
listlib — library for list manipulation

Table of contents

Preface . ii

listlib::insert — insert an element into a list 1

listlib::insertAt — insert an element into a list 3

listlib::merge — merging two ordered lists 4

listlib::removeDuplicates — removes duplicate entries . . . 6

listlib::removeDupSorted — remove duplicates of any element
from ordered lists . 7

listlib::setDifference — remove elements from a list 8

listlib::singleMerge — merging of two ordered lists without du-
plicates . 9

listlib::sublist — search sublists 11

i

Library listlib

This library contains procedures to work with lists.
Related functions of the standard library are _concat , append , contains ,

length , map, nops , op , poly2list , revert , sort , split , subsop and
text2list .

ii

listlib::insert – insert an element into a list

listlib::insert(list, element) inserts element into list .

Call(s):

A listlib::insert(list, element <, function >)

Parameters:
list — MuPAD list
element — MuPAD expression to insert
function — function, that determines the insert position

Return Value: the given list enlarged with the inserted element

Related Functions: _concat , append , listlib::insertAt

Details:

A With the function listlib::insert any element can be inserted into
any list.

A With the third optional argument a function can be given that compare
the elements of the list with the element to insert and therewith deter-
mines the position, the element is inserted. The given function is called
with two elements and have to return TRUE, if the two elements are in
the right order, otherwise FALSE(see next paragraph).

A The given function is called step by step with an element of the list as
first argument and the given element as second argument, until it returns
FALSE. Then the given element is inserted into the list in front of the last
proved element (see example 2).

A The list must be ordered with regard to the order function, other-
wise the element could be inserted at the wrong place. !

A If no third argument is given the function _less is used. If no order of
the elements with regard to _less is defined, a function must be given,
otherwise an error appears. The system function sysorder always can
be used.

1

Example 1. Insert 3 into the given ordered list:

>> listlib::insert([1, 2, 4, 5, 6], 3)

[1, 2, 3, 4, 5, 6]

Insert 3 into the given descending ordered list. The insert function represents
and preserves the order of the list:

>> listlib::insert([6, 5, 4, 2, 1], 3, _not@_less)

[6, 5, 4, 3, 2, 1]

Because identifiers cannot be ordered by _less , another function must be
given, e.g., the function that represents the systems internal order:

>> listlib::insert([a, b, d, e, f], c, sysorder)

[a, b, c, d, e, f]

Example 2. Because no function is given as third argument, the function _less
is used. _less is called: _less(1, 3) , _less(2, 3) , _less(4, 3) and
then 3 is inserted in front of 4:

>> listlib::insert([1, 2, 4], 3)

[1, 2, 3, 4]

If the list is not ordered right, then the insert position could be wrong:

>> listlib::insert([4, 1, 2], 3)

[3, 4, 1, 2]

Example 3. The following example shows, how expressions can be ordered by
a user defined priority. This order is given by the function named priority ,
which returns a smaller number, when the expression has a type with higher
priority:

>> priority := X -> contains(["_power", "_mult", "_plus"], type(X)):
priority(x^2), priority(x + 2)

1, 3

The function sortfunc returns TRUE, if the both given arguments are in the
right order, i.e., the first argument has a higher (or equal) priority than the
second argument:

2

>> sortfunc := (X, Y) -> bool(priority(Y) > priority(X)):
sortfunc(x^2, x + 2), sortfunc(x + 2, x*2)

TRUE, FALSE

Now the expression x*2 is inserted at the “right” place in the list:

>> listlib::insert([x^y, x^2, x*y, -y, x + y], x*2, sortfunc)

y 2
[x , x , 2 x, x y, -y, x + y]

Changes:

A listlib::insert used to be insert_ordered .

A The first both arguments are swapped.

listlib::insertAt – insert an element into a list

listlib::insertAt(list, element, pos) inserts element into list
at position pos .

Call(s):

A listlib::insertAt(list, element <, pos >)

Parameters:
list — a list
element — any MuPAD object
pos — any integer

Return Value: the given list enlarged with the inserted element

Related Functions: listlib::insert , append , _concat

Details:

A With the function listlib::insertAt any element can be inserted
into any list at a specified place.

