Network — library for graph theory

Table of contents

Network::addEdge =~ — adds one or several edges to a network . .
Network::addVertex — adds one or several vertices to a network
Network::admissibleFlow — checks a flow for admissibility in a
networko
Network::allShortPath — shortest paths for all pairs of nodes
Network::changeEdge — changes weight and capacity of one or
severaledges o
Network::changeVertex — changes the weight of one or several
verticesinanetwork oo
Network::complete — generates a complete network
Network::convertSSQ — converts a network into a single source
singlesinknetwork L o Lo L
Network::cycle — generatesacycle L.
Network::delEdge — deletes one or several edges from a network
Network::delVertex — deletes one or several vertices from a net-
work ..o
Network::eCapacity — returns the table of capacities
Network::eWeight — returns the table of edge weights
Network::edge — returns a list with alledges.
Network::epost, Network::epre — adjacency lists
Network::inDegree — theindegreeofnodes
Network::isEdge, Network::isVertex — checks whether an edge
or vertex is contained inanetworko 0L
Network::longPath — longest paths from one single node
Network::maxFlow = — computes a maximal flow through a network
Network::minCost — computes a minimal cost flow
Network::minCut — computes aminimalcut.
Network::outDegree — returns the out-degrees for nodes
Network::printGraph — print all information about a network .

Network::random — generates a random network

10

11
13
14

15
17
18
19
20
21

22
23
25
27
28
30
31
32

Network::
Network:
Network:
Network:
Network:
Network:
Network:

Network::

residualNetwork

ii

— computes the residual network

:shortPath — shortest paths from one single node
:shortPathTo — shortest paths to one single node
:showGraph — plots a network

:topSort — topological sorting of the nodes
:‘vWeight — returns the table of vertex weights
vertex — returns a list with all vertices
new — generates a new network

34
36
38
39
40
41
42
43

Network::addEdge - adds one or several edges to a network

Network::addEdge augments an existing network by new edges

Call(s):
Network::addEdge(G, e <, Eweight =c><, Capacity =t >)
Network::addEdge(G, | <, Eweight =lc ><, Capacity =t >)
Parameters:
lc,It — lists of numbers
c,t — numbers
I — list of edges
e — edge
G — network
Options:
Eweight ~ — The weight(s) for the new edge(s). Default is 1.
Capacity — The capacity/capacities for the new edge(s). Default is 1.

Return Value: The augmented network

Details:

& Network::addEdge adds one or several edges to an already existing
network. An edge is represented by a list containing two nodes of the
network. An error is raised if the specified edge is already contained in
the network.

Network::addEdge(G,e) adds the edge e to the network G The end-
points of the edge must be nodes of the network. Otherwise an error is
raised. A weight and a capacity can be set for the new edge with Net-
work::addEdge(G,e, Eweight =c, Capacity =t) . If these specifica-
tions are missing, the default values 1 are assumed.

¢ Several edges can be added with Network::addEdge(G,l) , where |
is a list of edges. For every edge in the list the endpoints have to be nodes
of the network. With Network::addEdge(G,|, Eweight =Ic, Capacity
weights and capacities can be specified. Here Ic and It are numerical
lists with exactly the same number of elements as | .

=If)

Example 1. We construct a cyclic network and add a few edges.

>> N1 := Network::cycle(Jvl,v2,v3,v4]):
Network::edge(N1)

[vi, v2], [v2, v3], [v3, v4], [v4, v1]]

>> N2 := Network::addEdge(N1, [v1,v3]):
Network::edge(N2)

[[vi, v2], [v2, v3], [v3, v4], [v4, v1], [v1, v3]]
Now, both v2 and v3 are direct successors of v1.
>> Network::epost(N2)[v1];
[v2, v3]
Network::addEdge can augment a network with weights and capacities.

>> N3 := Network::addEdge(N1, [[v1,v3],[v1,v4]], Capacity = [3,5]):
Network::eCapacity(N3);

[vl, v4] =
[vl, v3]
[v4, vi]
[v3, v4]
[v2, v3]
[vl, v2]

I
PR RPP WO

Changes:
& Network::addEdge used to be Network::AddEdges

Network::addVertex — adds one or several vertices to a network
Network::addVertex(G,v) adds the vertex or list of vertices v to the net-
work G
Call(s):

 Network::addVertex(G, v <, Vweight =c>)

Network::addVertex(G, | <, Vweight =lc >)

Parameters:

C — number

| — list of expressions
V — expression

lc — list of numbers

G — network

Options:
Vweight — The weight of the vertex.

Return Value: Network::addVertex returns the augmented network.

Details:

& Network::addVertex adds one or several nodes to an already exist-
ing network. A node is to be assumed an arbitrary expression. If the
specified node is already contained in the network an error is raised.

Network::addVertex(G,v) adds thenode v to the network G A weight
can be defined for the new vertex with Network::addVertex(G,v, Vweight =c) .
If these specification is missing, the default value 0 is assumed.

& Several nodes can be added with Network::addVertex(G,l) , where
| is a list of nodes. None of these nodes is allowed to be already con-
tained in the network. Weights can be specified by Network::addVertex(G,|, Vweight =lIc)
where Ic is a numerical list with exactly the same number of elements
asl.

Example 1. Starting from a cyclic network with four nodes, we add three
more nodes with non-zero weights.

>> N1 := Network::cycle([vl,v2,v3,v4]):
Network::vertex(N1)

[vi, v2, v3, v4]

>> N2 := Network::addVertex(N1, [v5,v6,v7], Vweight=[2,3,4]):
Network::vertex(N2)

[vi, v2, v3, v4, v5, v6, V7]

>> Network::vWeight(N2)

table(
V7 =
v6 =
vb =
v4 =
v3 =
V2 =
vl =

coooN WM

Changes:
7 Network::addVertex used to be Network::AddVertex

Network::admissibleFlow — checks a flow for admissibility in a
network
Network::admissibleFlow(N,f) checks if the flow f is admissible in the

network Naccording to its vertices and their capacities.

Call(s):
Network::admissibleFlow(N, f)

Parameters:

N — network
f — flow (a table)

Return Value: either TRUEor FALSE

Details:

& Network::admissibleFlow checks whether a given flow is an admis-
sible flow in the specified network. A flow in a network is a table t,
where t[[i,j]] gives the number of units flowing from nodei tonode
j . Network::admissibleFlow returns TRUEIf the flow is admissible.
Otherwise FALSE s returned.

& Network::admissibleFlow does not check whether the flow is ad-
missible if a flow from nodei tonodej is allowed to pass through other
nodes. See example 2.

Example 1. In a cyclic network with default capacities (1), the flow with one
unit flowing from each node to its successor is certainly admissible.

>> N1 := Network::cycle(Jvl,v2,v3,v4]):
Network::admissibleFlow(N1, table([vl,v2]=1,
[v2,v3]=1, [v3,v4]=1, [v4,v1]=1))

TRUE

Example 2. The flow must give each connection to use directly. Network::admissibleFlow
does not introduce “hops”.

