
stats — library for statistics

Table of contents

Preface . iii

1 Statistics . iii

stats::BPCorr — Bravais-Pearson correlation 1

stats::FCorr — Fechner correlation 3

stats::Tdist — the T-distribution 6

stats::a_quantil — α-quantile of discrete data 8

stats::calc — apply functions to samples 10

stats::ChiSquare — the “Chi Square” distribution 12

stats::col — select and re-arrange columns of a sample 13

stats::concatCol — concatenate samples column-wise 15

stats::concatRow — concatenate samples row-wise 16

stats::geometric — the geometric mean 18

stats::harmonic — the harmonic mean 20

stats::kurtosis — kurtosis (excess) 22

stats::linReg — linear regression (least squares fit) 24

stats::mean — the arithmetic mean 26

stats::meanTest — test an estimate of an expected mean 28

stats::median — the median value of discrete data 29

stats::modal — the modal (most frequent) value(s) 31

stats::normal — the normal (Gaussian) distribution 33

stats::obliquity — obliquity (skewness) 34

stats::quadratic — the quadratic mean 36

stats::reg — regression (general least square fit) 38

stats::row — select and re-arrange rows of a sample 44

stats::sample — the domain of statistical samples 45

stats::sample2list — convert a sample to a list of lists 51

stats::selectRow — select rows of a sample 52

stats::sortSample — sort the rows of a sample 54

i

stats::stdev — the standard deviation 57

stats::tabulate — statistics of duplicate rows 59

stats::unzipCol — extract columns from a list of lists 63

stats::variance — the variance 64

stats::zipCol — convert a sequence of columns to a list of lists . 66

ii

1 Statistics

The stats package provides methods for statistical analysis.
The package functions are called using the package name stats and the

name of the function. E.g., use

>> stats::mean(..data..)

to compute the mean of statistical data. This mechanism avoids naming con-
flicts with other library functions. If this is found to be inconvenient, then the
routines of the stats package may be exported via export . E.g., after calling

>> export(stats, mean)

the function stats::mean may be called directly:

>> mean(..data..)

All routines of the stats package are exported simultaneously by

>> export(stats)

Note, however, that a naming conflict with the function normal of the stan-
dard library exists. The normal distribution, implemented by stats::normal ,
is therefore not exported by the above call.

Further, if the identifier mean, say, already has a value, then export re-
turns a warning and does not export stats::mean . The value of the iden-
tifier mean must be deleted before it can be exported successfully from the
stats package.

iii

stats::BPCorr – Bravais-Pearson correlation

stats::BPCorr(data) returns the Bravais-Pearson correlation coefficient
of data pairs.

Call(s):

A stats::BPCorr([x1, x2, ..], [y1, y2, ..])

A stats::BPCorr([[x1, y1], [x2, y2], ..])

A stats::BPCorr(s <, cx, cy >)

A stats::BPCorr(s <, [cx, cy] >)

Parameters:
x1, x2, .. — statistical data: arithmetical expressions.
y1, y2, .. — statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
cx, cy — integers representing column indices of the sample s .

Column cx provides the data x1, x2, .. , column
cy provides the data y1, y2, .. .

Return Value: an arithmetical expression. FAIL is returned, if the Bravais-
Pearson correlation coefficient does not exist.

Related Functions: stats::FCorr , stats::sample

Details:

A The Bravais-Pearson correlation coefficient of data pairs (xi, yi) is given
by

∑i(xi − x̄)(yi − ȳ)√(
∑i(xi − x̄)2

) (
∑i(yi − ȳ)2

) ,
where x̄ and ȳ are the mean values of the data xi and yi, respectively.

This coefficient is a number between −1 and 1. It is close to 1, if the
relation is approximately positive linear. It is close to −1, if it is negative
linear. Values close to 0 correspond to non-linear relations or to unrelated
data, respectively.

A The column indices cx , cy are optional, if the data are given by a sample
object containing only two non-string columns. Cf. example 2.

1

Example 1. We calculate the Bravais-Pearson correlation coefficient of four
pairs of values given in two lists. There is a positive linear relation y = 1 + 2 x
between the entries of the lists:

>> stats::BPCorr([0, 1, 2, 3], [1, 3, 5, 7])

1

Alternatively, the data may be specified by a list of pairs:

>> stats::BPCorr([[0, 0], [1, -3], [2, -4], [3, -3]])

1/2
5

- ----
3

>> float(%)

-0.7453559925

Example 2. We create a sample consisting of one string column and two non-
string columns:

>> stats::sample([["a", 0, 0], ["b", 10, 10], ["c", 20, 35]])

"a" 0 0
"b" 10 10
"c" 20 35

The Bravais-Pearson correlation coefficient is calculated using the data columns
2 and 3. In this example there are only two non-string columns, so the column
indices do not have to be specified:

>> float(stats::BPCorr(%))

0.9707253434

Example 3. We create a sample consisting of three data columns:

>> stats::sample([[1, 0, 0], [2, 10, 10], [3, 20, 35]])

1 0 0
2 10 10
3 20 35

2

We compute the Bravais-Pearson correlation coefficient of the data pairs given
by the first and the second column:

>> stats::BPCorr(%, 1, 2)

1

This result indicates that there is a linear relation between these columns. In-
deed, the i-th entry y of column 2 is given by y = 10 (x− 1), where x is the i-th
entry of column 1.

Example 4. We create a sample of three columns containing symbolic data:

>> stats::sample([[1, a, 10], [2, 10, A], [3, 6, 30], [x, 30, 10]])

1 a 10
2 10 A
3 6 30
x 30 10

We compute the Bravais-Pearson correlation coefficient of the data pairs given
by the second and the third column. Here we specify these columns by a list
of column indices:

>> stats::BPCorr(%, [2, 3])

/ / A \ / a \ \
| 10 A + 10 a - 4 | - + 25/2 | | - + 23/2 | + 480 | /
\ \ 4 / \ 4 / /

/ / 2 / a \2 \
| | a - 4 | - + 23/2 | + 1036 |
\ \ \ 4 / /

/ 2 / A \2 \ \
| A - 4 | - + 25/2 | + 1100 | |^(1/2)
\ \ 4 / / /

Changes:

A stats::BPCorr is a new function.

stats::FCorr – Fechner correlation

stats::FCorr(data) returns the Fechner correlation coefficient of data pairs.

3

Call(s):

A stats::FCorr([x1, x2, ..], [y1, y2, ..])

A stats::FCorr([[x1, y1], [x2, y2], ..])

A stats::FCorr(s <, cx, cy >)

A stats::FCorr(s <, [cx, cy] >)

Parameters:
x1, x2, .. — statistical data: arithmetical expressions.
y1, y2, .. — statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
cx, cy — integers representing column indices of the sample s .

Column cx provides the data x1, x2, .. , column
cy provides the data y1, y2, .. .

Return Value: an arithmetical expression. FAIL is returned, if the data are
empty.

Related Functions: stats::BPCorr , stats::sample

Details:

A The Fechner correlation coefficient of n data pairs (xi, yi) is given by (2 ·
V− n)/n with V = ∑i vi. The number vi is 1, if xi − x̄ and yi − ȳ have the
same sign or are both 0. It is 1/2, if either xi − x̄ or yi − ȳ is 0. It is 0 in
all other cases. Here x̄ and ȳ are the mean values of the data xi and yi,
respectively.

The Fechner correlation coefficient is a number between −1 and 1. It is
positive for a positive linear relation and negative for a negative linear
relation.

A The column indices cx , cy are optional, if the data are given by a sample
object containing only two non-string columns. Cf. example 2.

A The Fechner correlation should not be computed for symbolic
data. These may lead to unexpected results, if the sign of symbolic
parameters cannot be determined.

!

Example 1. We calculate the Fechner correlation coefficient of four data pairs
given in two lists. There is a positive linear relation y = 1 + 2 x between the
entries of the lists:

>> stats::FCorr([0, 1, 2, 3], [1, 3, 5, 7])

1

Alternatively, the data may be specified by a list of pairs:

4

>> stats::FCorr([[0, 0], [1, -3], [2, -4], [3, -3]])

-1/2

Example 2. We create a sample consisting of one string column and two non-
string columns:

>> stats::sample([["a", 0, 0], ["b", 10, 10], ["c", 20, 35]])

"a" 0 0
"b" 10 10
"c" 20 35

The Fechner correlation coefficient is calculated using the data columns 2 and
3. In this example there are only two non-string columns, so the column in-
dices do not have to be specified:

>> stats::FCorr(%)

2/3

Example 3. We create a sample consisting of three data columns:

>> stats::sample([[1, 0, 0], [2, 10, 10], [3, 20, 35]])

1 0 0
2 10 10
3 20 35

We compute the Fechner correlation coefficient of the data pairs given by the
first and the second column:

>> stats::FCorr(%, 1, 2)

1

Example 4. We create a sample consisting of three columns:

>> stats::sample([[1, -3, 1], [2, -8, 3], [3, -12, 5], [5, 10, 7]])

1 -3 1
2 -8 3
3 -12 5
5 10 7

5

We compute the Fechner correlation coefficient of the data pairs given by the
second and the third column. Here we specify these columns by a list of col-
umn indices:

>> stats::FCorr(%, [1, 2])

0

Changes:

A stats::FCorr is a new function.

stats::Tdist – the T-distribution

stats::Tdist(x, v) computes the value

Γ(v+1
2)√

π v Γ(v
2)

x∫
−∞

dt

(1 + t2

v)(v+1)/2

of the T-distribution with v degrees of freedom at the point x.

