
numeric — library for numerical algorithms

Table of contents

Preface . iii

numeric::butcher — Butcher parameters of Runge-Kutta schemes 1

numeric::complexRound — round a complex number towards the
real or imaginary axis . 3

numeric::cubicSpline — interpolation by cubic splines 5

numeric::det — determinant of a matrix 11

numeric::eigenvalues — numerical eigenvalues of a matrix . . 14

numeric::eigenvectors — numerical eigenvalues and eigenvec-
tors of a matrix . 16

numeric::expMatrix — the exponential of a matrix 21

numeric::factorCholesky — Cholesky factorization of a matrix 27

numeric::factorLU — LU factorization of a matrix 31

numeric::factorQR — QR factorization of a matrix 34

numeric::fft, numeric::invfft — Fast Fourier Transform . 38

numeric::fMatrix — functional calculus for numerical square ma-
trices . 42

numeric::fsolve — search for a numerical root of a system of equa-
tions . 45

numeric::gldata — weights and abscissae of Gauss-Legendre quadra-
ture . 53

numeric::gtdata — weights and abscissae of Gauss-Tschebyscheff
quadrature . 55

numeric::indets — search for indeterminates 56

numeric::inverse — the inverse of a matrix 58

numeric::int — numerical integration (the float attribute of int) . 62

numeric::lagrange — polynomial interpolation 65

numeric::linsolve — solve a system of linear equations 69

numeric::matlinsolve — solve a linear matrix equation 79

numeric::ncdata — weights and abscissae of Newton-Cotes quadra-
ture . 88

i

numeric::odesolve — numerical solution of an ordinary differential
equation . 89

numeric::odesolve2 — numerical solution of an ordinary differen-
tial equation . 101

numeric::polyroots — numerical roots of a univariate polynomial 106

numeric::polysysroots — numerical roots of a system of polyno-
mial equations . 111

numeric::quadrature — numerical integration 115

numeric::rationalize — approximate a floating point number by
a rational number . 124

numeric::realroot — numerical search for a real root of a real uni-
variate function . 129

numeric::realroots — isolate intervals containing real roots of an
expression . 133

numeric::singularvalues — numerical singular values of a ma-
trix . 137

numeric::singularvectors — numerical singular value decom-
position of a matrix . 140

numeric::sort — sort a numerical list 145

numeric::solve — numerical solution of equations (the float at-
tribute of solve) . 146

numeric::spectralradius — the spectral radius of a matrix . . 152

numeric::sum — numerical approximation of sums (the float attribute
of sum) . 154

ii

Introduction

The numeric package provides algorithms from various areas of numerical
mathematics.

The package functions are called using the package name numeric and
the name of the function. E.g., use

>> numeric::solve(equations, unknowns)

to call the numerical solver. This mechanism avoids naming conflicts with
other library functions. If this is found to be inconvenient, then the routines of
the numeric package may be exported via export . E.g., after calling

>> export(numeric, fsolve)

the function numeric::fsolve may be called directly:

>> fsolve(equations, unknowns)

All routines of the numeric package are exported simultaneously by

>> export(numeric)

Note, however, that naming conflicts with the functions indets , int , linsolve ,
rationalize , solve , and sort of the standard library exist. The corre-
sponding functions of the numeric package are not exported. Further, if the
identifier fsolve , say, already has a value, then export returns a warning
and does not export numeric::fsolve . The value of the identifier fsolve
must be deleted before it can be exported successfully from the numeric pack-
age.

iii

numeric::butcher – Butcher parameters of Runge-Kutta schemes

numeric::butcher(method) returns the Butcher parameters of the Runge-
Kutta scheme named method .

Call(s):

A numeric::butcher(method)

Parameters:
method — name of the Runge-Kutta scheme, one of EULER1, RKF43,

RK4, RKF34, RKF54a, RKF54b, DOPRI54,CK54, RKF45a,
RKF45b, DOPRI45,CK45, BUTCHER6, RKF87, RKF78.

Return Value: A list [s,c,a,b1,b2,order1,order2] is returned.

Related Functions: numeric::odesolve

Details:

A An explicit s-stage Runge-Kutta method for the numerical integration of
a dynamical system dy/dt = f (t, y) with stepsize h is a map

(t, y)→ (t + h, y + h b1 k1 + · · ·+ h bs ks)

with “intermediate stages” k1, . . . , ks given by

k1 = f (t, y),
k2 = f (t + c2 h, y + h a21 k1),

...
ks = f (t + cs h, y + h as1 k1 + · · ·+ h as,s−1 ks−1).

Various numerical schemes arise from different choices of the Butcher
parameters: the s× s-matrix ai j, the weights b = [b1, . . . , bs] and the ab-
scissae c = [0, c2, . . . , cs].

Embedded pairs of Runge-Kutta methods consist of two methods that
share the matrix ai j and the abscissae ci, but use different weights bi.

A The returned list [s,c,a,b1,b2,order1,order2] are the Butcher
data of the method: s is the number of stages, c is the list of abscissae, a
is the (strictly lower) Butcher matrix, b1 and b2 are lists of weights. The
integers order1 and order2 are the orders of the scheme when using
the weights b1 or b2 , respectively, in conjunction with the matrix a and
the abscissae c .

1

A The methods EULER1(order 1), RK4 (order 4) and BUTCHER6(order 6)
are single methods with b1=b2 and order1=order2 . All other meth-
ods are embedded pairs of Runge-Kutta-Fehlberg (RKFxx), Dormand-
Prince (DOPRIxx) or Cash-Karp (CKxx) type. The names indicate the
orders of the subprocesses, e.g., CK45 is the Cash-Karp pair of orders 4
and 5. CK54 is the same pair with reversed ordering of the subprocesses.

A These Butcher data are called by the routines numeric::odesolve and
numeric::odesolveGeometric .

Example 1. The Butcher data of the classical 4 stage, 4th order Runge-Kutta
scheme are:

>> numeric::butcher(RK4)

-- +- -+
	0, 0, 0, 0
+- -+	1/2, 0, 0, 0
4,	0, 1/2, 1/2, 1
+- -+	0, 1/2, 0, 0
	0, 0, 1, 0
-- +- -+

-
-

|
|

+- -+ +- -+ |
| 1/6, 1/3, 1/3, 1/6 |, | 1/6, 1/3, 1/3, 1/6 |, 4, 4 |
+- -+ +- -+ |

|
|

-
-

Note that the weights b1 and b2 coincide: this classical method does not pro-
vide an embedded pair.

Example 2. The Butcher data of the embedded Runge-Kutta-Fehlberg pair
RKF34 of orders 3 and 4 are:

>> [s, c, a, b1, b2, order1, order2] := numeric::butcher(RKF34):

The number of stages s of the 4th order subprocess is 5, the abscissae c and
the matrix a are given by:

2

>> s, c, a

+- -+
5, | 0, 1/4, 4/9, 6/7, 1 |,

+- -+

+- -+
| 0, 0, 0, 0, 0 |
| |
| 1/4, 0, 0, 0, 0 |
| |
| 4/81, 32/81, 0, 0, 0 |
| |
| 57/98, -432/343, 1053/686, 0, 0 |
| |
| 1/6, 0, 27/52, 49/156, 0 |
+- -+

Using these parameters with the weights

>> b1, b2

+- -+
| 1/6, 0, 27/52, 49/156, 0 |,
+- -+

+- -+
| 43/288, 0, 243/416, 343/1872, 1/12 |
+- -+

yields a numerical scheme of order 3 or 4, respectively:

>> order1, order2

3, 4

>> delete s, c, a, b1, b2, order1, order2:

Background:

A References:

J.C. Butcher: The Numerical Analysis of Ordinary Differential Equations,
Wiley, Chichester (1987).

E. Hairer, S.P. Nørsett and G. Wanner: Solving Ordinary Differential
Equations I, Springer, Berlin (1993).

3

Changes:

A The Cash-Karp pairs CK45 and CK54 were added.

numeric::complexRound – round a complex number towards the
real or imaginary axis

numeric::complexRound(z, ..) discards small real or imaginary parts
of complex floating point numbers z .

Call(s):

A numeric::complexRound(z <, eps >)

Parameters:

z — an arbitrary MuPAD object

Options:

eps — a real number ≥ 10−DIGITS.

Return Value: If z is a complex floating point number, then a real or complex
floating point number is returned. For all other types z is returned unchanged.

Side Effects: The function is sensitive to the environment variable DIGITS .

Related Functions: ceil , floor , frac , round , trunc

Details:

A If the real part of z satisfies Re(z)<eps*abs(z) , then it is replaced by
zero and Im(z)*I is returned.

If the imaginary part of z satisfies Im(z)<eps*abs(z) , then it is re-
placed by zero and Re(z) is returned.

A With the default of eps = 10−DIGITS this rounding changes a complex
floating point number by less than the relative standard precision.

A This function removes small real or imaginary parts of complex floating
points numbers generated by numerical round-off. It is used to simplify
the floating point output of numeric::fsolve , numeric::polyroots ,
numeric::polysysroots and numeric::sum .

4

Option <eps >:

A The default value is eps = 10−DIGITS.

A Only precisions eps≥ 10−DIGITS are accepted.

A Numerical expressions such as PI*sqrt(2)/10^10 etc. are accepted
and converted to floats.

Example 1. Exact numbers are not changed:

>> numeric::complexRound(2 + I/10^20)

2 + 1/100000000000000000000 I

Also the following number has an exact imaginary part and is not rounded:

>> numeric::complexRound(2.0 + sqrt(2)*I/10^20)

1/2
1/100000000000000000000 I 2 + 2.0

Rounding occurs for complex floats, if this does not change its value signifi-
cantly:

>> numeric::complexRound(1.0 + 2.0*I/10^10),
numeric::complexRound(1.0 + 2.0*I/10^11)

1.0 + 0.0000000002 I, 1.0

Note that rounding is based on relative precision, i.e., only the ratio of real and
imaginary parts is relevant:

>> numeric::complexRound((1.0 + 2.0*I)/10^100)

10.0e-101 + 2.0e-100 I

>> numeric::complexRound((1.0 + 1.0/10^11*I)/10^100)

10.0e-101

The relative precision for rounding may be reduced by the optional parameter
eps :

>> numeric::complexRound(2.0/10^10 + I),
numeric::complexRound(2.0/10^10 + I, PI/10^5)

0.0000000002 + 1.0 I, 1.0 I

5

Changes:

A numeric::complexRound is a new function.

numeric::cubicSpline – interpolation by cubic splines

numeric::cubicSpline([x[0],y[0]], [x[1],y[1]], ..) returns the
cubic spline interpoland through a sequence of coordinate pairs [xi, yi].

Call(s):

A numeric::cubicSpline([x[0],y[0]], .. , [x[n],y[n]]
<, BoundaryCondition > <, Sym-
bolic >)

Parameters:
x[0],x[1],..,x[n] — numerical real values in ascending order
y[0],y[1],..,y[n] — arbitrary expressions

Options:

BoundaryCondition — the type of the boundary condition: either
NotAKnot , Natural , Periodic , or
Complete =[a,b] with arbitrary
arithmetical expressions a,b .

Symbolic — prevents conversion of the input data to
floating point numbers. With this option
symbolic abscissae xi are accepted, which
are assumed to be ordered.

Return Value: the spline interpoland: a MuPAD procedure.

Related Functions: numeric::lagrange

Details:

A The call

S:=numeric::cubicSpline([x[0],y[0]],..,[x[n],y[n]] <,
Option >)

yields the cubic spline function S interpolating the data [x0, y0], . . . , [xn, yn],
i.e, S(xi) = yi for i = 0, . . . ,n. The spline function is a piecewise polyno-
mial of degree≤ 3 on the intervals (−∞, x1], [x1, x2], . . . , [xn−1,∞). S and
its first two derivatives S’,S” are continuous at the points x1, . . . , xn−1.
Note that S extends the polynomial representation on [x0, x1], [xn−1, xn]
to (−∞, x1] and [xn−1,∞), respectively.

6

A By default, NotAKnot boundary conditions are assumed, i.e., the third
derivative S”’ is continuous at the points x1 and xn−1. With this bound-
ary condition S is a polynomial on the intervals (−∞, x2] and [xn−2,∞).

A By default, all input data are converted to floating point numbers. This
conversion may be suppressed by the option Symbolic .

A Without the option Symbolic the abscissae xi must be numerical real
values in ascending order. If these data are not ordered, then numeric::cubicSpline
reorders the abscissae internally, issuing a warning.

A The function S returned by numeric::cubicSpline may be called
with one or two arguments.

The call S(z) returns an explicit expression or a number, if z is a real
number. Otherwise the unevaluated call S(z) is returned.

The call S(z,i) is meant for symbolic arguments z . The argument i
must be an integer. Internally, z is assumed to satisfy xi ≤ z ≤ xi+1 and
S(z,i) returns a polynomial expression in z representing the spline
function on this interval.

A If S is generated with symbolic abscissae xi (necessarily using the option
Symbolic), then the call S(z) with numerical z leads to an error. The
call S(z,i) must be used for symbolic abscissae!

Option <Symbolic >:

A With this option no conversion of the input data to floating point num-
bers occurs.

A Symbolic abscissae xi are accepted.

A The ordering x0 < x1 < · · ·< xn is assumed by numeric::cubicSpline .
This ordering is not checked, even if the abscissae are numerical!

Option <BoundaryCondition >:

A With the default boundary condition NotAKnot the third derivative S”’
of the spline function is continuous at the points x1 and xn−1. With
this boundary condition S is a polynomial on the intervals (−∞, x2] and
[xn−2,∞).

A The boundary condition Natural produces a spline function S satisfy-
ing S′′(x0) = S′′(xn) = 0.

A The boundary condition Periodic produces a spline function S satis-
fying S(x0) = S(xn), S′(x0) = S′(xn), S′′(x0) = S′′(xn). With this option the
input data y0, yn must coincide, otherwise an error occurs.

7

A The boundary condition Complete =[a,b] produces a spline function
S satisfying S′(x0) = a, S′(xn) = b. Symbolic data a,b are accepted.

Example 1. We demonstrate some calls with numerical input data:

>> data := [i, sin(i*PI/20)] $ i= 0..40:
>> S1 := numeric::cubicSpline(data):
>> S2 := numeric::cubicSpline(data, Natural):
>> S3 := numeric::cubicSpline(data, Periodic):
>> S4 := numeric::cubicSpline(data, Complete = [3, PI]):

At the abscissae the corresponding input data are reproduced:

>> float(op(data, 6)[2]), S1(5), S2(5), S3(5), S4(5)

0.7071067812, 0.7071067812, 0.7071067812, 0.7071067812,

0.7071067812

Interpolation between the abscissae depends on the boundary condition:

>> S1(4.5), S2(4.5), S3(4.5), S4(4.5)

0.6494470263, 0.6494470123, 0.6494469992, 0.6517696766

These are the cubic polynomials in z defining the spline on the interval x0 =
0 ≤ z ≤ x1 = 1:

>> expand(S1(z, 0)), expand(S2(z, 0)), expand(S3(z, 0)),
expand(S4(z, 0))

2 3
0.1570962007 z - 0.00002961951081 z - 0.0006321161139 z ,

3
0.1570790998 z - 0.0006446347923 z ,

2 3
0.157063067 z + 0.00002776961744 z - 0.0006563716136 z ,

2 3
3.0 z - 4.924083441 z + 2.080517906 z

>> delete data, S1, S2, S3, S4:

8

Example 2. We demonstrate some calls with symbolic data:

>> S := numeric::cubicSpline([i, y.i] $ i=0..3):
>> S(1/2)

0.3125 y0 + 0.9375 y1 - 0.3125 y2 + 0.0625 y3

This is the cubic polynomial in z defining the spline on the interval x0 = 0 ≤
z ≤ x1 = 1:

>> S(z, 0)

y0 + z (3.0 y1 - 1.833333333 y0 - 1.5 y2 + 0.3333333333 y3 + z

(1.0 y0 - 2.5 y1 + 2.0 y2 - 0.5 y3 +

z (0.5 y1 - 0.1666666667 y0 - 0.5 y2 + 0.1666666667 y3)))

With the option Symbolic exact arithmetic is used:

>> S := numeric::cubicSpline([i, y.i] $ i=0..3, Symbolic):
>> S(1/2)

5 y0 15 y1 5 y2 y3
---- + ----- - ---- + --

16 16 16 16

Also symbolic boundary data are accepted:

>> S := numeric::cubicSpline([i, exp(i)] $ i=0..10,
Complete = [a, b]):

>> S(0.1)

0.08341154273 a + 0.00000005947817812 b + 1.020064753

>> S := numeric::cubicSpline([0, y0], [1, y1], [2, y2],
Symbolic, Complete=[a, 5]):

>> collect(S(z, 0), z)

3 / 3 a 5 y0 3 y2 \
y0 + a z + z | --- + ---- - 2 y1 + ---- - 5/4 | +

\ 4 4 4 /

2 / 9 y0 7 a 3 y2 \
z | 3 y1 - ---- - --- - ---- + 5/4 |

\ 4 4 4 /

>> delete S:

9

Example 3. We demonstrate the use of symbolic abscissae. Here the option
Symbolic is mandatory.

