student — educational tools

Table of contents

Preface
student::equateMatrix — build a matrix equation
student::isFree — test for linear independence of vectors
student::Kn — the vectorspace of n-tupelsover K
student::plotRiemann — plot of a numerical approximation to an
integral using rectangles 0oL
student::plotSimpson — plot of a numerical approximation to an
integral using Simpson’srule L 0L
student::plotTrapezoid — plot of a numerical approximation to
an integral using the Trapezoidalrule
student::riemann — numerical approximation to an integral using
rectangles L L
student::simpson — numerical approximation to an integral using

Simpson’srule o oo L L

student::trapezoid — numerical approximation to an integral us-
ing the Trapezoidalrule

ii

10

12

13

16

19

Introduction

The student library provides a very small collection functions which are sup-
posed to be used in teaching mathematics.

The package functions are called using the package name student and
the name of the function. E.g., use

>> R3 := student::Kn(3,Dom::Real)

to create the vector space of the 3-tupel over the field Dom::Real . This mech-
anism avoids naming conflicts with other library functions. If this is found to
be inconvenient, then the routines of the student package may be exported
via export . E.g., after calling

>> export(student, Kn)

the function student::Kn can be called directly:

>> R3 := Kn(3,Dom::Real)

All routines of the student package are exported simultaneously by
>> export(student)

The functions available in the student library can be listened with:

>> info(student)

ii

student::equateMatrix —build a matrix equation

student::equateMatrix(A, vars) returns the matrix equation
an-x1 dip-Xp - O01c-1° Xy aic
Ar1-X1 Gy X2 - Ope—1- Xy Arc

Call(s):

student::equateMatrix(A, vars)

Parameters:
A — matrix (of category Cat::Matrix) over a Cat::Field
vars — list of indeterminates

Return Value: an expression of the domain type DOM_EXPRnd of type "equal”

Related Functions: linalg::expr2Matrix , matrix

Details:

student::equateMatrix (Avars) returns the matrix equation

ap X1 dip-Xp o A1c-1°Xr aic

ar1-X1 Gy -Xp - ar,cfl - Xy Ay

where r and ¢ are the row and column number of A, and x,... ,x, are
the elements of vars .

& The number of indeterminates given in vars must match the row num-
ber of the matrix A.

Example 1. Let us construct the equation A x X" = b’ First we construct A
and b:

>> Ab := matrix([[1,2,3],[-1,3,0]])

1 2

Here we have A = (1 3

> and b= (g) Now we construct the equation
Ax X =1b:
>> student::equateMatrix(Ab,[x1,x2])

+- -+ +- -+
| x1 + 2 x2 | | 3 |
I | =1 I
| -x1 + 3 x2 | | 0 |
+- -+ o+ 4+

Example 2. We should be carefull to use the right dimension of the matrix
and the indeterminates:

>> Ab := matrix([[1,2,3],[-1,3,0]])

+- -+
| 1, 2, 3 |
| |
| -1, 3, 0 |
+- -+
>> student::equateMatrix(Ab,[x1,x2,x3])

Error: dimension of matrix and number of vars don't match [stu\
dent::equateMatrix]

Changes:

¢ In previous MUPAD versions it was also possible to specify the indetermi-
nates in a set. But the elements of a set have no order so in this situation
the matrix equation was not uniquely defined.

student::isFree — test for linear independence of vectors
student::isFree (S) tests if the vectors given in S are linear independend.
Call(s):

& student::isFree(S)

Parameters:

S — set or list of vectors (of category Cat::Matrix) defined over a
Cat::Field)

Return Value: either TRUEor FALSE

Related Functions: linalg::basis

Details:

student::isFree (S) gives TRUEIf S is free, i.e. the vectors of S are
linear independend. Otherwise the value FALSEis returned.

Example 1. We define 3 vectors:

>> x = matrix([[2,3,4]]):
y = matrix([[1,-1,1]]):
z = matrix([[2,3,5]]):

And we ask if x, y and z are linear independend.
>> student::isFree({x,y,z})
TRUE

Hence, the vectors x,y,z are linear independent, and therefore the set x,y,z is a
basis of R¥. Of course the vectors x,y and (x-y) are not linear independent:

>> student:isFree([x,y,x-y])

FALSE
If we have vectors from different vector spaces, student::isFree will give
an error message:
>> zz := matrix([[2,3,5,6]]):
student::isFree({x,y,zz})

Error. set contains incompatible vectors [student:.isFree]

Changes:
& No changes.

student::Kn - the vectorspace of n-tupels over K

The domain student::Kn represents the vectorspace of n-tupels over the
field F.

