
Axioms, Categories and Domains

Klaus Drescher

18. October 1999

In order to make the construction of new algebraic structures easier
the concept of domain constructors has been made available since
MuPAD Version 1.2. With the aid of this concept parameterized
domains can be constructed. Knowledge about common properties
of certain classes of domains may be utilized in form of categories
and generic algorithms. This version of the paper reflects the state
of the domain constructors in MuPAD version 2.0.

iii

iv

Contents

1. Introduction 1

2. Raw Domains 5
2.1. The Slot Operator . 9
2.2. Overloading Built-In Functions 10
2.3. Overloading Procedures . 11
2.4. Special Domain Entries . 12
2.5. The Reference Effect . 12

3. Domain Constructors 15
3.1. Defining Domain Constructors 16
3.2. Initialization and Local Variables 20
3.3. Constructors without Parameters 21
3.4. Representation of Domain Elements 22

3.4.1. Representation of Sub-Domain Elements 22
3.4.2. Façade Domains . 23

3.5. Parameterization of Domain Entries 24
3.6. Searching for Domain Entries . 25
3.7. Special Domain Entries . 27

4. Categories 29
4.1. Defining Category Constructors 31
4.2. Initialization and Static Values . 34
4.3. Constructors without Parameters 34
4.4. Searching for Domain Entries . 35

5. Axioms 37
5.1. Defining Axiom Constructors . 37

6. The Domain Dom::BaseDomain 39

7. General Nonsense? 41
7.1. Where to go? . 42

A. The Constructors of the MuPAD Library 43

v

0. Contents

B. Special Domain Entries 47
B.1. Creating Domain Entries . 47
B.2. Creating Domain Entries . 48
B.3. Accessing Slots . 48
B.4. Evaluation . 49
B.5. Output . 49
B.6. MCode . 49
B.7. Arithmetic . 50
B.8. Accessing Operands . 50
B.9. Type Testing and Conversion . 51
B.10. Function Calls . 53
B.11. Indexed Access . 54
B.12. Coefficient Rings of Polynomials 54
B.13. Domains Created by Constructors 56
B.14. Domains as Library Packages . 56

C. An Example: Multi-Indices 57

vi

1. Introduction

In Version 1.2 the new basic type domain has been introduced in MuPAD. A
domain can represent an algebraic structure like the rational functions Q(x) or
an abstract data type like the data type stack .
What are such algebraic structures good for? In many computer algebra sys-
tems (CASs) elements of an algebraic structure are simply stored as expres-
sions. Thus the expression

((x^2-1) / (x+1)) - x + 1

can be understood as a rational function in Q(x). The problem now is that this
rational function has the value 0 but the internal simplifiers of most systems
will not simplify this expression to 0 directly because this is too time consum-
ing. The system does not “know” that this is an rational function over Q and
therefore has to “try out” many possibilities ad hoc in order to find a normal
form. In MuPAD, for instance, the command

normal(((x^2-1) / (x+1)) - x + 1);

has to be explicitly executed so that the system simplifies the expression.
How should a CAS treat such expressions if they are, for instance, entries in a
matrix which has to be inverted? The entries have to be simplified, otherwise
a division by 0 may occur during the Gaussian algorithm.

• One possibility is to call the normal function before each division. This
can be very time-consuming in cases where simplification is not neces-
sary. Furthermore this only works in those cases where normal pro-
duces a normal form. There are, however, many classes of expressions
for which normal cannot produce a normal form (consider algebraic
functions, the residue classes of polynomial rings, etc.).

• Another possibility is to determine the type of the matrix entries and for
each type to implement a special inverting routine. These routines will
all be based on the Gaussian algorithm, the difference being that they
normalize differently. This, however, has the disadvantage that a lot of
code is duplicated and once again only those types that have already
been anticipated can be processed, matrices of other types cannot be in-
verted.

• The third possibility is to pass the simplification routine for the matrix
entries as a parameter to the inverting routine. Then the existing invert-
ing routine can also be used for new types by the implementation of
suitable simplification routines. This is, however, not very user-friendly
and is susceptible to errors (the user has to remember the correct simpli-
fication routine and constantly apply it).

1

1. Introduction

It would be much easier if the datum ((xˆ2-1) / (x+1)) - x + 1 “knew”
that it was a rational function and how it should react to operations such as +
and * . From Version 1.2 on this was possible in MuPAD. The users can define
their own types and operations on these types, create elements and combine
them with system operators. If the operators always produce a normal form
then the inverting routine also works with matrices that contain these elements
without explicitly having to simplify them.
A new type is implemented as a domain. In section 2 of this paper domains
and the implementation of types shall be briefly described.
A domain always represents a specific type, e.g., the algebraic extensionQ(

√
2).

If other extensions, such as Q(
√

7), are to be represented then a new domain
will have to be created for each. However, it would be very time-consuming to
implement each of these domains “by hand”. It is desirable to be able to create
domains for all possible extensions dependent on parameters.
Of course, such domains can be created using procedures that contain suitable
parameters. However, this has certain disadvantages as shall become clear
later. In MuPAD parameterized domains are created using domain constructors.
These shall be described in section 3.
Domains often only differ slightly. Some operations are newly defined while
other operations can be taken over from similar domains. This “inheriting”
of domain operations can be explicitly done in the domain constructors, thus
avoiding code duplication. With this, in MuPAD, the paradigms of object ori-
ented programming are used.
Algebraic structures are divided into categories. The structures of a category
have certain characteristics in common, statements may be made about all the
structures in a category. Categories are a means of abstraction. Similarly, do-
mains can also be divided into categories. Operations can often be formulated
so that they are valid for all domains in a category (e.g., the calculation of the
gcd in an Euclidean ring is always possible using the Euclidean algorithm).
Thus, in MuPAD, the possibility has been created for dividing domains into
categories and to “abstractly” formulate operations for these categories, so that
they can be used for all domains of the category. Like domains, categories can
also be dependent on parameters and are therefore created using category con-
structors.
The characteristics of a domain are postulated with the aid of axioms. Axioms
are simply attributes of domains. They may for example be used to distin-
guish between different cases in algorithms. As with domains and categories,
axioms can also be dependent on parameters.
The potential advantages of this concepts have contributed to the success of
the computer algebra system AXIOM [7]. Maple is also moving towards a
similar direction with the GAUSS [6] package (without, however, being able
to offer a similar good integration into the rest of the system).
This paper is also aimed at those who “only” want to work with raw domains.
In this case the user should concentrate on section 2 and on Appendix B.

2

Changes since Version 1.4

Since Version 1.4 lexical scoping has been introduced in the MuPAD language,
which caused lots of changes in procedures and also in domain constructors.

• The former function domain has been renamed to newDomain . domain
is now a keyword starting the definition of a domain constructor.

• The grammar of the MuPAD language has been extended to include do-
main, category and axiom constructors, see section 3 and following.

• The special name this , representing the domain at hand, has been re-
named into dom.

• The actual values for constructor arguments and local domain values
are no longer substituted into the domain entries, but are rather bound
lexically by the constructor.

• The actual domain a method belongs to (i.e., the value of dom) is stored
in the methods procedure and is no longer substituted into the methods
body.

• The function domattr has been removed in favor of a general concept
for “slots”. The function slot must now be used to access domain en-
tries.

• The second operand of a “slot-expression ” like A::b may no longer be a
keyword. The entries "name" and "not" have been renamed to "Name"
and "_not" .

• Some categories have been renamed, see Cat . (A trailing “Cat” has been
removed, for example the former Cat::SetCat is now simply called
Cat::Set .)

Changes since Version 1.2.2

Most notably, all the predefined constructors have been inserted into three ad-
ditional library domains, in order to avoid global names and naming conflicts:

• All domain constructors and domains have been inserted into the new
library domain Dom.

• The category constructors and categories have been inserted into the li-
brary domain Cat .

• The axioms have been inserted into the library domain Ax.

Thus the domain constructor for matrices now is called Dom::Matrix instead
of simply Matrix , and the category of rings is called Cat::Ring instead of
Ring .

3

1. Introduction

The former global names may be exported from these library domains, with
export(Dom) one gets all the former domain constructor and domain names
for example.
The library package domains is now predefined and need not be loaded ex-
plicitly with loadlib .
The method names of the category Cat::FactorialDomain (formerly Fac-
torialDomain) have been changed slightly, which involves the sub-catego-
ries and domains of this category.
With Version 1.3 each domain must have a unique key, which is an arbitrary
expression stored in the domain entry "key" . The key must be defined when
creating a new domain with domain . Note that the domains created by do-
main constructors implicitly get a key which is also used to print them.

Changes since Version 1.2.1

There have been some major changes in the implementation of the domains
package between MuPAD versions 1.2.1 and 1.2.2. Most of them did not influ-
ence the usage of the package. The super-domains, categories and axioms of
a domain were cached in the domain. (Formerly they were always created on
the fly.) This speeded-up the queries with hasProp and the creation of entries.
Changes that had to be obeyed when implementing constructors were:

• An entry definition which should not be inserted into the domain has to
evaluate to NIL instead of FAIL , see 3.1 and 4.1.

• To refer directly to category entries one has to use the :: operator instead
of the index-operator [] , see section 3.6.

• The algorithm which is used for searching the categories for the defini-
tion of entries had been changed. The categories are now searched in a
breadth-first manner and the first definition found is returned, see sec-
tion 3.6.

• The methods "getAxioms" and "allAxioms" of the domain Dom::BaseDomain
return sets instead of lists, see section 6.

4

2. Raw Domains

In this section the “direct” handling of “raw” domains will be shown without
the aids of domain constructors or the new language extensions for domains
which has been introduced since MuPAD Version 1.4. This section should
only be glanced over, as the details can sometimes be somewhat discourag-
ing. Many of this initial discouragement will be relieved later when the details
are handled by the domain constructors; one may come back as necessary.
In MuPAD, domains represent algebraic structures and abstract data types. In
the following, we shall use the residue class ring Z7 = Z/7Z as an example. (In
the Dompackage there is the domain constructor Dom::IntegerMod , with
which this domain can be created; more about this later.) With the built-in
function newDomain , a new domain is created. The new domain has the type
DOM_DOMAIN:

>> Z7 := newDomain("Zmod7")

Zmod7

>> domtype(Z7)

DOM_DOMAIN

The string "Zmod7" is a key, which must be given when a domain is created.
Each domain must have a unique key, which may be an arbitrary expression.
(The key is needed to decide if domains are equal.)
If newDomain(k) is called and a domain with key k already exists, the exist-
ing domain is returned. A new domain is created only if no domain with key
k exists.
The key is used to print the domain, but this may be changed easily:

>> Z7::Name := hold(Z7):
Z7

Z7

There are some points that need explanation: With the slot operator :: a new
slot is created in the domain under the index "Name" . When the domain is to
be printed, the system searches for this slot. If a slot exists under "Name" then
the value of that slot is printed. If there is no slot "Name" then the key of the
domain is printed.
The key of a domain is also stored in a slot in the domain. The name of the
keys slot is "key" .
A domain may have an arbitrary number of slots, there is no predefined slot
other than the "key" slot. Thus domains have “open-ended” slots. A slot of a
domain is also called a domain entry.