>> S := numeric::cubicSpline([x.i, y.i] $ i=0..2, Symbolic):

The spline function S can only be called with 2 arguments. This is the cubic
polynomial in z defining the spline on the interval x0 ≤ z ≤ x1:

>> S(z, 0)

/ (y1 - y0) (x1 - 2 x0 + x2)
y0 + (z - x0) | -------------------------- -

\ (x1 - x0) (x2 - x0)

(x1 - x0) (y2 - y1)
------------------- + (z - x0)
(x2 - x0) (x2 - x1)

/ y2 - y1 y1 - y0 \ \
| ------------------- - ------------------- | |
\ (x2 - x0) (x2 - x1) (x1 - x0) (x2 - x0) / /

>> delete S:

Example 4. Spline functions can be plotted:

>> S := numeric::cubicSpline([i, 1/(1 + i^2/100)] $ i=0..100):
>> plotfunc2d(S(x), x = 0..100, Ticks = [10, Steps = 0.2])
>> delete S:

Example 5. We demonstrate how to generate a phase plot of the differential
equation x′′(t) + x(t)3 = sin(t), with initial conditions x(0) = x′(0) = 0. First, we
use numeric::odesolve to compute a numerical mesh of solution points
[xi, yi] = [x(ti), x′(ti)] with n + 1 equidistant time nodes t0, . . . , tn in the interval
[0,20]:

>> DIGITS := 4: n := 100:
>> for i from 0 to n do t[i] := 20/n*i: end_for:
>> f := (t, x) -> [x[2], sin(t) - x[1]^3]:
>> x[0] := 0: y[0] := 0:
>> for i from 1 to n do

[x[i], y[i]] :=
numeric::odesolve(t[i-1]..t[i], f, [x[i-1], y[i-1]]):

end_for:

10

The mesh of the (x(t), x′(t)) phase plot consists of the following points:

>> Plotpoints := [point(x[i], y[i]) $ i=0..n]:

We wish to connect these points by a spline curve. We define a spline inter-
poland Sx(t) approximating the solution x(t) by interpolating the data [t0, x0], . . . , [tn, xn].
A spline interpoland Sy(t) approximating x′(t) is obtained by interpolating the
data [t0, y0], . . . , [tn, yn]:

>> Sx := numeric::cubicSpline([t[i], x[i]] $ i=0..n):
>> Sy := numeric::cubicSpline([t[i], y[i]] $ i=0..n):

Finally, we plot the mesh points together with the interpolating spline curve:

>> plot2d([Mode = List, Plotpoints, PointWidth = 30],
[Mode = Curve,[Sx(z), Sy(z)], z = [0, 20], Grid = [5*n]])

The function plot::ode serves for displaying numerical solutions of ODEs.
In fact, it is implemented as indicated by the previous commands. The follow-
ing call produces the same plot:

>> plot(plot::ode(
[t[i] $ i=0..n], f, [x[0], y[0]],
[(t, x) -> [x[1], x[2]], Style = Points, Color = RGB::Red],
[(t, x) -> [x[1], x[2]], Style = Splines, Color = RGB::Blue])):

>> delete DIGITS, n, i, t, f, x, y, Plotpoints, Sx, Sy:

Changes:

A numeric::cubicSpline used to be spline .

A The routine was completely redesigned: the functionality was extended,
performance improved.

numeric::det – determinant of a matrix

numeric::det(A, ..) returns the determinant of the matrix A.

Call(s):

A numeric::det(A <, Symbolic > <, MinorExpansion >)

Parameters:
A — a square matrix of domain type DOM_ARRAYor of category

Cat::Matrix

11

Options:

Symbolic — prevents conversion of input data to floats
MinorExpansion — computes the determinant by a minor expansion

along the first column

Return Value: By default the determinant is returned as a floating point num-
ber. With the option Symbolic an expression is returned.

Side Effects: Without the option Symbolic the function is sensitive to the
environment variable DIGITS , which determines the numerical working pre-
cision.

Related Functions: linalg::det

Details:

A Without the option Symbolic all entries of A must be numerical. Nu-
merical expressions such as exp(PI), sqrt(2) etc. are accepted and
converted to floats. If symbolic entries are found in the matrix, then nu-
meric::det automatically switches to Symbolic , issuing a warning.

A Option Symbolic should be used, if the matrix contains symbolic ob-
jects that cannot be converted to floating point numbers.

A Matrices A of a matrix domain such as Dom::Matrix(..)
or Dom::SquareMatrix(..) are internally converted to
arrays over expressions via A::dom::expr(A) . Note that
linalg::det must be used, when the determinant is to be com-
puted over the component domain. Cf. example 2. Note that the
option Symbolic should be used, if the entries cannot be con-
verted to numerical expressions.

!

Option <Symbolic >:

A This option prevents conversion of the input data to floats. With this
option symbolic entries are accepted.

Option <MinorExpansion >:

A With this option recursive minor expansion along the first column is
used. This option may be useful for small matrices with symbolic en-
tries.

A With this option symbolic entries are accepted, even if the option Sym-
bolic is not used.

12

Example 1. Numerical matrices can be processed with or without the option
Symbolic :

>> A := array(1..3, 1..3,[[1, 1, I], [1, exp(1), I], [1, 2, 2]]):

>> numeric::det(A), numeric::det(A, Symbolic)

3.436563657 - 1.718281829 I, (2 - I) exp(1) - (2 - I)

Option Symbolic must be used, when the matrix has non-numerical entries:

>> A := array(1..2, 1..2, [[1/(x + 1), 1], [1/(x + 2), PI]]):

>> numeric::det(A, Symbolic)

2 PI - x + x PI - 1

2
3 x + x + 2

If the option MinorExpansion is used, then symbolic entries are accepted,
even if the option Symbolic is not specified:

>> numeric::det(A, MinorExpansion),
numeric::det(A, Symbolic, MinorExpansion)

3.141592654 1.0 PI 1
----------- - -------, ----- - -----

x + 1.0 x + 2.0 x + 1 x + 2

>> delete A:

Example 2. The following matrix has domain components:

>> A := Dom::Matrix(Dom::IntegerMod(7))([[6, -1], [1, 6]])

+- -+
| 6 mod 7, 6 mod 7 |
| |
| 1 mod 7, 6 mod 7 |
+- -+

Note that numeric::det computes the determinant of the following matrix:

>> A::dom::expr(A), numeric::det(A)

+- -+
| 6, 6 |
| |, 30.0
| 1, 6 |
+- -+

13

The routine linalg::det must be used, if the determinant is to be computed
over the component domain Dom::IntegerMod(7) :

>> linalg::det(A)

2 mod 7

>> delete A:

Background:

A Without the option Symbolic QR-factorization of A via Householder
transformations is used. With Symbolic LU-factorization of A is used.

Changes:

A Conversion of Cat::Matrix objects now uses the method "expr" of
the matrix domain.

numeric::eigenvalues – numerical eigenvalues of a matrix

numeric::eigenvalues(A) returns numerical eigenvalues of the matrix A.

Call(s):

A numeric::eigenvalues(A)

Parameters:
A — a numerical square matrix of domain type DOM_ARRAYor of

category Cat::Matrix

Return Value: an ordered list of numerical eigenvalues

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linalg::eigenvalues , linalg::eigenvectors ,
numeric::eigenvectors , numeric::singularvalues ,
numeric::singularvectors , numeric::spectralradius

14

Details:

A All entries of Amust be numerical. Numerical expressions such as exp(PI),
sqrt(2) etc. are accepted and converted to floats. Non-numerical sym-
bolic entries lead to an error.

A Matrices A of a matrix domain such as Dom::Matrix(..)
or Dom::SquareMatrix(..) are internally converted to
arrays over expressions via A::dom::expr(A) . Note that
linalg::eigenvalues must be used, when the eigenvalues are
to be computed over the component domain. Cf. example 2.

!

A The eigenvalues are sorted by numeric::sort .

A Eigenvalues are approximated with an absolute precision of
10−DIGITS r, where r is the spectral radius of A (i.e., r is the max-
imum of the absolute values of the eigenvalues). Consequently,
large eigenvalues should be computed correctly to DIGITS deci-
mal places. The numerical approximations of the small eigenval-
ues are less accurate.

!

Example 1. We compute the eigenvalues of the 3× 3 Hilbert matrix:

>> numeric::eigenvalues(linalg::hilbert(3))

[0.002687340356, 0.1223270659, 1.408318927]

Precision goal and working precision are set by DIGITS :

>> A := array(1..3, 1..3,
[[I , PI , exp(1)],

[2 , 10^100 , 1],
[10^(-100), 10^(-100), 10^(-100)]

]):
>> DIGITS := 10: numeric::eigenvalues(A)

[1.0 I, 5.0e-101, 10.0e99]

Note that small eigenvalues may be influenced by round-off. We increase
the working precision. The previous numerical eigenvalue 5.0× 10−101 is im-
proved to (1.0 + 2.718... I)× 10−100:

>> DIGITS := 200: eigenvals := numeric::eigenvalues(A):
>> DIGITS := 10: eigenvals

[- 6.283185307e-100 + 1.0 I, 1.0e-100 + 2.718281829e-100 I,

1.0e100 + 2.031919862e-102 I]

>> delete A, eigenvals:

15

Example 2. The following matrix has domain components:

>> A := Dom::Matrix(Dom::IntegerMod(7))(
[[6, -1, 4], [0, 3, 3], [0, 0, 3]])

+- -+
| 6 mod 7, 6 mod 7, 4 mod 7 |
| |
| 0 mod 7, 3 mod 7, 3 mod 7 |
| |
| 0 mod 7, 0 mod 7, 3 mod 7 |
+- -+

Note that numeric::eigenvalues computes the eigenvalues of the follow-
ing matrix:

>> A::dom::expr(A), numeric::eigenvalues(A)

+- -+
| 6, 6, 4 |
| |
| 0, 3, 3 |, [3.0, 3.0, 6.0]
| |
| 0, 0, 3 |
+- -+

If the eigenvalues are to be computed over the component domain Dom::IntegerMod(7) ,
then linalg::eigenvalues should be used:

>> linalg::eigenvalues(A, Multiple)

[[6 mod 7, 1], [3 mod 7, 2]]

>> delete A:

Background:

A The function implements standard numerical algorithms from the Hand-
book of Automatic Computation by Wilkinson and Reinsch.

Changes:

A Conversion of Cat::Matrix objects now uses the method "expr" of
the matrix domain. Triangular matrices are now processed numerically.

numeric::eigenvectors – numerical eigenvalues and eigenvec-
tors of a matrix

16

numeric::eigenvectors(A, ..) returns numerical eigenvalues and eigen-
vectors of the matrix A.

Call(s):

A numeric::eigenvectors(A <, NoErrors >)

Parameters:
A — a numerical square matrix of domain type DOM_ARRAYor of

category Cat::Matrix

Options:

NoErrors — suppresses the computation of error estimates

Return Value: a list [d, X, res] . The sorted list d=[d[1],d[2],..]
contains the numerical eigenvalue. The array X is the matrix of eigenvec-
tors, i.e., the i-th column of X is the eigenvector associated with the eigenvalue
d[i] . The list of residues res=[res[1],res[2],..] provides error esti-
mates for the numerical eigenvalues.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linalg::eigenvalues , linalg::eigenvectors ,
numeric::eigenvalues , numeric::singularvalues ,
numeric::singularvectors , numeric::spectralradius

Details:

A All entries of the matrix must be numerical. Numerical expressions such
as exp(PI), sqrt(2) etc. are accepted and converted to floats. Non-
numerical symbolic entries lead to an error.

A The eigenvalues are sorted by numeric::sort .

A Eigenvalues are approximated with an absolute precision of
10−DIGITS r, where r is the spectral radius of A (i.e., r is the max-
imum of the absolute values of the eigenvalues). Consequently,
large eigenvalues should be computed correctly to DIGITS deci-
mal places. The numerical approximations of the small eigenval-
ues are less accurate.

!

A The array X is the matrix of eigenvectors, i.e., the i-th column of X is
a numerical eigenvector corresponding to the eigenvalue d[i] . Each
column is either zero or normalized to the Euclidean length 1.0.

17

A For matrices with multiple eigenvalues and an insufficient number of
eigenvectors some of the eigenvectors may coincide or may be zero, i.e.,
X is not necessarily invertible.

A The list of residues res = [res1, res2, ..] provides some control over the
quality of the numerical spectral data. The residues are given by

resi = ‖A xi − di xi‖2 ,

where xi is the normalized eigenvector (the i-th column of X) associated
with the numerical eigenvalue di. For Hermitean matrices resi provides
an upper bound for the absolute error of di.

A With the option NoErrors the computation of the residues is suppressed,
the returned value is NIL .

A Matrices A of a matrix domain such as Dom::Matrix(..)
or Dom::SquareMatrix(..) are internally converted to
arrays over expressions via A::dom::expr(A) . Note that
linalg::eigenvectors must be used, when the eigenval-
ues/vectors are to be computed over the component domain. Cf.
example 3.

!

A For a numerical algorithm it is not possible to distinguish
between badly separated distinct eigenvalues and multiple
eigenvalues. For this reason numeric::eigenvectors and
linalg::eigenvectors use different return formats: the latter
can provide information on the multiplicity of eigenvalues due to
its internal exact arithmetic.

!

A Use numeric::eigenvalues , if only eigenvalues are to be computed.

Example 1. We compute the spectral data of the 2× 2 Hilbert matrix:

>> A := linalg::hilbert(2)

+- -+
| 1, 1/2 |
| |
| 1/2, 1/3 |
+- -+

>> [d, X, res] := numeric::eigenvectors(A):

The eigenvalues:

>> d

[0.06574145409, 1.267591879]

18

The eigenvectors:

>> X

+- -+
| 0.4718579255, -0.8816745988 |
| |
| -0.8816745988, -0.4718579255 |
+- -+

Hilbert matrices are Hermitean, i.e., computing the spectral data is a numeri-
cally stable process. This is confirmed by the small residues:

>> res

[3.965706585e-20, 5.421010863e-20]

For further processing we convert the data to matrices of the domain Dom::Matrix() :

>> M := Dom::Matrix(): X := M(X): d := M(2, 2, d, Diagonal):

We reconstruct the matrix from its spectral data:

>> X*d/X

+- -+
| 1.0, 0.5 |
| |
| 0.5, 0.3333333333 |
+- -+

We extract an eigenvector from the matrix X:

>> eigenvector1 := X::dom::col(X, 1)

+- -+
| 0.4718579255 |
| |
| -0.8816745988 |
+- -+

>> delete A, d, X, res, M, eigenvector1:

Example 2. We demonstrate some numerically ill-conditioned cases. The fol-
lowing matrix has only one eigenvector and cannot be diagonalized. Only one
numerical eigenvector is found:

>> A := array(1..2, 1..2, [[5, -1], [4, 1]]):
>> numeric::eigenvectors(A)

19

-- +- -+ -
-

| | 0, 0.4472135955 | |
| [3.0, 3.0], | |, [0.0, 1.084202173e-

19] |
| | 0, 0.894427191 | |
-- +- -+ -

-

Dividing A by 3 leads to slightly increased internal round-off. This time two
badly separated eigenvalues are computed. The two corresponding numerical
eigenvectors are almost collinear. Both represent the same exact eigenvector:

>> B := map(A, _divide, 3):
>> numeric::eigenvectors(B)

-- +- -+
| | 0.4472135954, -0.4472135957 |
| [0.9999999997, 1.0], | |,
| | 0.894427191, -0.8944271909 |
-- +- -+

--
|

[1.084202173e-19, 6.060874398e-20] |
|

--

>> delete A:

Example 3. The following matrix has domain components:

>> A := Dom::Matrix(Dom::IntegerMod(7))([[6, -1], [0, 3]])

+- -+
| 6 mod 7, 6 mod 7 |
| |
| 0 mod 7, 3 mod 7 |
+- -+

Note that numeric::eigenvectors computes the spectral data of the fol-
lowing matrix:

>> A::dom::expr(A)

+- -+
| 6, 6 |
| |
| 0, 3 |
+- -+

20

>> numeric::eigenvectors(A, NoErrors)

-- +- -+ --
	-0.894427191, 1.0	
[3.0, 6.0],		, NIL
	0.4472135955, 0.0	
-- +- -+ --

If the spectral data are to be computed over the component domain Dom::IntegerMod(7) ,
then linalg::eigenvectors should be used:

>> linalg::eigenvectors(A)

-- -- -- +- -+ -- --
| | | | 1 mod 7 | | |
| | 6 mod 7, 1, | | | | |,
| | | | 0 mod 7 | | |
-- -- -- +- -+ -- --

-- -- +- -+ -- -- --
		5 mod 7			
3 mod 7, 1,					
		1 mod 7			
-- -- +- -+ -- -- --

>> delete A:

Background:

A The function implements standard numerical algorithms from the Hand-
book of Automatic Computation by Wilkinson and Reinsch.

