generate

— generate input to other programs

Table of contents

Preface

generate:
generate:
generate::
generate::

generate::

generate::
generate::
generate::

generate::

generate::

:C — generate C formatted string
Sfortran — generate FORTRAN formatted string
Macrofort::genFor — FORTRAN code generator .
Macrofort::init — initialize genFor
Macrofort::closeOutputFile — close FORTRAN
file . . o
Macrofort::openOutputFile — open FORTRAN file
Macrofort::setAutoComment — automatic comments
Macrofort::setlOSettings — sets I/O settings .
Macrofort::setOptimizedOption — sets optimiza-
tion
Macrofort::setPrecisionOption — sets precision
:optimize — generate optimized code

generate:

generate:

‘TeX — generate TEX formatted string from expressions

ii

18

19
20
21
22

25
27
28
31

The functions of the generate package provide the ability to generate
code for programming languages like C or FORTRAN as well as for the popu-
lar typesetting software TgX.

ii

generate::C - generate C formatted string

generate::C(e) generates C output for the MUPAD expression e.

Call(s):
generate::C(e)

Parameters:

e — an expression, equation or list of equations

Return Value: generate::C returnsastring containing C code.

Related Functions: fprint , print , generate::optimize

Details:

& A MUPAD expression is converted into a C expression.

£ An equation is used to represent an assignment in C. The type of the
assignment is assumed to be double .

4 A list of equations may be used to represent a sequence of assignments
in C.

& The output string may be printed to a file using fprint . Use the print-
ing option Unquoted to remove quotes and to expand special characters
like newlines and tabs.

¢ generate::optimize may be used to optimize the input before gen-
erating the C code.

Example 1. A list of equations is converted into a sequence of assignments.

>> generate::C([X[1]=y[2+i]"2*(y[1]+sin(z)), x[2]=tan(x[1]*4)]):
print(Unquoted,%)

X[1]
x[2]

Vi + 2]yl + 2])*(sin(z) + y[1]) ;
tan(pow(x[1], 4.0)) ;

Example 2. The code produced by generate::C is not optimized:

>> print(Unquoted,
generate::C([x = a + b, y = (a + b)"2])):

X=a+b,;
y pow(a + b, 2.0) ;

generate::optimize tries to reduce the number of operations:

>> print(Unquoted,
generate::C(
generate:.optimize([x = a + b, y = (a + b)"2)])

)):
X =a+b;
y = X*X ;
Changes:
& No changes.
generate::fortran — generate FORTRAN formatted string
generate::fortran(e) generates FORTRAN output for the MUPAD ex-
pression e.
Call(s):
generate::fortran(e)
Parameters:
e — an expression, equation or list of equations
Return Value: generate::fortran returnsastring containing FORTRAN
code.
Related Functions: fprint , print , generate::Macrofort::genFor ,

generate::optimize

Details:

=i

=4

A MUuPAD expression is converted into a FORTRAN expression.

An equation is used to represent an assignment in FORTRAN. The type
of the assignment is assumed to be double .

A list of equations may be used to represent a sequence of assignments
in FORTRAN.

The output string may be printed to a file using fprint . Use the print-
ing option Unquoted to remove quotes and to expand special characters
like newlines and tabs.

generate::optimize may be used to optimize the input before gen-
erating the FORTRAN code.
generate::Macrofort::genFor is a more general function for gen-

erating FORTRAN code with more options.

Example 1. A list of equations is converted into a sequence of assignments:

>> generate::fortran([x[1]=y[2+i]*2*(y[1]+sin(z)),

x[2]=tan(x[1]*4) 1):

print(Unquoted,%)

x(1) = y(i+2)=*2*(sin(z)+y(1))
X(2) = tan(x(1)**4)
Example 2. The code produced by generate::fortran is not optimized:

>> print(Unquoted,

generate::fortran([x = a + b, y = (a + b)"2])):

X = atb
y = (@)
generate::optimize tries to reduce the number of operations:

>> print(Unquoted,

generate::fortran(
generate::optimize(x = a + b, y = (a + b)"2])

)):

X = atb
y = X*X

Changes:
£ No changes.

generate::Macrofort::genFor — FORTRAN code generator

Mac::genFor (where Mac:=generate::Macrofort) is the Macrofort pack-
age for generating FORTRAN code.

The Macrofort package allows the user to make complete standard FORTRAN
77 code while remaining in the MuPAD environment. Necessities of FOR-
TRAN code such as label numbering and complicated FORTRAN loops are
handled automatically. Macrofort has capabilities for:

e “Tailoring” large amounts of FORTRAN code (infeasible by hand).

e Solving storage problems in FORTRAN code for many recursive algo-
rithms.

e Numerically solving recursive algorithms, and in some cases, within the
area of vectorized machine architectures (see last example).

Furthermore, the combination of MuPAD’s symbolic manipulation capabili-
ties and, in particular, its optimizer generate::optimize can help yield
efficient codes for ambitious goals in numerical computation. MuPAD can be
also used as a preprocessor for numerical analysis.

Macrofort overlaps with MuPAD’s generate::fortran but it is more gen-
eral program for generation FORTRAN code and has many more options.

Call(s):
generate::Macrofort::genFor(l)

Parameters:

| — list or list of lists

Return Value: the void object of domain type DOM_NULL
Side Effects: writes FORTRAN code into an ascii file

Related Functions: generate::Macrofort::init ,
generate::Macrofort::setOptimizedOption ,
generate::Macrofort::setlOSettings ,
generate::Macrofort::setPrecisionOption ,
generate::Macrofort::setAutoComment ,

generate::Macrofort::openOutputFile ,
generate::Macrofort::closeOutputFile
generate::fortran

, generate::optimize ,

Details:

£ The syntax of the MuPAD input to generate a FORTRAN statement or
a macro FORTRAN statement is a list where the first element is a key-
word describing the statement, the other (optional) elements of that list
being relevant arguments. The keyword itself is a string referring to a
FORTRAN instruction name (when it exists) and for macro statements,
a letter character mappears at the end of the keyword. The following
input list of keywords and their corresponding FORTRAN output refer
to Macrofort single instructions:

[call", name, list] => call name (list)

[‘close", n] => close (n)

