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1 Introduction

An overview of all the available functions can be obtained by using the MuPAD
function info . The output of the call:

>> info(linalg)

looks like (the output was cutted due to its size):

Library ’linalg’: the linear algebra package

-- Interface:
linalg::addCol, linalg::addRow,
linalg::adjoint, linalg::angle,
linalg::basis, linalg::charmat,
linalg::charpoly, linalg::col,
...

After being exported, library functions can also be used by their short notation.
The function call export(linalg) exports all functions of linalg . After
that one can use the function name gaussElim instead of linalg::gaussElim ,
for example.

Please note, that user-defined procedures that use functions of the library
linalg should always use the long notation linalg:: function, in order to
make sure that the unambiguity of the function name is guaranteed.

The most easiest way to define a matrix A is using the command matrix .
The following defines a 2× 2 matrix:

>> A := matrix([[1, 2], [3, 2]])

+- -+
| 1, 2 |
| |
| 3, 2 |
+- -+

Now you can add or multiply matrices using the standard arithmetical opera-
tors of MuPAD:

>> A * A, 2 * A, 1/A

+- -+ +- -+ +- -+
| 7, 6 | | 2, 4 | | -1/2, 1/2 |
| |, | |, | |
| 9, 10 | | 6, 4 | | 3/4, -1/4 |
+- -+ +- -+ +- -+

or use functions of the linalg library:

>> linalg::det(A)
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The domain type returned by matrix is Dom::Matrix() :

>> domtype(A)

Dom::Matrix()

which is introduced in the following section.

2 Data Types for Matrices and Vectors

The library linalg is based on the domain constructors Dom::Matrix
and Dom::SquareMatrix . These constructors enable the user to define ma-
trices and they offer matrix arithmetic and several functions for matrix manip-
ulation.

A domain created by Dom::Matrix represents matrices of arbitrary rows
and columns over a specified ring. The domain constructor Dom::Matrix
expects a coefficient ring of category Cat::Rng (a ring without unit) as argu-
ment. If no argument is given, the domain of matrices is created, that rep-
resents matrices over the field of arithmetical expressions, i.e., the domain
Dom::ExpressionField() .

Be careful with calculations with matrices over this coefficient domain, be-
cause their entries usually do not have a unique representation (e.g., there is
more than one representation of zero). You can normalize the components of
such a matrix A with the command map( A,normal ) .

The library Domoffers standard coefficient domains, such as the field of ra-
tional numbers (Dom::Rational ), the ring of integers (Dom::Integer ), the
residue classes of integers (Dom::IntegerMod(n) ) for an integer n, or rings
of polynomials (Dom::DistributedPolynomial(ind, R) or Dom::Polynomial(R) ,
where ind is the list of variables and R is the coefficient ring).

A domain created by the domain constructor Dom::SquareMatrix repre-
sents the ring of square matrices over a specified coefficient domain. Dom::SquareMatrix
expects the number of rows of the square matrices and optionally a coefficient
ring of category Cat::Rng .

There are several possibilities to define matrices of a domain created by
Dom::Matrix or Dom::SquareMatrix . A matrix can be created by giving
a two-dimensional array, a list of the matrix components, or a function that
generates the matrix components:
>> delete a, b, c, d:

A := matrix([[a, b], [c, d]])

+- -+
| a, b |
| |
| c, d |
+- -+
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The command matrix actually is an abbreviation for the domain Dom::Matrix() .

To create diagonal matrices one should use the option Diagonal (the third
argument of matrix is either a function or a list):

>> B := matrix(2, 2, [2, -2], Diagonal)

+- -+
| 2, 0 |
| |
| 0, -2 |
+- -+

The following two examples show the meaning of the third argument:

>> delete x: matrix(2, 2, () -> x), matrix(2, 2, x)

+- -+ +- -+
| x, x | | x(1, 1), x(1, 2) |
| |, | |
| x, x | | x(2, 1), x(2, 2) |
+- -+ +- -+

The arithmetical operators of MuPAD are used to perform matrix arith-
metic:

>> A * B - 2 * B

+- -+
| 2 a - 4, -2 b |
| |
| 2 c, - 2 d + 4 |
+- -+

>> 1/A

+- -+
| d b |
| - -----------, ----------- |
| - a d + b c - a d + b c |
| |
| c a |
| -----------, - ----------- |
| - a d + b c - a d + b c |
+- -+

Next we create the 2×2 generalized Hilbert matrix (see also linalg::hilbert )
as a matrix of the ring of 2-dimensional square matrices:

>> MatQ2 := Dom::SquareMatrix(2, Dom::Rational)
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Dom::SquareMatrix(2, Dom::Rational)

>> H2 := MatQ2((i, j) -> 1/(i + j - 1))

+- -+
| 1, 1/2 |
| |
| 1/2, 1/3 |
+- -+

A vector with n components is a 1×n matrix (a row vector) or a n×1 matrix
(a column vector).

The components of a matrix or a vector are accessed using the index oper-
ator, i.e., A[i,j] returns the component of the row with index i and column
with index j .

The input A[i, j]:= x sets the (i, j)-th component of the matrix A to the
value of x .

The index operator can also be used to extract submatrices by giving ranges
of integers as its arguments:

>> A := Dom::Matrix(Dom::Integer)(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

>> A[1..3, 1..2], A[3..3, 1..3]

+- -+
| 1, 2 |
| | +- -+
| 4, 5 |, | 7, 8, 9 |
| | +- -+
| 7, 8 |
+- -+

See also the function linalg::submatrix .

3 Remarks on Improving Runtime

The runtime of user-defined procedures that use functions of the linalg
library and methods of the constructors Dom::Matrix and Dom::SquareMatrix
can be considerably improved in certain cases.
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1. Some of the functions of the linalg library correspond to certain meth-
ods of the domain constructor Dom::Matrix in their name and func-
tionality. These functions are implemented by calling relevant methods
of the domain to that they belong, apart from additional argument check-
ing. These functions enable an user-friendly usage on the interactive
level after exporting.

However, in user-defined procedures the methods of the correspond-
ing domain should be used directly to avoid additionally calls of pro-
cedures.

For example standard matrix manipulation functions such as deleting,
extracting or swapping of rows and columns are defined as methods of
the domain constructors Dom::Matrix and Dom::SquareMatrix .

The method "gaussElim" offers a Gaussian elimination process for
each domain created by these constructors.

2. When creating a new matrix the method "new" is called. It converts
each component of the matrix explicitly into a component the component
ring, which may be time consuming.

However, matrices and vectors are often the results of computations,
whose components already are elements of the component ring. Thus,
the conversion of the entries is not necessary. To take this into account,
the domain constructors Dom::Matrix and Dom::SquareMatrix of-
fer a method "create" to define matrices in the usual way but without
the conversion of the components.

Please note that this method does not test its arguments. Thus it should
be used with caution.

3. A further possibility of achieving better runtimes using functions of linalg
or methods of the constructor Dom::Matrix is to store functions and
methods that are called more than once in local variables. This enables a
faster access of these functions and methods.

The following example shows how a user-defined procedure using func-
tions of linalg and methods of the domain constructor Dom::Matrix may
look like. It computes the adjoint of a square matrix defined over a commuta-
tive ring (see Cat::CommutativeRing ):

>> adjoint := proc(A)
local n, R, i, j, a, Ai, Mat,

// local variables to store often used methods
det, delRow, delCol, Rnegate;

begin
if args(0) <> 1 then

error("wrong number of arguments")
end_if;
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Mat := A::dom; // the domain of A
R := Mat::coeffRing; // the component ring of A
n := Mat::matdim(A); // the dimension of A; faster than calling

// ’linalg::matdim’!
if testargs() then

if Mat::hasProp(Cat::Matrix) <> TRUE then
error("expecting a matrix")

elif not R::hasProp( Cat::CommutativeRing ) then
error("expecting matrix over a ’Cat::CommutativeRing’")

elif n[1] <> n[2] then
error("expecting a square matrix")

end_if
end_if;

// store often used methods in local variables:
det := linalg::det;
delRow := Mat::delRow; // faster than calling ’linalg::delRow’!
delCol := Mat::delCol; // faster than calling ’linalg::delCol’!
Rnegate := R::_negate; // faster than using the ’-

’ operator!

n := Mat::matdim(A)[1]; // faster than calling ’linalg::nrows’!
a := array(1..n, 1..n);

for i from 1 to n do
Ai := delCol(A, i);
for j from 1 to n do

a[i, j] := det(delRow(Ai, j));
if i + j mod 2 = 1 then

a[i, j] := Rnegate(a[i, j])
end_if

end_for
end_for;

// create a new matrix: use Mat::create instead of Mat::new
// because the entries of the array are already el-

ements of R
return(Mat::create(a))

end_proc:

We give an example:

>> MatZ6 := Dom::Matrix(Dom::IntegerMod(6)):
adjoint(MatZ6([[1, 5], [2, 4]]))

+- -+
| 4 mod 6, 1 mod 6 |
| |
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| 4 mod 6, 1 mod 6 |
+- -+

4 Changes since Version 1.4

We have changed the names of some functions in the linalg library:
Old Name New Name
cholesky factorCholesky
dimen matdim
eigenValues eigenvalues
eigenVectors eigenvectors
extractMatrix submatrix
isHermitian isHermitean
ogSystem orthog
onSystem see ogSystem
linearSolve matlinsolve
linearSolveLU matlinsolveLU
vectorDimen vecdim

The following functions are new in the linalg library:

New Function Description
companion Companion matrix for univariate polynomials.
factorLU LU-decomposition of a matrix.
frobeniusForm Frobenius form of a matrix.
hessenberg Hessenberg matrix of a matrix.
hilbert Hilbert matrix.
inverseLU Inverse of a square matrix by LU-decomposition.
invhilbert Inverse of a Hilbert matrix.
minpoly Minimal polynomial of a matrix.
permanent Permanent of a matrix.
pseudoInverse Moore-Penrose inverse of a matrix.
smithForm Smith normal form of a matrix.
substitute Replace a part of a matrix by another matrix.
vandermondeSolve Solver for Vandermode systems.
wiedemann Solving of linear systems using Wiedemann’s al-

gorithm.
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linalg::addCol – linear combination of matrix columns

linalg::addCol(A, c1, c2, s) returns a copy of the matrix A in which
column c2 of A is replaced by s · col(A, c1) + col(A, c2).

Call(s):

A linalg::addCol(A, c1, c2, s)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
c1, c2 — the column indices: positive integers ≤ n
s — an expression that can be converted into the component

ring of A

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::addRow , linalg::col ,
linalg::multCol , linalg::multRow , Dom::Matrix

Example 1. The following defines a 3× 3 matrix over the integers:

>> A := Dom::Matrix(Dom::Integer)(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

We replace the 2nd column by −col(A,1) + col(A,2), i.e., we subtract the
first column from the second:

>> linalg::addCol(A, 1, 2, -1)

+- -+
| 1, 1, 3 |
| |
| 4, 1, 6 |
| |
| 7, 1, 9 |
+- -+
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Example 2. The following defines a 2× 3 matrix over the reals:

>> B := Dom::Matrix(Dom::Real)(
[[sin(2), 0, 1], [1, PI, 0]]

)

+- -+
| sin(2), 0, 1 |
| |
| 1, PI, 0 |
+- -+

If s is an expression that does not represent a real number then an er-
ror message is reported. The following tries to replace the 1st column by
x · col(B,3) + col(B,1), where x is an identifier which cannot be converted into
the component ring Dom::Real of B:

>> delete x: linalg::addCol(B, 3, 1, x)

Error: unable to convert x [linalg::addCol]

Example 3. If symbolic expressions are involved, then one may define matri-
ces over a component ring created by Dom::ExpressionField . The follow-
ing example defines a matrix over this default component ring:

>> delete a11, a12, a21, a22, x:
C := matrix([[a11, a12], [a21, a22]])

+- -+
| a11, a12 |
| |
| a21, a22 |
+- -+

We retry the input from the previous example:

>> linalg::addCol(C, 2, 1, x)

+- -+
| a11 + x a12, a12 |
| |
| a21 + x a22, a22 |
+- -+

linalg::addRow – linear combination of matrix rows

2



linalg::addRow(A, r1, r2, s) returns a copy of the matrix A in which
row r2 of A is replaced by s · row(A, r1) + row(A, r2).

Call(s):

A linalg::addRow(A, r1, r2, s)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
r1, r2 — the row indices: positive integers ≤ m
s — an expression that can be converted into the component

ring of A

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::addCol , linalg::row ,
linalg::multCol , linalg::multRow

Example 1. The following defines a 3× 3 matrix over the integers:

>> A := Dom::Matrix(Dom::Integer)(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

We replace the 2nd row by−row(A,1) + row(A,2), i.e., we subtract the first
row from the second:

>> linalg::addRow(A, 1, 2, -1)

+- -+
| 1, 2, 3 |
| |
| 3, 3, 3 |
| |
| 7, 8, 9 |
+- -+
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Example 2. The following defines a 2× 3 matrix over the reals:

>> B := Dom::Matrix(Dom::Real)(
[[sin(2), 0, 1], [1, PI, 0]]

)

+- -+
| sin(2), 0, 1 |
| |
| 1, PI, 0 |
+- -+

If s is an expression that does not represent a real number then an er-
ror message is reported. The following tries to replace the 1st row by x ·
row(B,2) + row(B,1), where x is an identifier which cannot be converted into
the component ring Dom::Real of B:

>> delete x: linalg::addRow(B, 2, 1, x)

Error: unable to convert x [linalg::addRow]

Example 3. If symbolic expressions are involved, then one may define ma-
trices over the component ring created by Dom::ExpressionField . The
following example defines a matrix over this default component ring:

>> delete a11, a12, a21, a22, x:
C := matrix([[a11, a12], [a21, a22]])

+- -+
| a11, a12 |
| |
| a21, a22 |
+- -+

We retry the input from the previous example:

>> linalg::addRow(C, 2, 1, x)

+- -+
| a11 + x a21, a12 + x a22 |
| |
| a21, a22 |
+- -+

linalg::adjoint – Adjoint of a matrix
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linalg::adjoint(A) computes the adjoint Adj(A) of the n× n matrix A.
The adjoint matrix satisfies the equation A ·Adj(A) = det(A) · In, where In is
the n× n identity matrix.

Call(s):

A linalg::adjoint(A)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::det

Details:

A The component ring of Amust be of category Cat::CommutativeRing .

Example 1. We define a matrix over the rationals:

>> MatQ := Dom::Matrix( Dom::Rational ):
A := MatQ( [[0, 2, 1], [2, 1, 0], [1, 0, 2]] )

+- -+
| 0, 2, 1 |
| |
| 2, 1, 0 |
| |
| 1, 0, 2 |
+- -+

Then the adjoint matrix of A is given by:

>> Ad := linalg::adjoint(A)

+- -+
| 2, -4, -1 |
| |
| -4, -1, 2 |
| |
| -1, 2, -4 |
+- -+

We check the property of the adjoint matrix Ad mentioned above:

>> A * Ad = linalg::det(A)*MatQ::identity(3)
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+- -+ +- -+
| -9, 0, 0 | | -9, 0, 0 |
| | | |
| 0, -9, 0 | = | 0, -9, 0 |
| | | |
| 0, 0, -9 | | 0, 0, -9 |
+- -+ +- -+

Background:

A The adjoint of a square matrix A is the matrix whose (i, j)-th entry is the
( j, i)-th cofactor of A.

The ( j, i)-th cofactor of A is defined by a′i j = (−1)i+ jdetA(i| j), where A(i| j)
is the submatrix of A obtained from A by deleting the i-th row and j-th
column.

linalg::angle – The angle between two vectors

linalg::angle(u,v) computes the angle ϕ between the two vectors u and
v , defined by

ϕ = arccos
(
~u ∗ ~v
|~u| |~v|

)
.

Call(s):

A linalg::angle(u, v)

Parameters:
u, v — vectors of the same dimension; a vector is a n× 1 or 1× n

matrix of a domain of category Cat::Matrix

Return Value: an arithmetical expression.

Related Functions: arccos , linalg::scalarProduct ,
linalg::vecdim

Details:

A For the equation

ϕ = arccos
(
~u ∗ ~v
|~u| |~v|

)
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the product ~u ∗ ~v denotes the scalar product of two vectors given by
linalg::scalarProduct , and | · | the 2-norm of a vector, i.e., |~u| =√
~u ∗ ~u.

A linalg::angle does not check if the computation is defined in the
corresponding component ring. This can lead to an error message, as
shown in Example 2.

A The following relationship between the angle between ~u and ~v and the
angle between ~u and −~v holds: ϕ(~u, ~v) = π−ϕ(~u, ~v).

A An error message is returned if the vectors are not defined over the same
component ring.

Example 1. We compute the angle between the two vectors
(

2
5

)
and

(
−3

3

)
:

>> phi := linalg::angle(
matrix([2, 5]), matrix([-3, 3])

)

/ 1/2 1/2 \
| 18 29 |

arccos| ----------- |
\ 58 /

We use the function float to get a floating-point approximation of this num-
ber:

>> float(phi)

1.165904541

We give two further examples:

>> linalg::angle(
matrix([1, -1]), matrix([1, 1])

)

PI
--
2

>> linalg::angle(
matrix([1, 1]), matrix([-1, -1])

)

PI
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Example 2. linalg::angle does not check whether the term ~u∗~v
|~u||~v| is defined

in the corresponding component ring.
As an example, we try to compute the angle between two vectors with

components in Z7:

>> MatZ7 := Dom::Matrix(Dom::IntegerMod(7))

Dom::Matrix(Dom::IntegerMod(7))

The following call leads to an error because the 2-norm cannot be computed:

>> linalg::angle(MatZ7([1, 1]), MatZ7([-1, -1]))

Error: no integer exponent [(Dom::IntegerMod(7))::_power]

Note that the domain Dom::IntegerMod(7) does not implement the square
root of an element, therefore in MuPAD you cannot compute the angle of any
two vectors over Z7.

linalg::basis – basis for a vector space

linalg::basis(S) returns a basis for the vector space spanned by the vec-
tors in the set or list S.

Call(s):

A linalg::basis(S)

Parameters:
S — a set or list of n-dimensional vectors; a vector is a n× 1 or 1× n

matrix of a domain of category Cat::Matrix

Return Value: a set or a list of vectors, respectively.

Related Functions: linalg::intBasis , linalg::sumBasis , lllint

Details:

A linalg::basis(S) removes those vectors in S that are linearly de-
pendent on other vectors in S. The result is a basis for the vector space
spanned by the vectors in S.

A For an ordered basis of vectors, S should be a list of vectors.

A The vectors in S must be defined over the same component ring.

A The component ring of the vectors in S must be a field, i.e., it must be of
category Cat::Field .
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Example 1. We define the domain of matrices over Q:

>> MatQ := Dom::Matrix(Dom::Rational):

and compute a basis for the vector space spanned by the vectors
(

3
−2

)
,(

1
0

)
and

(
5
−3

)
:

>> v1 := MatQ([3, -2]): v2 := MatQ([1, 0]): v3 := MatQ([5, -
3]):

linalg::basis([v1, v2, v3])

-- +- -+ +- -+ --
| | 3 | | 1 | |
| | |, | | |
| | -2 | | 0 | |
-- +- -+ +- -+ --

If not a list but a set of vectors is given, then the basis returned contains the
same vectors. But the order of the vectors in the set depends on the internal
order (see sysorder and DOM_SET), i.e., the order of the vectors appears to
be random:

>> b := linalg::basis({v1, v2, v3}): op(b, 1)

+- -+
| 1 |
| |
| 0 |
+- -+

linalg::charmat – characteristic matrix

linalg::charmat(A, x) returns the characteristic matrix xIn − A of the
n× n matrix A, where In denotes the n× n identity matrix.

Call(s):

A linalg::charmat(A, x)

Parameters:
A — a square matrix of a domain of category Cat::Matrix
x — an indeterminate
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Return Value: a matrix of the domain Dom::Matrix(Dom::DistributedPolynomial([x],R)) ,
where R is the component ring of A.

Related Functions: linalg::charpoly

Details:

A The component ring of A must be a commutative ring, i.e., a domain of
category Cat::CommutativeRing .

A The characteristic matrix M = xIn − A of A can be evaluated at a point
x = u via evalp(M, x = u) . See example 2.

Example 1. We define a matrix over the rational numbers:

>> A := Dom::Matrix(Dom::Rational)([[1, 2], [3, 4]])

+- -+
| 1, 2 |
| |
| 3, 4 |
+- -+

and compute the characteristic matrix of A in the variable x:

>> MA := linalg::charmat(A, x)

+- -+
| x - 1, -2 |
| |
| -3, x - 4 |
+- -+

The determinant of the matrix MAis a polynomial in x, the characteristic poly-
nomial of the matrix A:

>> pA := linalg::det(MA)

2
x - 5 x - 2

>> domtype(pA)

Dom::DistributedPolynomial([x], Dom::Rational, LexOrder)

Of course, we can compute the characteristic polynomial of A directly via
linalg::charpoly :

>> linalg::charpoly(A, x)

2
x - 5 x - 2

The result is of the same domain type as the polynomial pA.

10



Example 2. We define a matrix over the complex numbers:

>> B := Dom::Matrix(Dom::Complex)([[1 + I, 1], [1, 1 - I]])

+- -+
| 1 + I, 1 |
| |
| 1, 1 - I |
+- -+

The characteristic matrix of B in the variable z is:

>> MB := linalg::charmat(B, z)

+- -+
| z - (1 + I), -1 |
| |
| -1, z - (1 - I) |
+- -+

We evaluate MBat z = i and get the matrix:

>> evalp(MB, z = I)

+- -+
| -1, -1 |
| |
| -1, - 1 + 2 I |
+- -+

Note that this is a matrix of the domain type Dom::Matrix(Dom::Complex) :

>> domtype(%)

Dom::Matrix(Dom::Complex)

Changes:

A linalg::charmat used to be linalg::charMatrix .

linalg::charpoly – characteristic polynomial of a matrix

linalg::charpoly(A, x) computes the characteristic polynomial of the
matrix A. The characteristic polynomial of a n×n matrix is defined by pA(x) :=
det(xIn − A), where In denotes the n× n identity matrix.
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Call(s):

A linalg::charpoly(A, x)

Parameters:
A — a square matrix of a domain of category Cat::Matrix
x — an indeterminate

Return Value: a polynomial of the domain Dom::DistributedPolynomial([x],R) ,
where R is the component ring of A.

Related Functions: linalg::charmat , linalg::det ,
linalg::hessenberg , linalg::minpoly

Details:

A The component ring of A must be a commutative ring, i.e., a domain of
category Cat::CommutativeRing .

Example 1. We define a matrix over the rational numbers:

>> A := Dom::Matrix(Dom::Rational)([[1, 2], [3, 4]])

+- -+
| 1, 2 |
| |
| 3, 4 |
+- -+

Then the characteristic polynomial pA(x) is given by:

>> linalg::charpoly(A, x)

2
x - 5 x - 2

It is of the domain type:

>> domtype(%)

Dom::DistributedPolynomial([x], Dom::Rational, LexOrder)
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Example 2. We define a matrix over Z7:

>> B := Dom::Matrix(Dom::IntegerMod(7))([[1, 2], [3, 0]])

+- -+
| 1 mod 7, 2 mod 7 |
| |
| 3 mod 7, 0 mod 7 |
+- -+

The characteristic polynomial pB(x) of B is given by:

>> p := linalg::charpoly(B, x)

2
(1 mod 7) x + (6 mod 7) x + (1 mod 7)

We compute the zeros of pB(x), i.e., the eigenvalues of the matrix B:

>> solve(p)

x in {3 mod 7, 5 mod 7}

Background:

A linalg::charpoly implements Hessenberg’s algorithm to compute
the characteristic polynomial of a square matrix A. See: Henri Cohen:
A Course in Computational Algebraic Number Theory, GTM 138, Springer
Verlag.

This algorithm works for any field and requires only O(n3) field opera-
tions, in contrast to O(n4) when computing the determinant of the char-
acteristic matrix of A.

Since the size of the components of A in intermediate computations of
Hessenberg’s algorithm can swell extremely, it is only applied for matri-
ces over Dom::Float and Dom::IntegerMod .

For any other component ring, the characteristic polynomial is computed
using the Berkowitz algorithm. Reference: A. Jounaidi: The Berkowitz Al-
gorithm, Maple and Computing the Characteristic Polynomial in an Arbitrary
Commutative Ring. Equipe de Mathèmatiques de Besancon, Universitè
de Franche - Comtè, 25030 Besancon Cedex, May 1996.

Changes:

A linalg::charpoly used to be linalg::charPolynomial .

linalg::col – extract columns of a matrix

linalg::col(A, c) extracts the c-th column vector of the matrix A.
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Call(s):

A linalg::col(A, c)

A linalg::col(A, c1..c2)

A linalg::col(A, list)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
c — the column index: a positive integer ≤ n
c1..c2 — a range of column indices (positive integers ≤ n)
list — a list of column indices (positive integers ≤ n)

Return Value: a single column vector or a list of column vectors; a column
vector is an m× 1 matrix of category Cat::Matrix(R) , where R is the com-
ponent ring of A.

