces-
sor names.

Undefined namessilently evaluate to zero in arithmetic expressions, and to empty strings in string expres-
sions.

Character strings appearing in arithmetic expressions are converted to numbers, which are zero if the string
does not look like a number. Character strings appearing by themselves evaluate to themselves.

Arithmetic expressions are evaluated infloating-pointarithmetic; for Boolean (Fortran logical) tests, zero is
false, and non-zero is true.

The usual Fortran arithmetic operators+ − * / ** are recognized, along with the C modulus operator% ;
x % y is Fortran’smod(x,y). This operator is rigorously defined for all arguments to bex % y = x -
int(x/y)*y .

The Fortran logical and relational operators are supported, with convenient modern C-like synonyms:.and.
(& and&&), .or. (| or ||), .not. (!), .eq. (==), .ne. (!=), .lt. (<), .le. (<=), .gt. (>), and.ge.(>=). Letter case
in the dotted operators is not significant. Finally, the Fortran character string concatenation operator,//, is
handled.

One special name,defined, is recognized, in any letter case; it may be used either in functional form,
defined(name), or in prefix operator form,defined name. It evaluates to 1 if the name is defined (even if
the value of the name is zero), and otherwise, to 0. Severaldefined operators can be used in a single
expression; that is much more convenient than a series of nested conditionals usingC#ifdef andC#ifndef.

The#(. . .) form is only recognized in a comment line, and the next line is converted to a comment (see the
sectionMACRO EXPANSIONbelow); the parentheses hold an expression involving Fortran constants and
preprocessor names.

Examples of expressions are

C#if defined(_OS_UNIX) || defined _OS_VAXVMS || (WORDSIZE == 32)

C REAL A(#(MAXA**2)), B(#(MAXA % 32))

C INTEGER BITS(#(WORDSIZE))

MACRO EXPANSION
fpp supports are versibleargument-free macro expansion capability. This involves pairs of lines, the first a
comment line containing the macro references as strings of the form#(constant-expression), and the sec-
ond a non-comment Fortran statement.

The first line of the pair is always exactly preserved in the output, while the second is replaced by the
expansion of the comment, with the first characterdeleted, to change the comment into a non-comment.
The original contents of the second line are preserved as a comment with the prefixC-fpp- in a third output
line.

This peculiar input line pairing is necessary to ensure that the expansion is reversible.

The parentheses around the expression serve to distinguish between macros andfpp preprocessor directives
in comments, and serendipitously permit the extension from simple names to arbitrary constant expressions
that can be evaluated byfpp.

Care must be taken in writing the input to ensure that any expected expansion does not make the line longer
than 72 characters;fpp has almost no knowledge of Fortran, and therefore cannot provide correct line

17 May 2001 5

FPP(1L) Version 3.0.0 FPP(1L)

wrapping for it. However, it will warn about long lines.

Similarly, macro expansion in a multi-line continued statement should avoided, since it introduces comment
lines between continuation lines. While such comments are legal in full Fortran 77, they are illegal in sub-
set Fortran 77, and in older Fortrans, and may cause problems for other tools that process Fortran code.

Here is a small example. Given command-line definitions

FPTYPE=’DOUBLE PRECISION’
MAXA=19
MAXB=25

then the input

C #(FPTYPE) A(#(MAXA)), B(#(MAXB),#(MAXA**2))
REAL A(100), B(255,10000)

is converted to the output

C #(FPTYPE) A(#(MAXA)), B(#(MAXB),#(MAXA**2))
DOUBLE PRECISION A(19), B(25,361)

C-fpp- REAL A(100), B(255,10000)

Fortran 77PARAMETER statements can be used to achieve similar effects, but in more restricted circum-
stances. In particular,fpp permits such expansions to happen in strings:

C10000 FORMAT (’Host operating system = #(OS)’)
10000 FORMAT (’Host operating system = UNIX’)

This may be awkward to achieve in standard Fortran.