Changes:

A Conversion of Cat::Matrix objects now uses the method "expr" of
the matrix domain. Triangular matrices are now processed numerically.

A The eigenvector matrix is now returned as an array.

numeric::expMatrix – the exponential of a matrix

numeric::expMatrix(A, ..) returns the exponential exp(A) of a square
matrix A.

numeric::expMatrix(A, x, ..) with a vector x returns the vector exp(A) x.

numeric::expMatrix(A, X, ..) with a matrix X returns the matrix exp(A) X.

21

Call(s):

A numeric::expMatrix(A <, method >)

A numeric::expMatrix(A, x <, method >)

A numeric::expMatrix(A, X <, method >)

Parameters:
A — a numerical square matrix of domain type DOM_ARRAYor of

category Cat::Matrix
x — a vector represented by a list [x[1],..,x[n]] or a

1-dimensional array array(1..n,[x[1],..,x[n]])
X — an n×m matrix of domain type DOM_ARRAYor

Dom::Matrix(Ring) with a suitable coefficient ring Ring

Options:

method — specifies the numerical method used for computing the
result. The available methods are Diagonalization ,
Interpolation , Krylov and TaylorExpansion .

Return Value: All results are float matrices/vectors.
The call numeric::expMatrix(A <, method >) returns exp(A) as a

matrix of domain type DOM_ARRAY.
The call numeric::expMatrix(A, x, <, method >) returns exp(A) x

as a vector of the same domain type as the input vector x , i.e., either as a list
or as a 1-dimensional array array(1..n,[..]) .

The call numeric::expMatrix(A, X, <, method >) returns exp(A) X
as an n×m matrix of domain type DOM_ARRAY.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: exp

Details:

A The components of the matrix A must not contain symbolic objects which
cannot be converted to numerical values via float . Numerical symbolic
expressions such as PI , sqrt(2) , exp(-1) etc. are accepted. They are
converted to floats.

A The methods Diagonalization and Interpolation do not work for
all matrices (see below).

A Special algorithms are implemented for traceless 2×2 matrices and skew
symmetric 3× 3 matrices. Specification of a particular method does not
have any effect on such matrices.

22

A If exp(A) x or exp(A) X is required, then you should not compute exp(A)
first and then multiply the resulting matrix with the vector/matrix x/X.
In general the call numeric::expMatrix(A, x) /numeric::expMatrix(A,
X) is faster.

Option <method >:

A The method TaylorExpansion is the default algorithm. It produces
fast results for matrices with small norms.

A The default method TaylorExpansion computes each individual compo-
nent of exp(A), exp(A) x, exp(A) X to a relative precision of about 10^(-
DIGITS) , unless numerical roundoff prevents reaching this precision
goal. Roughly speaking: all digits of all components of the result are
reliable up to roundoff effects.

A The methods Diagonalization , Interpolation and Krylov
compute the result to a relative precision w.r.t. the norm:

‖ error‖ ≤ 10−DIGITS ‖ result‖ .

Consequently, if the result has components of different orders of
magnitude, then the smaller components have larger relative er-
rors than the large components. Not all digits of the small compo-
nents are reliable! Cf. example 2.

!

A The method Diagonalization only works for diagonalizable
matrices. For matrices without a basis of eigenvectors nu-
meric::expMatrix may either produce an error or the returned
result is dominated by roundoff effects. For symmetric/Hermitean
or skew/skew-Hermitean matrices this method produces reliable
results.

!

A The method Interpolation may become numerically unstable
for certain matrices. The algorithm tries to detect such unstabilities
and stops with an error message.

!

A The method Krylov is only available for computing exp(A) x with a vec-
tor x. Also vectors represented by n× 1 matrices are accepted.

This method is fast when x is spanned by few eigenvectors of A. Further,
if A has only few clusters of similar eigenvalues, then this method can
be much faster than the other methods. Cf. example 3.

Example 1. We consider the matrix

>> A := array(1..2, 1..2, [[1, 0] , [1, PI]]):
>> expA := numeric::expMatrix(A)

23

+- -+
| 2.718281829, 0 |
| |
| 9.536085572, 23.14069263 |
+- -+

We consider a vector given by a list x1 and by an equivalent 1-dimensional
array x2 , respectively:

>> x1 := [1, 1]: x2 := array(1..2, [1, 1]):

The constructor Mof the matrix domain Dom::Matrix() converts the list x1
to an equivalent 2× 1 matrix X (a column):

>> M := Dom::Matrix(): X := M(x1):

The first call yields a list, the second a 1-dimensional array, the third a 2× 1
array:

>> numeric::expMatrix(A, x1), numeric::expMatrix(A, x2, Krylov),
numeric::expMatrix(A, X, Diagonalization)

+- -+
[2.718281829, 32.6767782], | 2.718281829, 32.6767782 |,

+- -+

+- -+
| 2.718281829 |
| |
| 32.6767782 |
+- -+

For further processing the array expA is converted to an element of the matrix
domain:

>> expA := M(expA):

Now the overloaded arithmetical operators +, * , ^ etc. can be used for further
computations:

>> expA*X

+- -+
| 2.718281829 |
| |
| 32.6767782 |
+- -+

>> delete A, expA, x1, x2, M, X:

24

Example 2. We demonstrate the different precision goals of the methods.

>> A := array(1..3, 1..3, [[1000, 1, 0],
[0, 1, 1],
[1/10^100, 0, -1000]]):

The default method TaylorExpansion computes each component of exp(A)
correctly:

>> numeric::expMatrix(A)

+- -
+

| 1.970071114e434, 1.972043157e431, 9.860215786e427 |
| |
| 9.860215786e327, 9.870085872e324, 4.935042936e321 |
| |
| 9.85035557e330, 9.860215786e327, 4.930107893e324 |
+- -

+

The method Diagonalization produces a result, which is accurate in the
sense that ‖ error‖ ≤ 10−DIGITS ‖ exp(A)‖ holds. Indeed, the largest compo-
nents of exp(A) are correct. However, Diagonalization does not even get
the right order of magnitude of the smaller components:

>> numeric::expMatrix(A, Diagonalization)

+- -
+

| 1.970071114e434, 1.972043157e431, 0 |
| |
| 0, 2.718281829, 0 |
| |
| 0, 0, 5.075958898e-435 |
+- -

+

Note that exp(A) is very sensitive to small changes in A. After elimination of
the small lower triangular element both methods yield the same result with
correct digits for all entries:

>> B := array(1..3, 1..3, [[1000, 1, 0],
[0 , 1, 1],
[0 , 0, -1000]]):

>> numeric::expMatrix(B)

25

+- -
+

| 1.970071114e434, 1.972043157e431, 9.860215786e427 |
| |
| 0, 2.718281829, 0.002715566262 |
| |
| 0, 0, 5.075958897e-435 |
+- -

+

>> numeric::expMatrix(B, Diagonalization)

+- -
+

| 1.970071114e434, 1.972043157e431, 9.860215786e427 |
| |
| 0.0, 2.718281829, 0.002715566262 |
| |
| 0.0, 0.0, 5.075958898e-435 |
+- -

+

>> delete A, B:

Example 3. Hilbert matrices Hi j = (i + j− 1)−1 have real positive eigenvalues.
For large dimension most of these eigenvalues are small and may be regarded
as a single cluster. Consequently, the option Krylov is useful:

>> numeric::expMatrix(linalg::hilbert(100), [1 $ 100], Krylov)

[25.47080919, 18.59337041, ... , 2.863083064, 2.848538965]

Background:

A The method TaylorExpansion sums the usual Taylor series

exp(A) = 1 + A + A2/2 + · · ·

in a suitable numerically stable way.

A The method Diagonalization computes A = T diag(eλ1 , eλ2 , . . .) T−1

by a diagonalization A = T diag(λ1, λ2, . . .) T−1.

A The method Interpolation computes a polynomial P interpolating
the function exp at the eigenvalues of A. Evaluation of the matrix poly-
nomial yields exp(A) = P(A).

26

A The method Krylov reduces A to a Hessenberg matrix H and computes
an approximation of exp(A) x from exp(H). Depending on A and x the
dimension of H may be smaller than the dimension of A. Reference: Y.
Saad, “Analysis of some Krylov Subspace Approximations to the Matrix
Exponential Operator”, SIAM Journal of Numerical Analysis 29 (1992).

A numeric::expMatrix uses polynomial arithmetic to multiply matri-
ces and vectors. Thus sparse matrices are handled efficiently based on
MuPADs internal sparse representation of polynomials.

Changes:

A numeric::expMatrix is a new function.

numeric::factorCholesky – Cholesky factorization of a matrix

numeric::factorCholesky(A, ..) returns a Cholesky factorization A =
LLH of a positive definite Hermitean matrix A.

numeric::factorCholesky(A, Symmetric, ..) returns a Cholesky fac-
torization A = LLT of a symmetric matrix A.

Call(s):

A numeric::factorCholesky(A <, Symmetric > <, Sym-
bolic > <, NoCheck>)

Parameters:
A — a square matrix of domain type DOM_ARRAYor of category

Cat::Matrix

Options:

Symmetric — makes numeric::factorCholesky compute a
symmetric factorization A = LLT rather than a
Hermitean factorization A = LLH

Symbolic — prevents numeric::factorCholesky from using
floating point arithmetic

NoCheck — prevents numeric::factorCholesky from checking
that the matrix is Hermitean and positive definite

Return Value: The lower triangular Cholesky factor L is returned as a matrix
of domain type DOM_ARRAY. Its components are real or complex floats, un-
less the option Symbolic is used. Without the option NoCheck an error is
returned, if the matrix is not Hermitean or not positive definite.

27

Side Effects: Without the option Symbolic the function is sensitive to the
environment variable DIGITS , which determines the numerical working pre-
cision.

Related Functions: linalg::factorCholesky , numeric::factorLU ,
numeric::factorQR

Details:

A The Cholesky factorization of a square Hermitean matrix is A = LLH,
where L is a regular complex lower triangular matrix and LH is the Her-
mitean transpose of L (i.e., the complex conjugate of the transpose of L).
Such a factorization only exists, if A is positive definite.

A By default a numerical factorization is computed. If the option Sym-
bolic is not used, then all components of the matrix are converted to
floating point numbers. In this case the matrix must not contain sym-
bolic objects that cannot be converted to floats. Numerical symbolic ex-
pressions such as PI , sqrt(2) , exp(-1) etc. are accepted.

A The Cholesky factor returned by numeric::factorCholesky is nor-
malized such that its diagonal elements are real and positive.

Option <Symmetric >:

A The symmetric Cholesky factorization of a square symmetric matrix is
A = LLT, where L is a regular complex lower triangular matrix and LT

is the transpose of L. The matrix A does not have to be positive def-
inite. Consequently, with the option Symmetric no internal check is
performed whether A is positive definite. Note that the symmetric fac-
torization with regular L does not exist for all matrices.

A For real symmetric positive definite matrices A the Cholesky factor L is
real and the Hermitean factorization A = LLH coincides with the sym-
metric factorization A = LLT.

Option <Symbolic >:

A This option prevents conversion of the matrix entries to floats. The usual
arithmetic for MuPAD expressions is used. With this option the matrix
A may contain symbolic objects. Note that the option NoCheck must
be used for the Hermitean factorization when non-numerical symbolic
objects are present.

28

Option <NoCheck>:

A Without the option Symmetric numeric::factorCholesky checks
that the matrix A is Hermitean and positive definite. The option NoCheck
may be used to suppress these checks. It must be used when the matrix
contains symbolic objects. Elements in the upper triangular part of the
matrix will never be touched by the algorithm!

A This option is dangerous! It returns a result for matrices that are
not Hermitean or not positive definite (i.e., no Cholesky factoriza-
tion exists)!

!

A This option has no effect when the option Symmetric is used.

Example 1. We consider the matrix

>> A := array(1..2, 1..2, [[1, I] , [-I, PI]]):

We compute a numerical factorization

>> numeric::factorCholesky(A)

+- -+
| 1.0, 0 |
| |
| - 1.0 I, 1.46341814 |
+- -+

and a symbolic factorization:

>> L := numeric::factorCholesky(A, Symbolic, NoCheck)

+- -+
| 1, 0 |
| |
| 1/2 |
| - I, (PI - 1) |
+- -+

For further processing the Cholesky factor (of domain type DOM_ARRAY) is
converted to an element of the matrix domain Dom::Matrix() :

>> L := Dom::Matrix()(L):

Now the overloaded arithmetical operators +, * , ^ etc. can be used for further
computations:

>> L*linalg::transpose(map(L, conjugate))

29

+- -+
| 1, I |
| |
| - I, PI |
+- -+

>> delete A, L:

Example 2. The following matrix is not positive definite:

>> A := array(1..2, 1..2, [[-2, sqrt(2)], [sqrt(2), 1]]):
>> numeric::factorCholesky(A)

Error: matrix is not positive definite within working precision\
[numeric::factorCholesky]

However, a symmetric factorization with a complex Cholesky factor does exist:

>> numeric::factorCholesky(A, Symmetric)

+- -+
| 1.414213562 I, 0 |
| |
| - 1.0 I, 1.414213562 |
+- -+

>> delete A:

Example 3. The option NoCheck should be used, when the matrix contains
symbolic objects:

>> assume(x > 0): assume(z > 0):
>> A := array(1..2, 1..2, [[x, conjugate(y)], [y, z]]):

>> numeric::factorCholesky(A, Symbolic, NoCheck)

+- -+
| 1/2 |
| x , 0 |
| |
| / 2 \1/2 |
| y | abs(y) | |
| ----, | z - ------- | |
| 1/2 \ x / |
| x |
+- -+

30

Note that with NoCheck it is assumed that the matrix is Hermitean and pos-
itive definite! All upper triangular entries ignored. The following result im-
plicitly assumes u=conjugate(y) :

>> A := array(1..2, 1..2, [[x, u], [y, z]]):
>> numeric::factorCholesky(A, Symbolic, NoCheck)

+- -+
| 1/2 |
| x , 0 |
| |
| / 2 \1/2 |
| y | abs(y) | |
| ----, | z - ------- | |
| 1/2 \ x / |
| x |
+- -+

>> delete A:

Changes:

A The new option Symmetric allows factorization of in-definite symmet-
ric matrices.

A The return type was changed to DOM_ARRAY.

numeric::factorLU – LU factorization of a matrix

numeric::factorLU(A, ..) returns a LU factorization PA = LU of the
matrix A.

Call(s):

A numeric::factorLU(A <, Symbolic >)

Parameters:
A — an m× n matrix of domain type DOM_ARRAYor of category

Cat::Matrix

Options:

Symbolic — prevents numeric::factorLU from using floating
point arithmetic

31

Return Value: A list [L,U,p] is returned. The matrices L and U are of do-
main type DOM_ARRAY, p is a list of integer numbers 1, . . . ,m representing the
row exchanges in pivoting steps. The components of L and U are real or com-
plex floats, unless the option Symbolic is used.

Side Effects: Without the optional argument Symbolic the function is sen-
sitive to the environment variable DIGITS , which determines the numerical
working precision.

Related Functions: linalg::factorLU , numeric::factorCholesky ,
numeric::factorQR

Details:

A The LU factorization of a real or complex m× n matrix is PA = LU. The
m×m matrix L is lower triangular normalized to 1 along the diagonal.
The m× n matrix U is upper triangular, i.e., Ui j = 0 for j < i. The list
p=[p[1],..,p[m]] returned by numeric::factorLU is a permuta-
tion of the numbers 1, . . . ,m corresponding to row exchanges of A. It
represents the m×m permutation matrix P:

Pi j = δp[i], j =
{

1, if j = p[i],
0, if j 6= p[i],

Multiplication of P with matrices and vectors is performed easily using
the permutation list p:

Y[i,j]:=X[p[i],j] defines the permutation Y = PX of a matrix X,

y[i]:=x[p[i]] defines the permutation y = Px of a vector x.

A By default a numerical factorization with partial pivoting is computed.
If the option Symbolic is not used, then all components of the matrix
are converted to floating point numbers. In this case the matrix must not
contain symbolic objects that cannot be converted to floats. Numerical
symbolic expressions such as PI , sqrt(2) , exp(-1) etc. are accepted.

A The factorization depends on the pivoting strategy. The results obtained
with/without the option Symbolic may differ. Cf. example 2.

Option <Symbolic >:

A This option prevents conversion of the matrix entries to floats. The usual
arithmetic for MuPAD expressions is used. With this option the matrix A
may contain symbolic objects.