Domain:
student::Kn(F)
student::Kn(n,F)

Parameters:

F — afield, i.e. a domain of category Cat::Field
N — a positive integer

Details:

t¢ The domain student::Kn represents the vector space of n-tuples over
the field F. The default value of n is 1. F must be a domain of category
Cat::Field

Creating Elements:
student::Kn(n,F)()
student::Kn(n,F)(listofrows)
student::Kn(n,F)(list)
student::Kn(n,F)(indexfunc)

Parameters:
list — list of vector components.
listofrows — list of (at most) n rows. Each row is a list of vector
components.
indexfunc — function or functional expression in two parameters
(the row and column index).
Categories:

Cat::VectorSpace(F) ,Cat::Matrix(F)

Related Domains: Dom::MatrixGroup

Details:

¢ Elements of student::Kn are contructed by a call to the element con-
structors of Dom::MatrixGroup(n,1,F) . Refer to the corresponding
methods of Dom::MatrixGroup(n,1,F)

& The call student::Kn(n, F)() returns the n-dimensional zero vec-
tor. Note that the zero vector is defined by the entry "zero" . See also
Example 3.

student::Kn(n, F)(listofrows) creates a vector with n compo-
nents v1, vy, ... ,v,, when listofrows is the list [[v1], [02], . - ., [04]]- In-
ternally student::Kn(n, F)(listofrows) calls Dom::MatrixGroup(n,1,F)(n,1,listofrows)
See there for further information.

8 student::Kn(n,F)(list) creates the vector with n components whose
components are the entries of list . Internally student::Kn(n, F)(list)
calls Dom::MatrixGroup(n,1,F)(n,1,list) . See there for further
information.

student::Kn(n,F)(indexfunc) returns the vector whose i-th com-
ponent is the value of the function call indexfunc(i,1) . Internally
student::Kn(n, F)(indexfunc) calls
Dom::MatrixGroup(n,1,F)(n,1,indexfunc) . See there for fur-
ther information.

& student::Kn(n, F) has the domain Dom::MatrixGroup(n,1,F)
as its super domain, i.e., it inherits each method which is defined by
Dom::MatrixGroup(n,1,F) and not re-implemented by student::Kn(n,
F) . Methods described below are re-implemented by student::Kn

Mathematical Methods
Method _mult : multiplies with a scalar
_mult(dom x, any r)
_mult(any r , dom x)
& If r is of type student::Kn (n,F) this method returns FAIL . Oth-
erwise if there is no method "scalarMult"(x,r) for the domain
student::Kn (n,F) defined, the method"_mult" of Dom::MatrixGroup(n,1,F)

is used to multiply X and r. In general this means x is multiplied
with the scalar valuer .

£ By defining the method scalarMult(x,r) for the domain stu-
dent::Kn youcanoverload the”_mult" method of student::Kn

Example 1. Let us create the vector space of the 3-tupel over the field Dom::Real :
>> R3 := student::Kn(3,Dom::Real)

student::Kn(3, Dom::Real)
Now we create some elements of this domain in different ways:

>>

R3([1,2,3]);

R3([[2].[3].[4]]);
= R3()

u
Vv
w

| 1 |
I I
| 2 |
I I
| 3 |
+- -+
+- -+
| 2 |
I I
| 3 |
I I
| 4 |
+- -+
+- -+
| 0 |
I I
| 0 |
I I
| 0 |
-

We perform some calculation with the just created elements. We add the three
vectors ¥, wand i’ of the vectorspace, multiply the vector W with the scalar
3 and the vector ¥ with the scalar -4:

>> v o+ W+ U

3*w;

v*(-4)
+- -+
| 3 |
I I
| 5 |
I I
|7 |
+- -+
+- -+
| 0 |
| I
| 0 |
| I
| 0 |
+- -+

+- -+
-8 |

12|

16 |

+——

Example 2. Let us see how we can use a function for creating elements of the
domain. The function f computes the square of the given number. So the entry
in the i-th row of the constructed vector will be 2.