5

2. Raw Domains

The user should imagine a domain as a special kind of table. In principle, as
in a table, the user can enter any value under any index in a domain. How-
ever, caution is advised, as the domain entries under certain indices (like, for
instance, "Name") have a special meaning and are interpreted by the system
according to the application.
The first thing is to decide how the elements of Z7 are to be represented. For
Z7 this is canonical: for a residue class the representatives are chosen from the
interval [-3,... ,3] (symmetrical representation).
New domain elements are created with the built-in function new, e.g., the ele-
ment zero:

>> a := new(Z7, 0);

new(Z7, 0)

The identifier a now has an element of the domain Z7 as its value. Here also
the output shall be improved later.
With new a domain element, which can have any number of operands, is cre-
ated. The domain of the elements is stored as the “zeroth operand”:

>> op(a); op(a, 0)

0

Z7

Of course, the function new cannot know if the domain element created makes
any sense. Therefore, for creating new domain elements, a special operation
should be defined that ensures the creation of valid elements:

>> Z7::new := proc(x: DOM_INT) begin
if args(0) <> 1 then error("wrong no of args") end_if;
new(Z7, mods(x, 7))

end_proc:

The operation Z7::new creates from an integer the residue class whose repre-
sentative is this number. Once more the domain entry under the index "new"
has a special meaning for the system:

>> a := Z7(0); b := Z7(1)

new(Z7, 0)

new(Z7, 1)

With the function call Z7(n) , the procedure stored in the slot "new" of the
domain Z7 is called. The procedure is passed the argument n as the actual
parameter. The element zero is created with Z7(0) , the element one in Z7
with Z7(1) .
Domain entries that are procedures or functions are usually called methods.
The output of the domain elements can be improved with the help of the
method "print" :

>> Z7::print := proc(x) begin
hold(Z7)(op(x, 1))

end_proc:

6

This procedure returns an expression of the form Z7(n) . This expression is
printed instead of the default one new(Z7, n) :

>> a, b

Z7(0), Z7(1)

However, this version of the "print" method contains a potential source of
errors: the call of the op function. If the domain has a method "op" then this
is called instead of the system function op :

>> Z7::op := proc(x) begin "nonsense" end_proc:
op(a), a

"nonsense", Z7("nonsense")

One says that the function op is overloaded by the method "op" . By changing
the method "op" , the call op(x,...) with a domain element x of Z7 only
returns "nonsense" , whereby also the "print" method is affected.
Therefore there is a special op function for domain elements that cannot be
re-defined by overloading: the function extop (extension op). With this the
"print" method looks like follows:

>> Z7::print := proc(x) begin
hold(Z7)(extop(x, 1))

end_proc:

Now, even if an "op" method is defined for Z7, the "print" method works
as expected.
Apart from the function op the functions nops and subsop can also be over-
loaded for domain elements by defining appropriate methods. Thus, apart
from extop there are also the functions extnops and extsubsop . These
work similar to nops and subsop , except that they cannot be overloaded.
However, the user should note that no ranges and operand paths can be given
with the ext... functions, only single operand numbers.
So far, so good. But, what are domain elements used for? Until now they could
only be created and printed. Well—exactly like the method "op" changed
the system function op for domain elements, with appropriate methods many
other functions can be overloaded for domain elements.
In MuPAD, addition is carried out by the built-in function _plus . By defining
a method "_plus" for the domain Z7 it gets its “own” addition that can be
called with the “standard” + operator:

>> Z7::_plus := proc() begin
Z7::new(_plus(map(args(), extop, 1)))

end_proc:

Now elements of Z7 can be added as usual:

>> Z7(1) + Z7(4)

Z7(-2)

7

2. Raw Domains

Here, the operands of the domain elements (the representatives of the residue
classes) are added together in Z7::_plus . With the result a new element of
Z7 is created.
With the implementation above care must be taken when adding different
types:

>> Pref::typeCheck(Always):
Z7(1) + Z7(4) + x

Error: Wrong type of 1. argument (type ’DOM_INT’ expected,
got argument ’x - 2’);

during evaluation of ’Z7::new’

The "_plus" method is called with all operands of the sum, even if their types
differ, and the methods of Z7 doesn’t know about identifiers like x . Types are
never automatically converted because the system cannot know which type
the user wants.
Note that in order to get the arguments of the method "new" checked one
must first change the value of the preference Pref::typeCheck to Always .
The default value Interactive of this preference causes type-checking only
if the procedure is called “directly” (i.e., interactively) by the user.
Exactly like addition, multiplication can also be overloaded:

>> Z7::_mult := proc() begin
Z7::new(_mult(map(args(), extop, 1)))

end_proc:

Thus, the following expression is evaluated as expected:

>> Z7(2) * Z7(4) + Z7(1)

Z7(2)

The same holds for negation, subtraction, inversion and division, which may
be defined by domain entries "_negate" , "_subtract" , "_divide" and
"_invert" , respectively. Only the method "_divide" is shown here:

>> Z7::_divide := proc(x, y) begin
Z7::new(mods(extop(x, 1) / extop(y, 1), 7))

end_proc:

Here, the mods function calculates the modular inverse. The user can calculate
with this in Z7 as usual:

>> (Z7(2) * Z7(4) - Z7(3)) / Z7(5)

Z7(1)

Of course, other system functions, such as the function _power , can also be
overloaded.

8

2.1. The Slot Operator

2.1. The Slot Operator

Given a domain and an index, the slot operator :: returns the value of the slot
stored under the index (similar to the index operator [] for tables). If there
is no value stored under the index, then the operator raises an error:

>> Z7::foo

FAIL

Syntactically, the first operand of the slot operator has to be either an identifier,
a variable or an arbitrary expression in brackets. Thus, f::y and (f(x))::y
are valid expressions, whereas f(x)::y is invalid, because the first operand
f(x) is not placed in brackets. The second operand of the :: operator must
have the same syntax as an identifier or variable, other expressions are not
allowed. Furthermore another point should be noted:

Note: The second operand of the :: operator is converted into a
string which is used as the index.

With the expression D::_negate , the name _negate is converted into the
string "_negate" and used as index. (This can be seen when the entries of
the domain Dare inspected by using the function op .)
The reason for this seemingly crude rule is as follows: If the strings had to be
written as usual with " , then the input would be very clumsy (apart from the
fact that D::"_negate" would be not very nice to read).
As usual there is a functional equivalent to the slot operator. An expression
of the form dom::index is equivalent to slot(dom, "index") . (In fact an
expression of the form dom::index is internally converted immediately into
a slot call by the parser.) When calling slot directly, arbitrary expressions
may be used as indices.
The slot operator or a slot call may also be used on the left hand side of an
assignment:

>> Z7::x := "foo":
slot(Z7, "y") := "FOO":
Z7::x, Z7::y

"foo", "FOO"

Currently only the basic domains DOM_DOMAINand DOM_FUNC_ENVimple-
ment slots, but in principle the first argument of the slot operator can be of
any type. One may define slots for new domains by overloading the slot
function.
There is one special slot which is defined for any datum, this is the slot "dom" .
The slot "dom" holds the domain of the datum:

>> XX::dom, (13)::dom, Z7::dom, (Z7(1))::dom

DOM_IDENT, DOM_INT, DOM_DOMAIN, Z7

9

2. Raw Domains

The result of D::dom (or slot(D, "dom")) is the same as that of domtype(D) ,
but D::dom is in some occasions easier to read than domtype(D) . (Compare
for example D::dom::entry with (domtype(D))::entry .)
In connection with the slot operator there is a stumbling block that the user
may fall over while programming. Suppose you want to write a program
which uses a slot name as a parameter, like this:

gotcha := proc(DOM, ind) begin DOM::ind end_proc:

This procedure always returns the domain entry with the index "ind" ! The
reason for this can be easily seen: the expression D::ind is equivalent to the
expression slot(D, "ind") , and the string "ind" is not evaluated to the
value of the parameter ind . This trap can be avoided by calling slot directly.
The following procedure returns the desired result:

gotcha := proc(DOM, ind) begin slot(DOM, ind) end_proc:

A tip for domain experts: Slots for domains can be created on demand by
defining a "make_slot" method. The significance is as follows: If slot ,
given an index, finds a value in a domain, then this is always returned. If
no value exists slot searches for a method with index "make_slot" in the
domain. If no such method exists then slot returns the value FAIL . If a
"make_slot" method exists then this is called with the domain and the index
as arguments. The value returned by the method is entered in the domain as
the value of the original index and returned by slot .
By using this method entries can be created in a domain when necessary—
when they are accessed for the first time. This fact is used during the creation
of domains by domain constructors. Here only the necessary entries are cre-
ated for a domain on the fly. (Often one creates many domains but uses only a
few of their entries, so no memory space is wasted.)
Note that even if the "make_slot" method returns FAIL , this value is explic-
itly entered into the domain. This has the advantage that the time consuming
creation need only be carried out once even when a value is missing. Thus a
"make_slot" method will not add a new value under an index once FAIL
has been inserted.

2.2. Overloading Built-In Functions

As a convention a built-in function (sometimes also called kernel function) is
overloaded by a method which has the string with the name of the function as
index. If a built-in function is evaluated, and one of the arguments is a domain
element, then instead of the built-in function the corresponding method of
the domain is evaluated and the result returned. In general the method is
called with the actual parameters of the overloaded function. Examples for
the overloading of the built-in functions op , _plus and _mult have already
been shown above.
However this statement is so greatly simplified that it could nearly be called
naive. On the one hand, basic types are also domain elements. An integer
is, for instance, an element of the domain DOM_INT, as a call of the function

10

2.3. Overloading Procedures

domtype shows. The processing of this “basic domains” by the built-in func-
tions can usually not be overloaded. E.g., the addition of integers cannot be
changed by defining a method "_plus" for the domain DOM_INT. This is in-
consistent, unfortunately, however the overloading of these types would sim-
ply be too time consuming. (Exceptions to this rule are some methods that
shall be described later.)
On the other hand, not all built-in functions can be overloaded and in general
for those that can be overloaded not all arguments can be used for overload-
ing. (I.e., only certain arguments result in the method of the corresponding
domain being called.) It has already been mentioned that extop cannot be
overloaded. Also new cannot be overloaded. In the function map only the
first argument can be overloaded. Informations about the overloadable argu-
ments of the different functions can be found on the help pages of the MuPAD
manual.
One important function that is not overloadable is _equal . With _equal only
the equality of expressions as data structures can be tested for, not the logical
equality of expressions.
If a method is called via overloading then it is normally given the same ar-
guments as the overloaded function. The arguments are evaluated before the
method is called. The option hold has no effect in a method! Exceptions
are certain methods that do not “canonically” overload functions, see the ap-
pendix B for examples.
What happens in a built-in function when a domain element is given as the
argument, but the domain does not contain an appropriate method? This
depends on the circumstances. Sometimes an error message is given, but if
possible the function is executed further “as if nothing had happened”. If
no method exists but further arguments exist that could effect an overload-
ing then the appropriate method is searched for in the domains of these argu-
ments.
Usually, when overloading, the arguments of the built-in functions are not
tested before the call of the method. The word “usually” indicates that there
are exceptions to this. Some built-in functions do test their arguments before
the method is called.
For the user, a method is easier to understand if it expects the same arguments
as the corresponding built-in function. Finally a method should have a mean-
ing analogous to the built-in function and not have a totally different meaning.

2.3. Overloading Procedures

There is no automatism that makes procedures overloadable. Each procedure—
as reasonably as possible—should guarantee by itself that it may be over-
loaded. For instance, in the library procedure normal the first argument can
be overloaded.
An overloading of the first argument of the procedure gotcha can, for exam-
ple, be allowed as follows:

gotcha := proc(x, n)

11

2. Raw Domains

begin
// allow for overloading
if x::dom::gotcha <> FAIL then

return(x::dom::gotcha(args()))
end_if;

// carry on as ’usual’
...

end_proc:

It is tested if x is an element of a domain which contains the method "gotcha" .
If a method exists then it is called with the original arguments and the result
is returned.

2.4. Special Domain Entries

There are some domain entries and methods that do not canonically overload
system functions. The entry "Name" and the method "print" have already
been mentioned above. (The "print" method is called without the system
function print being explicitly called.) These special entries and methods are
briefly described in appendix B.

2.5. The Reference Effect

Domains are the only data structures in MuPAD that show the so-called refer-
ence effect:

Note: When a domain is assigned to an identifier or a variable (ei-
ther by the assignment operator := or to the formal parameter of
a procedure) then the contents of the domain is not copied. Only
a reference to the contents is created. Changes to the assigned do-
main also change the original one.