A With this option no row exchanges are performed in the internal Gaus-
sian elimination unless necessary.

32

Example 1. We consider the matrix

>> A := array(1..3, 1..3, [[1, 2, 3], [2, 4, 6], [4, 8, 9]]):
>> [L, U, p] := numeric::factorLU(A)

-- +- -+ +- -+ -
-

	1, 0, 0		4.0, 8.0, 9.0	
	0.5, 1, 0	,	0, 0, 1.5	, [3, 2, 1]
	0.25, 0, 1		0, 0, 0.75	
-- +- -+ +- -+ -

-

The factors (of domain type DOM_ARRAY) are converted to elements of the ma-
trix domain Dom::Matrix() for further processing:

>> M := Dom::Matrix(): L := M(L): U := M(U):

Now the overloaded arithmetical operators +, * , ^ etc. can be used for further
computations:

>> L*U

+- -+
| 4.0, 8.0, 9.0 |
| |
| 2.0, 4.0, 6.0 |
| |
| 1.0, 2.0, 3.0 |
+- -+

The product LU coincides with A after exchanging the rows according to the
permutation p:

>> PA := array(1..3, 1..3, [[A[p[i], j] $ j=1..3] $ i=1..3])

+- -+
| 4, 8, 9 |
| |
| 2, 4, 6 |
| |
| 1, 2, 3 |
+- -+

>> delete A, L, U, p, M, PA:

33

Example 2. We consider a non-square matrix:

>> A := array(1..3, 1..2, [[3*I, 10], [I, 1], [I, 1]]):
>> numeric::factorLU(A)

-- +- -+ +- -+ --
	1, 0, 0		1.0 I, 1.0	
	3.0, 1, 0	,	0, 7.0	, [2, 1, 3]
	1.0, 0, 1		0, 0	
-- +- -+ +- -+ --

Note that the symbolic factorization is different, because a different pivoting
strategy is used:

>> numeric::factorLU(A, Symbolic)

-- +- -+ +- -+ --
	1, 0, 0		3 I, 10	
	1/3, 1, 0	,	0, -7/3	, [1, 2, 3]
	1/3, 1, 1		0, 0	
-- +- -+ +- -+ --

>> delete A:

Changes:

A Factorization was extended to non-square matrices.

A The type of the returned matrix factors was changed to DOM_ARRAY.

numeric::factorQR – QR factorization of a matrix

numeric::factorQR(A, ..) returns a QR factorization A = QR of the
matrix A.

Call(s):

A numeric::factorQR(A <, Symbolic >)

Parameters:
A — an m× n matrix of domain type DOM_ARRAYor of category

Cat::Matrix

34

Options:

Symbolic — prevents numeric::factorQR from using floating
point arithmetic

Return Value: The list [Q,R] with Q and R of domain type DOM_ARRAYis
returned. The components of Q and R are real or complex floats, unless the
option Symbolic is used.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linalg::factorQR , numeric::factorCholesky ,
numeric::factorLU

Details:

A The QR factorization of a real/complex m× n matrix is A = QR, where
the m × m matrix Q is orthogonal/unitary and the m × n matrix R is
upper triangular (i.e., Ri j = 0 for j < i).

A By default a numerical factorization is computed. The matrix must not
contain symbolic objects that cannot be converted to floats. Numerical
symbolic expressions such as PI , sqrt(2) , exp(-1) etc. are accepted.
They will be converted to floats, unless the option Symbolic is used.

A The R factor is normalized such that its diagonal elements Rii with i =
1, . . . ,min(m,n) are real and nonnegative.

Option <Symbolic >:

A This option prevents conversion of the matrix entries to floats. The usual
arithmetic for MuPAD expressions is used. With this option the matrix A
may contain symbolic objects.

Example 1. We consider the matrix

>> A := array(1..2, 1..2, [[1, 0] , [1, PI]]):

First we compute a numerical factorization:

>> [Q1, R1] := numeric::factorQR(A)

35

-- +- -+
| | 0.7071067812, -0.7071067812 |
| | |,
| | 0.7071067812, 0.7071067812 |
-- +- -+

+- -+ --
1.414213562, 2.221441469	
0, 2.221441469	
+- -+ --

Next the symbolic factorization is computed:

>> [Q2, R2] := numeric::factorQR(A, Symbolic)

-- +- -+ +- -+ --
	1/2 1/2		1/2	
	2 2		1/2 PI 2	
	----, - ----		2 , -------	
	2 2		2	
		,		
	1/2 1/2		1/2	
	2 2		PI 2	
	----, ----		0, -------	
	2 2		2	
-- +- -+ +- -+ --

For further processing the factors (of domain type DOM_ARRAY) are converted
to elements of the matrix domain Dom::Matrix() :

>> M := Dom::Matrix():
>> Q1 := M(Q1): R1 := M(R1): Q2 := M(Q2): R2 := M(R2):

Now the overloaded arithmetical operators +, * , ^ etc. can be used for further
computations:

>> Q1*R1, Q2*R2

+- -+ +- -+
1.0, -4.33680869e-19		1, 0
	,	
1.0, 3.141592654		1, PI
+- -+ +- -+

We finally verify the othogonality of the factors Q1and Q2:

>> Q1 * M::transpose(Q1), Q2 * M::transpose(Q2)

36

+- -+ +- -+
1.0, -5.421010863e-20		1, 0
	,	
-5.421010863e-20, 1.0		0, 1
+- -+ +- -+

>> delete A, Q1, R1, Q2, R2, M:

Example 2. We consider a non-square matrix of rank 1:

>> A := array(1..3, 1..2, [[0, 0], [I, 1], [I, 1]]):
>> numeric::factorQR(A, Symbolic)

-- +- -+ -
-

	0, 1, 0			
		+- -+		
	1/2		1/2 1/2	
	1/2 2		2 , - I 2	
	1/2 I 2 , 0, ----			
	2	,	0, 0	
	1/2		0, 0	
	1/2 2	+- -+		
	1/2 I 2 , 0, - ----			
	2			
-- +- -+ -

-

Note that the numerical factorization yields different factors:

>> numeric::factorQR(A)

-- +- -+
| | 0, 0.7071067812 I, 0.7071067812 I |
| | |
| | 0.7071067812 I, 0.5, -0.5 |,
| | |
| | 0.7071067812 I, -0.5, 0.5 |
-- +- -+

+- -+ --
1.414213562, - 1.414213562 I	
0, 0	
0, 0	
+- -+ --

37

>> delete A:

Background:

A Householder transformations are used to compute the numerical factor-
ization. With the option Symbolic Gram-Schmidt orthonormalization
of the columns of A is used.

A For an invertible square matrix A the QR factorization is unique up to
to scaling factors of modulus 1. The normalization of R to real positive
diagonal elements determines the factorization uniquely. Consequently,
the results obtained with/without the option Symbolic coincide for in-
vertible square matrices.

A For singular or non-square matrices the factorization is not unique and
the results obtained with/without the option Symbolic may differ (cf.
example 2).

Changes:

A Factorization was extended to non-square matrices.

A The type of the returned matrix factors was changed to DOM_ARRAY.

numeric::fft, numeric::invfft – Fast Fourier Transform

numeric::fft(data, ..) returns the discrete Fourier transform of the
data .

numeric::invfft(data, ..) returns the inverse discrete Fourier trans-
form.

Call(s):

A numeric::fft(L <, Symbolic >)

A numeric::fft(A <, Symbolic >)

A numeric::invfft(L <, Symbolic >)

A numeric::invfft(A <, Symbolic >)

Parameters:
L — a list of arithmetical expressions. The length of the list must be an

integer power of 2.
A — a d-dimensional array (1..n1, . . . ,1..nd, [. . .]) of arithmetical

expressions. The values n1, . . . ,nd must all be integer powers of 2.

38

Options:

Symbolic — Without this option the floating point converter float
is applied to all input data. Use this option if no such
conversion is desired.

Return Value: a list/array of the same length/format as the first input pa-
rameter L/A.

Side Effects: Without the option Symbolic the function is sensitive to the
environment variable DIGITS , which determines the numerical working pre-
cision.

Details:

A The 1-dimensional discrete Fourier transform F = fft(L) of N data el-
ements L j stored in the list L = [L1, . . . , LN] is the list F = [F1, . . . , FN]
given by

Fk =
N

∑
j=1

L j e−i 2π (j−1) (k−1)/N , k = 1, . . . ,N .

The inverse transformation L = invfft(F) is given by

L j =
1
N

N

∑
k=1

Fk ei 2π (j−1) (k−1)/N , j = 1, . . . ,N.

fft and invfft transform the data by the Fast Fourier Transform (FFT)
algorithm with O(N log2(N)) operations.

A The d-dimensional discrete Fourier transform F = fft(A) of N = n1 ×
· · · × nd data elements (A j1,..., jd) stored in the array A is the array F =
(Fk1,...,kd

) given by

Fk1,...,kd
=

n1

∑
j1=1
· · ·

nd

∑
jd=1

A j1,..., jd e
−i 2π

(
(j1−1) (k1−1)

n1
+ ··· + (jd−1) (kd−1)

nd

)

with k1 = 1, . . . ,n1 , . . . , kd = 1, . . . ,nd. The inverse transformation A =
invfft(F) is given by

A j1,..., jd =
1
N

n1

∑
k1=1
· · ·

nd

∑
kd=1

Fk1,...,kd
e

i 2π
(

(j1−1) (k1−1)
n1

+ ··· + (jd−1) (kd−1)
nd

)

with j1 = 1, . . . ,n1 , . . . , jd = 1, . . . ,nd. fft and invfft transform the
data by the Fast Fourier Transform (FFT) algorithm with O(N log2(N))
operations.

39

Example 1. We give a demonstration of 1-dimensional transformations using
lists. By default, numerical expressions are converted to floats:

>> L := [1, 2^(1/2), 3, PI]: numeric::fft(L)

[8.555806216, - 2.0 + 1.727379091 I, -0.5558062159,

- 2.0 - 1.727379091 I]

>> numeric::invfft(%)

[1.0, 1.414213562 - 1.084202173e-19 I, 3.0,

3.141592654 + 1.084202173e-19 I]

Exact arithmetic is used with the option Symbolic :

>> numeric::fft(L, Symbolic)

1/2 1/2 1/2
[PI + 2 + 4, I PI - I 2 - 2, 4 - 2 - PI,

1/2
I 2 - I PI - 2]

>> numeric::invfft(%, Symbolic)

1/2
[1, 2 , 3, PI]

Symbolic expressions are accepted:

>> L := [x, 2, 3, x]: numeric::fft(L)

[2 x + 5.0, (1.0 + 1.0 I) x - (3.0 + 2.0 I), 1.0,

(1.0 - 1.0 I) x - (3.0 - 2.0 I)]

>> numeric::fft(L, Symbolic)

[2 x + 5, (1 + I) x - (3 + 2 I), 1, (1 - I) x - (3 - 2 I)]

>> delete L:

Example 2. We give a demonstration of multi-dimensional transformations.
First, a 2-dimensional transformation is computed by using an array with 2
indices:

>> A := array(1..2, 1..4, [[1, 2, 3, 4], [a, b, c, d]]):

40

>> numeric::fft(A, Symbolic)

array(1..2, 1..4,
(1, 1) = a + b + c + d + 10,
(1, 2) = a - I b - c + I d - (2 - 2 I),
(1, 3) = a - b + c - d - 2,
(1, 4) = a + I b - c - I d - (2 + 2 I),
(2, 1) = 10 - b - c - d - a,
(2, 2) = I b - a + c - I d - (2 - 2 I),
(2, 3) = b - a - c + d - 2,
(2, 4) = c - I b - a + I d - (2 + 2 I)

)

>> numeric::invfft(%, Symbolic)

+- -+
| 1, 2, 3, 4 |
| |
| a, b, c, d |
+- -+

The next example is 3-dimensional as indicated by the format of the array:

>> A := array(1..2, 1..4, 1..2,
[[[sin(j1*PI/2)*cos(j2*3*PI/4)*sin(j3*PI/2)
$ j3 = 1..2] $ j2 = 1..4] $ j1 = 1..2]):

>> numeric::fft(A)

array(1..2, 1..4, 1..2,
(1, 1, 1) = -1.0,
(1, 1, 2) = -1.0,
(1, 2, 1) = - 1.414213562 - 1.0 I,
(1, 2, 2) = - 1.414213562 - 1.0 I,
(1, 3, 1) = 1.0,
(1, 3, 2) = 1.0,
(1, 4, 1) = - 1.414213562 + 1.0 I,
(1, 4, 2) = - 1.414213562 + 1.0 I,
(2, 1, 1) = -1.0,
(2, 1, 2) = -1.0,
(2, 2, 1) = - 1.414213562 - 1.0 I,
(2, 2, 2) = - 1.414213562 - 1.0 I,
(2, 3, 1) = 1.0,
(2, 3, 2) = 1.0,
(2, 4, 1) = - 1.414213562 + 1.0 I,
(2, 4, 2) = - 1.414213562 + 1.0 I

)

>> delete A:

41

Changes:

A These functions used to be called fft and ifft , respectively, in previous
MuPAD versions.

A The length of input lists needs not be specified by a second parameter
any more.

A Multi-dimensional transformations are now possible by using appropri-
ately formatted input arrays.

A The option Symbolic was added.

numeric::fMatrix – functional calculus for numerical square ma-
trices

numeric::fMatrix(f, A, ..) computes the matrix f (A, ..) with a func-
tion f and a square matrix A.

Call(s):

A numeric::fMatrix(f, A, p1, p2, ..)

Parameters:
f — a procedure representing a scalar function f : C 7→ C

or f : C× P× P× · · · 7→ C, where P is a set of
parameters

A — a square matrix of domain type DOM_ARRAYor of
category Cat::Matrix

p1, p2, .. — arbitrary MuPAD objects accepted by f as parameters

Return Value: The matrix f (A, ..) is returned as an array.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: numeric::expMatrix , numeric::inverse

Details:

A The components of A must not contain symbolic objects which cannot
be converted to numerical values via float . Numerical symbolic ex-
pressions such as PI , sqrt(2) , exp(-1) etc. are accepted. They are
converted to floats.

42

A The matrix A must be diagonalizable. numeric::fMatrix
aborts with an error message, if it detects numerically that A is not
diagonalizable. For most non-diagonalizable matrices, however,
the numerical algorithm fails to detect this fact and the returned
matrix is dominated by roundoff effects. It is the user’s respon-
sibility to make sure that the diagonalization is feasible and well
conditioned.

!

A Symmetric/Hermitean and skew/skew Hermitean matrices can always
be diagonalized in a numerically stable way. numeric::fMatrix pro-
duces reliable numerical results for such matrices.

A The procedure f must accept complex floating point numbers as first
argument. It may return arbitrary MuPAD expressions, provided these
can be multiplied with floating point numbers.

A The parameters p1, p2, .. may be numerical or symbolic objects.
They must be accepted by f as 2nd argument, 3rd argument etc.

A In contrast to the components of A, numerical symbolic objects such as
PI , sqrt(2) etc. passed as parameters p1, p2,.. are not converted
to floats.

A Inversion or exponentiation of a matrix may be realized with the func-
tions f : a 7→ 1/a and f = exp, respectively. However, it is recommended
to use the specialized algorithms numeric::inverse and numeric::expMatrix
instead. Also matrix evaluation of low degree polynomials should be
done with standard matrix arithmetic rather than with numeric::fMatrix .

Example 1. We compute the matrix power A100:

>> A := array(1..2, 1..2, [[2, PI], [exp(-10), 0]]):
>> numeric::fMatrix(x -> x^100, A)

+- -+
| 1.272133133e30, 1.998190806e30 |
| |
| 2.887634784e25, 4.535724387e25 |
+- -+

Alternatively you may use the function _power which takes the exponent as
a second parameter.

>> numeric::fMatrix(_power, A, 100)

>> delete A:

43

Example 2. We compute the square root of a matrix:

>> A := array(1..2, 1..2, [[0, 1], [-1, 0]]):
>> B := numeric::fMatrix(sqrt, A)

array(1..2, 1..2,
(1, 1) = 0.7071067812 - 1.084202173e-19 I,
(1, 2) = 0.7071067812 + 2.710505431e-20 I,
(2, 1) = - 0.7071067812 - 1.084202173e-19 I,
(2, 2) = 0.7071067812 - 5.421010863e-20 I

)

The small imaginary parts are caused by numerical roundoff. We eliminate
them by extracting the real parts of the components:

>> B := map(B, Re)

+- -+
| 0.7071067812, 0.7071067812 |
| |
| -0.7071067812, 0.7071067812 |
+- -+

We verify that B^2 matrix is A. For convenience we convert B to an element of
a matrix domain and compute the square by the overloaded operator ^ :

>> B := Dom::Matrix(Dom::Complex)(B): B^2

+- -+
| 5.421010863e-20, 1.0 |
| |
| -1.0, -1.084202173e-19 |
+- -+

This coincides with A up to numerical roundoff.