>> Network::admissibleFlow(Network::cycle([v1,v2,v3]),
table([v1,v3]=1))

FALSE
Changes:

& Network::admissibleFlow used to be Network::AdmissibleFlow
Network::allShortPath — shortest paths for all pairs of nodes
Network::allShortPath(G) finds shortest paths in the network G
Call(s):

& Network::allShortPath(G <, Length ><, Path >)
Parameters:

G — network
Options:
Length — Return the lengths of shortest paths. This is the default
unless Path is given.
Path — Return a table of shortest paths.

Return Value: A table or a sequence of two tables

Details:

& Network::allShortPath(G) gives a table with the length of a short-
est path between twonodes i andj foreveryi andj .

Network::allShortPath(G, Path) returns a table which contains
a shortest path for every pair (i,j) . If thereisno entry for a pair (i,j)
then either i=j or|j cannot be reached fromi in the network.

Network::allShortPath(G, Length) returns a table which con-
tains the length of a shortest path for every pair (i,j) . The entry in-
finity for (i,)) represents the fact, that j cannot be reached from i
in the network. If both Length and Path are specified, then the distance
table and the path table are returned. If the option Path is not given, the
behaviour of Network::allShortPath with the option Length is the
default behaviour.

Example 1. In a cyclic network with three vertices, each node can be reached
in at most two steps.

>> N1 := Network:.cycle([vl, v2, v3]):
Network::allShortPath(N1)

table(
(v3, v3)
(v3, v2)
(v3, vi)
(v2, v3)
(v2, v2)
(v2, vi1)
(v1, v3)
(v1, v2)
(v1, vi)

)

Adding a vertex which has no connection to the three nodes, we get the ex-
pected entries infinity . The table of paths contains no entries referring to
the newly added vertex.

OFRPNMNNOFRENO

>> N1 := Network::addVertex(N1, v4):
Network::allShortPath(N1, Length, Path)

table(
(v4, v4) = 0,
(v4, v3) = infinity,
(v4, v2) = infinity,
(v4, v1) = infinity,

(v3, v4) = infinity, table(

(v3, v3) 0, (v3, v2) = [v3, v1, v2],
(v3, v2) = 2, (v3, vl1) = [v3, vi],
(v3, v1) = 1, , (v2, v3) = [v2, v3],
(v2, v4) = infinity, (v2, vl1) = [v2, v3, vi],
(v2, v3) = 1, (v1, v3) = [v1, v2, v3],
(v2, v2) = 0, (vi, v2) = |[vi, v2]
(v2, vl1) = 2,)
(v1, v4) = infinity,
(vi, v3) = 2,
(v1, v2) = 1,
(vi, v1) = 0O
)
Background:

& The implemented algorithm is taken from Floyd, "Algorithm 97, Shortest
Path", Comm. ACM, Vol. 5, 1962. The running time is O(n®), where n is
the number of nodes.

Changes:

% Network::allShortPath used to be Network::AllShortPath
Network::changeEdge —changes weight and capacity of one or sev-
eral edges
Network::changeEdge(G, e, Eweight=c, Capacity=l) changes the

weight of edge e in network Gto ¢ and its capacity to | .

Call(s):
Network::changeEdge(G, e <, Eweight =c><, Capac-
ity =t >)
Network::changeEdge(G, | <, Eweight =lc ><, Capac-
ity =It >)
Parameters:
Ic,It — lists of numbers
c,t — numbers
I — list of edges
e — edge
G — network

Options:

Eweight ~ — change the weight of the edge
Capacity — change the capacity of the edge

Return Value: The altered network

Details:

& Network::changeEdge changes the weight and capacity of one or sev-
eral edges in a network. An edge is given as a list containing two nodes
of the network. An error is raised if the specified edge is not contained
in the network.

& Network::changeEdge(G, e, Eweight =c) changes the weight of
edge e in the network Gto the new value c.

Network::.changeEdge(G, e, Capacity =t) changes the capacity
of edge e in the network Gto the new value't .

Network::.changeEdge(G, e, Eweight =c, Capacity =t) changes
the weight and capacity of edge e simultaneously.

¢ Instead of changing the values for one edge, they can be changed for sev-
eral edges simultaneously. For this, ChangeEdge(G,|,Eweight=Ic,Capacity=lt)
has to be given where | is a list of edges and Ic and It are numerical
lists with exactly the same number of elements as | .

Example 1. We construct a cyclic network with default weights. Then, those
weights are changed.

>> N1 := Network::cycle([vl, v2, v3, v4]):
Network::eWeight(N1)

table(
[v4, vi]
[v3, v4]
[v2, v3]
[vl, v2]
)

>> N2 := Network:.changeEdge(N1, [[v1,v2], [v2,v3]], Eweight=[2,2]):
Network::eWeight(N2)

R PRPRPPR

table(
[v4, v1]
[v3, v4]
[v2, v3]
[vl, v2]
)

Changes:
& Network::changeEdge used to be Network::ChangeEdge

Network::changeVertex — changes the weight of one or several
vertices in a network

Network::changeVertex(G, v, Vweight=c) sets the weight of vertex
v in network Gto c.

Call(s):
Network:.changeVertex(G, v <, Vweight =c>)
Network::changeVertex(G, | <, Vweight =lc >)
Parameters:
C — anumber
| — alist of nodes
v — anode of the network G
lc — alist of numbers
G — anetwork
Options:
Vweight — the new weight(s) of the vertices

Return Value: the augmented network

Details:

& Network::changeVertex changes the weight of one or several nodes
in a network. An error is raised if the specified node is not contained in
the network.

Network::changeVertex(G,v,Vweight=c) changes the weight of
node V in the network Gto the new value c.

& Instead of changing the vertex weight for one single node, the weight of
several nodes can be changed with Network::changeVertex(G,|,Vweight=Ic)
where | is alist of nodes and Ic is a numerical list with exactly the same
number of elements as | . If one of the specified nodes is not contained
in the network an error is raised.

Example 1. We generate a cyclic path with default weights. Then, the vertex
weights are changed.

>> N1 := Network::cycle(Jvl,v2,v3,v4]):
Network::vWeight(N1)

table(
v4 =
v3
v2
vl =

)

>> N2 := Network::.changeVertex(N1, [v1l,v2,v3,v4],
Vweight=[1,2,3,4]):

11l
ocooo

Network::vWeight(N2)

table(
v4 =
v3
v2
vl =

1]
RN WA

Changes:
& Network::changeVertex used to be Network::ChangeVertex

Network::complete — generates a complete network
Network::complete(n) generates the complete network with n vertices.
Call(s):

& Network::complete(n)

Parameters:

N — non negative integer

Return Value: a network

10

Details:

Network::complete(n) generates the complete network with n ver-
tices. A complete network has a connection between each pair of ver-
tices.

t¢ The network generated by Network::complete uses the default val-
ues of 1 for vertex weights, edge weights and edge capacities.

¢ The vertices of the generated network are labeled with the numbers from
lton.

Example 1. The complete network with three vertices has 3! = 6 edges.