['comment", string] = C string

[‘common”, name, list] => common / name/ list

['continue”, label] => label continue

['declare”, type, list] => type list

['do", label, index, => do label, index=start, end
start, end] =>

['do", label, index, => do label, index=start, end, step
start, end, step] =>

['else"] => else

['end"] => end

["endif"] => endif

['equal”, var, expression] => var=expression

['format”, label, list] => label format (list)

['function”, type, => type function name (list)

name, list] =

['goto”, label] => goto label

["if_goto”, cond, label] => if (cond) goto label

["if_then", cond] => if (cond) then

['parameter”, list] => parameter (list)

['program”, name] => program name

['read", file, label, list] => read (file, label) list

[‘return”] => return

["subroutine”, name, list] => subroutine name (list)

["write", file, label, list] => write (file, label) list

and also

['open", n, file, st] => open(unit= n/file= file',status=’ st’)

where n appears in cases such as "open”

correspond to unit numbers

(or channel numbers) for FORTRAN I/0O instructions and where cond

appears as a condition argument of a Macrofort instruction. Examples of
conditions are:

["if_then" ,a>=b].

For logical operators _not ,_and and _or in a condition, you have to use
the names "NOT", "AND" and "OR" within a list notation. For instance:

["if_then",["OR",a=b,[" NOT",c<d)]].

These names are used to ensure that the resulting code directly performs
these logical operations in FORTRAN rather than via MuPAD. Label
numbers are automatically generated. When label appears as an ar-
gument of a Macrofort instruction, a MuPAD variable must be inserted.
The label is retained within Macrofort it can always be avoided using the
macro instructions.

When list appears as an argument of a Macrofort instruction, it cor-
responds to an argument FORTRAN list which you have to write as a
MuPAD list. For instance:

[" call",foo,[a,b,c]]
or

[" format" ,[2x,e14.7], [x,y]]

When you want to generate a FORTRAN array, you have to write a Mu-
PAD array. Also available are the Macrofort macro instructions but for
these, labels are not needed:

['do_m", index, do label, index=start, end, step

start, end, step, doList] doList
label continue
['do_m", index, do label, index=start, end
start, end, doList] doList
label continue
["functionm”, type, type function name (list)
name, list, bodyList] bodyList
end
["if_then_else_m", cond, if cond then
thenList, elseList] thenList
else
elseList
endif
["if_then_m", cond, thenList] if cond then
thenList
endif
['programm®, name, bodyList] program name
bodyList
end
['readm", file, read (file, label) wvarList
formatList, wvarList] label format (formatList)
['subroutinem”, name, subroutine name (list)
list, bodyList] bodyList
end
["writem", file, write (file, label) varList
formatList, wvarList] label format (formatList)
['declarem”, type, list] type list
['commonm", name, list] common / name / list
and also
[‘openm"”, n, open(unit= n,file=’ file’,status=’ st’)
file, st, bodyList] bodyList
close (n)

The only difference between "commonm" and "declarem"” and their
single instruction counterparts, namely "common” and "declare” is
that one can put the macro instructions everywhere in the list describing
the program and Macrofort puts them at the right place in the gener-
ated FORTRAN code. This allow us to declare a variable only when it
is used in the body of the program. These macros only work within the
"programm” , "functionm" or "subroutinem” instructions. Other-
wise there are ignored.

There are other very important macro instructions. First, there are two
macro instructions corresponding to WHILE and UNTIL loops. Their

syntax has the form:

[" whilem" , condition, initList, whileList, whileMax(optional)] :

<initList>

while condition do
<whileList>

end.

["untilm" , condition, initList, untilList, untilMax(optional)] :

<initList>
do <untilList>
until condition
end.

where whileMax and untilMax are optional arguments and respec-
tively the maximum number of iterations for the WHILE and UNTIL
loops. When the maximum is reached, the loop stops and a message
is issued. If this argument is not given, there is no maximum num-
ber of iterations. Note that doList ,thenList ,elseList ,bodyList ,
initList , untilList and whileList arguments must be MuPAD
lists describing FORTRAN statements with a Macrofort syntax. You can
nest as many loops as you want.

& ["'matrixm”,var,matrix] is another very useful macro instruction.
It is used to make assignations of the elements of a matrix or array. Here,
var is the name of a FORTRAN matrix and matrix is a MuPAD matrix
(see first example).

¢ There are global variables defined within the macrofort ~ domain. Please
note that before any call to Mac::genFor (where Mac:=generate::Macrofort),
the procedure Mac::init must be used! The latter sets these global
variables to their default values and it initializes the various counters
used internally by Macrofort (e.g.: for label generation). Deviations from
these settings are done by calls to Mac::setlOSettings , Mac::setOptimizedOption
Mac::setPrecisionOption and Mac::setAutoComment (see the help
page for Mac::init and these other procedures for details). Further-
more, any call to Mac::genFor also needs a call to Mac::openOutputFile
to name and open the ascii FORTRAN file and a call to Mac::closeOutputFile
to close that same file.

4

Example 1. Calculation of a matrix.
Initialize Macrofort and open the file "matrix.f"

>> Mac := generate::Macrofort:
Mac::init():
Mac::openOutputFile("matrix.f"):

Create a 2 x 2 array with symbolic entries called a

>> a = array(1..2, 1.2, [[x*2, x - V], [xly, x*2 - 1]])

+- -+
| 2 |
| x, x-y |

| |
| x 2 |
| - x -1 |

|y |
+- -+

and generate a FORTRAN array v for a using "matrixm" in genFor:
>> Mac:.genFor(["'matrixm”, v, a]):
Close the file "matrix.f"

>> Mac::closeOutputFile():
delete a:

The output file matrix.f is:

v(1,1) = x**2
v(1,2) = x-y
v(2,1) = xly
v(2,2) = x**2-1

Example 2. The calculation of a polynomial in Horner form.

Open the file "demo.f* and define the function using the macro "functionm®”

p is a list containing all specifications in the form of lists. "declarem” defines
the FORTRAN variables and their types and "do_m" creates the do-loop by
which the polynomial is summed in Horner form.

