
student — educational tools

Table of contents

Preface . ii

student::equateMatrix — build a matrix equation 1

student::isFree — test for linear independence of vectors . . . 2

student::Kn — the vectorspace of n-tupels over K 3

student::plotRiemann — plot of a numerical approximation to an
integral using rectangles . 9

student::plotSimpson — plot of a numerical approximation to an
integral using Simpson’s rule . 10

student::plotTrapezoid — plot of a numerical approximation to
an integral using the Trapezoidal rule 12

student::riemann — numerical approximation to an integral using
rectangles . 13

student::simpson — numerical approximation to an integral using
Simpson’s rule . 16

student::trapezoid — numerical approximation to an integral us-
ing the Trapezoidal rule . 19

i

Introduction

The student library provides a very small collection functions which are sup-
posed to be used in teaching mathematics.

The package functions are called using the package name student and
the name of the function. E.g., use

>> R3 := student::Kn(3,Dom::Real)

to create the vector space of the 3-tupel over the field Dom::Real . This mech-
anism avoids naming conflicts with other library functions. If this is found to
be inconvenient, then the routines of the student package may be exported
via export . E.g., after calling

>> export(student, Kn)

the function student::Kn can be called directly:

>> R3 := Kn(3,Dom::Real)

All routines of the student package are exported simultaneously by

>> export(student)

The functions available in the student library can be listened with:

>> info(student)

ii

student::equateMatrix – build a matrix equation

student::equateMatrix(A, vars) returns the matrix equation a11 · x1 a12 · x2 · · · a1,c−1 · xr
...

...
...

ar,1 · x1 ar2 · x2 · · · ar,c−1 · xr

 =

 a1,c
...

ar,c

Call(s):

A student::equateMatrix(A, vars)

Parameters:
A — matrix (of category Cat::Matrix) over a Cat::Field
vars — list of indeterminates

Return Value: an expression of the domain type DOM_EXPRand of type "equal" .

Related Functions: linalg::expr2Matrix , matrix

Details:

A student::equateMatrix (A,vars) returns the matrix equation a11 · x1 a12 · x2 · · · a1,c−1 · xr
...

...
...

ar,1 · x1 ar2 · x2 · · · ar,c−1 · xr

 =

 a1,c
...

ar,c

 ,
where r and c are the row and column number of A, and x1, . . . , xr are
the elements of vars .

A The number of indeterminates given in vars must match the row num-
ber of the matrix A.

Example 1. Let us construct the equation A ∗ −→x =
−→
b . First we construct A

and b:

>> Ab := matrix([[1,2,3],[-1,3,0]])

+- -+
| 1, 2, 3 |
| |
| -1, 3, 0 |
+- -+

1

Here we have A =
(

1 2
−1 3

)
and b =

(
3
0

)
. Now we construct the equation

A ∗−→x =
−→
b :

>> student::equateMatrix(Ab,[x1,x2])

+- -+ +- -+
x1 + 2 x2		3
	=	
- x1 + 3 x2		0
+- -+ +- -+

Example 2. We should be carefull to use the right dimension of the matrix
and the indeterminates:

>> Ab := matrix([[1,2,3],[-1,3,0]])

+- -+
| 1, 2, 3 |
| |
| -1, 3, 0 |
+- -+

>> student::equateMatrix(Ab,[x1,x2,x3])

Error: dimension of matrix and number of vars don’t match [stu\
dent::equateMatrix]

Changes:

A In previous MuPAD versions it was also possible to specify the indetermi-
nates in a set. But the elements of a set have no order so in this situation
the matrix equation was not uniquely defined.

student::isFree – test for linear independence of vectors

student::isFree (S) tests if the vectors given in S are linear independend.

Call(s):

A student::isFree(S)

Parameters:
S — set or list of vectors (of category Cat::Matrix) defined over a

Cat::Field)

2

Return Value: either TRUEor FALSE.