>> N1 := Network::complete(3):
Network::printGraph(N1)

Vertices: [1, 2, 3]
Edges: [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]
Vertex weights: table(3=0,2=0,1=0)

Edge capacities: table([3, 2]=1,[3, 1]=1,[2, 3]=1,[2, 1]=1,[1\
3]=1,[1, 2]=1)

Edge weights: table([3, 2]=1,[3, 1]=1,[2, 3]=1,2, 1]=1,[1, 3]\
=1,[1, 2]=1)

Adjacency list (out): table(3=[1, 2],2=[1, 3],1=[2, 3])

Adjacency list (in): table(3=[1, 2],2=[1, 3],1=[2, 3])

Changes:
& Network::complete used to be Network::Complete

Network::convertSSQ — converts a network into a single source
single sink network

Network::convertSSQ(G, g, S) augments the network Gso that q is the
single source and s is the single sink of the new network.

11

Call(s):
Network::convertSSQ(G, g, s)

Parameters:
g,s — nodes not contained in the network
G — anetwork

Return Value: the augmented network

Details:

% Network::convertSSQ(G, g, s) converts the network Ginto a sin-
gle source single sink network. The specified nodes g and s are added to
the network. It is an error if they are already contained. Otherwise they
are connected to the other nodes of the network in the following way:

A new edge [q,i] is added for every vertex i with a positive weight.
A new edge [i,s] is added for every vertex i with a negative weight.
The capacities of these edges are in each case the weight of node i . The
edge weights are zero.

Example 1. This is an ugly example. We should make up a better one and
explain it.

>> V = [1,2,3/4]:

Vw := [4,0,0,-4]:
Ed = [[1,2], [1,3], [2,3], [2,4], [3.4]]
Ew = [2,2,1,3,1]:

Ecap := [4,2,2,3,5]:

N1 := Network(V,Ed,Vweight=Vw,Capacity=Ecap,Eweight=Ew):
N2 := Network::convertSSQ(N1,q,s):

Network::printGraph(N2)

Vertices: [1, 2, 3, 4, q, S]
Edges: [[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [a, 1], [4, sII
Vertex weights: table(s=-4,q=4,4=0,3=0,2=0,1=0)

Edge capacities: table([4, s]=4,[q, 1]=4,[3, 4]=5,[2, 4]=3,[2,\
3J=2.[1, 3J=2.[1, 2]=4)

Edge weights: table([4, s]=0,[q, 1]=0,[3, 4]=1,[2, 4]=3,[2, 3]\
=1,[1, 3]=2,[1, 2]=2)

Adjacency list (out): table(s=[],q=[1],4=[s],3=[4],2=[3, 4],1=\
(2, 3])

12

Adjacency list (in): table(s=[4],0=[],4=[2, 3],3=[1, 2],2=[1]\
1=[q])

Changes:
Network::convertSSQ used to be Network::ConvertSSQ

Network::cycle — generates a cycle

Network::cycle(L) generates the cyclic network consisting of the nodes in
L.

Call(s):

& Network::cycle(L)

Parameters:

L — list of expressions

Return Value: a network

Details:

Network::cycle([vl,...,vn]) generates a new network which is
the cycle [vi,v2] , [v2,v3] , .., [vn,vl] . The values for the edge
weights, edge capacities and vertex weights are the default values 1, 1
and 0 respectively.

Example 1. The cyclic network with four vertices:

>> N1 := Network:cycle([$1..4]):
Network::printGraph(N1)

Vertices: [1, 2, 3, 4]
Edges: [[1, 2], [2, 3], [3, 4], [4, 1]]
Vertex weights: table(4=0,3=0,2=0,1=0)
Edge capacities: table([4, 1]=1,[3, 4]=1,[2, 3]=1,[1, 2]=1)

Edge weights: table([4, 1]=1,[3, 4]=1,[2, 3]=1,[1, 2]=1)

13

Adjacency list (out): table(4=[1],3=[4],2=[3],1=[2])

Adjacency list (in): table(4=[3],3=[2],2=[1],1=[4])

Changes:
Network::cycle used to be Network::Cycle

Network::delEdge — deletes one or several edges from a network
Network::delEdge(G, e€) deletes edge e from network G
Call(s):

Network::delEdge(G, e)
Network:.delEdge(G,)

Parameters:

| — alist of edges
e — anedge
G — anetwork

Return Value: the new network

Details:

& Network::delEdge deletes one or several edges from a network. An
edge is represented by a list containing two nodes of the network. An
error is raised if the specified edge is not contained in the network.

Network::delEdge(G, e) deletes the edge e from the network G
& Network::delEdge(G, I) deletes all edges in the list | from the net-
work G

Example 1. Deleting an edge from a cyclic network results in a (degenerated)
tree.

>> N1 := Network:cycle([vl,v2,v3]):
Network::printGraph(N1)

14

Vertices: [v1, v2, v3]
Edges: [[v1, v2], [v2, v3], [v3, V1]]
Vertex weights: table(v3=0,v2=0,v1=0)
Edge capacities: table([v3, v1]=1,[v2, v3]=1,[v1, v2]=1)
Edge weights: table([v3, v1]=1,[v2, v3]=1,[vl, v2]=1)
Adjacency list (out): table(v3=[v1],v2=[v3],v1=[v2])

Adjacency list (in): table(v3=[v2],v2=[v1],v1=[v3])

>> N2 .= Network::.delEdge(N1, [v2,v3]):
Network::printGraph(N2)

Vertices: [v1, v2, v3]
Edges: [[vl, v2], [v3, v1]]
Vertex weights: table(v3=0,v2=0,v1=0)
Edge capacities: table([v3, v1]=1,[vl, v2]=1)
Edge weights: table([v3, v1]=1,[vl, v2]=1)
Adjacency list (out): table(v3=[v1],v2=[],v1=[v2])

Adjacency list (in): table(v3=[],v2=[v1],v1=[v3])

Changes:
Network::.delEdge used to be Network::DelEdge

Network::delVertex — deletes one or several vertices from a net-
work

Network::delVertex(G, v) deletes the vertex v from network G

Call(s):

& Network::delVertex(G, v)
Network::delVertex(G, I)

15

Parameters:

| — list of expressions
V — expression
G — network

Return Value: the smaller network

Details:
Network:.delVertex(G, V) deletes the node v from the network G
Network::delVertex(G, [v1, ..., vn]) deletes the nodes v1,

ey VN from the network G

¢ The attempt to delete a node which is not in Gcauses an error.