Related Functions: linalg::row , linalg::delCol , linalg::delRow ,
linalg::setCol , linalg::setRow

Details:

A linalg::col(A, c1..c2) returns a list of column vectors whose in-
dices are in the range c1..c2 . If c2 < c1 then the empty list [] is
returned.

A linalg::col(A, list) returns a list of column vectors whose in-
dices are contained in list (in the same order).

Example 1. We define a matrix over Q:

>> A := Dom::Matrix(Dom::Rational)(
[[1, 1/5, 2], [-3/2, 0, 5]]

)

+- -+
| 1, 1/5, 2 |
| |
| -3/2, 0, 5 |
+- -+

and illustrate the three different input formats for linalg::col :

>> linalg::col(A, 2)

+- -+
| 1/5 |
| |
| 0 |
+- -+
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>> linalg::col(A, [2, 1, 3])

-- +- -+ +- -+ +- -+ --
| | 1/5 | | 1 | | 2 | |
| | |, | |, | | |
| | 0 | | -3/2 | | 5 | |
-- +- -+ +- -+ +- -+ --

>> linalg::col(A, 2..3)

-- +- -+ +- -+ --
| | 1/5 | | 2 | |
| | |, | | |
| | 0 | | 5 | |
-- +- -+ +- -+ --

linalg::companion – Companion matrix of a univariate polyno-
mial

linalg::companion(p) returns the companion matrix associated with the
polynomial p.

Call(s):

A linalg::companion(p <, x >)

Parameters:
p — an univariate polynomial, or a polynomial expression
x — an indeterminate

Return Value: a matrix of the domain Dom::Matrix(R) .

Details:

A p must be monic and of degree one at least.

A If p is a polynomial, i.e., an object of type DOM_POLY, then specifying x
has no effect.

A If p is a polynomial, then the component ring of the returned matrix is the
coefficient ring of p, except in two cases for built-in coefficient rings: if
the coefficient ring of p is Expr then the domain Dom::ExpressionField()
is the component ring of the companion matrix. If it is IntMod(m) then
the companion matrix is defined over the ring Dom::IntegerMod(m)
(see example 2).
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A If p is a polynomial expression, then the companion matrix is defined
over Dom::ExpressionField() .

A If p is a polynomial expression containing several symbolic indetermi-
nates then x must be specified and distinguishes the indeterminate x
from the other symbolic parameters.

Example 1. We start with the following polynomial expression:

>> delete a0, a1, a2, a3:
p := x^4 + a3*x^3 + a2*x^2 + a1*x + a0

4 2 3
a0 + x a1 + x + x a2 + x a3

To compute the companion matrix of p with respect to x we must specify
the second parameter x, because the expression p contains the indeterminates
a0, a1, a2, a3 and x:

>> linalg::companion(p)

Error: multivariate expression [linalg::companion]

>> linalg::companion(p, x)

+- -+
| 0, 0, 0, -a0 |
| |
| 1, 0, 0, -a1 |
| |
| 0, 1, 0, -a2 |
| |
| 0, 0, 1, -a3 |
+- -+

Of course, we can compute the companion matrix of p with respect to a0 as
well:

>> linalg::companion(p, a0)

+- 4 2 3 -+
| - x a1 - x - x a2 - x a3 |
+- -+

The following fails with an error message, because the polynomial p is not
monic with respect to a1:

>> linalg::companion(p, a1)

Error: polynomial is not monic [linalg::companion]
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Example 2. If we enter a polynomial over the built-in coefficient domain Expr ,
then the companion matrix is defined over the standard component ring for
matrices (the domain Dom::ExpressionField() ):

>> C := linalg::companion(poly(x^2 + 10*x + PI, [x]))

+- -+
| 0, -PI |
| |
| 1, -10 |
+- -+

>> domtype(C)

Dom::Matrix()

If we define a polynomial over the build-in coefficient domain IntMod(m) ,
then the companion matrix is defined over the corresponding component ring
Dom::IntegerMod(m) , as shown in the next example:

>> p := poly(x^2 + 10*x + 7, [x], IntMod(3))

2
poly(x + x + 1, [x], IntMod(3))

>> C := linalg::companion(p)

+- -+
| 0 mod 3, 2 mod 3 |
| |
| 1 mod 3, 2 mod 3 |
+- -+

>> domtype(C)

Dom::Matrix(Dom::IntegerMod(3))

Background:

A The companion matrix of the polynomial xn + an1 xn−1 + . . .+ a1x + a0 is
the matrix:

C =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
...

...
0 0 · · · 0 −an−1
0 0 · · · 1 −an

 .

A The companion matrix of a univariate polynomial p of degree n is an
n× n matrix C with pC = p, where pC is the characteristic polynomial of
C.
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Changes:

A linalg::companion is a new function.

linalg::concatMatrix – join matrices horizontally

linalg::concatMatrix(A, B1, <B2, ... >) returns the matrix formed
by joining the matrices A, B1, B2, . . . horizontally.

Call(s):

A linalg::concatMatrix(A, B1 <, B2, ... >)

Parameters:

A, B1, B2, ... — matrices of a domain of category Cat::Matrix

Return Value: a matrix of the domain type Dom::Matrix(R) , where R is the
component ring of A.

Related Functions: linalg::stackMatrix

Details:

A The matrices B1, B2, ... are converted into the matrix domain Dom::Matrix(R) ,
where R is the component ring of A.

An error message is raised if one of these conversions fails, or if the ma-
trices do not have the same number of rows as the matrix A.

A A short form of linalg::concatMatrix is available through the dot
operator . , i.e., instead of linalg::concatMatrix(A, B) one may
use the short form A . B .

Example 1. We define the matrix:

>> A := matrix([[sin(x), x], [-x, cos(x)]])

+- -+
| sin(x), x |
| |
| -x, cos(x) |
+- -+

and append the 2× 2 identity matrix to the right of A:

>> I2 := matrix::identity(2):
linalg::concatMatrix(A, I2)
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+- -+
| sin(x), x, 1, 0 |
| |
| -x, cos(x), 0, 1 |
+- -+

The short form for this operation is:

>> A . I2

+- -+
| sin(x), x, 1, 0 |
| |
| -x, cos(x), 0, 1 |
+- -+

Example 2. We define a matrix from the ring of 2× 2 square matrices:

>> SqMatQ := Dom::SquareMatrix(2, Dom::Rational):
A := SqMatQ([[1, 2], [3, 4]])

+- -+
| 1, 2 |
| |
| 3, 4 |
+- -+

Note the following operation:

>> AA := A . A

+- -+
| 1, 2, 1, 2 |
| |
| 3, 4, 3, 4 |
+- -+

returns a matrix of a different domain type as the input matrix:

>> domtype(AA)

Dom::Matrix(Dom::Rational)

linalg::crossProduct – cross product of three-dimensional vec-
tors
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linalg::crossProduct(u, v) computes the cross product of the three-
dimensional vectors ~u and ~v. This is the vector

~u× ~v =

 u2v3− u3v2
u3v1− u1v3
u1v2− u2v1

 .

Call(s):

A linalg::crossProduct(u, v)

Parameters:
u, v — 3-dimensional vectors, i.e., either two 3× 1 or two 1× 3

matrices of a domain of category Cat::Matrix

Return Value: a vector of the same domain type as u.

Related Functions: linalg::scalarProduct

Details:

A The vectors must be defined over the same component ring.

Example 1. We define two vectors:

>> a := matrix([[1, 2, 3]]); b := matrix([[-1, 0, 1]])

+- -+
| 1, 2, 3 |
+- -+

+- -+
| -1, 0, 1 |
+- -+

The cross product of these two vectors is a vector ~c which is orthogonal to ~a
and~b:

>> c:= linalg::crossProduct(a, b)

+- -+
| 2, -4, 2 |
+- -+

>> linalg::scalarProduct(a, c), linalg::scalarProduct(b, c)

0, 0
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linalg::curl – curl of a vector field

linalg::curl(v, x) computes the curl of the three-dimensional vector
field ~v with respect to the three-dimensional vector ~x in Cartesian coordinates.
This is the vector field

curl(~v) =


∂
∂x2

v3− ∂
∂x3

v2
∂
∂x3

v1− ∂
∂x1

v3
∂
∂x1

v2− ∂
∂x2

v1

 .

Call(s):

A linalg::curl(v, x)

A linalg::curl(v, x, ogCoord)

Parameters:
v — a list of three arithmetical expressions, or a 3-dimensional

vector (i.e., a 3× 1 or 1× 3 matrix of a domain of category
Cat::Matrix )

x — a list of three (indexed) identifiers
ogCoord — a list, or a name (identifier) of a predefined coordinate

system

Return Value: a column vector.

Related Functions: linalg::divergence , linalg::grad ,
linalg::ogCoordTab

Details:

A linalg::curl(v, x, ogCoord) computes the curl of v with respect
to x in the orthogonally curvilinear coordinate system specified by og-
Coord .

The scaling factors of the specified coordinate system must be the value
of the index ogCoord of the table linalg::ogCoordTab (see example
2).

A If ogCoord is given as a list then the curl of v is computed in the orthog-
onal curvilinear coordinates, whose scaling factors are given in ogCoord
(see example 3).

A If v is a vector then the component ring of v must be a field (i.e., a domain
of category Cat::Field ) for which differentiation with respect to x is
defined.
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A linalg::curl returns a vector of the domain Dom::Matrix() if v is
given as a list of arithmetical expressions.

Example 1. We compute the curl of the vector field ~v(x, y, z) =
(
xy,2y, z

)
in

Cartesian coordinates:

>> delete x, y, z:
linalg::curl([x*y, 2*y, z], [x, y, z])

+- -+
| 0 |
| |
| 0 |
| |
| -x |
+- -+

Example 2. We compute the curl of the vector field ~v(r, φ, z) = (r, cos(φ), z)
(0 ≤ φ ≤ 2π) in cylindrical coordinates:

>> delete r, phi, z: V := matrix([r, cos(phi), z]):

>> linalg::curl(V, [r, phi, z], Cylindrical)

+- -+
| 0 |
| |
| 0 |
| |
| cos(phi) |
| -------- |
| r |
+- -+

The following relations between Cartesian and cylindrical coordinates hold:

x = r cos(φ), y = r sin(φ), z = z.

Other predefined orthogonal coordinate systems can be found in the table
linalg::ogCoordTab .

Example 3. We want to compute the curl of the vector field ~v(r, θ, φ) =
(
0, r2,0

)
(0 ≤ θ ≤ π,0 ≤ θ ≤ 2π) in spherical coordinates.
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The vectors

~er =

 sin θ cosφ
sin θ sinφ

cos θ

 ,~eθ =

 cos θ cosφ
cos θ sinφ
− sin θ

 ,~eφ =

 − sinφ
cosφ

0


form an orthogonal system in spherical coordinates.

The scaling factors of the corresponding coordinate transformation (see
linalg::ogCoordTab ) are: g1 = |~er| = 1, g2 = |~eθ| = r, g3 = |~eφ| = r sin θ,
which we use in the following example to compute the curl of the above vector
field in spherical coordinates:

>> delete r, theta, phi:
linalg::curl([0, r^2, 0], [r, theta, phi], [1, r, r*sin(theta)])

+- -+
| 0 |
| |
| 0 |
| |
| 3 r |
+- -+

Note that the spherical coordinates are already defined in linalg::ogCoordTab ,
i.e., the last result can also be achieved with the input linalg::curl([0,
r^2, 0], [r, theta, phi], Spherical) .

Changes:

A The result is a vector even if the vector field is given as a list of expres-
sions.

linalg::delCol – delete matrix columns

linalg::delCol(A, c) returns a copy of the matrix A in which the column
with index c is deleted.

Call(s):

A linalg::delCol(A, c)

A linalg::delCol(A, c1..c2)

A linalg::delCol(A, list)
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Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
c — the column index: a positive integer ≤ n
c1..c2 — a range of column indices (positive integers ≤ n)
list — a list of column indices (positive integers ≤ n)

Return Value: a matrix of a domain of category Cat::Matrix(R) , where R
is the component ring of A, or the void object of type DOM_NULL.

Related Functions: linalg::col , linalg::delRow , linalg::row

Details:

A linalg::delCol(A, c1..c2) deletes those columns whose indices
are in the range c1..c2 . If c2 < c1 then the input matrix A is returned.

A linalg::delCol(A, list) deletes those columns whose indices are
contained in list .

A If all columns are deleted then the void object of type DOM_NULLis re-
turned.

Example 1. We define the following matrix:

>> A := matrix([[1, 2, 3, 4], [5, 6, 7, 8]])

+- -+
| 1, 2, 3, 4 |
| |
| 5, 6, 7, 8 |
+- -+

and demonstrate the three different input formats for linalg::delCol :

>> linalg::delCol(A, 2)

+- -+
| 1, 3, 4 |
| |
| 5, 7, 8 |
+- -+

>> linalg::delCol(A, [1, 3])

+- -+
| 2, 4 |
| |
| 6, 8 |
+- -+
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>> linalg::delCol(A, 2..4)

+- -+
| 1 |
| |
| 5 |
+- -+

Example 2. We compute the inverse of the 2× 2 matrix:

>> MatQ := Dom::Matrix(Dom::Rational):
A := MatQ([[3, 2], [5, -4]])

+- -+
| 3, 2 |
| |
| 5, -4 |
+- -+

by appending the 2× 2 identity matrix to the right side of A and applying the
Gauss-Jordan algorithm provided by the function linalg::gaussJordan :

>> B := linalg::gaussJordan(A . MatQ::identity(2))

+- -+
| 1, 0, 2/11, 1/11 |
| |
| 0, 1, 5/22, -3/22 |
+- -+

We get the inverse of A by deleting the first two columns of the matrix B:

>> AI := linalg::delCol(B, 1..2)

+- -+
| 2/11, 1/11 |
| |
| 5/22, -3/22 |
+- -+

Finally, we check the result:

>> A * AI, AI * A

+- -+ +- -+
| 1, 0 | | 1, 0 |
| |, | |
| 0, 1 | | 0, 1 |
+- -+ +- -+

Note: The inverse of A can be computed directly by entering 1/A .
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Changes:

A If all rows are deleted then the void object of type DOM_NULLinstead of
the object NIL is returned.

linalg::delRow – delete matrix rows

linalg::delRow(A, r) returns a copy of the matrix A in which the row
with index r is deleted.

Call(s):

A linalg::delRow(A, r)

A linalg::delRow(A, r1..r2)

A linalg::delRow(A, list)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
r — the row index: a positive integer ≤ m
r1..r2 — a range of row indices (positive integers ≤ m)
list — a list of row indices (positive integers ≤ m)

Return Value: a matrix of a domain of category Cat::Matrix(R) , where R
is the component ring of A, or the void object of type DOM_NULL.

Related Functions: linalg::col , linalg::delCol , linalg::row

Details:

A linalg::delRow(A, r1..r2) deletes those rows whose indices are
in the range r1..r2 . If r2 < r1 then the input matrix A is returned.

A linalg::delRow(A, list) deletes those rows whose indices are con-
tained in list .

A If all rows are deleted then the void object of type DOM_NULLis returned.

Example 1. We define the following matrix:

>> A := matrix([[1, 2], [3, 4], [5, 6], [7, 8]])
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+- -+
| 1, 2 |
| |
| 3, 4 |
| |
| 5, 6 |
| |
| 7, 8 |
+- -+

and illustrate the three different input formats for linalg::delRow :

>> linalg::delRow(A, 2)

+- -+
| 1, 2 |
| |
| 5, 6 |
| |
| 7, 8 |
+- -+

>> linalg::delRow(A, [1, 4])

+- -+
| 3, 4 |
| |
| 5, 6 |
+- -+

>> linalg::delRow(A, 2..4)

+- -+
| 1, 2 |
+- -+

Changes:

A If all rows are deleted then the void object of type DOM_NULLinstead of
the object NIL is returned.

linalg::det – determinant of a matrix

linalg::det(A) computes the determinant of the square matrix A.
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Call(s):

A linalg::det(A)

Parameters:

A — a square matrix of a domain of category Cat::Matrix .

Return Value: an element of the component ring of A.

Related Functions: linalg::gaussElim , linalg::permanent ,
linalg::rank , numeric::det

Details:

A A floating-point approximation of the determinant is computed with
numeric::det , if A is defined over the component ring Dom::Float .
In this case it is recommended to call numeric::det directly for a better
efficiency.

A The component ring of A must be a commutative ring, i.e., a domain of
category Cat::CommutativeRing .

Example 1. We compute the determinant of the following matrix:

>> A := matrix([[a11, a12], [a21, a22]])

+- -+
| a11, a12 |
| |
| a21, a22 |
+- -+

which gives us the well-known formula for the determinant of an arbitrary
2× 2 matrix:

>> linalg::det(A)

a11 a22 - a12 a21

Background:

A For an n× n matrix A =
(
ai j
)

1≤i, j≤n over a commutative ring its determi-
nant is defined as:

det(A) := ∑
σ∈Sn

sign(σ)
n

∏
j=1

aσ( j), j.

(Sn is the symmetric group of all permutations of {1, . . . ,n}.)
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A For a component ring of A that is an integral domain (i.e., a domain
of category Cat::IntegralDomain ) and not defined over the domain
Dom::Float , Gaussian elimination is used to compute the determinant
of A.

For any other commutative ring that is not an integral domain, a modi-
fication of the Berkowitz algorithm is used. Reference: A. Jounaidi: The
Berkowitz Algorithm, Maple and Computing the Characteristic Polynomial in
an Arbitrary Commutative Ring. Equipe de Mathèmatiques de Besancon,
Universitè de Franche - Comtè, 25030 Besancon Cedex, May 1996.

Changes:

A Uses numeric::det for a floating-point approximation of the determi-
nant.

linalg::divergence – divergence of a vector field

linalg::divergence(v, x ...) computes the divergence of the vector
field ~v with respect to ~x in Cartesian coordinates. This is the sum div(~v) =
∑n

i=1
∂
∂xi
~v.

Call(s):

A linalg::divergence(v, x)

A linalg::divergence(v, x, ogCoord)

Parameters:
v — a list of arithmetical expressions, or a vector (i.e., an n× 1

or 1× n matrix of a domain of category Cat::Matrix )
x — a list of (indexed) identifiers
ogCoord — a list, or a name (identifier) of a predefined coordinate

system

Return Value: an arithmetical expression, or an element of the component
ring of v .

Related Functions: linalg::curl , linalg::grad ,
linalg::ogCoordTab

Details:

A In the case of three dimensions, linalg::divergence(v, x, og-
Coord) computes the divergence of the vector field v with respect to x
in the orthogonally curvilinear coordinate system. The scaling factors of
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the specified coordinate system must be the value of the index ogCoord
of the table linalg::ogCoordTab (see example 2).

A If ogCoord is given as a list then the divergence of v is computed in
the orthogonal curvilinear coordinates, whose scaling factors are given
in ogCoord (see example 3).

A If v is a vector then the component ring of v must be a field (i.e., a domain
of category Cat::Field ) for which differentiation with respect to x is
defined.

Example 1. We compute the divergence of the vector field ~v(x, y, z) =
(
x2,2y, z

)
in Cartesian coordinates:

>> delete x, y, z:
v := matrix([x^2, 2*y, z])

+- -+
| 2 |
| x |
| |
| 2 y |
| |
| z |
+- -+

>> linalg::divergence(v, [x, y, z])

2 x + 3

Example 2. We compute the divergence of the vector field ~v(r, φ, z) = (r, cos(φ), z)
(0 ≤ θ ≤ 2π) in cylindrical coordinates:

>> delete r, phi, z:
linalg::divergence([r, sin(phi), z], [r, phi, z], Cylindrical)

3 r + cos(phi)
--------------

r

The following relations between Cartesian and cylindrical coordinates hold:

x = r cos(φ), y = r sin(φ), z = z.

Other predefined orthogonal coordinate systems can be found in the table
linalg::ogCoordTab .
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Example 3. We want to compute the divergence of the vector field ~v(r, θ, φ) =(
r2,0,0

)
(0 ≤ θ ≤ π,0 ≤ θ ≤ 2π) in spherical coordinates.

The vectors

~er =

 sin θ cosφ
sin θ sinφ

cos θ

 ,~eθ =

 cos θ cosφ
cos θ sinφ
− sin θ

 ,~eφ =

 − sinφ
cosφ

0


form an orthogonal system in spherical coordinates.

The scaling factors of the corresponding coordinate transformation (see
linalg::ogCoordTab ) are: g1 = |~er| = 1, g2 = |~eθ| = r, g3 = |~eφ| = r sin θ,
which we use in the following example to compute the divergence of the above
vector field in spherical coordinates:

>> delete r, theta, phi:
linalg::divergence(

[r^2, 0, 0], [r, theta, phi], [1, r, r*sin(theta)]
)

4 r

Note that the spherical coordinates are already defined in linalg::ogCoordTab ,
i.e., the last result can also be achieved with the input linalg::divergence([r^2,
0, 0], [r, theta, phi], Spherical) .

Changes:

A The result is a vector even if the vector field is given as a list of expres-
sions.

linalg::eigenvalues – eigenvalues of a matrix

linalg::eigenvalues(A) returns a list of the eigenvalues of the matrix A.

Call(s):

A linalg::eigenvalues(A <, Multiple >)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Options:

Multiple — In addition, the algebraic multiplicity of each eigenvalue
of A is returned.
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Return Value: a set of the eigenvalues of A, or a list of inner lists when the
option Multiple is given (see below).

Related Functions: numeric::eigenvalues , linalg::charpoly ,
linalg::eigenvectors , solve

Details:

A A floating-point approximation of the eigenvalues is computed with numeric::eigenvalues ,
if the matrix A is defined over the component ring Dom::Float (see ex-
ample 1). In this case it is recommended to call numeric::eigenvalues
directly for a better efficiency.

A The eigenvalues are obtained by computing the zeros of the characteris-
tic polynomial of A. The solver solve must be able to compute the roots
of the characteristic polynomial over the component ring of A.

Option <Multiple >:

A Returns a list of sublists, where each sublist contains an eigenvalue of
A and its algebraic multiplicity. Note that due to rounding errors, this
may lead to wrong results in cases where multiple eigenvalues exist and
numeric::eigenvalues is used.

Example 1. We compute the eigenvalues of the matrix

A =

 1 4 2
1 4 2
2 5 3

 :

>> A := matrix([[1, 4, 2], [1, 4, 2], [2, 5, 3]]):
linalg::eigenvalues(A)

1/2 1/2
{0, 15 + 4, 4 - 15 }

If we consider the matrix over the domain Dom::Float , then the call of
linalg::eigenvalues(A) results in a numerical computation of the eigen-
values of A via numeric::eigenvalues :

>> B := Dom::Matrix(Dom::Float)(A): linalg::eigenvalues(B)

{9.622294281e-19, 0.1270166538, 7.872983346}
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Example 2. With the option Multiple we get the information about the al-
gebraic multiplicity of each eigenvalue:

>> C := Dom::Matrix(Dom::Rational)(4, 4, [[-3], [0, 6]])

+- -+
| -3, 0, 0, 0 |
| |
| 0, 6, 0, 0 |
| |
| 0, 0, 0, 0 |
| |
| 0, 0, 0, 0 |
+- -+

>> linalg::eigenvalues(C, Multiple)

[[6, 1], [0, 2], [-3, 1]]

Changes:

A linalg::eigenvalues used to be linalg::eigenValues .

A Uses numeric::eigenvalues for a floating-point approximation of
the eigenvalues.

linalg::eigenvectors – eigenvectors of a matrix

linalg::eigenvectors(A) computes the eigenvalues and eigenvectors of
the matrix A.

Call(s):

A linalg::eigenvectors(A)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Return Value: a list of sublists, where each sublist consists of an eigenvalue λ
of A, its algebraic multiplicity and a basis for the eigenspace of λ. If a basis of
an eigenspace cannot be computed, then FAIL is returned.

Related Functions: numeric::eigenvectors , linalg::eigenvalues ,
linalg::nullspace
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Details:

A A floating-point approximation of the eigenvalues and the eigenvectors
is computed using numeric::eigenvectors , if the matrix A is de-
fined over the component ring Dom::Float (see example 1). In this
case it is recommended to call numeric::eigenvalues directly for a
better efficiency.

A linalg::eigenvectors works as follows: For each eigenvalue λ of
the n× n matrix A a basis for the kernel of (λIn − A), the eigenspace of
A with respect to the eigenvalue λ, is computed using the Gauss-Jordan
algorithm (see linalg::gaussJordan ). Here, In denotes the n × n
identity matrix.

A The eigenvectors are of the domain Dom::Matrix(R) , where R is the
component ring of A.

A The component ring of the matrix A must be a field, i.e., a domain of
category Cat::Field , for which the solver solve is able to compute
the zeros of a polynomial.

A It can happen that a basis for the eigenspace of A with respect to a cer-
tain eigenvalue cannot be computed (e.g., if the component ring does
not have a canonical representation of the zero element). In this case
linalg::eigenvectors answers with a warning message and returns
FAIL .