MESSAGE OUTPUT STATEMENTS
Te xt can be written tostderrwith either of

C#messagetext

C#error text

The difference between them is that#error sets an exit code of 1 (on POSIX and UNIX), and also sends
the text tostdout. This can be used to ensure that a preprocessing error forces a compilation error if an
attempt is later made to compile the output source program.

The output of both directives is prefixed with the file name and input line number to identify the origin of
the message.

When#error is executed, processing is not terminated; instead,fpp tries to process the remaining input so
as to uncover additional errors in the same run.

OUTPUT OF fpp
The output contains an initial comment header of the form

C-fpp- ===
C-fpp- fpp version 1.0 [10-Dec-1990]
C-fpp- Date: Sat Dec 8 23:06:30 MST 1990
C-fpp- Directory: /u/sy/beebe
C-fpp- User: beebe@math.utah.edu
C-fpp- Macro: _OS_VAXVMS=1
C-fpp- Macro: FPTYPE=DOUBLE PRECISION
C-fpp- ===

These comments provide a record of the processing, including what symbol definitions and macro values
have been selected.

Input comments beginning

C-fpp-

are flushed. Thus, any existing comment header is always replaced by a new header.

17 May 2001 6

FPP(1L) Version 3.0.0 FPP(1L)

Each command-linename=valueor −Dnamesetting, and each input definition directive

C#define name value

produce an output comment of the form

C-fpp- Macro: name=value

Thus, all output lines beginning

C-fpp- Macro:

document which names have been defined.

A C#undefinestatement results in output like

C-fpp- Macro: name=--UNDEFINED--

PREDEFINED SYMBOLS
Each implementation offpp predefines a few symbols that can be tested and used in conditionals to select
machine-specific code sections. The predefined symbols are provided tofpp ahead of any user-defined
ones. Since later redefinitions override earlier ones, predefined symbols can always be changed by the user.

Following ISO Standard C/C++, predefined symbols always begin with two underscores, or an underscore
and an uppercase letter; such names are reserved for the local implementation. Predefined symbols that do
not follow this convention areforbidden. This requirement makes it possible to distinguish separate name
spaces for the user and for the implementation, preventing surprises from unexpected substitutions that hap-
pen when code is moved to a new environment.

The complete set of definitions is always recorded in the output header; they can easily be displayed onstd-
outby giving fpp an empty input file:

fpp /dev/null

fpp always predefinesexactly onemajor operating-system symbol:

_OS_PCDOS
_OS_TOPS20
_OS_UNIX
_OS_VAXVMS

For_OS_UNIX, exactly one minor operating-system variant may also be defined:

_AIX
_AIX370
_BSD
_DARWIN
_FREEBSD
_GOULD
_HPUX
_IRIX
_LINUX
_MACH
_MIPS
_NETBSD
_OPENBSD
_OSF1
_RHAPSODY
_STARDENT
_SUNOS
_ULTRIX

Additional architectural variants may be defined on some systems:
_GNU_LINUX
_HPPA

17 May 2001 7

FPP(1L) Version 3.0.0 FPP(1L)

_IBM_3090
_IBM_PS_2
_IBM_RS_6000
_IBM_RT
_IRIX64
_M68K
_MACOSX
_NEXT
_POSIX
_PPC
_STARDENT_1500
_STARDENT_3000
_SUN3
_SUN386
_SUN4
_VAX
_X86

The operating system name as returned byuname(1) is recorded as the value of_OS_NAME, after col-
lapsing characters other than letters, digits, period, and hyphen to underscores.

The operating system level, usually a string of digits separated by periods and/or hyphens, is recorded as
the value of_OS_LEVEL. On most systems, it too is obtained fromuname(1).