Example 1. Deleting a vertex from a network also deletes all edges connected
to it:

>> N1 := Network::cycle([vl,v2,v3]):
Network::printGraph(N1)

Vertices: [v1, v2, v3]
Edges: [[v1, v2], [v2, v3], [v3, V1]]
Vertex weights: table(v3=0,v2=0,v1=0)
Edge capacities: table([v3, v1]=1,[v2, v3]=1,[v1, v2]=1)
Edge weights: table([v3, v1]=1,[v2, v3]=1,[vl, v2]=1)
Adjacency list (out): table(v3=[v1],v2=[v3],v1=[v2])

Adjacency list (in): table(v3=[v2],v2=[v1],v1=[v3])

>> N2 := Network::delVertex(N1, v3):
Network::printGraph(N2)

Vertices: [vl, vZ2]

Edges: [[vl, v2]]
Vertex weights: table(v2=0,v1=0)
Edge capacities: table([vl, v2]=1)

Edge weights: table([vl, v2]=1)

16

Adjacency list (out): table(v2=[],v1=[v2])

Adjacency list (in): table(v2=[v1],v1=[])

Changes:

& Network::delVertex used to be Network::DelVertex
Network::eCapacity — returns the table of capacities
Network::eCapacity(G) returns the table of capacities of the network G
Call(s):

Network::eCapacity(G)

Parameters:

G — anetwork

Return Value: a table

Details:
Network::eCapacity(G) returns a table with the capacity of the net-
work G Thus Network::eCapacity(G)[[v,w]] is the capacity of the

edge [v,w] in the network G

Example 1.

>> V = [1,2,3,4,5]:
Ed := [[1,2], [1,3], [2,3], [2,4], [3,4], [3,5], [4,5]]:
Ecap := [30, 20, 25, 10, 20, 25, 20]:
N1 := Network(V, Ed, Capacity=Ecap):
Network::eCapacity(N1)

table(
[4, 5] = 20,
[3, 5] = 25,
[3, 4] = 20,
[2, 4] = 10,
[2, 3] = 25,
[1, 3] = 20,
[1, 2] = 30

)

17

The default capacity of edges is 1.

>> N1 := Network::complete(3):
Network::eCapacity(N1)

table(

%)
=
I

RRPPRPPP

Changes:
Network::eCapacity used to be Network::ECapacity

Network::eWeight =~ — returns the table of edge weights

Network::eWeight(G) returns the table of the edge weights of the network
G

Call(s):
Network::eWeight(G)

Parameters:

G — anetwork

Return Value: a table

Details:

Network::eWeight(G) returns a table with the edge weight of the
network G Thus Network::eWeight(G)[[v,w]] is the weight of the
edge [v,w] in the network G

18

Example 1.

>> V = [1,2,3,4,5]:
Ed = [[1,2], [1,3], [2,3], [2,4], [3.4], [3.5], [4,5]]:
Ew := [30, 20, 25, 10, 20, 25, 20]

N1 := Network(V, Ed, Eweight=Ew):
Network::eWeight(N1)
table(
[4, 5] = 20,
[3, 5] = 25,
[3, 4] = 20,
[2, 4] = 10,
[2, 3] = 25,
[1, 3] = 20,
[1, 2] = 30
)
The default weight is 1.
>> N1 := Network::complete(3):
Network::eWeight(N1)
table(
3, 2] = 1,
3, 1] = 1,
[2, 3] = 1,
2, 1] = 1,
[1, 3] = 1,
[1, 2] =1

Changes:
Network::eWeight used to be Network::EWeight

Network::edge - returns a list with all edges

Network::edge(G) returns the list of all edges of the network G

Call(s):
Network::edge(G)

19

Parameters:

G — anetwork

Return Value: the list of all edges, a list of lists

Details:

Network::edge(G) returns a list with all edges of the network G Each
edge is represented by a list containing the two connected vertices.

Example 1. Network::edge only returns the edges, without their capacities.

>> N1 := Network::cycle(Jvl,v2,v3,v4]):
Network::edge(N1)

[[vd, v2], [v2, v3], [v3, v4], [v4, v1]]

>> N2 := Network::.complete(3):
Network::edge(N2)

1 2, [, 3] [2, 1], [2, 3], 3, 1], [3, 2]]

Changes:
Network::edge used to be Network::Edge

Network::epost, Network::epre — adjacency lists
Network::epost(G) returns the direct successors of each vertex in the net-
work G

Network::epre(G) returns the direct predecessors of each vertex in the net-
work G

Call(s):

Network::epost(G)
Network:.epre(G)

Parameters:

G — anetwork

Return Value: a table

20

Details:

Network::epost(G) returns a table with the adjacency lists for outgo-
ing edges. Thus Network::epost(G)[v] is a list containing all those
nodes Wfor which there is an edge [v,w] in the network.

&2 Network::epre(G) returns a table with the adjacency lists for incom-
ing edges. Thus Network::epre(G)[v] is a list containing all those
nodes wfor which there is an edge [w,v] in the network.

Example 1. Since networks are directed, the output of epost and epre may
differ:

>> V = [1,2,3,4,5]:

Ed := [[1,2], [1,3], [2,3], [2,4], [3,4], [3,5], [4,5]]:
N1 := Network(V, Ed):
Network::epost(N1), Network::epre(N1)
table(table(
5 =1 5 =13 4],
4 = [3], 4 = [2, 3],
3=104,5, 3=1[, 2],
2 = [3, 4], 2 = [1],
1 =12 3] 1 =1

))

Of course, it is possible to model undirected graphs with the Network
package:

>> N2 := Network::.complete(4):
Network::epost(N2), Network::epre(N2)

table(table(
4 = [1, 2, 3], 4 = [1, 2, 3],
3 =101, 2, 4], 3=1[1, 2, 4],
2 = [1, 3, 4], 2 = [1, 3, 4],
1 =102 3

, 4] 1 =12 3, 4]
)

Changes:

Network::epost used to be Network::Epost

& Network::epre used to be Network::Epre

21

Network::inDegree —the indegree of nodes

Network::inDegree(G, V) returns the number of edges coming into the
node v of the network G

Call(s):
% Network::inDegree(G < Ve >)

Parameters:

G — anetwork
V — expression

Return Value: either an integer or a table

Details:

Network::inDegree(G, V) returns the indegree of the node v in net-
work G i.e., the number of edges [w,V]

Network::.inDegree(G, vl, v2, ..) returns a table in which
the keys are v1, v2, ... and the corresponding values are the inde-
grees, i.e.,, Network::iinDegree(G, v1, v2)[vl] = Network:inDegree(G,
vl) .

Network::inDegree(G) returns a table in which each node of Gis
mapped toits indegree. If Gcontains more than one vertex, Network::inDegree(G)
is equivalent to Network::inDegree(G, op(Network::vertex(G)))

Example 1. In a complete network of n nodes, each vertex has indegree n — 1:

>> N1 := Network:.complete(3):
Network::inDegree(N1)

table(
3 =2
2 = 2,
1 =2
)

22

Changes:
& Network::inDegree used to be Network::InDegree

Network::isEdge, Network::isVertex —checks whether an edge
or vertex is contained in a network

Network::isEdge(G, e) checks if e is an edge of network G
Network::isVertex(G, V) checks if v is a vertex of network G
Call(s):

Network::isEdge(G, e)
& Network:isVertex(G, V)

Parameters:
G — anetwork
e — a list of two expressions
V — an expression

Return Value: TRUEor FALSE

Details:
& Network::isEdge(G, e) gives TRUEIf e is an edge in network G
Network::isVertex(G, v) return TRUEf v is a vertex in network G

Example 1. Some examples for the use of these two functions:

>> N1 := Network::cycle([vl, v2, v3, v4]):
Network::isEdge(N1, [v1, v2]), Network:isEdge(N1, [v1, v3])

TRUE, FALSE
>> Network::isVertex(N1, v1), Network:isVertex(N1, v5)

TRUE, FALSE

23

Changes:
& Network::isEdge used to be Network::IsEdge

& Network::isVertex used to be Network::IsVertex
Network::longPath —longest paths from one single node
Network::longPath(G, v) finds the longest path in network G starting

from vertex v.

