
combinat — library for combinatorics

Table of contents

Preface . ii

combinat::bell — Computing Bell numbers 1

combinat::cartesian — Cartesian product of sets 2

combinat::choose — Computes all k-subsets of a given set . . . 4

combinat::composition — k-composition of an integer 5

combinat::modStirling — modified Stirling numbers 6

combinat::partitions — n-th partitions number 6

combinat::permute — permutations of a list 8

combinat::powerset — power set of a set or list 9

combinat::stirling1 — Stirling numbers of the first kind . . . 11

combinat::stirling2 — Stirling numbers of the second kind . . 12

i

Introduction

The combinat library provides algorithms from some areas of combinatorics.
The package functions are called using the package name combinat and

the name of the function. E.g., use

>> combinat::bell(5)

to compute the 5-th bell number. This mechanism avoids naming conflicts
with other library functions. If this is found to be inconvenient, then the rou-
tines of the combinat package may be exported via export . E.g., after calling

>> export(combinat, bell)

the function combinat::bell may be called directly:

>> bell(5)

All routines of the combinat package are exported simultaneously by

>> export(combinat)

The functions available in the combinat library can be listed using

>> info(combinat)

ii

combinat::bell – Computing Bell numbers

combinat::bell (n) computes the n-th Bell number.

Call(s):

A combinat::bell(n)

A combinat::bell(expression)

Parameters:
n — nonnegative integer
expression — An expression of type Type::Arithmetical which

must be a nonnegative integer if it is a number.

Return Value: A positive integer value if n was a nonnegative integer. Other-
wise combinat::bell returns the unevaluated function call.

Details:

A The n-th bell number is defined by the exponential generating function:

eex−1 =
∞
∑
n=0

bell(n)
n!

xn

Often another definition is used. The n-th bell number is the number of
different ways of partitioning the set {1,2, . . . ,n} into disjoint nonempty
subsets, and bell(0) is defined to be 1.

A Bell numbers are computed using the formula:

bell(0) = 1

bell(n + 1) =
n

∑
i=0

(
n
i

)
bell(i) for n > 0

Example 1.

>> combinat::bell(3)

5

This means that you can partition the set {1,2,3} into disjoint subsets in 5
different ways. These are {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}},
and {{1},{2},{3}}. Or, that you can write 105 = 3 ∗ 5 ∗ 7 as 5 different prod-
ucts. These are 105 = 3 ∗ 5 ∗ 7 = 15 ∗ 7 = 21 ∗ 5 = 3 ∗ 35 = 105 ∗ 1.

1

Example 2. If one uses a wrong argument, an error message is returned

>> combinat::bell(3.4)

Error: Nonnegative integer expected [combinat::bell]

Example 3. One can see why it is useful to return the unevaluated function
call.

>> a:=combinat::bell(x)

combinat::bell(x)

>> x :=4

4

>> a ; delete a:

15

Changes:

A In older MuPAD versions combinat::bell returned 1 for a negative
integer. Now it returns an error message if it gets a negative integer as
an argument.

combinat::cartesian – Cartesian product of sets

combinat::cartesian(set1, set2, ..., setN) computes the carte-
sian product of the given sets set1 , set2 , ..., setN .

For every positive integer n, the set {1, . . . ,n} may be denoted by n, and 0
may be written instead of the empty set.

Call(s):

A combinat::cartesian(set1, set2, ..., setN)

Parameters:
set1, set2, ..., setN — Sets of domain type DOM_SET, or

nonnegative integers.

2

Return Value: A set of domain type DOM_SETcontaining N-tuples of domain
type DOM_LIST, where N is the number of arguments.

Details:

A The cartesian product of the given sets set1 , set2 is the set set1× set2×
. . .× setN of all N-tuples [x1, x2, . . . , xN] with xn ∈ setn, 1 ≤ n ≤ N.

A combinat::cartesian () is not commutative, as demonstrated in ex-
ample 3.

Example 1. Which cards exist, if you have the following suits and numbers
available?

>> combinat::cartesian({Diamondsuit,Heartsuit,Spadesuit,Clubsuit},{7,8,9,10})

{[Clubsuit, 7], [Clubsuit, 8], [Clubsuit, 9], [Clubsuit, 10],

[Spadesuit, 7], [Spadesuit, 8], [Spadesuit, 9],

[Spadesuit, 10], [Heartsuit, 7], [Heartsuit, 8],

[Heartsuit, 9], [Heartsuit, 10], [Diamondsuit, 7],

[Diamondsuit, 8], [Diamondsuit, 9], [Diamondsuit, 10]}

Example 2. The same as above, but with other numbers:

>> combinat::cartesian({Diamondsuit,Heartsuit,Spadesuit,Clubsuit},3)

{[Clubsuit, 1], [Clubsuit, 2], [Clubsuit, 3], [Spadesuit, 1],

[Spadesuit, 2], [Spadesuit, 3], [Heartsuit, 1],

[Heartsuit, 2], [Heartsuit, 3], [Diamondsuit, 1],

[Diamondsuit, 2], [Diamondsuit, 3]}

Example 3. The cartesian product isn’t commutative:

>> combinat::cartesian({Diamondsuit},2); combinat::cartesian(2,{Diamondsuit})

{[Diamondsuit, 1], [Diamondsuit, 2]}

{[1, Diamondsuit], [2, Diamondsuit]}

3

Changes:

A No changes.

combinat::choose – Computes all k-subsets of a given set

combinat::choose(set,k) computes all k -subsets of the given set set

combinat::choose(N,k) computes all k -subsets of the set setN where setN
= {1,2, . . . ,N}.