The reference effect is demonstrated in the following example:

>> A := newDomain("A"):
A::x := 1

1

>> B := A:
B::x := 13

13

>> A::x

13

The assignment B::x := 13 has changed the original entry A::x !
The reference effect is necessary in connection with “generic algorithms”. These
are methods that may contain the domain they are entries of. If only a copy of

12

2.5. The Reference Effect

the contents of the domain could be inserted into such a “generic method”, it
could not call itself recursively for example, because it would not yet be con-
tained in the domain it contains at the time it is created.
Take for example the following—not very meaningful—function foo :

foo := proc(x) begin
if iszero(x) then 0 else foo(x-1)+x end_if

end_proc;

Now assume that a method similar to "foo" should be defined for a domain
which is not known beforehand, but which is to be created at runtime. This
could for example be done by:

make_foo := proc(DOM)
option escape;

begin
proc(x) begin

if iszero(x) then 0 else DOM::foo(x-1)+x end_if
end_proc

end_proc;
d := newDomain("spoof");
d::foo := make_foo(d);

The domain is defined via the lexical enclosing procedure make_foo , because
later on the domain will no longer be stored as value of d and no other name
is known now. If the actual contents of d would now be inserted into the
procedure returned by make_foo , then this domain would not yet contain
d::foo itself. Later on, when d::foo would be called, a runtime error would
occur.
If a domain is to be copied then the function newDomain can be used:

>> A := newDomain("A"):
A::x := 1

1

>> B := newDomain("B", A):
B::x := 13

13

>> A::x

1

By using newDomain("B", A) a copy of the domain A is created. Thus a
change in B no longer affects A. The copy has the key "B" , which must be a
new key (no domain with this key may exist beforehand).

13

2. Raw Domains

14

3. Domain Constructors

Of course, it is not very efficient to construct a single algebraic structure, such
as Z7 as a domain “by hand”. It makes more sense to define a structure such as
Zn, in order to obtain—dependent on the “parameter” n—all possible residue
class rings over Z. In MuPAD language: parameterized domains are to be
created, so-called domain constructors are used for creating parameterized do-
mains.
In the Dompackage there is, for instance, a domain constructor Dom::IntegerMod 1

that creates the residue class ring Zn for a non-negative integer n. Our favorite
domain—the residue class ring Zn—is created by evaluating the expression
Dom::IntegerMod(7) :

>> Z7 := Dom::IntegerMod(7)

Dom::IntegerMod(7)

>> Z7(2) - 1/Z7(3)

4 mod 7

Domain constructors are elements of the “meta”-domain DomainConstruc-
tor . New domains like Z7 are created by a function call using the constructor
as “function”. (Internally this is realized with a "func_call" method in the
domain DomainConstructor , but these details are hidden to the user and
also to the domain programmer.)
The user will often want to implement a domain by taking over (“inheriting”)
an existing implementation and altering only some of its entries. Thus, a do-
main of square matrices can take over many of the basic operations from a
domain of general (non-square) matrices. The new domain is derived from
an existing domain. In such cases the original domain is called a direct super-
domain of the new domain, the derived domain is called a direct sub-domain of
the original domain.
If a direct super-domain also has a direct super-domain then this “super-super-
domain” is simply called a super-domain. A super-domain is a direct super-
domain or a super-domain of a direct super-domain. This is analogue for a
sub-domain, whereby a domain is either a direct sub-domain or a sub-domain
of a direct sub-domain. The domains created with the constructors of the Dom
package, for example, form a hierarchy. The domain Dom::BaseDomain is
the root of this domain hierarchy.
Note that multiple inheritance by more than one super-domain—like for classes
in C++—is not possible with the domain constructors. One reason is the simple

1Please note that most the constructors of the MuPAD library are entries of one of the library
package Dom, Cat or Ax in order to avoid naming conflicts.

15

3. Domain Constructors

structure of the domain elements created by new, it does not allow to inherit
the operands of several elements without changing their indices.
A domain constructor must define the direct super-domain of the domains it
creates. The constructor only has to add those entries whose implementation
differs from that of the super-domain. Of course, the super-domain can also
be dependent on parameters.

3.1. Defining Domain Constructors

A special syntax exists in the MuPAD language to define a domain constructor.
The relevant rules of the grammar are shown below:

domain-constructor:
domain factor domain-definition end-domain
domain factor (argument-seqopt) domain-definition end-domain

domain-definition:
local-declaration-seqopt domain-declaration-seqopt domain-entry-seqopt initializeropt

local-declaration-seq:
local local-var-seq ;
local local-var-seq ; local-declaration-seq

domain-declaration-seq:
domain-declaration ;
domain-declaration ; domain-declaration-seq

domain-declaration:
inherits expression
category expression-seq
axiom expression-seq

domain-entry-seq:
name := statement ;
name := statement ; entry-seq

initializer:
begin statement-seq

end-domain:
end
end_domain

Thus a domain constructor has the following general “pattern”:

domain name (parameters)
local variables ;

16

3.1. Defining Domain Constructors

inherits super-domain ;
category categories ;
axiom axioms ;
entries

begin
initialization

end_domain

The individual “pattern sections” have the following meaning:

name gives the name of the domain constructor as an expression. The con-
structor is assigned to the expression given by name. The expression is
further used for output purposes and to define the keys of the domains
to be created.

parameters is a sequence of the constructors parameters. This must be a se-
quence of formal arguments like in procedure definitions, which may
have types and default values.

A constructor may also have no parameters, in this case the whole gram-
mar part (parameters) is to be omitted. The singleton domain defined
by such a constructor is created directly and assigned to the expression
given by name.

variables defines the names of the local variables of the domains created by the
constructor. This must be a comma-separated sequence of identifiers.

super-domain gives the direct super-domain from which the domains created
by the constructor inherit their implementation. This must be an expres-
sion that evaluates to a domain. At least the domain Dom::BaseDomain
should be given. (With this domain important basic operations are inher-
ited. The domain Dom::BaseDomain is described in section 6.)

categories gives the categories in which the domains created by the constructor
are contained. A comma-separated sequence whose elements evaluate to
categories must be given. An element of the sequence may also evaluate
to NIL ; in this case no category is entered.

Only the “most special” categories need be given. If a domain belongs
to the category of fields then it automatically also belongs to the cate-
gory of rings. Categories of the super-domains are not inherited, because
only implementation is inherited via super-domains, not mathematical
meaning.

If several categories are given in a constructor, then the more specific
should be put first into the list, because the categories are searched for
entries in the order they are put into the list.

axioms gives the axioms for the domains. This must also be a sequence whose
elements evaluate to axioms. Elements can also evaluate to NIL , in this
case no axiom is entered.

17

3. Domain Constructors

Domains inherit the axioms of their categories. Only those axioms need
to be given that are not already axioms of the categories involved. Ax-
ioms of the super-domains are not inherited, because only implementa-
tion is inherited via super-domains, not mathematical meaning.

entries is a sequence of any number of assignments of the form name:= value; .
The entries must be separated by ; , colons : are not allowed. With this
the entries are defined in the domains to be created: The expression value
is evaluated and the result inserted into the slot " name" in the new do-
main.

The expression value is only evaluated when a domain is created by the
constructor. If the expression evaluates to NIL then this entry is not in-
serted into the domain.

The slot names are converted to strings, they are not bound to variables
or identifiers. The syntax of the slot names must be the same as for iden-
tifiers.

initialization gives a statement sequence that is used to test the actual parame-
ters and to initialize the local variables of a new domain.

One may think of the initialization section as the body of a procedure
which is executed when a new domain is created by the constructor.

The following scoping rules hold for a constructor:

• A constructor introduces a new lexical context. The domain parameters,
local variables and the special variable dom introduce new names in this
context and hide variable and identifier names from a lexically outer con-
text.

• The expressions for defining the super-domain, categories, axioms, en-
tries and the initialization section are parsed in the context defined by
the constructor. Names are bound lexically.

• Default parameter values and parameter types of the constructor are
bound in the lexical context, in which the constructor is contained and
not in the context of the constructor.

Thus the scoping rules for constructors are very similar to the scoping rules
for procedures.
The following evaluation rules hold for the constructor:

• The contents of a constructor is not evaluated when the constructor is
defined. It is only evaluated when a new domain is to be created by the
constructor.

• The expressions defining the default domain parameter values and types
are evaluated once when the constructor is defined, similar as with pro-
cedures.

18

3.1. Defining Domain Constructors

• When a domain is created first a new procedure environment (also called
closure) is created for it which contains the actual values of the parame-
ters and variables. The parameters and variables are bound to the values
in this environment.

Then the initialization section is executed using this procedure environ-
ment. Here the actual parameters can be tested and the local variables
can be initialized.

• The expressions defining the super-domain, categories, axioms and en-
tries are evaluated on demand only, but always in the procedure envi-
ronment of the domain.

The initialization section is evaluated like a procedure body during the cre-
ation of a new domain. Thus, the function args , for instance, can be used as
in a procedure to access the actual parameters of the constructor. This will be
explained in more detail in section 3.2.
A domain constructor for Zn may appear as follows:

domain Dom::IntegerMod(Mod: Type::PosInt)

// no local variables

inherits Dom::BaseDomain;

category
if isprime(Mod) then Cat::Field
else Cat::CommutativeRing
end_if;

axiom
Ax::canonicalRep, Ax::normalRep;

/*--- entries ---*/

new := proc(x) begin new(dom, x mod Mod) end_proc;

zero := dom::new(0);

one := dom::new(1);

...

begin
if args(0) <> 1 then

error("wrong no of args")
end_if;
if Mod < 2 then

error("modulus must be > 1")
end_if

end_domain;

19

3. Domain Constructors

The constructor is called Dom::IntegerMod and has the formal parameter
Mod, the modulus. It has no local variables. The initialization tests for the
existence of the actual parameter and if it is a valid number.
If the modulus n is a prime number then the domain Zn is a field, otherwise
it is a commutative ring only. Dom::IntegerMod has Dom::BaseDomain
as its direct super-domain and Ax::canonicalRep and Ax::normalRep as
its only axioms. (The axiom Ax::canonicalRep states that mathematically
identical domain elements also have identical representation as MuPAD ex-
pressions, Ax::normalRep states that zero has a unique representation.)
Both the identifiers dom and Mod are parsed in the lexical context of the con-
structor and bound to the procedure environment of the domain during the
construction of a new domain. Thus, in Dom::IntegerMod(7) the parame-
ter Modhas the actual value 7 and the variable domhas this domain as value.

3.2. Initialization and Local Variables

Each domain constructor may be given a list of formal parameters, a list with
the names of local variables and an initialization expression sequence. During
initialization the actual parameters are tested and then they are usually used
to initialize the local variables. This may appear as follows with a constructor
for polynomials:

domain Dom::Polynomial(R, Indets)
local NumIndets;

...

begin
if args(0) <> 2 then

error("wrong no of args")
end_if;
if not R::hasProp(Cat::Ring) then

error("illegal coefficient ring")
end_if;

// further tests...

NumIndets := nops(Indets);
end_domain;

Here, R is the coefficient ring and Indets should be a list of polynomial vari-
ables. The local variable NumIndets should hold the number of polynomial
variables. It is calculated during initialization. Thus, this number needs only
be calculated once, it needs not be re-calculated in each method at run-time.
Because args may be used as in procedures for initialization, one can easily
implement domain constructors with a variable number of arguments. With
the constructor for polynomials above, the user can, for instance, define that
the rational numbers are to be used as the coefficient ring if only a list of vari-
ables is given. The initialization code may look as follows:

begin

20

3.3. Constructors without Parameters

if args(0) = 1 then
R:= Dom::Rational; Indets:= args(1);

elif args(0) <> 2 then
error("wrong no of args")

end_if;

// further tests...

NumIndets:= nops(Indets);
end_domain;

The initialization can be regarded as a procedure of the form

proc(parameters)
name name;
local variables;

begin
initialization

end_proc

which is generated from the name, formal parameters, the local variables and
the initialization section. This procedure is then called with the actual do-
main parameters. When the procedure finishes, its environment is used as the
procedure environment containing the actual parameters and variables of the
domain.