>> delete A, B:

Example 3. We compute exp(tπ A) with a symbolic parameter t:

>> A := array(1..2,1..2,[[0,1],[-1,0]]):
>> numeric::fMatrix(exp@_mult, A, t*PI)

array(1..2, 1..2,
(1, 1) = 0.5 exp(-1.0 I t PI) + 0.5 exp(1.0 I t PI),
(1, 2) = 0.5 I exp(-1.0 I t PI) - 0.5 I exp(1.0 I t PI),
(2, 1) = 0.5 I exp(1.0 I t PI) - 0.5 I exp(-1.0 I t PI),
(2, 2) = 0.5 exp(-1.0 I t PI) + 0.5 exp(1.0 I t PI)

)

>> delete A:

44

Background:

A A numerical diagonalization A = X diag(λ1, λ2, . . .) X−1 is computed.
The columns of X are the (right) eigenvectors of A, the diagonal entries
λ1, λ2, . . . are the corresponding eigenvalues. The function f is mapped
to the eigenvalues, the matrix result is computed by

f (A, p1, p2, ..) = X diag(f (λ1, p1, p2, ..), f (λ2, p1, p2, ..), . . .) X−1 .

The eigenvector matrix X may be obtained via numeric::eigenvectors(A)[2].

A The condition number ‖X‖‖Xˆ−1‖ of the eigenvector matrix is a mea-
sure indicating how well conditioned the diagonalization of the matrix
A is. If this number is larger than 10DIGITS, then not a single digit of the
diagonalization data is trustworthy.

A The call numeric::fMatrix(exp, A) is equivalent to

numeric::expMatrix(A, Diagonalization)

Changes:

A numeric::fMatrix is a new function.

numeric::fsolve – search for a numerical root of a system of equa-
tions

numeric::fsolve(eqs, ..) returns a numerical approximation of a solu-
tion of the system of equations eqs .

Call(s):

A numeric::fsolve(eq, x <, Options >)

A numeric::fsolve(eq, x = a <, Options >)

A numeric::fsolve(eq, x = a..b <, Options >)

A numeric::fsolve(eqs, [x1, x2, ..] <, Options >)

A numeric::fsolve(eqs, {x1, x2, ..} <, Options >)

A numeric::fsolve(eqs, [x1 = a1, x2 = a2, ..] <,
Options >)

A numeric::fsolve(eqs, {x1 = a1, x2 = a2, ..} <,
Options >)

A numeric::fsolve(eqs, [x1 = a1..b1, x2 = a2..b2,
..] <, Options >)

A numeric::fsolve(eqs, {x1 = a1..b1, x2 = a2..b2,
..} <, Options >)

45

Parameters:
eq — an arithmetical expression or an equation

in one indeterminate x . An expression eq
is interpreted as the equation eq = 0 .

x — an identifier or an indexed identifier to be
solved for.

a — real or complex numerical starting value
for the internal search. Typically, a crude
approximation of the solution.

a..b — a range of numerical values defining a
search interval for the numerical root.

eqs — a list or a set of expressions or equations in
several indeterminates x1, x2, .. .
Expressions are interpreted as
homogeneous equations.

x1, x2, .. — identifiers or indexed identifiers to be
solved for.

a1, a2, .. — real or complex numerical starting values
for the internal search. Typically, crude
approximations of solution.

a1..b1, a2..b2, .. — ranges of numerical values defining search
intervals for the numerical root.

Options:

RestrictedSearch — makes numeric::fsolve return only
numerical roots in the user-defined search
range x = a..b and [x1 = a1..b1,
x2 = a2..b2, ..] , respectively. This is
the default search strategy, if a search
range with real range parameters is
specified for at least one of the unknowns.

UnrestrictedSearch — allows numeric::fsolve to find and
return solutions outside the specified
search range. With this option, the search
range is only used to choose random
starting points for the internal numerical
search.

MultiSolutions — makes numeric::fsolve return all
solutions found in the internal search

Random — With this option, several calls to
numeric::fsolve with the same input
parameters may produce different roots.

Return Value: A single numerical root is returned as a list of equations [x =
value] or [x1 = value1, x2 = value2, ..] , respectively. FAIL is re-
turned, if no solution is found. With the option MultiSolutions , sequences
of solutions may be returned.

46

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linsolve , numeric::linsolve ,
numeric::realroot , numeric::realroots , numeric::polyroots ,
numeric::polysysroots , numeric::solve , polylib::realroots ,
solve

Details:

A This is MuPAD’s numerical solver for non-linear systems of equations.
By default, it returns only one numerical solution.

A The equations must not contain symbolic objects other than the unknowns
that cannot be converted to numerical values via float . Symbolic ob-
jects such as PI or sqrt(2) etc. are accepted. The same holds true for
starting values and search ranges. Search ranges may contain±infinity .
Cf. example 2.

A numeric::fsolve implements a purely numerical Newton type root
search with a working precision set by the environment variable DIGITS .
Well separated simple roots should be exact within this precision. How-
ever, multiple roots or badly separated roots may be computed with a
restricted precision. Cf. example 3.

A For systems of equations, the expressions defining the equations must
have a symbolic derivative.

A Overdetermined systems (i.e., more equations than indeterminates) are
not accepted. However, there may be more indeterminates than equa-
tions. Cf. example 4.

A Specifying indeterminates [x1, x2, ..] without starting values or
search ranges is equivalent to the search ranges

[x1 = −infinity..infinity, x2 = −infinity..infinity, ..].

Note, however, that the user should assist numeric::fsolve by pro-
viding specific search ranges whenever possible!

A For real equations and real starting points or search ranges, the internal
Newton iteration will usually produce real values, i.e., numeric::fsolve
searches for real roots only (unless square roots, logarithms etc. happen
to produce complex values from real input). Use complex starting points
or search ranges to search for complex roots of real equations. Cf. exam-
ple 5.

A Starting values and search ranges can be mixed. Cf. example 6.

47

A Search ranges should only be provided, if a solution is known to exist
inside the search range. Otherwise, the search may take some time before
numeric::fsolve gives up.

A Specification of a search range primarily means that starting points from
this range are used for the internal Newton search. For sufficiently small
search ranges enclosing a solution the search will usually pick out this
solution. However, it may also happen that the Newton iteration drifts
towards other solutions. With the default search strategy Restrict-
edSearch , only solutions from the search range are accepted, even if
solutions outside the search range are found internally. With the search
strategy UnrestrictedSearch , any solution outside the search range
is accepted and returned. Cf. example 7.

A If starting values for all indeterminates are provided, then a single New-
ton iteration with these initial data is launched. It either leads to a solu-
tion or numeric::fsolve gives up and returns FAIL . The same holds
true if search ranges x = a..a or [x1 = a1..a1, x2 = a2..a2,
..] of zero length are specified.

The risc of failure is high when providing bad starting values!
Starting values are appropriate only if a sufficiently good approx-
imation of the solution is known! On the other hand, providing
good starting values is the fastest way to a solution. Cf. example 8.

!

A If at least one of the indeterminates has a non-trivial search range, then
numeric::fsolve uses several Newton iterations with different start-
ing values from the search range. Cf. example 9. Search ranges in con-
junction with the option UnrestrictedSearch provide a higher chance
of detecting roots than (bad) starting values!

A User defined assumptions such as assume(x > 0) are not taken
into account in the numerical search! Provide search ranges in-
stead! Cf. example 2.

!

A Convergence may be slow for multiple roots. Furthermore, nu-
meric::fsolve may fail to detect such roots. !

A setuserinfo(numeric::fsolve, 3) provides detailed information
on the internal search.

A Use linsolve or numeric::linsolve for systems of linear equations.
Use numeric::realroots , if all real roots of a single non-polynomial
real equation in a finite range are desired. Use polylib::realroots ,
if all real roots of a real univariate polynomial are desired. Use numeric::polyroots ,
if all real and complex roots of a univariate polynomial are desired. Use
numeric::solve , if all roots of a multivariate polynomial system are
desired.

48

Option <RestrictedSearch >:

A This is the default search strategy, so there is no need to specify this op-
tion explicitly. With this search strategy, only solutions matching search
ranges x = a..b or [x1 = a1..b1, x2 = a2..b2, ..] with real
range parameters are returned. A real starting point is regarded as the
search range [-infinity, infinity] . Complex starting points or
complex range parameters automatically switch to the search strategy
UnrestrictedSearch .

A Once a root with components (r1, r2, . . .) is found, it is checked whether
ai ≤ ri ≤ bi is satisfied. If the root is not inside the search range, the search
is continued. Note that solutions outside the search range may be found
internally. These may be accessed with the option MultiSolutions .
Cf. example 7.

Option <UnrestrictedSearch >:

A This option switches off the search strategy RestrictedSearch . With
UnrestrictedSearch , numeric::fsolve stops its internal search
whenever a root is found, even if the root is not inside the specified
search range. Starting points for the internal Newton search are taken
from the search range.

Option <MultiSolutions >:

A This option only has an effect when used with the default search strat-
egy RestrictedSearch . A sequence of all roots found in the internal
search is returned. Cf. example 7.

Option <Random>:

A With this option, random starting values are chosen for the internal search.
Consequently, calling numeric::fsolve several times with the same
parameters may lead to different solutions. This may be useful when
several roots of one and the same equation or set of equations are de-
sired.

49

Example 1. We compute roots of the sine function:

>> numeric::fsolve(sin(x) = 0, x)

[x = -226.1946711]

With the option Random, several calls may result in different roots:

>> numeric::fsolve(sin(x), x, Random)

[x = 97.38937226]

>> numeric::fsolve(sin(x), x, Random)

[x = 53.40707511]

Particular solutions can be chosen by an appropriate starting point close to the
wanted solution, or by a search interval:

>> numeric::fsolve(sin(x), x = 3),
numeric::fsolve(sin(x), x = -4..-3)

[x = 3.141592653], [x = -3.141592654]

The solutions found by numeric::fsolve can be used in subs and assign
to substitute or assign the indeterminates:

>> eqs := [x^2 = sin(y), y^2 = cos(x)]:
>> solution := numeric::fsolve(eqs, [x, y])

[x = -0.8517004887, y = 0.8116062152]

>> eval(subs(eqs, solution))

[0.7253937224 = 0.7253937224, 0.6587046485 = 0.6587046485]

>> assign(solution): x, y

-0.8517004887, 0.8116062152

>> delete eqs, solution, x, y:

Example 2. We demonstrate the use of search ranges. The following system
has solutions with positive and negative x . The solution with x > 0 is ob-
tained with the search interval x = 0..infinity :

>> numeric::fsolve([x^2 = exp(x*y), x^2 = y^2],
[x = 0..infinity, y])

[x = 0.7530891649, y = -0.753089165]

>> numeric::fsolve([x^2 = exp(x*y), x^2 = y^2],
[x = -infinity..0, y])

[x = -0.753089165, y = 0.7530891649]

50

Example 3. Multiple roots can only be computed with a restricted precision:

>> numeric::fsolve(expand((x - 1/3)^5), x = 0.3)

[x = 0.3333929968]

Example 4. The following system of equations is degenerate and has a 1-
parameter family of solutions. Each call to numeric::fsolve picks out one
random solution:

>> numeric::fsolve([x^2 - y^2, x^2 - y^2], [x, y], Random) $ i=1..3

[x = -140.1698476, y = 140.1698476],

[x = 34.70258251, y = 34.70258251],

[x = -29.16650501, y = 29.16650501]

The equation may also be specified as an underdetermined system:

>> numeric::fsolve([x^2 - y^2], [x, y])

[x = -140.1698476, y = 140.1698476]

Example 5. The following equation has no real solution. Consequently, the
numerical search with real starting values fails:

>> numeric::fsolve(sin(x) + cos(x)^2 = 3, x)

FAIL

With a complex starting value, a solution is found:

>> numeric::fsolve(sin(x) + cos(x)^2 = 3, x = I)

[x = 0.2972513613 + 1.128383965 I]

Also complex search ranges may be specified. In the following, the internal
starting point is a random value on the line from 2 + I to 3 + I :

>> numeric::fsolve(sin(x) + cos(x)^2 = 3, x = 2 + I..3 + I)

[x = 2.844341292 + 1.128383965 I]

51

Example 6. Starting values and search intervals can be mixed:

>> numeric::fsolve([x^2 + y^2 = 1, y^2 + z^2 = 1, x^2 + z^2 = 1],
[x = 1, y = 0..10, z])

[x = 0.7071067812, y = 0.7071067812, z = 0.7071067812]

Example 7. With UnrestrictedSearch , search intervals are only used for
choosing starting values for the internal Newton search. The numerical itera-
tion may drift towards a solution outside the search range:

>> eqs := [x*sin(10*x) = y^3, y^2 = exp(-2*x/3)]:
>> numeric::fsolve(eqs, [x = 0..1, y = -1..0],

UnrestrictedSearch)

[x = 1.232766202, y = -0.663038602]

With the default strategy RestrictedSearch , only solutions inside the search
range are accepted:

>> numeric::fsolve(eqs, [x = 0..1, y = -1..0])

[x = 0.9816416007, y = -0.7209295436]

In the last search, also the previous solution outside the search range was
found. With the option MultiSolutions , numeric::fsolve returns a se-
quence of all solutions that were found in the internal search:

>> numeric::fsolve(eqs, [x = 0..1, y = -1..0], MultiSolutions)

[x = 0.9816416007, y = -0.7209295436],

[x = 1.232766202, y = -0.663038602]

>> delete eqs:

Example 8. Usually, most of the time is spent internally searching for some
(crude) approximations of the root. If high precision roots are required, it
is recommended to compute first approximations with moderate values of
DIGITS and use them as starting values for a refined search:

>> eq := exp(-x) = x:
>> DIGITS := 10: firstApprox := numeric::fsolve(eq, x)

[x = 0.5671432904]

This output is suitable as input defining a starting value for x:

52

>> DIGITS := 1000: numeric::fsolve(eq, firstApprox)

[x = 0.5671432904097838729999686622103555497538...]

>> delete eq, firstApprox, DIGITS:

Example 9. Specifying starting values for the indeterminates launches a single
Newton iteration. This may fail, if the starting values are not sufficiently close
to the solution:

>> eq := [x*y = x + y - 4, x/y = x - y + 4]:
>> numeric::fsolve(eq, [x = 1, y = 1])

FAIL

If a search range is specified for at least one of the unknowns, then several
Newton iterations with random starting values in the search range are used,
until a solution is found or until numeric::fsolve gives up:

>> numeric::fsolve(eq, [x = 1, y = 0..10])

[x = 4.026449604e-14, y = 4.0]

>> delete eq:

Background:

A Internally the set of equations f (x) = 0 is solved by a modified Newton
iteration x → x − t (f ′(x))−1 f (x) with some adaptively chosen stepsize
t. For degenerate or ill-conditioned Jacobians f ′ a minimization strategy
for 〈 f , f 〉 is implemented. For scalar real equations, numeric::realroot
is used, if a real finite search range is specified.

Changes:

A numeric::fsolve is a new function.

A The functionality of the function numeric::fsolve of previous Mu-
PAD versions was moved to numeric::realroots .

numeric::gldata – weights and abscissae of Gauss-Legendre quadra-
ture

numeric::gldata(n, ..) returns the weights and the abscissae of the
Gauss-Legendre quadrature rule with n nodes.

53

Call(s):

A numeric::gldata(n, digits)

Parameters:
n — the number of nodes: a positive integer
digits — the number of decimal digits: a positive integer

Return Value: A list [b,c] is returned. The lists b=[b[1],..,b[n]] and
c=[c[1],..,c[n]] are numerical approximations of the weights and ab-
scissae with digits significant digits.

Side Effects: The function uses option remember . It is not sensitive to
the environment variable DIGITS , because the numerical working precision
is specified by the second argument digits .

Related Functions: numeric::gtdata , numeric::ncdata ,
numeric::quadrature

Details:

A The Gauss-Legendre quadrature rule ∑n
i=1 bi f (ci) produces the exact inte-

gral
∫ 1

0 f (x) dx for all polynomial integrands f (x) through degree 2n− 1.
The weights bi and abscissae ci are related to the roots of the n-th Legen-
dre polynomial.

A The weights and abscissae are computed by a straightforward numerical
algorithm with a working precision set by the argument digits . The
resulting floating point numbers are correct to digits decimal places.

A Typically, the argument digits should coincide with the actual value of
DIGITS .

A The data for n=20,40,80,160 with digits ≤ 200 are stored internally.
They are returned immediately without any computational costs.

A Due to the internal remember mechanism only the first call to numeric::gldata
leads to computational costs. For any further call with the same argu-
ments the data are returned immediately.

A For odd n the abscissa c(n+1)/2 = 1/2 and the corresponding weight b(n+1)/2
are rational numbers.