Call(s):

A combinat::choose(set,k)

A combinat::choose(N,k)

Parameters:
set — a set of domain type DOM_SET
k — a nonnegative integer
N — a nonnegative integer

Return Value: combinat::choose returns an expression sequence, consist-
ing of the computed subsets.

Example 1. Compute all the subsets of {a, b, c, d, e} containing 3 elements

>> combinat::choose({a,b,c,d,e},3)

{c, d, e}, {b, d, e}, {a, d, e}, {b, c, e}, {a, c, e},

{a, b, e}, {b, c, d}, {a, c, d}, {a, b, d}, {a, b, c}

Example 2. Compute all the subsets of {1,2,3} containing 2 elements

>> combinat::choose(3,2)

{2, 3}, {1, 3}, {1, 2}

Example 3. It’s not a good idea to compute the subsets containing−1 element

>> combinat::choose({a,3},-1)

Error: Second argument must be a nonnegative integer [combinat\
::choose]

4

Changes:

A No changes.

combinat::composition – k-composition of an integer

combinat::composition computes a list of all distinct ordered k-tupels
(k1, . . . , kn) such that ∑k

i=1 ni = n and ni ≥ 1, i = 1 . . . k.

Call(s):

A combinat::composition(n,k)

Parameters:

n, k — integer

Return Value: A list of type DOM_LIST containing every computed k-tupel
also as a list of type DOM_LIST. If there exist no k-tupel the empty list is re-
turned.

Details:

A combinat::composition(n, k) returns an empty list if n < 1 or k <
1 or n < k.

Example 1. How can one write 5 as a sum of two other positive integers?

>> combinat::composition(5,2)

[[1, 4], [2, 3], [3, 2], [4, 1]]

Example 2. There is no way to write 2 as the sum of 5 positive integers.

>> combinat::composition(2,5)

[]

Example 3. combinat::composition does not handle symbolic expres-
sions.

>> combinat::composition(xx,2)

Error: arguments must be integers [combinat::composition]

5

Changes:

A No changes.

combinat::modStirling – modified Stirling numbers

combinat::modStirling computes the modified Stirling numbers.

Call(s):

A combinat::modStirling(q, n, k)

Parameters:
q — the argument: an integer
n — the number of variables: a nonnegative integer
k — the degree: a nonnegative integer

Return Value: a positive integer.

Details:

A combinat::modStirling(q,n,k) takes the elementary symmetric
polynomial in n variables of degree k and evaluates it for the values q+1 ,
. . . , q+n . Note that k must not be greater then n.

Example 1.

>> combinat::modStirling(2,4,2)

119

Changes:

A combinat::modStirling is a new function.

combinat::partitions – n-th partitions number

combinat::partitions(n) returns the number of partitions of the non-
negative integer n.

6

Call(s):

A combinat::partitions(n)

Parameters:

n — a nonnegative integer

Return Value: The number of partitions as a positive integer.

Details:

A The number of partitions of the nonnegative integer n is the number of
representations of n as n = ∑k

i=1 ni, ni ≥ 1, i = 1 . . . k. By definition com-
binat::partitions(0) is 1.

A For small n Euler’s pentagonal formula is used to compute combinat::partitions(n) .

p(n) +
∞
∑
k=1
−1k(p(n−w(k)) + p(n−w(−k))) = 0, where w(k) = (3 ∗ k2 + k)/2

For large n the Hardy-Ramanujan-Rademacher formula is used.

Example 1. We can write 3 in 3 different ways as a sum of nonnegative inte-
gers. They are 3 = 1 + 1 + 1 = 1 + 2 = 3.

>> combinat::partitions(3)

3

Example 2. The number of partitions of n grows very rapidly for larger n.

>> combinat::partitions(111)

679903203

Example 3. A negative number cannot be written as a sum of positive inte-
gers.

>> combinat::partitions(-3)

Error: Argument must be a nonnegative integer [combinat::parti\
tions]

7

Further Documentation: G. Andrews, The Theory of Partitions, Addison-
Wesley, 1976

Changes:

A No changes.

combinat::permute – permutations of a list

combinat::permute (list) computes all the reorderings of the given list list .

combinat::permute (n) computes all the reorderings of the list [1,2, . . . ,n].

Call(s):

A combinat::permute(n)

A combinat::permute(list)

A combinat::permute(list, Duplicate)

Parameters:
n — a nonnegative integer
list — a list

Options:

Duplicate — The result may contain identical lists if there are
duplicates in the given list list .

Return Value: A list of type DOM_LISTcontaining every reordered list as an
element.

Details:

A Without the option Duplicate , all lists in the result are distinct.