3.3. Constructors without Parameters

If a domain constructor has no formal parameters then it can only create one
singleton domain. This domain is created immediately by the constructor
and assigned to the name given in the constructors definition. The domain
Dom::Rational for example is the domain of rational numbers. The domain
is created by a constructor without parameters:

domain Dom::Rational
inherits Dom::Numerical;
...

end_domain;

Note that this is not the case for a constructor with an empty parameter list, as
in:

domain A()
...

end_domain;

Here A is a constructor (an element of the domain DomainConstructor) and
the result of the call A() returns the singleton domain defined by the construc-
tor.

21

3. Domain Constructors

3.4. Representation of Domain Elements

If a domain is no base domain, an element of the domain usually consist of a
“container” holding a reference to the domain and the operands of the domain
element. If x is an element of such an “explicitly represented” domain, then the
expressions domtype(x) , x::dom and extop(x, 0) all return the domain
of x , whereas extop(x,n) returns the nth operand of x .
The representation of domain elements is only implicitly given by the imple-
mentation of the operations of the domain, it can not be stated explicitly in the
definition of the domains constructor. In the case of Dom::IntegerMod for
example the domain elements all have the same simple form: they are created
with the system function new and have exactly one entry, an integer repre-
senting the corresponding residue class. Note that the representation of the
domain elements can also be made dependent on the domain parameters.
The use of extop to access the operands of a domain element is somewhat
inconvenient and may lead to hard to maintain code, especially if a domain
element has many operands. It may be difficult to remember the indices of the
different operands or to re-arrange the operands. Sometimes alias definitions
may be useful in order to access the operands, as in:

alias(ResidueClassRep(x) = extop(x,1));

domain Dom::IntegerMod(Mod)
...
_divide := proc(x, y) begin

new(dom, ResidueClassRep(x) / ResidueClassRep(y) mod Mod)
end_proc;
...

end_domain;

3.4.1. Representation of Sub-Domain Elements

A domain must take over the representation of the elements of its direct super-
domain, in order that the methods of the super-domain can be used: The meth-
ods of the super-domain can only “know” the representation of “its” elements.
Thus the “layout” and meaning of the operands may not be changed without
needing to rewrite most of the super-domains methods.
Usually it is difficult even to append new entries in the sub-domain. The rea-
son for this is that the methods inherited by the super-domain usually have
no idea that elements of a sub-domain are to be created and not elements of
the original domain. If the elements of the sub-domain carry inherently more
information than the elements of super-domain generally there will be no way
to compute this information from the operands of the elements of the super-
domain. But this would be needed in order that the super-domains methods
could create elements of the sub-domain.
Sometimes it may be the case that operands added by a sub-domain can be
computed from the operands needed for the super-domain. In such a case
one could define a method "new" for the sub-domain which would be able to
create new elements given only the operands of the super-domain elements.

22

3.4. Representation of Domain Elements

Additionally care must be taken in order that the super-domains methods cre-
ate the correct elements.
Have a look at the method "_divide" of the domain Dom::IntegerMod .
The implementation shown above was:

_divide := proc(x, y) begin
new(dom, extop(x,1) / extop(y,1) mod Mod)

end_proc;

If this implementation is inherited by a sub-domain, then a new element of
the sub-domain is created via new(dom, i) , which is of course invalid if the
elements of the sub-domain need additional operands.
If the elements of the sub-domain could be created by giving the integer rep-
resenting the residue class ring only, the following implementation of "_di-
vide" in Dom::IntegerMod would do:

_divide := proc(x, y) begin
dom(extop(x,1) / extop(y,1) mod Mod)

end_proc;

In the sub-class one would now have to implement a new method "new"
which would create elements given the integer representing the residue class
ring only. Eventually the inherited method "_divide" would call this "new"
method and return a correct element of the sub-domain.
There is certainly a trade-off in the design of a domain whether it should allow
sub-domains to add new operands or not: The strategy shown above (using
the method "new") has the disadvantage that it may be much more efficient
to call the built-in function new directly instead of causing a call to the method
"new" .

Note: Therefore most domains of the Dompackage do currently
not support sub-domains which add additional operands to their
elements.

There is one important exception form this rule: The domain Dom::BaseDomain
creates no elements and doesn’t make any assumptions about the representa-
tion of elements, it only makes methods available. Thus it can be used, without
limitations, as a super-domain for any domain.
Nevertheless even under this restrictions it is often possible to employ inheri-
tance using a super-domains implementation, as many examples in the library
package Domshow.

3.4.2. Façade Domains

While the domain elements of the domain Dom::IntegerMod(7) are explic-
itly created with the function new, other domains exist that do not create any
elements of their own, but use the basic types directly to represent “their” ele-
ments. These domains are called façade domains.
An example for this is the domain Dom::Rational , the domain of the ratio-
nal numbers. Elements of this domain are represented by integers or rational

23

3. Domain Constructors

(MuPAD) numbers, i.e., by elements of the domains DOM_INTor DOM_RAT. The
basic domain DOM_RATalone cannot be used as an algebraic structure because
the integers (DOM_INT)—and thus 0 and 1—are not elements of DOM_RAT. The
basic domains of MuPAD have almost no algebraic structure.
The representation of the rational numbers by the basic types has the advan-
tage that the speed of the basic types, which are implemented in the MuPAD
kernel, is fully available. Furthermore the kernel functions can be used as
methods, these are much faster than procedures.
However the use of the basic types for representation has the disadvantage
that the elements no longer “know” that they are elements of a “more in-
volved” algebraic structure. type(2/3) always returns DOM_RAT, even when
2/3 is to be considered as an element of Dom::Rational in some context.
Furthermore, when defining methods for façade domains, it should observed
that the system functions for basic domains may not be overloaded:

Note: The method "_plus" , for example, of a façade domain D
can only be the system function _plus .

The reason is that the elements of D are represented by basic types, thus a +
b would return a different result as D::_plus(a,b) if the method "_plus"
of Dwould not be the function _plus .
On the other hand, this also means that no basic type can be used for repre-
sentation in a façade domain D which contains the method "_plus" , but for
which the system function _plus is either not or “falsely” defined for that
basic type.
When using basic types there is another limitation: sub-domains of domains
that use basic types to represent their elements must take over the representa-
tion of their super-domains. They cannot add further information to “their”
elements because the function new cannot be used for creating the elements.
In the MuPAD library there are the domains Dom::Expression for arbitrary
MuPAD expressions and Dom::ArithmeticalExpression for arithmetical
expressions. Facade domains should have one of these domains as a super-
domain. Façade domains should further use the axiom Ax::systemRep to
state that they represent their elements by basic types.

3.5. Parameterization of Domain Entries

The structure of a domain entry can depend on the actual parameters of the
corresponding domain. With Dom::IntegerMod this concerns the method
"_invert" that calculates the multiplicative inverse of a residue class. If the
modulus is a prime number, i.e., the domain is a field, then the modular in-
verse can always be calculated. However, if the modulus is not a prime then
the existence of an inverse depends on the corresponding residue class. This
must be regarded in the method "_invert" :

_invert := if isprime(Mod) then
proc(x) begin

new(dom, 1/extop(x,1) mod Mod)
end_proc

24

3.6. Searching for Domain Entries

else
proc(x) begin

if igcd(extop(x,1), Mod) = 1 then
new(dom, 1/extop(x,1) mod Mod)

else
FAIL

end_if
end_proc

end_if;

Here, the decision about which implementation is necessary takes already
place during the creation of the method. When creating the method the “if
isprime(Mod) ... ” statement is evaluated after the variables have been
bound to their actual values. The result of the evaluation is the appropriate
procedure, which is then used as the "_invert" method.
The user can also enquire during runtime if a domain element belongs to a
field and react accordingly. How the construction of a method exactly occurs
is a development decision made during the implementation of the domain
constructor. The first alternative has the advantage that during runtime no
enquiries have to be made and therefore it is more efficient.
For enquiring about properties each domain defined by a constructor of the
Dompackage has the method "hasProp" . This method is inherited from the
domain Dom::BaseDomain . With "hasProp" , the user can enquire if a do-
main belongs to a certain category for example:

>> Z7 := Dom::IntegerMod(7):
Z7::hasProp(Cat::Field)

TRUE

>> Z6 := Dom::IntegerMod(6):
Z6::hasProp(Cat::Field), Z6::hasProp(Cat::Ring)

FALSE, TRUE

Here, the user has enquired if Z7 or respectively Z6 belong to the category of
fields and if Z6 is a ring. (More about categories later.)

3.6. Searching for Domain Entries

The entries defined by a constructor are not directly created during the creation
of a new domain. An entry is only created when it is accessed for the first time
by slot (by defining a "make_slot" method). Thus only those entries are
created that are in fact needed.
What entries does a domain created by a constructor “know”? In the first
place, those directly defined in the constructor and then in addition the entries
of the super-domains and the categories. It may be that an entry is defined by
different constructors. An entry is searched for as follows:

• If the entry is defined directly in the constructor of the domain then this
definition is used.

25

3. Domain Constructors

• If it is not defined in the constructor then the definition is searched for
in the super-domains. The first definition is used that is found. (The cat-
egories of the super-domains are not searched; only the super-domains
themselves.)

• If the definition is not found in the super-domains then it is searched for
in the categories in breadth-first manner:

Firstly, the definition is searched for in the categories given in the con-
structor. Then it is recursively searched for in the direct super-categories
of the categories searched before. The first definition found is returned.

• If the definition is not found in the categories then FAIL is returned.

The algorithm used for searching the definition in the categories returns the
definition which is “nearest” to the categories defined in the domain construc-
tor. This will be the most specific valid definition among the categories.
With the method "whichEntry" , the user can enquire in which domain or
category an entry is defined:

>> Dom::Rational::whichEntry("idealGenerator");

Cat::EuclideanDomain

Here, the method "idealGenerator" of the domain Dom::Rational is
defined by the category Cat::EuclideanDomain . The method "whichEn-
try" is defined by the domain Dom::BaseDomain . The domain Dom::BaseDomain
also defines some other useful methods for the “exploration” of domains; see
the section 6.
The definition of the entries—as already indicated in the example of the method
Dom::IntegerMod::_invert above—may be dependent on the domain
parameters and variables. Sometimes a definition is only to be made for cer-
tain parameter values. For the domain Dom::IntegerMod a method could
be imagined that should only be present when the domain is a field. If the
domain is not a field then the definition of the entry should evaluate to NIL to
achieve this behavior:

method_for_fields := if isprime(Mod) then
proc(x: dom) begin ... end_proc

end_if;

If Modis not a prime number then the if-statement returns NIL due to the non-
existing else-part. The value NIL signals to the constructor that no definition
exists for the parameters given and that it should search further.
The user can also refer to another method definitions directly, e.g., when the
method normally would be “skipped” due to the search strategy for domain
entries:

method_ab := (Dom::XYZ(Mod))::method_ab;

Here, the definition of the method "method_ab" is directly taken over from
the domain Dom::XYZ(Mod) .
Furthermore, methods defined by categories can be used directly:

26

3.7. Special Domain Entries

method_ab := CategoryXY::method_xy;

This possibility—though quite suggestive—may be somewhat surprising: Af-
ter all "method_xy" is not a method of the domain Category , but a defini-
tion stored in the constructor of CategoryXY . To allow the access with the slot
operator a "slot" -method for the domain Category is defined, see B.3.
The user can refer to category entries only inside of domain or category con-
structors. In any other context this “call” is incorrect and leads to runtime
errors. Even the following call inside a method is incorrect:

method_ab := proc(x) begin
CategoryXY::method_xy(x)

end_proc;

Here, during the execution of the method, the domain at hand is not men-
tioned and thus the entry CategoryXY::method_xy cannot be created.