Related Functions: linalg::basis

Details:

A student::isFree (S) gives TRUEif S is free, i.e. the vectors of S are
linear independend. Otherwise the value FALSEis returned.

Example 1. We define 3 vectors:

>> x := matrix([[2,3,4]]):
y := matrix([[1,-1,1]]):
z := matrix([[2,3,5]]):

And we ask if x, y and z are linear independend.

>> student::isFree({x,y,z})

TRUE

Hence, the vectors x,y,z are linear independent, and therefore the set x,y,z is a
basis of R3. Of course the vectors x,y and (x-y) are not linear independent:

>> student::isFree([x,y,x-y])

FALSE
If we have vectors from different vector spaces, student::isFree will give
an error message:
>> zz := matrix([[2,3,5,6]]):

student::isFree({x,y,zz})

Error: set contains incompatible vectors [student::isFree]

Changes:

A No changes.

student::Kn – the vectorspace of n-tupels over K

The domain student::Kn represents the vectorspace of n-tupels over the
field F.

3

Domain:

A student::Kn(F)

A student::Kn(n,F)

Parameters:
F — a field, i.e. a domain of category Cat::Field .
n — a positive integer

Details:

A The domain student::Kn represents the vector space of n-tuples over
the field F. The default value of n is 1. F must be a domain of category
Cat::Field .

Creating Elements:

A student::Kn(n,F)()

A student::Kn(n,F)(listofrows)

A student::Kn(n,F)(list)

A student::Kn(n,F)(indexfunc)

Parameters:
list — list of vector components.
listofrows — list of (at most) n rows. Each row is a list of vector

components.
indexfunc — function or functional expression in two parameters

(the row and column index).

Categories:

Cat::VectorSpace(F) ,Cat::Matrix(F)

Related Domains: Dom::MatrixGroup

Details:

A Elements of student::Kn are contructed by a call to the element con-
structors of Dom::MatrixGroup(n,1,F) . Refer to the corresponding
methods of Dom::MatrixGroup(n,1,F) .

A The call student::Kn(n, F)() returns the n-dimensional zero vec-
tor. Note that the zero vector is defined by the entry "zero" . See also
Example 3.

4

A student::Kn(n, F)(listofrows) creates a vector with n compo-
nents v1, v2, . . . , vn, when listofrows is the list [[v1], [v2], . . . , [vn]]. In-
ternally student::Kn(n, F)(listofrows) calls Dom::MatrixGroup(n,1,F)(n,1,listofrows) .
See there for further information.

A student::Kn(n,F)(list) creates the vector with n components whose
components are the entries of list . Internally student::Kn(n, F)(list)
calls Dom::MatrixGroup(n,1,F)(n,1,list) . See there for further
information.

A student::Kn(n,F)(indexfunc) returns the vector whose i-th com-
ponent is the value of the function call indexfunc(i,1) . Internally
student::Kn(n, F)(indexfunc) calls
Dom::MatrixGroup(n,1,F)(n,1,indexfunc) . See there for fur-
ther information.

A student::Kn(n, F) has the domain Dom::MatrixGroup(n,1,F)
as its super domain, i.e., it inherits each method which is defined by
Dom::MatrixGroup(n,1,F) and not re-implemented by student::Kn(n,
F) . Methods described below are re-implemented by student::Kn .

Mathematical Methods

Method _mult : multiplies with a scalar

_mult(dom x, any r)

_mult(any r , dom x)

A If r is of type student::Kn (n,F) this method returns FAIL . Oth-
erwise if there is no method "scalarMult"(x,r) for the domain
student::Kn (n,F) defined, the method "_mult" of Dom::MatrixGroup(n,1,F)
is used to multiply x and r . In general this means x is multiplied
with the scalar value r .

A By defining the method scalarMult(x,r) for the domain stu-
dent::Kn you can overload the "_mult" method of student::Kn .