Call(s):

A stats::Tdist(x, v)

Parameters:
x — an arithmetical expression.
v — the “degrees of freedom”: a positive real value.

Return Value: If x is a real float and v is a constant real value, then a floating
point value is returned. If x is not a real float and v is a positive integer, then an
explicit arithmetical expression is returned. In all other cases an unevaluated
call of stats::Tdist is returned.

Side Effects: The function is sensitive to the environment variable DIGITS ,
when the argument x is a floating point number.

Related Functions: gamma, stats::normal , stats::ChiSquare

6

Details:

A The integral is evaluated by a recursive formula, if v is a positive inte-
ger and x is not a real float. If floating point approximations are desired
for integer v and exact numerical values of x such as PI/2 + sqrt(2) ,
exp(-2) etc., then we strongly recommend to use stats::Tdist(float(x),
v) rather than float(stats::Tdist(x, v)) . This avoids the over-
head of the intermediate symbolic result stats::Tdist(x, v) . Cf.
example 3.

Example 1. We compute the T-distribution with two degrees of freedom at
the point x = 0.5:

>> stats::Tdist(0.5, 2)

0.6666666667

Exact values are produced, if the first argument is exact and the second argu-
ment is a positive integer:

>> stats::Tdist(7/8, 2)

/ 1/2 1/2 \
1/2 | 1/2 7 128 177 |

2 | 2 + --------------- |
\ 1416 /

4

Example 2. We compute the T-distribution with three degrees of freedom
with a symbolic argument. An explicit expression is returned, when the sec-
ond argument is a positive integer:

>> stats::Tdist(x, 3)

/ / 1/2 \ \
| 1/2 | x 3 | |
| 1/2 3 arctan| ------ | |

1/2 | PI 3 x \ 3 / |
2 3 | ------- + ------------ + --------------------

- |
| 4 / 2 \ 2 |
| | x | |
| 2 | -- + 1 | |
\ \ 3 / /

--

3 PI

7

An unevaluated call is returned, if the second argument is not a positive inte-
ger:

>> stats::Tdist(x, 3/2)

stats::Tdist(x, 3/2)

>> diff(%, x)

1/2 1/2
PI 3

/ 2 \5/4

2 | 2 x |
6 gamma(3/4) | ---- + 1 |

\ 3 /

Example 3. We compute a floating point value via an intermediate exact re-
sult:

>> stats::Tdist(7/2, 20)

/ / 1/2
| 1/2 | 131072 5
| 46189 5 | ----------- +
\ \ 230945

1/2 1/2 \ \
3673429330353857549533184 80 129 | |
-------------------------------------- | | / 262144

294717325313003652346374945 / /

>> float(%)

0.9988724384

It is more efficient to compute this value by a direct call with a floating point
argument:

>> stats::Tdist(float(7/2), 20)

0.9988724384

8

Changes:

A Floating point evaluation was made more efficient. Further, it was ex-
tended to arbitrary real positive “degrees of freedom”.

stats::a_quantil – α-quantile of discrete data

stats::a_quantil(a, ..) returns the α-quantile of discrete data.

Call(s):

A stats::a_quantil(a, x1, x2, ..)

A stats::a_quantil(a, [x1, x2, ..])

A stats::a_quantil(a, s <, c >)

Parameters:
a — the α value: a rational number or a real float from the

interval (0,1).
x1, x2, .. — the statistical data: real numerical values.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression. FAIL is returned, if the data are
empty.

Related Functions: stats::geometric , stats::harmonic ,
stats::mean , stats::median , stats::modal , stats::quadratic ,
stats::stdev , stats::variance

Details:

A The α-quantile of n sorted values x1 ≤ · · · ≤ xn is (xk + xk+1)/2, if k := nα
is an integer. If k is not an integer, then the α-quantile is the data element
xceil(k), where ceil (k) is the next integer larger than k.

A The data do not have to be sorted on input: stats::a_quantil sorts
internally.

A The data must be real and numerical. Expressions such as PI + sqrt(2) ,
exp(-5) etc. are converted to floating point numbers.

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

A The 1
2 -quantile is called median. This special quantile is implemented in

stats::median .

9

Example 1. We calculate the 1
4 -quantile of a sequence of five values:

>> stats::a_quantil(1/4, 3, 8, 5, 9/2, 11)

9/2

Alternatively, the data may be passed as a list:

>> stats::a_quantil(1/4, [3, 8, 5, 9/2, 11])

9/2

Example 2. We create a sample:

>> stats::sample([[4, 7, 5], [3, 6, 17], [8, 2, 2]])

4 7 5
3 6 17
8 2 2

The 1
2 -quantile (the median) of the second column is calculated:

>> stats::a_quantil(1/2, %, 2)

6

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

The 0.3-quantile of the second column is calculated. In this case this column
does not have to be specified, since it is the only non-string column in the
sample:

>> stats::a_quantil(0.3, %)

1142

10

Changes:

A stats::a_quantil is a new function.

stats::calc – apply functions to samples

stats::calc(s, ..) applies functions to columns of the sample s .

Call(s):

A stats::calc(s, c, f1 <, f2, .. >)

A stats::calc(s, [c1, c2, ..], f1 <, f2, .. >)

Parameters:
s — a sample of domain type stats::sample .
c, c1, c2, .. — positive integers representing column indices of

the sample.
f1, f2, .. — procedures.

Return Value: a sample of domain type stats::sample .

Related Functions: stats::tabulate

Details:

A In a call such as stats::calc(s, c, f1) the function f1 is applied
to the elements of the column c of s . This generates a new column which
is appended to s . If present, the next function f2 is applied to the new
sample etc. Thus, a call of stats::calc with m functions appends m
new columns to s .

Each function must accept one parameter.

A In a call such as stats::calc(s, [c1, c2, ..], f1) the i-th el-
ement of the new column is given by f1(s[i, c1]), s[i, c2],
..) .

Each function must accept as many parameters as specified by the sec-
ond argument of stats::calc .

Example 1. We create a sample of three rows and three columns:

>> stats::sample([[1, a1, b1], [2, a2, b2], [3, a3, b3]])

1 a1 b1
2 a2 b2
3 a3 b3

11

We add and multiply the elements of the columns 2 and 3 by applying the
system functions _plus and _mult :

>> stats::calc(%, [2, 3], _plus, _mult)

1 a1 b1 a1 + b1 a1*b1
2 a2 b2 a2 + b2 a2*b2
3 a3 b3 a3 + b3 a3*b3

The following call maps each element of the second column of the original
sample to its fourth power:

>> stats::calc(%2, 2, x -> x^4)

1 a1 b1 a1^4
2 a2 b2 a2^4
3 a3 b3 a3^4

The following call computes the mean values of the rows of the last sample:

>> stats::calc(%, [1, 2, 3, 4],
(x1, x2, x3, x4) -> (x1 + x2 + x3 + x4)/4)

1 a1 b1 a1^4 1/4*a1 + 1/4*b1 + 1/4*a1^4 + 1/4
2 a2 b2 a2^4 1/4*a2 + 1/4*b2 + 1/4*a2^4 + 1/2
3 a3 b3 a3^4 1/4*a3 + 1/4*b3 + 1/4*a3^4 + 3/4

The same is achieved by the following call:

>> stats::calc(%2, [1, 2, 3, 4], stats::mean)

1 a1 b1 a1^4 1/4*a1 + 1/4*b1 + 1/4*a1^4 + 1/4
2 a2 b2 a2^4 1/4*a2 + 1/4*b2 + 1/4*a2^4 + 1/2
3 a3 b3 a3^4 1/4*a3 + 1/4*b3 + 1/4*a3^4 + 3/4

Changes:

A stats::calc is a new function.

stats::ChiSquare – the “Chi Square” distribution

stats::ChiSquare(x, v) computes the value∫ x

0

tv/2−1 e−t/2

2v/2 Γ(v/2)
dt

of the Chi Square distribution with v degrees of freedom at the point x.

12

Call(s):

A stats::ChiSquare(x, v)

Parameters:
x — an arithmetical expression.
v — the “degrees of freedom”: a positive integer.

Return Value: an arithmetical expression.

Side Effects: The function is sensitive to the environment variable DIGITS ,
when the argument x is a floating point number.

Related Functions: stats::normal , stats::Tdist

Details:

A The integral is evaluated by an explicit formula.

Example 1. We compute the Chi Square distribution with one degree of free-
dom at the point x = 2.4:

>> stats::ChiSquare(2.4, 1)

0.8786647497

Example 2. We compute the Chi Square distribution with four degrees of free-
dom at a symbolic point:

>> stats::ChiSquare(x, 4)

/ x \
(2 x + 4) exp| - - |

\ 2 /
1 - --------------------

4

Changes:

A No changes.

stats::col – select and re-arrange columns of a sample

stats::col(s, ..) creates a new sample from selected columns of the
sample s .

13

Call(s):

A stats::col(s, c1 <, c2, .. >)

A stats::col(s, c1..c2 <, c3..c4, .. >)

Parameters:
s — a sample of domain type stats::sample .
c1, c2, .. — positive integers representing column indices of the

sample s .

Return Value: a sample of domain type stats::sample .

Related Functions: stats::concatCol , stats::concatRow ,
stats::row

Details:

A stats::col is useful for selecting columns of interest or for re-arranging
columns.

A The columns of s specified by the remaining arguments of stats::col
are used to build a new sample. The new sample contains the columns
of s in the order specified by the call to stats::col . Columns can be
duplicated by specifying the column index more than once.