Example 1. We compute the eigenvalues and the eigenvectors of the matrix

A =

 1 −3 3
6 −10 6
6 6 4

 :

>> A := Dom::Matrix(Dom::Rational)(
[[1, -3, 3], [6, -10, 6], [6, 6, 4]]

):
linalg::eigenvectors(A)

-- -- -- +- -+ -- -- -- -- +- -+ --
--

| | | | 1/4 | | | | | | -1 | | |
| | | | | | | | | | | | |
| | 8, 1, | | 5/12 | | |, | -2, 1, | | 0 | | |,
| | | | | | | | | | | | |
| | | | 1 | | | | | | 1 | | |
-- -- -- +- -+ -- -- -- -- +- -+ --

--
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-- -- +- -+ -- -- --
| | | -7/10 | | | |
| | | | | | |
| -11, 1, | | -9/5 | | | |
| | | | | | |
| | | 1 | | | |
-- -- +- -+ -- -- --

If we consider the matrix over the domain Dom::Float then the call of
linalg::eigenvectors(A) results in a numerical computation of the eigen-
values and the eigenvectors of A via the function numeric::eigenvectors :

>> B := Dom::Matrix(Dom::Float)(A):
linalg::eigenvectors(B)

-- -- -- +- -+ -- --
| | | | -0.3218603429 | | |
| | | | | | |
| | -11.0, 1, | | -0.8276408818 | | |,
| | | | | | |
| | | | 0.4598004899 | | |
-- -- -- +- -+ -- --

-- -- +- -+ -- --
| | | -0.7071067812 | | |
| | | | | |
| -2.0, 1, | | -1.518743801e-14 | | |,
| | | | | |
| | | 0.7071067812 | | |
-- -- +- -+ -- --

-- -- +- -+ -- -- --
| | | 0.2248595067 | | | |
| | | | | | |
| 8.0, 1, | | 0.3747658445 | | | |
| | | | | | |
| | | 0.8994380268 | | | |
-- -- +- -+ -- -- --

Changes:

A linalg::eigenvectors used to be linalg::eigenVectors .

A Uses numeric::eigenvectors for a floating-point approximation for
the eigenvalues and eigenvectors.
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linalg::expr2Matrix – construct a matrix from equations

linalg::expr2Matrix(eqns, vars) constructs the extended coefficient
matrix (A,~b) of the system of m linear equations in eqns with respect to the n
indeterminates in vars . The vector~b is the right-hand side of this system.

Call(s):

A linalg::expr2Matrix(eqns <, vars, R >)

A linalg::expr2Matrix(eqns <, vars, R >, Include )

Parameters:
eqns — the system of linear equations, i.e. a set or list of expressions

of type "_equal"
vars — a set or list of indeterminates
R — a commutative ring, i.e., a domain of category

Cat::CommutativeRing

Options:

Include — Appends the negative of the right-hand side vector~b to
the coefficient matrix A of the given system of linear
equations. The result is the m× (n + 1) matrix (A,−~b).

Return Value: an m× (n + 1) matrix of the domain Dom::Matrix(R) .

Related Functions: linalg::matlinsolve , linsolve , indets

Details:

A linalg::expr2Matrix returns the extended coefficient matrix M =
(A,~b). The right-hand side vector ~b can be extracted from the matrix M
by linalg::col(M, n + 1) .

A The coefficient matrix A can be extracted by linalg::delCol(M, n
+ 1) .

A Arithmetical expressions in eqns are considered as equations with right
hand-sides zero.

A If no variables are given, then the indeterminates of the equations are de-
termined with the function indets and the option PolyExpr , i.e., the
left-hand sides of the equations are considered as polynomial expres-
sions.
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A If no component ring Ris given then the standard domain Dom::ExpressionField
is chosen as the component ring of the extended coefficient matrix.

A The coefficients of the linear equations are converted into elements of the
component ring R. An error message is returned if this is not possible.

Example 1. The extended coefficient matrix of the system x + y + z = 1,2y−
z + 5 = 0 of linear equations in the variables x, y, z is the following 2×4 matrix:

>> delete x, y, z:
Ab := linalg::expr2Matrix(

[x + y + z = 1, 2*y - z + 5], [x, y, z], Dom::Real
)

+- -+
| 1, 1, 1, 1 |
| |
| 0, 2, -1, -5 |
+- -+

We use linalg::matlinsolve to compute the general solution of this sys-
tem:

>> linalg::matlinsolve(Ab)

-- +- -+ -- +- -+ -- --
| | 7/2 | | | -3/2 | | |
| | | | | | | |
| | -5/2 |, | | 1/2 | | |
| | | | | | | |
| | 0 | | | 1 | | |
-- +- -+ -- +- -+ -- --

The coefficient matrix or the right-hand side vector can be be extracted from
the matrix Ab in the following way:

>> A := linalg::delCol(Ab, 4); b := linalg::col(Ab, 4)

+- -+
| 1, 1, 1 |
| |
| 0, 2, -1 |
+- -+

+- -+
| 1 |
| |
| -5 |
+- -+
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Example 2. The following two inputs lead to different linear systems:

>> delete x, y, z:
linalg::expr2Matrix([x + y + z = 1, 2*y - z + 5 = x]),
linalg::expr2Matrix([x + y + z = 1, 2*y - z + 5 = x], [x, y])

+- -+ +- -+
| 1, 1, 1, 1 | | 1, 1, - z + 1 |
| |, | |
| -1, 2, -1, -5 | | -1, 2, z - 5 |
+- -+ +- -+

Example 3. Note the difference between calling linalg::expr2Matrix with
and without option Include :

>> delete x, y:
linalg::expr2Matrix([x + y = 1, 2*x - y = 3], [x, y])

+- -+
| 1, 1, 1 |
| |
| 2, -1, 3 |
+- -+

>> linalg::expr2Matrix([x + y = 1, 2*x - y = 3], [x, y], Include)

+- -+
| 1, 1, -1 |
| |
| 2, -1, -3 |
+- -+

Changes:

A The result of linalg::expr2Matrix is the extended coefficient matrix
(A,~b) of a linear system instead of a list of the coefficient matrix A and
the right-hand side vector~b.

A Due to the changes of the return value the former option Append is ob-
solete and therefore no longer valid.

linalg::factorCholesky – the Cholesky decomposition of a ma-
trix
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linalg::factorCholesky(A) computes the Cholesky decomposition of a
symmetric and positive definite matrix A and returns a lower triangular ma-
trix R such that RRt = A.

Call(s):

A linalg::factorCholesky(A <, NoCheck>)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Options:

NoCheck — It is not checked whether A is symmetric and positive
definite.

Return Value: a matrix of the same domain type as A, or the value FAIL .

Side Effects: Properties of identifiers are taken into account.

Related Functions: linalg::isHermitean , linalg::isPosDef

Details:

A The system checks whether the matrix A is symmetric and positive defi-
nite, and returns an error message if this is not the case.

A The Option NoCheck suppresses such errors (see example 2).

A The component ring of A must be a field, i.e., a domain of category
Cat::Field .

A linalg::factorCholesky returns FAIL if it fails to compute the ma-
trix R over the component ring of A (the algorithm requires the compu-
tation of square roots of some elements in R).

Example 1. We compute the Cholesky decomposition of the following matrix:

>> S := Dom::Matrix(Dom::Rational)(
[[4, -2, 4, 2], [-2, 10, -2, -7], [4, -2, 8, 4], [2, -

7, 4, 7]]
)
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+- -+
| 4, -2, 4, 2 |
| |
| -2, 10, -2, -7 |
| |
| 4, -2, 8, 4 |
| |
| 2, -7, 4, 7 |
+- -+

>> R := linalg::factorCholesky(S)

+- -+
| 2, 0, 0, 0 |
| |
| -1, 3, 0, 0 |
| |
| 2, 0, 2, 0 |
| |
| 1, -2, 1, 1 |
+- -+

and check the result:

>> R * linalg::transpose(R) = S

+- -+ +- -+
| 4, -2, 4, 2 | | 4, -2, 4, 2 |
| | | |
| -2, 10, -2, -7 | | -2, 10, -2, -7 |
| | = | |
| 4, -2, 8, 4 | | 4, -2, 8, 4 |
| | | |
| 2, -7, 4, 7 | | 2, -7, 4, 7 |
+- -+ +- -+

Example 2. The option NoCheck can be helpful for matrices with symbolic
components. For example, if we define the following matrix:

>> delete a, b:
H := matrix([[a, b], [b, a]])

+- -+
| a, b |
| |
| b, a |
+- -+
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and have in mind that a and b are real, then linalg::factorCholesky is
not able to check H to be positive definite:

>> linalg::factorCholesky(H)

Error: cannot check whether matrix component is positive \
[linalg::factorCholesky]

With the option NoCheck such errors are suppressed and linalg::factorCholesky
continues the computation:

>> linalg::factorCholesky(H, NoCheck)

+- -+
| 1/2 |
| a , 0 |
| |
| / 2 \1/2 |
| b | b | |
| ----, | a - -- | |
| 1/2 \ a / |
| a |
+- -+

Of course, this result is only valid if a > 0 and |b| < a.

Background:

A The Cholesky decomposition of a positive definite n× n matrix A is a
decomposition of A in a product A = RRt such that R is lower triangular
and has positive (real) entries on the main diagonal.

R is called the “Cholesky factor” of A.

A If R =
(
ri j
)

1≤i, j≤n is the Cholesky factor of A, then det(A) =
(
∏n

i=1 rii
)2
.

Changes:

A linalg::factorCholesky used to be linalg::cholesky .

A The new option NoCheck was added.

A The option isPositiveDefinite is no longer available. Use the func-
tion linalg::isPosDef instead.

linalg::factorLU – LU-decomposition of a matrix
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linalg::factorLU(A) computes an LU-decomposition of an m× n matrix
A, i.e., a decomposition of the A into an m×m lower triangular matrix L and
an n×m upper triangular matrix U such that PA = LU, where P is a permuta-
tion matrix.

Call(s):

A linalg::factorLU(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: a list [L, U, pivindex] with the two matrices L and U of
the domain Dom::Matrix(R) and a list pivindex of positive integers. R is
the component ring of A.

Related Functions: linalg::factorQR , linalg::factorCholesky ,
linalg::inverseLU , linalg::matlinsolveLU , lllint ,
numeric::factorLU

Details:

A The diagonal entries of the lower triangular matrix L are equal to one
(Doolittle-decomposition). The diagonal entries of U are the pivot ele-
ments used during the computation.

The matrices L and U are unique.

A pivindex is a list [r[1], r[2], ...] representing the row exchanges
of A in the pivoting steps, i.e., B = PA = LU, where bi j = ar[i], j.

A A floating-point approximation of the decomposition is computed using
numeric::factorLU , if the matrix A is defined over the component
ring Dom::Float . In this case it is recommended to call numeric::factorLU
directly for a better efficiency.

A The algorithm also works for singular A. In this case either L or U is
singular.

A L and U are nonsingular if and only if A is nonsingular.

A The component ring of the matrix A must be a field, i.e., a domain of
category Cat::Field .
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Example 1. We compute an LU-decomposition of the real matrix:

>> A := Dom::Matrix(Dom::Real)(
[[2, -3, -1], [1, 1, -1], [0, 1, -1]]

)

+- -+
| 2, -3, -1 |
| |
| 1, 1, -1 |
| |
| 0, 1, -1 |
+- -+

>> [L, U, pivlist] := linalg::factorLU(A)

-- +- -+ +- -+ -
-

| | 1, 0, 0 | | 2, -3, -1 | |
| | | | | |
| | 1/2, 1, 0 |, | 0, 5/2, -1/2 |, [1, 2, 3] |
| | | | | |
| | 0, 2/5, 1 | | 0, 0, -4/5 | |
-- +- -+ +- -+ -

-

The lower triangular matrix L is the first element und the upper triangular
matrix U is the second element of the list LU. The product of these two matrices
is equal to the input matrix A:

>> L * U

+- -+
| 2, -3, -1 |
| |
| 1, 1, -1 |
| |
| 0, 1, -1 |
+- -+

Example 2. An LU-decomposition of the 3× 2 matrix:

>> A := Dom::Matrix(Dom::Real)([[2, -3], [1, 2], [2, 3]])
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+- -+
| 2, -3 |
| |
| 1, 2 |
| |
| 2, 3 |
+- -+

gives a 3× 3 lower triangular matrix and a 2× 3 upper triangular matrix:

>> [L, U, pivlist] := linalg::factorLU(A)

-- +- -+ +- -+ --
| | 1, 0, 0 | | 2, -3 | |
| | | | | |
| | 1/2, 1, 0 |, | 0, 7/2 |, [1, 2, 3] |
| | | | | |
| | 1, 12/7, 1 | | 0, 0 | |
-- +- -+ +- -+ --

>> L * U

+- -+
| 2, -3 |
| |
| 1, 2 |
| |
| 2, 3 |
+- -+

Example 3. To compute the LU-decomposition of the matrix:

>> A := matrix([[1, 2, -1], [0, 0, 3], [0, 2, -1]])

+- -+
| 1, 2, -1 |
| |
| 0, 0, 3 |
| |
| 0, 2, -1 |
+- -+

one row interchange is needed, and we therefore get a non-trivial permutation
list:

>> [L, U, pivlist] := linalg::factorLU(A)
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-- +- -+ +- -+ --
| | 1, 0, 0 | | 1, 2, -1 | |
| | | | | |
| | 0, 1, 0 |, | 0, 2, -1 |, [1, 3, 2] |
| | | | | |
| | 0, 0, 1 | | 0, 0, 3 | |
-- +- -+ +- -+ --

The corresponding permutation matrix is the following:

>> P := linalg::swapRow(matrix::identity(3), 3, 2)

+- -+
| 1, 0, 0 |
| |
| 0, 0, 1 |
| |
| 0, 1, 0 |
+- -+

Hence, we have a decomposition of A into the product of the three matrices
P−1, L and U as follows:

>> P^(-1) * L * U

+- -+
| 1, 2, -1 |
| |
| 0, 0, 3 |
| |
| 0, 2, -1 |
+- -+

Example 4. You may compute an LU-decomposition of a matrix with sym-
bolic components, such as:

>> delete a, b, c, d:
A := matrix([[a, b], [c, d]])

+- -+
| a, b |
| |
| c, d |
+- -+

The diagonal entries of the matrix U are the pivot elements used during the
computation. They must be non-zero, if the inverse of U is needed:
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>> [L, U, pivlist] := linalg::factorLU(A)

-- +- -+ +- -+ --
| | 1, 0 | | a, b | |
| | | | | |
| | c |, | b c |, [1, 2] |
| | -, 1 | | 0, d - --- | |
| | a | | a | |
-- +- -+ +- -+ --

For example, if we use this decomposition to solve the linear system A~x =~b
for arbitrary vectors ~b = (b1, b2)t, then the following result is only correct for
a 6= 0 and d− bc

a 6= 0:

>> delete b1, b2:
linalg::matlinsolveLU(L, U, matrix([b1, b2]))

+- -+
| / c b1 \ |
| b | b2 - ---- | |
| \ a / |
| b1 - --------------- |
| b c |
| d - --- |
| a |
| -------------------- |
| a |
| |
| c b1 |
| b2 - ---- |
| a |
| --------- |
| b c |
| d - --- |
| a |
+- -+

Background:

A The following algorithm for solving the system A~x =~b with a nonsingu-
lar matrix A uses LU-decomposition:

1. Compute a LU-decomposition of A: A = LU.

2. Solve ~y = L−1~b by forward substitution.

3. Solve ~x = R−1~y by backward substitution.
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A The LU-decomposition of a matrix A is useful for solving several systems
of linear equations A~x =~b with the same coefficient matrix A and several
right-hand side vectors ~b, because then step one of the algorithm above
needs to be done only once.

Changes:

A linalg::factorLU is a new function.

linalg::factorQR – QR-decomposition of a matrix

linalg::factorQR(A) computes an QR-decomposition of an m× n matrix
A, i.e., a decomposition of A into an n × n unitary matrix Q and an n × m
upper triangular matrix R such that QR = A.

Call(s):

A linalg::factorQR(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: a list [Q, R] of the two matrices Q and R (of the same domain
type as A), or the value FAIL .

Related Functions: linalg::factorLU , linalg::factorCholesky ,
lllint , numeric::factorQR

Details:

A linalg::factorQR uses Gram-Schmidt orthonormalization to com-
pute the decomposition.

A For a singular or non-square matrix A the QR-decomposition of A is not
unique.

A The columns of Q form an orthonormal basis with respect to the scalar
product of two vectors, defined by linalg::scalarProduct , and the
2-norm of two vectors (see the method "norm" of the domain construc-
tor Dom::Matrix ).

A If the component ring of A does not define the method "conjugate" ,
then the factor Q is orthogonal instead of unitary.

A If the columns of A cannot be orthonormalized then FAIL is returned.
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A If A is a matrix over the domain Dom::Float and the computations are
based on the standard scalar product, then the use of the correspond-
ing function from the numeric library (numeric::factorQR ) is recom-
mended.

A Even if A is defined over the real or the complex numbers the call of
numeric::factorQR with the option Symbolic is recommended for
better efficiency.

A The component ring of the matrix A must be a field, i.e., a domain of
category Cat::Field .

Example 1. We compute the QR-decomposition of a real matrix:

>> A := Dom::Matrix(Dom::Real)(
[[2, -3, -1], [1, 1, -1], [0, 1, -1]]

)

+- -+
| 2, -3, -1 |
| |
| 1, 1, -1 |
| |
| 0, 1, -1 |
+- -+

>> QR := linalg::factorQR(A)

-- +- -+
| | 1/2 1/2 1/2 1/2 |
| | 2 5 6 8 15 |
| | ------, - ----, - ---------- |
| | 5 6 60 |
| | |
| | 1/2 1/2 1/2 1/2 |
| | 5 6 8 15 |
| | ----, ----, ---------- |,
| | 5 3 30 |
| | |
| | 1/2 1/2 1/2 |
| | 6 8 15 |
| | 0, ----, - ---------- |
| | 6 12 |
-- +- -+

+- -+ --
| 1/2 | |
| 1/2 1/2 3 5 | |
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| 5 , - 5 , - ------ | |
| 5 | |
| | |
| 1/2 | |
| 1/2 6 | |
| 0, 6 , - ---- | |
| 3 | |
| | |
| 1/2 1/2 | |
| 8 15 | |
| 0, 0, ---------- | |
| 15 | |
+- -+ --

The orthogonal matrix Q is the first element und the upper triangular ma-
trix R is the second element of the list QR. The product of these two matrices is
equal to the input matrix A:

>> QR[1] * QR[2]

+- -+
| 2, -3, -1 |
| |
| 1, 1, -1 |
| |
| 0, 1, -1 |
+- -+

Example 2. The QR-decomposition of the 3× 2 matrix:

>> B := Dom::Matrix(Dom::Real)(
[[2, -3], [1, 2], [2, 3]]

)

+- -+
| 2, -3 |
| |
| 1, 2 |
| |
| 2, 3 |
+- -+

yields a 3× 3 orthogonal matrix and a 3× 2 upper triangular matrix:

>> QR := linalg::factorQR(B)
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-- +- -+ -
-

| | 1/2 1/2 | |
| | 31 194 194 | |
| | 2/3, - ---------, ------ | +- -+ |
| | 582 194 | | 3, 2/3 | |
| | | | | |
| | 1/2 1/2 | | 1/2 | |
| | 8 194 6 194 | | 194 | |
| | 1/3, --------, -------- |, | 0, ------ | |
| | 291 97 | | 3 | |
| | | | | |
| | 1/2 1/2 | | 0, 0 | |
| | 23 194 7 194 | +- -+ |
| | 2/3, ---------, - -------- | |
| | 582 194 | |
-- +- -+ -

-

>> QR[1] * QR[2]

+- -+
| 2, -3 |
| |
| 1, 2 |
| |
| 2, 3 |
+- -+

For this example we may call numeric::factorQR(B, Symbolic) in-
stead, which in general is faster than linalg::factorQR :

>> QR := numeric::factorQR(B, Symbolic)

-- +- -+ -
-

| | 1/2 1/2 | |
| | 31 194 194 | |
| | 2/3, - ---------, ------ | +- -+ |
| | 582 194 | | 3, 2/3 | |
| | | | | |
| | 1/2 1/2 | | 1/2 | |
| | 8 194 6 194 | | 194 | |
| | 1/3, --------, -------- |, | 0, ------ | |
| | 291 97 | | 3 | |
| | | | | |
| | 1/2 1/2 | | 0, 0 | |
| | 23 194 7 194 | +- -+ |
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| | 2/3, ---------, - -------- | |
| | 582 194 | |
-- +- -+ -

-

Background:

A The QR-decomposition can be used to generate a least square solution to
an overdetermined system of linear equations. If A~x =~b, then R~x = Qt~b
can be solved via backward substitution.

Changes:

A linalg::factorQR was extended to handle singular as well as non-
square matrices.

linalg::frobeniusForm – Frobenius form of a matrix

linalg::frobeniusForm(A) returns the Frobenius form of the matrix A,
also called the Rational Canonical form of A.

Call(s):

A linalg::frobeniusForm(A <, All >)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Options:

All — returns the list [R, P] with the Frobenius form R of A and a
transformation matrix P such that A = PRP−1.

Return Value: a matrix of the same domain type as A, or the list [R, P] when
the option All is given.

Related Functions: linalg::jordanForm , linalg::hermiteForm ,
linalg::smithForm , linalg::minpoly

Details:

A linalg::frobeniusForm(A, All ) computes the Frobenius form R
of A and a transformation matrix P such that PRP−1.
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A The Frobenius form as computed by linalg::frobeniusForm is unique
(see below).

A The component ring of A must be a field, i.e., a domain of category
Cat::Field .

Example 1. The Frobenius form of the following matrix over C:

>> A := Dom::Matrix(Dom::Complex)(
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

is the matrix:

>> R := linalg::frobeniusForm(A)

+- -+
| 0, 0, 0 |
| |
| 1, 0, 18 |
| |
| 0, 1, 15 |
+- -+

The transformation matrix P can be selected from the list [R, P] , which
is the result of linalg::frobeniusForm with option All :

>> P := linalg::frobeniusForm(A, All)[2]

+- -+
| 1, 1, 30 |
| |
| 0, 4, 66 |
| |
| 0, 7, 102 |
+- -+

We check the result:

>> P * R * P^(-1)
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+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

Background:

A The Frobenius form of a square matrix A is the matrix

R =


R1 0
·
·
·

0 Rr

 ,
where R1, . . . ,Rr are known as companion matrices and have the form:

Ri =


0 −a0
1 ·
· ·

1 0 −ani−1

 , i = 1, . . . , r.

In the last column of the companion matrix Ri, you see the coefficients
of its minimal polynomial in ascending order, i.e., the polynomial mi :=
Xni + ani−1Xni−1 + . . .+ a1X + a0 is the minimal polynomial of the matrix
Ri.

For these polynomials the following holds: mi divides mi+1 for i = 1, . . . , r−
1, and mr is the minimal polynomial of A.

The Frobenius form defined in this way is unique.

A Reference: P. Ozello: Calcul exact des formes de Jordan et de Frobenius d’une
matrice, pp. 30–43. Thèse de l’Universite Scientifique Technologique et
Medicale de Grenoble, 1987

Changes:

A linalg::frobeniusForm is a new function.

linalg::gaussElim – Gaussian elimination

linalg::gaussElim(A) performs Gaussian elimination on the matrix A to
reduce A to an upper row echelon form.
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Call(s):

A linalg::gaussElim(A <, All >)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Options:

All — additionally returns the rank and the determinant of A (if A is a
square) as well as the characteristic column indices of the
matrix in row echelon form.

Return Value: a matrix of the same domain type as A, or the list [T, rank(A),
det(A), {j1,...,jr}] when the option All is given (see below).

Related Functions: linalg::gaussJordan , lllint

Details:

A A row echelon form of A returned by linalg::gaussElim is not unique.
See linalg::gaussJordan for computing the reduced row echelon form.

A The component ring R of A must be an integral domain, i.e., a domain of
category Cat::IntegralDomain .

A If R is a field, i.e., a domain of category Cat::Field , ordinary Gaussian
elimination is used. Otherwise, linalg::gaussElim applies fraction-
free Gaussian elimination to A.

A Refer to the help page of Dom::Matrix for details about the computa-
tion strategy of linalg::gaussElim .

Option <All >:

A Returns a list
[
T, rank(A),det(A),{ j1, . . . , jr}

]
where T is a row echelon

form of A and { j1, . . . , jr} is the set of characteristic column indices of T.

If A is not square, then the value FAIL is given instead of det(A).

A linalg::gaussElim serves as an interface function for the method
"gaussElim" of the matrix domain of A, i.e., one may call A::dom::gaussElim(A)
directly instead of linalg::gaussElim(A, All)

54



Example 1. We apply Gaussian elimination to the following matrix:

>> A := Dom::Matrix(Dom::Rational)(
[[1, 2, 3, 4], [-1, 0, 1, 0], [3, 5, 6, 9]]

)

+- -+
| 1, 2, 3, 4 |
| |
| -1, 0, 1, 0 |
| |
| 3, 5, 6, 9 |
+- -+

which reduces A to the following row echelon form:

>> linalg::gaussElim(A)

+- -+
| 1, 2, 3, 4 |
| |
| 0, 2, 4, 4 |
| |
| 0, 0, -1, -1 |
+- -+

Example 2. We apply Gaussian elimination to the matrix:

>> B := Dom::Matrix(Dom::Integer)(
[[1, 2, -1], [1, 0, 1], [2, -1, 4]]

)

+- -+
| 1, 2, -1 |
| |
| 1, 0, 1 |
| |
| 2, -1, 4 |
+- -+

and get the following result:

>> linalg::gaussElim(B, All)

-- +- -+ --
| | 1, 2, -1 | |
| | | |
| | 0, -2, 2 |, 3, -2, {1, 2, 3} |
| | | |
| | 0, 0, -2 | |
-- +- -+ --

55



We see that rank(B) = 3 and det(B) = −2.