Option <Duplicate >:

A If the given list contains k elements, then the resulting list contains k!
elements, which do not have to be distinct. This means duplicates are
not treated differently. Cf. examples 3 and 4.

8

Example 1. There are exactly two ways of ordering two elements.

>> combinat::permute([a,b])

[[a, b], [b, a]]

Example 2. An integer argument n is equivalent to the list of the first n inte-
gers.

>> combinat::permute(3)

[[2, 3, 1], [3, 2, 1], [1, 3, 2], [3, 1, 2], [1, 2, 3],

[2, 1, 3]]

Example 3. By default, one gets all distinct reorderings.

>> combinat::permute([a,a,b])

[[a, b, a], [b, a, a], [a, a, b]]

Example 4. But if one wants to get a list with duplicated reordered entries,
this is also possible.

>> combinat::permute([a,a,b],Duplicate)

[[a, b, a], [b, a, a], [a, b, a], [b, a, a], [a, a, b],

[a, a, b]]

Example 5. Sets are not allowed as an argument.

>> combinat::permute({3,4})

Error: argument must be a list or a non-negative integer! [com\
binat::permute]

9

Changes:

A In older MuPAD versions the option Duplicate was the default behaviour
of the function combinat::permute ().

combinat::powerset – power set of a set or list

combinat::powerset(set) computes the powerset of the given set set ,
that is, the set of all subsets of set .

combinat::powerset(list) computes the powerset of the given list list ,
that is, the set of all sublists of list . In this context, lists are understood as
multisets.

combinat::powerset(n) computes the powerset of the set {1,2, . . . ,n}.

Call(s):

A combinat::powerset(n)

A combinat::powerset(set)

A combinat::powerset(list)

Parameters:
n — a nonnegative integer
set — a set of domain type DOM_SET
list — a list of domain type DOM_LIST

Return Value: A set of domain type DOM_SETwhich contains the computed
subsets.

Overloadable by: set

Related Functions: combinat::choose

Details:

A If the argument of combinat::powerset is a list, it is treated like a
multiset. This means that sublists that contain the same elements the
same number of times are treated as equal, even if the elements appear
in a different order. Cf. Example 3.

Example 1.

>> combinat::powerset({a, b, c})

{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

10

Example 2.

>> combinat::powerset(3)

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Example 3. Here you can see that lists are treated as multisets. There is no
sublist [2,1] since it is identified with the list [1,2] which is in the powerset.

>> combinat::powerset([2, 1, 2])

{[], [1], [2], [1, 2], [2, 2], [1, 2, 2]}

Changes:

A Extended to work on lists.

combinat::stirling1 – Stirling numbers of the first kind

combinat::stirling1 (n,k) computes the Stirling numbers of the first kind.

Call(s):

A combinat::stirling1(n,k)

Parameters:

n,k — nonnegative integers

Return Value: an integer.

Details:

A Let S(n, k) be the number of permutations of n symbols that have exactly
k cycles. Then combinat::stirling1 (n,k) computes (−1)(n+k)S(n, k).

A Let S1(n, k) be the stirling number of the first kind, then we have:

n

∑
k=0

S1(n, k)xk = x(x− 1) . . . (x− n + 1)

11

Example 1. Let us have a look what’s the result of x(x− 1)(x− 2)(x− 3)(x−
4)(x− 5) written as a sum.

>> expand(x*(x-1)*(x-2)*(x-3)*(x-4)*(x-5))

2 3 4 5 6
274 x - 120 x - 225 x + 85 x - 15 x + x

Now let us “prove” the formula mentioned in the “Details” section by calcu-
lating the proper stirling numbers

>> combinat::stirling1(6,1);
combinat::stirling1(6,2);
combinat::stirling1(6,3);
combinat::stirling1(6,4);
combinat::stirling1(6,5);
combinat::stirling1(6,6)

-120

274

-225

85

-15

1

Example 2.

>> combinat::stirling1(3,-1)

Error: Arguments must be nonnegative integers. [combinat::sti\
rling1]

Further Documentation: J.J. Rotman, An Introduction to the Theory of Groups,
3rd Edition, Wm. C. Brown Publishers, Dubuque, 1988

Changes:

A No changes.

12

combinat::stirling2 – Stirling numbers of the second kind

combinat::stirling2 (n,k) computes the Stirling numbers of the second
kind.

Call(s):

A combinat::stirling2(n,k)

Parameters:

n,k — nonnegative integers

Return Value: a nonnegative integer.

Details:

A combinat::stirling2 (n,k) computes the number of ways of parti-
tioning a set of n elements into k non-empty subsets.

A combinat::stirling2 (n,k) is calculated using the formula

stirling2(n, k) =
1
k!

k

∑
j=0

(−1)k− j
(

k
j

)
jn.

Example 1. One can partition the set {1,2,3} into {1,2,3} = {1,2} ∪ {3} =
{1,3} ∪ {2} = {2,3} ∪ {1}

>> combinat::stirling2(3,2)

3

Example 2.

>> combinat::stirling2(3)

Error: Two arguments expected. [combinat::stirling2]

Changes:

A No changes.

13