Example 1. The following sample contains columns for “gender”, “age”, “height”,
the “number of yellow socks” and “eye color” of a person:

>> stats::sample([["m", 26, 180, 3, "blue"],
["f", 22, 160, 0, "brown"],
["f", 48, 155, 2, "green"],
["m", 30, 172, 1, "brown"]])

"m" 26 180 3 "blue"
"f" 22 160 0 "brown"
"f" 48 155 2 "green"
"m" 30 172 1 "brown"

Since nobody is really interested in the yellow socks, we create a new sample
without that column:

>> stats::col(%, 1..3, 5)

"m" 26 180 "blue"
"f" 22 160 "brown"
"f" 48 155 "green"
"m" 30 172 "brown"

14

We can use stats::col to re-arrange the sample. As an illustrating example,
we duplicate the first column:

>> stats::col(%, 1, 3, 2, 1, 4)

"m" 180 26 "m" "blue"
"f" 160 22 "f" "brown"
"f" 155 48 "f" "green"
"m" 172 30 "m" "brown"

Changes:

A stats::col is a new function.

stats::concatCol – concatenate samples column-wise

stats::concatCol(s1, s2, ..) creates a new sample consisting of the
columns of the samples s1 , s2 etc.

Call(s):

A stats::concatCol(s1, s2 <, s3, .. >)

Parameters:
s1, s2, .. — samples of domain type stats::sample .

Alternatively, lists may be entered, which are treated
as columns of a sample.

Return Value: a sample of domain type stats::sample .

Related Functions: stats::col , stats::concatRow , stats::row

Details:

A If the samples s1 , s2 etc. have different numbers of rows, then the num-
ber of rows in the resulting sample is given by the “shortest” sample
with the minimal number of rows. Elements below this row in “longer”
samples are ignored.

15

Example 1. We create two samples:

>> s1 := stats::sample([[a1, a2], [b1, b2]]);
s2 := stats::sample([[a3, a4], [b3, b4]])

a1 a2
b1 b2

a3 a4
b3 b4

Concatenation of the columns yields:

>> stats::concatCol(s1, s2)

a1 a2 a3 a4
b1 b2 b3 b4

>> delete s1, s2:

Example 2. The following sample contains columns for “gender”, “age” and
“height” of a person:

>> stats::sample([["m", 26, 180], ["f", 22, 160],
["f", 48, 155], ["m", 30, 172]])

"m" 26 180
"f" 22 160
"f" 48 155
"m" 30 172

We append a further column “nationality”, specified by a list:

>> stats::concatCol(%, ["German", "French", "Italian",
"British", "German"])

"m" 26 180 "German"
"f" 22 160 "French"
"f" 48 155 "Italian"
"m" 30 172 "British"

Changes:

A stats::concatCol is a new function.

16

stats::concatRow – concatenate samples row-wise

stats::concatRow(s1, s2, ..) creates a new sample consisting of the
rows of the samples s1 , s2 etc.

Call(s):

A stats::concatRow(s1, s2 <, s3, .. >)

Parameters:
s1, s2, .. — samples of domain type stats::sample .

Alternatively, lists may be entered, which are treated
as rows of a sample.

Return Value: a sample of domain type stats::sample .

Related Functions: stats::col , stats::concatCol , stats::row

Details:

A All samples must have the same number of columns.

Example 1. We create a small sample:

>> stats::sample([[123, g], [442, f]])

123 g
442 f

A list is concatenated to the sample as a row:

>> stats::concatRow(%, [x, y])

123 g
442 f

x y

17

Example 2. The following samples contain columns for “gender” and “age”:

>> s1 := stats::sample([["f", 36], ["m", 25]]);
s2 := stats::sample([["m", 26], ["f", 22]])

"f" 36
"m" 25

"m" 26
"f" 22

We build a larger sample:

>> stats::concatRow(s1, s2)

"f" 36
"m" 25
"m" 26
"f" 22

>> delete s1, s2:

Changes:

A stats::concatRow is a new function.

stats::geometric – the geometric mean

stats::geometric(data) returns the geometric mean of the data.

Call(s):

A stats::geometric(x1, x2, ..)

A stats::geometric([x1, x2, ..])

A stats::geometric(s <, c >)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression.

18

Related Functions: stats::a_quantil , stats::harmonic ,
stats::mean , stats::median , stats::modal , stats::quadratic ,
stats::stdev , stats::variance

Details:

A The geometric mean of n data values x1, . . . , xn is (x1 x2 · · · xn)1/n.

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the geometric mean of three values:

>> stats::geometric(a, b, c)

1/3
(a b c)

Alternatively, the data may be passed as a list:

>> stats::geometric([2, 3, 5])

1/3
30

Example 2. We create a sample:

>> stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1 b1 c1
a2 b2 c2

The geometric mean of the second column is:

>> stats::geometric(%, 2)

1/2
(b1 b2)

19

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the geometric mean of the second column. In this case this col-
umn does not have to be specified, since it is the only non-string column in the
sample:

>> float(stats::geometric(%))

1242.68722

Changes:

A stats::geometric is a new function.

stats::harmonic – the harmonic mean

stats::harmonic(data) returns the harmonic mean of the data.

Call(s):

A stats::harmonic(x1, x2, ..)

A stats::harmonic([x1, x2, ..])

A stats::harmonic(s <, c >)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression. FAIL is returned, if one of the data
values is zero (the harmonic mean does not exist).

Related Functions: stats::a_quantil , stats::geometric ,
stats::mean , stats::median , stats::modal , stats::quadratic ,
stats::stdev , stats::variance

20

Details:

A The harmonic mean of n values x1, . . . , xn is n/(1
x1

+ · · ·+ 1
xn

) .

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the harmonic mean of three values:

>> stats::harmonic(a, b, c)

3

1 1 1
- + - + -
a b c

Alternatively, the data may be passed as a list:

>> stats::harmonic([2, 3, 5])

90/31

Example 2. We create a sample:

>> stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1 b1 c1
a2 b2 c2

The harmonic mean of the second column is:

>> stats::harmonic(%, 2)

2

1 1
-- + --
b1 b2

21

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the harmonic mean of the second column. In this case this column
does not have to be specified, since it is the only non-string column:

>> float(stats::harmonic(%))

1239.71654

Changes:

A stats::harmonic is a new function.

stats::kurtosis – kurtosis (excess)

stats::kurtosis(data) returns the kurtosis (the coefficient of excess) of
the data.

Call(s):

A stats::kurtosis(x1, x2, ..)

A stats::kurtosis([x1, x2, ..])

A stats::kurtosis(s <, c >)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression. FAIL is returned, if the kurtosis
does not exist.

Related Functions: stats::obliquity

22

Details:

A The kurtosis of n values x1, . . . , xn is
1
n ∑n

i=1(xi − x̄)4(1
n ∑n

i=1(xi − x̄)2
)2 − 3 ,

where x̄ is the mean value of the xi. The kurtosis measures whether
a distribution is “flat” or “peaked”. For normally distributed data the
kurtosis is zero. If the distribution function of the data has a flatter top
than the normal distribution, then the kurtosis is negative. The kurtosis
is positive, if the distribution function has a high peak, compared to the
normal distribution.

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the kurtosis of some values:

>> stats::kurtosis(0, 7, 7, 6, 6, 6, 5, 5, 4, 1)

-74146/271441

Alternatively, the data may be passed as a list:

>> stats::kurtosis([2, 2, 4, 6, 8, 10, 10])

-85/54

Example 2. We create a sample:

>> stats::sample([[a, 5, 8], [b, 3, 7], [c, d, 0]])

a 5 8
b 3 7
c d 0

The kurtosis of the second column is:

>> stats::kurtosis(%, 2)

/ d \4 / d \4 / 2 d \4
3 | 1/3 - - | + 3 | 7/3 - - | + 3 | --- - 8/3 |

\ 3 / \ 3 / \ 3 /
-- - 3
/ / d \2 / d \2 / 2 d \2 \2
| | 1/3 - - | + | 7/3 - - | + | --- - 8/3 | |
\ \ 3 / \ 3 / \ 3 / /

23

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the kurtosis of the second column. In this case this column does
not have to be specified, since it is the only non-string column:

>> stats::kurtosis(%)

-3/2

Changes:

A stats::kurtosis is a new function.

stats::linReg – linear regression (least squares fit)

stats::linReg(data) returns the least squares estimators [a, b] of a linear
relation y = a + b x between data pairs.

Call(s):

A stats::linReg([x1, x2, ..], [y1, y2, ..])

A stats::linReg([[x1, y1], [x2, y2], ..])

A stats::linReg(s <, cx, cy >)

A stats::linReg(s <, [cx, cy] >)

Parameters:
x1, x2, .. — statistical data: arithmetical expressions.
y1, y2, .. — statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
cx, cy — integers representing column indices of the sample s .

Column cx provides the data x1, x2, .. , column
cy provides the data y1, y2, .. .

Return Value: a list [a, b] of arithmetical expressions representing the off-
set and the slope of the linear relation. FAIL is returned, if these estimators do
not exist.

24

Related Functions: stats::reg , stats::sample

Details:

A A linear relation yi = a + b xi + ei between the data pairs (xi, yi) is as-
sumed. The least squares estimators a and b are chosen such that the
quadratic error ∑ e2

i is minimized.

A The column indices cx , cy are optional, if the data are given by a stats::sample
object containing only two non-string columns. Cf. example 2.

A Multivariate linear regression and non-linear regression is provided by
stats::reg .