>> Mac::.openOutputFile("demo.f"):

p := ['functionm”, doubleprecision,
horner,[x,n,a],
[['declarem”, doubleprecision,

[a(n), xIl,

["equal”, horner, a[n]],
['do_m", i, n - 1, O, -1,
[*equal", horner, afij + horner*x]]]]:

Mac::genFor(p):
Mac::closeOutputFile():
delete p,a,x,n,i:

The output file demo.f is:

c
C FUNCTION horner
c
doubleprecision function horner(x,n,a)
doubleprecision a(n),x
horner = a(n)
c
do 1000, i=n-1,0,-1
horner = x*horner+a(i)
1000 continue
c

end

Bear in mind that this demo example is lame as the Macrofort MuPAD code is
at least as extensive as the resulting FORTRAN output which could have been
readily obtained directly by hand. The dividends of Macrofort become more
clear in the following examples.

Example 3. A recursive function on a tree.

Although it is possible to write FORTRAN programs for recursive problems,
this can be very tedious for complicated recursions and even if the recursion is
not so complicated, other problems can arise as shown here. In this example,
we consider a binary tree with nodes labeled by pairs of integers (i, j) where
(1,1) is the root of the tree, (2,1) and (2,2) are the children nodes of the root
and recursively (i +1,2j — 1) and (i + 1, 2j) are the children nodes of node (i, j).
Node (i, j) is at level i. Consider now the following sequence:

f171 given
f= g(fl,_l,%-) 1f].15 even
bl 8(fi 4 HTl) if jis odd
where g is a given function. We want to compute the values of the sequence

up to a given level N, i.e. the 2N=1 values f(N,1)... f(N,2N=1). To write the
corresponding FORTRAN code, you only have to write two loops:

real f(n,m)
do 1,i=1,n
do 2,j=1,2**(n-1)-1,2

10

f(i.)=g(f(i-1,(+1)/2))
2 continue
do 3,j=2,2**(n-1),2
f(i.j)=9(f(i-1,i/2))
3 continue
1 continue

but the dimension m of the array f is 2N~1. In other words, we would have to
retain the storage of N x 2N~ real values instead of 2N — 1 (which corresponds
to 5 times more storage for N equal to 10).

A way to avoid this waste, is to have an array for each level, i.e. to have
FORTRAN arrays f1(1), f2(2), f3(4) and so forth but it then becomes very
tricky to write the resulting FORTRAN program by hand. However, this can
be readily solved using a MuPAD program within Macrofort.

We suppose that a FORTRAN function ¢ has already been defined. The
MuPAD function which generates the FORTRAN program is:

>> Mac::openOutputFile("Func.f"):

pushe := proc(e,l) begin [op(eval(l)),e] end_proc:
gen_Func := proc(n)
local i,pg,temp,templ,temp2,temp3;
begin
pg:=[I:
/I declaration of the arrays
for i from 1 to n do
temp:=eval(text2expr(
_concat("f",expr2text(i),"[",expr2text(2/(i-1)),"T)):
pg:=pushe(["declare”,real,[temp]],pg):
end_for:
/I loops for each array
for i from 2 to n do
templ:=eval(text2expr(_concat("f",expr2text(i),"[j]")):
temp2:=eval(text2expr(_concat("f",expr2text(i-1),"[Hold(j+1)/2]"))):
temp3:=eval(text2expr(_concat("f",expr2text(i-1),"[j/2]"))):
pg:=pushe(['do_m",j,1,2(i-1)-1,2,["equal”,templ,g(temp2)]],pg):
pg:=pushe(["do_m",j,2,2"\(i-1),2,["equal”,temp1,g(temp3)]],pQ):
end_for:
pg:=["programm",Func,pq]:
Mac::genFor(pg):
end_proc:
gen_Func(4):
Mac::closeOutputFile():
delete j,pushe,gen_Func:

The output file Func.f is:

11

c MAIN PROGRAM Func
o
program Func
real f1(1)
real f2(2)
real f3(4)
real f4(8)
c
do 1000, j=1,1,2
f2() = g(f1((+ 1)/2))
1000 continue
c
o
do 1001, j=2,2,2
f2() = 9(f1(i/2))
1001 continue
c
c
do 1002, j=1,3,2
f3(4) = g(f2(G + 1)/2))
1002 continue
c
c
do 1003, j=2,4,2
f3() = 9(f2(i/2))
1003 continue
c
c
do 1004, j=1,7,2
fa() = g(f3((G + 1)/2))
1004 continue
c
c
do 1005, j=2,8,2
fa() = 9(f3(i/2))
1005 continue
o

end

By calling gen_Func(n) for larger n, you can readily have Macrofort generate
the needed code for larger and larger n. Of course, the output is proportionally
larger but still “digestible” to modern-day compilers for a wide range of n.

Example 4. Optimized Vectorized FORTRAN code for Molecular Integrals.

Here, we present a method for the rapid numerical evaluation of molecular
integrals which appear in the areas of Quantum Chemistry and Molecular

12

Physics. The method is based on the exploitation of common intermediates
using MuPAD’s optimizer (see generate::optimize) and the optimization
can be adjusted to both serial and vectorised computations.

Integrals based on atom-centered Gaussian-type functions known as the
R-integrals are given by the recurrence relations:

R][T + 17#71/] = xR]'-‘rl[TaMaV] +7_Rj+1[7_ - 1aﬂ71/]
Rjl7, p+1,v] = yRjul7, p, vl + pRjpalm, p — 1,v]
Rilr, p,v +1] = zRj . [7, pp, V] + VR a7, v — 1]

R;[0,0,0] = (—2p)/Fj(aQP’)
where

1
F, (W) = /0 exp[— W™ dt,

where the vector QP = —(x,y,z) and « are given geometrical quantities (deter-
mined on input) for a particular molecular geometry, and F is a known func-
tion in quantum chemistry for which there already exist various algorithms for
its rapid computation (in this example, we are only interested in the computa-
tion of the polynomial part of R(7, i, 7). The summation indices are bounded
by zero and 7 + p + v < L where L is a total angular quantum number for a
given molecular problem, and consequently these induces adhere to a polyhe-
dral structure. The total number N of R functions to compute for a given L is
given by N = (L + 1)(L + 2)(L + 3)/6. In the diatomic molecular case (i.e. a
molecule made of only two “atoms” whose centers are set on the z-axis), the
R-integrals form a sparse three-dimensional matrix (see the work of the refer-
ences for a fuller understanding of the framework).