3.7. Special Domain Entries

Domains that are created by a domain constructor always have some special
entries. This entries must not be changed:

constructor The constructor of the domain; an element of the domain Do-
mainConstructor .

closure The procedure environment of the domain, holding the actual val-
ues of its parameters and variables.

make_slot A method that creates the slots of the domain on demand.

super_domains A list containing all super-domains in the order they are
searched for entries.

categories A list of all categories of the domain created so far in the order
they are searched for entries.

categories_idx The index of the next category for which to create the di-
rect super-categories.

axioms A set of all axioms of the domain created so far.

The other entries are created when needed by the method "make_slot" .
All domains that are created by a constructor should have Dom::BaseDomain
as a super-domain and thus inherit its methods. In this manner, for instance,
the method "hasProp" is inherited.

27

3. Domain Constructors

28

4. Categories

When new domains are defined it often becomes obvious that some domains
have common features because they belong to a common class of algebraic
structures. Thus, Z6 and Z7 are rings and have, amongst other things, the oper-
ations + and * and corresponding neutral elements. In each ring, the operation
“exponentiation with a non-negative integer” can be easily implemented by
repeated squaring. It would be quite boring to implement such an operation
for each ring again. It is, of course, desirable to implement such an operation
only once and use it for all rings.
A class of algebraic structures, like “the rings” is called a category in the Mu-
PAD library. A category “postulates” certain basic operations and features of
the domains that belong to it. The concrete implementation of these basic oper-
ations is the task of the domain. With these basic operations further operations
for the domains of the category can be defined. These are realized as generic
algorithms—like the repeated squaring mentioned above.
If a domain is newly created then the corresponding domain constructor de-
termines to which categories it belongs according to the parameters. The con-
structor adds to the domain the operations defined in these categories. If the
newly created domain belongs to the category of rings then the operation “ex-
ponentiation with a non-negative integer” is defined for the domain. (The
operation is created only when needed—as already described in section 3.6—
and not when the domain is created.) Of course one has the possibility, when
defining a domain constructor, to implement such an operation directly in the
domain constructor, if one wants to utilize special features of the domains.
The categories of a given domain may be “specializations” of more general
categories. Thus, a domain that belongs to the category of fields also belongs
automatically to the category of rings. In other words: every field is a ring.
Categories only need to define those features and operations that have not
already been made available by the more general categories.
In this context the category of rings is called super-category of the category of
fields and the category of fields is called sub-category of the category of rings.
Similar to the domains, a super-category that is directly given in a category
constructor is also called a direct super-category. A category can have more
than one direct super-category. The rings have, among others, the category
Cat::Rng (ring without unit) as well as the category Cat::Monoid (non-
commutative monoids) as direct super-categories. The categories do not only
form a tree as the domains do, but a directed acyclic graph.
Note that the category graph depends on the domain at hand, not on the do-
mains constructor: The rational numbers are a ring and therefore also a left

29

4. Categories

module over itself, i.e., they are a left module over the rationals; a fact which is
stated in the category of rings. But of course not any ring is also a left module
over the rationals. The graph of the categories of the integers is depicted in
figure 4.

Figure 4: Graph of the Categories of the Integers

Categories may also depend on parameters. Thus, there are various different
categories of polynomial rings, which are dependent on the coefficient ring. In
order not to have to newly implement the corresponding category of polyno-
mial rings for each possible coefficient ring so-called category constructors may
be defined. These create categories dependent on parameters.
Categories are not defined directly by the programmer, rather they are always
created by a category constructor. Table 2 in appendix A shows the predefined
categories and constructors of the library.

30

4.1. Defining Category Constructors

4.1. Defining Category Constructors

The following rules of the MuPAD language grammar describe the syntax of
category constructors. It is quite similar to the syntax of domain constructors:

category-constructor:
category factor category-definition end-category
category factor (argument-seqopt) category-definition end-category

category-definition:
local-declaration-seqopt category-declaration-seqopt category-entry-seqopt initializeropt

category-declaration-seq:
category-declaration ;
category-declaration ; category-declaration-seq

category-declaration:
category expression-seq
axiom expression-seq

category-entry-seq:
name ;
name := statement ;
name ; entry-seq
name := statement ; entry-seq

end-category:
end
end_category

Thus the following “pattern” informally describes the syntax of a category
constructor:

category name (parameters)
local variables ;
category categories ;
axiom axioms ;
entries

begin
initialization

end_category

This is the same pattern as for a domain constructor, only the inherits section
is missing. The other sections have a similar meaning as those of a domain
constructor:

31

4. Categories

name gives the name of the category constructor. Additionally the constructor
(or the singleton category, in case the constructor has no parameters) is
assigned to this expression.

parameters gives the formal parameters of the constructor. This must be a
comma-separated sequence of formal arguments, which may have de-
fault values and types.

variables gives the names of the local variables of the constructor, a comma-
separated sequence of identifiers.

categories gives the direct super-categories which contain the categories cre-
ated by this constructor.

axioms give the axioms for the created categories.

entries is a sequence of names or assignments of the form name:= value; . The
entries must be separated by ; . Through an assignment the expression
value defines the value of the slot name.

When only a name is given this indicates that this is a basic operation
that has to be present in the domains of this category but whose imple-
mentation must take place elsewhere.

The slot names are converted to strings, they are not bound to variables
or identifiers.

initialization must be a statement sequence that is used to test the actual pa-
rameters and to initialize the local variables of a new category.

The same scoping rules as for domain constructors hold. Especially the im-
plicitly defined variable dommay be used to refer to the domain which uses a
category created by this constructor to define (some of) its entries.
The following evaluation rules hold for the constructor. They are similar as for
domain constructors:

• The contents of a constructor is not evaluated when the constructor is
defined. It is only evaluated when a new category is to be created by the
constructor.

• The expressions defining the default category parameter values and types
are evaluated once when the constructor is defined.

• When a category is created first a new procedure environment is created
for it which contains the actual values of the parameters and variables.
The parameters and variables are bound to the values in this environ-
ment.

Then the initialization section is executed with this environment. Here
the actual parameters can be tested and the local variables can be initial-
ized.

32

4.1. Defining Category Constructors

• The expressions defining the categories, axioms and entries are evalu-
ated on demand only, but always in the closure of the category. Addi-
tionally the domain for which the expression is to be created is assigned
to the variable dom in the categories closure before the evaluation takes
place.

As in a domain constructor, an entry can evaluate to NIL . In this case the entry
is further searched for as if it were not present. Apart from this an entry can
also evaluate to the reserved identifier toBeDefined . This identifier means
that the entry is a basic operation. (This is useful when an operation can only
be defined for certain parameter values.) Thus, the entry xyz; is equivalent
to xyz := toBeDefined; .

Note: When defining entries no assumptions about the implemen-
tation of the domain for which the entries are to be defined should
be made. Categories represent “knowledge” about their domains
that is independent of the representation of the domain elements.

If several super-categories are given in a constructor, then the more specific
should be put first into the list, like in a domain constructor. The reason is that
the categories are searched for entries in the order they are put into the list.
We shall use a constructor for the category of Euclidean domains1 as our ex-
ample:

category Cat::EuclideanDomain

// no parameters, no local variables

category
Cat::PrincipalIdealDomain;

// no axioms

/*--- entries ---*/

rem;

...

// no initialization

end_category;

An Euclidean domains is a factorial domain which has the additional opera-
tions "rem" etc.
Note that this category constructor has no parameter, so the singleton category
defined by the constructor is created immediately and assigned to Cat::EuclideanDomain .

1The name Cat::EuclideanDomain may be somewhat misleading: This constructor indeed
creates a category, not a domain, but the name “Euclidean domain” is too much folklore as
that one would dare to use another one.

33

4. Categories

The operation "rem" is a basic operation whose implementation can not be
given here. The basic operations must be “filled out” by the corresponding
domain constructor. If the definition of this operation is omitted in a domain
of the category Cat::EuclideanDomain then this leads to a run-time error
when the operation is used for the first time.
The calculation of the gcd can be defined by the Euclidean algorithm using the
basic operations at hand:

gcd := proc(x, y)
local tmp;

begin
x:= dom::unitNormal(x);
y:= dom::unitNormal(y);

while not dom::iszero(y) do
tmp:= dom::rem(x, y);
x:= y;
y:= tmp

end_while;

dom::unitNormal(x)
end_proc;

The entries "iszero" and "unitNormal" are defined elsewhere in the super-
categories (Cat::AbelianMonoid and Cat::IntegralDomain).
When this procedure is inserted as a method into a domain the domain in turn
is inserted into the procedure and may be accessed inside the procedure by
referring to the implicitly defined variable dom.
Instead of the method dom::iszero the system function iszero could also
be called in the procedure above. The overloading of the function would lead
to the same method being called. The given direct call is, however, somewhat
more efficient.

4.2. Initialization and Static Values

Exactly as with the domain constructors, testing of the actual parameters and
calculation of the local variables is carried out using the initialization section.
In the initialization section the function args can be used to access the actual
parameters.

4.3. Constructors without Parameters

As with parameter-free domain constructors, with a parameter-free category
constructor the singleton category defined by the constructor is created imme-
diately and assigned to the name of the constructor.
As with domain constructors this is not the case for a constructor with an
empty argument list, like:

category C()

34

4.4. Searching for Domain Entries

...
end_category;

4.4. Searching for Domain Entries

The method for searching domain entries defined by categories has already
been described in section 3.6.
As in domain constructors, definitions of entries can be referred to by directly
using the slot operator. The same limitations as for the domain constructors
are valid for the access to category entries: the referring expression may only
be evaluated directly by the constructor.

35

4. Categories

36

5. Axioms

The properties of categories and domains are postulated with so-called axioms.
These are simply attributes whose existence can be enquired. For instance, the
domain Dom::IntegerMod has the axiom Ax::canonicalRep . This axiom
states that the domain elements are canonically represented, i.e., that two do-
main elements are mathematically identical if and only if they are identical
as MuPAD expressions. Axioms of domains can be enquired with the method
"hasProp" , in order to define, for instance, an operation dependent on these.

Note: In the current implementation of the domains and categories
of the MuPAD library the “evident” axioms for the categories are
not stated explicitly.

There is no explicit axiom which states that the addition of ring elements is
commutative for example. It is supposed that the user knows such facts given
the information that a domain is a ring. Currently only those axioms are stated
which represent “computational” informations about domains, like the axiom
Ax::canonicalRep mentioned above.
Axioms may also depend on parameters. For this purpose so-called axiom
constructors, exist, that create axioms dependent on parameters.

5.1. Defining Axiom Constructors

Because axioms are only attributes and have no further functionality their con-
structors are far simpler than domain or category constructors. The following
section of the MuPAD language grammar describes the syntax of axiom con-
structors:

axiom-constructor:
axiom factor local-declaration-seqopt initializeropt end-axiom
axiom factor (argument-seqopt) local-declaration-seqopt initializeropt end-axiom

end-axiom:
end
end_axiom

Thus the following “template” informally describes the syntax of an axiom
constructor:

37

5. Axioms

axiom name (parameters)
local variables ;

begin
initialization

end_axiom

The various sections of this template have the same meaning as for the domain
and category constructors.
For axiom constructors the same scoping and evaluation rules hold as for do-
main and category constructors.
The axiom Ax::canonicalRep for example is defined as follows:

axiom Ax::canonicalRep
// no parameters, local variables or initialization

end_axiom;

Because this axiom constructor has no parameter, the singleton axiom it de-
scribes is immediately created and assigned to Ax::canonicalRep . This is
the simplest axiom one can imagine.