Call(s):
@ Network::longPath(G, v <, w><, Length ><, Path >)
Parameters:
G — anetwork
v,W — nodesin G
Options:

Length — Return a table with the lengths of shortest paths
Path — Return a table with the paths themselves

Return Value: a table, an integer or a list of nodes

Details:

& Network::longPath(G, v) returns a table with the length of longest
paths from v to all other nodes in the network with respect to the edge
weight.

¢ Network::longPath(G, v, w) returns the length of a longest path
from v to w.

¢ If the optional argument Path is given, a table with longest paths is re-
turned. If both Length and Path are given, then both the length of the
longest paths and the paths are returned. Paths are given as lists of nodes
in reverse order.

¢ If Path is not given, the option Length has no effect.

¢ Gshould not contain cycles.

24

Example 1. We construct a network and try a few calls to Network::longPath

>> V = [1,2,3,4,5]
Ed := [[1,2], [1,3], [2,3], [2,4], [3,4], [3,5], [4,5]]:
Ew = [7, 6, 5, 4, 2, 2, 1]
N1 := Network(V, Ed, Eweight=Ew):
Network::longPath(N1,1)

table(
5 = 15,
4 = 14,
3 = 12,
2 =7,
1=0
)
>> Network::longPath(N1,1,Path)
table(
5 =12, 1, 2, 3, 4],
4 = [2, 1, 2, 3],
3 =12, 1, 2],
2 = [2, 1]
)

Background:

¢ The implemented algorithm is a variation of the algorithm of Bellman.

Changes:
Network::longPath used to be Network::LongPath

Network::maxFlow - computes a maximal flow through a network

Network::maxFlow(G, g, S) computes a maximal flow through network
Gfrom node g to node s.

Call(s):
Network::maxFlow(G, q, s)

Parameters:
G — network
q,s — expressions (nodes in G

25

Return Value: a list, containing a number and a table

Details:

Network::maxFlow(G,q,s) computes a maximal flow from q to s in
Gwith respect to the edge capacities. q and s must be nodes in G

& Network::maxFlow(G,q,s) returns a sequence containing the flow
value, that is the inflow of S, which equals the outflow of g, and the flow
itself in form of table t with the flow from node v to node wis t[[v,w]]

Example 1. In the complete network with four vertices and default capacities
of 1, the maximum flow from one vertex to another one consists of sending
one unit through each of the remaining vertices and one directly, which makes
three units altogether.

>> N1 := Network::.complete(4):
Network::maxFlow(N1,1,4)

oOorO0OO

3, [3 1] =0,

~
K<
I

=
]
|

~

=

I
PPRPPROOPR

Example 2. A more complex example, the following network shows that this
function also finds flows through multiple edges, unlike Network::admissibleFlow ,
which only works on completely described flows.

>> V = [1,2,3,q9,s]
Edge := [[q,1]. [9,2], [1.2], [1,3], [2,3], [3.s]]:
up =[5, 5, 2, 6, 6, 1]
N2 := Network(V, Edge, Capacity=up):
Network::maxFlow(N2, g, s)

26

table(

[3, s] = 1,
[2, 3] = 1,
1, [1, 3] = 0,
[1, 2] =0,
g, 2] = 1,
9, 1] = O

Background:

¢ The implemented algorithm is the preflow-push algorithm of Goldberg
& Tarjan with the FIFO selection strategy and an exact distance labeling
(“A new approach to the maximum-flow problem”, Journal of the ACM
35(4), 1988).

£ The running time is O(n®), where n is the number of vertices in the net-
work.

Changes:

7 Network::maxFlow used to be Network::MaxFlow

Network::minCost — computes a minimal cost flow

Network::minCost(G) computes a minimal cost flow for the network G
taking into consideration supply and demand, capacities and transportation
cost.

Call(s):
Network::minCost(G)

Parameters:

G — network

Return Value: a sequence, consisting of a number and two tables

Details:
Network::minCost(G) computes a minimal cost flow in G with re-
spect to the edge capacities, the edge weights and the vertex weights
of G

27

The vertex weights are interpreted as supply and demand. The edge
capacities give restrictions for the flow on every edge. The edge weights
are the cost for one unit flow over an edge.

The algorithm computes a flow, if there is any, which is possible and sat-
isfactory, i.e., it is within the supply and demand range, which respects
the capacities and which has minimal cost.

¢ The result of Network::minCost(G) is a sequence of the price of a
minimal cost flow, the minimal cost flow itself (in form of table), and a
table with the dual prices.

Example 1. We construct a network with five nodes and seven edges. One of
the nodes is a pure source (1), another one is a pure sink (5). No other nodes
supply or demand any goods, they only serve as transportation junctions.

>> V = [1,2,3,4,5]

Vw := [25,0,0,0,-25]:
Ed = [[1,2], [1,3], [2,3], [2,4], [3.4], [3,5], [4,5]]:
Ew = [7, 6, 5, 4, 2, 2, 1]

Ecap := [30, 20, 25, 10, 20, 25, 20}
N1 := Network(V,Ed,Eweight=Ew, Capacity=Ecap, Vweight=Vw):
Network::minCost(N1)

table(
[4, 5] = 5, table(
[3, 5] = 20, 5 =2,
[3, 4 = 0, 4 = 3,

220, [2, 41 =5,, 3 =4,

[2, 3] = 0, 2 =17,
[1, 3] = 20, 1 =14
[1, 2] =5)

)

All 25 units could be transported from node 1 to node 5, for a total cost of 220.

Background:

£ The implemented algorithm is the relaxation algorithm due to Bertsekas
(taken from Bertsekas, “Linear Network Optimization”, MIT Press, Cambridge(Mass.)-
London, 1991) which is known to be one of the fastest algorithms in prac-
tice.

Changes:
& Network::minCost used to be Network::MinCost

28

Network::minCut - computes a minimal cut

Network::minCut(G, q, s) computes a minimal cut in Gseparating node
g from node S.

Call(s):
Network::minCut(G,q,s)

Parameters:
0,8 — expressions (nodes in the network)
G — network
Details:
Network::minCut(G,q,s) computes a minimal cut in G that sepa-

rates g from s, i.e., a subset T of the set S of edges of Gsuch that every
path from ¢ to S contains at least one edge in T. The cut is minimal with
respect the capacities of the edges.

Network::minCut(G,q,s) returns a sequence consisting of the cut
value (the sum of the edge weights of the cut edges) and a list with the
edges of the cut.