Vectorization involved the introduction of a vectorization index, denoted
M, which is the first index of all the arrays involved in the computation. The
FORTRAN code obtained from the compiler is then “sandwiched” within do-
loops. The code shown here is generated for the R integrals up to L = 3 al-
though it can generate the code for all the way up to L = 16.

This example makes use of MuPAD’s optimizer (see generate::optimize
and therefore, one obtains optimized vectorized FORTRAN code. This code
had been tested on a CRAY and the FLOP (floating-point operations) rate was
about 85 percent of its peak efficiency and has been used in specific relativistic
quantum chemistry calculations.

Input code:

First we construct the S functions by which the R functions are later defined as
shown in the work of V. Saunders (see references). This definition essentially
exploits a decomposition in odd and even symmetries within these functions
and provides an economy in the computations.

13

>> S:=proc(j,p,QP,QP2,t,u,v)
begin
if (t<0) or (u<0) or (v<0) then
0;
elif (t=0) and (u=0) and (v=0) then
((-2*p)N)*FS[M,j+1];
elif (t>0) and (t mod 2 =1) then
S(j+1,p,QP,QP2,t-1,u,v)+(t-1)*S(j+1,p,QP,QP2,t-2,u,v);
elif (u>0) and (u mod 2 =1) then
S(j+1,p,QP,QP2,t,u-1,v)+(u-1)*S(j+1,p,QP,QP2,t,u-2,v);
elif (v>0) and (v mod 2 =1) then
S(j+1,p,QP,QP2,t,u,v-1)+(v-1)*S(j+1,p,QP,QP2,t,u,v-
2);
elif (t>0) and (t mod 2 =0) then
QP2[M,1]*S(j+1,p,QP,QP2,t-1,u,v)+(t-1)*S(j+1,p,QP,QP2,t-
2,u,v);
elif (u>0) and (u mod 2 =0) then
QP2[M,2]*S(j+1,p,QP,QP2,t,u-1,v)+(u-1)*S(j+1,p,QP,QP2,t,u-
2V);
elif (v>0) and (v mod 2 =0) then
QP2[M,3]*S(j+1,p,QP,QP2,t,u,v-1)+(v-1)*S(j+1,p,QP,QP2,t,u,v-
2);
end_if;
end_proc:

Xi:=proc(xbar,i)
begin
if (QP[M,1] <> 0) then
(-xbar)®(i mod 2);
elif
(i mod 2) > 0) then O; else 1;
end_if;
end_proc:

Finally, we construct the R functions

>> R:=proc(j,p,QP,QP2,t,u,v)

local X,Y,Z;

begin
X:=Xi(QP[M,1],1);
Y:=Xi(QP[M,2],u);
Z:=Xi(QP[M,3],v);
S(j,p,QP,QP2,t,u,v)*(X*Y*2);

end_proc:

We restrict ourselves to the Diatomic case i.e. only the z-axis (the 3rd axis) has
non-zero components.

14

>> QP[M, 1] := 0: QP[M, 2] := 0: QP[M, 3] := QP[M]:
QP2[M, 1] := 0: QP2[M, 2] := 0: QP2[M, 3] := QP2[M]:

We ensure plenty of guard digits for L up to L = 16

>> DIGITS:=60:
subr:=null():
for LL from 0 to 4 do
tuv:=0: ds:=null():
for mu from 0 to LL do

t:=LL-mu;
for nu from 0 to mu do
u:=mu-nu;
for tau from O to nu do
V:=nu-tau;
tuv:=tuv+1;

Rtuv:=float(R(0,ALPHA[M],QP,QP2,t,u,v));
if (Rtuv <>0 and Rtuv <> 0.0) then
ds:=ds,[RC[M,tuv],Rtuv]:
end_if;
end_for:
end_for:

end_for:

subr:=subr,["if_then_m",L=LL,
['do_m",M,1,MAXM,["equal”,[ds]]]];

end_for:

Construct the input list for the FORTRAN Subroutine

>> delete QP2:
subr := ['subroutinem”, RMAKE, [L, FS, ALPHA, QP2, MAXM, RC],
[['declare”, "implicit doubleprecision”, ['(a-
h,0-2)"],
['parameter”, [LMAX = 12, MAXB = 32,
MAXB2 = "MAXB*MAXB", MAXR = 455]],
['declare”, dimension,
['FS(MAXB2,LMAX)", "ALPHA(MAXB2)", "QP2(MAXB2)",
"RC(MAXB2,MAXR)"]], subr]]:

Initialization of Macrofort:

>> Mac:=generate::Macrofort:
Mac::init():

Open file "vectorized.f" and switch optimizer on. The desired precision
for the FORTRAN code is double:

>> Mac::openOutputFile("vectorized.f"):
Mac::setOptimizedOption(TRUE):
Mac::setPrecisionOption("double"):

15

Code Generation:

>> subr:
Mac::genFor(subr):
Mac::closeOutputFile():
delete subr,S,R,LL,Xi,t,u,v,Rtuv,tuv,ds,tu,mu,nu,QP,QP2,M:

The output file vectorized.f is:

c
c SUBROUTINE RMAKE
c
subroutine RMAKE(L,FS,ALPHA,QP2,MAXM,RC)

implicit doubleprecision (a-h,0-z)

parameter (LMAX=12,MAXB=32,MAXB2=MAXB*MAXB,MAXR=455)

dimension FS(MAXB2,LMAX),ALPHA(MAXB2),QP2(MAXB2),RC(MAXB2,MAXR)

if (L.eq.0) then

do 1000, M=1,MAXM
RC(M, 1) = FS(M,1)
1000 continue

endif
if (L.eq.1) then

do 1001, M=1,MAXM
RC(M, 4) = FS(M,1)
1001 continue

endif
if (L.eq.2) then

do 1002, M=1,MAXM
t1 = ALPHA(M)

t2 = FS(M,2)
RC(M, 1) = -0.2D1*t1*t2
RC(M, 5) = RC(M,1)
RC(M, 8) = RC(M,1)+0.4D1*t1**2*QP2(M)*FS(M,3)
RC(M, 10) = FS(M,1)
1002 continue

endif
if (L.eq.3) then

do 1003, M=1,MAXM
t3 = ALPHA(M)
t4 = FS(M,2)
RC(M, 4) = -0.2D1*3*4

16

RC(M, 13) = RC(M,4)
RC(M, 18) = RC(M,4)+0.4D1*t3**2*QP2(M)*FS(M,3)
RC(M, 20) = FS(M,1)