Example 1. We calculate the least square estimators of four pairs of values
given in two lists. Note that there is a linear relation y = 1 + 2 x between the
entries of the lists:

>> stats::linReg([0, 1, 2, 3], [1, 3, 5, 7])

[1, 2]

Alternatively, the data may be specified by a list of pairs:

>> stats::linReg([[0, 0], [1, 3.3], [2, 4.8], [3, 6.9]])

[0.42, 2.22]

Example 2. We create a sample consisting of one string column and two non-
string columns:

>> stats::sample([["1", 0, 0], ["2", 10, 15], ["3", 20, 30]])

"1" 0 0
"2" 10 15
"3" 20 30

The least square estimators are calculated using the data columns 2 and 3. In
this example there are only two non-string columns, so the column indices do
not have to be specified:

>> stats::linReg(%)

[0, 3/2]

25

Example 3. We create a sample consisting of three data columns:

>> stats::sample([[1, 0, 0], [2, 10, 15], [3, 20, 30]])

1 0 0
2 10 15
3 20 30

We compute the least square estimators for the data pairs given by the first
and the second column:

>> stats::linReg(%, 1, 2)

[-10, 10]

Example 4. We create a sample of three columns containing symbolic data:

>> stats::sample([[x, y, 0], [2, 4, 15], [3, 20, 30]])

x y 0
2 4 15
3 20 30

We compute the symbolic least square estimators for the data pairs given by
the first and the second column. Here we specify these columns by a list of
column indices:

>> map(stats::linReg(%, [1, 2]), normal)

-- 2 -
-

| 13 y - 68 x - 5 x y + 24 x - 28 2 x y - 5 y - 24 x + 84 |
| --------------------------------, --------------------

--- |
| 2 2 |
-- 2 x - 10 x + 14 2 x - 10 x + 14 -

-

Changes:

A The input data can now be provided by a stats::sample .

stats::mean – the arithmetic mean

stats::mean(data) returns the arithmetic mean of the data.

26

Call(s):

A stats::mean(x1, x2, ..)

A stats::mean([x1, x2, ..])

A stats::mean(s <, c >)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression.

Related Functions: stats::a_quantil , stats::geometric ,
stats::harmonic , stats::median , stats::modal ,
stats::quadratic , stats::stdev , stats::variance

Details:

A The arithmetic mean of n values x1, . . . , xn is 1
n (x1 + · · ·+ xn).

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the arithmetic mean of three values:

>> stats::mean(a, b, c)

a b c
- + - + -
3 3 3

Alternatively, the data may be passed as a list:

>> stats::mean([2, 3, 5])

10/3

Example 2. We create a sample:

>> stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1 b1 c1
a2 b2 c2

27

The arithmetic mean of the second column is:

>> stats::mean(%, 2)

b1 b2
-- + --
2 2

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the harmonic mean of the second column. In this case this column
does not have to be specified, since it is the only non-string column:

>> float(stats::mean(%))

1245.666667

Changes:

A The input data can now be provided by a stats::sample .

stats::meanTest – test an estimate of an expected mean

stats::meanTest(data, m) returns the probability that the expected mean
of the data is larger than m.

Call(s):

A stats::meanTest([x1, x2, ..], m <, distribution >)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
m — the estimate for the expected mean of the data: an

arithmetical expression.
distribution — either stats::normal or stats::Tdist . The

default is the T-distribution stats::Tdist .

28

Return Value: an arithmetical expression. FAIL is returned, if the variance of
the data vanishes.

Related Functions: stats::mean , stats::normal , stats::stdev ,
stats::Tdist

Details:

A stats::meanTest computes y =
√n

v (x̄−m), where x̄ = 1
n ∑n

i=1 xi is
the mean of the data and v = 1

n−1 ∑n
i=1(xi − x̄)2 is the statistical variance.

stats::meanTest returns stats::Tdist (y,n−1) or stats::normal (y,0,1),
depending on the chosen distribution.

A If the data obey a normal distribution with expectation value µ, then the
variable

√n
v (x̄ − µ) obeys a T-distribution with n − 1 degrees of free-

dom. In this case the value returned by stats::meanTest (data,m) is
the probability that µ ≥ m.

Example 1. 10 experiments produced the values 1,−2,3,−4,5,−6,7,−8,9,10.
There is only a small probability that the expected mean value of the underly-
ing distribution is larger than 5:

>> data := [1, -2, 3, -4, 5, -6, 7, -8, 9, 10]:
float(stats::meanTest(data, 5))

0.05756660092

We test the hypothesis “expected mean ≥ 5” again, this time using the normal
distribution:

>> float(stats::meanTest(data, 5, stats::normal))

0.04058346176

>> delete data:

Changes:

A No changes.

stats::median – the median value of discrete data

stats::median(..) returns the median of discrete data.

29

Call(s):

A stats::median(x1, x2, ..)

A stats::median([x1, x2, ..])

A stats::median(s <, c >)

Parameters:
x1, x2, .. — the statistical data: numerical real values.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression. FAIL is returned, if the data are
empty.

Related Functions: stats::a_quantil , stats::geometric ,
stats::harmonic , stats::mean , stats::modal , stats::quadratic ,
stats::stdev , stats::variance

Details:

A The median of n sorted values x1 ≤ · · · ≤ xn is x(n+1)/2, if n is odd. It is
1
2 (xn/2 + xn/2+1), if n is even.

A It coincides with the 1
2 -quantile. The call stats::median(data) is

equivalent to the call stats::a_quantil(1/2, data) . See the help
page of stats::a_quantil for details on the parameters specifying
the data.

Example 1. We calculate the median of a sequence of five values:

>> stats::median(3, 8, 5, 9/2, 11)

5

Alternatively, the data may be passed as a list:

>> stats::median([3, 8, 5, 9/2, 11])

5

30

Example 2. We create a sample:

>> stats::sample([[4, 7, 5], [3, 6, 17], [8, 2, 2]])

4 7 5
3 6 17
8 2 2

The median of the second column is 6:

>> stats::median(%, 2)

6

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

The median of the second column is calculated. In this case this column does
not have to be specified, since it is the only non-string column in the sample:

>> stats::median(%)

1242

Changes:

A The input data can now be provided by a stats::sample .

stats::modal – the modal (most frequent) value(s)

stats::modal(data) returns the most frequent value(s) of the data.

Call(s):

A stats::modal(x1, x2, ..)

A stats::modal([x1, x2, ..])

A stats::modal(s <, c >)

31

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression.

Return Value: a sequence consisting of a list and an integer. The list contains
the most frequent element(s) in the data, the integer specifies the number of
occurrences. E.g., the result “[data5, data10], 21 ” means that data5
and data10 are the most frequent data items, each occurring 21 times.

Related Functions: stats::a_quantil , stats::geometric ,
stats::harmonic , stats::mean , stats::median ,
stats::quadratic , stats::stdev , stats::variance

Details:

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the modal value of a data sequence:

>> stats::modal(2, a, b, c, b, 10, 12, 2, b)

[b], 3

Alternatively, the data may be passed as a list:

>> stats::modal([a, a, a, b, c, b, 10, 12, 2, b])

[a, b], 3

Example 2. We create a sample containing “age” and “gender”:

>> stats::sample([[32, "f"], [25, "m"], [40, "f"], [23, "f"]])

32 "f"
25 "m"
40 "f"
23 "f"

The modal value of the second column (the most frequent “gender”) is calcu-
lated:

>> stats::modal(%, 2)

["f"], 3

32

Example 3. We create a sample consisting of only one column:

>> stats::sample([4, 6, 2, 6, 8, 3, 2, 1, 7, 9, 3, 6, 5, 1, 6, 8]):

The modal value of these data is calculated. In this case the column does not
have to be specified, since there is only one column:

>> stats::modal(%)

[6], 4

Changes:

A stats::modal is a new function.

stats::normal – the normal (Gaussian) distribution

stats::normal(x, m, v) computes the value

1√
2π v

∫ x

−∞
e−

(t−m)2
2 v dt

of the normal distribution with mean m and variance v at the point x.

Call(s):

A stats::normal(x <, m> <, v >)

Parameters:
x — an arithmetical expression.
m — the mean of the distribution: an arithmetical expression.
v — the variance of the distribution: an arithmetical expression.

Return Value: an arithmetical expression.

Side Effects: The function is sensitive to the environment variable DIGITS ,
when the argument x is a floating point number.

Related Functions: stats::ChiSquare , stats::Tdist

Details:

A If the mean m and the variance v are not specified, then the default values
m = 0, v = 1 are used.

33

Example 1. We compute the normal distribution with mean m = 0 and vari-
ance v = 1 at the point x = 3.4:

>> stats::normal(3.4)

0.9996630707

Example 2. We compute the normal distribution with symbolic arguments:

>> stats::normal(x, m, v)

/ 1/2 \
| 2 (x - m) |

erfc| ------------ |
| 1/2 |
\ 2 v /

1 - --------------------
2

Changes:

A The internal representation now uses erfc instead of erf .

stats::obliquity – obliquity (skewness)

stats::obliquity(data) returns the obliquity (skewness) of the data.

Call(s):

A stats::obliquity(x1, x2, ..)

A stats::obliquity([x1, x2, ..])

A stats::obliquity(s <, c >)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression. FAIL is returned, if the obliquity
does not exist.