>> f = | > M2
R3 := student::Kn(3,Dom::Real);
R4 := student::Kn(4,Dom::Real);
v = R3(f);
w = RA(f)

student::Kn(3, Dom::Real)

student::Kn(4, Dom::Real)

+- -+
| 1 |
I I
| 4 |
I I
|9 |
+- -+
+- -+
|1 |
| I
| 4 |
| I
|9 |
I I
| 16 |
+- -+

Example 3. The zero vector is defined by the entry "zero" as we can see in

the following example:

>> R3 := student::Kn(3,Dom::Real):

R3::zero();

v = R3([[2].[3].[4]]);

v - R3::zero()
+- -+
| 0 |
I I
| 0 |
I I
| 0 |
+- -+
+- -+
| 2 |
| I
| 3 |
I I
| 4 |
+- -+
+- -+
| 2 |
I I
| 3 |
I I
| 4 |
+- -+

Super-Domain: Dom::MatrixGroup

Axioms

if F has Ax::canonicalRep
Ax::canonicalRep

Background:

& If the user defines a method scalarMult to overload the "_mult"
method of student::Kn he is responsible to define a legal scalar multi-
plication. This means the defined scalar multiplication has to fulfill that
the vector space of n-tuples over the field F is still a vector space. This is
not checked by the domain student::Kn themself.

Changes:
£ No changes.

student::plotRiemann — plot of a numerical approximation to an
integral using rectangles

student::plotRiemann(f, x=a..b, n) computes a numerical approx-

imation to the integral fab f(x) dx using rectangles and returns a plot of the
numerical process.

Call(s):
& student::plotRiemann(f, x=a..b <, n><, optl >, ..)
student::plotRiemann(f, x=a..b <, n >, method <,
optl >, ..)
Parameters:

f — functional expression in X

X — identifier

a, b — arithmetical expressions

n — a positive integer (number of rectangles)

method — one of the options Left , Middle , or Right

optl — plot option(s) for two-dimensional graphical objects

Options:

Left — The height of each rectangle is determined by the value of
the function at the leftpoint of each interval.

Middle — The height of each rectangle is determined by the value of
the function at the middlepoint of each interval (the default
method).

Right ~— The height of each rectangle is determined by the value of

the function at the rightpoint of each interval.

Return Value: a graphical object of the domain type plot::Group

Related Functions: plot , plot::Group , student::plotSimpson

7

student::plotTrapezoid , student::riemann
Details:
& student::plotRiemann(f, x=a..b, n) computes a numerical ap-

proximation to the integral fab f(x) dx using n rectangles and returns a
graphical object of the numerical process that can be displayed with the
function plot .

The height of each rectangle is determined by the value of the function
at the middlepoint of each interval (as with option Middle).

With student::plotRiemann(f, x=a..b, n, Left), the height
of each rectangle is determined by the value of the function at the left-
point of each interval.

Use option Right , if the rightpoint of each interval should be taken.
£ n is the number of rectangles to use. The default value is 4.

¢ The plot options opt1, ... must be valid plot options for two-dimensional
graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene @
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

¢ The graphical object returned has three operands: a group of the (filled)
rectangles, a group of rectangles for the frames of the filled rectangles, as
well as the function graph of f (of the domain type plot::Function2d)-
The first two operands are objects of the domain plot::Group

Example 1. The following call returns a visualization of the numerical ap-
proximation to the integral [31 e* dx using 10 rectangles:

>> p .= student::plotRiemann(exp(x), x = -1..1, 10)
plot::Group()

>> plot(p)

Example 2. You can change plot parameters of the visualization returned by
student::plotRiemann . For example, to change the color of the filled rect-
angles to blue, we must set the plot option Color of the first operand of p to
the value RGB::Blue :

>> (p[1])::Color := RGB::Blue:
plot(p, Axes = Box)

Here we changed the style of the axes of the graphical scene to the value Box.

Changes:
student::plotRiemann is a new function.
student::plotSimpson — plot of a numerical approximation to an

integral using Simpson’s rule

10

student::plotSimpson(f, x=a..b, n) computes a numerical approxi-

mation to the integral |, uh f(x) dx using Simpson’s rule and returns a plot of the
numerical process.

Call(s):
student::plotSimpson(f, x=a..b <, n><, optl >, ..)