1003 continue

c

endif
if (L.eq.4) then
c
do 1004, M=1,MAXM
t5 = ALPHA(M)
t6 = t5**2
t7 = FS(M,3)
RC(M, 1) = 0.12D2*t6*t7
RC(M, 5) = 0.4D1*t6*t7
t8 = QP2(M)
t9 = FS(M,4)
t10 = -0.8D1*t5*t6*t8*t9
RC(M, 8) = t10+RC(M,5)
t11 = FS(M,2)
RC(M, 10) = -0.2D1*5*11
RC(M, 21) = RC(M,1)
RC(M, 24) = RC(M,8)
RC(M, 26) = RC(M,10)
RC(M, 31) = t8*(0.16D2*t6**2*t8*FS(M,5)-0.24D2*t5*t6*t9)
#+RC(M,1)-0.24D2*t5*t6*t8*t9

RC(M, 33) = 0.4D1*t6*t7*t8+RC(M,10)
RC(M, 35) = FS(M,1)

1004 continue

c

endif
end

The benefits of MuPAD’s optimizer become more evident at higher L but we
can already see its effects. Common intermediates are exploited and in a num-
ber of cases, only re-assignations and not actual computation were needed.

Background:

7 References:

e C. Gomez and T.C. Scott, Maple Programs for Generating Efficient
FORTRAN Code for Serial and Vectorized Machines, Comput. Phys.
Comm., 115, (1998).

e T.C. Scott, I.P. Grant, M.B. Monagan and V.R. Saunders, Proceed-
ings of the fifth International Workshop on New computing Tech-
niques in Physics Research (software engineering, neural nets, ge-
netic algorithms, expert systems, symbolic algebra, automatic cal-

17

culations), held in Lausanne (Switzerland), Nuc. Instruments &
Methods Phys. Research, 389A (1997) 117-120.

e VR. Saunders, Methods in Computational Molecular Physics, Ed. by
GHF Diercksen and S. Wilson, (Riedel, Dordrecht-Holland, 1983)

1-36.
generate::Macrofort::init — initialize genFor
Mac::init (where Mac:=generate::Macrofort) initializes the global vari-

ables for every call to Mac::genFor , the Macrofort FORTRAN code genera-
tor.

This procedure must be called before the first call to Mac::genFor . It ini-
tializes the various counters used internally by Macrofort for label generation
within used within e.g.: do-loops and format statements. It also sets the vari-
ables for precision, comments, optimization, I/O settings, input and output
file definition to their default values although these can be subsequently mod-
ified by subsidiary routines (mentioned in the list of “Related Functions”).

Call(s):
& generate::Macrofort::init()

Return Value: the void object of domain type DOM_NULL
Side Effects: Default values for global variables Mac::genFor are set.

Related Functions: generate::Macrofort::genFor ,
generate::Macrofort::setOptimizedOption ,
generate::Macrofort::setlOSettings ,
generate::Macrofort::setPrecisionOption ,
generate::Macrofort::setAutoComment ,
generate::Macrofort::openOutputFile ,
generate::Macrofort::closeOutputFile , generate:.optimize ,
generate::fortran

Details:

With Mac:=generate::Macrofort , these are the subsidiary routines
to Mac::init and Mac::genFor within the “macrofort” domain:
Mac::setAutoComment allows for the automatic generation of FOR-

TRAN comments.

Mac::setPrecisionOption allows the choice of tailoring FORTRAN
code in single, double or quadruple precision.

18

Mac::setlOSettings allows the user to choose the settings for FOR-
TRAN I/0O statements.

Mac::setOptimizedOption allows for the choice of optimization.
Mac::openOutputfile opens an ascii file for the FORTRAN code.
Mac::closeOutputfile closes the file open by Mac::openQOutputfile

See the help-files of these individual procedures for more details and
information about the default values set by Mac::init

Example 1. This example shows how Mac::init (with Mac:=generate::Macrofort
automatically takes care of the labeling in the FORTRAN output generated by
Mac::genFor . The output is the ascii file "test.f"

>> Mac := generate::Macrofort:
Mac::init():
Mac::openOutputFile("test.f"):
Mac::genFor(["continue"”,label]):
Mac::genFor(["do",label,i,1,m,-1]):
Mac::closeOutputFile():
delete i, m, label:

The output file "test.f" is:

1000 continue
do 1000, i=1,m,-1

As we can see, the labeling was done automatically without the user having to
worry about it.

See the help-file for Mac::genFor for a more comprehensive list of exam-
ples.

generate::Macrofort::closeOutputFile —close FORTRAN file

Mac::closeOutputFile (where Mac:=generate::Macrofort) closes the
FORTRAN file opened by Mac::openOutputFile

Call(s):

generate::Macrofort::closeOutputFile()
Return Value: the void object of domain type DOM_NULL
Side Effects: Closes FORTRAN file opened by Mac::openOutputFile

Related Functions: generate::Macrofort::genFor ,
generate::Macrofort::openOutputFile

19

Details:

Mac:.closeOutputFile (where Mac:=generate::Macrofort) closes
the ascii file on which all FORTRAN code generated by successive calls
to Mac::.genFor (see Mac::genFor and Mac::init for more details)
was written.

Mac::closedOutputFile MUST be called at the end of the last call to
Mac:.genFor

The help-pages of Mac::genFor ,Mac:init and related functions pro-
vide examples.

generate::Macrofort::openOutputFile — open FORTRAN file

Mac::openOutputFile (where Mac:=generate::Macrofort) allows to
create the ascii file on which resides the FORTRAN code generated by Mac::genFor

Call(s):
generate::Macrofort::openOutputFile(b)

Parameters:

b — the file name: a string.

Return Value: A positive integer specifying a file descriptor or FAIL if the file
can’t be opened.