The host CPU architecture is recorded as the value of_ARCH, one of
Alpha
Convex
Cray
Gould
IA-64
IBM-3090
MIPS
Motorola-68K
PA-RISC
Po werPC
SPARC
Stardent
VAX
unknown
x86

Host byte addressing order is defined by one of these:

_BIG_ENDIAN
_LITTLE_ENDIAN

Big-endian addressing is used by IBM, Motorola, and most RISC systems. Little-endian addressing is used
by the Intel x86, HP/Intel IA-64, DEC VAX, and Compaq/DEC Alpha architectures. Although a few RISC
architectures support both endian orders, a fixed choice is always made by the operating system to ensure
consistent byte ordering in binary files and network traffic.

Host floating-point architecture must be defined by
_IEEE_754

on those machines that have IEEE 754 floating-point arithmetic.

If the Fortran implementation supports NAMELIST I/O, the symbol
_NAMELIST

must be defined.

To ensure standardization, all such names must be registered with the author offpp, and will be listed in

17 May 2001 8

FPP(1L) Version 3.0.0 FPP(1L)

these manual pages.

Following ISO Standard C/C++, four standard permanent symbols are always defined; these each have two
leading and two trailing underscores. Permanent symbols always begin with two underscores, and once
defined, may not be undefined, or redefined, by the user.

_ _DATE_ _ Current calendar date in the formMmm dd yyyy. The month field is alpha-
betic, and the day number field has a leading blank if the day is less than 10.

_ _FILE_ _ Current input file filename.

_ _LINE_ _ Current input file line number.

_ _TIME_ _ Wall-clock time in the formhh:mm:ss.

In addition to those four,fpp sets two related values:

_ _ISO_DATE_ _ Ten-character ISO 8601 date in the formYYYY-MM-DD.

_ _TIMEZONE_ _ Three-letter time zone abbreviation, such as MDT for Mountain Daylight
Time, or GMT for Greenwich Mean Time.

The symbols_ _DATE_ _, _ _ISO_DATE_ _, _ _TIME_ _, and_ _TIMEZONE_ _ are set only once, at
the start of execution offpp. These values can be conveniently used to generate output stamped with the
time of compilation:

C WRITE (*,*) ’Processed on #(__DATE__) at #(__TIME__) #(__TIMEZONE__)’
WRITE (*,*) ’Processed on ??? ?? ???? at ??:??:?? ???’

might produce

C WRITE (*,*) ’Processed on #(__DATE__) at #(__TIME__) #(__TIMEZONE__)’
WRITE (*,*) ’Processed on Dec 10 1990 at 09:10:07 MST’

C-fpp- WRITE (*,*) ’Processed on ??? ?? ???? at ??:??:?? ???’

DIAGNOSTICS
Diagnostics are issued tostderr if unclosed conditionals, out-of-place conditional branches, errors in pre-
processor expressions, or long lines, are detected. Attempts to redefine permanent macros (any that begin
with two underscores) produce an error message. Debug output requested by a command-line option will
be sent tostderr.

Directives
C#error text

that are executed send their text argument tostderr and tostdout, and cause a later exit code of 1 (on
POSIX and UNIX).

Directives
C#messagetext

that are executed send their text argument tostderr.

Diagnostic messages have the format
filename:linenumber:message

commonly used by UNIX, POSIX, and GNU software. Advanced text editors, such asemacs(1), recognize
that format, and allow the user to move tothe error location with a couple of keystrokes.

SEE ALSO
awk(1), c++(1), CC(1), cc(1), cpp(1), cxx(1), d2s(1), diff (1), dtoq(1), dtos(1), emacs(1), f77(1), f90(1),
f95(1), fsplit (1), ftnchek(1), g++(1), g77(1), gawk(1), gcc(1), lf95(1), m4(1), mawk(1), nagf90(1),
nagf95(1), nawk(1), pfort (1), pgf77(1), pgf90(1), pretty (1), qtod(1), s2d(1), sf3lex(1), sf3pretty(1),
stod(1), strsf3(1), struct(1), tidy (1), toolpack(1), uname(1), xlf (1), xlf90(1), xlf95(1), xsf3(1).