Example 1. Let us create the vector space of the 3-tupel over the field Dom::Real :

>> R3 := student::Kn(3,Dom::Real)

student::Kn(3, Dom::Real)

Now we create some elements of this domain in different ways:

>> u := R3([1,2,3]);
v := R3([[2],[3],[4]]);
w := R3()

5

+- -+
| 1 |
| |
| 2 |
| |
| 3 |
+- -+

+- -+
| 2 |
| |
| 3 |
| |
| 4 |
+- -+

+- -+
| 0 |
| |
| 0 |
| |
| 0 |
+- -+

We perform some calculation with the just created elements. We add the three
vectors−→v ,−→w and−→u of the vectorspace, multiply the vector−→w with the scalar
3 and the vector −→v with the scalar -4:

>> v + w + u;
3*w;
v*(-4)

+- -+
| 3 |
| |
| 5 |
| |
| 7 |
+- -+

+- -+
| 0 |
| |
| 0 |
| |
| 0 |
+- -+

6

+- -+
| -8 |
| |
| -12 |
| |
| -16 |
+- -+

Example 2. Let us see how we can use a function for creating elements of the
domain. The function f computes the square of the given number. So the entry
in the i-th row of the constructed vector will be i2.

>> f := i -> i^2:
R3 := student::Kn(3,Dom::Real);
R4 := student::Kn(4,Dom::Real);
v := R3(f);
w := R4(f)

student::Kn(3, Dom::Real)

student::Kn(4, Dom::Real)

+- -+
| 1 |
| |
| 4 |
| |
| 9 |
+- -+

+- -+
| 1 |
| |
| 4 |
| |
| 9 |
| |
| 16 |
+- -+

Example 3. The zero vector is defined by the entry "zero" as we can see in
the following example:

7

>> R3 := student::Kn(3,Dom::Real):
R3::zero();
v := R3([[2],[3],[4]]);
v - R3::zero()

+- -+
| 0 |
| |
| 0 |
| |
| 0 |
+- -+

+- -+
| 2 |
| |
| 3 |
| |
| 4 |
+- -+

+- -+
| 2 |
| |
| 3 |
| |
| 4 |
+- -+

Super-Domain: Dom::MatrixGroup

Axioms

if F has Ax::canonicalRep
Ax::canonicalRep

Background:

A If the user defines a method scalarMult to overload the "_mult"
method of student::Kn he is responsible to define a legal scalar multi-
plication. This means the defined scalar multiplication has to fulfill that
the vector space of n-tuples over the field F is still a vector space. This is
not checked by the domain student::Kn themself.

Changes:

A No changes.

8

student::plotRiemann – plot of a numerical approximation to an
integral using rectangles

student::plotRiemann(f, x=a..b, n) computes a numerical approx-
imation to the integral

∫ b
a f (x) dx using rectangles and returns a plot of the

numerical process.

Call(s):

A student::plotRiemann(f, x=a..b <, n ><, opt1 >, ...)

A student::plotRiemann(f, x=a..b <, n >, method <,
opt1 >, ...)

Parameters:
f — functional expression in x
x — identifier
a, b — arithmetical expressions
n — a positive integer (number of rectangles)
method — one of the options Left , Middle , or Right
opt1 — plot option(s) for two-dimensional graphical objects

Options:

Left — The height of each rectangle is determined by the value of
the function at the leftpoint of each interval.

Middle — The height of each rectangle is determined by the value of
the function at the middlepoint of each interval (the default
method).

Right — The height of each rectangle is determined by the value of
the function at the rightpoint of each interval.

Return Value: a graphical object of the domain type plot::Group .

Related Functions: plot , plot::Group , student::plotSimpson ,
student::plotTrapezoid , student::riemann

Details:

A student::plotRiemann(f, x=a..b, n) computes a numerical ap-
proximation to the integral

∫ b
a f (x) dx using n rectangles and returns a

graphical object of the numerical process that can be displayed with the
function plot .

The height of each rectangle is determined by the value of the function
at the middlepoint of each interval (as with option Middle).