Side Effects: Creates the ascii file to which the FORTRAN code generated by

all calls to generate::Macrofort::genFor is written.
Related Functions: generate::Macrofort::init ,
generate::Macrofort::genFor ,

generate::Macrofort::.closeOutputFile

Details:

Mac::openOutputFile (where Mac:=generate::Macrofort) opens
the ascii file on which all FORTRAN code made by subsequent calls to
Mac::genFor is to be generated (see Mac::genFor and Mac::init
for more details). The input must be a string with a termination like
"f" to ensure a FORTRAN file acceptable to most FORTRAN compil-
ers.

20

Mac::openOutputFile MUST be called before the first call to Mac::genFor
The help-pages of Mac::genFor ,Mac:init and related functions pro-
vide examples.

generate::Macrofort::setAutoComment —automatic comments

Mac::setAutoComment (where Mac:=generate::Macrofort)is a switch
to ensure that FORTRAN code generated by Mac::.genFor includes FOR-
TRAN comments.

Call(s):

generate::Macrofort::setAutoComment(b)

Parameters:
b — TRUE or FALSE.

Return Value: the void object of domain type DOM_NULL

Side Effects: Resets the internal macrofort variable for the FORTRAN code
generated by generate::Macrofort::genFor

Related Functions: generate::Macrofort::init ,
generate::Macrofort::genFor

Details:

Mac::setAutoComment (where Mac:=generate::Macrofort)isused
with Mac::genFor and Mac::init (see these programs for more de-
tails) and adjusts Macrofort (internal) global variable for generation of
FORTRAN comments. The default setting for this variable made by an
initial call to Mac::init is TRUE for the resulting FORTRAN code.

When a boolean value of FALSE is injected to Mac::setAutoComment
the FORTRAN code of Mac::genFor is generated without FORTRAN
comments.

Example 1.

>> Mac:=generate::Macrofort:
Mac::init():

Note that the default mode for the automatic comments set by Mac::init is
TRUE (meaning on).

21

>> Mac::openOutputFile("test.f"):
Mac::.genFor(["'subroutinem", foo, [a, b, I],
['equal", a, 1], ["equal", b, 2]]]):
Mac::closeOutputFile():

Switch auto-comment off and send output to a different file.

>> Mac::setAutoComment(FALSE):
Mac::openOutputFile("test2.f"):
Mac::genFor(["subroutinem", foo, [a, b, i],
["equal", a, 1], ["equal", b, 2]])):
Mac::closeOutputFile();

The output file with comments test.f is:

c
c SUBROUTINE foo
c
subroutine foo(a,b,i)
a=1
b =2
end

The output file without comments test2.f is:

subroutine foo(a,b,i)

a=1
b=2
end
generate::Macrofort::setlOSettings — sets 1/O settings
Mac::setlOSettings (where Mac:=generate::Macrofort) sets the unit

or channel numbers for the input and output of the FORTRAN code generated
by Mac::genFor

Call(s):
£ generate::Macrofort::setlOSettings(inputf,outputf)

Parameters:

inputf,outputf — integers for I/O specifications.

Return Value: the void object of domain type DOM_NULL

22

Side Effects: Resets the I/O settings for the FORTRAN code generated by
generate::Macrofort::genFor

Related Functions: generate::Macrofort::init ,
generate::Macrofort::genFor

Details:

& In FORTRAN, read , write , open and close statements require unit
(or channel) numbers. In this sample of FORTRAN code:

read(5,100) x
write(6,200) vy

the first entry in the read instruction is the unit number of the file (or de-
vice) by which the input x is read. Similarly, the first entry in the write
instruction is the unit number of the file (or device) on which y is to be
output.

Mac::setlOSettings (where Mac:=generate::Macrofort)is used
with Mac::genFor and Mac::init (see these programs for more de-
tails) and adjusts the (internal) global I/O unit settings for FORTRAN.
The default setting for these variables is respectively 5 and 6 for FOR-
TRAN read and write statements which are made by an initial call to
Mac::init

These I/0O settings are needed internally for Macrofort Macro instruc-
tions such as e.g. while-do loops. The user also has the choice of inject-
ing his own choice of unit number for open and close and read and
write statements quite independently from these global variables. This
allows the FORTRAN code to read input from several different ascii files
without having to call Mac::setlOSettings each time. However, in
general practice, it suffices to call this procedure once and define I/O
variables common to both the user and Macrofort for all read , write ,
open and close statements.

Example 1. Example of "openm” Macrofort Statement.

This example illustrates that one can use the Macrofort global variable for the
FORTRAN input unit number or some other choice. The resulting FORTRAN
code can read data from different files.

First initialize Macrofort and open the ascii file "test.f"

>> Mac:=generate::Macrofort:
Mac::init():
Mac::openOutputFile("test.f"):

Set global FORTRAN I/O settings at 5 and 6 respectively:

23

>> inputf := 5: outputf = 6:
Mac::SetlOSettings(inputf, outputf):

Generate Open statement with input setting at 10 and then at inputf

>> Mac:.genFor(['openm”, 10, "toto.data", old,
['readm”, 10, ["i20"], [iD:
Mac:.genFor(["openm"”, inputf, "toto2.data", old,
['readm”, inputf, ["i10"], []ID):
Mac::closeOutputFile():
delete j, old, inputf, outputf:

The output file test.f is:

open(unit=10,file="toto.data’,status="old")
read(10,2000) |

2000 format(i10)
close(10)
open(unit=5,file="toto2.data’,status="old")
read(5,2001) j

2001 format(i10)
close(5)

Example 2. Example of Macro "whilem" Macrofort Statement.

This example uses the Macrofort internal global variable for the FORTRAN
output instructions needed in the while-do loop made by the FORTRAN write
instruction (via the macro "writem") inside the "whilem" Macrofort instruc-
tion.