34

Related Functions: stats::kurtosis

Details:

A The obliquity of n values x1, . . . , xn is
1
n ∑n

i=1(xi − x̄)3(1
n ∑n

i=1(xi − x̄)2
) 3

2
,

where x̄ is the mean value of the xi. The obliquity is a measure for the
symmetry of a distribution. It is zero, if the distribution of the data is
symmetric around the mean. Positive values indicate that the distribu-
tion function has a “longer tail” to the right of the mean than to the left.
Negative values indicate a “longer tail” to the left.

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the obliquity of a data sequence:

>> float(stats::obliquity(0, 7, 7, 6, 6, 6, 5, 5, 4, 1))

-1.041368312

Alternatively, the data may be passed as a list:

>> stats::obliquity([2, 2, 4, 6, 8, 10, 10])

0

Example 2. We create a sample:

>> stats::sample([[a, 5, 8], [b, 3, 7], [c, d, 0]])

a 5 8
b 3 7
c d 0

The obliquity of the second column is:

>> stats::obliquity(%, 2)

1/2 / / d \3 / d \3 / 2 d \3 \
3 | | 1/3 - - | + | 7/3 - - | + | --- - 8/3 | |

\ \ 3 / \ 3 / \ 3 / /
--

-
/ / d \2 / d \2 / 2 d \2 \3/2
| | 1/3 - - | + | 7/3 - - | + | --- - 8/3 | |
\ \ 3 / \ 3 / \ 3 / /

35

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the obliquity of the second column. In this case this column does
not have to be specified, since it is the only non-string column:

>> float(stats::obliquity(%))

0.06374333648

Changes:

A stats::obliquity is a new function.

stats::quadratic – the quadratic mean

stats::quadratic(data) returns the quadratic mean of the data.

Call(s):

A stats::quadratic(x1, x2, ..)

A stats::quadratic([x1, x2, ..])

A stats::quadratic(s <, c >)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Return Value: an arithmetical expression.

Related Functions: stats::a_quantil , stats::geometric ,
stats::harmonic , stats::mean , stats::median , stats::modal ,
stats::stdev , stats::variance

36

Details:

A The quadratic mean of n values x1, . . . , xn is
√

1
n ∑n

i=1 xi
2.

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the quadratic mean of three values:

>> stats::quadratic(a, b, c)

/ 2 2 2 \1/2
| a b c |
| -- + -- + -- |
\ 3 3 3 /

Alternatively, the data may be passed as a list:

>> stats::quadratic([2, 3, 5])

1/2 1/2
3 38

3

Example 2. We create a sample:

>> stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1 b1 c1
a2 b2 c2

The quadratic mean of the second column is:

>> stats::quadratic(%, 2)

/ 2 2 \1/2
| b1 b2 |
| --- + --- |
\ 2 2 /

37

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the quadratic mean of the second column. In this case this column
does not have to be specified, since it is the only non-string column:

>> float(stats::quadratic(%))

1248.644198

Changes:

A stats::quadratic is a new function.

stats::reg – regression (general least square fit)

Consider a “model function” f with n parameters p1, . . . , pn relating a depen-
dent variable y and m independent variables x1, . . . , xm:

y = f (x1, . . . , xm; p1, . . . , pn) .

Given k different measurements x1 j, . . . , xk j for the independent variables x j
and corresponding measurements y1, . . . , yk for the dependent variable y, one
fits the parameters p1, . . . , pn by minimizing the “weighted quadratic devia-
tion”

∆2(p1, . . . , pn) =
k

∑
i=1

wi |yi − f (xi1, . . . , xim; p1, . . . , pn)|2 .

stats::reg(..data.., f,..) computes numerical approximations of
the fit parameters.

Call(s):

A stats::reg([x.1.1,..,x.k.1], .., [x.1.m,..,x.k.m],
[y.1,..,y.k] <, [w.1,..,w.k] >, f,
[x.1,..,x.m], [p.1,..,p.n] <, Starting-
Values = [p.1(0),..,p.n(0)] >)

38

A stats::reg([[x.1.1,..,x.1.m, y.1 <, w.1 >], ..,
[x.k.1,..,x.k.m, y.k <, w.k >]], f,
[x.1,..,x.m], [p.1,..,p.n] <, Starting-
Values = [p.1(0),..,p.n(0)] >)

A stats::reg(s, c.1, .., c.m, cy <, cw >, f,
[x.1,..,x.m], [p.1,..,p.n] <, Starting-
Values = [p.1(0),..,p.n(0)] >)

A stats::reg(s, [c.1, .., c.m, cy <, cw >], f,
[x.1,..,x.m], [p.1,..,p.n] <, Starting-
Values = [p.1(0),..,p.n(0)] >)

39

Parameters:
x.1.1,..,x.k.m — numerical sample data for the independent

variables. The entry x.i.j represents the
i-th measurement of the independent variable
x.j .

y.1,..,y.k — numerical sample data for the dependent
variable. The entry y.i represents the i-th
measurement of the dependent variable.

w.1,..,w.k — numerical weight factors. The entry w.i is
used as a weight for the data
(x.i.1,..,x.i.m,y.i) of the i-th
measurement. If no weights are provided,
then w.i = 1 is used.

f — the model function: an arithmetical
expression representing a function of the
independent variables x.1, .., x.m and
the fit parameters p.1, .., p.n . The
expression must not contain any symbolic
objects apart from x.1, .., p.n .

x.1,..,x.m — the independent variables: identifiers or
indexed identifiers.

p.1,..,p.n — the fit parameters: identifiers or indexed
identifiers.

p.1(0),..,p.n(0) — The user can assist the internal numerical
search by providing numerical starting
values p.i(0) for the fit parameters p.i .
These should be reasonably close to the
optimal fit values. The starting values
p.i(0) = 1.0 are used, if no other values
are provided by the user.

s — a sample of domain type stats::sample
containing the data x.i.j for the
independent variables, the data y.i for the
dependent variable and, optionally, the
weights w.i .

c.1,..,c.m — positive integers representing column indices
of the sample s . Column c.j provides the
measurements x.i.j for the independent
variable x.j .

cy — a positive integer representing a column
index of the sample s . This column provides
the measurements y.i for the dependent
variable.

cw — a positive integer representing a column
index of the sample s . This column provides
the weight factors w.i .

40

Return Value: a list [[p1, . . . , pn],∆2] containing the optimized fit parameters
pi minimizing the quadratic deviation. The minimized value of this deviation
is given by ∆2, it indicates the quality of the fit. All returned data are floating
point values. FAIL is returned, if a least square fit of the data is not possible
with the given model function or if the internal numerical search failed.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: stats::linReg , stats::sample

Details:

A All data must be convertible to real or complex floating point values via
float .

A The number of measurements k must not be less than the number n of
parameters pi.

A The model function f may be non-linear in the independent variables xi
and the fit parameters pi. E.g., a model function such as p1 + p2*x1^2
+ exp(p3 + p4*x2) with the independent variables x1, x2 and the
fit parameters p1, .., p4 is accepted.

A Note that the fitting of model functions with a non-linear dependence
on the parameters pi is much more costly than a linear regression, where
the pi enter linearly. The functional dependence of the model function
on the variables xi is of no relevance.

A There are rare cases where the implemented algorithm converges
to a local minimum rather than to a global minimum. In partic-
ular, this problem may arise when the model involves periodic
functions. It is recommended to provide suitable starting values
for the fit parameters in this case. Cf. example 4.

!

Option <StartingValues = [p.1(0),..,p.n(0)] >:

A If the model function depends linearly on the fit parameters pi (“linear
regression”), then the optimized parameters are the solution of a linear
system of equations. In this case there is no need to provide starting
values for a numerical search. In fact, initial values provided by the user
are ignored.

A If the model function depends non-linearly on the fit parameters pi (“non-
linear regression”), then the optimized fitting parameters are the solution
of a non-linear optimization problem. There is no guarantee that the in-
ternal search for a numerical solution will succeed. It is recommended to

41

assist the internal solver by providing reasonably good estimates for the
optimal fit parameters.

Example 1. We fit a linear function y = p1 + p2 x1 to four data pairs (xi1, yi)
given by two lists:

>> stats::reg([0, 1, 2, 3], [1, 3, 5, 7],
p1 + p2*x1, [x1], [p1, p2])

[[1.0, 2.0], 0.0]

The parameter values p1 = 1.0, p2 = 2.0 provide a perfect fit: the quadratic
deviation vanishes.

Example 2. We fit an exponential function y = a eb x to five data pairs (xi, yi).
Weights are used to decrease the influence of the “exceptional pair” (x, y) =
(5.0,6.5× 106) on the fit:

>> stats::reg([[1.1, 54, 1], [1.2, 73, 1], [1.3, 98, 1],
[1.4, 133, 1], [5.0, 6.5*10^6, 10^(-4)]],

a*exp(b*x), [x], [a, b])

[[1.992321622, 2.999602426], 0.2001899629]

Example 3. We create a sample with four columns. The first column is a
counter labeling the measurements. The second and third column provide
measured data of two variables x1 and x2, respectively. The last column pro-
vides corresponding measurements of a dependent variable.

