
datatypes — Basic MuPAD data types

Table of contents

DOM_DOMAIN— the data type of data types 1

DOM_PROC_ENV— the data type of procedure environments 8

Factored — the domain of objects kept in factored form 9

rectform — the domain of expressions being splitted into real and
imaginary part . 23

Series::Puiseux — the domain of finite series expansions 28

Series::gseries — the domain of generalized series expansions 46

i

DOM_DOMAIN– the data type of data types

Each MuPAD object is of a unique data type. Since a data type is a MuPAD
object, too, it must itself have a data type; the data type comprising all data
types (including itself) is DOM_DOMAIN.

There are two kinds of elements of DOM_DOMAIN: data types of the kernel, and
data types defined in the library or by the user (domains). Objects that have a
data type of the latter kind are called domain elements.

A data type has the same internal structure as a table; its entries are called slots.
One particular slot is the key; no two different data types can have the same
key. Most of the other slots determine how arguments of that data type are
handled by functions.

Once a user-defined domain has been constructed, it cannot be destroyed.

Construction:

The names of the data types provided by the MuPAD kernel are of the form
DOM_XXX, such us DOM_ARRAY, DOM_IDENT, DOM_INT, DOM_LIST, DOM_TABLE
etc.

You can create further data types using the function newDomain (cf. exam-
ple 1) or via the keyword domain (cf. example 3).

You can also create new data types by calling a domain constructor. Various
pre-defined domain constructors can be found in the library Dom. You can
also define your own domain constructors using the keyword domain . Cf.
example 2.

The domain type (data type) of any MuPAD object can be queried by the
function domtype .

Important Operations:

A You can obtain the slots of a domain using slot . The function slot can
also be used on the left hand side of an assignment to define new slots,
or to re-define existing slots. Use delete to delete slots.

Result of Evaluation: Evaluating an object of the domain type DOM_DOMAIN
returns itself.

Function Call: When called as a function, the data type creates a new object of
this data type out of the arguments of the call. E.g., the call DOM_LIST(1, 2,
x) generates the list [1, 2, x] of domain type DOM_LIST(although, in this
case, you probably prefer to type in [1, 2, x] directly which results in the

1

same object). It depends on the particular type which arguments are admitted
here.

In the case of a domain, the "new" method of that domain is called.

Operands: A data type consists of an arbitrary number of equations (objects
of type "equal"). If a = b is among these equations, we say that the slot a of
the data type equals b. By convention, a is usually a string. Each domain has
at least one slot indexed by "key" .

Example 1. Our first example stems from ethnology: some languages in Poly-
nesia do not have words for numbers greater than three; every integer greater
than three is denoted by the word “many”. Hence two plus two does not equal
four but “many”. We are going to implement a domain for this kind of inte-
gers; in other words, we are going to implement a data type for the finite set
{1, 2, 3, many} .

>> S := newDomain("Polynesian integer")

Polynesian integer

At this point, we have defined a new data type: a MuPAD object can be a
Polynesian integer now. No operations are available yet; the domain consists
of its key only:

>> op(S)

"key" = "Polynesian integer"

Even though there are no methods for input and output of domain elements
yet, Polynesian integers can be entered and displayed right now. You have to
use the function new for defining domain elements:

>> x := new(S, 5)

new(Polynesian integer, 5)

Now, x is a Polynesian integer:

>> type(x)

Polynesian integer

Of course, MuPAD cannot know what a Polynesian integer stands for and what
its internal structure should be. The arguments of the call to the function new
are just stored as the zeroth, first, etc. operand of the domain element, without
checking them. You may call new with as many arguments as you want:

>> new(S, 1, 2, 3, 4); op(%)

2

new(Polynesian integer, 1, 2, 3, 4)

1, 2, 3, 4

new cannot know that Polynesian integers should have exactly one operand
and that we want 5 to be replaced by many. To achieve this, we implement our
own method "new" ; this also allows us to check the argument. We have one
more problem: domain methods should refer to the domain; but they should
not depend on the fact that the domain is currently stored in S. For this pur-
pose, MuPAD has a special local variable dom that always refers to the domain
a procedure belongs to:

>> S::new :=
proc(i : Type::PosInt)
begin

if args(0) <> 1 then
error("There must be exactly one argument")

end_if;
if i > 3 then

new(dom, hold(many))
else

new(dom, i)
end_if

end_proc:

A function call to the domain such as S(5) now implicitly calls the "new"
method:

>> S(5)

new(Polynesian integer, many)

>> S("nonsense")

Error: Wrong type of 1. argument (type ’Type::PosInt’ expected\
,

got argument ’"nonsense"’);
during evaluation of ’S::new’

In the next step, we define our own output method. A Polynesian integer i ,
say, shall not be printed as new(Polynesian integer, i) , only its inter-
nal value 1, 2, 3, or many shall appear on the screen. Note that this value is
the first operand of the data structure:

>> S::print :=
proc(x)
begin

op(x, 1)
end_proc:
S(1), S(2), S(3), S(4), S(5)

3

1, 2, 3, many, many

By now, the input and output of elements of S have been defined. It remains
to define how the functions and operators of MuPAD should react to Polyne-
sian integers. This is done by overloading them. However, it is not necessary to
overload each of the thousands of functions of MuPAD; for some of them, the
default behavior is acceptable. For example, expression manipulation func-
tions leave domain elements unaltered:

>> x := S(5): expand(x), simplify(x), combine(x); delete x:

many, many, many

Arithmetical operations handle domain elements like identifiers; they auto-
matically apply the associative and commutative law for addition and multi-
plication:

>> (S(3) + S(2)) + S(4)

many + 2 + 3

In our case, this is not what we want. So we have to overload the operator
+. Operators are overloaded by overloading the corresponding “underline-
functions”; hence, we have to write a method "_plus" :

>> S::_plus :=
proc()
local argv;
begin

argv := map([args()], op, 1);
if has(argv, hold(many)) then

new(dom, hold(many))
else

dom(_plus(op(argv)))
end_if

end_proc:

Now, the sum of Polynesian integers calls this slot:

>> S(1) + S(2), S(2) + S(3) + S(7)

3, many

Deleting the identifier S does not destroy our domain. It can still be recon-
structed using newDomain .

>> delete S: op(newDomain("Polynesian integer"))

"_plus" = proc S::_plus() ... end,

"print" = proc S::print(x) ... end,

"new" = proc S::new(i) ... end, "key" = "Polynesian integer"

4

Example 2. We could now give a similar example for more advanced Poly-
nesian mathematics with numbers up to ten, say. This leads to the question
whether it is necessary to enter all the code again and again whenever we de-
cide to count a bit farther. It is not; this is one of the advantages of domain
constructors. A domain constructor may be regarded as a function that returns
a domain depending on some input parameters. It has several additional fea-
tures. Firstly, the additional keywords category and axiom are available for
specifying the mathematical structure of the domain; in our case, we have the
structure of a commutative semigroup where different domain elements have
different mathematical meanings (we call this a domain with a canonical rep-
resentation). Secondly, an initialization part may be defined that is executed
exactly once for every domain returned by the constructor; it should at least
check the parameters passed to the constructor. Each domain created in such a
way may inherit methods from other domains, and it must at least inherit the
methods of Dom::BaseDomain . You find more detailed information in the
domains reference.

>> domain CountingUpTo(n : Type::PosInt)

inherits Dom::BaseDomain;
category Cat::AbelianSemiGroup;
axiom Ax::canonicalRep;

new := proc(x : Type::PosInt)
begin

if args(0) <> 1 then
error("There must be exactly one argument")

end_if;
if x > n then

new(dom, hold(many))
else

new(dom, x)
end_if

end_proc;

print := proc(x) begin op(x, 1) end_proc;

_plus := proc() local argv;
begin

argv:= map([args()], op, 1);
if has(argv, hold(many)) then

new(dom, hold(many))
else

dom(_plus(op(argv)))
end_if

end_proc;

5

// initialization part
begin

if args(0) <> 1 then
error("Wrong number of arguments")

end_if;
end:

Now, CountingUpTo is a domain constructor:

>> type(CountingUpTo)

DomainConstructor

We have defined the domain constructor CountingUpTo , but we have not
created a domain yet. This is done by calling the constructor:

>> CountingUpToNine := CountingUpTo(9);
CountingUpToTen := CountingUpTo(10)

CountingUpTo(9)

CountingUpTo(10)

We are now able to create, output, and manipulate domain elements as in the
previous example:

>> x := CountingUpToNine(3): y := CountingUpToNine(7):
x, x + x, y, x + y, y + y

3, 6, 7, many, many

>> x := CountingUpToTen(3): y := CountingUpToTen(7):
x, x + x, y, x + y, y + y

3, 6, 7, 10, many

>> delete CountingUpToNine, CountingUpToTen, CountingUpTo, x, y:

No domain constructor with the same name may be used again during the
same session.