A The third argument (the “insert index”) determines the place to insert
the element into the given list.

3

A If the insert index is less than 1 the element is inserted in front of the
list. If the insertion index is greater than nops(list) the element is
appended to the list. To append an element to a list the kernel function
append is faster.

A If no third argument is given, the given element is inserted in front of the
list.

A If the argument element is a list too, the elements of this list will be
inserted (or appended) instead of the whole list by preserving the order.

Example 1. Insertion 2 at the third place of the given list:

>> listlib::insertAt([1, 1, 1], 2, 3)

[1, 1, 2, 1]

Insertion of an element in front of a list. The third argument is optional in this
case:

>> listlib::insertAt([1, 1, 3, 1], 2, 0), listlib::insertAt([1, 1, 3, 1], 2)

[2, 1, 1, 3, 1], [2, 1, 1, 3, 1]

Appending of an element. This could be done faster with append :

>> listlib::insertAt([1, 2, 3], 4, 1000), append([1, 2, 3], 4)

[1, 2, 3, 4], [1, 2, 3, 4]

Changes:

A listlib::insertAt used to be linsert .

listlib::merge – merging two ordered lists

listlib::merge(list1, list2) merges both lists into one list.

Call(s):

A listlib::merge(list1, list2 <, function >)

Parameters:
list1, list2 — a MuPAD list
function — a function, that determines the merging order

4

Return Value: an ordered list that contains the elements of both lists

Related Functions: listlib::singleMerge , listlib::insert ,
_concat , zip

Details:

A With the third optional argument a function can be given that compare
the elements of the lists and therewith determines the order of the ele-
ments. The given function is called with two elements and have to re-
turn TRUE, if the two elements are in the right order, otherwise FALSE
(see next paragraph).

A The given function is called step by step with an element of the first list
as first argument and an element of the second list as second argument,
until it returns FALSE. Then the element of the second list is inserted
into the first list in front of the last proved element (see example 2).

A The lists must be ordered with regard to the order function, other-
wise the elements could be inserted at the wrong place. !

A If no third argument is given the function _less is used. If no order of
the elements with regard to _less is defined, a function must be given,
otherwise an error appears. The system function sysorder always can
be used.

Example 1. Merging two ascending ordered lists:

>> listlib::merge([1, 3, 5, 7], [2, 4, 6, 8])

[1, 2, 3, 4, 5, 6, 7, 8]

Merging two descending ordered lists:

>> listlib::merge([7, 5, 3, 1], [8, 6, 4, 2], _not@_less)

[8, 7, 6, 5, 4, 3, 2, 1]

Example 2. The following example shows, how expressions can be ordered by
a user defined priority. This order is given by the function named priority ,
which returns a smaller number, when the expression has a type with higher
priority:

>> priority := X -> contains(["_power", "_mult", "_plus"], type(X)):
priority(x^2), priority(x + 2)

1, 3

5

The function sortfunc returns TRUE, if the both given arguments are in the
right order, i.e., the first argument has a higher (or equal) priority than the
second argument:

>> sortfunc := (X, Y) -> bool(priority(Y) > priority(X)):
sortfunc(x^2, x + 2), sortfunc(x + 2, x*2)

TRUE, FALSE

Now the both lists are merged with regard to the given priority:

>> listlib::merge([x^y, x*2, -y], [x^2, x*y, x + y], sortfunc)

y 2
[x , x , 2 x, -y, x y, x + y]

>> delete priority, sortfunc:

Changes:

A listlib::merge used to be listtools::merge .

listlib::removeDuplicates – removes duplicate entries

listlib::removeDuplicates(list) removes all duplicate entries of the
list list .

Call(s):

A listlib::removeDuplicates(list)

A listlib::removeDuplicates(list, KeepOrder)

Parameters:

list — a MuPAD list

Options:

KeepOrder — listlib::removeDuplicates(list,
KeepOrder) returns a list with unique entries in the
order of their occurence in list .