38

6. The Domain Dom::BaseDomain

Every domain that is defined in the Dompackage of the MuPAD library is a sub-
domain of Dom::BaseDomain . This domain defines certain methods that are
useful for every domain, for example methods that allow the user to query
informations about a domain.
The domain Dom::BaseDomain creates no elements of its own and doesn’t
make any assumptions about the representation of domain elements. There-
fore it can be used as a super-domain for any domain regardless how the ele-
ments of the domain are represented.
The following methods of Dom::BaseDomain may be used to query informa-
tions about a domain:

hasProp The expression D::hasProp(x) tests if the domain Dhas a certain
property x , which may be a domain, category, axiom or constructor. If a
domain is given it is tested whether it is D or a super-domain of D. If a
category or axiom is given it is tested whether it is a category or axiom
of D. If a constructor is given then it is tested whether it is the constructor
of D or of a super-domain of D or of a category or axiom of D. A Boolean
value is returned.

whichEntry The expression D::whichEntry(e) returns, given the name
e of an entry of the domain D, the domain or category that defines the
entry. If Dhas no entry e then the expression returns FAIL .

allEntries The expression D::allEntries() returns a set containing the
names of all the entries known by the domain D.

undefinedEntries The expression D::undefinedEntries() returns a
set containing the names of all the entries in the domain D that have not
yet been defined. These are the entries that have to be defined for the
members of the categories of D, but whose definition does not exist.

getSuperDomain The expression D::getSuperDomain() returns the di-
rect super-domain of D.

allSuperDomains The expression D::allSuperDomains() returns a list
containing all the super-domains of D. The sequence in the list corre-
sponds to the hierarchy of the super-domains: first comes the direct
super-domain and then its direct super-domain and so on.

getAxioms The expression D::getAxioms() returns a set containing the
direct axioms of D.

39

6. The Domain Dom::BaseDomain

allAxioms The expression D::allAxioms() returns a set containing all ax-
ioms of D.

getCategories The expression D::getCategories() returns a list con-
taining the direct super-categories of D.

allCategories The expression D::allCategories() returns a list con-
taining all the super-categories of D. The sequence of the categories in the
list corresponds to the sequence in which the categories are searched for
entries.

info The expression D::info() prints a short information about the do-
main D. This method is called by the function info .

The method "info" in turn uses the entry "info_str" if it exists. This
string should contain a short descriptive hint what the domain may be
used for, like for example the string "domain of integer numbers"
in Dom::Integer .

The domain Dom::BaseDomain additionally defines some other methods which
are not explained here, see the help page of the domain for documentation.

40

7. General Nonsense?

What advantages do the concepts described here have over the implementa-
tion of domains “by hand”? Well—the necessity of constructing domains that
can be parameterized and inheritance of implementation is indisputable. The
user can, of course, create such domains through normal procedures. How-
ever, such a procedure would be unstructured, every developer would create
his own domains and define his own operations. The domain constructors
standardize the implementation of domains and contribute to better mainte-
nance. In addition the base domains takes over many standard tasks in the
construction and thus reduces the developers work load, as well as avoiding
unnecessary error sources and code duplication.
This is even more so when using categories. The advantages of generic al-
gorithms, i.e., avoidance of the re-implementation for each possible domain,
thus, reducing the implementation effort and the possibilities of errors, are
quite obvious. The category constructors systematize the development of generic
algorithms. And, last but not least, the user can expect uniformity in the use
of domains.
These advantages are not fiction. M. Monagan has developed a library pack-
age for Maple V, GAUSS, which enables the definition of domains and cate-
gories, see [6]. In GAUSS domains are simply tables, domain constructors and
categories are Maple functions that manipulate these tables. The domain op-
erations are stored as table entries. Using the domains and their operators is a
bit tedious because they are not integrated in Maple and cannot be addressed
using the normal operators of the Maple language. In addition, the output of
the domain elements cannot be altered to suit the user’s own requirements.
Despite these deficiencies, GAUSS has been successfully employed to, for in-
stance, calculate Gröbner bases in various polynomial rings, see [5]. Imple-
mentation details are hidden by the categories. Thus, different polynomial
data structures and term orderings can be used with one another, but still only
one generic algorithm needs to be implemented for calculating the Gröbner
bases.
Most of the concepts in the constructors are based on ideas in AXIOM, see [7].
Many new algorithms have been implemented in AXIOM for the first time
because there the user has the algebraic structures handy that he can use for
his problem, independent of their representation. All objects in AXIOM are
strictly typed. This is not possible in MuPAD because the MuPAD language is
not strictly typed.
A debatable feature of AXIOM is the automatic type conversion: the system
tries to determine the type of the user’s input on entry, i.e., to convert untyped

41

7. General Nonsense?

expressions directly into domain elements. In MuPAD the user currently has to
explicitly convert the type “by hand”. It is, of course, in some cases easier for
the user not to have to give the type. On the other hand, it is often difficult to
determine the type of an expression that the user has in mind. For this AXIOM
uses time-consuming and error-susceptible heuristics.

7.1. Where to go?

Open fields for improvements are:

• Design and implement a type coercion mechanism for interactive input.
Such a method should be comfortable, fast and easy to understand. One
would very carefully have to achieve a balance between comfort and
soundness.

42

A. The Constructors of the MuPAD
Library

Here the currently implemented constructors of the MuPAD library are listed
only. In [2], [3] and [4] they are documented in detail.

Dom::AlgebraicExtension simple algebraic extensions
Dom::ArithmeticalExpression arithmetical expressions
Dom::BaseDomain base of the domain hierarchy
Dom::Complex complex numbers
Dom::DihedralGroup dihedral groups
Dom::DistributedPolynomial distributed polynomials
Dom::Expression expressions
Dom::ExpressionField expressions regarded as field
Dom::Float floating point numbers
Dom::Fraction fractions
Dom::GaloisField finite fields
Dom::Ideal ideals of a ring
Dom::ImageSet infinite sets as images of sets
Dom::Integer integer numbers
Dom::IntegerMod residue class rings Zn
Dom::Interval interval arithmetic
Dom::Matrix matrices
Dom::MatrixGroup groups of matrices
Dom::MonomOrdering monomial orderings
Dom::Multiset multisets
Dom::MultivariatePolynomial multivariate polynomials
Dom::Numerical numbers
Dom::PermutationGroup symmetric groups
Dom::Polynomial polynomials
Dom::Product homogeneous direct products
Dom::Quaternion quaternions
Dom::Rational rational numbers
Dom::Real real numbers
Dom::SparseMatrixF2 sparse matrices over Z2
Dom::SquareMatrix square matrices
Dom::UnivariatePolynomial univariate polynomials

Table 1: The domain constructors of the library package Dom

43

A. The Constructors of the MuPAD Library

Cat::AbelianGroup Abelian groups
Cat::AbelianMonoid Abelian monoids
Cat::AbelianSemiGroup Abelian semi-groups
Cat::Algebra associative algebras
Cat::CancellationAbelianMonoid Abelian monoids w. cancellation
Cat::CommutativeRing commutative rings
Cat::DifferentialRing ordinary differential rings
Cat::EntireRing rings
Cat::EuclideanDomain Euclidean domains
Cat::FactorialDomain factorial domains
Cat::Field fields
Cat::FiniteCollection finite collections
Cat::GcdDomain integral domains with a gcd
Cat::Group groups
Cat::HomogeneousFiniteCollection homogeneous finite collections
Cat::HomogeneousFiniteProduct homogeneous finite products
Cat::IntegralDomain integral domains
Cat::LeftModule left-R-modules
Cat::Matrix matrices
Cat::Module R-modules
Cat::Monoid monoids
Cat::OrderedSet ordered sets
Cat::PartialDifferentialRing partial differential rings
Cat::Polynomial polynomials
Cat::PrincipalIdealDomain principal ideal domains
Cat::QuotientField quotient fields
Cat::RightModule right-R-modules
Cat::Ring rings
Cat::Rng rings without unit
Cat::SemiGroup semi-groups
Cat::Set sets
Cat::SkewField skew fields
Cat::SquareMatrix square matrices
Cat::UnivariatePolynomial univariate polynomials
Cat::VectorSpace vector spaces

Table 2: The category constructors of the library package Cat

44

Ax::canonicalOrder elements are ordered canonically
Ax::canonicalRep elements are represented canonically
Ax::canonicalUnitNormal unit normals are canonically
Ax::efficientOperation the named operation is implemented efficiently
Ax::closedUnitNormals unit normals are closed under multiplication
Ax::normalRep zero is represented canonically
Ax::noZeroDivisors no zero divisors exist
Ax::systemRep facade domain

Table 3: The axiom constructors of the library package Ax

45

A. The Constructors of the MuPAD Library

46

B. Special Domain Entries

There are some domain entries and methods that do not canonically overload
system functions. These special entries and methods are briefly described here.
The entries and methods are all indexed by strings. Thus, the slot operator ::
can always be used to access these entries.
Together with the methods, the arguments with which the methods are called
are described. In the following, D is always a domain that contains the given
entry. The expression D::method(x, y) means that the method "method"
is called with arguments x and y . Dots like ... indicates a—possibly empty—
sequence of arguments.

key Each domain must have a unique key, which may be an arbitrary expres-
sion. Two domains with different keys are considered different. The key
is defined when a domain is created via newDomain . The key of a do-
main may be changed with slot or the :: operator, but it must not be
deleted or changed into a key of another already existing domain.

B.1. Creating Domain Entries

If Dis a domain and the expression D(a1,...,an) is executed, a new element
of D should be created using the arguments a1 . . . an .
This feature is implemented by calling the method "new" of the domain Dwith
the given arguments, i.e., the call D::new(a1,...,an) is executed. Thus the
method "new" does not overload the function new.
The method "new" usually should check the arguments and create a new do-
main element from them using the function new.

new If the expression D(a1,...,an) is evaluated for a domain D, this in
turn executes the expression D::new(a1,...,an) . The method "new"
should return a new element of Dusing the arguments a1 . . . an .

An error is raised if Dhas no method "new" .

Domain elements are finally created using the function new, as described above.
If the domain is no base domain, an element of the domain usually must con-
sist of a “container” holding a reference to the domain and the operands of
the domain element. Usually just this container is created by the function new,
which can not be overloaded.
This causes a problem for facade domains. If D is a facade domain then no con-
tainer should be created by new, rather an element of another domain should

47

B. Special Domain Entries

be returned. This may be implemented by defining a method "new_extelement"
for the facade domain. (Note that a "new_extelement" -method is defined
implicitly if one states the axiom Ax::systemRep .)
Similar reasoning holds for base domains: Elements of a base domain do
not consist of a container holding the data, but rather of the “raw” data ob-
jects. To allow a call of the form new(DOM_INT, 1) to return 1, a method
"new_extelement" must exist for DOM_INT. Such a method in fact exists
for all base domains.

new_extelement If for a domain D the call new(D,a1,...,an) is exe-
cuted and D has a method "new_extelement" , then in turn the call
D::new_extelement(D,a1,...,an) is executed and the result is re-
turned as value.

If no such method exists a container for the new element of D is created
by the function new which has the operands a1 . . . an .

B.2. Creating Domain Entries

Domain entries may be created on demand:

make_slot If the function slot , given a domain D and an index i , finds an
slot in the domain, then its value is always returned. If no slot exists, but
the domain Dhas a method "make_slot" , then D::make_slot(D, i)
is called. The value returned by this call is entered into the domain as
value of a new slot with index i and returned by slot . If no "make_slot"
method exists then FAIL returned by the function slot .

Please note that if D::make_slot(D, i) returns FAIL , then FAIL is explic-
itly inserted as the value of the slot i into the domain. Thus the method
"make_slot" will not be called twice for the slot i .

B.3. Accessing Slots

The function slot may be overloaded as usual:

slot Reading the value of a slot: If slot(e, i) is called for a domain ele-
ment e and the domain Dof e has a method "slot" , then D::slot(e, i)
with the domain element e and the index i is called and the value re-
turned. If no such method exists the error “unknown slot” is raised.

Changing the value of a slot: If slot(e, i, v) is called for an expres-
sion e which evaluates to an element of domain Dand the domain Dhas
a method "slot" , then D::slot(e, i, v) with the expression e, the
index i and the new value v of the slot is called. The method should
create a new domain element in this case which has a slot i with the
given value v . This new element is returned as the value of the call of
the function slot and assigned to the expression e. The expression e

48

B.4. Evaluation

may not only be an identifier or variable, it may also be a function call,
an indexed expression or a slot expression.