Example 3. Suppose that your domain does not really depend on a parame-
ter, but that you need some of the other features of domain constructors. Then
you may define a domain constructor dc , say, that is called without parame-
ters. From such a domain constructor, you can construct exactly one domain
dc() . Instead of defining the constructor via domain dc() ... end first
and then using d := dc() to construct the domain d, say, you may directly
enter domain d ... end , thereby saving some work.

Continuing the previous examples, suppose that we want to count up to
three, knowing that we never want to count farther. However, we want to de-
clare our domain to be an Abelian semigroup with a canonical representation

6

of the elements. This is not possible with a construction of the domain using
newDomain as in example 1: we have to use the keyword domain . You will
notice at once that the following source code is almost identical to the one in
the previous example — we just removed the dependence on the parameter n.

>> domain CountingUpToThree

inherits Dom::BaseDomain;
category Cat::AbelianSemiGroup;
axiom Ax::canonicalRep;

new := proc(x : Type::PosInt)
begin

if args(0) <> 1 then
error("There must be exactly one argument")

end_if;
if x > 3 then

new(dom, hold(many))
else

new(dom, x)
end_if

end_proc;

print := proc(x) begin op(x, 1) end_proc;

_plus := proc() local argv;
begin

argv:= map([args()], op, 1);
if has(argv, hold(many)) then

new(dom, hold(many))
else

dom(_plus(op(argv)))
end_if

end_proc;

end:

Now, CountingUpToThree is a domain and not a domain contructor:

>> type(CountingUpToThree)

DOM_DOMAIN

You may use this domain in the same way as CountingUpTo(3) in example
2.

Background:

A Only one domain with a given key may exist. If it is stored in two
variables S and T, say, assigning or deleting a slot slot(S, a) implic-

7

itly also changes slot(T, a) (reference effect). This also holds if a =
"key" .

You get no warning even if T is protected.
!

DOM_PROC_ENV– the data type of procedure environments

A procedure environment represents a procedure that is currently being exe-
cuted: formal parameters and local variables have values.

Procedure environments do rarely become visible, and you do not need to
manipulate them directly. They serve for only one purpose: if a procedure is
generated inside another procedure, variable names in the body of the inner
procedure that are not declared local there refer to the outer procedure, pro-
vided they are declared local in the outer procedure. (see the Programming
Manual for more information on MuPAD ’s scoping rules .) Consequently, the
inner procedure must contain information on the current values of local vari-
ables of the outer procedure. Hence, the status of of the outer procedure is
encoded into an object of type DOM_PROC_ENV, and that object is stored in the
returned procedure as its twelfth operand.

Construction:

You never need to generate objects of this type.
Important Operations:

A There are no operations available.

Result of Evaluation: Evaluating an object of the domain type DOM_PROC_ENV
returns itself.

Function Call: Calling a procedure environment as a function gives the pro-
cedure environment itself, regardless of the arguments. The arguments are not
evaluated.

Operands: The number of operands of a procedure environment depends on
the number of local and saved variables of the outer procedure. Details about
the operands remain undocumented.

Example 1. The only occasion on which you should come across a procedure
environment is the following: an outer procedure returns an inner procedure
depending on formal parameters or local variables of the outer procedure:

8

>> outer :=
proc(x)
option escape;
begin

/* inner procedure to return : */
y -> x + y

end_proc:
add5 := outer(5)

y -> x + y

In spite of the (slightly confusing) output, x has a special meaning here: it
points to the parameter x of outer . That parameter currently has the value 5
and won’t be changed any more. To be able to access that value, the particular
instance of outer in the status of being executed has to be stored in add5 :

>> op(add5, 12)

DOM_PROC_ENV(5667160)

Background:

A The integers appearing in the output of objects of type DOM_PROC_ENV
have no mathematical meaning; they denote positions in memory.

Factored – the domain of objects kept in factored form

Factored is the domain of objects kept in factored form, such as prime fac-
torization of integers, square-free factorization of polynomials, or the factor-
ization of polynomials in irreducible factors.

Creating Elements:

A Factored(list <, type ><, ring >)

A Factored(f <, type ><, ring >)

Parameters:
list — a list of odd length
f — an arithmetical expression
type — a string (default: "unknown")
ring — a domain of category Cat::IntegralDomain (default:

Dom::ExpressionField())

9

Details:

A The argument list must be a list of odd length and of the form [u,
f1, e1, f2, e2, ..., fr, er] , where the entries u and fi are el-
ements of the domain ring , or can be converted into such elements. The
ei must be integers. Here, i ranges from 1 to r.

See section “Operands” below for the meaning of the entries of that list.

An error message is reported, if one of the list entries is of wrong type.

A An arithmetical expression f given as the first argument is the same as
giving the list [ring::one, f, 1] .

See section “Operands” below for the meaning of the entries of that list.

f must be an element of the domain ring , or must be convertible into
such an element, otherwise an error message would be given.

A The argument type indicates what is known about the factorization.
Currently, the following types are known:

• "unknown" – nothing is known about the factorization.
• "irreducible" – the fi are irreducible over the domain ring .
• "squarefree" – the fi are square-free over the domain ring .

If this argument is missing, then the type of the created factored object is
set to "unknown" .

The type of factorization is known to any element of Factored . Use the
methods "getType" and "setType" (see below) to read and set the
type of factorization of a given factored object.

A The argument ring is the ring of factorization. It must be an integral
domain, i.e., a domain of category Cat::IntegralDomain .

If this argument is missing, then the domain Dom::ExpressionField()
is used.

The ring of factorization is known to any element of Factored . Use the
methods "getRing" and "setRing" (see below) to read and set the
ring of factorization of a given factored object.

A You can use the index operator [] to extract the operands of an ele-
ment f of the domain Factored , i.e., f[1] = u, f[2] = f1, f[3]
= e1,

For example, to extract all factors fi, enter f[2*i] $ i = 1..nops(f)
div 2 . To extract all exponents ei, enter f[2*i + 1] $ i = 1..nops(f)
div 2 .

You can also use the methods "factors" and "exponents" (see be-
low) to access the operands, i.e., the call Factored::factors(f) re-
turns a list of the factors fi, and Factored::exponents(g) returns a
list of the exponents ei (1 ≤ i ≤ r).

10

A The system functions ifactor , factor and polylib::sqrfree are
the main application of this domain, they return their result in form of
such factored objects (see their help pages for information about the type
and ring of factorization).

There may be no need to explicitly create factored objects, but to work
with the results of the mentioned system functions.

A Note that an element of Factored is printed like an expression and be-
haves like that. As an example, the result of f := factor(x^2 + 2*x
+ 1) is an element of Factored and printed as (x + 1)^2 . The call
type(f) returns "_power" as the expression type of f .

A For an element f of Factored , the call Factored::convert(f, DOM_LIST)
gives a list of all operands of f .

Operands: An element f of Factored consists of the r + 1 operands u, f1, e1, f2, e2, . . . , fr, er,
such that f = u · f e1

1 · f e2
2 · . . . · f er

r .
The first operand u and the factors fi are elements of the domain ring . The

exponents ei are integers.

Important Operations:

A You can apply (almost) each function to factored objects, functions that
mainly expect arithmetical expressions as their input.

For example, one may add or multiply those objects, or apply functions
such as expand and diff to them. But the result of such an operation
then is usually not any longer of the domain Factored , as the factored
form could be lost due to the operation (see examples below).

A Call expr(f) to convert the factored object f into an arithmetical ex-
pression (as an element of a kernel domain).

A The call coerce(f, DOM_LIST) returns a list of operands of the fac-
tored object f (see method "convert_to" below).

Result of Evaluation: Evaluating an object of the domain type Factored
returns itself.

