
Ax — predefined axioms

Table of contents

Preface . ii

1 Axioms . ii

Ax::canonicalOrder — the axiom of canonically ordered sets . . 1

Ax::canonicalRep — the axiom of canonically representation . . 1

Ax::canonicalUnitNormal — the axiom of canonically unit nor-
mals . 1

Ax::closedUnitNormals — the axiom of closed unit normals . . 2

Ax::efficientOperation — the axiom of efficient operations . 3

Ax::normalRep — the axiom of normal representation 3

Ax::noZeroDivisors — the axiom of rng’s with no zero divisor . 4

Ax::systemRep — the axiom of facade domains 4

i

1 Axioms

In MuPAD an algebraic structure may be represented by a domain. Parameter-
ized domains may be defined by domain constructors. Many domain construc-
tors are defined in the library package Dom.

Domains which have an similar mathematical structure may be members
of a category. A category adds a level of abstraction because it postulates con-
ditions which must hold for a domain in order to become a valid member of
the category. Operations may be defined for all members of a category based
on the assumptions and basic operations of that category, as long as they make
no assumptions about the representation of the elements of the domain that
belong to the category. Categories may also depend on parameters and are
created by category constructors. The category constructors of the MuPAD li-
brary are contained in the library package Cat .

Attributes of domains and categories are defined in terms of so-called ax-
ioms. Axioms state properties of domains or categories. They may also depend
on parameters and are defined by axiom constructors. The axiom constructors
of the MuPAD library are contained in the package Ax, which is described in
this document.

Please note that most axioms of the domains and categories defined in the
MuPAD library are not stated explicitly. Only axioms which are not implied
by the definition of a category are stated explicitly. The category of groups for
example has no axiom stating that the multiplication is invertible because that
is implied by the definition of a group. Most axioms defined in this package
are of technical (i.e. algorithmic nature).

The definition of new axiom constructors is described in detail in the paper
“Axioms, Categories and Domains” [1].

Changes since Version 1.4

The definition and implementation of axiom constructors has been changed
considerably:

• A new syntax has been introduced for axiom constructors.

• Constructor parameters and local variables are now bound lexically in-
stead of being substituted into the methods.

• The former special name this has been renamed to dom.

This changes are described in detail in the paper “Axioms, Categories and
Domains” [1].

Changes since Version 1.2.2

Since MuPAD version 1.2.2 the following changes where made:
Most notably, all the constructors have been inserted into three library do-

mains, in order to avoid global names and naming conflicts:

ii

• All domain constructors and domains have been inserted into the new
library domain Dom.

• The category constructors and categories have been inserted into the li-
brary domain Cat .

• The axioms have been inserted into the library domain Ax.

Thus the domain constructor for matrices now is called Dom::Matrix instead
of simply Matrix , and the category of rings is called Cat::Ring instead of
Ring .

The former global names may be exported from these library domains.
With export(Dom) one gets all the former domain constructor and domain
names for example.

The method names of the category Cat::FactorialDomain (formerly
FactorialDomain) have been changed slightly, which involves the sub-categories
and domains of this category.

iii

References

[1] K. Drescher. Axioms, Categories and Domains. Automath Technical Report
No. 1, Univ. GH Paderborn 1995.

iv

Ax::canonicalOrder – the axiom of canonically ordered sets

Ax::canonicalOrder states that domain elements are canonically ordered.

Generating the axiom:

A Ax::canonicalOrder

Details:

A The axiom Ax::canonicalOrder is used to state that a domain has an
order < (_less) which is defined by the canonical order of the MuPAD-
expressions.

A This implies that the order of two elements is defined by the system func-
tion _less .

Changes:

A No changes.

Ax::canonicalRep – the axiom of canonically representation

Ax::canonicalRep states that domain elements are canonically represented.

Generating the axiom:

A Ax::canonicalRep

Details:

A The axiom Ax::canonicalRep is used to state that the elements of a
domain are represented canonically, i.e. that each element of the domain
has only one unique expression which represents it.

A This axiom implies that for an abelian monoid the axiom Ax::normalRep
also holds. This is not enforced by the category but must be stated by the
implementor of a domain.