Note that the function slot may also be overloaded for base domains other
than DOM_DOMAINand DOM_FUNC_ENV.

B.4. Evaluation

In general domain elements are not further evaluated. This can be changed
by using an appropriate method. Both these methods are optional; the second
method "posteval" is very specific and not usually necessary.

evaluate The method is called when a domain element is evaluated; the call
D::evaluate(e) has to evaluate the domain element e.

posteval When a substitution depth of 1 is reached, a datum is generally
not evaluated further, only the value of the datum is returned. (This is
normally the case, for example, inside procedures.) The method "eval-
uate" is not executed if the substitution depth is 1. Instead the "poste-
val" method is called when the substitution depth 1 is reached during
the evaluation of a domain element. D::posteval(e) has to evalu-
ate the domain element e. If no such method exists e is not evaluated
further.

B.5. Output

Name An expression with the name of the domain, which is printed instead of
the domain. If the name is a string, it is printed without quotes (").

print Method for the output of a domain element. D::print(e) has to
return an expression which is used to print the domain element e. The
user should not use the print function in this method!

B.6. MCode

MuPAD data may be written to and read from byte streams in the so-called
MCode format. The input and output of domains can be controlled for MCode:

create_dom If this entry exists when the domain is written to a MCode stream,
the domain entries are generally not written to the stream, only this en-
try is written. It is assumed that the reader of the stream can create the
domain by evaluating the entry "create_dom" .

If the entry "create_dom" does not exist all the entries of the domain
are written to and read from the stream.

49

B. Special Domain Entries

If the stream is to be read from another kernel for example, the other ker-
nel can easily create the domain Dom::Integer given the domains name,
there is no need to transfer the domain entries. Domains inheriting from
Dom::BaseDomain inherit a "create_dom" entry which simply contains
the domains name.

B.7. Arithmetic

Whereas the arithmetical functions _plus , _mult and _power existed since
the very first versions of MuPAD, the functions _negate , _subtract and
_invert are relatively new:
Given inputs of the form -e , e-f and 1/e , the parser creates the expressions
_negate(e) , _subtract(e,f) and _invert(e) which are then evaluated.
With “normal” expressions e and f , expressions of the form (-1)*e e+(-
1)*f and eˆ(-1) are returned. For domain elements the functions _negate ,
_subtract and _invert may be overloaded as usual:

_negate A method for negating a domain element. It is called for an input of
the form -e . D::_negate(e) has to return the opposite of the domain
element e.

_subtract A method for subtracting domain elements. It is called for an
input of the form e-f . D::_subtract(e,f) has to return result of
subtracting f from e.

_invert A method for inverting a domain element. It is called for an input of
the form 1/e . D::_invert(e) has to return the inverse of the domain
element e.

B.8. Accessing Operands

The functions op and subsop resolve operand paths automatically. The meth-
ods "op" and "subsop" only need to return, or respectively, change the di-
rect operands of the domain elements. If, for example, in an expression op(x,
[2,1,3]) , the second operand of x is a domain element y , then the method
"op" of the domain D of y is called as D::op(y,1) . The system function op
then extracts the third operand of the value returned by the method.

op The function op already resolves operand paths. The method "op" only
needs to return the “direct” operands of a domain element. A call of the
method "op" therefore has one of the forms D::op(e) , D::op(e,i)
or D::op(e,i..j) with integers i and j .

subsop The function subsop also resolves operand paths automatically.

50

B.9. Type Testing and Conversion

B.9. Type Testing and Conversion

The function testtype is used for testing types. The idea is as follows: The
call testtype(e, T) should return TRUE if the datum e has the type T.
Here the type T can be a domain or a special type expression. If T is a domain,
testtype should also return TRUEif e may be converted into an element of
T by one of the domains involved.

Domains as Types If the call testtype(e, T) returns the value TRUE
with expression e and domain T, then e can be converted into an element
of T either by the domain Dof the datum e or by the “target domain” T.
Both domains are responsible for conversion. The domain D of e is “asked”
first if it can convert e into type T. If this fails the domain T is asked if it can
convert e into one of its elements. Thus, both domains should offer methods
that can execute a conversion.
The function testtype first calls the method "testtype" of the domain Dof
e (in the form D::testtype (e, T)). If the method returns TRUEor FALSE
then the function returns the same value.
If however, the method returns FAIL then this means that the method could
not decide if a conversion is possible. In this case the method "testtype"
of the domain T is called (in the form T::testtype(e, T)). If the method
returns a Boolean value then this is returned. If the method returns FAIL , then
the value FALSE is returned (none of the domains is capable of executing the
conversion).
Note that the "testtype" -method is also called if e is an element of a base
domain or if T is a base domain.

testtype The expression D::testtype(e, T) must return the value TRUE
if the domain D can convert the expression e into an element of the do-
main T. The domain Dcan be either the domain of e or the domain T! The
method should only return FALSEif it “knows” that such a conversion is
not possible. The method has to return FAIL if it cannot execute the con-
version itself, but if the conversion might possibly be done by another
domain.

It is not necessary for the domain T to create its own elements. Abstract do-
mains can also be defined. These may be used to test if a datum has a particular
form.
The following example defines the domain NUMERIC, which may be used to
determine if a datum is a number. The domain is defined as follows:

NUMERIC := newDomain("NUMERIC");
NUMERIC::testtype := proc(x, y)
begin

if contains({ DOM_INT, DOM_RAT, DOM_FLOAT, DOM_COMPLEX },
domtype(x)) then

TRUE
else

FAIL

51

B. Special Domain Entries

end_if
end_proc;

In this case it is clear that the first argument x cannot be an element of the
domain NUMERICbecause the domain does not create any “own” elements.
(There is no method "new" .) Thus, x must be an element of a different domain
and y must be the domain NUMERICitself. The method only has to test if x is
a number.
If the method "testtype" returns the value TRUEthen the domain—if it is
not an abstract domain—should offer a corresponding conversion routine:

convert With D::convert(e) the datum e has to be converted into an ele-
ment of the domain D. The method has to return FAIL if a conversion is
not possible.

convert_to With D::convert_to(e, T) the domain element e (an ele-
ment of D) has to be converted into an element of the domain T. The
method has to return FAIL if conversion is not possible.

expr This is a special case of "convert_to" . With D::expr(e) the domain
element e (of D) must be converted into an expression built by elements
of the basic domains which may be used for printing for example. Once
more FAIL has to be returned if conversion is not possible.

Note that the function expr is overloaded by a method "expr" as usual.

This routines should never return an error when conversion is not possible.

Type Expressions In the previous section a type was defined by a domain.
However, domains are also possible whose elements represent types. Such el-
ements can for example represent certain types of expressions (e.g., lists with
integers as elements). Thus, the second argument of testtype needs not only
be a domain but can also be a domain element which represents a type.
If the call testtype(e, T) returns TRUEfor a type expression T then e is as-
sumed to already have the properties asked for by T. Generally no conversion
methods need to be defined in this case by the domains of e or T.
A type expression may be any datum which is not a domain. Thus the "test-
type" -method is even called if T is an element of a base domain.

testtype The expression DT::testtype(e, T) has to return TRUEif the
argument T is a type expression which is an element of the domain DT
and if e has the appropriate type. The method can return FALSE if it
“knows” that e does not have the appropriate type. It has to return FAIL
if it cannot decide if e has the correct type.

Thus a "testtype" -method for a domain of type expressions (DTabove)
has not only to consider the cases where T is a domain (either the domain
of e its own domain DT), but also the case that T is an element of DT—
adding some more complexity.

52

B.10. Function Calls

A simple example of type expressions are strings. The user can ask if x is a
sum with testtype(x, "_plus") . Here the string "_plus" represents the
type “sum”, the strings are type expressions. This is implemented with an
appropriate "testtype" method of the domain DOM_STRING:

DOM_STRING::testtype := proc(x, T) begin
if domtype(T) = DOM_STRING then

bool(type(x) = T)
elif domtype(x) = T then

TRUE
else

FAIL
end_if

end_proc;

The function type returns a string representing the type as the operator of an
expression. This string is compared with the “searched for” type T.

B.10. Function Calls

Sometimes it is desirable to consider a domain element e as a function, i.e.,
expressions of the form e(a,...) are to be evaluated. The user can consider
the “function call brackets” () as an operator with e, a, ... as the operands.
This sort of operator does not exist in MuPAD but it can be “simulated” by
using the method "func_call" .

func_call When an expression of the form e(a1,..., an) with a domain
element e is evaluated then the result of the call D::func_call(e,
a1,..., an) is returned, where D is the domain of e, if the original
expression is not on the left hand side of an assignment.

With this method all the arguments a1 , ... an are not evaluated before
the method is called (it does not matter if the the option hold is set in
the method func_call or not). The domain element e is evaluated.

set_func_call If an assignment of the form e(a1,..., an) := v is eval-
uated where the expression e evaluates to an element of domain D, then
the result of the call D::set_func_call(e, a1,..., an, v) is as-
signed to the expression e.

This method is needed in order to “simulate” the assignments to remem-
ber tables of functions. A new domain element, which is a copy of the
value of e and additionally returns the value v when called as function
with the arguments a1,..., an , should be created by the method. This
new domain element is returned and then is assigned to e automatically.
Note that e is not evaluated before the method is called. The other argu-
ments are evaluated as usual.

Note that the method "set_func_call" is also be called if the expression e
is not only an identifier or variable, but a function call, indexed identifier or
slot expression.

53

B. Special Domain Entries

The method "func_call" can be overloaded for most of the basic types. It
is, for instance, defined for the basic type DOM_POLY. If p is a polynomial with
two variables then p(x, y) evaluates the polynomial at the points x and y :
DOM_POLY::func_call := proc(p: DOM_POLY)

local indets;
begin

indets:= op(p, 2);
if args(0) <> nops(indets) + 1 then

error("wrong no of args")
end_if;
evalp(p, op(zip(indets, context([args(2..args(0))]), _equal)))

end_proc;

The polynomial p is evaluated with evalp . The arguments are previously
evaluated in the calling context using the function context .

B.11. Indexed Access

In a similar way to how domain elements can be considered as functions, they
can also be considered as data structures which store a value under an index.
Examples for such data structures are lists, tables and arrays. Indexed access
to these domain elements can be simulated using the method "_index" . In
principle it is the function _index that is overloaded, however the left hand
side of an assignment needs special treatment:

_index When an expression of the form e[i1,...,in] with an element
e of domain D is evaluated then the result of the call D::_index(e,
i1,..., in) is returned if the original expression is not on the left
hand side of an assignment.

set_index When an expression of the form e[i1,...,in] := v is eval-
uated (whereby the expression e evaluates to an element of domain D)
then the result of the call D::set_index(e, i1,..., in, v) is as-
signed as a value to the expression e.

To implement the storage of a new value in the domain element given
by e, the method should proceed as follows: Store the value v under the
index i1,..., in in a copy of the domain element given by e and then
return the changed domain element. This is then assigned to e automat-
ically.

As with "set_func_call" , the method "set_index" is also be called when
the expression e is not only an identifier or variable, but a function call, in-
dexed identifier or slot expression.

B.12. Coefficient Rings of Polynomials

A domain D can be used as the coefficient ring of a polynomial. For this the
domain must contain certain methods. In the following e and f are always
elements of D:

54

B.12. Coefficient Rings of Polynomials

_plus The call D::_plus(e,f) must return the sum of the arguments.

_negate The call D::negate(e) must return the opposite of e.

_mult The call D::_mult(e,f) must return the product of the arguments.

_power The call D::_power(e, i) must return the power eˆi for an inte-
ger i greater than 1.

zero A zero element of the domain has to be stored under this entry.

one An unit element of the domain has to be stored under this entry.