>> Mac::openOutputFile("test2.f"):
Mac:.genFor(["whilem", abs(a) > eps, ['equal’, a, big],
['equal", a, a/2.0], ["equal", b,2]], 1000]):
Mac::closeOutputFile():
delete a, b, big, eps:

The output file test2.f is:

c
c WHILE (eps < abs(a)) DO <WHILE_LIST> (1)
c
c WHILE LOOP INITIALIZATION

maxwhilel = 1000

nwhilel = 0

a = big

c
c WHILE LOOP BEGINNING

1000 continue

24

c WHILE LOOP TERMINATION TESTS
if (eps.lt.abs(a)) then
if (nwhilel.le.maxwhilel) then
c
c NEW LOOP ITERATION
nwhilel = nwhilel+1
c
c <WHILE_LIST>
a = 0.5EO0*a
b=2
goto 1000
else
c
c WHILE LOOP TERMINATION :
c BYPASSING THE MAXIMUM ITERATION NUMBER
write(6,2002)
2002 format(" maxwhilel °)
endif
c
c NORMAL WHILE LOOP TERMINATION
endif
c WHILE LOOP END (1)

See the help-file for Mac::genFor for a more comprehensive list of exam-
ples.

generate::Macrofort::setOptimizedOption — sets optimiza-
tion

Mac::setOptimizedOption (where Mac:=generate::Macrofort)is a
switch which allows MuPAD’s optimizer generate::optimize to be ap-
plied to the expressions and arrays of the FORTRAN code generated by Mac::genFor

Call(s):
& generate::Macrofort::setOptimizedOption(b)

Parameters:
b — TRUE or FALSE.

Return Value: the void object of domain type DOM_NULL

Side Effects: Optimized FORTRAN code if the setting is TRUE.

25

Related Functions: generate::optimize ,

generate::Macrofort::init , generate::Macrofort:.genFor
Details:
Mac::setOptimizedOption (where Mac:=generate::Macrofort)

is used with Mac::genFor and Mac::init (see these programs for
more details) and adjusts Macrofort (internal) the settings for optimiza-
tion. The default setting for this variable made by an initial call to Mac::init
is FALSE i.e. no optimization for the resulting FORTRAN code.

First, to understand how the optimizer works, consult generate::optimize
When a boolean value of TRUE is injected to Mac::setOptimizedOption
the Mac::genFor procedure tailors its FORTRAN code from the results
of the optimizer. In the case of arrays, the input array is converted into
a computational sequence in the form of a list before submission to the
optimizer to facilitate the generation of readable FORTRAN code.

Example 1.

>> Mac := generate::Macrofort:
Mac::init():

Note that the default mode for the optimizer set by generate::Macrofort::init is
FALSE (meaning off).

>> Mac::openOutputFile("test.f"):
Mac:.genFor(["equal”, [[a, 1 + sin(t)],
[b, cos(t) + sin(t)], [c, 1 + cos®)]I]:
Mac::closeOutputFile();
delete a,b,c,t:

Switch the optimizer and send output to a different file.

>> Mac::openOutputFile("test2.f"):
Mac::setOptimizedOption(TRUE):
Mac::genFor(["equal”, [[a, 1 + sin(1)],
[b, cos(t) + sin(t)], [c, 1 + cos(V)]]]):
Mac::closeOutputFile():
delete a, b, c, t

The output file test.f is:

a = sin(t)+1
b = cos(t)+sin(t)
c = cos(t)+1

The “optimized” output file test2.f is:

26

a = tl+l
t2 = cos(t)
b = t1+t2
c = t2+1
This example only shows how to call Mac::setOptimizedOption but
does not show the advantages given by optimization. To appreciate these ad-
vantages, see the help-files of generate::optimize and Mac::genFor for

a more comprehensive list of examples.

generate::Macrofort::setPrecisionOption — sets precision

Mac::setPrecisionOption (where Mac:=generate::Macrofort) sets
the precision (single, double or quadruple) for the FORTRAN code generated
by Mac::genFor

Call(s):

generate::Macrofort::setPrecisionOption(s)

Parameters:

S — one of the strings "single" , "double” or "quadruple”

Return Value: the void object of domain type DOM_NULL

Side Effects: Resets the global macrofort precision variable for the FORTRAN
code generated by generate::Macrofort::genFor

Related Functions: DIGITS, generate::Macrofort::init ,
generate::Macrofort::genFor

Details:

& In FORTRAN, floats or floating-point numbers are implemented as hard-
ware floats and their precision can be any of these three choices: 8 digits
("single"), 16 digits ("double”) or 32 digits ("quadruple”). Intrin-
sic FORTRAN functions are often written with a prefix "d" for double
precision or a prefix "q" for quadruple precision. E.g. the functions
sin or cos as used in single precision become respectively dsin dcos
in double precision or gsin and gcos in quadruple precision (although
some compilers adhere to a standard which does not need these pre-
fixes). The advantage is that MuPAD readily allows the user to generate
constants like Pl to any accuracy without mistakes.

27

& Mac::setPrecisionOption (where Mac:=generate::Macrofort)
is used with Mac::genFor and Mac::init (see these programs for
more details) and adjusts the Macrofort (internal) global variable for pre-
cision. The default setting for this variable made by an initial call to
Mac::init is"single” for the resulting FORTRAN code.

£ Warning: The default setting for DIGITS in MuPAD is 10. Thus, if one de-
sires meaningful and accurate code for double or especially for quadru-
ple precision, the user must ensure sufficient accuracy of his input data
(usually by resetting DIGITS and making a call to float). Mac::genFor
resets the value of DIGITS to 8,16 or 32 depending on the choice of pre-
cision.

Example 1. Initialize Macrofort and open file "test.f"

>> Mac := generate::Macrofort:
Mac::init():
Mac::openOutputFile("test.f"):

This example generates the same FORTRAN assignment in respectively single,
double and quadruple precisions.

>> Mac::setPrecisionOption("single"):
Mac::.genFor(["equal”, a, 1.0 + PI*sinh(E)]):
Mac::setPrecisionOption("double"):
Mac:.genFor(["equal”, a, 1.0 + PI*sinh(E)]):
Mac::setPrecisionOption("quadruple™):
Mac:.genFor(["equal”, a, 1.0 + PI*sinh(E)]):
Mac::closeOutputFile():
delete a:

The output file test.f is:

a = 0.3141593E1*sinh(0.2718282E1)+0.1E1
a = 0.3141592653589793D1*dsinh(0.2718281828459045D1)+0.1D1
a = 0.31415926535897932384626433832795Q1*qgsinh(0.27182818284590452

#353602874713527Q1)+0.1Q1

See the help-file for Mac::genFor for a more comprehensive list of exam-
ples.

generate::optimize — generate optimized code

generate::optimize(..) returns a sequence of equations representing an
“optimized computation sequence” for the input expression. Each equation in
the sequence corresponds to an assignment of a subexpression of the input

28

expression to a “temporary variable”. Common subexpressions are computed
only once, thus reducing the total operation count.