Function Call: Calling a factored object as a function yields the object itself,
regardless of the arguments. The arguments are not evaluated.

11

Mathematical Methods

Method _mult : multiply factored objects

_mult(Factored f, any g, ...)

A Computes the product f · g ·
A Suppose that g is an element of the domain ring (or can be con-

verted into such an element).
If g is a unit of ring or a factor of f , then the result is a factored
object of the same factorization type as f . Otherwise, the result is
an element of Factored with the factorization type "unknown" .

A If both f and g are factored objects with factorization type "irre-
ducible" , then the result is again a factored object of this type, i.e.,
the result is still in factored form.

A Otherwise, the factored form of f is lost, and the result of this method
is an element of ring .

A This method overloads the function _mult for factored objects, i.e.,
one may use it in the form f*g*... , or in functional notation:
_mult(f, g, ...) .

Method _power : raise a factored object to a certain power

_power(Factored f, any n)

A Computes f n.

A If n is a positive integer and f a factored object with factorization
type "irreducible" or "squarefree" , then the result is still a
factored object of this type.

A Otherwise, the factored form of f is lost, and the result of this method
is an element of ring .

A This method overloads the function _power for factored objects,
i.e., one may use it in the form f^n , or in functional notation: _power(f,
n) .

Method expand : expand a factored object

expand(Factored f)

A Returns f in expanded form. The result of this method is an element
of ring .

12

Method exponents : get the exponents of a factored object

exponents(Factored f)

A Returns a list of the exponents ei (1 ≤ i ≤ r) of f .

Method factor : factorize a factored object

factor(Factored f)

A Factorizes f into irreducible factors.

A If f already is of the factorization type "irreducible" , then this
method just return f .
Otherwise, this method converts f into an element of the domain
ring and calls the method "factor" of ring .
This method returns a factored object of the domain Factored
with factorization type "irreducible" , if the factorization of f
can be computed (otherwise, FAIL is returned).

A This method overloads the function factor for factored objects,
i.e., one may use it in the form factor(f) .

Method factors : get the factors of a factored object

factors(Factored f)

A Returns a list of the factors fi (1 ≤ i ≤ r) of f .

Method irreducible : test if a factored object is irreducible

irreducible(Factored f)

A Returns TRUE, if f is irreducible over the integral domain ring ,
otherwise FALSE.

A The test on irreducible is trivial, if f has the factorization type "ir-
reducible" .
Otherwise, this method converts f into an element of ring and
calls the method "irreducible" of ring . The value FAIL is re-
turned, if the domain ring cannot test if f is irreducible.

Method iszero : test on zero for factored objects

iszero(Factored f)

A Returns TRUEif f is zero, and FALSEotherwise.

A This method overloads the function iszero for factored objects,
i.e., one may use it in the form iszero(f) .

13

Method sqrfree : compute a square-free factorization of a factored object

sqrfree(Factored f)

A Factorizes f into square-free factors.
A If f already is of the factorization type "squarefree" , then this

method just return f .
Otherwise, this method converts f into an element of the domain
ring and calls the method "squarefree" of ring .
This method returns a factored object of the domain Factored
with factorization type "squarefree" , if the square-free factor-
ization of f can be computed (otherwise, FAIL is returned).
A This method overloads the function polylib::sqrfree for fac-

tored objects, i.e., one may use it in the form polylib::sqrfree(f) .

Access Methods

Method _index : extract an operand of a factored object

_index(Factored f, positive integer i)

A Returns the i -th operand of f (see above for a description of the
operands of such elements).
A Responds with an error message, if i is greater than the number of

operands of f .
A This method overloads the index operator [] for factored objects,

i.e., one may use it in the form f[i] .

Method getRing : get the ring of factorization

getRing(Factored f)

A Returns the domain ring of f .

Method getType : get the type of factorization

getType(Factored f)

A Returns the factorization type type of f .

Method has : existence of an object in a factored object

has(Factored f, any x, ...)

A Test whether an operand of f contains x . See the system function
has for a detailed description of the parameters.
A This method overloads the function has for factored objects, i.e.,

one may use it in the form has(f, x, ...) .

14

Method map: map a function to the operands of factored objects

map(Factored f, function func, ...)

A This method first converts f into the unevaluated expression u*f1^e1*f2^e2*...*fr^er ,
where u, f1, e1, ... are the operands of f . Then the function
func is mapped to that expression.
Note that the result of this method is not longer an object of Fac-
tored !

A See the system function map for details.

A This method overloads the function map for factored objects, i.e.,
one may use it in the form map(f, function func, ...) .

Method nops : the number of operands of a factored object

nops(Factored f)

A Returns the number of operands of f (see above for a description of
the operands of such elements).

A This method overloads the function nops for factored objects, i.e.,
one may use it in the form nops(f) .

Method op : extract an operand of a factored object

op(Factored f, positive integer i)

A Returns the i -th operand of f (see above for a description of the
operands of such elements).

A Returns FAIL , if i is greater than the number of operands of f .

A This method overloads the function op for factored objects, i.e., one
may use it in the form op(f, i) .

Method select : select operands of a factored object

select(Factored f, function func, ...)

A Select all operands of f with respect to the decision function func .
See the system function select for a detailed description of the
parameters.

A This method overloads the function select for factored objects,
i.e., one may use it in the form select(f, func, ...) .

15

Method set_index : set an operand of a factored object

set_index(Factored f, positive integer i, any x)

A Sets the i -th operand of f to the value of x (see above for a descrip-
tion of the operands of such elements).
The factorization type of f is set to "unknown" .

A Responds with an error message, if i is greater than the number of
operands of f .
Make sure that x either is an element of the domain ring , or
an integer. !
A This method overloads the index operator [] for factored objects,

i.e., one may use it in the form f[i] .

Method setRing : set the ring of factorization

setRing(Factored f, domain ring)

A Sets the factorization ring of f to the domain ring .

A Use this method with caution! Make sure that the factoriza-
tion of f is still valid over the new ring, and that the operands
of f have the correct domain type.
ring must be a domain of category
Cat::IntegralDomain , which is not checked by this
method.

!

Method setType : set the type of factorization

setType(Factored f, string type)

A Sets the factorization type of f to type .

A Use this method with caution! Make sure that the factoriza-
tion type corresponds with the factorization of f . !

Method subs : substitute subexpressions in the operands of a factored ob-
ject

subs(Factored f, equation x = a, ...)

A Substitute subexpressions in the operands of f . See the system func-
tion subs for a detailed description of the parameters.

A This method overloads the function subs for factored objects, i.e.,
one may use it in the form subs(f, equation x = a, ...) .

16

Method subsop : substitute operands of a factored object

subsop(Factored f, equation i = a, ...)

A Substitute the i -th operand of f by a. See the system function
subsop for a detailed description of the parameters.
A This method overloads the function subsop for factored objects,

i.e., one may use it in the form subsop(f, equation i = a,
...) .

Method type : expression type of factored objects

type(Factored f)

A This method converts f into the unevaluated expression u*f1^e1*f2^e2*...*fr^er
and returns its expression type that is either "_power" , "_mult" ,
or the type of an element of the domain ring .

Conversion Methods

Method convert : convert an object into a factored object

convert(any x)

A This method tries to convert x into an element of the domain type
Factored .
A If the conversion fails, then FAIL is returned.
A x may either be a list of the form [u, f1, e1, ..., fr, er] of

odd length (where u, f1, ..., fr are of the domain type ring ,
or can be converted into such elements, and e1, ..., er are in-
tegers), or an element that can be converted into the domain ring .
The latter case corresponds to the list [ring::one,x,1] .

Method convert_to : convert factored objects into other domains

convert_to(Factored f, any T)

A This method tries to convert the factored object f into an element of
domain type T, or, if T is not a domain, to the domain type of T.
A If the conversion fails, then FAIL is returned.
A If T is the domain DOM_LIST, then the list of operands of f is re-

turned.
If T is the domain DOM_EXPR, then the unevaluated expression u*f1^e1*f2^e2*...*fr^er
is returned, where u, f1, e1, ... are the operands of f .
Otherwise, the method "convert" of the domain T is called to con-
vert f into an element of the domain T (which could return FAIL).
A Use the function expr to convert f into an object of a kernel domain

(see below).