Parameters:

f — functional expression in X

X — identifier

a, b — arithmetical expressions

n — a positive integer (number of stripes to use)

optl — plot option(s) for two-dimensional graphical objects

Return Value: a graphical object of the domain type plot::Group

Related Functions: plot , plot::Group , student::plotRiemann ,
student::plotTrapezoid , student::simpson
Details:

student::plotSimpson(f, x=a..b, n) computes a numerical ap-

proximation to the integral |, ub f(x) dx using Simpson’s rule and returns a
graphical object of the numerical process that can be displayed with the
function plot .

£ n is the number of stripes to use. The default value is 4.

& The plot options optl, ... must be valid plot options for two-dimensional
graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene @
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

& The graphical object returned has n+1 operands: the n stripes as well
as the function graph of f (of the domain type plot::Function2d)-
Every stripe is an object of the domain type plot::Group

Example 1. The following call returns a visualization of the numerical ap-
proximation to the integral fol sin(x) dx using Simpson’s rule and 10 stripes:

>> p := student:plotSimpson(sin(x), x = 0..1, 10)

plot::Group()

11

To display it on the screen, call:

>> plot(p)

Example 2. You can change plot parameters of the visualization returned by
student::plotSimpson . For example, to change the color of every second
filled stripe to red, we must set the plot option Color of the operands of p
with even index to the value RGB::Blue :

>> ((p[2*])::Color := RGB::Red) $ i = 1..nops(p) div 2:

plot(p)
Changes:
student::plotSimpson is a new function.
student::plotTrapezoid — plot of a numerical approximation to

an integral using the Trapezoidal rule

student::plotTrapezoid(f, x=a..b, n) computes a numerical approx-

imation to the integral | ub f(x) dx using the Trapezoidal rule and returns a plot
of the numerical process.

Call(s):
& student::plotTrapezoid(f, x=a..b <, n><, optl >, ..)

Parameters:

f — functional expression in X

X — identifier

a, b — arithmetical expressions

n — a positive integer (number of trapezoids to use)

optl — plot option(s) for two-dimensional graphical objects

Return Value: a graphical object of the domain type plot::Group

Related Functions: plot , plot::Group , student::plotRiemann ,
student::plotTrapezoid , student::trapezoid

12

Details:

student::plotTrapezoid(f, x=a..b, n) computes a numerical
approximation to the integral [’ f(x) dx using the Trapezoidal rule and
returns a graphical object of the numerical process that can be displayed
with the function plot .

£ n is the number of trapezoids to use. The default value is 4.

& The plot options optl, ... must be valid plot options for two-dimensional
graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene @
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

& The graphical object returned has three operands: a group of the (filled)
trapezoids, a group of polygons representing the frames of the trape-
zoids, as well as the function graph of f (of the domain type plot::Function2d
The first two operands are objects of the domain plot::Group

Example 1. The following call returns a visualization of the numerical ap-

proximation to the integral fog cos(x) dx = 1 using the Trapezoidal rule and 10
trapezoids:

>> p = student::plotTrapezoid(cos(x), x = 0..Pl/2, 10)
plot::Group()

To display it on the screen, call:

>> plot(p)

Example 2. You can change plot parameters of the visualization returned
by student::plotTrapezoid . For example, to change the x-range of the
graph of f, we set the attribute range of the last operand of p to the value x
= -Pl/2..P1/2

>> (p[nops(p)])::range = x = -Pl/2..Pl/2:
plot(p)

13

Changes:

& student::plotTrapezoid is a new function.
student::riemann — numerical approximation to an integral using
rectangles
student::riemann(f, x=a..b, n) computes a numerical approximation

to the integral fab f(x) dx using rectang]les.

Call(s):
student::riemann(f, x=a..b <, n>)
& student::riemann(f, x=a..b <, n >, method)
Parameters:
f — arithmetical expression or a function in X
X — identifier
a, b — arithmetical expressions
n — a positive integer (number of rectangles)

method — one of the options Left , Middle , or Right

Options:

Left — The height of each rectangle is determined by the value of
the function at the leftpoint of each interval.

Middle — The height of each rectangle is determined by the value of
the function at the middlepoint of each interval (the default
method).

Right =~ — The height of each rectangle is determined by the value of

the function at the rightpoint of each interval.

Return Value: an arithmetical expression.