Call(s):

& generate::optimize(r)

Parameters:

I — an expression, array or list of equations

Return Value: a list of equations.

Related Functions: generate::Macrofort::setOptimizedOption ,
generate::Macrofort::genFor

Details:

& The output from generate::optimize represents a “computation se-
quence”, i.e., a list of equations representing an optimized version of
the input. Common intermediates are identified by the optimizer and
“stored” in temporary variables t1 , t2 etc. Each equation in the se-
quence corresponds to an assignment to such a variable.

The number of operations, namely additions (or subtractions), multipli-
cations (or divisions) and in particular functions calls of the output is
usually lower than the number of such operations of the input. This facil-
ity is useful for code generation (see generate::Macrofort::setOptimizedOption

Example 1. In this first example, we show the effects of optimization for a
simple expression:

>> generate::optimize(cos(x"2) + x"2*sin(x"2) + x"4)

2 2
[(2 = x , t1 = cos(t2) + t2 sin(t2) + t2]

The “blind” computation of the input expression requires 7 multiplications, 2
additions and 2 function calls. The optimized version introduces a “temporary
variable” t2 storing the subexpression x*2 that is used to compute the final
result t1 . This reduces the total cost to 3 multiplications, 2 additions and 2
function calls, albeit using 1 extra assignment to the temporary variable t2 .

29

Example 2. Here we repeat the exercise of the first example but with an array
of expressions:

>> generate:.optimize(array(1..2, 1..2, [[X"3, x"2],[x"2, x"4]]))

- +- 4+ -
| | x t4, t4 | |
I 2 | |
| t4=x,1t3=| 2 | |
| | t4, t4 ||
- +- 4+ -

The original input requires 6 multiplications. The optimized version needs
only 3 multiplications and 1 extra assignment.

Example 3. We optimize a list of equations representing a computation se-
quence for 3 variables t, C[1] , C[2] :

>> generate::optimize(t = u, C[1] = t*(u - w)*2, C[2] = 2*(u -
w)"3])

2
t=uth=u-wt=1t5,Cll =tt6 C[2] =2 5 6]

The original computation requires 5 multiplications and 2 subtractions. The
optimized version needs 4 multiplications and 1 subtraction.

Note that since these examples involve small expressions, the computa-
tional savings are slight. In the case of very large expressions, optimization
can yield a considerable dividend (c.f. the last example in the help-pages of
generate::Macrofort::genFor for a real application of this implementa-
tion).

Background:

£ A number of FORTRAN compilers provide optimizers. However, they
use algorithms of complexity O(n?) and O(n®) where n is the size of the
input expressions. For large amounts of code, these algorithms may
“break”. MUPAD provides a reasonably good scalar (as in non-vectorized
and non-parallelized) optimizer which is limited to common subexpres-
sion optimization and using binary powering for integer powers. It uses
hashing of expressions so that given a sub-expression, it can determine
in constant time if this subexpression has already occurred. This results
in an overall efficiency which is of lower complexity namely, O(n) i.e.
linear in the size of the input expressions to be optimized, Hence overall
efficiency is not compromised by very large expressions. This does mean
that not all possible optimizations are made but nonetheless a number of
reductions including the exploitation of some symmetries are possible.

30

It should be understood that “optimization” is meant in the sense of
compiler optimization. The end-result rarely corresponds to the abso-
lute irreducible minimum number of operations - or as in the case of
FORTRAN code generation, the absolute minimum of floating-point op-
erations (FLOPS). Achieving this limit can be extremely difficult if not
impossible especially for large computational sequences. Nonetheless, in
a number of real-life instances, MUPAD’s optimizer can yield a very use-
ful result. Additionally, MUPAD provides symbolic manipulation tools
such as factor ~ which can yield additional reduction in operation costs.

In many cases of optimization, it is most often a matter of how best to
pose the problem so as to fully exploit every possible symmetry or useful
natural property of the given problem.

& Reference: T.C. Scott, L.P. Grant, M.B. Monagan and V.R. Saunders, MapleTech,
4, no. 2, pp. 15-24, (1997).

generate::TeX - generate TEX formatted string from expressions
generate::TeX(e) generates TEX output for an expression e.
Call(s):

generate::TeX(e)

Parameters:

e — an arithmetical expression

Return Value: generate::TeX returnsastring containing TgX code.

Overloadable by: e

Related Functions: fprint , print

Details:

¢ generate::TeX(e) returns a TeX formatted string representing e. This
string may be printed to a file using fprint . Use the printing option
Unquoted to remove quotes and to expand special characters like new-
lines and tabs.

& The output string may be used in the math-mode of TgX. Note that gen-
erate::TeX doesn’t break large formulas into smaller ones.

31

Example 1. generate::TeX generates a string containing the TeX code:
>> generate:: TeX(hold(int)(exp(x*2)/x, X))
"Wint \frac{\\mbox{exp\left(x*2\\right){x} d x"
Use print with option Unquoted to get a more readable output:
>> print(Unquoted, generate::TeX(hold(int)(exp(x*2)/x, X)))

\int \frac{\mbox{expNeft(x*2\right)}{x} d x

Example 2. This example shows how to write a "TeX" -method for a domain.
The domain elements represent open intervals. The "TeX" -method makes re-
cursive use of generate::TeX in order to TgX-format its operands and con-
catenates the resulting strings to a new string containing the TgX output of the
interval.

>> interval := newDomain("interval”):
interval::TeX :=
e -> "\\left]".generate::TeX(extop(e, 1)).
", ".generate::TeX(extop(e, 2))."\\right[":
print(Unquoted,
generate::TeX(new(interval, 1, x"(a+2)))):

\left]l, xMa + 2}right]

Background:

£ A domain overloading generate::TeX has to provide a function as
its "TeX" -slot which translates its elements into a TgX formatted string.
This function may use generate::TeX recursively. Cf. example 2.

Changes:
£ No changes.

32