Background:

A Let T =
(
ti j
)

1≤i≤m,1≤ j≤n be an m× n matrix. Then T is a matrix in an up-
per row echelon form, if r∈ {0,1, . . . ,n} and indices j1, j2, . . . , jr ∈ {1, . . . ,n}
exist with:

1. j1 < j2 < · · · < jr.

2. For each i ∈ {1, . . . , r}: ti,1 = ti,2 = · · · = ti, ji−1 = 0.

3. For each i ∈ {r + 1, . . . ,m}: ti j = 0 for each j ∈ {1, . . . ,n}.

The indices j1, j2, . . . , jr are the characteristic column indices of the matrix
T.

linalg::gaussJordan – Gauss-Jordan elimination

linalg::gaussJordan(A) performs Gauss-Jordan elimination on the ma-
trix A, i.e., it returns the reduced row echelon form of A.

Call(s):

A linalg::gaussJordan(A <, All >)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Options:

All — additionally returns the rank and the determinant of A (if A is a
square) as well as the characteristic column indices of the
matrix in reduced row echelon form.

Return Value: a matrix of the same domain type as A, or the list [T, rank(A),
det(A), j1,...,jr] when the option All is given (see below).

Related Functions: linalg::gaussElim

Details:

A The component ring R of A must be an integral domain, i.e., a domain of
category Cat::IntegralDomain .
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A If R is a field, i.e., a domain of category Cat::Field , then the leading
entries of the matrix T in reduced row echelon form are equal to one.

If R is a ring providing the method "gcd" , then the components of each
row of T do not have a non-trivial common divisor.

A If the component ring of A is a field, then the reduced row echelon form
is unique.

Option <All >:

A Returns a list
[
T, rank(A),det(A),{ j1, . . . , jr}

]
where T is the reduced

row echelon form of A and { j1, . . . , jr} is the set of characteristic column
indices of T.

If A is not square, then the value FAIL is given instead of det(A).

Example 1. We apply Gauss-Jordan elimination to the following matrix:

>> A := Dom::Matrix(Dom::Rational)(
[[1, 2, 3, 4], [-5, 0, 3, 0], [3, 5, 6, 9]]

)

+- -+
| 1, 2, 3, 4 |
| |
| -5, 0, 3, 0 |
| |
| 3, 5, 6, 9 |
+- -+

>> linalg::gaussJordan(A, All)

-- +- -+ --
| | 1, 0, 0, 1/2 | |
| | | |
| | 0, 1, 0, 1/2 |, 3, FAIL, {1, 2, 3} |
| | | |
| | 0, 0, 1, 5/6 | |
-- +- -+ --

We see that rank(B) = 3. Because the determinant of a matrix is only defined
for square matrices, the third element of the returned list is the value FAIL .
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Example 2. If we consider the matrix from example 1 as an integer matrix and
apply the Gauss-Jordan elimination we get the following matrix:

>> B := Dom::Matrix(Dom::Integer)(
[[1, 2, 3, 4], [-5, 0, 3, 0], [3, 5, 6, 9]]

):
linalg::gaussJordan(B)

+- -+
| 2, 0, 0, 1 |
| |
| 0, -2, 0, -1 |
| |
| 0, 0, -6, -5 |
+- -+

Background:

A Let T =
(
ti j
)

1≤i≤m,1≤ j≤n be an m× n matrix. Then T is a matrix in reduced
row echelon form, if r ∈ {0,1, . . . ,n} and indices j1, j2, . . . , jr ∈ {1, . . . ,n}
exist with:

1. j1 < j2 < · · · < jr.

2. For each i ∈ {1, . . . , r}: ti,1 = ti,2 = · · · = ti, ji−1 = 0. In addition, if A
is defined over a field: ti, ji = 1.

3. For each i ∈ {r + 1, . . . ,m}: ti j = 0 for each j ∈ {1, . . . ,n}.
4. For each i ∈ {1, . . . , r}: tk, ji = 0 for each k ∈ {1, . . . , i− 1}.

The indices j1, j2, . . . , jr are the characteristic column indices of the matrix
T.

linalg::grad – vector gradient

linalg::grad(f, x) computes the vector gradient of the scalar function
f (~x) with respect to ~x in Cartesian coordinates. This is the vector grad( f ) =
( ∂
∂x1

f , . . . , ∂
∂xn

f ).

Call(s):

A linalg::grad(f, x)

A linalg::grad(f, x, ogCoord)
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Parameters:
f — an arithmetical expression in the variables given in x
x — a list of (indexed) identifiers
ogCoord — a list, or a name (identifier) of a predefined coordinate

system

Return Value: a column vector of the domain Dom::Matrix() .

Related Functions: linalg::curl , linalg::divergence ,
linalg::ogCoordTab , linalg::vectorPotential

Details:

A In the case of three dimensions, linalg::grad(f, x, ogCoord) com-
putes the gradient of f with respect to x in the orthogonally curvilinear
coordinate system specified by ogCoord . The scaling factors of the spec-
ified coordinate system must be the value of the index ogCoord of the
table linalg::ogCoordTab (see example 2).

A If ogCoord is an identifier then the scaling factors must be defined under
the name of the identifier as an entry of the table linalg::ogCoordTab .

Example 1. We compute the vector gradient of the scalar function f (x, y) =
x2 + y in Cartesian coordinates:

>> delete x, y:
linalg::grad(x^2 + y, [x, y])

+- -+
| 2 x |
| |
| 1 |
+- -+

Example 2. We compute the gradient of the function f (r, φ, z) = r cos(φ)z (0≤
φ ≤ π) in cylindrical coordinates:

>> delete r, z, phi:
linalg::grad(r*cos(phi)*z, [r, phi, z], Cylindrical)

+- -+
| z cos(phi) |
| |
| -z sin(phi) |
| |
| r cos(phi) |
+- -+
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Example 3. We want to compute the gradient of the function f (r, θ, φ) = r cos(θ) sin(φ)
(0 ≤ θπ,0 ≤ θ ≤ 2π) in spherical coordinates.

The vectors

~er =

 sin θ cosφ
sin θ sinφ

cos θ

 ,~eθ =

 cos θ cosφ
cos θ sinφ
− sin θ

 ,~eφ =

 − sinφ
cosφ

0


form an orthogonal system in spherical coordinates.

The scaling factors of the corresponding coordinate transformation (see
linalg::ogCoordTab ) are: g1 = |~er| = 1, g2 = |~eθ| = r, g3 = |~eφ| = r sin θ,
which we use in the following example to compute the gradient of the function
f in spherical coordinates:

>> delete r, theta, phi:
linalg::grad(

r*cos(theta)*sin(phi), [r, theta, phi], [1, r, r*sin(theta)]
)

+- -+
| sin(phi) cos(theta) |
| |
| -sin(phi) sin(theta) |
| |
| cos(phi) cos(theta) |
| ------------------- |
| sin(theta) |
+- -+

Note that the spherical coordinates are already defined in linalg::ogCoordTab ,
i.e., the last result can also be achieved with the input linalg::grad(r*cos(theta)*sin(phi),
[r, theta, phi], Spherical) .

Changes:

A The parameter x must be given as a list, vectors are not longer allowed.

A The gradient is a column vector of the domain Dom::Matrix() .

linalg::hermiteForm – Hermite normal form of a matrix

linalg::hermiteForm(A) computes the Hermite normal form of an inte-
ger matrix A. This is an upper-triangular matrix H such that H j j ≥ 0 and
−1

2 H j j ≤ Hi j <
1
2 H j j for j > i.
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Call(s):

A linalg::hermiteForm(A)

Parameters:

A — an integer matrix of category Cat::Matrix

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::frobeniusForm , linalg::jordanForm ,
linalg::smithForm , lllint

Details:

A If the matrix A is not of the domain Dom::Matrix(Dom::Integer)
then A is converted into a matrix of this domain for intermediate compu-
tations.

If this conversion fails, then an error message is returned.

Example 1. We compute the Hermite normal form of the matrix:

>> A := Dom::Matrix(Dom::Rational)(
[[9, -36, 30], [-36, 192, -180], [30, -180, 180]]

)

+- -+
| 9, -36, 30 |
| |
| -36, 192, -180 |
| |
| 30, -180, 180 |
+- -+

>> linalg::hermiteForm(A)

+- -+
| 3, 0, 30 |
| |
| 0, 12, 0 |
| |
| 0, 0, 60 |
+- -+
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Background:

A Let A be an m × n matrix with coefficients in Z. Then there exists an
m× n matrix H =

(
hi j
)

in Hermite normal form such that H = AU with
|U| = ±1.

Note that H is unique, if A has full row rank. The matrix U is not unique.

A If A is a square matrix, then the product of the diagonal elements of its
Hermite normal form is the determinant of A.

Changes:

A The algorithm works for arbitrary matrices that can be converted into
the domain Dom::Matrix(Dom::Integer) .

linalg::hessenberg – Hessenberg matrix

linalg::hessenberg(A) returns an (upper) Hessenberg matrix H.

Call(s):

A linalg::hessenberg(A <, All >)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Options:

All — returns the list [H, P] with a Hessenberg matrix H similar to
A and the corresponding nonsingular transformation matrix P
such that H = PAP−1.

Return Value: a matrix of the same domain type as A, or the list [H, P] when
the option All is given.

Related Functions: linalg::charpoly

Details:

A linalg::hessenberg uses Gaussian elimination without pivoting. There
is no special implementation for matrices with floating-point compo-
nents.

A The component ring of A must be a field, i.e., a domain of category
Cat::Field .
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Example 1. Consider the matrix:

>> A := Dom::Matrix(Dom::Rational)(
[[0, 1, 0, -1], [-4/3, 2/3, 5/3, -1/3],

[-1, 2, 0, 0], [-5/3, 4/3, 1/3, 1/3]]
)

+- -+
| 0, 1, 0, -1 |
| |
| -4/3, 2/3, 5/3, -1/3 |
| |
| -1, 2, 0, 0 |
| |
| -5/3, 4/3, 1/3, 1/3 |
+- -+

The following Hessenberg matrix is similar to A:

>> H := linalg::hessenberg(A)

+- -+
| 0, -1/4, -1/7, -1 |
| |
| -4/3, 3/2, 34/21, -1/3 |
| |
| 0, 7/8, -17/14, 1/4 |
| |
| 0, 0, -72/49, 5/7 |
+- -+

If the corresponding transformation matrix is needed as well, call linalg::hessenberg
with option All :

>> [H, P] := linalg::hessenberg(A, All)

-- +- -+ +- -
+ --

| | 0, -1/4, -1/7, -1 | | 1, 0, 0, 0 | |
| | | | | |
| | -4/3, 3/2, 34/21, -1/3 | | 0, 1, 0, 0 | |
| | |, | | |
| | 0, 7/8, -17/14, 1/4 | | 0, -3/4, 1, 0 | |
| | | | | |
| | 0, 0, -72/49, 5/7 | | 0, -8/7, -1/7, 1 | |
-- +- -+ +- -

+ --

Then P is a nonsingular matrix such that the product PAP−1 is equal to H:
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>> P * A * P^(-1)

+- -+
| 0, -1/4, -1/7, -1 |
| |
| -4/3, 3/2, 34/21, -1/3 |
| |
| 0, 7/8, -17/14, 1/4 |
| |
| 0, 0, -72/49, 5/7 |
+- -+

Background:

A An n× n matrix A =
(
ai, j
)

1≤i, j≤n is called an (upper) Hessenberg matrix, if
the following holds: ai, j = 0 for all i, j ∈ {1, . . . ,n}with i > j.

A For each square matrix A over a field there exists a Hessenberg matrix
similar to A. In general, the upper Hessenberg matrix is not unique.

A Reference: K.-H. Kiyek, F. Schwarz: Lineare Algebra. Teubner Studien-
bücher Mathematik, B.G. Teubner Stuttgart, Leipzig, 1999.

Changes:

A linalg::hessenberg is a new function.

linalg::hessian – Hessian matrix of a scalar function

linalg::hessian(f, x) computes the Hesse matrix (the Hessian) of the
scalar function f (~x) in Cartesian coordinates, i.e., the square matrix of second
partial derivatives of f (~x).

Call(s):

A linalg::hessian(f,x)

Parameters:
f — an arithmetical expression (the scalar function)
x — a list of (indexed) identifiers

Return Value: a matrix of the domain Dom::Matrix() .

Related Functions: diff , linalg::grad , linalg::jacobian
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Example 1. The Hessian of the function f (x, y, z) = xy + 2xz is the following
matrix:

>> delete x, y, z:
linalg::hessian(x*y + 2*z*x, [x, y, z])

+- -+
| 0, 1, 2 |
| |
| 1, 0, 0 |
| |
| 2, 0, 0 |
+- -+

Background:

A For a function f : X ⊂ Rn→ R the n× n matrix

H f (~x) :=



∂2 f (~x)
∂x2

i

∂2 f (~x)
∂x2∂x1

· · · ∂2 f (~x)
∂xp∂x1

∂2 f (~x)
∂x1∂x2

∂2 f (~x)
∂x2

2
· · · ∂2 f (~x)

∂xp∂x2

...
...

...
∂2 f (~x)
∂x1∂xp

∂2 f (~x)
∂x2∂xp

· · · ∂2 f (~x)
∂x2

p


is called the Hesse matrix of f .

linalg::hilbert – Hilbert matrix

linalg::hilbert(n) returns the n× n Hilbert matrix H =
(
hi j
)

1≤i, j≤n de-

fined by hi j = (i + j− 1)−1.

Call(s):

A linalg::hilbert(n <, R>)

Parameters:
n — the dimension of the matrix: a positive integer
R — the component ring: a domain of category Cat::Rng ; default:

Dom::ExpressionField()

Return Value: an n× n matrix of the domain Dom::Matrix(R) .

Related Functions: linalg::invhilbert
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Details:

A Note that the entries of a Hilbert matrix are rational numbers. But the re-
turned matrix is defined over the standard component domain Dom::ExpressionField()
so that no conversion is necessary when working with other functions
that expect or return matrices over that component domain.

A Use linalg::hilbert(n, Dom::Rational) to define the n×n Hilbert
matrix over the field of rational numbers.

Example 1. We construct the 3× 3 Hilbert matrix:

>> H := linalg::hilbert(3)

+- -+
| 1, 1/2, 1/3 |
| |
| 1/2, 1/3, 1/4 |
| |
| 1/3, 1/4, 1/5 |
+- -+

This is a matrix of the domain Dom::Matrix()) .
If you prefer a different component ring, the matrix may be converted into

the desired domain afterwards (see convert , for example). Alternatively, one
can specify the component ring when creating the Hilbert matrix, for example
the domain Dom::Float :

>> H := linalg::hilbert(3, Dom::Float)

+- -+
| 1.0, 0.5, 0.3333333333 |
| |
| 0.5, 0.3333333333, 0.25 |
| |
| 0.3333333333, 0.25, 0.2 |
+- -+

>> domtype( H )

Dom::Matrix(Dom::Float)

Background:

A Hilbert matrices are symmetric and positive definite.

A Hilbert matrices of large dimension are notoriously ill-conditioned chal-
lenging any numerical inversion scheme. However, their inverse can
also be computed by a closed formula (see linalg::invhilbert ).
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Changes:

A linalg::hilbert is a new function.

linalg::intBasis – basis for the intersection of vector spaces

linalg::intBasis(S1, S2, ...) returns a basis for the intersection of
the vector spaces spanned by the vectors in S1, S2, . . . .

Call(s):

A linalg::intBasis(S1, S2, ...)

Parameters:
S1, S2, ... — either sets or lists of n-dimensional vectors (a vector

is an n× 1 or 1× n matrix of a domain of category
Cat::Matrix )

Return Value: a set or a list of vectors, according to the domain type of the
parameter S1.

Related Functions: linalg::basis , linalg::sumBasis

Details:

A The domain type of the vectors of the returned set is the domain type of
the first parameter S1.

A A basis for the zero-dimensional space is the empty set or empty list,
respectively.

A The given vectors must be defined over the same component ring which
must be a field, i.e., a domain of category Cat::Field .

Example 1. We define three vectors ~v1, ~v2, ~v3 in Q2 :

>> MatQ := Dom::Matrix(Dom::Rational):
v1 := MatQ([[3, -2]]); v2 := MatQ([[1, 0]]); v3 := MatQ([[5, -

3]])

67



+- -+
| 3, -2 |
+- -+

+- -+
| 1, 0 |
+- -+

+- -+
| 5, -3 |
+- -+

A basis for the vector space V1 ∩ V2 ∩ V3 with V1 =< {~v1, ~v2, ~v3} >, V2 =<
{~v1, ~v3} > and V3 =< {~v1 + ~v2, ~v2, ~v1 + ~v3} > is:

>> linalg::intBasis([v1, v2, v3], [v1, v3], [v1 + v2, v2, v1 + v3])

-- +- -+ +- -+ --
| | 4, -2 |, | 1, 0 | |
-- +- -+ +- -+ --

Example 2. The intersection of the two vector spaces spanned by the vectors
in S1 and S2, respectively:

>> S1 := {matrix([[1, 0, 1, 0]]), matrix([[0, 1, 0, 1]])};
S2 := {matrix([[1, 2, 1, 1]]), matrix([[-1, -2, 1, 0]])}

{ +- -+ +- -+ }
{ | 0, 1, 0, 1 |, | 1, 0, 1, 0 | }
{ +- -+ +- -+ }

{ +- -+ +- -+ }
{ | -1, -2, 1, 0 |, | 1, 2, 1, 1 | }
{ +- -+ +- -+ }

is the zero-dimensional space:

>> linalg::intBasis(S1, S2)

{}

linalg::inverseLU – computing the inverse of a matrix using LU-
decomposition
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linalg::inverseLU(A) computes the inverse A−1 of the square matrix A
using LU-decomposition.

linalg::inverseLU(L, U, pivindex) computes the inverse of the ma-
trix A = P−1LU where L, Uand pivindex are the result of an LU-deomposition
of the (nonsingular) Matrix A, as computed by linalg::factorLU .

Call(s):

A linalg::inverseLU(A)

A linalg::inverseLU(L, U, pivindex)

Parameters:
A, L, U — a square matrix of a domain of category Cat::Matrix
pivindex — a list of positive integers

Return Value: a matrix of the same domain type as A or L, respectively.

Related Functions: _invert , linalg::factorLU ,
linalg::matlinsolveLU

Details:

A The matrix A must be nonsingular.

A pivindex is a list [r[1], r[2], ...] representing a permutation
matrix P such that B = PA = LU, where bi j = ar[i], j.

It is not checked whether pivindex has such a form.

A The component ring of the input matrices must be a field, i.e., a domain
of category Cat::Field .

Example 1. We compute the inverse of the matrix:

>> A := Dom::Matrix(Dom::Real)(
[[2, -3, -1], [1, 1, -1], [0, 1, -1]]

)

+- -+
| 2, -3, -1 |
| |
| 1, 1, -1 |
| |
| 0, 1, -1 |
+- -+

using LU-decomposition:
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>> Ai := linalg::inverseLU(A)

+- -+
| 0, 1, -1 |
| |
| -1/4, 1/2, -1/4 |
| |
| -1/4, 1/2, -5/4 |
+- -+

We check the result:

>> A * Ai, Ai * A

+- -+ +- -+
| 1, 0, 0 | | 1, 0, 0 |
| | | |
| 0, 1, 0 |, | 0, 1, 0 |
| | | |
| 0, 0, 1 | | 0, 0, 1 |
+- -+ +- -+

We can also compute the inverse of A in the usual way:

>> 1/A

+- -+
| 0, 1, -1 |
| |
| -1/4, 1/2, -1/4 |
| |
| -1/4, 1/2, -5/4 |
+- -+

linalg::inverseLU should be used for efficiency reasons in the case where
an LU decomposition of a matrix already is computed, as the next example
illustrates.

Example 2. If we already have an LU decomposition of a (nonsingular) ma-
trix, we can compute the inverse of the matrix A = P−1LU as follows:

>> LU := linalg::factorLU(linalg::hilbert(3))

-- +- -+ +- -+ -
-

| | 1, 0, 0 | | 1, 1/2, 1/3 | |
| | | | | |
| | 1/2, 1, 0 |, | 0, 1/12, 1/12 |, [1, 2, 3] |
| | | | | |
| | 1/3, 1, 1 | | 0, 0, 1/180 | |
-- +- -+ +- -+ -

-
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>> linalg::inverseLU(op(LU))

+- -+
| 9, -36, 30 |
| |
| -36, 192, -180 |
| |
| 30, -180, 180 |
+- -+

linalg::inverseLU then only needs to perform forward and backward
substitution to compute the inverse matrix (see also linalg::matlinsolveLU ).

Changes:

A linalg::inverseLU is a new function.

linalg::invhilbert – inverse of a Hilbert matrix

linalg::invhilbert(n) returns the inverse of the n× n Hilbert matrix H.
The n× n Hilbert matrix H =

(
hi j
)

1≤i, j≤n is defined by hi j = (i + j− 1)−1.

Call(s):

A linalg::invhilbert(n <, R>)

Parameters:
n — the dimension of the matrix: a positive integer
R — the component ring: a domain of category Cat::Rng ; default:

Dom::ExpressionField()

Return Value: an n× n matrix of the domain Dom::Matrix(R) .

Related Functions: linalg::hilbert

Details:

A linalg::invhilbert uses an explicit formula for the inverse.

A Note that the entries of the inverse of a Hilbert matrix are integers. But
the returned matrix is defined over the standard component domain
Dom::ExpressionField() so that no conversion is necessary when
working with other functions that expect or return matrices over that
component domain.
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A linalg::invhilbert(n,Dom::Integer) returns the inverse of the
n× n Hilbert matrix defined over the integers.

Example 1. We compute the inverse of the 3× 3 Hilbert matrix:

>> A := linalg::invhilbert(3)

+- -+
| 9, -36, 30 |
| |
| -36, 192, -180 |
| |
| 30, -180, 180 |
+- -+

This is a matrix of the domain Dom::Matrix() .
If you prefer a different component ring, the matrix may be converted into

the desired domain afterwards (see convert , for example). Alternatively, one
can specify the component ring when calling linalg::invhilbert , for ex-
ample the domain Dom::Float :

>> A := linalg::invhilbert(3, Dom::Float)

+- -+
| 9.0, -36.0, 30.0 |
| |
| -36.0, 192.0, -180.0 |
| |
| 30.0, -180.0, 180.0 |
+- -+

>> domtype( A )

Dom::Matrix(Dom::Float)

Background:

A Hilbert matrices of large dimension are notoriously ill-conditioned, chal-
lenging any numerical inversion scheme.

A linalg::invhilbert uses the formula

(H−1)i j = (−1)i+ j ci c j

i + j− 1
, ci =

(n + i− 1)!
(n− i)! ((i− 1)!)2

for the inverse of the n× n Hilbert matrix H (N.J. Higham, Accuracy and
Stability of Numerical Algorithms, SIAM 1996). All entries of H−1 are inte-
gers.
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Changes:

A linalg::invhilbert is a new function.

linalg::isHermitean – checks whether a matrix is Hermitean

linalg::isHermitean(A) determines whether the matrix A is Hermitean,
i.e., whether A = A

t
( denotes conjugation).

Call(s):

A linalg::isHermitean(A)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Return Value: either TRUEor FALSE.

Related Functions: linalg::isPosDef

Details:

A If the component ring of the matrix Adoes not provide the method "conjugate" ,
then A is tested for symmetry, i.e., linalg::isHermitean returns TRUE
if and only if A satisfies the equation A = At.

Example 1. Here is an example of a Hermitean matrix:

>> A := Dom::Matrix(Dom::Complex)([[1, I], [-I, 1]])

+- -+
| 1, I |
| |
| - I, 1 |
+- -+

>> linalg::isHermitean(A)

TRUE

The following matrix is not Hermitean:

>> B := Dom::Matrix(Dom::Complex)([[1, -I], [-I, 1]])
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+- -+
| 1, - I |
| |
| - I, 1 |
+- -+

>> linalg::isHermitean(B)

FALSE

The reason is the following:

>> linalg::transpose(conjugate(B)) <> B

+- -+ +- -+
| 1, I | | 1, - I |
| | <> | |
| I, 1 | | - I, 1 |
+- -+ +- -+

Example 2. Here is an example of a symmetric matrix over the integers:

>> C := Dom::Matrix(Dom::Integer)([[1, 2], [2, -1]])

+- -+
| 1, 2 |
| |
| 2, -1 |
+- -+

>> linalg::isHermitean(C)

TRUE

Changes:

A linalg::isHermitean used to be linalg::isHermitian .

linalg::isPosDef – test a matrix for positive definiteness

linalg::isPosDef(A) checks whether the matrix A is positive definite, so
that ~xt A~x > 0 for arbitrary vectors ~x 6= ~0.
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Call(s):

A linalg::isPosDef(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: either TRUEor FALSE.