Return Value: a list that contains each entry only once

Related Functions: listlib::removeDupSorted , DOM_LIST

6

Details:

A listlib::removeDuplicates(list) removes all duplicates of each
entry of the list list . The new list is build up from right to left with the
order of the last occurence of each entry in list . Cf. Example 1.

A A faster possibibliy to remove duplicate entries is to convert the list into
a set and back into a list. You will loose the order of the list entries in
this case. Cf. Example 3.

Option <KeepOrder >:

A listlib::removeDuplicates(list, KeepOrder) returns a list of
the entries of list in the order of their first occurence. The list is build
up from left to right. Cf. Example 2.

Example 1. Per default listlib::removeDuplicates removes duplicate
entries in reverse order:

>> list:= [1, 1, 1, 3, 1, 5, 5, 1, 3, 3, 1, 7]:
listlib::removeDuplicates(list)

[5, 3, 1, 7]

Example 2. With option KeepOrder entries are selected in the order of their
occurence:

>> list:= [1, 1, 1, 3, 1, 5, 5, 1, 3, 3, 1, 7]:
listlib::removeDuplicates(list, KeepOrder)

[1, 3, 5, 7]

Example 3. If you don’t need the order of list entries any more, you may
convert the list into a set and back into a list:

>> list:= [1, 1, 1, 3, 1, 5, 5, 1, 3, 3, 1, 7]:
[op({op(list)})]

[7, 5, 3, 1]

7

Changes:

A listlib::removeDuplicates used to be listtools::removeDuplicates .

listlib::removeDupSorted – remove duplicates of any element
from ordered lists

listlib::removeDupSorted(list) removes all duplicates of any element
of the ordered list list .

Call(s):

A listlib::removeDupSorted(list)

Parameters:

list — an ordered MuPAD list

Return Value: a list that contains every element only once

Related Functions: listlib::removeDuplicates

Details:

A listlib::removeDupSorted removes all duplicates of every element
of an ordered list.

A listlib::removeDupSorted does the same as listlib::removeDuplicates ,
but it assumes that the list is sorted and therefor it is faster. A notable
gain will only occur, if there are only few duplicates in a long list.

Example 1. listlib::removeDupSorted removes all duplicates from the
given list:

>> listlib::removeDupSorted([1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7])

[1, 3, 5, 7]

If the list is not ordered, listlib::removeDupSorted fails:

>> listlib::removeDupSorted([1, 3, 5, 7, 1, 3, 5, 7, 1, 3, 5, 7])

[1, 3, 5, 7, 1, 3, 5, 7, 1, 3, 5, 7]

8

Changes:

A listlib::removeDupSorted used to be listtools::removeDupSorted .

listlib::setDifference – remove elements from a list

listlib::setDifference(list1, list2) removes all elements from list1 ,
that are given by list2 .

Call(s):

A listlib::setDifference(list1, list2)

Parameters:

list1, list2 — a MuPAD list

Return Value: the first list without all elements of the second list

Related Functions: _minus

Details:

A listlib::setDifference removes all elements of the list list1 given
by the second list list2 .

A The order of the list is not preserved.
!

Example 1. listlib::setDifference removes 2, 4, 6 and 8 from the
given list:

>> listlib::setDifference([1, 2, 3, 4, 5, 6, 7, 8], [2, 4, 6, 8])

[7, 5, 3, 1]

Changes:

A listlib::setDifference used to be listtools::setDifference .

listlib::singleMerge – merging of two ordered lists without du-
plicates

listlib::singleMerge(list1, list2) merges two ordered lists with-
out duplicates.

9

Call(s):

A listlib::singleMerge(list1, list2 <, function >)

Parameters:
list1, list2 — a MuPAD list
function — a function, that determines the merging order

Return Value: an ordered list that contains the elements of both lists

Related Functions: listlib::merge , listlib::insert , _concat , zip

Details:

A listlib::singleMerge(list1, list2) merges the both lists into
one list. It is assumed that the lists are “disjunct”, no element appears in
both lists. Otherwise such elements are inserted only once in the result
list.