>> s := stats::sample([[1, 0, 0, 1.1], [2, 0, 1, 5.4],
[3, 1, 1, 8.5], [4, 1, 2, 18.5],
[5, 2, 1, 15.0], [6, 2, 2, 24.8]])

1 0 0 1.1
2 0 1 5.4
3 1 1 8.5
4 1 2 18.5
5 2 1 15.0
6 2 2 24.8

First, we try to model the data provided by the columns 2, 3, 4 by a function
that is linear in the variables x1, x2. We specify the data columns by a list of
column indices:

>> stats::reg(s, [2, 3, 4], p1 + p2*x1 + p3*x2,
[x1, x2], [p1, p2, p3])

42

[[-0.9568181818, 4.688636364, 7.272727273], 15.23613636]

The quadratic deviation is rather large, indicating that a linear function is inap-
propriate to fit the data. Next, we extend the model and consider a polynomial
fit function of degree 2. This is still a linear regression problem, because the fit
parameters enter the model function linearly. We specify the data columns by
a sequence of column indices:

>> stats::reg(s, 2, 3, 4,
p1 + p2*x1 + p3*x2 + p4*x1^2 + p5*x2^2,
[x1, x2], [p1, p2, p3, p4, p5])

[[1.1, 1.525, 1.5, 1.625, 2.8], 0.01]

Finally, we include a further term p6*x1*x2 in the model, obtaining a perfect
fit:

>> stats::reg(s, 2, 3, 4,
p1 + p2*x1 + p3*x2 + p4*x1^2 + p5*x2^2 + p6*x1*x2,
[x1, x2], [p1, p2, p3, p4, p5, p6])

[[1.1, 1.6, 1.35, 1.7, 2.95, -0.2], 4.267632241e-34]

>> delete s:

Example 4. We create a sample of two columns:

>> s := stats::sample([[1, -1.44], [2, -0.82],
[3, 0.97], [4, 1.37]])

1 -1.44
2 -0.82
3 0.97
4 1.37

The data are to be modeled by a function of the form y = p1 sin(p2 x), where
the first column contains measurements of x and the second column contains
corresponding data for y. Note that in this example there is no need to specify
column indices, because the sample contains only two columns:

>> stats::reg(s, a*sin(b*x), [x], [a, b])

[[-1.499812823, 1.281963381], 0.00001255632629]

Fitting a periodic function may be problematic. We provide starting values for
the fit parameters and obtain a quite different set of parameters approximating
the data with the same quality:

>> stats::reg(s, a*sin(b*x), [x], [a, b], StartingValues = [2, 5])

[[1.499812823, 5.001221926], 0.00001255632629]

>> delete s:

43

Background:

A stats::reg uses a Marquard-Levenberg gradient expansion algorithm.
Searching for the minimum of ∆2(p1, . . . , pn) the algorithm does not sim-
ply follow the negative gradient, but the diagonal terms of the curva-
ture matrix are increased by a factor that is optimized in each step of the
search.

Changes:

A stats::reg is a new function.

stats::row – select and re-arrange rows of a sample

stats::row(s, ..) creates a new sample from selected rows of the sample
s .

Call(s):

A stats::row(s, r1 <, r2, .. >)

A stats::row(s, r1..r2 <, r3..r4, .. >)

Parameters:
s — a sample of domain type stats::sample .
r1, r2, .. — positive integers representing row indices of the

sample s .

Return Value: a sample of domain type stats::sample .

Related Functions: stats::col , stats::concatCol ,
stats::concatRow , stats::selectRow

Details:

A stats::row is useful for selecting rows of interest or for re-arranging
rows.

A The rows of s specified by the remaining arguments of stats::row are
used to build a new sample. The new sample contains the rows of s in
the order specified by the call to stats::row . Rows can be duplicated
by specifying the row index more than once.

44

Example 1. The following sample represents the “population” of a small town:

>> stats::sample([["1990", 10564], ["1991", 10956],
["1992", 11007], ["1993", 11123],
["1994", 11400], ["1995", 11645]])

"1990" 10564
"1991" 10956
"1992" 11007
"1993" 11123
"1994" 11400
"1995" 11645

We are only interested in the years 1990, 1991, 1992 and 1995. We create a new
sample containing the rows of interest:

>> stats::row(%, 1..3, 6)

"1990" 10564
"1991" 10956
"1992" 11007
"1995" 11645

We reorder the sample:

>> stats::row(%, 4, 3, 2, 1)

"1995" 11645
"1992" 11007
"1991" 10956
"1990" 10564

Changes:

A stats::row is a new function.

stats::sample – the domain of statistical samples

A sample represents a collection of statistical data, organized as a matrix. Usu-
ally, each row refers to an individual of the population described by the sam-
ple. Each column represents an attribute.

stats::sample([[a11, ..., a1.n], ..., [a.m.1, ..., a.m.n]])
creates a sample with m rows and n columns, a.i.j being the entry in the i-th
row, j-th column.

45

stats::sample([a11, ..., a.m.1]) creates a sample with m rows and
one column.

Creating Elements:

A stats::sample([[a11, a12, ...], [a21, a22, ...], ...])

A stats::sample([a11, a21, ...])

Parameters:

a11, a12, ... — arithmetical expressions or strings.

Categories:

Cat::Set

Details:

A Each row [a.i.1, ..., a.i.n] must contain the same number of
entries.

A Elements of domain type DOM_COMPLEX, DOM_EXPR, DOM_FLOAT, DOM_IDENT,
DOM_INT, or DOM_RATare regarded as “data” and are stored in a sample
as on input. All other types of input parameters are converted to strings
(DOM_STRING).

If one element in a column is a string or is converted to a string, then all
elements of that column are converted to strings.

This produces two kinds of columns: data columns and string columns.

Mathematical Methods

Method equal : test for equality

equal(dom s1, dom s2)

A tests, whether the two samples s1 and s2 are equal. Returns TRUE
or FALSE, respectively.

Conversion Methods

Method convert : convert a list to a sample

convert(list x)

A converts the list/list of lists x to a sample. Returns FAIL , if this is
not possible.

46

Method convert_to : convert a sample to a list of lists

convert_to(dom s, type T)

A Presently, only T = DOM_LISTis implemented; a list of all rows of
s is returned as a list of lists. All other target types T yield FAIL .

Method expr : convert a sample to a list of lists of expressions

expr(dom s)

A converts s to a list of lists. All entries are converted to expressions.

Access Methods

Method col2list : return a particular column as a list

col2list(dom s, positive integer or range c, ...)

A returns the c -th column of the sample s as a list. It is possible to
specify more than one column index or range of column indices.

Method append : append a row

append(dom s, list row)

A appends the list row as a row to the sample s . The length of the row
has to coincide with the number of columns of the sample s .

Method _concat : create a sample from the rows of several samples

_concat(dom s, dom or list s1, ...)

A returns a sample consisting of the rows of s and the rows of the
further arguments. Lists are regarded as samples with one row. All
rows must have the same length.
Note that the dot operator . may be used to call this method. Cf.
example 4.
A This method overloads _concat .

Method delCol : delete one or more columns

delCol(dom s, positive integer or range c, ...)

A returns the sample obtained by deleting the column(s) of the sample
s specified by the argument c . NIL is returned, if all columns of s
are deleted.
It is possible to specify more than one column index or range of
column indices.

47

Method delRow : delete one or more rows

delRow(dom s, positive integer or range r, ...)

A returns the sample obtained by deleting the row(s) of the sample s
specified by the argument r . NIL is returned, if all rows of s are
deleted.
It is possible to specify more than one row index or range of row
indices.

Method float : map the float function to all entries

float(dom s)

A applies float to all entries of s .

A This method overloads float .

Method has : test for the occurrence of elements

has(dom s, list or set or expression e)

A tests, whether an expression e is among the entries of s . Returns
TRUEor FALSE, respectively.

A If e is a list or a set, then this method tests, whether at least one of
its elements is among the entries of s .

Method _index : return a particular entry

_index(dom s, positive integer i, positive integer j)

A returns the j -th entry of the i -th row of the sample s .

A This method overloads _index .

A Indexed calls such as s[i, j] call this method.

Method set_index : assign a new value to an entry

set_index(dom s, positive integer i, positive integer
j, any x)

A sets the (i ,j)-th element of s to x .
Note that no conversion to strings occurs, even if the type
of s is not one of the “data types” described in the ‘Details’
section.

!

A This method is called by indexed assignments of the form s[i, j]
:= x .

48

Method map: map a function to the rows

map(dom s, any f)

A maps the function f onto the rows of the sample s . Note that rows
are internally represented by lists. The function must accept a list
as input parameter and must return a list of the same length.
A This method overloads map.

Method nops : number of rows

nops(dom s)

A returns the number of rows of s .
A This method overloads nops .

Method op : get the operands (rows)

op(dom s, positive integer i)

op(dom s, [positive integer i, positive integer j])

A returns the i-th row of s or the j-th element of the i-th row, respec-
tively.
A This method overloads op .

Method subsop : replace a row

subsop(dom s, integer i = list newrow, ..)

A replaces the i-th row of the sample s by newrow . The length of the
new row has to match the number of columns of s . It is possible to
replace several rows simultaneously.
A This method overloads subsop .

Method row2list : return a particular row as a list

row2list(dom s, positive integer or range r, ..)

A returns the r -th row of the sample s as a list. It is possible to specify
more than one row index or range of row indices.

Technical Methods

Method print : output

print(dom s)

A returns a matrix-like scheme containing the entries of the sample s .
This method is called by the system for displaying samples.
A This method overloads print .

49

Method fastprint : fast output

fastprint(dom s)

A returns a matrix-like scheme containing the entries of the sample s .
The usual print command may be slow for large samples. This
method provides a somewhat faster alternative.