17

Method create : create simple and fast a factored objects

create(list list)

A This method creates a new factored object in the usual way, assum-
ing, that list have the correct form and type of elements (see the
description of the operands of a factored object).

create(ring x)

A This method creates a new factored object with the operands ring::one,
x, 1 .

Method expr : convert a factored object into a kernel domain

expr(Factored f)

A This method converts f into an object of a kernel domain, applying
the method "expr" of the domain ring to each factor of f .

A Note that the factored form of f may be lost due to this con-
version. !

Method expr2text : convert a factored object into a string

expr2text(Factored f)

A Converts f to a string.

Method testtype : type testing for factored objects

testtype(Factored f, domain T)

A Checks, if f can be converted into an element of the domain T, and
returns TRUEor FAIL , respectively.
This method uses the method "convert" (see above) into check, if
a conversion is possible.

A This method is called from the system function testtype .

Method TeX: LaTeX formatting of a factored object

TeX(Factored f)

A Returns a LATEX-formatted string for the factored object f .

A The method "TeX" of the domain ring is used to get the LATEX-
representation of the corresponding operands of f .

A This method is called from the system function generate::TeX .

18

Technical Methods

Method _concat : concatenate operands of factored objects

_concat(Factored f, Factored g)

A Returns a new factored object by appending the factors and expo-
nents of g to the operands of f . The first operand of the new fac-
tored object is the first operand of f multiplied by the first operand
of g.
The factorization type of the new factored object is set to "un-
known" .

A f and g must have the same factorization type and factorization
ring, otherwise an error message is given.

Method maprec : allow recursive mapping for factored objects

maprec(Factored f, any x, ...)

A This method is called from the function misc::maprec and allows
recursive mapping for factored objects. See the corresponding help
page of this function for details.

A First f is converted into the unevaluated expression u*f1^e1*f2^e2*...*fr^er ,
where u, f1, e1, ... are the operands of f . Then the function
misc::maprec is called with this expression as its first parameter.
Note that the result of this method is not longer an object of Fac-
tored !

Method print : pretty-print routine for factored objects

print(Factored f)

A Pretty-print of the factored object f . This method is used from the
system function print for printing factored objects to the screen.

Method unapply : create a procedure from a factored object

unapply(Factored f <, identifier x>)

A This method converts f into an expression e using the method "expr"
(see above) and interprets this expression as a function in x,
It returns a procedure computing the expression e.

A This method overloads the function fp::unapply for factored ob-
jects, i.e., one may use it in the form fp::unapply(f) . See fp::unapply
for details.

19

Example 1. The following computes the prime factorization of the integer 20:

>> f := ifactor(20)

2
2 5

The result is an element of the domain Factored :

>> domtype(f)

Factored

which consists of the following five operands:

>> op(f)

1, 2, 2, 5, 1

They represent the integer 20 in the following form: 20 = 1 · 22 · 51. The factors
are prime numbers and can be extracted in two different ways:

>> Factored::factors(f), f[2*i] $ i = 1..nops(f) div 2

[2, 5], 2, 5

ifactor kept the information, that the factorization ring is the ring of inte-
gers (represented by the domain Dom::Integer), and that the factors of f are
prime (and therefore irreducible, because Z is an integral domain):

>> Factored::getRing(f), Factored::getType(f)

Dom::Integer, "irreducible"

We can convert such an object into different forms, such as into a list of its
operands:

>> Factored::convert_to(f, DOM_LIST)

[1, 2, 2, 5, 1]

or into an unevaluated expression, keeping the factored form:

>> Factored::convert_to(f, DOM_EXPR)

2
2 5

or back into an integer:

>> Factored::convert_to(f, Dom::Integer)

20

You may also use the system function convert here, which has the same
effect.

20

Example 2. We compute the factorization of the integers 108 and 512:

>> n1 := ifactor(108); n2 := ifactor(512)

2 3
2 3

9
2

The multiplication of these two integers gives the prime factorization of 55296 =
108 · 512 :

>> n1*n2

11 3
2 3

Note that the most operations on such objects lead to an un-factored form,
such as adding these two integers:

>> n1 + n2

620

You may apply the function ifactor to the result, if you are interested in its
prime factorization:

>> ifactor(%)

2
2 5 31

You an apply (almost) each function to factored objects, functions that mainly
expect arithmetical expressions as their input. Note that, before the operation
is applied, the factored object is converted into an arithmetical expression in
un-factored form:

>> Re(n1)

108

Example 3. The second system function which deals with elements of Fac-
tored , is factor , which computes all irreducible factors of a polynomial.

For example, if we define the following polynomial of Z101:

>> p := poly(x^12 + x + 1, [x], Dom::IntegerMod(101)):

and compute its factorization into irreducible factors, we get:

21

>> f := factor(p)

2
poly(x + 73 x + 29, [x], Dom::IntegerMod(101)) poly(

5 4 3 2
x + 62 x + 64 x + 63 x + 58 x + 100, [x],

5 4 3 2
Dom::IntegerMod(101)) poly(x + 67 x + 72 x + 100 x +

33 x + 94, [x], Dom::IntegerMod(101))

If we multiply the factored object with an element that can be converted into an
element of the ring of factorization, then we get a new factored object, which
then is of the factorization type "unknown" :

>> x*f

2
poly(x + 73 x + 29, [x], Dom::IntegerMod(101)) poly(

5 4 3 2
x + 62 x + 64 x + 63 x + 58 x + 100, [x],

5 4 3 2
Dom::IntegerMod(101)) poly(x + 67 x + 72 x + 100 x +

33 x + 94, [x], Dom::IntegerMod(101)) x

>> Factored::getType(%)

"unknown"

You may use the function expand which returns the factored object in ex-
panded form as an element of the factorization ring:

>> expand(f)

12
poly(x + x + 1, [x], Dom::IntegerMod(101))

Example 4. The third system function which return elements of Factored is
polylib::sqrfree , which computes the square-free factorization of poly-
nomials. For example:

>> f := polylib::sqrfree(x^2 + 2*x + 1)

22

2
(x + 1)

The factorization type, of course, is "squarefree" :

>> Factored::getType(f)

"squarefree"

Changes:

A Factored is a new function.

rectform – the domain of expressions being splitted into real and
imaginary part

rectform is the domain of arithmetical expressions being splitted into their
real and imaginary part (if possible), i.e., an expression z of this domain is kept
in the form <(z) + i=(z), if possible.

Creating Elements:

A rectform(z)

Parameters:

z — an arithmetical expression

Details:

A See the help page of the system function rectform for a detailed de-
scription and examples about working with elements of the domain rect-
form .

Operands: An element z of rectform consists of three operands:

1. the real part of z,

2. the imaginary part of z,

3. the part of z, for that the real and imaginary part cannot be computed
(possibly the integer 0, if there are not such subexpressions).

Related Domains: DOM_COMPLEX

23

Important Operations:

A You can apply (almost) each function to elements of rectform , func-
tions which mainly expect arithmetical expressions as their input.

For example, you may add or multiply those elements, or apply func-
tions such as expand and diff to them. The result of such an opera-
tion, which is not explicitely overloaded by a method of rectform (see
below), is an element of rectform .

This “automatic overloading” works as follows: Each argument of the
operation, which is an element of rectform , is converted to an expres-
sion using the method "expr" (see below). Then, the operation is ap-
plied and the result is re-converted to an element of rectform .

A Use the function expr to convert an element of rectform to an arith-
metical expression (as an element of a kernel domain).

A The functions Re and Im return the real and imaginary part of elements
of rectform .

Result of Evaluation: Evaluating an object of the domain type rectform
returns itself.

Function Call: Calling an element of rectform as a function yields the object
itself, regardless of the arguments. The arguments are not evaluated.

Mathematical Methods

Method _mult : multiply elements

_mult(rectform z, any x, ...)

A It tries to split the product z · x · . . . into its real and imaginary part
and returns the result as an element of rectform .

A This method overloads the function _mult for elements of rect-
form , i.e., you may use it in the form z*x*... , or in functional
notation: _mult(z, x, ...) .

Method _plus : add elements

_plus(rectform z, any x, ...)

A It tries to split the sum z + x + . . . into its real and imaginary part
and returns the result as an element of rectform .

24

A This method overloads the function _plus for elements of rect-
form , i.e., you may use it in the form z+x+ ... , or in functional
notation: _plus(z, x, ...) .