Side Effects: Properties of identifiers are taken into account.

Related Functions: linalg::factorCholesky , linalg::isHermitean

Details:

A The component ring of A must be a field, i.e., a domain of category
Cat::Field .

A An error message is returned, if a result of an intermediate computation
cannot be checked for being positive (which could happen, for example,
if components of A are symbolic).

Example 1. Here is an example of a positive definite matrix:

>> MatR := Dom::Matrix( Dom::Real ):
A := MatR([[14, 6, 9], [6, 17, -4], [9, -4, 13]])

+- -+
| 14, 6, 9 |
| |
| 6, 17, -4 |
| |
| 9, -4, 13 |
+- -+

>> linalg::isPosDef(A)

TRUE

The following matrix is not positive definite:

>> B := MatR([[1, 2, 3], [2, 3, 4], [5, 6, 7]])

+- -+
| 1, 2, 3 |
| |
| 2, 3, 4 |
| |
| 5, 6, 7 |
+- -+
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>> linalg::isPosDef(B)

FALSE

Example 2. linalg::isPosDef in general does not work for matrices with
symbolic entries. It may respond with an error message (because the system
in general cannot decide whether a symbolic component is positive), such as
for the following matrix:

>> delete a, b:
C := matrix([[a, b], [b, a]])

+- -+
| a, b |
| |
| b, a |
+- -+

>> linalg::isPosDef(C)

Error: cannot check whether matrix component is positive \
[linalg::factorCholesky]

However, properties of identifiers are taken into account, so that, for exam-
ple, linalg::isPosDef is able to perform the test correctly for the following
matrix:

>> assume(a > 1): C := matrix([[a, 1], [1, a]]):

>> linalg::isPosDef(C)

TRUE

Note that such computations depend on the power of the underlying property
mechanism implemented in the library property .

linalg::isUnitary – test whether a matrix is unitary

linalg::isUnitary tests whether the matrix A is a unitary matrix. An n×
n matrix A is unitary, if AA

t = In, where In is the n× n identity matrix.

Call(s):

A linalg::isUnitary(A)
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Parameters:

A — a square matrix of a domain of category Cat::Matrix

Return Value: either TRUE, FALSE, or UNKNOWN.

Related Functions: linalg::orthog , linalg::scalarProduct

Details:

A The square matrix A is a unitary matrix, if and only if the columns of A
form an orthonormal basis with respect to the scalar product linalg::scalarProduct
of two vectors.

A The correctness of the result FALSE of linalg::isUnitary can only
be guaranteed if the elements of the component ring R of the matrix A
are canonically represented, i.e., if each element of R has only one unique
representation.

A The axiom Ax::canonicalRep states that a domain has this property.
Hence, linalg::isUnitary returns FALSEor UNKNOWN, respectively,
depending on whether the component ring of Ahas the axiom Ax::canonicalRep .

A If the component ring of A does not define the method "conjugate"
then it is checked whether A is an orthogonal matrix such that AAt = En,
where En is the n× n identity matrix.

Example 1. The following matrix is unitary:

>> A := 1/sqrt(5) * matrix([[1, 2], [2, -1]])

+- -+
| 1/2 1/2 |
| 5 2 5 |
| ----, ------ |
| 5 5 |
| |
| 1/2 1/2 |
| 2 5 5 |
| ------, - ---- |
| 5 5 |
+- -+

>> linalg::isUnitary(A)

TRUE
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Changes:

A linalg::isUnitary used to be linalg::isOrthogonal .

linalg::jacobian – Jacobian matrix of a vector function

linalg::jacobian(v, x) computes the Jacobian matrix of the vector func-
tion ~v with respect to ~x.

Call(s):

A linalg::jacobian(v, x)

Parameters:
v — a list of arithmetical expressions, or a vector (i.e., an n× 1 or 1× n

matrix of a domain of category Cat::Matrix )
x — a list of (indexed) identifiers

Return Value: a matrix of the domain Dom::Matrix(R) , where Ris the com-
ponent ring of v or the domain Dom::ExpressionField() .

Related Functions: linalg::hessian , linalg::grad

Details:

A If v is a vector then the component ring of v must be a field (i.e., a domain
of category Cat::Field ) for which differentiation with respect to x is
defined.

A If v is given as a list of arithmetical expressions, then linalg::jacobian
returns a matrix with the standard component ring Dom::ExpressionField() .

Example 1. The Jacobian matrix of the vector function ~v =

 x3

xz
y + z

 is:

>> delete x, y, z:
linalg::jacobian([x^3, x*z, y+z], [x, y, z])

+- -+
| 2 |
| 3 x , 0, 0 |
| |
| z, 0, x |
| |
| 0, 1, 1 |
+- -+
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Background:

A For a vector function ~v : G ⊂ Rn→ R
m, ~v = (v1, . . . , vm)t the matrix

J~v(~x) :=


∂v1(~x)
∂x1

· · · ∂v1(~x)
∂xn

...
...

∂vm(~x)
∂x1

· · · ∂vm(~x)
∂xn


is the Jacobian matrix of ~v.

linalg::jordanForm – Jordan normal form of a matrix

linalg::jordanForm(A) returns the Jordan normal form J of the matrix A.

Call(s):

A linalg::jordanForm(A <, All >)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Options:

All — returns the list [J, P] with the Jordan normal form J of A and
the corresponding transformation matrix P such that
A = PJP−1.

Return Value: either a matrix of the same domain type as A, the list [J, P]
when the option All is given, or the value FAIL .

Related Functions: linalg::eigenvalues , linalg::frobeniusForm ,
linalg::smithForm , linalg::hermiteForm

Details:

A linalg::jordanForm computes a nonsingular transformation matrix
P and a matrix J such that A = PJP−1 with J = diag (J1, . . . , Jr) and Jor-
dan matrices J1, . . . , Jr.

A The Jordan normal form of a square matrix A over a field F exists if the
characteristic polynomial of A splits over F into linear factors. If this is
not the case for the matrix A, then linalg::jordanForm returns FAIL .

The Jordan normal form is unique up to permutations of the Jordan ma-
trices J1, . . . , Jr.
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A The implemented method computes the eigenvalues of A. It returns FAIL
if this is not possible (see linalg::eigenvalues ).

A The component ring of A must be a field, i.e., a domain of category
Cat::Field .

Example 1. The Jordan normal form of the matrix:

>> A := Dom::Matrix(Dom::Complex)([[1, 2], [4, 5]])

+- -+
| 1, 2 |
| |
| 4, 5 |
+- -+

is the following matrix:

>> J := linalg::jordanForm(A)

+- -+
| 1/2 |
| - 2 3 + 3, 0 |
| |
| 1/2 |
| 0, 2 3 + 3 |
+- -+

The corresponding transformation matrix P can be obtained from the result
[J, P] of linalg::jordanForm with the option All :

>> P := linalg::jordanForm(A, All)[2]

+- -+
| 1/2 1/2 |
| 3 3 |
| ---- + 1/2, - ---- + 1/2 |
| 6 6 |
| |
| 1/2 1/2 |
| 3 3 |
| - ----, ---- |
| 3 3 |
+- -+

We check the result:

>> map(P * J * P^(-1), radsimp)
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+- -+
| 1, 2 |
| |
| 4, 5 |
+- -+

To get this result we must apply the function radsimp to each component of
the matrix that is returned by the matrix product PJP−1.

linalg::matdim – dimension of a matrix

linalg::matdim(A) returns the dimension of the matrix A, i.e., the number
of rows and columns of A.

Call(s):

A linalg::matdim(A)

Parameters:

A — an m× n matrix of a domain of category Cat::Matrix

Return Value: the list [m, n] , where m is the number of rows and n is the
number of columns of A.

Related Functions: linalg::vecdim , linalg::ncols , linalg::nrows

Details:

A linalg::matdim is an interface function for the method "matdim" of
the matrix domain of A, i.e., instead of linalg::matdim(A) one may
call A::dom::matdim(A) directly.

Example 1. The dimension of the matrix:

>> A := matrix([[1, 2, 3, 4], [3, 1, 4], [5, 6]])

+- -+
| 1, 2, 3, 4 |
| |
| 3, 1, 4, 0 |
| |
| 5, 6, 0, 0 |
+- -+

can be determined by:
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>> linalg::matdim(A)

[3, 4]

Changes:

A linalg::matdim used to be linalg::dimen .

linalg::matlinsolve – solving systems of linear equations

linalg::matlinsolve(A, b) computes the general solution of the equa-
tion A~x =~b.

Call(s):

A linalg::matlinsolve(A, b)

A linalg::matlinsolve(A, b, list)

A linalg::matlinsolve(A, b <, Special ><, Unique >)

A linalg::matlinsolve(A, B)

A linalg::matlinsolve(A)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
B — an m× k matrix of a domain of category Cat::Matrix
b — an m-dimensional column vector, i.e., a m× 1 matrix of a

domain of category Cat::Matrix
list — a list of n elements of the component ring of A

Options:

Special — Computes one particular solution of the system A~x =~b.
Unique — Checks whether the system has a unique solution and

returns the solution, or the value NIL otherwise.

Return Value: a vector, a list [s, kern] (possibly empty), where s is a so-
lution vector and kern is a list of basis vectors for the kernel of A, a matrix, or
the value NIL .

The matrix and the vectors, respectively, are of the domain type Dom::Matrix(R) ,
where R is the component ring of A.

Related Functions: linsolve , linalg::expr2Matrix ,
linalg::nullspace , linalg::matlinsolveLU , linalg::wiedemann ,
numeric::matlinsolve
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Details:

A linalg::matlinsolve(A, b) returns the solution vector ~x of the sys-
tem A~x =~b if it is a unique solution.

A linalg::matlinsolve(A, b) returns a list [~w, [~v1, . . . , ~vr]] if the sys-
tem A~x = ~b has more than one solution, where ~w is one particular solu-
tion, i.e., A~w = ~b and ~v1, . . . , ~vr form a basis of the kernel of A, i.e., the
solution space of the homogenous system A~x = ~0.

Each solution ~x has the form ~xs + s1~v1 + . . .+ sr~vr (r ≤ n) with certain
scalars s1, . . . , sr.

A A list of n scalars [s1, ..., sn] may be passed as the additional parameter
list . This extracts the solution ~xs + si1~v1 + . . .+ sir~vr with {i1, . . . , ir}=
{1, . . . ,n} \ { j1, . . . , jl} from the solution space of the system A~x = ~b,
where j1, . . . , jl are the characteristic column indices of A (see linalg::gaussJordan ).

The entries of list are converted to elements of the component ring of
A (an error message is returned if this is not possible).

A If the system A~x =~b has no solution, then the empty list [] is returned.

A linalg::matlinsolve(A) solves the matrix equation C~x = ~b, where
~b is the last column of A and C is A with the last column deleted.

A linalg::matlinsolve(A, B) returns the solution X of the matrix
equation AX = B, if it has exactly one solution. Otherwise the empty list
[] is returned.

A The vector b and the matrix B respectively, are converted into the domain
Dom::Matrix(R) , where R is the component ring of A. Solution vectors
also belong to this domain.

A The component ring of A must be an integral domain, i.e., a domain of
category Cat::IntegralDomain .

A linalg::matlinsolve can compute the general solution for systems
with more than one solution only over fields, i.e., component rings of
category Cat::Field . If in this case the component ring of A does not
have a canonical representation of the zero element, then it may happen
that linalg::matlinsolve does not find a basis for the null space. In
such a case, a wrong result is returned.

A linalg::matlinsolve does not exploit the structure of A, e.g., spar-
sity. A matrix is sparse if it has many zero components (see example 5).

A To get a floating-point approximation use the function numeric::matlinsolve .
Also if the input matrices are defined over the component ring Dom::Float ,
we recommend for efficieny reasons to use numeric::matlinsolve
instead of linalg::matlinsolve !
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Option <Special >:

A Only one particular solution w of the system A~x = ~b is returned. This
supresses the computation of a basis for the kernel of A.

Option <Unique >:

A Checks whether the system has a unique solution and returns it. The
return value NIL means that the system has more than one solution.

Example 1. We solve the linear system:(
1 2
−1 2

)
· ~x =

(
1
−1

)
over the reals. First we enter the coefficient matrix and the right-hand side:

>> MatR := Dom::Matrix(Dom::Real):
A := MatR([[1, 2], [-1, 2]]); b := MatR([1, -1])

+- -+
| 1, 2 |
| |
| -1, 2 |
+- -+

+- -+
| 1 |
| |
| -1 |
+- -+

Next we call linalg::matlinsolve to solve the system:

>> x := linalg::matlinsolve(A, b)

+- -+
| 1 |
| |
| 0 |
+- -+

We see that the system has exactly one solution. The vector x satisfies the
matrix equation given above:

>> A * x
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+- -+
| 1 |
| |
| -1 |
+- -+

Example 2. The system: (
1 2
−1 −2

)
· ~x =

(
1
0

)
does not have a solution over R (in fact, over no component domain):

>> A := MatR([[1, 2], [-1, -2]]): b := MatR([1, 0]):
linalg::matlinsolve(A, b)

[]

Example 3. We solve the linear system:(
1 1 −4 −7 −6
0 1 −3 −5 −7

)
· ~x =

(
30
17

)
over the rational numbers. First we enter the coefficient matrix and the right-
hand side:

>> MatQ := Dom::Matrix(Dom::Rational):
A := MatQ([[1, 1, -4, -7, -6], [0, 1, -3, -5, -7]]);
b := MatQ([30, 17])

+- -+
| 1, 1, -4, -7, -6 |
| |
| 0, 1, -3, -5, -7 |
+- -+

+- -+
| 30 |
| |
| 17 |
+- -+

Next we call linalg::matlinsolve to solve the system:

>> sol:= linalg::matlinsolve(A, b)
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-- +- -+ -- +- -+ +- -+ +- -+ -- --
| | 13 | | | 1 | | 2 | | -1 | | |
| | | | | | | | | | | |
| | 17 | | | 3 | | 5 | | 7 | | |
| | | | | | | | | | | |
| | 0 |, | | 1 |, | 0 |, | 0 | | |
| | | | | | | | | | | |
| | 0 | | | 0 | | 1 | | 0 | | |
| | | | | | | | | | | |
| | 0 | | | 0 | | 0 | | 1 | | |
-- +- -+ -- +- -+ +- -+ +- -+ -- --

The result is to be interpreted as follows: The first vector of the list sol is a
particular solution of the linear system:

>> A * sol[1]

+- -+
| 30 |
| |
| 17 |
+- -+

The second entry of the list contains a basis for the null space of A, i.e., the
solution space of the corresponding homogenous system A~x =~0 (the kernel of
A). The basis returned is given as a list of vectors.

The following input checks this fact by computing the product A~x for each
vector ~x of the list sol[2] :

>> map(sol[2], x -> A * x)

-- +- -+ +- -+ +- -+ --
| | 0 | | 0 | | 0 | |
| | |, | |, | | |
| | 0 | | 0 | | 0 | |
-- +- -+ +- -+ +- -+ --

Any solution of the linear system can be represented as a sum of a partic-
ular solution (here: sol[1] ) and a linear combination of the basis vectors of
the kernel of A. Hence our input system has an infinite number of solutions.

For example, another solution of the system is given by:

>> x := sol[1] + 1*sol[2][1] + 1/2*sol[2][2] - 2*sol[2][3]

+- -+
| 17 |
| |
| 17/2 |
| |
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| 1 |
| |
| 1/2 |
| |
| -2 |
+- -+

>> A * x

+- -+
| 30 |
| |
| 17 |
+- -+

If we identify the columns of the coefficient matrix A of our linear system
with the variables x1, x2, x3, x4, x5, then we see from the general solution that
the variables x3, x4, x5 act as free parameters. They can be assigned arbitrary
rational values to obtain a unique solution.

By giving a list of values for these variables as a third parameter to linalg::matlinsolve ,
we can select a certain vector from the set of all solutions of the linear system.
For example, to select the same vector x as chosen in the previous input, we
enter:

>> linalg::matlinsolve(A, b, [0, 0, 1, 1/2, -2])

+- -+
| 17 |
| |
| 17/2 |
| |
| 1 |
| |
| 1/2 |
| |
| -2 |
+- -+

If one is only interested in a particular solution and does not need the gen-
eral solution of the linear system, one may enter:

>> linalg::matlinsolve(A, b, Special)

+- -+
| 13 |
| |
| 17 |
| |
| 0 |
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| |
| 0 |
| |
| 0 |
+- -+

This call suppresses the computation of the kernel of A.

Example 4. If the linear system is given in form of equations the function
linalg::expr2Matrix can be used to form the corresponding matrix equa-
tion:

>> delete x, y, z:
Ab := linalg::expr2Matrix(

[x + y + z = 6, 2*x + y + 2*z = 10, x + 3*y + z = 10]
)

+- -+
| 1, 1, 1, 6 |
| |
| 2, 1, 2, 10 |
| |
| 1, 3, 1, 10 |
+- -+

The result here is the extended coefficient matrix of the input system, i.e., the
right-hand side vector ~b is the 4th column vector of the matrix Ab. Since we
did not specify a component ring for this matrix, the standard component ring
for matrices, the domain Dom::ExpressionField() , was chosen.

To solve the linear system, we call:

>> linalg::matlinsolve(Ab)

-- +- -+ -- +- -+ -- --
| | 4 | | | -1 | | |
| | | | | | | |
| | 2 |, | | 0 | | |
| | | | | | | |
| | 0 | | | 1 | | |
-- +- -+ -- +- -+ -- --

We see that the system has an infinite number of solutions. The third variable
z acts as a free parameter and therefore can have any (complex) value.

To get the general solution in parameter form, one may use parameters for
the variables x, y, z of the input system:

>> delete u, v, w:
sol := linalg::matlinsolve(Ab, [u, v, w])
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+- -+
| - w + 4 |
| |
| 2 |
| |
| w |
+- -+

This is possible here because we perform the matrix computations over Dom::ExpressionField()
which allows to compute with symbolical (arithmetical) expressions.

To select a certain vector from the set of solutions, for example, the solution
for w = 1, we enter:

>> x := subs(sol, w = 1)

+- -+
| 3 |
| |
| 2 |
| |
| 1 |
+- -+

Example 5. Suppose that we have a system of linear equations with a sparse
structure, i.e., with a coefficient matrix having many zero components. For
example:

>> eqs := {x1 + x5 = 0, x2 - x4 = 1, x3 + 2*x5 = 2, x4 - x5 = -
1}:

Ab := linalg::expr2Matrix(eqs)

+- -+
| 0, 1, 0, -1, 0, -1 |
| |
| 1, 0, 0, 2, 0, 2 |
| |
| 0, -1, 1, 0, 0, 1 |
| |
| 0, 0, 0, 1, 1, 0 |
+- -+

As linalg::matlinsolve does not exploit the sparsity of the given coeffi-
cient matrix, we recommend not to solve the system with linalg::matlinsolve ,
but to use the function linsolve which directly works on the equations and
therefore preserves the sparse structure of the input system:

>> linsolve(eqs)
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[x3 = 2 x1 + 2, x4 = - x1 - 1, x2 = -x1, x5 = -x1]

If a system is given in matrix form, we recommend to use the function
numeric::matlinsolve with option Symbolic instead of linalg::matlinsolve
even for exact computations. This function works more efficiently than linalg::matlinsolve
and is able to exploit sparsity:

>> A := linalg::delCol(Ab, 5): b := linalg::col(Ab, 6):
numeric::matlinsolve(A, b)

-- +- -+ +- -+ --
| | 2.0 | | -2.0 | |
| | | | | |
| | -1.0 | | 1.0 | |
| | | | | |
| | 0 |, | 0 | |
| | | | | |
| | 0 | | 0 | |
| | | | | |
| | 0 | | 1 | |
-- +- -+ +- -+ --

Note that the function numeric::matlinsolve always works over a sub-
field of the complex numbers and does not allow to specify the domain of
computation. Without the option Symbolic numeric::matlinsolve con-
verts input data to floating point numbers.

Example 6. Let us check whether the matrix equation(
1 2
−2 3

)
· ~x =

(
4 2
6 3

)
has a unique solution over the integers.

We start by entering the coefficient matrix and the right-hand side matrix:

>> MatZ := Dom::Matrix(Dom::Integer):
A := MatZ([[1, 2], [-2, 3]]); B := MatZ([[4, 2], [6, 3]])

+- -+
| 1, 2 |
| |
| -2, 3 |
+- -+

+- -+
| 4, 2 |
| |
| 6, 3 |
+- -+
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Next we solve the matrix equation:

>> X := linalg::matlinsolve(A, B)

+- -+
| 0, 0 |
| |
| 2, 1 |
+- -+

The equation indeed has a unique solution (otherwise the answer of linalg::matlinsolve
would be the empty list [] ). Let us check the result:

>> A * X

+- -+
| 4, 2 |
| |
| 6, 3 |
+- -+

Background:

A Let A be an m× n matrix with components from a field F and ~b an m-
dimensional vector over F. Let (A,~b) be the extended coefficient matrix
of the linear system A~x =~b.

Then the following holds:

• The linear system A~x = ~b has a solution, if and only if rank(A,~b) =
rank(A).

• It has exactly one solution, if and only if rank(A,~b) = rank(A) = n.

• If ~xs is a solution of the system A~x = ~b and {~v1, . . . , ~vr} a basis of
the kernel of A, then

L(A,~b) = {~xs + λ1~v1 + . . . λr~vr | λ1, . . . , λr ∈ F}

is the set of all solutions of the linear system A~x = ~b, the general
solution of the (inhomogeneus) linear system.

A The kernel of the matrix A is defined as:

ker(A) :=
{
~w | A~w = ~0

}
.

The kernel of A is a vector space over F of dimension n− rang(A).
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Changes:

A linalg::matlinsolve used to be linalg::linearSolve .

linalg::matlinsolveLU – solving the linear system given by an
LU decomposition

linalg::matlinsolveLU(L, U, b) solves the linear system LU~x =~b, where
the matrices L and U form an LU-decomposition, as computed by linalg::factorLU .

Call(s):

A linalg::matlinsolveLU(L, U, b)

A linalg::matlinsolveLU(L, U, B)

Parameters:
L — an n× n lower triangular matrix of a domain of category

Cat::Matrix
U — an n× n upper triangular form matrix of the same domain as L
B — an n× k matrix of a domain of category Cat::Matrix
b — an n-dimensional column vector, i.e., an n× 1 matrix of a domain

of category Cat::Matrix

Return Value: an n-dimensional solution vector or n× k dimensional solution
matrix, respectively, of the domain type Dom::Matrix(R) , where R is the
component ring of A.

Related Functions: linalg::factorLU , linalg::inverseLU ,
linalg::matlinsolve

Details:

A If the third parameter is an n × k matrix B then the result is an n × k
matrix X satisfying the matrix equation LUX = B.

A The system to be solved always has a unique solution.

A The diagonal entries of the lower diagonal matrix L must be equal to one
(Doolittle-decomposition, see linalg::factorLU ).

A linalg::matlinsolveLU expects L and U to be nonsingular.

A linalg::matlinsolveLU does not check on any of the required prop-
erties of L and U.

A The component ring of the matrices L and Umust be a field, i.e., a domain
of category Cat::Field .
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A The parameters must be defined over the same component ring.

Example 1. We solve the system 2 −3 −1
1 1 −1
0 1 −1

X =

 1 0 0
0 1 0
0 0 1

 :

>> MatR := Dom::Matrix(Dom::Real):
A := MatR([[2, -3, -1], [1, 1, -1], [0, 1, -1]]);
I3 := MatR::identity(3)

+- -+
| 2, -3, -1 |
| |
| 1, 1, -1 |
| |
| 0, 1, -1 |
+- -+

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

We start by computing an LU-decomposition of A:

>> LU := linalg::factorLU(A)

-- +- -+ +- -+ -
-

| | 1, 0, 0 | | 2, -3, -1 | |
| | | | | |
| | 1/2, 1, 0 |, | 0, 5/2, -1/2 |, [1, 2, 3] |
| | | | | |
| | 0, 2/5, 1 | | 0, 0, -4/5 | |
-- +- -+ +- -+ -

-

Now we solve the system AX = I3, which gives us the inverse of A:

>> Ai := linalg::matlinsolveLU(LU[1], LU[2], I3)
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+- -+
| 0, 1, -1 |
| |
| -1/4, 1/2, -1/4 |
| |
| -1/4, 1/2, -5/4 |
+- -+

>> A * Ai, Ai * A

+- -+ +- -+
| 1, 0, 0 | | 1, 0, 0 |
| | | |
| 0, 1, 0 |, | 0, 1, 0 |
| | | |
| 0, 0, 1 | | 0, 0, 1 |
+- -+ +- -+

Changes:

A linalg::matlinsolveLU is a new function.

linalg::minpoly – minimal polynomial of a matrix

linalg::minpoly(A, x) computes the minimal polynomial of the square
matrix A in x, i.e., the monic polynomial of lowest degree annihilating the
matrix A.

Call(s):

A linalg::minpoly(A, x)

Parameters:
A — a square matrix of a domain of category Cat::Matrix
x — an indeterminate

Return Value: a polynomial of the domain Dom::DistributedPolynomial([x],R) ,
where R is the component ring of A.