A With the third optional argument a function can be given that compare
the elements of the lists and therewith determines the order of the ele-
ments. The given function is called with two elements and have to re-
turn TRUE, if the two elements are in the right order, otherwise FALSE
(see next paragraph).

A The given function is called step by step with an element of the first list
as first argument and an element of the second list as second argument,
until it returns FALSE. Then the element of the second list is inserted
into the first list in front of the last proved element (see example 3).

A The lists must be ordered with regard to the order function, other-
wise the elements could be inserted at the wrong place. !

A If no third argument is given the function _less is used. If no order of
the elements with regard to _less is defined, a function must be given,
otherwise an error appears. The system function sysorder always can
be used.

Example 1. Merging two ascending ordered lists:

>> listlib::singleMerge([1, 3, 5, 7], [2, 4, 6, 8])

[1, 2, 3, 4, 5, 6, 7, 8]

Merging two descending ordered lists:

>> listlib::singleMerge([7, 5, 3, 1], [8, 6, 4, 2], _not@_less)

[8, 7, 6, 5, 4, 3, 2, 1]

10

Example 2. Merging two ascending ordered lists with duplicates:

>> listlib::singleMerge([1, 2, 5, 7], [2, 5, 6, 8])

[1, 2, 5, 6, 7, 8]

But the following lists does not contain mutual equal elements:

>> listlib::singleMerge([1, 1, 3, 3], [2, 2, 4, 4])

[1, 1, 2, 2, 3, 3, 4, 4]

Example 3. The following example shows, how expressions can be ordered by
a user defined priority. This order is given by the function named priority ,
which returns a smaller number, when the expression has a type with higher
priority:

>> priority := X -> contains(["_power", "_mult", "_plus"], type(X)):
priority(x^2), priority(x + 2)

1, 3

The function sortfunc returns TRUE, if the both given arguments are in the
right order, i.e., the first argument has a higher (or equal) priority than the
second argument:

>> sortfunc := (X, Y) -> bool(priority(Y) > priority(X)):
sortfunc(x^2, x + 2), sortfunc(x + 2, x*2)

TRUE, FALSE

Now the both lists are merged with regard to the given priority:

>> listlib::singleMerge([x^y, x*2, -y], [x^2, x*y, x + y], sortfunc)

y 2
[x , x , 2 x, -y, x y, x + y]

>> delete priority, sortfunc:

Changes:

A listlib::singleMerge used to be listtools::singleMerge .

listlib::sublist – search sublists

listlib::sublist(list1, list2) determines, whether the list list1
contains another list list2 .

11

Call(s):

A listlib::sublist(list1, list2 <, index > <, option >)

Parameters:
list1, list2 — MuPAD list
index — integer, that determines the first search position
option — option Consecutive

Options:

Consecutive — determines that the sublist list2 is containing
coherent in list1

Return Value: the position of the first element of the containing sublist or
zero

Related Functions: contains , op

Details:

A With listlib::sublist the position of the first appearance of a list in
another list can be determined.

A The position that was found is returned as integer. If the given list does
not contain the given sublist , the number 0 is returned.

A If an index is given, the search starts at this position. Therewith multiple
occurence of a sublist can be determined.

A With the option Consecutive , the list must contain the sublist in one
piece without elements in between.

Example 1. The sublist is a part of the list, but not in one piece:

>> listlib::sublist([1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 5, 6])

2

>> listlib::sublist([1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 5, 6], Consecutive)

0

The list contains the sublist, coherent and incoherent:

>> listlib::sublist([1, 2, 3, 4, 5, 1, 3, 5], [1, 3, 5])

1

>> listlib::sublist([1, 2, 3, 4, 5, 1, 3, 5], [1, 3, 5], Consecutive)

6

12

Example 2. Find the last occurence of the sublist inside of the list:

>> POS:= 0:
while listlib::sublist([1, 2, 3, 1, 3, 1, 2, 3], [1, 2, 3], POS + 1) > 0 do

POS:= listlib::sublist([1, 2, 3, 1, 3, 1, 2, 3], [1, 2, 3], POS + 1)
end_while:
POS

6

>> delete POS:

Changes:

A listlib::sublist used to be listtools::sublist .

13