1

Changes:

A No changes.

Ax::canonicalUnitNormal – the axiom of canonically unit nor-
mals

Ax::canonicalUnitNormal states that the method "unitNormal" of an
integral domain (category Cat::IntegralDomain) returns a unique unit
normal.

Generating the axiom:

A Ax::canonicalUnitNormal

Details:

A The axiom Ax::canonicalUnitNormal is used to state that the unit
normals of an integral domain (category Cat::IntegralDomain) re-
turned by the method "unitNormal" are unique.

A This means that for each non-zero element x of the integral domain there
exists an unique associate among the associate class of x , i.e. for any
x and y of a domain dom of category Cat::IntegralDomain where
dom::associates(x, y) returns TRUEthe equation dom::equal(dom::unitNormal(x),
dom::unitNormal(y)) = TRUE must hold.

A Note that this axiom does not imply that the unit normals are canonically
represented. The unit normals of x and y must be mathematically equal
in the sense of the method "equal" , they need not be structurally equal
as MuPAD objects.

Changes:

A No changes.

Ax::closedUnitNormals – the axiom of closed unit normals

Ax::closedUnitNormals states that the unit normals of an integral domain
are closed under multiplication.

Generating the axiom:

A Ax::closedUnitNormals

2

Details:

A The axiom Ax::closedUnitNormals is used to state that the unit nor-
mals of an integral domain are closed under multiplication, i.e., that
dom::equal(x, dom::unitNormal(a) * dom::unitNormal(b))
= TRUEimplies dom::equal(x, dom::unitNormal(x)) = TRUE for
all elements x , a and b of the domain dom.

A This axiom may be used only in conjunction with the axiom Ax::canonicalUnitNormal .
If an integral domain has no unique unit normals, this axiom may not be
stated.

Changes:

A No changes.

Ax::efficientOperation – the axiom of efficient operations

Ax::efficientOperation((oper)) states that operation oper can be per-
formed efficiently.

Generating the axiom:

A Ax::efficientOperation(oper)

Parameters:

oper — A string which defines the efficient operation.

Details:

A The axiom Ax::efficientOperation(oper) is used to state that the
operation oper can be performed efficiently.

A The string oper must be the name of the operations slot in the domain
stating the axiom. Examples are "_mult" , "_invert" or "_divide" .

Changes:

A No changes.

Ax::normalRep – the axiom of normal representation

Ax::normalRep states that an abelian monoid has a canonically representa-
tion of its zero element.

3

Generating the axiom:

A Ax::normalRep

Details:

A The axiom Ax::normalRep is used to state that an abelian monoid has
a canonically representation of its zero element, i.e., that there is only one
unique expression to represent zero.

A If the axiom Ax::normalRep holds for a domain dom, one may test
for zero by comparing an element with dom::zero using the system
function _equal .

Changes:

A No changes.

Ax::noZeroDivisors – the axiom of rng’s with no zero divisor

Ax::noZeroDivisors states that a ring without a unit has no zero divisors.

Generating the axiom:

A Ax::noZeroDivisors

Details:

A The axiom Ax::noZeroDivisors is used to state that a ring without a
unit has no zero divisors, i.e. that the product of two non-zero elements
is never zero.

A Note that an integral domain implizitly has no zero divisors.

Changes:

A No changes.

Ax::systemRep – the axiom of facade domains

Ax::systemRep states that domain elements are represented by elements of
built-in domains.

4

Generating the axiom:

A Ax::systemRep

Details:

A There are principally two ways to represent the elements of a domain:
On the one hand the elements may be created explicitly by the system
function new, on the other hand one may use the built-in (or basic) do-
mains of MuPAD (like DOM_INT) to represent the elements.

A Domains which don’t create elements of their own but use elements of
basic domains instead are called facade domains.

A The usage of basic domains for the representation has the advantage that
system functions may be used directly as methods of the domain without
the overhead caused by overloading and procedure calls. But it has some
severe limitations, see the domain Dom::Expression for details.

A The axiom Ax::systemRep is used to state that the elements of a do-
main are represented by basic domains and are not created by new.

Changes:

A No changes.

5