Related Functions: linalg::charpoly , linalg::frobeniusForm
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Details:

A The minimal polynomial of A divides the characteristic polynomial of A,
by Cayley-Hamilton theorem.

A The component ring of A must be a field, i.e., a domain of category
Cat::Field .

Example 1. We define the following matrix over the rational numbers:

>> A := Dom::Matrix(Dom::Rational)(
[[0, 2, 0], [0, 0, 2], [2, 0, 0]]

)

+- -+
| 0, 2, 0 |
| |
| 0, 0, 2 |
| |
| 2, 0, 0 |
+- -+

The minimal polynomial of the matrix A in the variable x is then given by:

>> delete x: linalg::minpoly(A, x)

3
x - 8

In this case, the minimal polynomial is in fact equal to the characteristic poly-
nomial of A:

>> linalg::charpoly(A, x)

3
x - 8

Example 2. The minimal polynomial of the matrix:

>> B := matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]])

+- -+
| 0, 1, 0 |
| |
| 0, 0, 0 |
| |
| 0, 0, 0 |
+- -+
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is a polynomial of degree 2:

>> m := linalg::minpoly(B, x)

2
x

The characteristic polynomial of B has degree 3 and is divided by the minimal
polynomial of B:

>> p := linalg::charpoly(B, x)

3
x

>> p / m

x

Changes:

A linalg::minpoly is a new function.

linalg::multCol – multiply columns with a scalar

linalg::multCol(A, c, s) returns a copy of the matrix A resulting from
A by multiplying the c-th column of A with the scalar s.

Call(s):

A linalg::multCol(A, c, s)

A linalg::multCol(A, c1..c2, s)

A linalg::multCol(A, list, s)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
c — the column index: a positive integer ≤ n
c1..c2 — a range of column indices (positive integers ≤ n)
list — a list of column indices (positive integers ≤ n)

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::addCol , linalg::addRow ,
linalg::multRow
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Details:

A linalg::multCol(A, c1..c2, s) returns a copy of the matrix A
obtained from A by multiplying those columns whose indices are in the
range c1..c2 with the scalar s .

A linalg::multCol(A, list, s) returns a copy of the matrix A ob-
tained from matrix A by multiplying those columns whose indices are
contained in list with the scalar s .

A The scalar s is converted into an element of the component ring of the
matrix A. An error message is returned if the conversion fails.

Example 1. We define the following matrix:

>> A := matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

and illustrate the three different input formats for linalg::multCol :

>> linalg::multCol(A, 2, -1)

+- -+
| 1, -2, 3 |
| |
| 4, -5, 6 |
| |
| 7, -8, 9 |
+- -+

>> linalg::multCol(A, 1..2, 2)

+- -+
| 2, 4, 3 |
| |
| 8, 10, 6 |
| |
| 14, 16, 9 |
+- -+

>> linalg::multCol(A, [3, 1], 0)
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+- -+
| 0, 2, 0 |
| |
| 0, 5, 0 |
| |
| 0, 8, 0 |
+- -+

linalg::multRow – multiply rows with a scalar

linalg::multRow(A, r, s) returns a copy of the matrix A resulting from
A by multiplying the r-th row of A with the scalar s.

Call(s):

A linalg::multRow(A, r, s)

A linalg::multRow(A, r1..r2, s)

A linalg::multRow(A, list, s)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
r — the row index: a positive integer ≤ m
r1..r2 — a range of row indices (positive integers ≤ m)
list — a list of row indices (positive integers ≤ m)

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::addCol , linalg::addRow ,
linalg::multCol

Details:

A linalg::multRow(A, r1..r2, s) returns a copy of the matrix A
obtained from A by multiplying those rows whose indices are in the
range r1..r2 with the scalar s .

A linalg::multRow(A, list, s) returns a copy of the matrix A ob-
tained from matrix A by multiplying those rows whose indices are con-
tained in list with the scalar s .

A The scalar s is converted into an element of the component ring of the
matrix A. An error message is returned if the conversion fails.
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Example 1. We define the following matrix:

>> A := matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

and illustrate the three different input formats for linalg::multRow :

>> linalg::multRow(A, 2, -1)

+- -+
| 1, 2, 3 |
| |
| -4, -5, -6 |
| |
| 7, 8, 9 |
+- -+

>> linalg::multRow(A, 1..2, 2)

+- -+
| 2, 4, 6 |
| |
| 8, 10, 12 |
| |
| 7, 8, 9 |
+- -+

>> linalg::multRow(A, [3, 1], 0)

+- -+
| 0, 0, 0 |
| |
| 4, 5, 6 |
| |
| 0, 0, 0 |
+- -+

linalg::ncols – number of columns of a matrix

linalg::ncols(A) returns the number of columns of the matrix A.
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Call(s):

A linalg::ncols(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: a positive integer.

Related Functions: linalg::matdim , linalg::nrows ,
linalg::vecdim

Example 1. The matrix:

>> A:= matrix([[1, 2, 3, 4], [3, 1, 4], [5, 6]])

+- -+
| 1, 2, 3, 4 |
| |
| 3, 1, 4, 0 |
| |
| 5, 6, 0, 0 |
+- -+

has four columns:

>> linalg::ncols(A)

4

linalg::nonZeros – number of non-zero elements of a matrix

linalg::nonZeros(A) returns the number of non-zero components of the
matrix A.

Call(s):

A linalg::nonZeros(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: a nonnegative integer

100



Example 1. The matrix

>> MZ7 := Dom::Matrix(Dom::IntegerMod(7)):
A := MZ7([[18, -1], [4, 81]])

+- -+
| 4 mod 7, 6 mod 7 |
| |
| 4 mod 7, 4 mod 7 |
+- -+

has four non-zero entries:

>> linalg::nonZeros(A)

4

The matrix:

>> B := MZ7([[21, 2], [-1, 14]])

+- -+
| 0 mod 7, 2 mod 7 |
| |
| 6 mod 7, 0 mod 7 |
+- -+

has only two non-zero entries:

>> linalg::nonZeros(B)

2

linalg::normalize – normalize a vector

linalg::normalize(v) normalizes the vector ~v with respect to the 2-norm
(|~v| =

√
~v ∗ ~v).

Call(s):

A linalg::normalize(v)

Parameters:
v — a vector, i.e., an n× 1 or 1× n matrix of a domain of category

Cat::Matrix
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Return Value: a vector of the same domain type as v .

Related Functions: norm , linalg::scalarProduct

Details:

A The result of linalg::normalize(v) is a vector that has norm 1 and
the same direction as v .

A The scalar product ~v ∗ ~v for a vector ~v is implemented by the function
linalg::scalarProduct .

A The norm of a vector is computed with the function norm , which is over-
loaded for vectors. See the method "norm" of the domain constructor
Dom::Matrix for details.

A If the norm is an object that cannot be converted into an element of the
component ring of v , then an error occurs (see example 2).

Example 1. We define the following vector:

>> u := matrix([[1, 2]])

+- -+
| 1, 2 |
+- -+

Then the vector of norm 1 with the same direction as u is given by:

>> linalg::normalize(u)

+- -+
| 1/2 1/2 |
| 5 2 5 |
| ----, ------ |
| 5 5 |
+- -+

Example 2. The following computation fails because the vector (1,2) cannot
be normalized over the rationals:

>> v := Dom::Matrix(Dom::Rational)([[1, 2]]):
linalg::normalize(v)

Error: can’t normalize given vector over its component ring [l\
inalg::normalize]
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If we define v over the real numbers, then we get the normalized vector of v
as follows:

>> w := Dom::Matrix(Dom::Real)(v): linalg::normalize(w)

+- -+
| 1/2 1/2 |
| 5 2 5 |
| ----, ------ |
| 5 5 |
+- -+

linalg::nrows – number of rows of a matrix

linalg::nrows(A) returns the number of rows of the matrix A.

Call(s):

A linalg::nrows(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: a positive integer.

Related Functions: linalg::matdim , linalg::ncols ,
linalg::vecdim

Example 1. The matrix:

>> A := matrix([[1, 2, 3, 4], [3, 1, 4], [5, 6]])

+- -+
| 1, 2, 3, 4 |
| |
| 3, 1, 4, 0 |
| |
| 5, 6, 0, 0 |
+- -+

has three rows:

>> linalg::nrows(A)

3
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linalg::nullspace – basis for the null space of a matrix

linalg::nullspace(A) returns a basis for the null space of the matrix A,
i.e., a list B of linearly independent vectors such that A~x = ~0 if and only if ~x is
a linear combination of the vectors in B.

Call(s):

A linalg::nullspace(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: a list of (column) vectors of the domain Dom::Matrix(R) ,
where R is the component ring of A.

Related Functions: linalg::basis , linalg::matlinsolve ,
linsolve , numeric::matlinsolve

Details:

A The component ring of the matrix A must be a field, i.e., a domain of
category Cat::Field .

A If the component ring of Adoes not have a canonical representation of the
zero element, it can happen that linalg::nullspace does not find a
basis for the null space. In such a case, a wrong result is returned.

Example 1. The kernel of the matrix:

>> A := Dom::Matrix(Dom::Real)(
[[3^(1/2)*2 - 2, 2], [4, 3^(1/2)*2 + 2]]

)

+- -+
| 1/2 |
| 2 3 - 2, 2 |
| |
| 1/2 |
| 4, 2 3 + 2 |
+- -+

is one-dimensional, and a basis is

{(
− 1√

3−1
1

)}
:
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>> linalg::nullspace(A)

-- +- -+ --
| | 1 | |
| | - -------- | |
| | 1/2 | |
| | 3 - 1 | |
| | | |
| | 1 | |
-- +- -+ --

Changes:

A linalg::nullspace used to be linalg::nullSpace .

linalg::ogCoordTab – table of orthogonal coordinate transforma-
tions

linalg::ogCoordTab is a table of predefined orthogonal coordinate trans-
formations in R3.

Call(s):

A linalg::ogCoordTab[ogCoord <, Scales >](u1, u2, u3 <,
c, ... >)

Parameters:
ogCoord — the name of a predefined coordinate system (an

identifier)
u1,u2,u3 — names of the coordinates of the specified coordinate

system (identifiers)
c — an arithmetical expression

Options:

Scales — returns the scaling factors of the coordinate system
ogCoord .

Return Value: a function in the coordinates u1,u2,u3 of the specified coor-
dinate system. The function returns a list of the three vectors~eu1 ,~eu2 ,~eu3 , where
each vector is a list of three arithmetical expressions.

Related Functions: linalg::curl , linalg::divergence ,
linalg::grad , linalg::hessian , linalg::jacobian
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Details:

A The entry associated with ogCoord defines a coordinate transformation
~x = T(~u), which maps the vector ~u = (u1,u2,u3) in the corresponding
orthogonal coordinate system to a vector ~x = (x, y, z) in Cartesian coor-
dinates.

A The result of the transformation ~x = T(~u) is a list of three arithmetical
expressions in the unknows u1,u2,u3 .

A Some coordinate systems need additional constants, which appear as ad-
ditional parameters of the transformation T (see example 2).

A linalg::ogCoordTab is used by functions such as linalg::curl ,
linalg::divergence and linalg::grad to perform computations
with respect to other coordinates than Cartesian coordinates.

A linalg::ogCoordTab defines the following coordinate transformations
with the implicit assumptions 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π:

Cartesian — ~u = ~x = (x, y, z)

Spherical — ~u = (r, θ, φ)

x = r sin(θ) cos(φ)
y = r sin(θ) sin(φ)
z = r cos(θ)

.

Cylindrical — ~u = (r, φ, z)

x = r cos(φ)
y = r sin(φ)
z = z

ParabolicCylindrical — ~u = (u, v, z)

x = 1
2 (u2 + v2)

y = uv
z = z

Torus — ~u = (r, θ, φ)

x = (c− r cos(θ)) cos(φ)
y = (c− r cos(θ)) sin(φ)
z = r sin(θ), 0 ≤ r < c (c a real constant)

RotationParabolic — ~u = (u, v, φ)

x = uv cos(φ)
y = uv sin(φ)
z = 1

2 (u2− v2)
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EllipticCylindrical — ~u = (u, v, z)

x = c cosh(u) cos(v)
y = c sinh(u) sin(v)
z = z (c a real constant)

Option <Scales >:

A Returns the scaling factors of the specified coordinate transformation. The
scaling factors g1, g2, g3 of a coordinate transformation are defined by
gi := | ∂T

∂ui
| for i = 1,2,3.

Example 1. The following call returns the vector (x, y, z) in spherical coordi-
nates, expressed in terms of r, θ and φ:

>> delete r, theta, phi:
linalg::ogCoordTab[Spherical](r, theta, phi)

[[cos(phi) sin(theta), sin(phi) sin(theta), cos(theta)],

[cos(phi) cos(theta), sin(phi) cos(theta), -sin(theta)],

[-sin(phi), cos(phi), 0]]

The scaling factors of the corresponding coordinate transformation are:

>> linalg::ogCoordTab[Spherical,Scales](r, theta, phi)

[1, r, r sin(theta)]

Example 2. We express the Cartesian coordinates (x, y, z) in elliptic cylindrical
coordinates written in terms of u, v and z, choosing c = 1:

>> delete u, v, z:
linalg::ogCoordTab[EllipticCylindrical](u, v, z, 1)

-- -- cos(v) sinh(u) sin(v) cosh(u) -
-

| | -----------------------, -----------------------, 0 |,
| | 2 2 1/2 2 2 1/2 |
-- -- (cosh(u) - cos(v) ) (cosh(u) - cos(v) ) -

-

-- sin(v) cosh(u) cos(v) sinh(u) -
-
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| - -----------------------, -----------------------, 0 |
| 2 2 1/2 2 2 1/2 |
-- (cosh(u) - cos(v) ) (cosh(u) - cos(v) ) -

-

--
, [0, 0, 1] |

|
--

To compute the gradient of the vector function 2xy + z in elliptic cylindrical
coordinates with c = 1 we enter:

>> delete x, y, z:
linalg::grad(2*x*y + z, [x, y, z],

linalg::ogCoordTab[EllipticCylindrical,Scales](u, v, z, 1)
)

+- -+
| 2 y |
| ------------------------- |
| 2 2 1/2 |
| (- cos(v) + cosh(u) ) |
| |
| 2 x |
| ------------------------- |
| 2 2 1/2 |
| (- cos(v) + cosh(u) ) |
| |
| 1 |
+- -+

linalg::orthog – orthogonalization of vectors

linalg::orthog(S) orthogonalizes the vectors in S using the Gram-Schmidt
orthogonalization algorithm.

Call(s):

A linalg::orthog(S)

Parameters:
S — a set or list of vectors of the same dimension (a vector is an n× 1

or 1× n matrix of a domain of category Cat::Matrix )
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Return Value: a set or a list of vectors, respectively.

Related Functions: linalg::factorQR , linalg::isUnitary ,
linalg::normalize , linalg::scalarProduct , lllint , norm

Details:

A The vectors in S are orthogonalized with respect to the scalar product
linalg::scalarProduct .

A If O is the returned set, then the vectors of O span the same subspace as
the vectors in S, and they are pairwise orthogonal, i.e.: ~v · ~w = 0 for all
~v, ~w ∈ O with ~v 6= ~w.

A The vectors returned are not normalized. To normalize them use map(O,
linalg::normalize) .

A For an ordered set of orthogonal vectors, S should be a list.

A The vectors in S must be defined over the same component ring.

A The component ring of the vectors in S must be a field, i.e., a domain of
category Cat::Field .

Example 1. The following list of vectors is a basis of the vector space R3:

>> MatR := Dom::Matrix(Dom::Real):
S := [MatR([2, 1, 0]), MatR([-3, 1, 1]), MatR([-1, -1, -

1])]

-- +- -+ +- -+ +- -+ --
| | 2 | | -3 | | -1 | |
| | | | | | | |
| | 1 |, | 1 |, | -1 | |
| | | | | | | |
| | 0 | | 1 | | -1 | |
-- +- -+ +- -+ +- -+ --

The Gram-Schmidt algorithm then returns an orthogonal basis for R3. We get
an orthonormal basis with the following input:

>> ON := map(linalg::orthog(S), linalg::normalize)
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-- +- -+ +- -+ --

| | 1/2 | | 1/2 1/2 | |
| +- -+ | 6 | | 8 15 | |
| | 1/2 | | - ---- | | - ---------- | |
| | 2 5 | | 6 | | 60 | |
| | ------ | | | | | |
| | 5 | | 1/2 | | 1/2 1/2 | |
| | | | 6 | | 8 15 | |
| | 1/2 |, | ---- |, | ---------- | |
| | 5 | | 3 | | 30 | |
| | ---- | | | | | |
| | 5 | | 1/2 | | 1/2 1/2 | |
| | | | 6 | | 8 15 | |
| | 0 | | ---- | | - ---------- | |
| +- -+ | 6 | | 12 | |
-- +- -+ +- -+ --

Example 2. The orthogonalization of the vectors:

>> T := {matrix([[-2, 5, 3]]), matrix([[0, 2, 1]])}

{ +- -+ +- -+ }
{ | 0, 2, 1 |, | -2, 5, 3 | }
{ +- -+ +- -+ }

gives:

>> linalg::orthog(T)

{ +- -+ +- -+ }
{ | -2, 5, 3 |, | 13/19, 11/38, -1/38 | }
{ +- -+ +- -+ }

Example 3. The result of linalg::orthog is a list or set of linearly inde-
pendent vectors, even if the input contains linearly dependent vectors:

>> MatQ := Dom::Matrix(Dom::Rational):
S := [MatQ([2, 1]), MatQ([3, 4]), MatQ([-1, 1])]

-- +- -+ +- -+ +- -+ --
| | 2 | | 3 | | -1 | |
| | |, | |, | | |
| | 1 | | 4 | | 1 | |
-- +- -+ +- -+ +- -+ --
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>> linalg::orthog(S)

-- +- -+ +- -+ --
| | 2 | | -1 | |
| | |, | | |
| | 1 | | 2 | |
-- +- -+ +- -+ --

Changes:

A linalg::orthog used to be linalg::ogSystem .

A The function linalg::onSystem was removed. Use linalg::orthog
and linalg::normalize instead.

linalg::permanent – permanent of a matrix

linalg::permanent(A) computes the permanent of the square matrix A.

Call(s):

A linalg::permanent(A)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Return Value: an element of the component ring of A.

Related Functions: linalg::det

Details:

A The component ring of the matrix A must be a commutative ring, i.e., a
domain of category Cat::CommutativeRing .

Example 1. We compute the permanent of the following matrix:

>> delete a11, a12, a21, a22:
A := matrix([[a11, a12], [a21, a22]])

+- -+
| a11, a12 |
| |
| a21, a22 |
+- -+
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which gives us the general formula for the permanent of an arbitrary 2× 2
matrix:

>> linalg::permanent(A)

a11 a22 + a12 a21

Example 2. The permanent of a matrix can be computed over arbitrary com-
mutative rings. Let us create a random matrix defined over the ring Z6, the
integers modulo 6:

>> B := linalg::randomMatrix(5, 5, Dom::IntegerMod(6))

+- -+
| 3 mod 6, 2 mod 6, 3 mod 6, 5 mod 6, 4 mod 6 |
| |
| 2 mod 6, 5 mod 6, 2 mod 6, 1 mod 6, 1 mod 6 |
| |
| 1 mod 6, 3 mod 6, 3 mod 6, 2 mod 6, 2 mod 6 |
| |
| 1 mod 6, 0 mod 6, 3 mod 6, 3 mod 6, 5 mod 6 |
| |
| 0 mod 6, 0 mod 6, 0 mod 6, 1 mod 6, 3 mod 6 |
+- -+

The permanent of this matrix is:

>> linalg::permanent(B)

4 mod 6

Its determinant is:

>> linalg::det(B)

0 mod 6

Background:

A The permanent of an n× n matrix A =
(
ai j
)

1≤i, j≤n is defined similary as
the determinant of A, only the signs of the permutations do not enter the
definition:

perm(A) := ∑
σ∈Sn

n

∏
j=1

aσ( j), j.

(Sn is the symmetric group of all permutations of {1, . . . ,n}.)

A In contrast to the computation of the determinant, the computation of
the permanent takes exponential time in n!
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Changes:

A linalg::permanent is a new function.

linalg::pseudoInverse – Moore-Penrose inverse of a matrix

linalg::pseudoInverse(A) computes the Moore-Penrose inverse of A.

Call(s):

A linalg::pseudoInverse(A)

Parameters:

A — a matrix of category Cat::Matrix

Return Value: a matrix of the same domain type as A, or the value FAIL .

Related Functions: _invert

Details:

A If the Moore-Penrose inverse of A does not exist, then FAIL is returned.

A The component ring of the matrix A must be a field, i.e., a domain of
category Cat::Field .

Example 1. The Moore-Penrose inverse of the 2× 3 matrix:

>> A := Dom::Matrix(Dom::Complex)([[1, I, 3], [1, 3, 2]])

+- -+
| 1, I, 3 |
| |
| 1, 3, 2 |
+- -+

is the 3× 2 matrix:

>> Astar := linalg::pseudoInverse(A)

+- -+
| 7/96 + 1/32 I, 1/24 - 1/32 I |
| |
| - 7/32 - 5/96 I, 5/16 + 7/96 I |
| |
| 7/24 + 1/16 I, 1/96 - 3/32 I |
+- -+
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Note that in this example, only:

>> A * Astar

+- -+
| 1, 0 |
| |
| 0, 1 |
+- -+

yields the identity matrix, but not (see “Backgrounds” below):

>> Astar * A

+- -
+

| 11/96, 3/32 - 1/48 I, 29/96 + 1/32 I |
| |
| 3/32 + 1/48 I, 95/96, - 1/32 - 1/96 I |
| |
| 29/96 - 1/32 I, - 1/32 + 1/96 I, 43/48 |
+- -

+

Background:

A For an invertible matrix A, the Moore-Penrose inverse A? of A coincides
with the inverse of A. In general, only AA?A = A and A?AA? = A?

holds.

If A is of dimension m× n, then A? is of dimension n×m.

A The computation of the Moore-Penrose inverse requires the existence of
a scalar product on the vector space Kn, where K is the coefficient field
of the matrix A. This is only the case for some fields K in theory, but
linalg::scalarProduct works also for vectors over other fields (e.g.
finite fields). The computation of a Moore-Penrose inverse may fail in
such cases.

Changes:

A linalg::pseudoInverse is a new function.

linalg::randomMatrix – generate a random matrix

linalg::randomMatrix(m, n) returns an m×n matrix with random com-
ponents.
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Call(s):

A linalg::randomMatrix(m, n <, R>)

A linalg::randomMatrix(m, n <, R><, bound >, Diagonal )

A linalg::randomMatrix(m, n <, R><, bound >, Unimodu-
lar )

Parameters:
m, n — positive integers
R — the component ring, i.e., a domain of category Cat::Rng ;

default: Dom::ExpressionField()
bound — an arithmetical expression

Options:

Diagonal — creates a random m× n diagonal matrix over R.
Unimodular — creates a random m× n unimodular matrix over R.

Return Value: a matrix of the domain Dom::Matrix(R) .

Related Functions: random , Dom::Matrix

Details:

A The call linalg::randomMatrix(m, n) returns a random m× n ma-
trix over the default component ring for matrices, i.e., over the domain
Dom::ExpressionField() .

A The matrix components are generated by the method "random" of the
domain R (see example 2).

A The parameter bound is given as a parameter to the method "random"
of the domain R in order to bound the size of the components of the
random matrix. The correct type of bound is determined by the method
"random" . The parameter has no effect if the slot "random" does not
have a size argument.

Option <Unimodular >:

A Creates a random m× n unimodular matrix over R, so that its determi-
nant is a unit in R.

A The norm of each component of the matrix returned does not exceed
bound , which must be a positive integer, if specified. The default value
of bound is 10.
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Option <Diagonal >:

A Creates a random m× n diagonal matrix over R.

Example 1. We create a random square matrix over the integers. Because the
matrix is random the created matrix can vary:

>> linalg::randomMatrix(2, 2, Dom::Integer)

+- -+
| 824, -65 |
| |
| -814, -741 |
+- -+

If you want to bound the size of its components, say between -2 and 2, enter:

>> linalg::randomMatrix(2, 2, Dom::Integer, -2..2)

+- -+
| -1, 1 |
| |
| -2, 1 |
+- -+

Example 2. The following input creates a random vector over the default
component ring Dom::ExpressionField() . Because the vector is random
the created vector can vary:

>> v := linalg::randomMatrix(1, 2)

array(1..1, 1..2,
3 5

470 R1 - 494 R1 - 246
(1, 1) = ---------------------------------,

2 3
381 R1 + 747 R1 - 1150 R1 - 535

3 5
1169 R1 - 977 R1 + 932 R1 - 781

(1, 2) = ----------------------------------
2 3

- 214 R1 + 10 R1 - 1240 R1 + 712
)

>> domtype(v)
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Dom::Matrix()

The components of this matrix are random univariate polynomials created by
the function polylib::randpoly . See the method "random" of the domain
constructor Dom::ExpressionField for details.