Method _power : raise an element to a certain power

_power(rectform z, any x)

A It tries to split zx into its real and imaginary part and returns the
result as an element of rectform .

A This method overloads the function _power for elements of rect-
form , i.e., you may use it in the form z^x , or in functional notation:
_power(z, x) .

Method conjugate : the complex conjugate

conjugate(rectform z)

A Computes the complex conjugate of z and returns the result as an
element of rectform .

A This method overloads the function conjugate for elements of
rectform , i.e., you may use it in the form conjugate(z) .

Method float : floating point approximation

float(rectform z)

A Computes a floating point approximation of z by applying float
to z . The result is of the domain type DOM_FLOAT.
The precision of the approximation depends on the environment
variable DIGITS .

A This method overloads the function float for elements of rect-
form , i.e., you may use it in the form float(z) .

Method Re: the real part

Re(rectform z)

A Returns the real part of z .

A This method overloads the function Re for elements of rectform ,
i.e., you may use it in the form Re(z) .

25

Method Im : the imaginary part

Im(rectform z)

A Returns the imaginary part of z .

A This method overloads the function Im for elements of rectform ,
i.e., you may use it in the form Im(z) .

Method iszero : test on zero

iszero(rectform z)

A Returns TRUEif z is zero, i.e, the three operands of z are zero.

A This method overloads the function iszero for elements of rect-
form , i.e., you may use it in the form iszero(z) .

Access Methods

Method has : existence of an object

has(rectform z, any x, ...)

A Test whether an operand of z contains x . See the system function
has for a detailed description of the parameters.

A This method overloads the function has for elements of rectform ,
i.e., you may use it in the form has(z, x, ...) .

Method nops : the number of operands

nops(rectform z)

A Returns the number of operands of z , which is 3 for any element of
rectform .

A This method overloads the function nops for elements of rect-
form , i.e., you may use it in the form nops(z) .

Method op : extract an operand

op(rectform z, positive integer i)

A Returns the i -th operand of z (see above for a description of the
operands of such elements).

A Returns FAIL , if i is greater than 3 (i.e., the number of operands of
z).

A This method overloads the function op for elements of rectform ,
i.e., you may use it in the form op(z, i) .

26

Method subs : substitute subexpressions

subs(rectform z, equation x = a, ...)

A Substitute subexpressions in the operands of z . See the system func-
tion subs for a detailed description of the parameters.

A This method overloads the function subs for elements of rect-
form , i.e., you may use it in the form subs(z, x = a, ...) .

Method subsex : substitute subexpressions (extended)

subsex(rectform z, equation x = a, ...)

A Substitute subexpressions in the operands of z . See the system func-
tion subsex for a detailed description of the parameters.

A This method overloads the function subsex for elements of rect-
form , i.e., you may use it in the form subsex(z, x = a, ...) .

Conversion Methods

Method convert : convert an object to this domain

convert(any x)

A This method converts x to an element of the domain type rect-
form , if x is an arithmetical expression (see Type::Arithmetical).
Otherwise FAIL is returned.

Method convert_to : convert an element of this domain to other domains

convert_to(rectform z, any T)

A This method tries to convert z to an element of domain type T, or, if
T is not a domain, to the domain type of T.

A It is implemented in the following way: First, z is converted to
an arithmetical expression using the method "expr" . Then, the
method "convert" of the domain T (or its domain type) is called
to perform the conversion.

A Use the function expr to convert z to an object of a kernel domain.

Method expr : convert an element of this domain to a kernel domain

expr(rectform z)

A Converts z to an element of a kernel domain, i.e., the expression o1
+ I*o2 + o3 is returned, where o1, o2 and o3 are the operands
of z .

27

Method expr2text : convert an element of this domain to a string

expr2text(rectform z)

A Converts z to a string.

A This method overloads the function expr2text for elements of
rectform , i.e., you may use it in the form expr2text(z) .

Method testtype : type testing

testtype(rectform z, domain T)

A Checks, if z can be converted to an element of the domain T, and
returns TRUEor FALSE, respectively.

A It is implemented in the following way: First, z is converted to an
arithmetical expression using the method "expr" . After this, the
function testtype is called and its result is returned.

A This method is called from the system function testtype .

Method TeX: LaTeX formatting

TeX(rectform z)

A Returns a LATEX-formatted string for z .

A This method is called from the system function generate::TeX .

Technical Methods

Method length : length of an object

length(rectform z)

A Returns the length of f , which is the length of the expression o1 +
I*o2 + o3 , where o1, o2 and o3 are the operands of z .

A This method overloads the function length for elements of rect-
form , i.e., you may use it in the form length(z) .

Method print : pretty-print routine

print(rectform z)

A Returns the unevaluated expression o1 + I*o2 + o3 , where o1,
o2 and o3 are the operands of z .

A This method is used from the system function print for printing
elements of rectform to the screen.

28

Series::Puiseux – the domain of finite series expansions

Series::Puiseux is a domain for finite series expansions. Elements of this
domain represent initial segments of either Taylor, Laurent or Puiseux series
expansions.

Details:

A The system function series is the main application of this domain. It
tries to compute a Taylor, Laurent, or Puiseux series of a given arithmeti-
cal expression, and the result is returned as an element of Series::Puiseux .

There may be no need for you to explicitely create elements of this do-
main, but to work with the results of series .

Cf. the help page of series for a detailed description and examples of
how to work with elements of the domain Series::Puiseux .

A Use the type expression Type::Series to determine for an element of
this domain, which kind of series expansion it is.

A The coefficients are allowed to depend on the variable of the series
expansion, for example, logarithmic terms in the series variable
may appear as coefficients. Be aware that this is no Puiseux series
in the mathematical sense. Cf. example 1.

!

Operands: A series of the domain type Series::Puiseux consists has operands:

1. the branching order b,

2. the valuation v,

3. the order of the error term e,

4. a list of coefficients l0, . . . , le−v−1,

5. the series variable x and the expansion point a in form of an equation
x = a. The expansion point a may be infinity or -infinity as well.

The series looks as follows: ∑e−v−1
i=0 lix(v+i)/b + O(xe/b).

Related Domains: Series::gseries

29

Important Operations:

A Series::Puiseux implements basic arithmetic of series expansions.
Use the ordinary arithmetical operators +, -, *, /,^ and @for com-
position.

A The system functions nthcoeff , coeff , nthterm , lterm , nthmonomial
and lmonomial as well as ldegree work on series expansions. Note
that in contrast to polynomials, terms, coefficients and monomials we
counted from the order term on. Cf. example 11.

A Use the function expr to convert a series expansion to an arithmetical
expression (as an element of a kernel domain).

Result of Evaluation: Evaluating an object of the domain type Series::Puiseux
returns itself.

Function Call: Calling an element of Series::Puiseux as a function yields
the object itself, regardless of the arguments. The arguments are not evaluated.

Mathematical Methods

Method diff : differentiation

diff(Puiseux s, any t)

A Computes the formal derivative ∂s/∂t of a series expansion and
returns the result as an element of Series::Puiseux .

A This method overloads the system function diff . Cf. example 2.

Method _divide : division

_divide(any s, Puiseux t)

A Tries to convert s into a series expansion via functions new and
series . Then it computes the quotient s/t of series expansions
and returns the result as an element of Series::Puiseux .

A This method overloads the system function _divide for series ex-
pansions, i.e., you may use it in the form s/t . Cf. example 3.

30

Method _fconcat : functional composition

_fconcat(Puiseux s, Puiseux t, ...)

A Computes the composition s(t(. . .)) of series expansions and returns
the result as an element of Series::Puiseux .
A This method overloads the system function _fconcat for series

expansions, i.e., you may use it in the form s@t... . Cf. example 4.

Method int : integration

int(Puiseux s, any t)

A Computes the formal integral
∫

sdt of a series expansion and returns
the result as an element of Series::Puiseux .
A This method overloads the system function int . Cf. example 2.

Method _mult : multiplication

_mult(s, t)

A At least one argument has to be a series expansion. Tries to con-
vert the arguments into a series expansion via functions new and
series . Then it computes the product s · t · . . . of series expansions
and returns the result as an element of Series::Puiseux .
A This method overloads the system function _mult for series expan-

sions, i.e., you may use it in the form s*t*... . Cf. example 3.

Method _plus : addition

_plus(Puiseux s, any t, ...)