£ Note that q is separated from s, not vice versa.

Example 1. In a complete network, a node can be separated from another one
only by cutting all edges starting at the first node.

>> N1 := Network::complete(4):
Network::minCut(N1, 1, 4)

3, [[1, 2], [1, 3], [1, 4]

Example 2. In the following example, the edge from node g to node 1 could
have been used as well, but its edge capacity is higher than that of the edge
used, so the minimality condition precludes this choice:

29

>V =11, 2, 3, q, S|
Edge := [la, 1], [1, 2], [1, 3], [2, 3], [3, sl
up = [5, 2, 6, 6, 1]
N2 := Network(V, Edge, Capacity=up):
Network::minCut(N2, g, s)

1, I3, sl

There is no path from node s to node g (or any other vertex of the network),
so no cut is necessary to separate s from Q:

>> Network::minCut(N2, s, Q)

0, [l

Changes:
& Network::minCut used to be Network::MinCut

Network::outDegree — returns the out-degrees for nodes

Network::outDegreeG returns the “out-degrees” for the nodes of the net-
work G An out-degree is the number of edges leaving the node.

Call(s):
% Network::outDegree(G <V, e >)

Parameters:

G — a Network
V — expression

Return Value: Depending on the number of arguments, either a table or a
non-negative integer.

Details:

& Network::outDegree returns the out-degree of one or several nodes
of a network, i.e. the number of leaving edges.

With outDegree(G,v) , where Gis a network and Vv is a node in G the
out-degree of v is returned, i.e. the number of edges that are starting in
V.

30

outDegree(G, vi1, v2, ..) ,wherevl, v2, .. are nodes in G
atablell isreturned, where Il[i] is the out-degree of nodel[li] inG

¢ OutDegree(G) gives a table Ig with the out-degree of all nodes of G
ie. Ig[i] is the out-degree of node Vertex(G)][i] inG

Example 1. Ina complete network with n vertices, each vertex has out-degree
n—1.

>> N1 := Network::complete(4):
Network::outDegree(N1)

table(

N W
I
W www

Changes:
& Network::outDegree used to be Network::OutDegree

Network::printGraph — print all information about a network
Network::printGraphG prints all information about the network Gon the
screen.

Call(s):

Network::printGraph(G)

Parameters:

G — network

Return Value: The value of type DOM_NULL

Details:

¢ Network::printGraph prints all known information about a network.

31

Example 1.
>> V = [1,2,3,9,9]:
Edge := [[g.1], [1,2], [1,3], [2,3], [3.:s]]:
up =[5, 4, 4, 2, 5]
N1 := Network(V,Edge,Capacity=up):
Network::printGraph(N1);
Vertices: [1, 2, 3, q, 9]
Edges: [[a, 1], [1, 2], [1, 3], [2, 3], [3, S]]
Vertex weights: table(s=0,9=0,3=0,2=0,1=0)

Edge capacities: table([3, s]=5,[2, 3]=2,[1, 3]=4,[1, 2]=4,[q,\
1]=5)

Edge weights: table([3, s]=1,[2, 3]=1,[1, 3]=1,[1, 2]=1,q, 1]\
:1)

Adjacency list (out): table(s=[],q=[1],3=[s],2=[3],1=[2, 3])

Adjacency list (in): table(s=[3],9=[],3=[1, 2],2=[1],1=[q])

Changes:
Network::printGraph used to be Network::PrintGraph
Network::random — generates a random network

Network::random generates a random network.

Call(s):
Network::random()
Network::random(In,D,Kn)

Parameters:
In — list with two integers
D — real number between 0 and 1
Kn — list with two integers

Return Value: A Network

32

Details:

Network::random(in, D, Kn) generates a random network and re-
turns a list [N, g, s] where N is the network and q and s are two
nodes in N.

¢ Networks generated by Network::random are undirected, i.e., if [S,
q] is an edge of the network, so is [q, S]

@ IfIn = [a, b] ,then number of nodes Kin Nis between a and b.
& Dspecifies the density of N, i.e. the number of edges in Nis K? % D x 2.

& With Kn = [a, b] , the capacities of the edges in the Network gener-
ated my Network::random will be between a and b, inclusive.

Network::random() = Network::random([5, 10], 0.5, [1, 10])

Example 1. Your results may differ in the following example.

>> N1 := Network::random():
Network::printGraph(N1[1])

Vertices: [1, 2, 3, 4, 5, 6, 7, 8]

Edges: [[7, 2], [2, 7], [L, 3], [3, 11, [L, 2], [2, 1], [8, 4]\
. [4, 8], [6, 5], [5, 6], [4, 6], [6, 4], [7, 3], [3, 7], [6, \
71, 17, 61, [8, 2, [2 8], [4, 3], [3, 4], [3, 6], [6, 3], [7\
1], [a, 7], [6, 8], [8, 6], [5 4], [4 5], [2 6], [6, 2], \
(1, 4], [4, 1]]

Vertex weights: table(8=0,7=0,6=0,5=0,4=0,3=0,2=0,1=0)

Edge capacities: table([2, 8]=1,[8, 2]=1,[3, 7]=10,[7, 3]=10,\
6, 41=7,[4, 6]=7,[4, 5]=4,[5, 4]=4,[6, 3]=1,[3, 6]=1,[2, 7]=4\

[7, 2]=4,[6, 2]=8,[2, 6]=8,[1, 7]=4,[7, 1]=4,[3, 4]=4,[4, 3]=4\

4, 1]=6,[1, 4]=6,[3, 1]=6,[1, 3]=6,[2, 1]=10,[1, 2]=10,[8, 6\

1=2,[6, 8]=2,[7, 6]=7,[6, 7]=7,[4, 8]=8,[8, 4]=8,[5, 6]=2,[6, \

5]=2)

Edge weights: table([2, 8]=1,[8, 2]=1,[3, 7]=1,[7, 3]=1,[6, 4]\
=1,[4, 6]=1,[4, 5]=1,[5, 4]=1,[6, 3]=1,[3, 6]=1,[2, 7]=1,[7, 2\

]=1,[6, 2]=1,[2, 6]=1,[1, 7]=1,[7, 1]=1,[3, 4]=1,[4, 3]=1,[4, \

1]=1,[1, 4]=1,[3, 1]=1,1, 3]=1,[2, 1]=1,[1, 2]=1,[8, 6]=1,[6,\

8]=1,[7, 6]=1,6, 7]=1,[4, 8]=1,[8, 4]=1,[5, 6]=1,[6, 5]=1)

Adjacency list (out): table(8=[4, 2, 6],7=[2, 3, 6, 1],6=[5, 4\

33

. 7,3, 8 25=[6, 414=[8, 6, 3, 5, 1],3=[1, 7, 4, 6],2=[7, \
1, 8, 6],1=[3, 2, 7, 4]

Adjacency list (in): table(8=[4, 2, 6],7=[2, 3, 6, 1],6=[5, 4\
71 31 81 2]15:[6! 4]14:[81 6! 3’ 51 l]’3=[l7 7’ 4’ 6]’2:[7’ 1\
, 8, 6],1=[3, 2, 7, 4]

Changes:
& Network::random used to be Network::Random

Network::residualNetwork — computes the residual network

Network::residualNetworkG, f computes the residual of the network
G with respect to the flow f, i.e., loosely speaking, the network that remains
when the flow f is “subtracted” from G

Call(s):
8 Network::residualNetwork(G, f <, Extended >)
Parameters:
G — network
f — flow
Options:
Extended — include edges with zero capacities

Return Value: A Network

Details:

& Network::residualNetwork computes the residual network with re-
spect to a given flow. A flow in a network is a table t , where t[[i,j]]
gives the number of units flowing from node i tonodej .

t¢ If the optional argument Extended is given, then also those edges with a
zero residual capacity are contained. Otherwise those edges are omitted.