Related Functions: freeze ,int , numeric:int ,
numeric::quadrature , student::plotRiemann , student::simpson
student::trapezoid

7

Details:

&7 student::riemann(f, x=a..b, n) computes a numerical approx-
imation to the integral |, Hb f(x) dx using n rectangles.

The height of each rectangle is determined by the value of the function
at the middlepoint of each interval (as with option Middle).

14

& With student::riemann(f, x=a..b, n, Left), the height of each
rectangle is determined by the value of the function at the leftpoint of
each interval.

Use option Right , if the rightpoint of each interval should be taken.
£ n is the number of rectangles to use. The default value is 4.

& The result of student::riemann is an arithmetical expression which
consists of frozen subexpressions of type "sum" .

Use unfreeze to force the evaluation of the result.

Example 1. The numerical approximation to the integral f}l e* dx using 10
rectangles is:

>> student::riemann(exp(x), x = -1..1, 10)

/ /il \ \
sum| exp| -- - 9/10 |, i1l = 0..9 |
\ \' 5 / /
5

The function values were taken at the middlepoint of each interval, the same
as with option Middle .

We got an unevaluated expression, the formula for the corresponding ap-
proximation. Use unfreeze to force the evaluation of the result:

>> unfreeze(%)

exp(-1/2) exp(1/2) exp(-1/10) exp(1/10) exp(-3/10)
+ + + +

-+
5 5 5 5 5

exp(3/10) exp(-7/10) exp(7/10) exp(-9/10) exp(9/10)
+ + + + ----

5 5 5 5
Let us compute a floating-point approximation of the result:
>> float(%)
2.346489615

and compare the result with the approximation using the left- and rightpoint
of each interval for the determination of the heights of the rectangles:

15

>> float(student::riemann(exp(x), X
float(student::riemann(exp(x), X

-1.1, 10, Left)),
-1..1, 10, Right));

2.123191605, 2.593272083
Finally, we compute the exact value of the definite integral [, e* dx:
>> F:= int(exp(x), x = -1..1); float(F)
exp(1) - exp(-1)

2.350402387

Example 2. The general formula of an approximation of fab f(x) dx using 4
rectangles:

>> F:= student::riemann(f(x), x = a..b)

I'b a\ [|/ /b a\\ \
| ---]sum fla+ (4+22)---]] i4=0.3]
V4 4\ \4 4 /

To expand the frozen sum, enter:

>> F.= unfreeze(F)

I'b a\/ /a 7b\ /3a 5b\ /'5a 3b)\
R N I R I N I E e I
\4 4/\ \'8 8 |/ \ 8 8 |/ \ 8 8 |/
/' 7a b\\
fl o+ -] |
\ 8 8 /1
Changes:
£ student::riemann is a new function.
student::simpson —numerical approximation to an integral using
Simpson’s rule
student::simpson(f, x=a..b, n) computes a numerical approximation

to the integral fab f(x) dx using Simpson’s rule.

16

Call(s):

student::simpson(f, x=a..b <, n>)
Parameters:
f — arithmetical expression or a function in X
X — identifier
a, b — arithmetical expressions
n — a positive integer (number of stripes to use)

Return Value: an arithmetical expression.

Related Functions: freeze ,int , numeric::int ,
numeric::quadrature , Student::plotSimpson , Student::riemann ,
student::trapezoid

Details:
¢ student::simpson(f, x=a..b, n) computes a numerical approx-
imation to the integral [” f(x) dx using Simpson’s rule.

£ n is the number of stripes to use. The default value is 4.

¢ The result of student::simpson is an arithmetical expression which
consists of frozen subexpressions of type "sum" .

Use unfreeze to force the evaluation of the result.