9

A With student::plotRiemann(f, x=a..b, n, Left) , the height
of each rectangle is determined by the value of the function at the left-
point of each interval.

Use option Right , if the rightpoint of each interval should be taken.

A n is the number of rectangles to use. The default value is 4.

A The plot options opt1, ... must be valid plot options for two-dimensional
graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

A The graphical object returned has three operands: a group of the (filled)
rectangles, a group of rectangles for the frames of the filled rectangles, as
well as the function graph of f (of the domain type plot::Function2d).
The first two operands are objects of the domain plot::Group .

Example 1. The following call returns a visualization of the numerical ap-
proximation to the integral

∫ 1
−1 ex dx using 10 rectangles:

>> p := student::plotRiemann(exp(x), x = -1..1, 10)

plot::Group()

>> plot(p)

Example 2. You can change plot parameters of the visualization returned by
student::plotRiemann . For example, to change the color of the filled rect-
angles to blue, we must set the plot option Color of the first operand of p to
the value RGB::Blue :

>> (p[1])::Color := RGB::Blue:
plot(p, Axes = Box)

Here we changed the style of the axes of the graphical scene to the value Box .

Changes:

A student::plotRiemann is a new function.

student::plotSimpson – plot of a numerical approximation to an
integral using Simpson’s rule

10

student::plotSimpson(f, x=a..b, n) computes a numerical approxi-
mation to the integral

∫ b
a f (x) dx using Simpson’s rule and returns a plot of the

numerical process.

Call(s):

A student::plotSimpson(f, x=a..b <, n ><, opt1 >, ...)

Parameters:
f — functional expression in x
x — identifier
a, b — arithmetical expressions
n — a positive integer (number of stripes to use)
opt1 — plot option(s) for two-dimensional graphical objects

Return Value: a graphical object of the domain type plot::Group .

Related Functions: plot , plot::Group , student::plotRiemann ,
student::plotTrapezoid , student::simpson

Details:

A student::plotSimpson(f, x=a..b, n) computes a numerical ap-
proximation to the integral

∫ b
a f (x) dx using Simpson’s rule and returns a

graphical object of the numerical process that can be displayed with the
function plot .

A n is the number of stripes to use. The default value is 4.

A The plot options opt1, ... must be valid plot options for two-dimensional
graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

A The graphical object returned has n+1 operands: the n stripes as well
as the function graph of f (of the domain type plot::Function2d).
Every stripe is an object of the domain type plot::Group .

Example 1. The following call returns a visualization of the numerical ap-
proximation to the integral

∫ 1
0 sin(x) dx using Simpson’s rule and 10 stripes:

>> p := student::plotSimpson(sin(x), x = 0..1, 10)

plot::Group()

11

To display it on the screen, call:

>> plot(p)

Example 2. You can change plot parameters of the visualization returned by
student::plotSimpson . For example, to change the color of every second
filled stripe to red, we must set the plot option Color of the operands of p
with even index to the value RGB::Blue :

>> ((p[2*i])::Color := RGB::Red) $ i = 1..nops(p) div 2:
plot(p)

Changes:

A student::plotSimpson is a new function.

student::plotTrapezoid – plot of a numerical approximation to
an integral using the Trapezoidal rule

student::plotTrapezoid(f, x=a..b, n) computes a numerical approx-
imation to the integral

∫ b
a f (x) dx using the Trapezoidal rule and returns a plot

of the numerical process.

Call(s):

A student::plotTrapezoid(f, x=a..b <, n ><, opt1 >, ...)

Parameters:
f — functional expression in x
x — identifier
a, b — arithmetical expressions
n — a positive integer (number of trapezoids to use)
opt1 — plot option(s) for two-dimensional graphical objects

Return Value: a graphical object of the domain type plot::Group .