A At least one argument has to be a series expansion. Tries to con-
vert the arguments into a series expansion via functions new and
series . Then it computes the sum s + t + . . . of series expansions
and returns the result as an element of Series::Puiseux .
A This method overloads the system function _plus for series expan-

sions, i.e., you may use it in the form s+t+... . Cf. example 3.

Method _power : exponentiation

_power(Puiseux s, rational t)

A Computes the power st of series expansions and returns the result
as an element of Series::Puiseux .
A This method overloads the system function _power for series ex-

pansions, i.e., you may use it in the form s^t . Cf. example 5.

31

Method revert : functional inversion

revert(Puiseux s)

A Computes inverses of series expansions with respect to composition
and returns the result as an element of Series::Puiseux .

A The expansion point of the inverse is the constant term of the series
expansion.

A This method overloads the system function revert . Cf. example 4.

Method Series::Puiseux::scalmult : multiplication by a single mono-
mial

Series::Puiseux::scalmult(Puiseux s, any a, rational k
)

A Computes the product s · (axk) and returns the result as an element
of Series::Puiseux . Cf. example 6.

Method _subtract : subtraction

_subtract(Puiseux s, any t)

A Computes the difference s− t of series expansions and returns the
result as an element of Series::Puiseux .

A This method overloads the system function _subtract for series
expansions, i.e., you may use it in the form s-t . Cf. example 3.

Access Methods

Method coeff : extract coefficients

coeff(Puiseux s <, positive integer n>)

A Returns a sequence of all coefficients of s , or the n-th coefficient,
counted from the lowest order term on, respectively.

A This method overloads the system function coeff . Cf. examples 11
and 7.

Method Series::Puiseux::indet : the series variable

Series::Puiseux::indet(Puiseux s)

A Returns the variable of s . Cf. example 10.

32

Method iszero : zero test

iszero(Puiseux s)

A Returns TRUEif s is zero, i.e., if the sum of the monomials of s is
zero, that is if s only consists of an error term.

A This method overloads the system function iszero . Cf. example 8.

Method lcoeff : the leading coefficient (of lowest order)

lcoeff(Puiseux s)

A Returns the first (or leading) coefficient of s (see “Operands” for the
definition of “coefficient”). This is the coefficient of the lowest order
term.

A This method overloads the system function lcoeff . Cf. example 9.

Method ldegree : the leading degree (the valuation)

ldegree(Puiseux s)

A Returns the degree of the lowest order term of s , or the value FAIL ,
if s consists only of an error term.

A This method overloads the system function ldegree . Cf. exam-
ple 10.

Method lmonomial : the leading monomial (of lowest order)

lmonomial(Puiseux s)

A Returns the first (or leading) monomial of s , i.e., the monomial of
lowest order (see “Operands” for the definition of “monomial”).

A This method overloads the system function lmonomial . Cf. exam-
ple 9.

Method lterm : the leading term (of lowest order)

lterm(Puiseux s)

A Returns the first (or leading) term of s , i.e., the term of lowest order
(see “Operands” for the definition of “term”).

A This method overloads the system function lterm . Cf. example 9.

33

Method nthcoeff : extract coefficients

nthcoeff(Puiseux s, any t)

A Returns the n-th coefficient of s , counted from the lowest order
monomial on (see “Operands” for the definition of “monomial”).
A This method overloads the system function nthcoeff . Cf. exam-

ple 9

Method nthmonomial : extract monomials

nthmonomial(Puiseux s, positive integer n)

A Returns the n-th nonzero monomial of s , counted from the lowest
order monomial on (see “Operands” for the definition of “mono-
mial”).
A This method overloads the system function nthmonomial . Cf. ex-

ample 9.

Method nthterm : extract terms

nthterm(Puiseux s, positive integer n)

A Returns the n-th nonzero term of s , counted from the lowest order
term on (see “Operands” for the definition of “term”).
A This method overloads the system function nthterm . Cf. exam-

ple 9.

Method Series::Puiseux::order : the order of the error term

Series::Puiseux::order(Puiseux s)

A Returns the order of the error term of s . Cf. example 10.

Method Series::Puiseux::point : the expansion point

Series::Puiseux::point(Puiseux s)

A Returns the expansion point of s . Cf. example 10.

Conversion Methods

Method expr : convert a series expansion into an element of a kernel domain

expr(Puiseux s)

A Returns the sum of the monomials of s without the order term.
A This method overloads the system function expr . Cf. example 12.

34

Method float : convert numeric parts of the coefficients into floats

float(Puiseux s)

A Returns a series expansion with floating-point coefficients.

A This method overloads the system function float . Cf. example 12.

Technical Methods

Method Series::Puiseux::create : create series expansion

Series::Puiseux::create(any bo, any v, any ord, list l,
identifier x, any x0)

A Creates a new series expansion with branch order bo , valuation v
and order ord in x at point x0. The coefficients are in the list l .

Method expand : expand coefficients

expand(Puiseux s)

A Expands all coefficients of s .

A This method overloads the system function expand .

Method Series::Puiseux::func_call : evaluation at a point

Series::Puiseux::func_call(Puiseux s, any t)

A Evaluates the sum of the monomials of s without the error term at
the point x = t, where x is the series variable.

A This method overloads the system function evalp . You may also
use it in the form s(t) . Cf. example 13.

Method has : check whether an object occurs syntactically

has(Puiseux s, any t)

A Returns TRUE if t occurs syntactically in one of the coefficients,
the series variable, or the point of expansion, and otherwise returns
FALSE.

A This method overloads the system function has . Cf. example 12.

35

Method map: apply a function to all coefficients

map(Puiseux s, function func, ...)

A Applies the function func to all coefficients.

A This method overloads the system function map. Cf. example 14.

Method Series::Puiseux::new : create a new series expansion

Series::Puiseux::new(any s, identifier x, positive in-
teger n)

A Computes a series expansion of s of order n with respect to the
variable x . The point of expansion is the origin. Cf. example 15.

Method print : pretty-print routine

print(Puiseux s)

A This method is used by the system function print for printing ele-
ments of Series::Puiseux to the screen. Cf. example 16.

Method subs : replace subexpressions

subs(Puiseux s, equation x = a, ...)

A Replaces the subexpression x of s by a.

A This method overloads the system function subs . Cf. example 17.

Example 1.

>> f := series(psi(x), x = infinity);
coeff(f, 0)

1 1 1 / 1 \
ln(x) - --- - ----- + ------ + O| -- |

2 x 2 4 | 5 |
12 x 120 x \ x /

ln(x)

36

Example 2.

>> f := series(1 + 2*x^3, x);
diff(f, x);
int(f, x)

3 6
1 + 2 x + O(x)

2 5
6 x + O(x)

4
x 7

x + -- + O(x)
2

>> g := series(1 + 2*x^(3/2), x);
diff(g, x);
int(g, x)

3/2 6
1 + 2 x + O(x)

1/2 5
3 x + O(x)

5/2
4 x 7

x + ------ + O(x)
5

>> h := series(1 + 2*x, x = 2);
diff(h, x);
int(h, x)

6
5 + (2 x - 4) + O((x - 2))

5
2 + O((x - 2))

2 7
6 + (5 x - 10) + (x - 2) + O((x - 2))

Example 3.

37

>> f := series(1 + 2*x^3, x, 4);
g := series(1 + 2*x^(3/2), x, 4);
h := series(1 + 2*x, x = 2, 4)

3 4
1 + 2 x + O(x)

3/2 4
1 + 2 x + O(x)

4
5 + (2 x - 4) + O((x - 2))

>> f + g + h;
_plus(f, g, h)

3/2 3 4
7 + 2 x + 2 x + 2 x + O(x)

3/2 3 4
7 + 2 x + 2 x + 2 x + O(x)

>> f - g;
_subtract(f, g);
g - h;
_subtract(g, h)

3/2 3 4
- 2 x + 2 x + O(x)

3/2 3 4
- 2 x + 2 x + O(x)

3/2 4
- 4 - 2 x + 2 x + O(x)

3/2 4
- 4 - 2 x + 2 x + O(x)

>> f*g*h;
_mult(f, g, h)

3/2 5/2 3 4
5 + 2 x + 10 x + 4 x + 10 x + O(x)

3/2 5/2 3 4
5 + 2 x + 10 x + 4 x + 10 x + O(x)

38

>> f/g;
_divide(f, g);
g/h;
_divide(g, h)

3/2 3 4
1 - 2 x + 6 x + O(x)

3/2 3 4
1 - 2 x + 6 x + O(x)

3/2 2 5/2 3 7/2
2 x 2 x 4 x 4 x 8 x 8 x 4

1/5 - --- + ------ + ---- - ------ - ---- + ------ + O(x)
25 5 125 25 625 125

3/2 2 5/2 3 7/2
2 x 2 x 4 x 4 x 8 x 8 x 4

1/5 - --- + ------ + ---- - ------ - ---- + ------ + O(x)
25 5 125 25 625 125

Example 4.