Example 3. To create a random diagonal matrix over the rationals we enter,
for example:

>> linalg::randomMatrix(3, 3, Dom::Rational, Diagonal)

+- -+
| -64/305, 0, 0 |
| |
| 0, 41/617, 0 |
| |
| 0, 0, -167/509 |
+- -+

Example 4. The following command creates a random unimodular matrix
over the integers so that its determinant is either 1 or -1:

>> A := linalg::randomMatrix(3, 3, Dom::Integer, Unimodular)

+- -+
| 9, 2, 8 |
| |
| 4, 1, 0 |
| |
| -1, 0, -7 |
+- -+

>> linalg::det(A)

1

We can bound the size of the components. The following input returns a uni-
modular matrix A =

(
ai j
)

with |ai j| ≤ 2 for i, j = 1,2,3:

>> A := linalg::randomMatrix(3, 3, 2, Unimodular)

+- -+
| -1, 0, -2 |
| |
| 1, 1, 0 |
| |
| -2, -1, -1 |
+- -+
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Since we did not specifiy the component ring, the matrix is defined over the
standard component ring for matrices (the domain Dom::ExpressionField() ):

>> domtype(A)

Dom::Matrix()

Background:

A For generating random unimodular matrices, see Jürgen Hansen: Gener-
ating Problems in Linear Algebra, MapleTech, Volume 1, No.2, 1994.

Changes:

A The new options Diagonal and Unimodular were added.

linalg::rank – rank of a matrix

linalg::rank(A) computes the rank of the matrix A.

linalg::rank(S) computes the rank of the matrix whose columns are the
vectors in S.

Call(s):

A linalg::rank(A)

A linalg::rank(S)

Parameters:
A — a matrix of a domain of category Cat::Matrix
S — a list or set of column vectors of the same dimension (a column

vector is an n× 1 matrix of a domain of category Cat::Matrix )

Return Value: a nonnegative integer

Related Functions: linalg::det , linalg::gaussElim

Details:

A The component ring of A or of the vectors given in S, respectively, must
be an integral domain, i.e., a domain of category Cat::IntegralDomain .
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Example 1. We define the following matrix over Z:

>> MatZ := Dom::Matrix( Dom::Integer ):
A := MatZ([[1, 2, 3, 4], [-1, 0, 1, 0], [3, 5, 6, 9]])

+- -+
| 1, 2, 3, 4 |
| |
| -1, 0, 1, 0 |
| |
| 3, 5, 6, 9 |
+- -+

and compute its rank:

>> linalg::rank(A)

3

Example 2. The rank of the matrix A = (~si)1≤i≤3 with~s1 =

 0
1
1

 ,~s2 =

 0
1
0

 and ~s3 = 0
0
1

 is:

>> S:= { MatZ([0,1,1]), MatZ([0,1,0]), MatZ([0,0,1]) }:
linalg::rank(S)

2

Background:

A The row rank of a matrix A is defined as the maximal number of linearly
independent row vectors of A. The column rank of A is the maximal
number of linearly independent column vectors of A.

A Because for each matrix A its row rank is equal to its column rank this
number is just called the rank of A.

A The rank of A is computed by Gaussian elimination (see linalg::gaussElim ),
it is equal to the number of characteristic column indices.

linalg::row – extract rows of a matrix

linalg::row(A, r) extracts the r-th row vector of the matrix A.
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Call(s):

A linalg::row(A, r)

A linalg::row(A, r1..r2)

A linalg::row(A, list)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
r — the row index: a positive integer ≤ m
r1..r2 — a range of row indices (positive integers ≤ m)
list — a list of row indices (positive integers ≤ m)

Return Value: a single row vector or a list of row vectors; a row vector is a
1× n matrix of category Cat::Matrix(R) , where R is the component ring of
A.

Related Functions: linalg::col , linalg::delCol , linalg::delRow ,
linalg::setCol , linalg::setRow

Details:

A linalg::row(A, r1..r2) returns a list of row vectors whose indices
are in the range r1..r2 . If r2 < r1 then the empty list [] is returned.

A linalg::row(A, list) returns a list of row vectors whose indices
are contained in list (in the same order).

Example 1. We define a matrix over Q:

>> A := Dom::Matrix(Dom::Rational)(
[[1, 1/5], [-3/2, 5], [2, -3]]

)

+- -+
| 1, 1/5 |
| |
| -3/2, 5 |
| |
| 2, -3 |
+- -+

and illustrate the three different input formats for the function linalg::row :

>> linalg::row(A, 2)

+- -+
| -3/2, 5 |
+- -+
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>> linalg::row(A, [2, 1, 3])

-- +- -+ +- -+ +- -+ --
| | -3/2, 5 |, | 1, 1/5 |, | 2, -3 | |
-- +- -+ +- -+ +- -+ --

>> linalg::row(A, 2..3)

-- +- -+ +- -+ --
| | -3/2, 5 |, | 2, -3 | |
-- +- -+ +- -+ --

linalg::scalarProduct – scalar product of vectors

linalg::scalarProduct(u, v) computes the scalar product of the vec-
tors ~u = (u1, . . . ,un) and ~v = (v1, . . . , vn) with respect to the standard basis,
namely the sum u1v1 + . . .+ unvn.

Call(s):

A linalg::scalarProduct(u, v)

Parameters:
u, v — vectors of the same dimension (a vector is an n× 1 or 1× n

matrix of a domain of category Cat::Matrix )

Return Value: an element of the component ring of u and v .

Side Effects: Properties of identifiers are taken into account.

Related Functions: linalg::angle , linalg::crossProduct ,
linalg::isUnitary , linalg::factorQR , linalg::orthog , norm

Details:

A The scalar product is also called “inner product” or “dot product”.

A If the component ring of the vectors u and v does not define the entry
"conjugate" , then linalg::scalarProduct uses the scalar prod-
uct defined by u1v1 + . . .+ unvn.

A The vectors u and v must be defined over the same component ring.
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A linalg::scalarProduct can be redefined to a different scalar prod-
uct. This also affects the behaviour of functions such as linalg::angle ,
linalg::factorQR , linalg::isUnitary , norm (for vectors and ma-
trices), linalg::orthog and linalg::pseudoInverse depend on
the definition of linalg::scalarProduct . See example 3.

Example 1. We compute the scalar product of the vectors (i,1) and (1,−i):

>> MatC := Dom::Matrix(Dom::Complex):
u := MatC([I, 1]): v := MatC([1, -I]):
linalg::scalarProduct(u, v)

2 I

Example 2. We compute the scalar product of the vectors ~u = (u1,u2) and
~v = (v1, v2) with the symbolic entries u1,u2, v1, v2 over the standard component
ring for matrices:

>> delete u1, u2, v1, v2:
u := matrix([u1, u2]): v := matrix([v1, v2]):
linalg::scalarProduct(u, v)

u1 conjugate(v1) + u2 conjugate(v2)

You can use assume to tell the system that the symbolic components are to
represent real numbers:

>> assume([u1, u2, v1, v2], Type::Real):

Then the scalar product of ~u and ~v simplifies to:

>> linalg::scalarProduct(u, v)

u1 v1 + u2 v2

Example 3. One particular scalar product in the real vector space of continu-
ous functions on the interval [0,1] is defined by

( f , g) =
∫ 1

0
f (t)g(t)dt.

To compute an orthogonal basis corresponding to the polynomial basis
1, t, t2, t3, . . . with respect to this scalar product, we replace the standard scalar
product by the following procedure:
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>> standardScalarProduct := linalg::scalarProduct:
unprotect(linalg):
linalg::scalarProduct := proc(u, v)

local F, f, t;
begin

// (0)
f := expr(u[1] * v[1]);

// (1)
t := indets(f);
if t = {} then t := genident("t") else t := op(t, 1) end_if;

// (2)
F := int(f, t = 0..1);

// (3)
u::dom::coeffRing::coerce(F)

end:

We start with step (0) to convert f (t)g(t) to an expression of a basic domain
type, such that the system function int in step (2) can handle its input (this is
not necessary if the elements of the component ring of the vectors are already
represented by elements of basic domains).

Step (1) extracts the indeterminate of the polynomials, step (2) computes
the scalar product as defined above and step (3) converts the result back to
an element of the component ring of vectors u and v .

Note that we need to unprotect the write protected identifier linalg , oth-
erwise the assignment would lead to an error message.

We next create the matrix which consists of the first five of the above poly-
nomials:

>> P := matrix([[1, t, t^2, t^3, t^4]])

+- 2 3 4-+
| 1, t, t , t , t |
+- -+

If we now perform the Gram-Schmidt orthogonalization procedure on the
columns of P with the function linalg::orthog , we get:

>> S := linalg::orthog(linalg::col(P, 1..4))

--
|
| +- -+ +- -+ +- 2 -+
| | 1 |, | t - 1/2 |, | - t + t + 1/6 |,
| +- -+ +- -+ +- -+
--
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+- -+ --
| 2 | |
| 3 t 3 t 3 | |
| --- - ---- + t - 1/20 | |
| 5 2 | |
+- -+ --

Each vector in S is orthogonal to the other vectors in S with respect to the
modified scalar product. We check this for the first vector:

>> linalg::scalarProduct(S[1], S[j]) $ j = 2..nops(S)

0, 0, 0

Finally, we undo the redefinition of the scalar product, so as not to run into
trouble with subsequent computations:

>> linalg::scalarProduct := standardScalarProduct:
protect(linalg, Error):

linalg::setCol – change a column of a matrix

linalg::setCol(A, p, c) returns a copy of matrix A with the p-th col-
umn replaced by the column vector ~c.

Call(s):

A linalg::setCol(A, p, c)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
c — a column vector, or a list that can be converted into a column

vector of the domain Dom::Matrix(R) , where R is the
component ring of A (a column vector is an m× 1 matrix)

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::col , linalg::delCol , linalg::delRow ,
linalg::row , linalg::setRow
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Details:

A If c is a list with at most m elements, then c is converted into a column
vector. An error message is returned if the conversion is not possible
(e.g., if an element of the list cannot be converted into an object of the
component ring of A; see example 2).

Example 1. We define a matrix over the rationals:

>> MatQ := Dom::Matrix(Dom::Rational):
A := MatQ([[1, 2], [3, 2]])

+- -+
| 1, 2 |
| |
| 3, 2 |
+- -+

and replace the 2nd column by the 2× 1 zero vector:

>> linalg::setCol(A, 2, MatQ([0, 0]))

+- -+
| 1, 0 |
| |
| 3, 0 |
+- -+

Example 2. We create the 2× 2 zero matrix over Z6:

>> B := Dom::Matrix(Dom::IntegerMod(6))(2, 2)

+- -+
| 0 mod 6, 0 mod 6 |
| |
| 0 mod 6, 0 mod 6 |
+- -+

and replace the 2nd column by the vector
(

1
−1

)
. We give the column vec-

tor in form of a list. Its elements are converted implicitly into objects of the
component ring of B:

>> linalg::setCol(B, 2, [1, -1])
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+- -+
| 0 mod 6, 1 mod 6 |
| |
| 0 mod 6, 5 mod 6 |
+- -+

The following input leads to an error message because the number 1/3 can
not be converted into an object of type Dom::IntegerMod(6) :

>> linalg::setCol(B, 1, [1/3, 0])

Error: invalid column vector [linalg::setCol]

linalg::setRow – change a row of a matrix

linalg::setRow(A, p, r) returns a copy of the matrix A with the p-th
row replaced by the row vector ~r.

Call(s):

A linalg::setRow(A, p, r)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
r — a row vector or a list that can be converted into a row vector the

domain Dom::Matrix(R) , where R is the component ring of A (a
row vector is a 1× n matrix)

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::col , linalg::delCol , linalg::delRow ,
linalg::row , linalg::setCol

Details:

A If r is a list with at most n elements, then r is converted into a row vector.
An error message is returned if the conversion is not possible (e.g., if an
element of the list cannot be converted into an object of the component
ring of A; see example 2).
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Example 1. We define a matrix over the rationals:

>> MatQ := Dom::Matrix(Dom::Rational):
A := MatQ([[1, 2], [3, 2]])

+- -+
| 1, 2 |
| |
| 3, 2 |
+- -+

and replace the 2nd row by the 1× 2 zero vector:

>> linalg::setRow(A, 2, MatQ(1, 2, [0, 0]))

+- -+
| 1, 2 |
| |
| 0, 0 |
+- -+

Example 2. We create the 2× 4 zero matrix over Z6:

>> B := Dom::Matrix(Dom::IntegerMod(6))(2, 4)

+- -+
| 0 mod 6, 0 mod 6, 0 mod 6, 0 mod 6 |
| |
| 0 mod 6, 0 mod 6, 0 mod 6, 0 mod 6 |
+- -+

and replace the 2nd row by the vector (1,−1,1,−1). We give the row vector in
form of a list. Its elements are converted implicitly into objects of the compo-
nent ring of B:

>> linalg::setRow(B, 2, [1, -1, 1, -1])

+- -+
| 0 mod 6, 0 mod 6, 0 mod 6, 0 mod 6 |
| |
| 1 mod 6, 5 mod 6, 1 mod 6, 5 mod 6 |
+- -+

The following input leads to an error message because the number 1
3 can

not be converted into an object of type Dom::IntegerMod(6) :

>> linalg::setRow(B, 1, [1/3, 0, 1, 0])
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Error: invalid row vector [linalg::setRow]

linalg::smithForm – Smith canonical form of a matrix

linalg::smithForm(A) computes the Smith canonical form of the n-dimensional
square matrix A, i.e., an n× n diagonal matrix S such that Si−1,i−1 divides Si,i
for i = 2, . . . ,n.

Call(s):

A linalg::smithForm(A)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::frobeniusForm , linalg::hermiteForm ,
linalg::jordanForm

Details:

A The Smith canonical form of a matrix A is unique.

A The component ring of A must be a Euclidean ring, i.e., a domain of cat-
egory Cat::EuclideanDomain .

Example 1. We define a matrix over the integers:

>> MatZ := Dom::Matrix(Dom::Integer):
A := MatZ([[9, -36, 30], [-36, 192, -180], [30, -180, 180]])

+- -+
| 9, -36, 30 |
| |
| -36, 192, -180 |
| |
| 30, -180, 180 |
+- -+

The Smith canonical form of A is then given by:

>> linalg::smithForm(A)
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+- -+
| 3, 0, 0 |
| |
| 0, 12, 0 |
| |
| 0, 0, 60 |
+- -+

Example 2. We compute the Smith canonical form of a matrix over a ring of
polynomials:

>> MatPoly := Dom::Matrix(Dom::DistributedPolynomial([x], Dom::Rational)):
B := MatPoly(

[[-(x - 3)^2*(x - 2),(x - 3)*(x - 2)*(x - 4)],
[(x - 3)*(x - 2)*(x - 4),-(x - 3)^2*(x - 4)]

])

+- -
+

| 3 2 3 2 |
| - x + 8 x - 21 x + 18, x - 9 x + 26 x - 24 |
| |
| 3 2 3 2 |
| x - 9 x + 26 x - 24, - x + 10 x - 33 x + 36 |
+- -

+

The Smith canonical form of the matrix B is the following matrix:

>> linalg::smithForm(B)

+- -+
| x - 3, 0 |
| |
| 3 2 |
| 0, x - 9 x + 26 x - 24 |
+- -+

Changes:

A linalg::smithForm is a new function.

linalg::stackMatrix – join matrices vertically
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linalg::stackMatrix(A, B1 <, B2, ... >) returns the matrix formed
by joining the matrices A, B1, B2, . . . vertically.

Call(s):

A linalg::stackMatrix(A, B1 <, B2, ... >)

Parameters:

A, B1, B2, ... — matrices of a domain of category Cat::Matrix

Return Value: a matrix of the domain type Dom::Matrix(R) , where R is the
component ring of A.

Related Functions: linalg::concatMatrix

Details:

A The matrices B1, B2, ... are converted into the matrix domain Dom::Matrix(R) ,
where R is the component ring of A.

An error message is raised if one of these conversions fails, or if the ma-
trices do not have the same number of columns as the matrix A.

Example 1. We define the matrix:

>> A:= matrix( [[sin(x),x], [-x,cos(x)]] )

+- -+
| sin(x), x |
| |
| -x, cos(x) |
+- -+

and append the 2× 2 identity matrix to the lower end of the matrix A:

>> linalg::stackMatrix(A, matrix::identity(2))

+- -+
| sin(x), x |
| |
| -x, cos(x) |
| |
| 1, 0 |
| |
| 0, 1 |
+- -+
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Example 2. We define a matrix from the ring of 2× 2 square matrices:

>> SqMatQ := Dom::SquareMatrix(2,Dom::Rational):
A := SqMatQ([[1, 2], [3, 4]])

+- -+
| 1, 2 |
| |
| 3, 4 |
+- -+

Note that the following operation:

>> AA := linalg::stackMatrix(A, A)

+- -+
| 1, 2 |
| |
| 3, 4 |
| |
| 1, 2 |
| |
| 3, 4 |
+- -+

returns a matrix of a different domain type as the input matrix:

>> domtype(AA)

Dom::Matrix(Dom::Rational)

linalg::submatrix – extract a submatrix or a subvector from a ma-
trix or a vector, respectively

linalg::submatrix(A, r1..r2, c1..c2) returns a copy of the subma-
trix of the matrix A obtained by selecting the rows r1, r1 + 1, . . . , r2 and the
columns c1, c1 + 1, . . . , c2.

linalg::submatrix(v,i1..i2) returns a copy of the subvector of the
vector ~v obtained by selecting the components with indices i1, i1 + 1, . . . , i2.

Call(s):

A linalg::submatrix(A, r1..r2, c1..c2)

A linalg::submatrix(A, rlist, clist)

A linalg::submatrix(v, i1..i2)

A linalg::submatrix(v, list)
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Parameters:
A — an m× n matrix of a domain of category

Cat::Matrix
v — a vector with k components, i.e., a k× 1 or 1× k

matrix of a domain of category Cat::Matrix
r1..r2, c1..c2 — ranges of row/column indices: positive integers

less or equal to m and n, respectively
rlist, clist — lists of row/column indices: positive integers

less or equal to m and n, respectively
i1..i2 — a range of vector indices: positive integers less

or equal to k
list — a list of vector indices: positive integers less or

equal to k

Return Value: a matrix of the same domain type as A or a vector of the same
domain type as v , respectively.

Related Functions: linalg::col , linalg::row , linalg::substitute

Details:

A The index notation A[r1..r2,c1..c2] and v[i1..i2] , respectively,
can be used instead of linalg::submatrix(A, r1..r2, c1..c2)
and linalg::submatrix(v, i1..i2) .

A linalg::submatrix(A,rlist,clist) returns the submatrix of the
matrix A whose (i, j)-th component is arlist[i],clist[ j].

A linalg::submatrix(v,list) returns the subvector of the vector v
whose i-th component is vlist[i].

A If v is a row vector or a column vector, then linalg::submatrix(v,
1..1, i1..i2) and linalg::submatrix(v, i1..i1, 1..1) , re-
spectively, are valid inputs, and they both are equivalent to the call linalg::submatrix(v,i1..i2) .

Example 1. We define the following matrix:

>> A := matrix([[1, x, 0], [0, x^2, 1]])

+- -+
| 1, x, 0 |
| |
| 2 |
| 0, x , 1 |
+- -+

The submatrix (a1, j)1≤ j≤2 of A is given by:
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>> linalg::submatrix(A, 1..1, 1..2)

+- -+
| 1, x |
+- -+

Equivalent to the use of the index operator we obtain:

>> A[1..1, 1..2]

+- -+
| 1, x |
+- -+

We extract the first and the third column of A and get the 2× 2 identity matrix:

>> linalg::submatrix(A, [1, 2], [1, 3])

+- -+
| 1, 0 |
| |
| 0, 1 |
+- -+

Example 2. Vector components can be accessed by a single index or a range
of indices. For example, to extract the first two components of the following
vector:

>> v := matrix([1, 2, 3])

+- -+
| 1 |
| |
| 2 |
| |
| 3 |
+- -+

just enter the command:

>> v[1..2]

+- -+
| 1 |
| |
| 2 |
+- -+
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Of course, the same subvector can be extracted with the command linalg::submatrix(
v,1..2 ) .

The following input returns the vector comprising the first and the third
component of v :

>> linalg::submatrix(v, [1, 3])

+- -+
| 1 |
| |
| 3 |
+- -+

Changes:

A linalg::submatrix used to be linalg::extractMatrix .

linalg::substitute – replace a part of a matrix by another matrix

linalg::substitute(B, A, m, n) returns a copy of the matrix B, where
entries starting at position [m,n] are replaced by the entries of the matrix A.

Call(s):

A linalg::substitute(B, A, m, n)

Parameters:
A, B — matrices of a domain of category Cat::Matrix
m, n — positive integers

Return Value: a matrix of the same domain type as B.

Related Functions: linalg::submatrix , linalg::concatMatrix ,
linalg::setCol , linalg::setRow , linalg::stackMatrix

Details:

A linalg::substitute(B, A, m, n) returns a copy of the matrix B,
where entries starting at position [m,n] are replaced by the entries of the
matrix A, i.e., Bmn is A11.

A If the matrices are defined over different component domains, then the
entries of A are converted into elements of the component domain of
the matrix B. If one of these conversions fails, then an error message is
returned.

134



Example 1. We define the following matrix:

>> B := matrix(
[[1, 2, 3, 4], [5, 6, 7, 8],

[9, 10, 11, 12], [13, 14, 15, 16]]
)

+- -+
| 1, 2, 3, 4 |
| |
| 5, 6, 7, 8 |
| |
| 9, 10, 11, 12 |
| |
| 13, 14, 15, 16 |
+- -+

and copy the 2× 2 zero matrix into the matrix B, beginning at position [3,3]:

>> A := matrix(2, 2):
linalg::substitute(B, A, 3, 3)

+- -+
| 1, 2, 3, 4 |
| |
| 5, 6, 7, 8 |
| |
| 9, 10, 0, 0 |
| |
| 13, 14, 0, 0 |
+- -+

Matrix entries out of range are ignored:

>> linalg::substitute(B, A, 4, 4)

+- -+
| 1, 2, 3, 4 |
| |
| 5, 6, 7, 8 |
| |
| 9, 10, 11, 12 |
| |
| 13, 14, 15, 0 |
+- -+
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Changes:

A linalg::substitute is a new function.

linalg::sumBasis – basis for the sum of vector spaces

linalg::sumBasis(S1, S2, ...) returns a basis of the vector space V1 +
V2 + . . . , where Vi denotes the vector space spanned by the vectors in Si.

Call(s):

A linalg::sumBasis(S1, S2, ...)

Parameters:
S1, S2, ... — a set or list of vectors of the same dimension (a

vector is a n× 1 or 1× n matrix of a domain of
category Cat::Matrix )

Return Value: a set or a list of vectors, according to the domain type of the
parameter S1.

Related Functions: linalg::basis , linalg::intBasis ,
linalg::rank

Details:

A To obtain an ordered basis, S1, S2, ... should be given as lists of
vectors.

A A basis of the zero-dimensional space is the empty set or list, respec-
tively.

A The given vectors must be defined over the same component ring, which
must be a field, i.e., a domain of category Cat::Field .

Example 1. We define three vectors ~v1, ~v2, ~v3 over Q:

>> MatQ := Dom::Matrix(Dom::Rational):
v1 := MatQ([[3, -2]]); v2 := MatQ([[1, 0]]); v3 := MatQ([[5, -

3]])
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+- -+
| 3, -2 |
+- -+

+- -+
| 1, 0 |
+- -+

+- -+
| 5, -3 |
+- -+

A basis of the vector space V1 + V2 + V3 with V1 =< {~v1, ~v2, ~v3} >, V2 =<
{~v1, ~v3} > and V3 =< {~v1 + ~v2, ~v2, ~v1 + ~v3} > is:

>> linalg::sumBasis([v1, v2, v3], [v1, v3], [v1 + v2, v2, v1 + v3])

-- +- -+ +- -+ --
| | 3, -2 |, | 1, 0 | |
-- +- -+ +- -+ --

Example 2. The following set of two vectors:

>> MatQ := Dom::Matrix(Dom::Rational):
S1 := {MatQ([1, 2, 3]), MatQ([-1, 0, 2])}

{ +- -+ +- -+ }
{ | -1 | | 1 | }
{ | | | | }
{ | 0 |, | 2 | }
{ | | | | }
{ | 2 | | 3 | }
{ +- -+ +- -+ }

is a basis of a two-dimensional subspace of Q3:

>> linalg::rank(S1)

2

The same holds for the following set:

>> S2 := {MatQ([0, 2, 3]), MatQ([2, 4, 6])};
linalg::rank(S2)
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{ +- -+ +- -+ }
{ | 0 | | 2 | }
{ | | | | }
{ | 2 |, | 4 | }
{ | | | | }
{ | 3 | | 6 | }
{ +- -+ +- -+ }

2

The sum of the corresponding two subspaces is the vector space Q3:

>> Q3 := linalg::sumBasis(S1, S2)

{ +- -+ +- -+ +- -+ }
{ | -1 | | 0 | | 1 | }
{ | | | | | | }
{ | 0 |, | 2 |, | 2 | }
{ | | | | | | }
{ | 2 | | 3 | | 3 | }
{ +- -+ +- -+ +- -+ }

linalg::swapCol – swap two columns in a matrix

linalg::swapCol(A, c1, c2) returns a copy of the matrix A with the
columns with indices c1 and c2 interchanged.