Related Functions: plot , plot::Group , student::plotRiemann ,
student::plotTrapezoid , student::trapezoid

12

Details:

A student::plotTrapezoid(f, x=a..b, n) computes a numerical
approximation to the integral

∫ b
a f (x) dx using the Trapezoidal rule and

returns a graphical object of the numerical process that can be displayed
with the function plot .

A n is the number of trapezoids to use. The default value is 4.

A The plot options opt1, ... must be valid plot options for two-dimensional
graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

A The graphical object returned has three operands: a group of the (filled)
trapezoids, a group of polygons representing the frames of the trape-
zoids, as well as the function graph of f (of the domain type plot::Function2d).
The first two operands are objects of the domain plot::Group .

Example 1. The following call returns a visualization of the numerical ap-
proximation to the integral

∫ π
2

0 cos(x) dx = 1 using the Trapezoidal rule and 10
trapezoids:

>> p := student::plotTrapezoid(cos(x), x = 0..PI/2, 10)

plot::Group()

To display it on the screen, call:

>> plot(p)

Example 2. You can change plot parameters of the visualization returned
by student::plotTrapezoid . For example, to change the x-range of the
graph of f , we set the attribute range of the last operand of p to the value x
= -PI/2..PI/2 :

>> (p[nops(p)])::range := x = -PI/2..PI/2:
plot(p)

13

Changes:

A student::plotTrapezoid is a new function.

student::riemann – numerical approximation to an integral using
rectangles

student::riemann(f, x=a..b, n) computes a numerical approximation
to the integral

∫ b
a f (x) dx using rectangles.

Call(s):

A student::riemann(f, x=a..b <, n >)

A student::riemann(f, x=a..b <, n >, method)

Parameters:
f — arithmetical expression or a function in x
x — identifier
a, b — arithmetical expressions
n — a positive integer (number of rectangles)
method — one of the options Left , Middle , or Right

Options:

Left — The height of each rectangle is determined by the value of
the function at the leftpoint of each interval.

Middle — The height of each rectangle is determined by the value of
the function at the middlepoint of each interval (the default
method).

Right — The height of each rectangle is determined by the value of
the function at the rightpoint of each interval.

Return Value: an arithmetical expression.

Related Functions: freeze , int , numeric::int ,
numeric::quadrature , student::plotRiemann , student::simpson ,
student::trapezoid

Details:

A student::riemann(f, x=a..b, n) computes a numerical approx-
imation to the integral

∫ b
a f (x) dx using n rectangles.

The height of each rectangle is determined by the value of the function
at the middlepoint of each interval (as with option Middle).

14

A With student::riemann(f, x=a..b, n, Left) , the height of each
rectangle is determined by the value of the function at the leftpoint of
each interval.

Use option Right , if the rightpoint of each interval should be taken.

A n is the number of rectangles to use. The default value is 4.

A The result of student::riemann is an arithmetical expression which
consists of frozen subexpressions of type "sum" .

Use unfreeze to force the evaluation of the result.

Example 1. The numerical approximation to the integral
∫ 1
−1 ex dx using 10

rectangles is:

>> student::riemann(exp(x), x = -1..1, 10)

/ / i1 \ \
sum| exp| -- - 9/10 |, i1 = 0..9 |

\ \ 5 / /

5

The function values were taken at the middlepoint of each interval, the same
as with option Middle .

We got an unevaluated expression, the formula for the corresponding ap-
proximation. Use unfreeze to force the evaluation of the result:

>> unfreeze(%)

exp(-1/2) exp(1/2) exp(-1/10) exp(1/10) exp(-3/10)
--------- + -------- + ---------- + --------- + ---------

- +
5 5 5 5 5

exp(3/10) exp(-7/10) exp(7/10) exp(-9/10) exp(9/10)
--------- + ---------- + --------- + ---------- + ----

5 5 5 5 5

Let us compute a floating-point approximation of the result:

>> float(%)

2.346489615

and compare the result with the approximation using the left- and rightpoint
of each interval for the determination of the heights of the rectangles:

15

>> float(student::riemann(exp(x), x = -1..1, 10, Left)),
float(student::riemann(exp(x), x = -1..1, 10, Right));

2.123191605, 2.593272083

Finally, we compute the exact value of the definite integral
∫ 1
−1 ex dx:

>> F:= int(exp(x), x = -1..1); float(F)

exp(1) - exp(-1)

2.350402387

Example 2. The general formula of an approximation of
∫ b

a f (x) dx using 4
rectangles:

>> F:= student::riemann(f(x), x = a..b)

/ b a \ / / / b a \ \ \
| - - - | sum| f| a + (i4 + 1/2) | - - - | |, i4 = 0..3 |
\ 4 4 / \ \ \ 4 4 / / /

To expand the frozen sum, enter:

>> F:= unfreeze(F)

/ b a \ / / a 7 b \ / 3 a 5 b \ / 5 a 3 b \
| - - - | | f| - + --- | + f| --- + --- | + f| --- + --- | +
\ 4 4 / \ \ 8 8 / \ 8 8 / \ 8 8 /

/ 7 a b \ \
f| --- + - | |

\ 8 8 / /

Changes:

A student::riemann is a new function.

student::simpson – numerical approximation to an integral using
Simpson’s rule

student::simpson(f, x=a..b, n) computes a numerical approximation
to the integral

∫ b
a f (x) dx using Simpson’s rule.

16

Call(s):

A student::simpson(f, x=a..b <, n >)

Parameters:
f — arithmetical expression or a function in x
x — identifier
a, b — arithmetical expressions
n — a positive integer (number of stripes to use)

Return Value: an arithmetical expression.

Related Functions: freeze , int , numeric::int ,
numeric::quadrature , student::plotSimpson , student::riemann ,
student::trapezoid

Details:

A student::simpson(f, x=a..b, n) computes a numerical approx-
imation to the integral

∫ b
a f (x) dx using Simpson’s rule.

A n is the number of stripes to use. The default value is 4.

A The result of student::simpson is an arithmetical expression which
consists of frozen subexpressions of type "sum" .

Use unfreeze to force the evaluation of the result.

Example 1. The numerical approximation to the integral
∫ 1

0 sin(x) dx using
Simpson’s rule and 10 stripes is:

>> student::simpson(sin(x), x = 0..1, 10)

/ / i1 \ \
sum| sin| -- |, i1 = 1..4 |

sin(1) \ \ 5 / /
------ + --------------------------- +

30 15

/ / i1 \ \
2 sum| sin| -- - 1/10 |, i1 = 1..5 |

\ \ 5 / /

15

We got an unevaluated expression, the formula for the corresponding approx-
imation. Use unfreeze to force the evaluation of the result:

>> unfreeze(%)

17

sin(1) 2 sin(1/2) sin(1/5) sin(2/5) sin(3/5)
------ + ---------- + -------- + -------- + -------- +

30 15 15 15 15

sin(4/5) 2 sin(1/10) 2 sin(3/10) 2 sin(7/10)
-------- + ----------- + ----------- + ----------- +

15 15 15 15

2 sin(9/10)

15

Let us compute a floating-point approximation of the result:

>> float(%)

0.4596979498

and compare it with the exact value of the definite integral
∫ 1

0 sin(x) dx:

>> F:= int(sin(x), x = 0..1); float(F)

1 - cos(1)

0.4596976941

Example 2. The general formula of Simpson’s rule (using 4 stripes):

>> F:= student::simpson(f(x), x = a..b)

/ b a \ / / a b \
| -- - -- | | f(a) + f(b) + 2 f| - + - | +
\ 12 12 / \ \ 2 2 /

/ / / b a \ \ \ \
4 sum| f| a + (2 i3 - 1) | - - - | |, i3 = 1..2 | |

\ \ \ 4 4 / / / /

To expand the frozen sum, enter:

>> F:= unfreeze(F)