The following methods are not absolutely necessary, but can be useful for con-
version and zero test:

convert The call D::convert(x) has to convert the expression x into an
element of D.

expr The call D::expr(e) has to convert the domain element e into an ex-
pression.

iszero The call D::iszero(e) has to return TRUEif and only if the domain
element e is zero.

If no method "iszero" exists, the elements of the domain are compared to
the entry "zero" for zero-testing. Thus the method "iszero" defaults to

e -> bool(e = dom::zero)

The following methods are only necessary if the functions divide , norm ,
diff or polylib::randpoly are to be used:

_divide The call D::_divide(e1, e2) must return the quotient of the do-
main elements e1 and e2 . The method must return FAIL if division is
not possible.

norm The call D::norm(e) must return the norm of the domain element e,
an expression which may be converted to a number by using float .

diff The call D::diff(e, x) must return the derivative of the domain el-
ement e with respect to the variable x .

intmult When differentiating, the call D::intmult(e, i) must return the
i -fold multiple of the domain element e; i is a non-negative integer. One
may implement this method by repeated additions for example.

random When creating random polynomials and no other random generator
is given then this method is called. D::random() should return a ran-
dom element of D.

55

B. Special Domain Entries

B.13. Domains Created by Constructors

Domains created by constructors have certain entries that are needed by the
constructor. These are "constructor" , "closure" , "make_slot" , "su-
per_domains" , "categories" , "categories_idx" and "axioms" . They
are described in section 3.7 and must not be altered.

B.14. Domains as Library Packages

Domains may not only be used to represent algebraic structures or abstract
data types. An example for a (perhaps at first glance, unusual) application
of domains are the library packages in MuPAD. All procedures of a package
are entered into a so-called library domain. This has the advantage that the
procedure names can not conflict with procedure names from other packages.
The procedure of the groebner package computing S-polynomials is, for in-
stance, referred to by the expression groebner::spoly . The library domains
are usually created as raw domains.
By using the function export the names of those procedures of the pack-
age, that may be “externally” used, can be made “globally” visible. These
procedures are also called the interface of the package. (The other procedures
are only intended for internal purposes.) After entering export(groebner,
spoly) the interface procedure groebner::spoly can also be directly ad-
dressed with spoly .
The function info displays a short information about the package as well as
a list of the functions that can be exported.
Two entries are necessary in a library domain so that export and info can
work correctly:

info A string or a method. If the entry is a string then the string and the
interface functions are printed. If the entry is a method then it is called
as D::info() by info .

interface A set of identifiers. These are the names of the interface functions
which can be exported by export . The identifiers should be enclosed by
hold to prevent evaluation.

In the groebner package this looks like follows:

groebner := newDomain("groebner");
groebner::info := "Library ’groebner’:";
groebner::interface := { hold(spoly), ... };

56

C. An Example: Multi-Indices

As an example for the implementation of a simple domain constructor we will
use the constructor MultiIndex . The constructor has one or two parameters
which give the dimension of the indices and optionally an ordering for the
indices. The default ordering is lexically.
MultiIndex(3) creates the domain of the 3-dimensional lexically ordered
multi-indices:

>> M := MultiIndex(3)

MultiIndex(3, Lex(3))

A multi-index may be created by its components, it is printed as a list:

>> a := M(1,2,0)

[1, 2, 0]

Accessing the second component:

>> a[2]

2

The absolute value of an index is given by the sum of its components:

>> abs(a)

3

Creating a second index:

>> b := M(2,2,2)

[2, 2, 2]

Adding them adds the components pair by pair:

>> a + b

[3, 4, 2]

Comparing them with respect to the lexical ordering:

>> bool(a < b)

TRUE

Comparing with another index:

>> bool(M(2,2,3) < b)

57

C. An Example: Multi-Indices

FALSE

The ordering must be given as an element of the domain Dom::MonomOrdering .
Elements of this domain may be used to compare lists of non-negative integers—
just what we need.
The definition of the constructor is as follows:

domain MultiIndex(dimen: Type::PosInt, ordering)

// no local values

inherits
Dom::BaseDomain;

category
Cat::CancellationAbelianMonoid, Cat::OrderedSet;

axiom
Ax::canonicalRep;

... // the methods follow here

// finally the init procedure of the domain
begin

if testargs() then
if args(0) = 2 and domtype(ordering) <> Dom::MonomOrdering then

error("illegal ordering")
end_if

end_if;
if args(0) = 1 then ordering:= Dom::MonomOrdering(Lex(dimen))
elif args(0) <> 2 then error("wrong no of args") end_if

end_domain;

During initialization it is tested if the optional parameter ordering exists. If it
does not exist then the lexical ordering Dom::MonomOrdering(Lex(dimen))
is used as the default value.
The direct super-domain is Dom::BaseDomain , the categories defined di-
rectly are Cat::OrderedSet (“ordered set”) and Cat::CancellationAbelianMonoid
(“abelian monoid with cancellation”). The only axiom is Ax::canonicalRep
(“canonical representation”). Note that we could also have used Dom::Product
as the super-domain (the constructor of direct product domains), but then al-
most no work would have been left (too bad for an example).
Because of the super-domain Dom::BaseDomain and categories Cat::OrderedSet
and Cat::CancellationAbelianMonoid a whole series of entries are de-
fined for the constructor. These are:

"TeX" , "_leequal" , "_less" , "_negate" , "_plus" , "_sub-
tract" , "allAxioms" , "allCategories" , "allEntries" ,
"allSuperDomains" , "coerce" , "convert" , "convert_to" ,
"create_dom" , "equal" , "equiv" , "expr" , "getAx-
ioms" , "getCategories" , "getSuperDomain" , "hasProp" ,

58

"info" , "intmult" , "iszero" , "key" , "max" , "min" , "new" ,
"new_extelement" , "print" , "printMethods" , "sort" ,
"subs" , "subsex" , "testtype" , "undefinedEntries" ,
"whichEntry" , "zero"

For most of these entries there is already a default implementation inherited
from the super-domain Dom::BaseDomain or from the categories. Only the
following entries are basic operations and therefore have to be entered:

"_less" , "_plus" , "_subtract" , "convert" , "expr" ,
"print" , "zero"

One may get a list of this entries by using the methods "allEntries" and
"undefinedEntries" . (Define the constructor first without any entries and
then use the methods "allEntries" and "undefinedEntries" with an
“example domain” to get the entry lists.)
In this example each multi-index is represented as follows: It has a single
operand, which is a list of non-negative integers. The numbers in the list are
the components of the index.
The method "convert" converts a datum into a multi-index or returns FAIL
if this is not possible. In our example "convert" can be called with three
different arguments:

D::convert(x) returns x , if x is a multi-index of the correct dimension.

D::convert(L) returns a multi-index if L is a list of non-negative integers
of the correct length.

D::convert(j1,...,jn) returns a multi-index, if j1 to jn are non-nega-
tive integers, whereby n is the dimension of the multi-index.

The method is implemented accordingly:

convert := proc(l) begin
if args(0) <> 1 then

if args(0) = 0 then return(FAIL) end_if;
l:= [args()]

end_if;

if domtype(l) = dom then return(l) end_if;
if not testtype(l, Type::ListOf(Type::NonNegInt, dimen, dimen))
then

return(FAIL)
end_if;
new(dom, l)

end_proc;

new(dom, l) creates a new multi-index, l is the list of components.
The zero element "zero" simply contains a list of zeros:

zero := new(dom, [0 $ dimen]);

Addition adds the list elements component by component. The method "_plus"
is a bit intricate because it has to cope with an arbitrary number of arguments:

59

C. An Example: Multi-Indices

_plus := proc(x, y) begin
case args(0)
of 1 do

return(x);
of 2 do

if domtype(x) <> dom or domtype(y) <> dom then
return(FAIL)

end_if;
return(new(dom, zip(extop(x,1), extop(y,1), _plus)));

otherwise
y:= _plus(args(2..args(0)));
return(x+y);

end_case
end_proc;

Of course one could do better than returning FAIL if the arguments are no
multi-indices.
The method "_subtract" has to carry out subtraction if this is possible. Be-
cause negative components are not allowed the method must return FAIL if
one occurs:

_subtract := proc(x: dom, y: dom) begin
x:= zip(extop(x,1), map(extop(y,1), -id), _plus);
if nops(select(x, _less, 0)) <> 0 then

return(FAIL)
end_if;
new(dom, x)

end_proc;

Note the somewhat tricky way to negate the list elements of y by using -id
and the use of select to search for negative components.
The method "_less" compares two indices. For this the optional ordering
ordering is used:

_less := proc(x: dom, y: dom) begin
bool(ordering(extop(x,1), extop(y,1)) = -1)

end_proc;

If an element of the domain Dom::MonomOrdering is applied to two lists it
returns one of -1 , 0 or 1 if the first argument is less than, equal or greater than
the second argument.
The method "expr" returns the list representing the index, the method print
simply uses the method "expr" to output a multi-index:

expr := proc(x: dom) begin extop(x,1) end_proc;

print := expr;

In addition to the methods above, the constructor defines four other meth-
ods which are not strictly needed—according to the domains categories—but
which are quite useful:

"_index" , "abs" , "random" , "set_index"

60

The method "_index" allows indexed access of components. "abs" returns
the absolute value of a multi-index, i.e., the sum of its components. "ran-
dom" creates a random multi-index. "set_index" allows components to be
changed:

_index := proc(x: dom, i: Type::PosInt) begin
extop(x,1)[i]

end_proc;

abs := proc(x: dom) begin
_plus(op(extop(x,1)))

end_proc;

random := proc() local l, i; begin
l:= [];
for i from 1 to dimen do l:= append(l, random()) end_for;
new(dom, l)

end_proc;

set_index := proc(x: dom, i: Type::PosInt, v: Type::NonNegInt) begin
extsubsop(x, 1=subsop(extop(x,1), i=v))

end_proc;

Moreover other methods are defined for which a default implementation exists
but that can be more efficiently or “better” implemented here.
"convert_to" and "TeX" can be better implemented. The method "con-
vert_to" can convert a multi-index into a list or sequence. "TeX" returns a
string with the index components in brackets:

convert_to := proc(x: dom, T) begin
case T
of DOM_LIST do return(extop(x,1));
of "_exprseq" do return(op(extop(x,1)));
of dom do return(x);
end_case;
FAIL

end_proc;

TeX := proc(x: dom) begin
"(".expr2text(dom::convert_to(x,"_exprseq")).")"

end_proc;

The methods "intmult" and "_negate" can be implemented more effi-
ciently. "intmult" multiplies an index with a non-negative integer. The op-
posite of an index is calculated by "_negate" . But an opposite exists only for
the zero index:

intmult := proc(x: dom, i: Type::NonNegInt) begin
if i < 0 then error("negative factor") end_if;
new(dom, map(extop(x,1), _mult, i))

end_proc;

_negate := proc(x: dom) begin
if dom::iszero(x) then dom::zero else FAIL end_if

end_proc;

61

C. An Example: Multi-Indices

These are all the methods defined by MultiIndex .

62

Bibliography

[1] K. Drescher. “The Constructors of the domains Package”. Automath Tech-
nical Report No. 2, Univ. GH Paderborn 1995.

[2] S. Wehmeier et. al. “The Domain Constructors of the MuPAD Library”.
MuPAD Library Document No. xx, SciFace Software 1999.

[3] K. Drescher et. al. “The Category Constructors of the MuPAD Library”.
MuPAD Library Document No. xx, SciFace Software 1999.

[4] K. Drescher et. al. “The Axiom Constructors of the MuPAD Library”.
MuPAD Library Document No. xx, SciFace Software 1999.

[5] D. Gruntz. “Groebner Bases in GAUSS”. MapleTech, (9):36–46, 1993.

[6] D. Gruntz, M. Monagan. “Introduction to GAUSS”. MapleTech, (9):23–35,
1993.

[7] R.D. Jenks, R.S. Sutor. AXIOM, The Scientific Computation System. Springer,
1992.

63