Call(s):

A linalg::swapCol(A, c1, c2)

A linalg::swapCol(A, c1, c2, r1..r2)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
c1, c2 — the column indices: positive integers ≤ n
r1..r2 — a range of row indices (positive integers ≤ m)

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::col , linalg::delCol , linalg::delRow ,
linalg::row , linalg::setCol , linalg::setRow , linalg::swapRow
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Details:

A The affect of linalg::swapCol(A, c1, c2, r1..r2) is that only
the components from row r1 to row r2 of column c1 are interchanged
with the corresponding components of column c2 .

Example 1. We consider the following matrix:

>> A := matrix(3, 3, (i, j) -> 3*(i - 1) + j)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

The following command interchanges the first and the second column of A.
The result is the following matrix:

>> linalg::swapCol(A, 1, 2)

+- -+
| 2, 1, 3 |
| |
| 5, 4, 6 |
| |
| 8, 7, 9 |
+- -+

If only the components in the first two rows should be affected, we enter:

>> linalg::swapCol(A, 1, 2, 1..2)

+- -+
| 2, 1, 3 |
| |
| 5, 4, 6 |
| |
| 7, 8, 9 |
+- -+

The third row remains unchanged.
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linalg::swapRow – swap two rows in a matrix

linalg::swapRow(A, r1, r2) returns a copy of the matrix A with the
rows with indices r1 and r2 interchanged.

Call(s):

A linalg::swapRow(A, r1, r2)

A linalg::swapRow(A, r1, r2, c1..c2)

Parameters:
A — an m× n matrix of a domain of category Cat::Matrix
r1, r2 — the row indices: positive integers ≤ m
c1..c2 — a range of column indices (positive integers ≤ n)

Return Value: a matrix of the same domain type as A.

Related Functions: linalg::col , linalg::delCol , linalg::delRow ,
linalg::row , linalg::setCol , linalg::setRow , linalg::swapCol

Details:

A The affect of linalg::swapRow(A, r1, r2, c1..c2) is that only
the components from column c1 to column c2 of row r1 are interchanged
with the corresponding components of row r2 .

Example 1. We consider the following matrix:

>> A := matrix(3, 3, (i, j) -> 3*(i - 1) + j)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

The following command interchanges the first and the second row of A. The
result is the following matrix:

>> linalg::swapRow(A, 1, 2)
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+- -+
| 4, 5, 6 |
| |
| 1, 2, 3 |
| |
| 7, 8, 9 |
+- -+

If only the components in the first two columns should be affected, we enter:

>> linalg::swapRow(A, 1, 2, 1..2)

+- -+
| 4, 5, 3 |
| |
| 1, 2, 6 |
| |
| 7, 8, 9 |
+- -+

The third column remains unchanged.

linalg::sylvester – Sylvester matrix of two polynomials

linalg::sylvester(p, q) returns the Sylvester matrix of the two poly-
nomials p and q.

Call(s):

A linalg::sylvester(p, q)

A linalg::sylvester(f, g, x)

Parameters:
p, q — polynomials
f, g — polynomials or polynomial expressions of positive degree
x — a variable

Return Value: a matrix of the domain Dom::Matrix(R) , where R is the co-
efficient domain of the polynomials (see below).

Related Functions: polylib::discrim , polylib::resultant
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Details:

A If no variable is specified, then the polynomials p and q must be either of
the domain DOM_POLYor from a domain of category Cat::Polynomial .
Polynomial expressions are not allowed.

A If the polynomials p and q are of the domain DOM_POLY, then they must
be univariate polynomials. The component ring of the Sylvester ma-
trix is the common coefficient ring R of p and q, except in the follow-
ing two cases for built-in coefficient rings: If R is Expr then the domain
Dom::ExpressionField() is the component ring of the Sylvester ma-
trix. If R is IntMod(m) , then the Sylvester matrix is defined over the ring
Dom::IntegerMod(m) (see example 2).

A Otherwise, if the polynomials p and q are from a domain of category
Cat::Polynomial , then the Sylvester matrix is computed with respect
to the main variable of p and q (see the method "mainvar" of the cat-
egory Cat::Polynomial ). In the case of univariate polynomials the
Sylvester matrix is defined over the common coefficient ring of p and q.
In the case of multivariate polynomials, the Sylvester matrix is defined
over the component ring Dom::DistributedPolynomial(ind, R) ,
where ind is the list of all variables of p and q except x , and R is the
common coefficient ring of the polynomials.

A If f and g are polynomial expressions or multivariate polynomials of
type DOM_POLY, then you must specifiy the variable x .

A In the case of polynomial expressions, the component ring of the Sylvester
matrix is the domain Dom::ExpressionField() (see example 3).

A In the case of multivariate polynomials the Sylvester matrix is defined
over the component ring Dom::DistributedPolynomial(ind, R) ,
where ind is the list of all variables of f and g except x , and R is the
common coefficient ring of the polynomials (see example 4).

A At least one of the input polynomials must have positive degree with
respect to the main variable or x , respectively, but it is not necessary that
both of them have positive degree.

Example 1. The Sylvester matrix of the two polynomials p = x2 + 2x− 1 and
q = x4 + 1 over Z is the following 6× 6 matrix:

>> delete x: Z := Dom::Integer:
S := linalg::sylvester(poly(x^2 + 2*x - 1, Z), poly(x^4 + 1, Z))
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+- -+
| 1, 2, -1, 0, 0, 0 |
| |
| 0, 1, 2, -1, 0, 0 |
| |
| 0, 0, 1, 2, -1, 0 |
| |
| 0, 0, 0, 1, 2, -1 |
| |
| 1, 0, 0, 0, 1, 0 |
| |
| 0, 1, 0, 0, 0, 1 |
+- -+

Example 2. If the polynomials have the built-in coefficient ring IntMod(m) ,
then the Sylvester matrix is defined over the domain Dom::IntegerMod(m) :

>> delete x:
S:= linalg::sylvester(

poly(x + 1, IntMod(7)), poly(x^2 - 2*x + 2, IntMod(7))
)

+- -+
| 1 mod 7, 1 mod 7, 0 mod 7 |
| |
| 0 mod 7, 1 mod 7, 1 mod 7 |
| |
| 1 mod 7, 5 mod 7, 2 mod 7 |
+- -+

>> domtype(S)

Dom::Matrix(Dom::IntegerMod(7))

Example 3. The Sylvester matrix of the following two polynomial expressions
with respect to the variable x is:

>> delete x, y:
S := linalg::sylvester(x + y^2, 2*x^3 - 1, x)

+- -+
| 2 |
| 1, y , 0, 0 |
| |
| 2 |
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| 0, 1, y , 0 |
| |
| 2 |
| 0, 0, 1, y |
| |
| 2, 0, 0, -1 |
+- -+

>> domtype(S)

Dom::Matrix()

The Sylvester matrix of these two polynomials with respect to y is the fol-
lowing 2× 2 matrix:

>> linalg::sylvester(x + y^2, 2*x^3 - 1, y)

+- -+
| 3 |
| 2 x - 1, 0 |
| |
| 3 |
| 0, 2 x - 1 |
+- -+

Example 4. Here is an example for computing the Sylvester matrix of multi-
variate polynomials:

>> delete x, y: Q := Dom::Rational:
T := linalg::sylvester(poly(x^2 - x + y, Q), poly(x + 2, Q), x)

+- -+
| 1, -1, y |
| |
| 1, 2, 0 |
| |
| 0, 1, 2 |
+- -+

>> domtype( T )

Dom::Matrix(Dom::DistributedPolynomial([y], Dom::Rational,

LexOrder))

The Sylvester matrix of these two multivariate polynomials with respect to y
is:
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>> linalg::sylvester(poly(x^2 - x + y, Q), poly(x + 2, Q), y)

+- -+
| x + 2 |
+- -+

linalg::tr – trace of a matrix

linalg::tr(A) returns the trace of the square matrix A, i.e., the sum of the
diagonal elements of A.

Call(s):

A linalg::tr(A)

Parameters:

A — a square matrix of a domain of category Cat::Matrix

Return Value: an element of the component ring of A.

Related Functions: linalg::det

Example 1. We compute the trace of the following matrix:

>> A := Dom::Matrix(Dom::Integer)
(3, 3, (i, j) -> 3*(i - 1) + j)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
| |
| 7, 8, 9 |
+- -+

>> linalg::tr(A)

15

linalg::transpose – transpose of a matrix

linalg::transpose(A) returns the transpose At of the matrix A.
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Call(s):

A linalg::transpose(A)

Parameters:

A — a matrix of a domain of category Cat::Matrix

Return Value: a matrix of the same domain type as A.

Details:

A linalg::transpose is an interface function for the method "transpose"
of the matrix domain of A, i.e., instead of linalg::transpose(A) one
may call A::dom::transpose(A) directly.

Example 1. We define a 3× 4 matrix:

>> A := matrix([[1, 2, 3, 4], [-1, 0, 1, 0], [3, 5, 6, 9]])

+- -+
| 1, 2, 3, 4 |
| |
| -1, 0, 1, 0 |
| |
| 3, 5, 6, 9 |
+- -+

Then the transpose of A is the 4× 3 matrix:

>> linalg::transpose(A)

+- -+
| 1, -1, 3 |
| |
| 2, 0, 5 |
| |
| 3, 1, 6 |
| |
| 4, 0, 9 |
+- -+
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Background:

A Let A =
(
ai j
)

1≤i≤m,1≤ j≤n be an m× n matrix. Then the transpose of A is
the n×m matrix:

At =
(
ai j
)

1≤ j≤n,1≤i≤m =


a11 a21 . . . am,1
a12 a22 . . . am,2
...

...
...

a1,n a2,n . . . amn

 .

linalg::vandermondeSolve – solve a linear Vandermonde system

linalg::vandermondeSolve(v, y) returns the solution ~x of the linear
Vandermonde system ∑n

j=1 v j−1
i x j = yi , for i = 1, . . . ,n.

Call(s):

A linalg::vandermondeSolve(v, y)

A linalg::vandermondeSolve(v, y, Transposed )

Parameters:
v — a vector with distinct elements (a vector is an n× 1 or 1× n matrix

of category Cat::Matrix )
y — a vector of the same dimension and domain type as v

Options:

Transposed — returns the solution ~x of the transposed system
∑n

j=1 vi−1
j x j = yi , for i = 1, . . . ,n.

Return Value: a vector of the same domain type as y .

Related Functions: solve , linsolve , linalg::matlinsolve ,
numeric::lagrange , numeric::linsolve , numeric::matlinsolve

Details:

A linalg::vandermondeSolve uses O(n2) elementary operations to solve
the Vandermonde system. It is faster than the general system solver
solve and the solver linsolve , numeric::linsolve , linalg::matlinsolve
and numeric::matlinsolve for linear systems.

A The solution ~x = (x1, . . . , xn) returned by

linalg::vandermondeSolve([vi $ i=1..n], [yi $ i=1..n])

147



yields the coefficients of the polynomial p(v) = x1 + x2 v + · · ·+ xn v(n−
1) interpolating the data table (v1, y1), . . . , (vn, yn), i.e.,

p(v1) = y1 , . . . , p(vn) = yn .

See example 1.

Example 1. The Vandermonde points v and the right hand side y of the linear
system are entered as vectors:

>> delete y0, y1, y2:
v := matrix([[0, 1, 2]]); y:= matrix([[y0, y1, y2]])

+- -+
| 0, 1, 2 |
+- -+

+- -+
| y0, y1, y2 |
+- -+

The solution vector is:

>> x := linalg::vandermondeSolve(v, y)

+- -+
| 3 y0 y2 y0 y2 |
| y0, - ---- + 2 y1 - --, -- - y1 + -- |
| 2 2 2 2 |
+- -+

The solution yields the coefficients of the interpolating polynomial:

>> P := v -> _plus(x[i+1]*v^i $ i=0..2):

through the points (0, y0), (1, y1), (2, y2):

>> P(v[1]), P(v[2]), P(v[3])

y0, y1, y2

With the optional argument Transposed , the linear system with the trans-
posed Vandermonde matrix corresponding to v is solved:

>> linalg::vandermondeSolve(v, y, Transposed)

+- -+
| 3 y1 y2 y1 y2 |
| y0 - ---- + --, 2 y1 - y2, - -- + -- |
| 2 2 2 2 |
+- -+
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Example 2. The Vandermonde points v and the right hand side y of the linear
system are entered as 2× 1 matrices:

>> Mat := Dom::Matrix(Dom::ExpressionField(normal)):

>> delete v1, v2, y1, y2:
v := Mat([v1, v2]): y:= Mat([y1, y2]):

We define the vectors over the domain Dom::ExpressionField(normal)
in order to simplify intermediate computations.

Next, we compute the solution of the corresponding Vandermonde system:

>> x := linalg::vandermondeSolve(v, y)

+- -+
| - v1 y2 + v2 y1 |
| --------------- |
| - v1 + v2 |
| |
| - y1 + y2 |
| --------- |
| - v1 + v2 |
+- -+

We construct the Vandermonde matrix V and verify the result:

>> V := Mat([[1, v[1]], [1, v[2]]])

+- -+
| 1, v1 |
| |
| 1, v2 |
+- -+

>> V * x

+- -+
| y1 |
| |
| y2 |
+- -+

Example 3. We solve a Vandermonde system over the field Z7 (the integers
modulo 7) represented by the domain Dom::IntegerMod(7) :

>> MatZ7 := Dom::Matrix(Dom::IntegerMod(7)):
v := MatZ7([1, 2, 3]): y := MatZ7([0, 1, 2]):
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>> linalg::vandermondeSolve(v, y)

+- -+
| 6 mod 7 |
| |
| 1 mod 7 |
| |
| 0 mod 7 |
+- -+

Background:

A The Vandermonde matrix

V =


1 v1 v2

1 . . . vn−1
1

1 v2 v2
2 . . . vn−1

2
...

...
...

. . .
...

1 vn v2
n . . . vn−1

n


generated by v = [v1, . . . , vn] is invertible if and only if the vi are distinct.

A The vector ~x returned by linalg::vandermondeSolve(x, y) solves
V~x = ~y and is unique.

A The vector x returned by linalg::vandermondeSolve(x, y, Trans-
posed) solves Vt~x = ~y and is unique.

Changes:

A linalg::vandermondeSolve is a new function.

linalg::vecdim – number of components of a vector

linalg::vecdim(v) returns the number of elements of the vector ~v.

Call(s):

A linalg::vecdim(v)

Parameters:
v — a vector, i.e., an n× 1 or 1× n matrix of a domain of category

Cat::Matrix

Return Value: a positive integer.
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Related Functions: linalg::matdim , linalg::ncols , linalg::nrows

Example 1. We define a column vector with two elements and a row vector
with four elements:

>> v1 := matrix([1, 0]); v2 := matrix([[1, 2, 3, 4]])

+- -+
| 1 |
| |
| 0 |
+- -+

+- -+
| 1, 2, 3, 4 |
+- -+

linalg::vecdim gives us the number of elements, i.e., the dimension of
these vectors:

>> linalg::vecdim(v1), linalg::vecdim(v2)

2, 4

In contrast, the function linalg::matdim returns the number of rows
and columns of these vectors:

>> linalg::matdim(v1), linalg::matdim(v2)

[2, 1], [1, 4]

Changes:

A linalg::vecdim used to be linalg::vectorDimen .

linalg::VectorOf – type specifier for vectors

linalg::VectorOf(R, n) is a type specifier for vectors with n components
over the component ring R.

Call(s):

A linalg::VectorOf(R)

A linalg::VectorOf(R, n)
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Parameters:
R — the component ring: a library domain
n — a positive integer

Return Value: a type expression of the domain type Type .

Related Functions: testtype

Details:

A linalg::VectorOf(R) is a type specifier representing all objects of a
domain of category Cat::Matrix with component ring R and number
of rows or number of columns equal to one.

A linalg::VectorOf(R,n) is a type specifier representing all objects of
a domain of category Cat::Matrix with component ring Rand number
of rows equal to n and number of columns equal to one, or vice versa.

A linalg::VectorOf(Type::AnyType,n) is a type specifier represent-
ing all objects of a domain of category Cat::Matrix with an arbitrary
component ring Rand number of rows equal to n and number of columns
equal to one, or vice versa.

Example 1. linalg::VectorOf can be used together with testtype to
check whether a MuPAD object is a vector:

>> MatZ := Dom::Matrix(Dom::Integer):
v := MatZ([1, 0, -1])

+- -+
| 1 |
| |
| 0 |
| |
| -1 |
+- -+

The following yields FALSEbecause v is 3-dimensional vector:

>> testtype(v, linalg::VectorOf(Dom::Integer, 4))

FALSE

The following yields FALSEbecause v is defined over the integers:

>> testtype(v, linalg::VectorOf(Dom::Rational))

FALSE
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Of course, v can be converted into a vector over the rationals, as shown by the
following call:

>> testtype(v, Dom::Matrix(Dom::Rational))

TRUE

This shows that testtype in conjunction with linalg::VectorOf(R) does
not check whether an object can be converted into a vector over the specified
component ring R. It checks only if the object is a vector whose component
ring is R.

The following test returns TRUEbecause v is a 3-dimensional vector:

>> testtype(v, linalg::VectorOf(Type::AnyType, 3))

TRUE

Example 2. linalg::VectorOf can also be used for checking parameters of
procedures. The following procedure computes the orthogonal complement of
a 2-dimensional vector:

>> orth := proc(v:linalg::VectorOf(Type::AnyType, 2))
begin

[v[1], v[2]] := [-v[2],v[1]];
return(v)

end:

u := matrix([[1, 2]]); u_ := orth(u)

+- -+
| 1, 2 |
+- -+

+- -+
| -2, 1 |
+- -+

Calling the procedure orth with an invalid parameter leads to an error mes-
sage:

>> orth([1, 2])

Error: Wrong type of 1. argument (type ’slot(Type, VectorOf)(T\
ype::AnyType, 2)’ expected,

got argument ’[1, 2]’);
during evaluation of ’orth’
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linalg::vectorPotential – vector potential of a three-dimensional
vector field

linalg::vectorPotential(j, x) returns the vector potential of the vec-
tor field ~j(~x) with respect to ~x. This is a vector field ~v with curl~x(~v) = ~j.

Call(s):

A linalg::vectorPotential(j, [x1, x2, x3] <, Test >)

Parameters:
j — a list of three arithmetical expressions, or a

3-dimensional vector (i.e., a 3× 1 or 1× 3 matrix of a
domain of category Cat::Matrix )

x1,x2,x3 — (indexed) identifiers

Options:

Test — linalg::vectorPotential only checks whether the
vector field j has a vector potential and returns TRUEor
FALSE, respectively.

Return Value: a vector with three components, i.e., an 3× 1 or 1× n matrix
of a domain of category Cat::Matrix , or a boolean value.

Related Functions: linalg::curl , linalg::divergence ,
linalg::grad

Details:

A The vector potential of a vector function j exists if and only if the diver-
gence of j is zero. It is uniquely determined.

A If the vector potential of j does not exist, then linalg::vectorPotential
returns FALSE.

A If j is a vector then the component ring of j must be a field (i.e., a do-
main of category Cat::Field ) for which definite integration can be per-
formed.

A If j is given as a list of three arithmetical expressions, then linalg::vectorPotential
returns a vector of the domain Dom::Matrix() .
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Example 1. We check if the vector function ~j(x, y, z) =
(
x2y,−1

2 y2x,−xyz
)

has
a vector potential:

>> delete x, y, z:
linalg::vectorPotential(

[x^2*y, -1/2*y^2*x, -x*y*z], [x, y, z], Test
)

TRUE

The answer is yes, so let us compute the vector potential of ~j:

>> linalg::vectorPotential(
[x^2*y, -1/2*y^2*x, -x*y*z], [x, y, z]

)

+- -+
| 2 |
| x y z |
| - ------ |
| 2 |
| |
| 2 |
| - x y z |
| |
| 0 |
+- -+

We check the result:

>> linalg::curl(%, [x, y, z])

+- -+
| 2 |
| x y |
| |
| 2 |
| x y |
| - ---- |
| 2 |
| |
| -x y z |
+- -+

Example 2. The vector function ~j =
(
x2,2y, z

)
does not have a vector poten-

tial:
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>> linalg::vectorPotential([x^2, 2*y, z], [x, y, z])

FALSE

Changes:

A The result is a vector even if the vector field is given as a list of expres-
sions.

linalg::wiedemann – solving linear systems by Wiedemann’s al-
gorithm

linalg::wiedemann(A, b, mult ...) tries to find a vector ~x that satis-
fies the equation A~x =~b by using Wiedemann’s algorithm.

Call(s):

A linalg::wiedemann(A, b <, mult >)

A linalg::wiedemann(A, b <, mult >, prob)

Parameters:
A — an n× n matrix of a domain of category Cat::Matrix
b — an n-dimensional column vector, i.e., an n× 1 matrix of a

domain of category Cat::Matrix
mult — a matrix-vector multiplication method: function or functional

expression; default: _mult
prob — TRUEor FALSE(default: TRUE)

Return Value: either the list [x, TRUE] if a solution for the system A~x = ~b
has been found, or the list [x, FALSE] if a non-zero solution for the corre-
sponding homogeneous system A~x =~0 has been found, or the value FAIL (see
below).

Related Functions: linalg::matlinsolve ,
linalg::vandermondeSolve

Details:

A The parameter mult must be a function such that the result of mult(A,y)
equals A~y for every n-dimensional column vector ~y. The parameter y is
of the same domain type as A. The argument mult does not need to han-
dle other types of parameters, nor does it need to handle other matrices
than A.
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A linalg::wiedemann uses a probabilistic algorithm. For a determinis-
tic variant enter FALSEfor the optional parameter prob .

A If the system A~x =~b does not have a solution, then linalg::wiedemann
returns FAIL .

A If the system A~x = ~b has more than one solution, then a random one is
returned.

A Due to the probabilistic nature of Wiedemann’s algorithm, the computa-
tion may fail with small probability. In this case FAIL is returned. If the
deterministic variant is chosen, then the algorithm may be slower for a
small number of matrices.

A The vector b must be defined over the component ring of A.

A The coefficient ring of Amust be a field, i.e., a domain of category Cat::Field .

A It is recommended to use linalg::wiedemann only if mult uses sig-
nificantly less than O(n2) field operations.

Example 1. We define a matrix and a column vector over the finite field with
29 elements:

>> MatZ29 := Dom::Matrix(Dom::IntegerMod(29)):
A := MatZ29([[1, 2, 3], [4, 7, 8], [9, 12, 17]]);
b := MatZ29([1, 2, 3])

+- -+
| 1 mod 29, 2 mod 29, 3 mod 29 |
| |
| 4 mod 29, 7 mod 29, 8 mod 29 |
| |
| 9 mod 29, 12 mod 29, 17 mod 29 |
+- -+

+- -+
| 1 mod 29 |
| |
| 2 mod 29 |
| |
| 3 mod 29 |
+- -+

Since A does not have a special form that would allow a fast matrix-vector
multiplication, we simply use _mult . Wiedemann’s algorithm works in this
case, although it is less efficient than Gaussian elimination:

>> linalg::wiedemann(A, b, _mult)
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-- +- -+ --
| | 24 mod 29 | |
| | | |
| | 21 mod 29 |, TRUE |
| | | |
| | 17 mod 29 | |
-- +- -+ --

Example 2. Now let us define another matrix that has a special form:

>> MatZ29 := Dom::Matrix(Dom::IntegerMod(29)):
A := MatZ29([[1, 0, 0], [0, 1, 2], [0, 0, 1]]);
b := MatZ29(3, 1, [1, 2, 3]):

+- -+
| 1 mod 29, 0 mod 29, 0 mod 29 |
| |
| 0 mod 29, 1 mod 29, 2 mod 29 |
| |
| 0 mod 29, 0 mod 29, 1 mod 29 |
+- -+

For this particular matrix, it is easy to define an efficient multiplication method:

>> mult := proc(dummy, y)
begin

y[2]:=y[2]+2*y[3];
y

end:
linalg::wiedemann(A, b, mult)

-- +- -+ --
| | 1 mod 29 | |
| | | |
| | 25 mod 29 |, TRUE |
| | | |
| | 3 mod 29 | |
-- +- -+ --

Background:

A The expected running time for the probabilistic algorithm is O
(
n2 + nM

)
,

and the running time for the deterministic variant is O
(
n2M

)
in the

worst case, but only O
(
n2 + nM

)
on average. Here, M is the number of

field operations that the matrix-vector multiplication routine mult uses.
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A The basic idea of the algorithm is to solve a linear system A~x =~b by find-
ing the minimal polynomial f (y) that solves f (A)~b =~0. If the constant co-
efficient c = f (0) is nonzero and g(y) := f (y)− c, the equality g(A)~b =−c~b
implies that ~x = −1

c (g/y)(A) is the solution.

The polynomial f is found by looking for the minimal polynomial h sat-
isfying ~uh(A)~b = ~0 for some randomly chosen row vector ~u. This may
yield h 6= f in unlucky cases, but in general the probability for this is
small.

A Reference: Douglas Wiedemann: Solving Sparse Linear equations over Fi-
nite Fields, IEEE Transactions on Information Theory, vol. 32, no.1, Jan.
1986.

Changes:

A linalg::wiedemann is a new function.
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