54

Example 1. The following call computes the Gaussian data with the default
precision of DIGITS=10 decimal digits:

>> numeric::gldata(4, DIGITS)

[[0.1739274226, 0.3260725774, 0.3260725774, 0.1739274226],

[0.0694318442, 0.3300094782, 0.6699905218, 0.9305681558]]

Example 2. For odd n exact rational data for c(n+1)/2 and b(n+1)/2 are returned:

>> DIGITS := 4: numeric::gldata(5, DIGITS)

[[0.1185, 0.2393, 64/225, 0.2393, 0.1185],

[0.04691, 0.2308, 1/2, 0.7692, 0.9531]]

>> delete DIGITS:

Background:

A The numerical integrator numeric::quadrature calls numeric::gldata
to provide the data for Gaussian quadrature.

Changes:

A Efficiency was improved.

numeric::gtdata – weights and abscissae of Gauss-Tschebyscheff
quadrature

numeric::gtdata(n) returns the weights and the abscissae of the Gauss-
Tschebyscheff quadrature rule with n nodes.

Call(s):

A numeric::gtdata(n)

Parameters:

n — the number of nodes: a positive integer

Return Value: A list [b,c] is returned. The lists b=[b[1],..,b[n]] and
c=[c[1],..,c[n]] are the exact weights and abscissae of the Gauss-Tschebyscheff
quadrature rule, respectively.

55

Side Effects: The function uses option remember . It is not sensitive to the
environment variable DIGITS .

Related Functions: numeric::gldata , numeric::ncdata ,
numeric::quadrature

Details:

A The Gauss-Tschebyscheff quadrature rule ∑n
i=1 bi f (ci) produces the exact

integral
∫ 1

0 f (x) dx for all integrands of the form f (x) = p(x)/
√

x (1− x)
with polynomials p(x) through degree 2n− 1.

A The exact weights b = [b1, . . . , bn] and abscissae c = [c1, . . . , cn] are given
by

bi =
π

2 n
sin
(

(2 i− 1)π
2 n

)
, ci =

1
2

(
1 + cos

(
(2 i− 1)π

2 n

))
.

Example 1. The following call produces exact data for the quadrature rule
with two nodes:

>> numeric::gtdata(2)

-- -- 1/2 1/2 -- -- 1/2 1/2 --
--

| | PI 2 PI 2 | | 2 2 | |
| | -------, ------- |, | ---- + 1/2, 1/2 - ---- | |
-- -- 8 8 -- -- 4 4 --

--

Background:

A The numerical integrator numeric::quadrature calls numeric::gtdata
to provide the data for Gauss-Tschebyscheff quadrature.

Changes:

A No changes.

numeric::indets – search for indeterminates

numeric::indets(object) returns a set of the indeterminates contained
in object .

56

Call(s):

A numeric::indets(object)

Parameters:

object — an arbitrary MuPAD object

Return Value: A set of indeterminates is returned, if the argument is an object
of some basic data type of the kernel. The empty set is returned, if the object is
from some library domain.

Related Functions: indets

Details:

A This is an auxiliary routine used by numeric::polyroots , numeric::quadrature ,
numeric::realroots , numeric::solve to find indeterminates.

A It recursively searches the operands of object for indeterminates. In
particular, the search is applied to the elements of lists, sets, arrays, ta-
bles, etc.

A Following objects are regarded as indeterminates: identifiers, indexed
identifiers and the indeterminates of DOM_POLYobjects. Also coefficients
of such polynomials are searched for indeterminates.

A Following objects are not regarded as indeterminates: the numerical con-
stants PI and EULER(of type Type::ConstantIdents) and zero operands
of expressions and subexpressions (i.e., the function names in unevalu-
ated function calls such as f(2)). Also integration variables in unevalu-
ated calls of int and numeric::quadrature and summation indices
in unevaluated calls of sum are not considered.

A An object of a library domain, characterized by

domtype(extop(object,0)) = DOM_DOMAIN,

is not searched for indeterminates. The empty set is returned. Cf. exam-
ple 3.

Example 1. Identifiers, indexed identifiers are regarded as indeterminates:

>> numeric::indets([{a + b*PI}, sin(c + sqrt(2) + EULER),
table(1 = d - cos(e), 2 = f + 0.1*I),
array(1..2, [g, h]), F(i[2], i[2]),
D([1], G)(j[1]), k[3 + L[4]]])

{a, b, c, d, e, f, g, h, i[2], j[1], k[L[4] + 3]}

57

Both indeterminates as well as symbolic coefficients are considered in polyno-
mials of domain type DOM_POLY:

>> numeric::indets(poly(a[1]*x^2 + a[2]*x +a, [x, y]))

{a, x, y, a[1], a[2]}

Example 2. The zero operands of unevaluated function calls such as f(..)
or exp(..) are not regarded as indeterminates:

>> numeric::indets(f(a + exp(b) + PI + EULER))

{a, b}

Integration variables and summation indices are not regarded as indetermi-
nates:

>> numeric::indets({int(f(x), x = a..b),
sum(f(i), i = c..infinity)})

{a, b, c}

Example 3. Only objects of basic kernel types such as lists, sets, arrays, tables,
expressions etc. are searched. This does not include matrices of domain type
matrix or various polynomial types:

>> numeric::indets(Dom::Matrix()([a,b])),
numeric::indets(Dom::DistributedPolynomial()(x^2 +a*x))

{}, {}

Changes:

A numeric::indets is a new function.

numeric::inverse – the inverse of a matrix

numeric::inverse(A, ..) returns the inverse of the matrix A.

Call(s):

A numeric::inverse(A <, Symbolic >)

58

Parameters:
A — a square matrix of domain type DOM_ARRAYor of category

Cat::Matrix

Options:

Symbolic — prevents conversion of input data to floats

Return Value: a matrix of domain type DOM_ARRAY. FAIL is returned, if the
inverse cannot be computed.

Side Effects: Without the option Symbolic the function is sensitive to the
environment variable DIGITS , which determines the numerical working pre-
cision.

Related Functions: linsolve , linalg::matlinsolve ,
numeric::linsolve , numeric::matlinsolve , solve

Details:

A Option Symbolic should be used, if the matrix contains symbolic ob-
jects that cannot be converted to floating point numbers.

A Without the option Symbolic all entries of A must be numerical. Float-
ing point arithmetic is used, the working precision is set by the envi-
ronment variable DIGITS . etc. are accepted and converted to floats. If
symbolic entries are found in the matrix, then numeric::inverse au-
tomatically switches to Symbolic , issuing a warning.

A Invertibility of the matrix can only be detected with exact arith-
metic, i.e., using Symbolic . Cf. example 2. !

A Matrices A of a matrix domain such as Dom::Matrix(..) or
Dom::SquareMatrix(..) are internally converted to arrays
over expressions via A::dom::expr(A) . Note that 1/A must be
used, when the inverse is to be computed over the component do-
main. Cf. example 3. Note that Symbolic should be used, if the
entries cannot converted to numerical expressions.

!

A We recommend to use numeric::linsolve , if a system of linear equa-
tions is to be solved. In particular, this routine is more efficient than
numeric::inverse for large sparse systems. It uses sparse input and
output via symbolic equations and features internal sparse arithmetic.

59

Option <Symbolic >:

A This option prevents conversion of the input data to floats. With this
option symbolic entries are accepted.

A This option should not be used for floating point matrices! No in-
ternal pivoting is used, unless necessary. Consequently, numerical
instabilities may occur in floating point operations. Cf. example 4.

!

Example 1. Numerical matrices can be processed with or without the option
Symbolic :

>> A := array(1..2, 1..2, [[1, 2], [3, PI]]):
>> numeric::inverse(A), numeric::inverse(A, Symbolic)

+- -
+

| PI 2 |
+- -+ | ------, - -----

- |
| -1.099071012, 0.6996903372 | | PI - 6 PI - 6 |
| |, | |
| 1.049535506, -0.3498451686 | | 3 1 |
+- -+ | - ------, ------

|
| PI - 6 PI - 6 |
+- -

+

Matrices of category Cat::Matrix are accepted. Note, however, that the in-
verse is returned as an array:

>> A := Dom::Matrix()([[2, PI], [0, 1]]):
>> numeric::inverse(A); domtype(%)

+- -+
| 0.5, -1.570796327 |
| |
| 0, 1.0 |
+- -+

DOM_ARRAY

>> delete A:

60

Example 2. The following matrix is not invertible:

>> A := array(1..2, 1..2, [[PI, PI^2], [PI^2, PI^3]]):

With exact arithmetic numeric::inverse detects this fact:

>> numeric::det(A, Symbolic), numeric::inverse(A, Symbolic)

0, FAIL

Due to internal round-off the matrix is regarded as invertible, if float arithmetic
is used:

>> numeric::det(A), numeric::inverse(A)

+- -
+

| 1.896479859e18, -6.036682882e17 |
1.796747287e-17, | |

| -6.036682882e17, 1.921535841e17 |
+- -

+

>> delete A:

Example 3. The following matrix has domain components:

>> A := Dom::Matrix(Dom::IntegerMod(7))([[6, -1], [1, 6]])

+- -+
| 6 mod 7, 6 mod 7 |
| |
| 1 mod 7, 6 mod 7 |
+- -+

Note that numeric::inverse computes the inverse of the following matrix:

>> A::dom::expr(A), numeric::inverse(A)

+- -+ +- -+
6, 6		0.2, -0.2
	,	
1, 6		-0.03333333333, 0.2
+- -+ +- -+

The overloaded arithmetic should be used, if the inverse is to be computed
over the component domain Dom::IntegerMod(7) :

>> 1/A

61

+- -+
| 3 mod 7, 4 mod 7 |
| |
| 3 mod 7, 3 mod 7 |
+- -+

>> delete A:

Example 4. The option Symbolic should not be used for float matrices, be-
cause no internal pivoting is used to stabilize the numerical algorithm:

>> A := array(1..2, 1..2, [[1.0/10^20, 1.0], [1.0, 1.0]]):
>> bad = numeric::inverse(A, Symbolic),

good = numeric::inverse(A)

+- -+ +- -
+

| 0.0, 1.0 | | -1.0, 1.0 |
bad = | |, good = | |

| 1.0, -10.0e-21 | | 1.0, -10.0e-21 |
+- -+ +- -

+

>> delete A, bad, good:

Background:

A Gaussian elimination with partial pivoting is used. Partial pivoting is
switched off by the option Symbolic .

Changes:

A Conversion of Cat::Matrix objects now uses the method "expr" of
the matrix domain.

A The return type was changed to DOM_ARRAY.

numeric::int – numerical integration (the float attribute of int)

numeric::int(f(x), x = a..b, ..) computes a numerical approxi-
mation of

∫ b
a f (x) dx.

62

Call(s):

A numeric::int(f(x), x = a..b <, options >)

A float(hold(int)(f(x), x = a..b <, options >))

A float(freeze(int)(f(x), x = a..b <, options >))

Parameters:
f(x) — expression in x
x — identifier or indexed identifier.
a,b — arbitrary expressions.

Options:

options — all options of numeric::quadrature can be used.

Return Value: a floating point number or an unevaluated int(f(x), x =
a..b <, options >) , if the integral cannot be evaluated numerically.

Related Functions: int , numeric::quadrature

Details:

A The calls numeric::int(arguments) , float(freeze(int)(arguments))
and float(hold(int)(arguments)) are equivalent.

A The calls numeric::int(arguments) and numeric::quadrature(arguments)
are almost equivalent: numeric::int calls numeric::quadrature .
A numerical result produced by numeric::quadrature is returned as
is. Otherwise hold(int)(arguments) is returned.

A See the help page of numeric::quadrature for details.

Example 1. We demonstrate some equivalent calls for numerical integration:

>> numeric::int(exp(x^2), x = -1..1),
float(hold(int)(exp(x^2), x = -1..1)),
float(freeze(int)(exp(x^2), x = -1..1)),
numeric::quadrature(exp(x^2), x = -1..1)

2.925303492, 2.925303492, 2.925303492, 2.925303492

>> numeric::int(max(1/10, cos(PI*x)), x = -2..0.0123),
float(hold(int)(max(1/10, cos(PI*x)), x = -2..0.0123)),
float(freeze(int)(max(1/10, cos(PI*x)), x = -2..0.0123)),
numeric::quadrature(max(1/10, cos(PI*x)), x = -2..0.0123)

0.7521024709, 0.7521024709, 0.7521024709, 0.7521024709

63

>> numeric::int(exp(-x^2), x = -2..infinity),
float(hold(int)(exp(-x^2), x = -2..infinity)),
float(freeze(int)(exp(-x^2), x = -2..infinity)),
numeric::quadrature(exp(-x^2), x = -2..infinity)

1.768308316, 1.768308316, 1.768308316, 1.768308316

>> numeric::int(sin(x)/x, x = -1..10, GaussLegendre = 5),
float(hold(int)(sin(x)/x, x = -1..10, GaussLegendre = 5)),
float(freeze(int)(sin(x)/x, x = -1..10, GaussLegendre = 5)),
numeric::quadrature(sin(x)/x, x = -1..10, GaussLegendre = 5)

2.604430665, 2.604430665, 2.604430665, 2.604430665

The calls numeric::int(..) , float(hold(int)(..)) and numeric::quadrature(..)
are equivalent in multiple numerical integrations, too:

>> numeric::int(numeric::int(x*y, x = 0..y), y = 0..1),
numeric::int(numeric::quadrature(x*y, x = 0..y), y = 0..1),
float(freeze(int)(numeric::int(x*y, x = 0..y), y = 0..1)),
float(hold(int)(numeric::quadrature(x*y, x = 0..y), y = 0..1)),
numeric::quadrature(numeric::int(x*y, x = 0..y), y = 0..1),
numeric::quadrature(numeric::quadrature(x*y, x = 0..y), y = 0..1)

0.125, 0.125, 0.125, 0.125, 0.125, 0.125

Example 2. The following integral do not exist. Consequently, numerical in-
tegration runs into problems:

>> numeric::quadrature(exp(x^2), x = 0..infinity)

Error: Overflow/underflow in arithmetical operation;
during evaluation of ’exp::float’

Note that numeric::int handles errors produced by numeric::quadrature
and returns an unevaluated call to int :

>> numeric::int(exp(x^2), x = 0..infinity)

2
int(exp(x), x = 0..infinity)

64

Changes:

A numeric::int used to be numeric::fint .

A This is a new function unifying the float attribute of int as well as nu-
meric::fint of MuPAD 1.4. Symbolic analysis of the integrand was
disabled, every aspect of the quadrature is now handled numerically.

A All options of numeric::quadrature are now allowed.

numeric::lagrange – polynomial interpolation

numeric::lagrange computes an interpolating polynomial through data
over a rectangular grid.

Call(s):

A numeric::lagrange(nodes, values, ind <, F >)

Parameters:
nodes — a list [L1, . . . , Ld] of d lists Li defining a d-dimensional

rectangular grid

{[x1, . . . , xd] ; x1 ∈ L1 , . . . , xd ∈ Ld} .

The lists Li may have different lengths ni = nops (Li). The
elements of each Li must be distinct.

values — a d-dimensional array (1..n1, . . . ,1..nd, [. . .]) associating a
value with each grid point:

[L1[i1], . . . , Ld[id]] −→ values[i1, . . . , id] ,

i1 = 1, ..,n1 , . . . , id = 1, ..,nd .

ind — a list of d indeterminates or arithmetical expressions.
Indeterminates are either identifiers (of domain type
DOM_IDENT) or indexed identifiers (of type "_index").

Options:

F — either Expr or any field of category Cat::Field

Return Value: An interpolating polynomial P of domain type DOM_POLYin
the indeterminates specified by ind over the coefficient field F is returned.
The elements in ind that are not indeterminates but arithmetical expressions
are not used as indeterminates in P, but enter its coefficients: the polynomial
is “evaluated” at these points. If no element of ind is an indeterminate, then
the value of the polynomial at the point specified by ind is returned. This is
an element of the field F or an expression, if F=Expr .

65

Related Functions: genpoly , numeric::cubicSpline , poly

Details:

A Assume that indeterminates ind = [X1, . . . ,Xd] are specified. The inter-
polating polynomial P = poly (· · · , [X1, . . . ,Xd], F) satisfies

evalp (P,X1 = L1[i1], . . . ,Xd = Ld[id]) = value[i1, . . . , id]

for all points [L1[i1], . . . , Ld[id]] in the grid. P is the polynomial of mini-
mal degree satisfying the interpolation conditions, i.e., degree (P,Xi) <
ni.

A If only interpolating values at concrete numerical points X1 = v1, . . . ,Xd =
vd are required, then we recommend not to compute P with symbolic
indeterminates ind = [X1, . . . ,Xd] and then evaluate P(v1, . . . , vd). It is
faster to compute this value directly by numeric::lagrange with ind =
[v1, . . . , vd]. Cf. examples 1 and 3.