Example 1. A sample is created from a list of rows:

>> stats::sample([[5, a], [b, 7.534], [7/4, c+d]])

5 a
b 7.534

7/4 c + d

For a sample with only one column one can use a flat list instead of a list of
rows:

>> stats::sample([5, 3, 8])

5
3
8

Example 2. The following input creates a small sample with columns for
“gender”, “age” and “height”, respectively:

>> stats::sample([["m", 26, 180], ["f", 22, 160],
["f", 48, 155], ["m", 30, 172]])

"m" 26 180
"f" 22 160
"f" 48 155
"m" 30 172

Note that all entries in a column are automatically converted to strings, if one
entry of that column is a string:

>> stats::sample([[m, 26, 180], [f, 22, 160],
["f", 48, 155], [m, 30, 172]])

"m" 26 180
"f" 22 160
"f" 48 155
"m" 30 172

50

Example 3. The functions float , has , map, nops , op , and subsop are over-
loaded to work on samples as on lists of lists:

>> s := stats::sample([[a, 1], [b, 2], [c, 3]])

a 1
b 2
c 3

>> float(s), has(s, a), map(s, list -> [list[1], list[2]^2]),
nops(s), subsop(s, 1 = [d, 4]), op(s, [1, 2])

a 1.0 , TRUE, a 1 , 3, d 4 , 1
b 2.0 b 4 b 2
c 3.0 c 9 c 3

Indexing works like on array s:

>> s[1, 2] := x : s

a x
b 2
c 3

>> delete s:

Example 4. The dot operator may be used to concatenate samples and lists
(regarded a samples with one row):

>> s := stats::sample([[1, a], [2, b]]): s.[X, Y].s

1 a
2 b
X Y
1 a
2 b

>> delete s:

Super-Domain: Dom::BaseDomain

Axioms

Ax::canonicalRep

51

Changes:

A stats::sample is a new function.

stats::sample2list – convert a sample to a list of lists

stats::sample2list(s) converts the sample s to a list of lists.

Call(s):

A stats::sample2list(s)

Parameters:

s — a sample of domain type stats::sample .

Return Value: a list of lists.

Related Functions: stats::unzipCol , stats::zipCol

Details:

A The sub-lists of the list returned by stats::sample2list(s) are the
rows of the sample s .

Example 1. First we create a sample from a list of lists:

>> stats::sample([[123, s, 1/2], [442, s, -1/2], [322, p, -
1/2]])

123 s 1/2
442 s -1/2
322 p -1/2

The input list may be recovered by stats::sample2list :

>> stats::sample2list(%)

[[123, s, 1/2], [442, s, -1/2], [322, p, -1/2]]

52

Changes:

A stats::sample2list is a new function.

stats::selectRow – select rows of a sample

stats::selectRow(s, ..) selects rows of the sample s having specific
entries in specific places.

Call(s):

A stats::selectRow(s, c, x <, Not >)

A stats::selectRow(s, [c1, c2, ..], [x1, x2, ..] <,
Not >)

Parameters:
s — a sample of domain type stats::sample .
c, c1, c2, .. — integers representing column indices of the

sample s .
x, x1, x2, .. — arithmetical expressions.

Options:

Not — causes stats::selectRow to select those rows which do not
have the specified entries.

Return Value: a sample of domain type stats::sample .

Related Functions: stats::row

Details:

A stats::selectRow(s, c, x) returns a sample consisting of all rows
in s , which contain the data element x at the position c .

A stats::selectRow(s, [c1, c2, ..], [x1, x2, ..]) returns
a sample consisting of all rows in s , which contain the data element x1
at the position c1 and x2 at the position c2 etc. There must be as many
positions c1 , c2 , . . . as data elements x1 , x2 ,

53

Example 1. We create a sample with two columns:

>> stats::sample([[a, 5], [c, 1], [a, 2], [b, 3]])

a 5
c 1
a 2
b 3

We select all rows with a as their first entry:

>> stats::selectRow(%, 1, a)

a 5
a 2

Example 2. We create a sample containing income and costs in the years 1997
and 1998:

>> stats::sample([[123, "costs", "97"], [442, "income", "98"],
[11, "costs", "98"], [623, "income", "97"]])

123 "costs" "97"
442 "income" "98"

11 "costs" "98"
623 "income" "97"

We select the row which has "income" in the second and "97" in the third
column:

>> stats::selectRow(%, [2, 3], ["income", "97"])

623 "income" "97"

We select the remaining rows:

>> stats::selectRow(%2, [2, 3], ["income", "97"], Not)

123 "costs" "97"
442 "income" "98"

11 "costs" "98"

Changes:

A stats::selectRow is a new function.

stats::sortSample – sort the rows of a sample

stats::sortSample(s, ..) sorts the rows of the sample s .

54

Call(s):

A stats::sortSample(s)

A stats::sortSample(s, c1, c2, ..)

A stats::sortSample(s, [c1, c2, ..])

Parameters:
s — a sample of domain type stats::sample .
c1, c2, .. — integers representing column indices of the sample s .

Return Value: a sample of domain type stats::sample .

Related Functions: stats::selectRow

Details:

A The sorting of rows only uses the entries of the specified columns. First,
rows are sorted according to the elements of the first specified column.
Those rows with identical elements in the first specified column are then
ordered according to the elements in the second specified column etc.

A If no columns are specified, then column 1 is used for sorting. In case of
a tie, column 2 is used etc.

A Numbers are sorted numerically, strings are sorted lexicographically. Iden-
tifiers are sorted according to the strategy used by MuPAD’s sort com-
mand. Identifiers come first, numbers second.

Example 1. We create a sample with one column and sort it:

>> stats::sortSample(stats::sample([x, g2, 3, g1, 8/5, 2]))

x
g1
g2

8/5
2
3

Example 2. We create a sample with two columns:

>> stats::sample([[b, 2], [a, 5], [a, 2], [c, 1], [b, 3]])

55

b 2
a 5
a 2
c 1
b 3

Note the different sorting priorities specified by the column indices:

>> stats::sortSample(%, 1), stats::sortSample(%, 2),
stats::sortSample(%, 1, 2), stats::sortSample(%, 2, 1)

a 2 , c 1 , a 2 , c 1
a 5 a 2 a 5 a 2
b 3 b 2 b 2 b 2
b 2 b 3 b 3 b 3
c 1 a 5 c 1 a 5

Example 3. We create a sample containing income and costs in the years 1997
and 1998:

>> stats::sample([[123, "costs", "97"], [720, "income", "98"],
[623, "income", "97"], [150, "costs", "98"]])

123 "costs" "97"
720 "income" "98"
623 "income" "97"
150 "costs" "98"

We sort according to the year (third column):

>> stats::sortSample(%, 3)

623 "income" "97"
123 "costs" "97"
150 "costs" "98"
720 "income" "98"

We sort with priority on the year. Items of the same year are then sorted lexi-
cographically (“costs” before “income”):

>> stats::sortSample(%2, 3, 2)

123 "costs" "97"
623 "income" "97"
150 "costs" "98"
720 "income" "98"

56

Changes:

A stats::sortSample is a new function.

stats::stdev – the standard deviation

stats::stdev(data) returns the standard deviation of the data.

Call(s):

A stats::stdev(x1, x2, .. <, Sample>)

A stats::stdev([x1, x2, ..] <, Sample>)

A stats::stdev(s <, c > <, Sample>)

Parameters:
x1, x2, .. — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the sample

s . This column provides the data x1 , x2 etc.

Options:

Sample — with this option the given data are regarded as a “sample”,
not as a full population.

Return Value: an arithmetical expression.

Related Functions: stats::a_quantil , stats::geometric ,
stats::harmonic , stats::mean , stats::median , stats::modal ,
stats::quadratic , stats::variance

Details:

A The standard deviation of n values x1, . . . , xn is
√

1
n ∑n

i=1(xi − x̄)2, where x̄
is the arithmetic mean of the xi. It is the square-root of the variance. With

the option Sample the value
√

1
n−1 ∑n

i=1(xi − x̄)2 is returned instead.

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

57

Example 1. We calculate the standard deviation of three values:

>> stats::stdev(2, 3, 5)

1/2
14

3

Alternatively, the data may be passed as a list:

>> stats::stdev([2, 3, 5])

1/2
14

3

Example 2. We create a sample:

>> stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1 b1 c1
a2 b2 c2

The standard deviation of the second column is:

>> expand(stats::stdev(%, 2))

/ 2 2 \1/2
| b1 b1 b2 b2 |
| --- - ----- + --- |
\ 4 2 4 /

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the standard deviation of the second column. In this case this
column does not have to be specified, since it is the only non-string column:

>> float(stats::stdev(%))

58

86.17939945

We repeat the computation with the option Sample :

>> float(stats::stdev(%2, Sample))

105.5477775

Changes:

A The input data can now be provided by a stats::sample .

stats::tabulate – statistics of duplicate rows

stats::tabulate(s) eliminates duplicate rows in the sample s and ap-
pends a column containing the multiplicities.

stats::tabulate(s, c1, c2, ..., f) combines all rows that are iden-
tical except for entries in the specified columns c1 , c2 etc. The function f is
applied to these columns, its result replaces the values in these columns.

stats::tabulate(s, [c1, f1], [c2, f2], ...) combines all rows
that are identical except for entries in the columns c1 , c2 etc. The functions
f1 , f2 etc. are applied to these columns, the results replace the values in these
columns.

Call(s):

A stats::tabulate(s)

A stats::tabulate(s, c1, c2, ... <, f >)

A stats::tabulate(s, c1..c2, c3..c4, ... <, f >)

A stats::tabulate(s, [c1, f1], [c2, f2], ...)

A stats::tabulate(s, [c1, c2, ..., f1], [c3, c4, ...,
f2], ...)

Parameters:
s — a sample of domain type stats::sample
c1, c2, ... — integers representing column indices of the

sample s
f, f1, f2, ... — procedures

Return Value: a sample of domain type stats::sample .