>> f := series(1 + 2*x^3, x, 10);
g := series(y^2, y, 10);
f@g = _fconcat(f, g)

3 10
1 + 2 x + O(x)

2 10
y + O(y)

6 10 6 10
1 + 2 y + O(y) = 1 + 2 y + O(y)

>> f := series(1 + 2*x^(3/2), x, 10);
g := series(y^2, y, 10);
f@g = _fconcat(f, g)

3/2 10
1 + 2 x + O(x)

2 10
y + O(y)

3 9 3 9
1 + 2 y + O(y) = 1 + 2 y + O(y)

39

>> f := series(1 + 2*x^3, x = 2);
g := series(y^2, y, 10);
f@g = _fconcat(f, g)

2 3 6
17 + (24 x - 48) + 12 (x - 2) + 2 (x - 2) + O((x - 2))

2 10
y + O(y)

Error: invalid composition [Series::Puiseux::_fconcat]

We now consider the procedure revert . Let f be a series expansion where
the constant term is zero.

>> f := series(5*x + 2*x^3, x);
g := revert(f);
f@g

3 6
5 x + 2 x + O(x)

3 5
x 2 x 12 x 6
- - ---- + ----- + O(x)
5 625 78125

6
x + O(x)

Otherwise the expansion point is the constant term.

>> f := series(1 + x + 2*x^3, x);
g := revert(f);
f@g

3 6
1 + x + 2 x + O(x)

3 5 6
(x - 1) - 2 (x - 1) + 12 (x - 1) + O((x - 1))

6
1 + (x - 1) + O((x - 1))

Example 5.

40

>> f := series(1 + 2*x^3, x);
f^2 = _power(f, 2);
f^(1/3) = _power(f, 1/3)

3 6
1 + 2 x + O(x)

3 6 3 6
1 + 4 x + O(x) = 1 + 4 x + O(x)

3 3
2 x 6 2 x 6

1 + ---- + O(x) = 1 + ---- + O(x)
3 3

>> f := series(1 + 2*x^(3/2), x);
f^2 = _power(f, 2);
f^(1/3) = _power(f, 1/3)

3/2 6
1 + 2 x + O(x)

3/2 3 6 3/2 3 6
1 + 4 x + 4 x + O(x) = 1 + 4 x + 4 x + O(x)

3/2 3 9/2
2 x 4 x 40 x 6

1 + ------ - ---- + ------- + O(x) =
3 9 81

3/2 3 9/2
2 x 4 x 40 x 6

1 + ------ - ---- + ------- + O(x)
3 9 81

Example 6.

>> f := series(1 + 2*x^3, x);
Series::Puiseux::scalmult(f, 5, 3) = 5*x^3*f

3 6
1 + 2 x + O(x)

3 6 9 3 6 9
5 x + 10 x + O(x) = 5 x + 10 x + O(x)

41

>> f := series(1 + 2*x^3, x);
Series::Puiseux::scalmult(f, 5) = 5*x^(0)*f

3 6
1 + 2 x + O(x)

3 6 3 6
5 + 10 x + O(x) = 5 + 10 x + O(x)

Example 7.

>> f := series(5*x + 2*x^3, x);
coeff(f) = (coeff(f, 1), coeff(f, 2), coeff(f, 3))

3 6
5 x + 2 x + O(x)

(5, 0, 2) = (5, 0, 2)

Example 8.

>> f := series(5*x + 2*x^3, x);
iszero(f);
g := series(0, x);
iszero(g)

3 6
5 x + 2 x + O(x)

FALSE

6
O(x)

TRUE

Example 9.

>> f := series(5*x + 2*x^3, x);
nthcoeff(f, 1), nthcoeff(f, 2);
lcoeff(f), lmonomial(f), lterm(f)

42

3 6
5 x + 2 x + O(x)

5, 2

5, 5 x, x

>> nthmonomial(f, 1), nthmonomial(f, 2);
nthterm(f, 1), nthterm(f, 2)

3
5 x, 2 x

3
x, x

Example 10.

>> f := series(5*x + 2*x^3, x);
ldegree(f),
Series::Puiseux::order(f),
Series::Puiseux::indet(f),
Series::Puiseux::point(f)

3 6
5 x + 2 x + O(x)

1, 6, x, 0

>> g := series(5*x + 2*x^3, x = 3);
ldegree(g),
Series::Puiseux::order(g),
Series::Puiseux::indet(g),
Series::Puiseux::point(g)

2 3 6
69 + (59 x - 177) + 18 (x - 3) + 2 (x - 3) + O((x - 3))

0, 6, x, 3

Example 11. Consider the series expansion f := 5x + 2x3 + O(x6) of the poly-
nomial g := 5x + 2x3.

>> f := series(5*x + 2*x^3, x); g := 5*x + 2*x^3

43

3 6
5 x + 2 x + O(x)

3
5 x + 2 x

We have several access functions for series expansions overloading system
functions for polynomials:

>> coeff(f, 1), coeff(g, 1);
ldegree(f), ldegree(g)

5, 5

1, 1

Note, however, that the n-th term of a series expansion and the n-th term of a
polynomial are different. For example, for polynomials, the leading monomial
is the nonzero monomial with the highest degree, while for series expansions
it is the nonzero monomial with the lowest degree.

>> lcoeff(f), lcoeff(g);
nthmonomial(f, 1), nthmonomial(g, 1);
lmonomial(f), lmonomial(g);
lterm(f), lterm(g);
nthterm(f, 1), nthterm(g, 1)

5, 2

3
5 x, 2 x

3
5 x, 2 x

3
x, x

3
x, x

Example 12.

>> f := series(1 + 2*x^3, x)

3 6
1 + 2 x + O(x)

44

>> expr(f);
float(f)

3
2 x + 1

3 6
1.0 + 2.0 x + O(x)

>> has(f, x);
has(f, y)

TRUE

FALSE

Example 13.

>> f := series(1 + 2*x^3, x);
Series::Puiseux::func_call(f, 3) = f(3);
Series::Puiseux::func_call(f, y + 1) = f(y + 1)

3 6
1 + 2 x + O(x)

55 = 55

3 3
2 (y + 1) + 1 = 2 (y + 1) + 1

Example 14.

>> f := series(1 + 2*x^3, x);
map(f, sin)

3 6
1 + 2 x + O(x)

3 6
sin(1) + x sin(2) + O(x)

45

Example 15.

>> f := series(2*x^3, x);
Series::Puiseux::new(2*x^3, x, 6);
Series::Puiseux::create(1, 0, 6, [0, 0, 0, 2, 0, 0], x, 0)

3 6
2 x + O(x)

3 9
2 x + O(x)

3 6
2 x + O(x)

>> f := series(sin(x), x) <> Series::Puiseux::new(sin(x), x, 6)

3 5
x x 6 6

x - -- + --- + O(x) <> sin(x) + O(x)
6 120

Example 16.

>> f := series(1 + 2*x^3, x):
print(f):

3 6
1 + 2 x + O(x)

Example 17.

>> f := series(1 + 2*x^3, x);
subs(f, x = a);
subs(f, x = y + 1)

3 6
1 + 2 x + O(x)

3 6
1 + 2 a + O(a)

2 3 6
3 + 6 y + 6 y + 2 y + O(y)

46

Series::gseries – the domain of generalized series expansions

Series::gseries is the domain of series expansions generalizing Taylor,
Laurent and Puiseux expansions.

Creating Elements:

A Series::gseries(f, x <, order >)

A Series::gseries(f, x = a <, order >)

A Series::gseries(f, x = a <, order > <, Right >)

A Series::gseries(f, x = a <, order > <, Left >)

Parameters:
f — an arithmetical expression
x — the series variable: an identifier
a — the expansion point: an arithmetical expression or

±infinity
order — the truncation order: a nonnegative integer

Options:

Left — compute a series expansion that is valid for real x smaller
than a.