Option <F>:

A The returned polynomial is of type poly(.., F) .

A For the default field Expr all input data may be arbitrary MuPAD expres-
sions. Standard arithmetic over such expressions is used to compute the
polynomial.

A For F6=Expr the grid nodes as well as the entries of values must be
elements of F or must be convertible to such elements. Conversion of the
input data to elements of F is done automatically.

Example 1. We consider a 1-dimensional interpolation problem. To each node
xi a value yi is associated. The interpolation polynomial P with P(xi) = yi is:

>> L1 := [1, 2, 3]:
values := array(1..3, [y1, y2, y3]):
P := numeric::lagrange([L1], values, [X])

/ / y1 y3 \ 2 / 5 y1 3 y3 \
poly| | -- - y2 + -- | X + | - ---- + 4 y2 - ---- | X +

\ \ 2 2 / \ 2 2 /

\
(3 y1 - 3 y2 + y3), [X] |

/

The evaluation of P at the point X = 5/2 is given by:

66

>> evalp(P, X = 5/2)

3 y2 y1 3 y3
---- - -- + ----

4 8 8

It can also be computed directly without the symbolic polynomial:

>> numeric::lagrange([L1], values, [5/2])

3 y2 y1 3 y3
---- - -- + ----

4 8 8

>> delete L1, values, P:

Example 2. We demonstrate multi-dimensional interpolation. Consider data
over the following 2× 3 grid:

>> XList := [1, 2]: YList := [1, 2, 3]:
values := array(1..2, 1..3, [[1, 2, 3], [3, 2, 1]]):
P := numeric::lagrange([XList, YList], values, [X, Y])

poly(- 2 X Y + 4 X + 3 Y - 4, [X, Y])

Next, interpolation over a 2× 3× 2 grid is demonstrated:

>> L1 := [1, 2]: L2 := [1, 2, 3]: L3 := [1, 2]:
values := array(1..2, 1..3, 1..2,

[[[1, 4], [1, 2], [3, 3]], [[1, 4], [1, 3], [4, 0]]]):
numeric::lagrange([L1, L2, L3], values, [X, Y, Z])

2 2
poly(- 3 X Y Z + 7/2 X Y + 10 X Y Z - 23/2 X Y - 7 X Z +

2 2
8 X + 7/2 Y Z - 3 Y - 27/2 Y Z + 12 Y + 13 Z - 11,

[X, Y, Z])

>> delete XList, P, L1, L2, L2, values:

67

Example 3. We interpolate data over a 2-dimensional grid:

>> n1 := 4: L1 := [i $ i = 1..n1]:
n2 := 5: L2 := [i $ i = 1..n2]:
f := (X, Y) -> 1/(1 + X^2 + Y^2):
values := array(1..n1, 1..n2,

[[f(L1[i], L2[j]) $ j=1..n2] $ i=1..n1]):

First we compute the symbolic polynomial:

>> P := numeric::lagrange([L1, L2], values, [X, Y])

3 4 3 3
poly(- 5563/23108085 X Y + 16376/4621617 X Y -

... -

4401895/3081078 Y + 4199983/2567565, [X, Y])

Fixing the value Y = 2.5 this yields a polynomial in X. It can also be computed
directly by using an evaluation point for the indeterminate Y:

>> numeric::lagrange([L1, L2], values, [X, 2.5])

3 2
poly(0.0007372500794 X - 0.002155538175 X -

0.03076935248 X + 0.1533997618, [X])

If all indeterminates are replaced by evaluation points, then the corresponding
interpolation value is returned:

>> numeric::lagrange([L1, L2], values, [1.2, 2.5])

0.1146465319

>> delete n1, n2, f, values, P:

Example 4. We demonstrate interpolation over a non-standard field. Con-
sider the following data over a 2× 3 grid:

>> XList := [3, 4]: YList := [1, 2, 3]:
values := array(1..2, 1..3, [[0, 1, 2], [3, 2, 1]]):

With the following call these data are converted to integers modulo 7. Arith-
metic over this field is used:

>> F := Dom::IntegerMod(7):
P := numeric::lagrange([XList, YList], values, [X, Y], F)

68

poly(5 X Y + 5 X + 5, [X, Y], Dom::IntegerMod(7))

Evaluation of P at grid points reproduces the associated values converted to
the field:

>> evalp(P, X = XList[2], Y = YList[3]) = F(values[2, 3])

1 mod 7 = 1 mod 7

>> delete XList, YList, values, F, P:

Background:

A For a d-dimensional rectangular grid

{[x1, . . . , xd] ; x1 ∈ L1 , . . . , xd ∈ Ld}
specified by the lists

L j = [x j1, . . . , x jn j
] , j = 1, . . . , d

with associated values

P(x1i1 , . . . , xdid) = vi1,...,id

the interpolating polynomial in the indeterminates X1, . . . ,Xd is given
by

P(X1, . . . ,Xd) =
n1

∑
i1=1
· · ·

nd

∑
id=1

vi1,...,id × p1i1(X1)× · · · × pdid (Xd)

with the Lagrange polynomials

p jk(X) = ∏
l=1,...,nj

l 6=k

X− x jl

x jk − x jl
, j = 1, . . . , d, k = 1, . . . ,n j

associated with the k-th node of the j-th coordinate.

Changes:

A numeric::lagrange used to be lagrange .

A Also 1-dimensional grids must now be specified as a list with a list of
nodes. The values must now be specified by an array. Also for 1-dimensional
interpolation the indeterminate must now be specified by a list.

A Interpolation is now possible over grids of arbitrary dimension. Further,
it is now possible to specify indeterminates as well as evaluation points.

numeric::linsolve – solve a system of linear equations

numeric::linsolve(eqs, ..) solves a system of linear equations.

69

Call(s):

A numeric::linsolve(eqs <, vars > <, Symbolic > <,
ShowAssumptions >)

Parameters:

eqs — a list or set of linear equations or expressions

Options:

vars — a list or set of unknowns to solve for.
Unknowns may be identifiers or indexed
identifiers or expressions.

Symbolic — prevents conversion of input data to floating
point numbers.

ShowAssumptions — returns information on internal assumptions
on symbolic parameters in eqs .

Return Value: Without the option ShowAssumptions a list of simplified
equations is returned. It represents the general solution of the system eqs .
FAIL is returned, if the system is not solvable.

With ShowAssumptions a list [Solution, Constraints, Pivots]
is returned. Solution is a list of simplified equations representing the gen-
eral solution of eqs . The lists Constraints and Pivots contain equations
and inequalities involving symbolic parameters in eqs . Internally these were
assumed to hold true when solving the system. [FAIL,[],[]] is returned, if
the system is not solvable.

Side Effects: Without the option Symbolic the function is sensitive to the
environment variable DIGITS , which determines the numerical working pre-
cision.

Related Functions: linalg::matlinsolve , linsolve ,
numeric::fsolve , numeric::inverse , numeric::matlinsolve ,
numeric::polyroots , numeric::polysysroots ,
numeric::realroots , polylib::realroots , solve

Details:

A numeric::linsolve is a fast numerical linear solver. It is also a rec-
ommended solver for linear systems with exact or symbolic coefficients
(using Symbolic).

A Expressions are interpreted as homogeneous equations. E.g., the input
[x=y-1,x-y] is interpreted as the system of equations [x=y-1,x-y=0] .

70

A Without the option Symbolic the input data are converted to
floating point numbers. The coefficient matrix A of the system
A x = b represented by eqs must not contain non-convertible pa-
rameters, unless the option Symbolic is used! If such objects are
found, then numeric::linsolve automatically switches to its
symbolic mode, issuing a warning. Symbolic parameters in the
“right hand side” b are accepted without warning.

!

A The numerical working precision is set by the environment variable DIGITS .

A The solutions are returned as a list of solved equations of the form

[x1 = value1, x2 = value2, . . .] ,

where x1, x2, . . . are the unknowns. These simplified equations should
be regarded as constraints on the unknowns. E.g., if an unknown x1,
say, does not turn up in the form [x1 = . . . , . . .] in the solution, then
there is no constraint on this unknown and it is an arbitrary parameter.
Generally, all unknowns that do not turn up on the left hand side of the
solved equations are arbitrary parameters spanning the solution space.
Cf. example 9.

In particular, if the empty list is returned as the solution, then there are
no constraints whatsoever on the unknowns, i.e., the system is trivial.

A The ordering of the solved equations corresponds to the ordering of the
unknowns vars . It is recommended that the user specifies vars by a a
list of unknowns. This guarantees that the solved equations are returned
in the expected order. If vars are specified by a set, or if no vars are
specified at all, then an internal ordering is used.

A numeric::linsolve returns the general solution of the system eqs . It
is valid for arbitrary complex values of the symbolic parameters which
may be present in eqs . If no such solution exists, then FAIL is returned.
Solutions that are valid only for special values of the symbolic param-
eters may be obtained with the option ShowAssumptions . Cf. exam-
ples 2, 3, 4, 10.

A The solved equations representing the solution are suitable as input for
assign and subs . Cf. example 8.

A numeric::linsolve is suitable for solving large sparse systems. Cf.
example 6.

A If eqs represents a system with a banded coefficient matrix, then this
is detected and used by numeric::linsolve . Note that in this case
it is important to enter eqs as a list and to specify the unknowns as a
list in order to guarantee the desired form of the coefficient matrix. The
elements of sets may be reordered internally, leading to a loss of band
structure and, consequently, of efficiency. Cf. example 6.

71

A numeric::linsolve is tuned for speed. For this reason it does
not check systematically that the equations eqs are indeed linear
in the unknowns! For non-linear equations strange things may
happen, numeric::linsolve might even return wrong results!
Cf. example 5.

!

A numeric::linsolve does not react to any assumptions on the
unknowns or on symbolic parameters that are set via assume . !

A Gaussian elimination with partial pivoting is used. Without the
option Symbolic , floating point arithmetic is used and the pivot-
ing strategy takes care of numerical stabilization. With Symbolic
exact data are assumed and the pivoting strategy tries do maxi-
mize speed, not taking care of numerical stabilization! Cf. exam-
ple 7.

!

Option <vars >:

A If no unknowns are specified by vars , then numeric::linsolve solves
for all symbolic objects in eqs . The unknowns are determined internally
by indets(eqs,PolyExpr) .

Option <Symbolic >:

A This option prevents conversion of the input data to floats.

A This option must be used, if the coefficients of the equations contain sym-
bolic parameters that cannot be converted to floating point numbers.

A This option should not be used for equations with floating point
coefficients! Numerical instabilities may occur in floating point
operations. Cf. example 7.

!

Option <ShowAssumptions >:

A This option is only useful, if the equations contain symbolic parame-
ters. Consequently, it should only be used in conjunction with the option
Symbolic .

A The format of the return value is changed to [Solution, Con-
straints, Pivots] . !

A Solution is a set of simplified equations representing the general solu-
tion subject to Constraints and Pivots .

72

A Constraints is a list of equations for symbolic parameters in eqs ,
which are necessary and sufficient to make the system solvable.

Such constraints arise, if Gaussian elimination of the original equations
leads to equations of the form 0 = c, where c is some expression involv-
ing symbolic parameters in the “right hand side” of the system. All
such equations are collected in Constraints . numeric::linsolve
assumes that these equations are satisfied and returns a solution.

If no such constraints arise, then the return value of Constraints is the
empty list.

A This option changes the return strategy for “unsolvable” systems.
Without the option Symbolic FAIL is returned, whenever Gaus-
sian elimination produces an equation 0 = c with non-zero c.
With ShowAssumptions such equations are returned via Con-
straints , provided c involves symbolic parameters.
If c is a purely numerical value, then [FAIL,[],[]] is returned.

!

A Pivots is a list of inequalities involving symbolic parameters in the co-
efficient matrix A of the linear system A x = b represented by eqs . In-
ternally, division by pivot elements occurs in the Gaussian elimination.
The expressions collected in Pivots are the numerators of those pivot
elements that contain symbolic parameters. If only numerical pivot ele-
ments were used, then the return value of Pivots is the empty list.

A Cf. examples 2, 3, 4, 10.

Example 1. Equations and variables may be entered as sets or lists:

>> numeric::linsolve({x = y - 1, x + y = z}, {x, y}),
numeric::linsolve([x = y - 1, x + y = z], {x, y}),
numeric::linsolve({x = y - 1, x + y = z}, [x, y]),
numeric::linsolve([x = y - 1, x + y = z], [x, y])

[y = 0.5 z + 0.5, x = 0.5 z - 0.5],

[y = 0.5 z + 0.5, x = 0.5 z - 0.5],

[x = 0.5 z - 0.5, y = 0.5 z + 0.5],

[x = 0.5 z - 0.5, y = 0.5 z + 0.5]

With the option Symbolic exact arithmetic is used. The following system has
a 1-parameter set of solution, the unknown x[3] is arbitrary:

>> numeric::linsolve([x[1] + x[2] = 2, x[1] - x[2] = 2*x[3]],
[x[1], x[2], x[3]], Symbolic)

73

[x[1] = x[3] + 1, x[2] = 1 - x[3]]

The unknowns may be expressions:

>> numeric::linsolve([f(0) - sin(x + 1) = 2, f(0) = 1 - sin(x + 1)],
[f(0), sin(x + 1)])

[f(0) = 1.5, sin(x + 1) = -0.5]

The following system does not have a solution:

>> numeric::linsolve([x + y = 1, x + y = 2], [x, y])

FAIL

Example 2. We demonstrate some examples with symbolic coefficients. Note
that the option Symbolic has to be used:

>> eqs := [x + a*y = b, x + A*y = b]:
>> numeric::linsolve(eqs, [x, y], Symbolic)

[x = b, y = 0]

Note that for a = A this is not the general solution. Using the option ShowAs-
sumptions it turns out, that the above result is the general solution subject to
the assumption a 6= A:

>> numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)

[[x = b, y = 0], [], [A - a <> 0]]

>> delete eqs:

Example 3. We give a further demonstration of the option ShowAssump-
tions . The following system does not have a solution for all values of the
parameter a:

>> numeric::linsolve([x + y = 1, x + y = a], [x, y], Symbolic)

FAIL

With ShowAssumptions numeric::linsolve investigates, under which
conditions (on a) there is a solution:

>> numeric::linsolve([x + y = 1, x + y = a], [x, y], Symbolic,
ShowAssumptions)

74

[[x = 1 - y], [a - 1 = 0], []]

We conclude that there is a 1-parameter set of solutions for a = 1. The con-
straint in a is a linear equation, since the parameter a enters the equations
linearly. If a is regarded as an unknown rather than as a parameter, then the
constraint becomes part of the solution:

>> numeric::linsolve([x + y = 1, x + y = a], [x, y, a], Sym-
bolic,

ShowAssumptions)

[[x = 1 - y, a = 1], [], []]

Example 4. With exact arithmetic PI is regarded as a symbolic parameter. The
following system has a solution subject to the constraint PI=1 :

>> numeric::linsolve([x = x - y + 1, y = PI], [x, y],
Symbolic, ShowAssumptions)

[[y = PI], [1 - PI = 0], []]

With floating point arithmetic PI is converted to 3.1415... . The system has
no solution:

>> numeric::linsolve([x = x - y + 1, y = PI], [x, y],
ShowAssumptions)

[FAIL, [], []]

Example 5. Since numeric::linsolve does not do a systematic internal
check for non-linearities, the user should make sure that the equations to be
solved are indeed linear in the unknowns. Otherwise strange things may hap-
pen. Garbage is produced for the following non-linear systems:

>> a := sin(x):
>> numeric::linsolve([y = 1 - a, x = y], [x, y], Symbolic)

[x = 1 - sin(0), y = 1 - sin(0)]

>> numeric::linsolve([a*x + y = 1, x = y], [x, y], Symbolic)

-- 1 1 --
| x = -------------, y = ------------- |
| 3 3 |
-- sin(x16) + 1 sin(x16) + 1 --

75

Polynomial non-linearities are usually detected. Regarding x,y,a as unknowns
the following quadratic system yields an error:

>> delete a: numeric::linsolve([x*a + y = 1, x = y], Symbolic)

Error: this system does not seem to be linear
[numeric::linsolve]

This system is linear in x,y , if a is regarded as a parameter:

>> numeric::linsolve([x*a + y = 1, x = y], [x, y], Symbolic)

-- 1 1 --
| x = -----, y = ----- |
-- a + 1 a + 1 --

Example 6. We solve a large sparse system. The coefficient matrix has only
3 diagonal bands. Note that both the equations as well as the variables are
passed as lists. This guarantees that the band structure is not lost internally:

>> n := 100: x[0] := 0: x[n + 1] := 0:
eqs := [x[i-1] - 2*x[i] + x[i+1] = 1 $ i = 1..n]:
vars := [x[i] $ i = 1..n]:
numeric::linsolve(eqs, vars)

[x[1] = -50.0, x[2] = -99.0, x[3] = -147.0, x[4] = -194.0,

..., x[98] = -147.0, x[99] = -99.0, x[100] = -50.0]

The band structure is lost, if the equations or the unknowns are specified by
sets. The following call takes more time than the previous call:

>> numeric::linsolve({op(eqs)}, {x[i] $ i = 1..n})

[x[86] = -645.0, x[49] = -1274.0, x[12] = -534.0,

... , x[87] = -609.0, x[50] = -1275.0, x[13] = -572.0]

>> delete n, x:

Example 7. The option Symbolic should not be used for equations with
floating point coefficients, because the symbolic pivoting strategy favors ef-
ficiency instead of numerical stability.