Example 1. The numerical approximation to the integral fol sin(x) dx using
Simpson’s rule and 10 stripes is:

>> student::simpson(sin(x), x = 0..1, 10)

/ /il \ \
sum| sin| -- |, i1l = 1.4 |
sin(1) \ \'5 / /
+ +
30 15
/ /il \ \
2 sum| sin| -- - 1/10 |, i1l = 1.5 |
\ \'5 / /
15

We got an unevaluated expression, the formula for the corresponding approx-
imation. Use unfreeze to force the evaluation of the result:

>> unfreeze(%)

17

sin(l) 2 sin(1/2) sin(1/5) sin(2/5) sin(3/5)
+ + + + +
30 15 15 15 15

sin(4/5) 2 sin(1/10) 2 sin(3/10) 2 sin(7/10)

+ + + +
15 15 15 15
2 sin(9/10)
15

Let us compute a floating-point approximation of the result:
>> float(%)
0.4596979498
and compare it with the exact value of the definite integral fol sin(x) dx:
>> F:= int(sin(x), x = 0..1); float(F)
1 - cos(1)

0.4596976941

Example 2. The general formula of Simpson’s rule (using 4 stripes):

>> F:= student::simpson(f(x), x = a..b)

I'b a \/ /a b\
| - - - 11f@ + flb) +2f-+-]+
V12 12 /\ V2 2/
I /b a\\ \
4sum|fla+ (2i3-1)|---]]i3=1.2]|
Vo \4 4 /1

To expand the frozen sum, enter:

>> F:= unfreeze(F)

/b a \/ /'a b\ /a 3b\
| 1@+ () + 20 - ke |+ A |
\ 12 12 /\ \ 2 2/ \ 4 4 |/
/' 3a b\\
A -+ - ||
\ 4 4 /1

18

You may even expand this product:

>> expand(F)

bfa) aflb) af@ b fb)

student::trapezoid —numerical approximation to an integral us-

- +
12 12 12 12
la b\ la 3b\
bfl-+-1 afl-+-1] afl--
\ 2 2/ \ 4 4 |/
- - +
6 3
la 3b\ /' 3a b\
bfl-+-1] bfl-—+-]
\ 4 4 |/ \ 4 4/
+
3 3
Changes:
student::simpson is a new function.
ing the Trapezoidal rule

student::trapezoid(f, x=a..b, n) computes a numerical approxima-
tion to the integral | ub f(x) dx using the Trapezoidal rule.

Call(s):
student::trapezoid(f, x=a..b <, n>)
Parameters:
f — arithmetical expression or a function in X
X — identifier
a, b — arithmetical expressions
n

— a positive integer (number of trapezoids to use)

Return Value: an arithmetical expression.

19

Related Functions: freeze ,int , numeric:int ,
numeric::quadrature , student::plotTrapezoid ,
student::riemann , student::simpson

Details:
student::trapezoid(f, x=a..b, n) computes a numerical approx-
imation to the integral |, Hb f(x) dx using the Trapezoidal rule.
£ n is the number of trapezoids to use. The default value is 4.
¢ The result of student::trapezoid is an arithmetical expression which
consists of frozen subexpressions of type "sum" .

Use unfreeze to force the evaluation of the result.

Example 1. The numerical approximation to the integral fog cos(x) dx =1 us-
ing the Trapezoidal rule and 10 trapezoids is:

>> student::trapezoid(cos(x), x = 0..Pl/2, 10)

/ / /Pl il \ \ \
Pl | 2 sum| cos| ----- l, i1 =19]+ 1|
\ \ \' 20 / / /
40

We got an unevaluated expression, the formula for the corresponding approx-
imation. Use unfreeze to force the evaluation of the result:

>> unfreeze(%)

/ /
| | I PI'\ /'3 P\ ' 7 PI\
| Pl | 2 cos| --| + 2 cos| ---- | + 2 cos| - | +
\ \ \ 20 / \' 20 / \' 20 /
12 172 1/2
/9 PI\ 1/2 172 2 (5 + 5)
2 cos| - | + 2 + 5 F e +
\ 20 / 2
1/2 1/2 1/2 \\
2 (5-5) |
------------------ +1]|/ 40
2 I

Let us compute a floating-point approximation of the result:

20

>> float(%)

0.9979429864

Example 2. The general formula of the Trapezoidal rule (using 4 trapezoids):

>> F:= student::trapezoid(f(x), x = a..b)

/b a\l I b ai\
| - --11f@+fb)+2sumfla+i2]---]]
\8 8 /\ - v 4/
\
2= 1.3]|
/1

To expand the frozen sum, enter:

>> F:= unfreeze(F)

/b al\l/ [a Db\ /a 3 b\
|- f@ +) + 2 -+ -+ 26 -+ |
\'8 81/ \2 2/ \ 4 4 |/
/3a b\\
2 fl -+ - ||
\ 4 4 /1
Changes:
student::trapezoid is a new function.

21