Right — compute a series expansion that is valid for real x larger than
a (the default case).

Return Value: an object of domain type Series::gseries , or the value
FAIL .

Side Effects: The function is sensitive to the global variable ORDER, which
determines the default number of terms of the expansion.

Details:

A The call Series::gseries(f, x) computes a series expansion at x =
0+.

A The system functions series and asympt are the main application of
this domain. The latter function only returns elements of this domain,
whereas series could return an element of Series::gseries in cases,
where a Puiseux series expansion does not exist.

There may be no need to explicitely create elements of this domain, but
to work with the results of the mentioned system functions.

47

A See the help page of the system function asympt for a detailed descrip-
tion of the parameters and examples for working with elements of the
domain Series::gseries .

A Note that elements of Series::gseries only represents directional (real)
series expansions.

Operands: A series of the domain type Series::gseries consists of three
operands:

1. A list of sublists [ci, fi] of length 2. Each sublist represents a monomial
ci · fi of the series expansion, where the ci are the coefficients and fi the
terms of s .

2. The order term of the form O
(
g(x)

)
, possibly the integer 0, if the expan-

sion is exact.

3. An arithmetical expression e(x) depending of the series variable x such
that e(x)→∞ for x→ a+.

Related Domains: Series::Puiseux

Important Operations:

A Series::gseries implements addition and multiplication of general-
ized series expansions. Use the ordinary arithmetical operators + and
* .

A The system functions coeff , nthterm , lterm , nthmonomial and lmonomial
as well as ldegree work on generalized series expansions.

A Use the function expr to convert a generalized series expansion into an
arithmetical expression (as an element of a kernel domain).

Result of Evaluation: Evaluating an object of the domain type Series::gseries
returns itself.

Function Call: Calling an element of Series::gseries as a function yields
the object itself, regardless of the arguments. The arguments are not evaluated.

Mathematical Methods

Method _mult : multiply series expansions

_mult(gseries s, any t, ...)

48

A Computes the product s · t · . . . of series expansions and returns the
result as an element of Series::gseries .
If the product cannot be computed, then FAIL is returned.
A Each argument of this method, which is not of the domain type Se-

ries::gseries , is converted into such an element, i.e., a gener-
alized series expansion is computed. If this fails, then FAIL is re-
turned.
A This method overloads the function _mult for elements of Se-

ries::gseries , i.e., one may use it in the form s*t*... , or in
functional notation: _mult(s, t, ...) .

Method _plus : add series expansions

_plus(gseries s, any t, ...)

A Computes the sum s + t + . . . of series expansions and return the
result as an element of Series::gseries .
If the sum cannot be computed, then FAIL is returned.
A Each argument of this method, which is not of the domain type Se-

ries::gseries , is converted into such an element, i.e., a gener-
alized series expansion is computed. If this fails, then FAIL is re-
turned.
A This method overloads the function _plus for elements of Se-

ries::gseries , i.e., one may use it in the form s+t+ ... , or
in functional notation: _plus(s, t, ...) .

Method _power : the integer power of a series expansions

_power(gseries s, integer n)

A Computes the nth power of s , if n is a non-negative integer. Other-
wise FAIL is returned.
A If n is not an integer, then FAIL is returned.
A This method overloads the function _power for elements of Se-

ries::gseries , i.e., one may use it in the form s^n , or in func-
tional notation: _power(s, n) .

Method coeff : extract coefficients

coeff(gseries s<, positive integer n>)

A Returns a sequence of all coefficients of s , or the nth coefficient re-
spectively.
A This method overloads the function coeff for elements of Se-

ries::gseries , i.e., one may use it in the form coeff(s <, n >) .

49

Method iszero : test on zero

iszero(gseries s)

A Returns TRUEif s is exact (i.e., the second operand is the integer 0)
and equal to zero, otherwise FALSE.

A This method overloads the function iszero for elements of Se-
ries::gseries , i.e., one may use it in the form iszero(s) .

Method lcoeff : the leading coefficient

lcoeff(gseries s)

A Returns the first (or leading) coefficient of s (see “Operands” for the
definition of the term “coefficient”).

A This method overloads the function lcoeff for elements of Se-
ries::gseries , i.e., one may use it in the form lcoeff(s) .

Method ldegree : the leading degree

ldegree(gseries s)

A Returns the leading degree of s , or the value FAIL , if the leading
degree cannot be determined.

A This method overloads the function ldegree for elements of Se-
ries::gseries , i.e., one may use it in the form ldegree(s) .

Method lmonomial : the leading monomial

lmonomial(gseries s)

A Returns the first (or leading) monomial of s (see “Operands” for the
definition of the term “monomial”).

A This method overloads the function lmonomial for elements of
Series::gseries , i.e., one may use it in the form lmonomial(s) .

Method lterm : the leading term

lterm(gseries s)

A Returns the first (or leading) term of s (see “Operands” for the def-
inition of “term”).

A This method overloads the function lterm for elements of Se-
ries::gseries , i.e., one may use it in the form lterm(s) .

50

Method nthmonomial : extract monomials

nthmonomial(gseries s, positive integer n)

A Returns the nth monomial of s (see “Operands” for the definition
of the term “monomial”).
A This method overloads the function nthmonomial for elements of

Series::gseries , i.e., one may use it in the form nthmono-
mial(s, n) .

Method nthterm : extract terms

nthterm(gseries s, positive integer n)

A Returns the nth term of s (see “Operands” for the definition of
“term”).
A This method overloads the function nthterm for elements of Se-

ries::gseries , i.e., one may use it in the form nthterm(s, n) .

Access Methods

Method map: map a function to coefficients

map(gseries s, function func, ...)

A Maps the function func to the coefficients of s .
A This method overloads the function mapfor elements of Series::gseries ,

i.e., one may use it in the form map(s, func, ...) .

Method subs : substitute subexpressions of monomials

subs(gseries s, equation x = a, ...)

A Substitute subexpressions of the monomials of the series s . See the
system function subs for a detailed description of the parameters.
A This method overloads the function subs for elements of Series::gseries ,

i.e., one may use it in the form subs(s, x = a, ...) .

Method subsex : substitute subexpressions of monomials (extended)

subsex(gseries s, equation x = a, ...)

A Substitute subexpressions of the monomials of the series s . See the
system function subsex for a detailed description of the parame-
ters.
A This method overloads the function subsex for elements of Se-

ries::gseries , i.e., one may use it in the form subsex(s, x =
a, ...) .

51

Conversion Methods

Method convert : convert an object into a generalized series expansion

convert(any x)

A If x is an element of the domain type Series::Puiseux , then x is
converted into an element of Series::gseries .
Otherwise, FAIL is returned.

Method convert_to : convert a generalized series expansion into other do-
mains

convert_to(gseries s, any T)

A Tries to convert s into an element of domain type T, or, if T is not a
domain, to the domain type of T.
FAIL is returned, if a conversion cannot be performed, or is not
supported.

A T might be the domain DOM_POLY, where the sum of monomials
is considered as a polynomial in the indeterminates of the third
operand of s .
If T is the domain DOM_EXPR, then the conversion is the same as
implemented by the method "expr" (see below).

A Use the function expr to convert s into an object of a kernel do-
main.

Method create : create simple and fast a generalized series expansion

create(list list, expression orderTerm, equation x = a)

A Creates a new element of the domain Series::gseries .
list must be a list of sublists [ci, fi] of length 2, the monomials ci · fi
of the series expansion.
orderTerm is the order term of the form O

(
g(x)

)
, or the integer 0

if the expansion is exact.

A This method should be used with caution, because no argu-
ment checking is performed. It is supposed to be used to cre-
ate, not to compute elements of Series::gseries .

!

Method expr : convert a generalized series expansion into an element of a
kernel domain

expr(gseries s)

A Returns the sum of monomials of s without the order term.

52

Technical Methods

Method print : pretty-print routine

print(gseries s)

A This method is used from the system function print for printing
elements of Series::gseries to the screen.

Method TeX: LaTeX formatting

TeX(gseries s)

A Returns a LATEX-formatted string for s .

A This method is called from the system function generate::TeX .

53