34

Example 1.

>> N1 := Network::complete(3):
N2 := Network::residualNetwork(N1,
table([1, 2] = 1, [2, 1] = 1/2,
[1, 3] = 0, [3, 1] = 0.5,
2,31 =1, [3, 2] =0)):
Network::eCapacity(N1), Network::eCapacity(N2)

table(
[3, 2] = 1, table(
38, 1] = 1, 38, 2] = 1,
[2, 3] = 1,, [3, 1] = 0.5,
[2, 1] = 1, [2, 1] = 1/2,
[1, 3] = 1, [1, 3] =1
2=1)

)

Example 2.

>> V = [1,2,3,q9,s]
Edge := [[q,1], [1.2], [1,3], [2,3], [3.s]]:
up =[5, 4, 4, 2, 5]
N := Network(V,Edge,Capacity=up):
flow := table([q, 1]=5,[3, s]=5,[1, 2]=1,[1, 3]=4,[2, 3]=1):
N1 := Network::residualNetwork(N, flow):
Network::printGraph(N1);

Vertices: [1, 2, 3, q, 9]
Edges: [[1, 2], [2, 3], [1, 4], [2, 1], [3, 1], [3, 2], [s, 3]
Vertex weights: table(s=0,9=0,3=0,2=0,1=0)

Edge capacities: table([s, 3]=5,[3, 2]=1,[3, 1]=4,[2, 1]=1,[1\
al=5.12, 3]=1,[1, 2]=3)

Edge weights: table([s, 3]=-1,[3, 2]=-1,[3, 1]=-1,[2, 1]=
1,[1\
, al=-1[2, 3]=1[1, 2]=1)

Adjacency list (out): table(s=[3],q=[],3=[1, 2],2=[3, 1],1=[2\
al)

Adjacency list (in): table(s=[],g=[1],3=[2, s],2=[1, 3],1=[2, \
3))

35

>> N1 := Network::residualNetwork(N, flow, Extended):
Network::printGraph(N1);

Vertices: [1, 2, 3, q, 9]

Edges: [[q, 1], [1, 2], [1, 3], [2, 3], [3, s], [L, al, [2, 1]\
» [3, 1] 38, 2] [s, 3l

Vertex weights: table(s=0,9=0,3=0,2=0,1=0)

Edge capacities: table([s, 3]=5,[3, 2]=1,[3, 1]=4,[2, 1]=1,[1\
q]=5.[3, s]=0,[2, 3]=1,[1, 3]=0,[1, 2]=3,[q, 1]=0)

Edge weights: table([s, 3]=-1,[3, 2]=-1,[3, 1]=-1,[2, 1]=-
1,[1\
, g]=-1,[3, s]=1,[2, 3]=1,[1, 3]=1,[1, 2]=1,[q, 1]=1)

Adjacency list (out): table(s=[3],q=[1],3=[s, 1, 2],2=[3, 1],1\
=[2, 3, q))

Adjacency list (in): table(s=[3],9=[1],3=[1, 2, s],2=[1, 3],1=\
[a. 2, 3))

Changes:

Network::residualNetwork used to be Network::ResidualNetwork
Network::shortPath — shortest paths from one single node
Network::shortPath(G, v) returns a table with the length of shortest
paths from v to all other nodes in the network with respect to the edge weight.
Network::shortPath(G, v, w) gives the length of a shortest path from
VvV tow.

Call(s):

Network::shortPath(G, v <, w><, Length ><, Path >)

Parameters:
G — network
V, W — nodes in the network

36

Options:

Length — include table of path lengths; this is the default case, if
Path is not given.
Path — return table of paths

Return Value: a number, a table or a sequence of two tables.

Details:

&7 If the optional argument Path is given, then a table with shortest pithes
is returned.

¢ If Length and Path are given, then both the length of the shortest paths
and the paths are returned.

Example 1.

>> V= [1, 2, 3, 4, 5]:

Vw = [25, 0, O, O, -25]:
Ed = [[1, 2], [1, 3], [2, 3],

[2, 4], [3, 4], [3, 5], [4, 9]
Ew = [7, 6, 5, 4, 2, 2, 1]

Ecap := [30, 20, 25, 10, 20, 25, 20]:
N1 := Network(V, Ed, Eweight=Ew, Capacity=Ecap, Vweight=Vw):

>> Network::shortPath(N1,1)

table(

1l
O NO®®

PN WS

>> Network::shortPath(N1,1,Path)

table(
5 =1[1, 3, 5],
[1, 3, 4],

3],

|
'_.:‘

4
3 =
2

37

Background:

&7 If there are only non-negative edge weights the algorithm of Dijkstra is
used. If there are positive and negative edge weights the algorithm of
Bellman is used.

Changes:
Network::shortPath used to be Network::ShortPath

Network::shortPathTo — shortest paths to one single node

Network::shortPathTo(G, V) finds the shortest paths in the network G
ending at node v.

Call(s):
Network::shortPathTo(G,v <, w><, Length ><, Path >)
Parameters:
G — network
VvV, W — nodes in the network
Options:

Length — include table of path lengths; default if Path not given

Return Value: a number, a table or a sequence of two tables

Details:

Network::shortPathTo(G, V) returns a table with the length of short-
est paths to v from all other nodes in the network with respect to the edge
weight.

& Network::shortPathTo(G, v, w) gives the length of a shortest path
from wto v.

t¢ If the optional argument Path is given, then a table with shortest paths
is returned. If Length and Path are given, then both the length of the
shortest paths and the paths are returned.

38

Example 1.

>> V = [1,2,3,4,5]:

Vw := [25,0,0,0,-25]:
Ed := [[1,.2], [1,3], [2,3], [2.4], [3,4], [3,5], [4,5]]:
Ew := [7, 6, 5, 4, 2, 2, 1]:

Ecap := [30, 20, 25, 10, 20, 25, 20]:
N1 := Network(V,Ed,Eweight=Ew, Capacity=Ecap, Vweight=Vw):

>> Network::shortPathTo(N1, 5)

table(

(€]
|

BN WA
©OIN RO

)

>> Network::shortPathTo(N1, 5, Path)

table(
4 = [4, 5],

[3, 5],

[2, 4, 5],

[1, 3, 5]

3
2
1

Background:

&7 If there are only non negative edge weights the algorithm of Dijkstra is
used. If there are positive and negative edge weights the algorithm of
Bellman is used.