/ b a \ / / a b \ / a 3 b \
| -- - -- | | f(a) + f(b) + 2 f| - + - | + 4 f| - + --- | +
\ 12 12 / \ \ 2 2 / \ 4 4 /

/ 3 a b \ \
4 f| --- + - | |

\ 4 4 / /

18

You may even expand this product:

>> expand(F)

/ a b \
a f| - + - |

b f(a) a f(b) a f(a) b f(b) \ 2 2 /
------ - ------ - ------ + ------ - ------------ +

12 12 12 12 6

/ a b \ / a 3 b \ / 3 a b \
b f| - + - | a f| - + --- | a f| --- + - |

\ 2 2 / \ 4 4 / \ 4 4 /
------------ - -------------- - -------------- +

6 3 3

/ a 3 b \ / 3 a b \
b f| - + --- | b f| --- + - |

\ 4 4 / \ 4 4 /
-------------- + --------------

3 3

Changes:

A student::simpson is a new function.

student::trapezoid – numerical approximation to an integral us-
ing the Trapezoidal rule

student::trapezoid(f, x=a..b, n) computes a numerical approxima-
tion to the integral

∫ b
a f (x) dx using the Trapezoidal rule.

Call(s):

A student::trapezoid(f, x=a..b <, n >)

Parameters:
f — arithmetical expression or a function in x
x — identifier
a, b — arithmetical expressions
n — a positive integer (number of trapezoids to use)

Return Value: an arithmetical expression.

19

Related Functions: freeze , int , numeric::int ,
numeric::quadrature , student::plotTrapezoid ,
student::riemann , student::simpson

Details:

A student::trapezoid(f, x=a..b, n) computes a numerical approx-
imation to the integral

∫ b
a f (x) dx using the Trapezoidal rule.

A n is the number of trapezoids to use. The default value is 4.

A The result of student::trapezoid is an arithmetical expression which
consists of frozen subexpressions of type "sum" .

Use unfreeze to force the evaluation of the result.

Example 1. The numerical approximation to the integral
∫ π

2
0 cos(x) dx = 1 us-

ing the Trapezoidal rule and 10 trapezoids is:

>> student::trapezoid(cos(x), x = 0..PI/2, 10)

/ / / PI i1 \ \ \
PI | 2 sum| cos| ----- |, i1 = 1..9 | + 1 |

\ \ \ 20 / / /

40

We got an unevaluated expression, the formula for the corresponding approx-
imation. Use unfreeze to force the evaluation of the result:

>> unfreeze(%)

/ /
| | / PI \ / 3 PI \ / 7 PI \
| PI | 2 cos| -- | + 2 cos| ---- | + 2 cos| ---- | +
\ \ \ 20 / \ 20 / \ 20 /

1/2 1/2 1/2
/ 9 PI \ 1/2 1/2 2 (5 + 5)

2 cos| ---- | + 2 + 5 + ------------------ +
\ 20 / 2

1/2 1/2 1/2 \ \
2 (5 - 5) | |
------------------ + 1 | | / 40

2 / /

Let us compute a floating-point approximation of the result:

20

>> float(%)

0.9979429864

Example 2. The general formula of the Trapezoidal rule (using 4 trapezoids):

>> F:= student::trapezoid(f(x), x = a..b)

/ b a \ / / / / b a \ \
| - - - | | f(a) + f(b) + 2 sum| f| a + i2 | - - - | |,
\ 8 8 / \ \ \ \ 4 4 / /

\ \
i2 = 1..3 | |

/ /

To expand the frozen sum, enter:

>> F:= unfreeze(F)

/ b a \ / / a b \ / a 3 b \
| - - - | | f(a) + f(b) + 2 f| - + - | + 2 f| - + --- | +
\ 8 8 / \ \ 2 2 / \ 4 4 /

/ 3 a b \ \
2 f| --- + - | |

\ 4 4 / /

Changes:

A student::trapezoid is a new function.

21