Related Functions: stats::calc

59

Details:

A stats::tabulate regards rows as duplicates, if they have identical
entries in the columns that are not specified.

A With stats::tabulate(s, c1, c2, ..., f) the function f is ap-
plied to the entries of the duplicate rows in the specified columns. Du-
plicates are eliminated and replaced by a single instance of the row, the
result of f is inserted into the corresponding columns.

The function f must accept as many parameters as there are duplicates.
Typical applications involve functions such as stats::mean which ac-
cept arbitrarily many arguments.

E.g., with stats::mean duplicate rows are replaced by a single row, in
which the entries of the columns c1 , c2 etc. are replaced by the mean
values of the corresponding entries of the duplicates.

If no function f is specified, then the default function _plus is used.

If column indices are specified more than once, then extra columns with
the result of the specified function are inserted into the sample.

A Consecutive columns may be specified by ranges. E.g., the call

stats::tabulate(s, c1..c2, ..., f)

is a short hand notation for

stats::tabulate(s, c1, c1+1, ..., c2, ..., f) .

A With stats::tabulate(s, [c1, f1], [c2, f2], ...) pairs of
columns and corresponding procedures are specified. Again, rows are
regarded as duplicates, if they have identical entries in the columns that
are not specified. Duplicates are eliminated and replaced by a single in-
stance of the row, the result of f1 is inserted in column c1 , the result of
f2 is inserted in column c2 etc.

If column indices are specified more than once, then extra columns with
the result of the specified functions are inserted into the sample.

A With stats::tabulate(s, [c1, c2, ..., f1], ...) it is pos-
sible to apply functions that act on several columns. The procedure f1
has to accept a sequence of lists (each representing a column). The speci-
fied columns are replaced by a single column containing the result of f1 .
If column indices are specified more than once, then extra columns with
the result of the specified function(s) are inserted into the sample. Cf.
examples 2 and 3.

60

Example 1. We create a sample:

>> s := stats::sample([[a, A, 1], [a, A, 1], [a, A, 2],
[b, B, 5], [b, B, 10]])

a A 1
a A 1
a A 2
b B 5
b B 10

Duplicate rows of the sample are counted. There are four unique rows, one
occurring twice:

>> stats::tabulate(s)

a A 1 2
a A 2 1
b B 5 1
b B 10 1

In the following call rows are regarded as duplicates, if the entries in the first
two columns coincide. We compute the mean value of the third entry of the
duplicates:

>> stats::tabulate(s, 3, stats::mean)

a A 4/3
b B 15/2

We compute both the mean and the standard deviation of the data in the third
column for the sub-samples labeled ’a A’ and ’b B’ by the first two columns:

>> stats::tabulate(s, [3, stats::mean], [3, stats::stdev])

a A 4/3 1/3*2^(1/2)
b B 15/2 5/2

>> delete s:

Example 2. We create a sample containing columns for “gender”, “age” and
“size”:

>> s := stats::sample([["f", 25, 166], ["m", 30, 180],
["f", 54, 160], ["m", 40, 170],
["f", 34, 170], ["m", 20, 172]])

61

"f" 25 166
"m" 30 180
"f" 54 160
"m" 40 170
"f" 34 170
"m" 20 172

We use stats::mean on the second and third column to calculate the average
“age” and “size” of each gender:

>> stats::tabulate(s, 2..3, float@stats::mean)

"f" 37.66666667 165.3333333
"m" 30.0 174.0

With the next call both the mean and the standard deviation of “age” and
“size” for each gender are inserted into the sample.

>> stats::tabulate(s,
[2, float@stats::mean], [2, float@stats::stdev],
[3, float@stats::mean], [3, float@stats::stdev])

"f" 37.66666667 12.11977264 165.3333333 4.109609335
"m" 30.0 8.164965809 174.0 4.320493799

We compute the Bravais-Pearson correlation coefficient between “age” and
“size” for each gender:

>> stats::tabulate(s, [2, 3, float@stats::BPCorr])

"f" -0.7540135992
"m" -0.1889822365

>> delete s:

Example 3. We create a sample:

>> s := stats::sample([[a, x1, 1, 2], [b, x2, 2, 4],
[b, x1, 2, 4], [e, x2, 3, 5.5]])

a x1 1 2
b x2 2 4
b x1 2 4
e x2 3 5.5

We regard rows with the same entry in the second column as “of the same
kind”. We tabulate the sample using different functions on the remaining
columns:

62

>> stats::tabulate(s, [1, _plus], [3, _mult], [4, stats::mean])

a + b x1 2 3
b + e x2 6 4.75

One can apply customized procedures. In the following we define the proce-
dure plusmult , which sums up the elements of two lists (representing columns)
and then multiplies the sums.

>> plusmult := proc(x, y) begin _plus(op(x))*_plus(op(y)) end_proc:

This procedure is then used to combine the first and the third column. Simulta-
neously, the mean and the standard deviation of the fourth column is inserted
into the sample.

>> stats::tabulate(s, [1, 3, plusmult], [4, stats::mean],
[4, stats::stdev])

3*a + 3*b x1 3 1
5*b + 5*e x2 4.75 0.75

>> delete plusmult, s:

Changes:

A stats::tabulate is a new function.

stats::unzipCol – extract columns from a list of lists

stats::unzipCol(list) extracts the columns of a matrix structure en-
coded by a list of lists.

Call(s):

A stats::unzipCol(list)

Parameters:

list — a list of lists.

Return Value: a sequence of lists to be regarded as columns.

Related Functions: stats::col , stats::sample2list ,
stats::zipCol

63

Details:

A stats::unzipCol treats a list of lists like a list of rows of a stats::sample
and extracts the columns. In conjunction with stats::sample2list
it is useful for extracting the columns of a stats::sample .

A stats::unzipCol is the inverse of stats::zipCol .

Example 1. We extract the columns from a list of rows representing a matrix
structure:

>> stats::unzipCol([[a11, a12], [a21, a22], [a31, a32]])

[a11, a21, a31], [a12, a22, a32]

Example 2. A list of rows is used to create a sample:

>> stats::sample([[123, s, 1/2], [442, s, -1/2], [322, p, -
1/2]])

123 s 1/2
442 s -1/2
322 p -1/2

We re-convert the sample to a list of lists:

>> stats::sample2list(%)

[[123, s, 1/2], [442, s, -1/2], [322, p, -1/2]]

Finally, we extract the columns:

>> stats::unzipCol(%)

[123, 442, 322], [s, s, p], [1/2, -1/2, -1/2]

Changes:

A stats::unzipCol is a new function.

stats::variance – the variance

stats::variance(data) returns the variance of the data.

64

Call(s):

A stats::variance(x1, x2, ... <, Sample>)

A stats::variance([x1, x2, ...] <, Sample>)

A stats::variance(s <, c > <, Sample>)

Parameters:
x1, x2, ... — the statistical data: arithmetical expressions.
s — a sample of domain type stats::sample .
c — an integer representing a column index of the

sample s . This column provides the data x1 , x2 etc.

Options:

Sample — with this option the given data are regarded as a “sample”,
not a as a full population.

Return Value: an arithmetical expression.

Related Functions: stats::a_quantil , stats::geometric ,
stats::harmonic , stats::mean , stats::median , stats::modal ,
stats::quadratic , stats::stdev

Details:

A The variance of n values x1, . . . , xn is 1
n ∑n

i=1(xi− x̄)2, where x̄ is the arith-
metic mean of the xi. With the option Sample the value 1

n−1 ∑n
i=1(xi− x̄)2

is returned instead.

A The column index c is optional, if the data are given by a stats::sample
object containing only one non-string column. Cf. example 3.

Example 1. We calculate the variance of three values:

>> stats::variance(2, 3, 5)

14/9

Alternatively, the data may be passed as a list:

>> stats::variance([2, 3, 5])

14/9

65

Example 2. We create a sample:

>> stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1 b1 c1
a2 b2 c2

The variance of the second column is:

>> expand(stats::variance(%, 2))

2 2
b1 b1 b2 b2
--- - ----- + ---

4 2 4

Example 3. We create a sample consisting of one string column and one non-
string column:

>> stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996" 1242
"1997" 1353
"1998" 1142

We compute the variance of the second column. In this case this column does
not have to be specified, since it is the only non-string column:

>> float(stats::variance(%))

7426.888889

We repeat the computation with the option Sample :

>> float(stats::variance(%2, Sample))

11140.33333

Changes:

A The input data can now be provided by a stats::sample .

stats::zipCol – convert a sequence of columns to a list of lists

stats::zipCol(..) converts a sequence of columns to a format suitable
for creating a stats::sample .

66

Call(s):

A stats::zipCol(column1, column2, ..)

Parameters:

column1, column2, .. — lists.

Return Value: a list of lists.

Related Functions: stats::sample2list , stats::unzipCol

Details:

A stats::zipCol is useful for converting column data given in lists to a
list of lists accepted by stats::sample .

A stats::zipCol is the inverse of stats::unzipCol .

Example 1. We convert a single column to a nested list:

>> stats::zipCol([a, b, c])

[[a], [b], [c]]

This list is accepted by stats::sample :

>> stats::sample(%)

a
b
c

Example 2. We build a sample consisting of two columns:

>> column1 := [122, 442, 322]: column2 := [s, s, p]:
stats::zipCol(column1, column2)

[[122, s], [442, s], [322, p]]

>> stats::sample(%)

122 s
442 s
322 p

Changes:

A stats::zipCol is a new function.

67