Changes:
& Network::shortPathTo used to be Network::ShortPathTo

Network::showGraph - plots a network

Network::showGraph(N) plots the network N.

Call(s):
& Network::showGraph(N)

39

Parameters:

N — network

Return Value: the value of type DOM_NULL

Details:

Network::showGraph(N) gives s simple visual representation of the
network N. Up to now no optimization with respect to a minimal number
of intersection points of the edges is done. Actually, all nodes of the
network are drawn at equal intervals around a circle.

Example 1.

>> Network::showGraph(Network::complete(4))
>> Network::showGraph(Network::random()[1])

Changes:
Network::showGraph used to be Network::ShowGraph

Network::topSort — topological sorting of the nodes

Network::topSort(G) computes a topological sorting of the network G
i.e., a numbering T of the nodes, such that T[i] < T[j] whenever there is an
edge [i, j] in the network.

Call(s):
Network::topSort(G)

Parameters:

G — network

Return Value: a table of nodes.

Details:

¢ If Gcontains any cycle then a topological sorting does not exist and the
call of Network::topSort results in an error.

40

Example 1.

>> Network([1,2,3,4],[[1,2],[2,4],[3.41)):
Network::topSort(%)

table(

N
|

P Wi
|
RN WA

)

>> Network::topSort(Network::complete(3))

Error: Network contains cycle [Network::topSort]

Background:

& Note that the returned ordering is hardly ever unique.

Changes:
Network::topSort used to be Network::TopSort

Network::vWeight — returns the table of vertex weights

Network::vWeight(G) yields the table of the vertex weights of the network
G

Call(s):
Network::vWeight(G)

Parameters:

G — network

Return Value: a table

Details:
Network::vWeight(G) returns a table with the vertex weight of the
network G Thus Network::vWeight(G)[v] is the weight of vertex v
in the network G

41

Example 1.

>> V = [1,2,3,4,5]:
Vw := [25,0,0,0,-25]:
Ed 1,21, 1,31, [2,3], [2.4], [3.4], [3,5], [4,5]]:
N1 Network(V,Ed, Vweight=Vw):

>> Network::vWeight(N1)

table(
5 = -25,
4 =0,
3 =0,
2 =0,
1 =25
)
Example 2.
>> N2 := Network::complete(5):
Network::vWeight(N2)
table(
5 =0,
4 =0,
3 =0,
2 =0,
1 =0
)

Changes:
Network::vWeight used to be Network::VWeight

Network::vertex — returns a list with all vertices
Network::vertex(G) returns the list of all vertices of the network G
Call(s):

Network::vertex(G)

42

Parameters:

G — network

Return Value: a list

Details:

@ Network::vertex(G) returns a list with all vertices of the network G

Example 1.

>> N1 := Network::complete(10):
Network::vertex(N1)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> N2 := Network:cycle([x.i $ i=1..12]):
Network::vertex(N2)

[X1, x2, x3, x4, x5, x6, X7, x8, x9, x10, x11, x12]

Changes:

& Network::vertex used to be Network::Vertex

Network::new - generates a new network

Network(V, E) is used to generate a new Network with vertices V and
edges E, which can be manipulated using the functions in the Network library.

Call(s):
Network::new(V, E)
% Network:new(V, E <, Eweight =lc ><, Capacity =t ><,
Vweight =lv >)

Parameters:

V — list of expressions (nodes)
E — list of edges

Options:
Eweight =lc = — The weights of the edges, given as a list of numbers
Capacity =It — The capacity of the edges, given as a list of numbers
Vweight =lv. — The weights of the vertices, given as a list of

numbers

43

Return Value: A Network

Details:

Network::new(V, E) generates a new network. A network consists
of a list of nodes and a list of edges connecting the nodes. These lists
must be specified for the definition of a new network. If one of them is
missing an error occurs.

¢ Instead of calling Network::new(args) the short form Network(args)
can be used. The examples in the description below use this short form.

t¢ Network(V,E) where Vis a list of nodes and E a list of edges generates
a new network with exactly this set of nodes and edges respectively. A
node in a network can be an arbitrary expression. An edge is a list, which
contains the start point and the endpoint of the edge. Therefor, if there
are edges specified for which the incident nodes are not contained in the
list V an error occurs.

& Itis possible to assign a weight to each node and a capacity and a weight
to each edge in the network. This can be done directly in the definition of
anetwork via Network(V, E, Eweight =Ic, Capacity =It, Vweight =Ilv) .
Herelc , It and Iv are numerical lists with exactly as many items as E
and V respectively. For example, the capacity It[i] is assigned to edge
E[i] . If these specifications are missing, the default values 1 for edge
weight and capacity and O for vertex weight are assumed.

Example 1.

>> V = [1,2,3,q9,8]:
Edge := [[a,1], [1,2], [1,3], [2,3], [3:s]]:
up =[5, 4, 4, 2, 5]
N1 := Network(V,Edge,Capacity=up):
Network::printGraph(N1);
Vertices: [1, 2, 3, q, 9]
Edges: [[a, 1], [1, 2], [1, 3], [2, 3], [3, S]]
Vertex weights: table(s=0,q=0,3=0,2=0,1=0)

Edge capacities: table([3, s]=5,[2, 3]=2,[1, 3]=4,[1, 2]=4,[g.\
1]=5)

Edge weights: table([3, s]=1,[2, 3]=1,[1, 3]=1,[1, 2]=1,[q, 1]\
:1)

Adjacency list (out): table(s=[],q=[1],3=[s],2=[3],1=[2, 3])

44

Adjacency list (in): table(s=[3],9=[],3=[1, 2],2=[1],1=[q])

>> V = [1,2,3,4,5]

Vw := [25,0,0,0,-25]:
Ed = [[1,2], [1,3], [2,3], [2,4], [3.4], [3,5], [4,5]]:
Ew = [7, 6, 5, 4, 2, 2, 1]

Ecap := [30, 20, 25, 10, 20, 25, 20]:
N2 := Network(V,Ed,Eweight=Ew, Capacity=Ecap, Vweight=Vw):
Network::printGraph(N2)

Vertices: [1, 2, 3, 4, 5]
Edges: [[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [3, 5], [4, 5]]
Vertex weights: table(5=-25,4=0,3=0,2=0,1=25)

Edge capacities: table([4, 5]=20,[3, 5]=25,[3, 4]=20,[2, 4]=10\
J[2, 3]=25,[1, 3]=20,[1, 2]=30)

Edge weights: table([4, 5]=1,[3, 5]=2,[3, 4]=2,[2, 4]=4,[2, 3]\
=5,[1, 3]=6,[1, 2]=7)

Adjacency list (out): table(5=[],4=[5],3=[4, 5],2=[3, 4],1=[2)\
3))

Adjacency list (in): table(5=[3, 4],4=[2, 3],3=[1, 2],2=[1],1=\
0

Changes:
£ No changes.

45