American National Standards Institute,American National Standard pro gramming language FORTRAN:
approved April 3, 1978, ANSI X3.9-1978, New York, 1978. Revision of ANSI X3.9-1966.

S. P. Harbison and G. L. Steele, Jr.,C: A Reference Manual, 4th ed., Prentice-Hall, 1995.

17 May 2001 9

FPP(1L) Version 3.0.0 FPP(1L)

B. W. Kernighan and D. M. Ritchie,The C Programming Language, 2nd ed., Prentice-Hall, 1988.

American National Standards Inst.,American National Standard for Information Systems — Programming
Language — C, ANSI X3.159-1989, New York, 1990.

International Organization for Standardization,ISO/IEC 9899:1990: Programming languages — C,
Geneva, Switzerland, 1990.

International Organization for Standardization,International standard: information, technology, pro gram-
ming languages, Fortran, ISO/IEC 1539:1991, Geneva, 1991.

IEEE, 9945-2: 1993 (ISO/IEC) [IEEE/ANSI Std 1003.2-1992 and IEEE/ANSI 1003.2a-1992] Information
Technology — Portable Operating System Interface (POSIX(®)) — Part 2: Shell and Utilities, New York,
1993.

American National Standards Institute,ANSI/ISO/IEC 1539-1:1997: Information technology — Program-
ming languages — Fortran — Part 1: Base language

Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold L. Wagener,Fortran 95
Handbook: Complete ISO/ANSI Reference, MIT Press, Cambridge, MA, 1997. ISBN 0-262-51096-0

International Organization for Standardization,ISO/IEC 14882:1998: Programming languages — C++
Geneva, Switzerland, 1998.

International Organization for Standardization,ISO/IEC 9899:1999: Programming languages — C,
Geneva, Switzerland, 1999.

AUTHOR
Nelson H. F. Beebe
Center for Scientific Computing
University of Utah
Department of Mathematics, 322 INSCC
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Email:beebe@math.utah.edu , beebe@acm.org ,

beebe@computer.org , beebe@ieee.org (Internet)
WWW URL: http://www.math.utah.edu/˜beebe
Telephone: +1 801 581 5254
FAX: +1 801 585 1640, +1 801 581 4148

AV AILABILITY
fpp is freely available; its master distribution can be found at

ftp://ftp.math.utah.edu/pub/misc/
http://www.math.utah.edu/pub/misc/

in the filefpp-x.yy.tar.gzwherex.yy is the current version. Other distribution formats are usually available
at the same location.

That site is mirrored to several other Internet archives, so you may also be able to find it elsewhere on the
Internet; try searching for the stringfppat one or more of the popular Web search sites, such as

http://altavista.digital.com/
http://search.microsoft.com/us/default.asp
http://www.dejanews.com/
http://www.dogpile.com/index.html
http://www.euroseek.net/page?ifl=uk
http://www.excite.com/
http://www.go2net.com/search.html
http://www.google.com/
http://www.hotbot.com/
http://www.infoseek.com/

17 May 2001 10

FPP(1L) Version 3.0.0 FPP(1L)

http://www.inktomi.com/
http://www.lycos.com/
http://www.northernlight.com/
http://www.snap.com/
http://www.stpt.com/
http://www.yahoo.com/

COPYRIGHT
##
##
##
###
fpp: cpp-like reversible preprocessor filter for Fortran and
SFTRAN3 code
###
Copyright (C) 1990, 1993, 2001 Nelson H. F. Beebe
###
This program is covered by the GNU General Public License (GPL),
version 2 or later, available as the file COPYING in the program
source distribution, and on the Internet at
###
ftp://ftp.gnu.org/gnu/GPL
###
http://www.gnu.org/copyleft/gpl.html
###
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.
###
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
###
You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA.
##
##
##

17 May 2001 11