>> eqs := [x + 10^20*y = 10^20, x + y = 0]:

76

The float approximation of the exact solution is:

>> map(numeric::linsolve(eqs, [x, y], Symbolic), map, float)

[x = -1.0, y = 1.0]

We now convert the exact coefficients to floating point numbers:

>> feqs := map(eqs, map, float)

[x + 1.0e20 y = 1.0e20, x + y = 0.0]

The default pivoting strategy stabilizes floating point operations. Consequently,
one gets a correct result:

>> numeric::linsolve(feqs, [x, y])

[x = -1.0, y = 1.0]

With Symbolic the pivoting strategy optimizes speed, assuming exact arith-
metic. Numerical instabilities may occur, if floating point coefficients are in-
volved. The following incorrect result is caused by internal round-off effects
(“cancellation”):

>> numeric::linsolve(feqs, [x, y], Symbolic)

[x = 0, y = 1.0]

>> delete eqs, feqs:

Example 8. We demonstrate that the simplified equations representing the
solution can be used for further processing with subs :

>> eqs := [x + y = 1, x + y = a]:
>> [Solution, Constraints, Pivots] :=

numeric::linsolve(eqs, [x, y], ShowAssumptions)

[[x = 1.0 - 1.0 y], [a - 1.0 = 0], []]

>> subs(eqs, Solution)

[1.0 = 1, 1.0 = a]

The solution can be assigned to the unknowns via assign :

>> assign(Solution): x, y, eqs

1.0 - 1.0 y, y, [1.0 = 1, 1.0 = a]

>> delete eqs, Solution, Constraints, Pivots, x, y:

77

Example 9. If the solution of the linear system is not unique, then some of the
unknowns are used as “free parameters” spanning the solution space. In the
following example the unknown z is such a parameter. It does not turn up on
the left hand side of the solved equations:

>> eqs := [x + y = z, x + 2*y = 0, 2*x - z = -3*y, y + z = 0]:
>> vars := [w, x, y, z]:
>> Solution := numeric::linsolve(eqs, vars, Symbolic)

[x = 2 z, y = -z]

You may define a function such as the following NewSolutionList to re-
name your free parameters to “myName1”, “myName2” etc. and fill up your
list of solved equations accordingly:

>> NewSolutionList :=
proc(Solution : DOM_LIST, vars : DOM_LIST, myName : DOM_STRING)
local i, solvedVars, newEquation;
begin

solvedVars := map(Solution, op, 1);
for i from 1 to nops(vars) do

if not has(solvedVars, vars[i]) then
newEquation := vars[i] = genident(myName);
Solution := listlib::insertAt(

subs(Solution, newEquation), newEquation, i)
end_if

end_for:
Solution

end_proc:
>> NewSolutionList(Solution, vars, "FreeParameter")

[w = FreeParameter1, x = 2 FreeParameter2,

y = -FreeParameter2, z = FreeParameter2]

>> delete eqs, vars, Solution, NewSolutionList:

Example 10. We demonstrate, how a complete solution of the following linear
system in x,y with symbolic parameters may be found:

>> eqs := [x + y = A, a*x + b*y = 1, x + c*y = 1]:
>> numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)

-- -- A b - 1 1 - A a --
| | x = -------, y = ------- |,
-- -- b - a b - a --

--
[b - a - c - A b + A a c + 1 = 0], [b - a <> 0] |

--

78

This is the general solution, assuming a 6= b. We now set b = a to investigate
further solution branches:

>> eqs := subs(eqs, b = a):
>> numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)

-- -- A c - 1 1 - A -- -
-

| | x = -------, y = ----- |, [1 - A a = 0], [c - 1 <> 0] |
-- -- c - 1 c - 1 -- -

-

This is the general solution for a = b, assuming c 6= 1. We finally set c = 1 to
obtain the last solution branch:

>> eqs := subs(eqs, c = 1):
>> numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)

[[x = A - y], [1 - A = 0, 1 - A a = 0], []]

From the constraints on the symbolic parameters a and A we conclude that
there is a special 1-parameter solution x = 1− y for a = b = c = A = 1.

>> delete eqs:

Changes:

A numeric::linsolve is a new function.

numeric::matlinsolve – solve a linear matrix equation

numeric::matlinsolve(A, B, ..) returns the matrix solution X of the
matrix equation A X = B.

Call(s):

A numeric::matlinsolve(A, B <, Symbolic > <, ShowAs-
sumptions >)

Parameters:
A — an m× n matrix of domain type DOM_ARRAYor of category

Cat::Matrix .
B — an m× p matrix of domain type DOM_ARRAYor of category

Cat::Matrix . Column vectors B may also be represented by a
1-dimensional array(1..m,[B1,B2,..]) or by a list
[B1,B2,..] .

79

Options:

Symbolic — prevents conversion of input data to floating
point numbers

ShowAssumptions — returns information on internal assumptions
on symbolic parameters in A and B

Return Value: Without the option ShowAssumptions a list [X,KernelBasis]
is returned. The solution X is an n× p array. KernelBasis is an n× d array.
Its columns span the kernel of A. [FAIL,NIL] is returned, if the system is not
solvable.

With ShowAssumptions a list [X,KernelBasis,Constraints,Pivots]
is returned. The lists Constraints and Pivots contain equations and in-
equalities involving symbolic parameters in A and B. Internally these were
assumed to hold true when solving the system. [FAIL,NIL,[],[]] is re-
turned, if the system is not solvable.

Side Effects: Without the option Symbolic the function is sensitive to the
environment variable DIGITS , which determines the numerical working pre-
cision.

Related Functions: linalg::matlinsolve , linsolve ,
numeric::inverse , numeric::linsolve , solve

Details:

A numeric::matlinsolve is a fast numerical linear solver. It is also a
recommended solver for linear systems with exact or symbolic coeffi-
cients (use option Symbolic).

A Without Symbolic the input data are converted to floating point
numbers. The matrix A must not contain non-convertible param-
eters, unless Symbolic is used! If such objects are found, then
numeric::matlinsolve automatically switches to its symbolic
mode, issuing a warning. Symbolic parameters in B are accepted
without warning.

!

A The numerical working precision is set by the environment variable DIGITS .

A X is a special solution of A X = B.

A The n× d array KernelBasis is the most general solution of A X = 0.
Its columns span the d-dimensional kernel of A.

A If the kernel is empty, then the return value of KernelBasis is the null
vector represented by array(1..n,1..1,[0,..,0]) .

A If KernelBasis=array(1..n,1..1,[0,..,0]) , then the dimension
d of the kernel of A is d:=0 . Otherwise it is d:=op(KernelBasis,[0,3,2]]) .

80

A Due to roundoff errors some or all basis vectors in the kernel of A
may be missed in the numeric mode. !

A The special solution X in conjunction with KernelBasis provides the
general solution of A X = B. Solutions generated without the option
ShowAssumptions are valid for arbitrary complex values of the sym-
bolic parameters which may be present in A and B. If no such solution ex-
ists, then [FAIL,NIL] is returned. Solutions that are valid only for spe-
cial values of the symbolic parameters may be obtained with ShowAs-
sumptions . Cf. examples 3, 4, 7.

A numeric::matlinsolve internally uses a sparse representation of the
matrices. It is suitable for solving large sparse systems. Cf. example 5.
Note, however, that the input requires specification of entire matrices.
For this reason you should consider using numeric::linsolve which
allows to input the linear system as a sparse list of symbolic equations.

A numeric::matlinsolve does not react to any assumptions on
symbolic parameters in A,B that are set via assume . !

A Gaussian elimination with partial pivoting is used. Without op-
tion Symbolic the pivoting strategy takes care of numerical sta-
bilization. With Symbolic exact data are assumed. The symbolic
pivoting strategy tries do maximize speed and does not take care
of numerical stabilization! Cf. example 6.

!

A Cat::Matrix objects A from matrix domains such
as Dom::Matrix(..) or Dom::SquareMatrix(..)
are internally converted to arrays over expressions via
A::dom::expr(A) . Note that linalg::matlinsolve must be
used, when the solution is to be computed over the component
domain. Cf. example 8. Note that the option Symbolic should be
used, if the entries cannot be converted to numerical expressions.

!

Option <Symbolic >:

A This option prevents conversion of the input data to floats.

A This option must be used, if the matrix A contains symbolic parameters
that cannot be converted to floating point numbers.

A This option should not be used for matrices with floating point
entries! Numerical instabilities may occur in floating point opera-
tions. Cf. example 6.

!

81

Option <ShowAssumptions >:

A This option is only useful, if the matrices contain symbolic parameters.
Consequently, it should only be used in conjunction with the option
Symbolic .

A This option changes the format of the return value to [X, Ker-
nelBasis, Constraints, Pivots] . !

A Xand KernelBasis represent the general solution subject to Constraints
and Pivots .

A Constraints is a list of equations for symbolic parameters in B which
are necessary and sufficient for A X = B to be solvable.

Such constraints arise, if Gaussian elimination leads to equations of the
form 0 = c, where c is some expression involving symbolic parameters
contained in B. All such equations are collected in Constraints . nu-
meric::matlinsolve assumes that these equations are satisfied and
returns a special solution X.

If no such constraints arise, then the return value of Constraints is the
empty list.

A Constraints usually is a non-linear list of equation for
the symbolic parameters. It is not investigated by nu-
meric::matlinsolve , i.e., solutions may be returned, even if
the Constraints cannot be satisfied. Cf. example 3.

!

A This option changes the return strategy for “unsolvable” systems.
Without the option ShowAssumptions the result [FAIL,NIL]
is returned, whenever Gaussian elimination produces an equa-
tion 0 = c with non-zero c. With ShowAssumptions such
equations are returned via Constraints , provided c involves
symbolic parameters. If c is a purely numerical value, then
[FAIL,NIL,[],[]] is returned.

!

A Pivots is a list of inequalities involving symbolic parameters in A. In-
ternally, division by pivot elements occurs in the Gaussian elimination.
The expressions collected in Pivots are the numerators of those pivot
elements that involve symbolic parameters contained in A. If only nu-
merical pivot elements are used, then the return value of Pivots is the
empty list.

A Cf. examples 3, 4, 7.

82

Example 1. We use equivalent input formats B1, . . . ,B4 to represent a vector
with components [a, π]. First, this vector is defined as a 2-dimensional array:

>> A := array(1..2, 1..3, [[1, 2, 3],[1, 1, 2]]):
>> B1 := array(1..2, 1..1, [[a], [PI]]):
>> numeric::matlinsolve(A, B1)

-- +- -+ +- -+ --
	6.283185307 - 1.0 a		-1.0	
	1.0 a - 3.141592654	,	-1.0	
	0		1	
-- +- -+ +- -+ --

Next, we use a 1-dimensional array and compute an exact solution:

>> B2 := array(1..2, [a, PI]):
>> numeric::matlinsolve(A, B2, Symbolic)

-- +- -+ +- -+ --
	2 PI - a		-1	
	a - PI	,	-1	
	0		1	
-- +- -+ +- -+ --

Now a list is used to specify the vector. No internal assumptions were used by
numeric::matlinsolve to obtain the solution:

>> B3 := [a, PI]:
>> numeric::matlinsolve(A, B3, ShowAssumptions)

-- +- -+ +- -+ --

	6.283185307 - 1.0 a		-1.0	
	1.0 a - 3.141592654	,	-1.0	, [], []
	0		1	
-- +- -+ +- -+ --

Finally, we use Dom::Matrix objects to specify the system. Note that the
result are still arrays:

>> A := Dom::Matrix()([[1, 2, 3],[1, 1, 2]]):
>> B4 := Dom::Matrix()([a, PI]):

83

>> numeric::matlinsolve(A, B4)

-- +- -+ +- -+ --
	6.283185307 - 1.0 a		-1.0	
	1.0 a - 3.141592654	,	-1.0	
	0		1	
-- +- -+ +- -+ --

>> delete A, B1, B2, B3, B4:

Example 2. We invert a matrix by solving A X = 1:

>> A := array(1..3, 1..3, [[1, 1, 0], [0, 1, 1], [0, 0, 1]]):
>> B := array(1..3, 1..3, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]):
>> InverseOfA := numeric::matlinsolve(A, B, Symbolic)[1]

+- -+
| 1, -1, 1 |
| |
| 0, 1, -1 |
| |
| 0, 0, 1 |
+- -+

>> delete A, B, InverseOfA:

Example 3. We solve an equation with a symbolic parameter x:

>> M := Dom::Matrix():
>> A := M(3, 3, [[2, 2, 3], [1, 1, 2], [3, 3, 5]]):
>> B := M(3, 1, [sin(x)^2, cos(x)^2, 0]):
>> [X, Kernel, Constraints, Pivots] :=

numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

-- +- -+ -
-

	2	+- -+		
	5 sin(x)		-1	
				2 2
	0	,	1	, [cos(x) + sin(x) = 0], []
	2		0	
	- 3 sin(x)	+- -+		
-- +- -+ -

-

84

This solution holds subject to the constraint sin(x)2 + cos(x)2 = 0 on the pa-
rameter x. numeric::matlinsolve does not investigate the Constraints
and does not realize that they cannot be satisfied. We check the consistency
of the “result” by inserting the solution into the original system. For conve-
nience we convert the arrays X and Kernel to Dom::Matrix objects and use
the overloaded operators * and - for matrix multiplication and subtraction:

>> A*M(X) - B, A*M(Kernel)

+- -+
| 0 | +- -+
		0
2 2		
- cos(x) - sin(x)	,	0
0		0
+- -+ +- -+

>> delete M, A, B, X, Kernel, Constraints, Pivots:

Example 4. We give a further demonstration of the option ShowAssump-
tions . The following system does not have a solution for all values of the
parameter a:

>> A := array(1..2, 1..2, [[1, 1], [1, 1]]):
>> B := array(1..2, 1..1, [[1], [a]]):
>> numeric::matlinsolve(A, B, Symbolic)

[FAIL, NIL]

With ShowAssumptions numeric::matlinsolve investigates, under which
conditions (on a) there is a solution:

>> numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

-- +- -+ +- -+ --
	1		-1	
		,		, [a - 1 = 0], []
	0		1	
-- +- -+ +- -+ --

We conclude that there is a 1-dimensional solution space for a = 1.

>> delete A, B:

85

Example 5. We solve a large sparse system with 3 diagonal bands:

>> n := 100: A := Dom::Matrix()(n, n, [1, -2, 1], Banded):
>> B := array(1..n, [1 $ n]): numeric::matlinsolve(A, B)

-- +- -+ +- -+ --
	-50.0		0	
	-99.0		0	

... ...
| | | | | |
| | -50.0 | | 0 | |
-- +- -+ +- -+ --

>> delete n, A, B:

Example 6. The option Symbolic should not be used for equations with
floating point coefficients, because the symbolic pivoting strategy favors ef-
ficiency instead of numerical stability.

>> A := array(1..2, 1..2, [[1, 10^20], [1, 1]]):
>> B := array(1..2, 1..1, [[10^20], [0]]):

The float approximation of the exact solution is:

>> map(numeric::matlinsolve(A, B, Symbolic)[1], float)

+- -+
| -1.0 |
| |
| 1.0 |
+- -+

We now convert the exact input data to floating point approximations:

>> A := map(A, float): B := map(B, float):

The default pivoting strategy stabilizes floating point operations. Consequently,
one gets a correct result:

>> numeric::matlinsolve(A, B)[1]

+- -+
| -1.0 |
| |
| 1.0 |
+- -+

86

With the option Symbolic the pivoting strategy optimizes speed, assuming
exact arithmetic. Numerical instabilities may occur, if floating point coeffi-
cients are involved. The following result is caused by internal round-off effects
(“cancellation”):

>> numeric::matlinsolve(A, B, Symbolic)[1]

+- -+
| 0 |
| |
| 1.0 |
+- -+

>> delete A, B:

Example 7. We demonstrate, how a complete solution of the following linear
system with symbolic parameters may be found:

>> A := array(1..3, 1..2, [[1, 1], [a, b], [1, c]]):
>> B := array(1..3, 1..1, [[1], [1], [1]]):
>> numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

-- +- -+ -
-

	b - 1			
	-----	+- -+		
	b - a		0	
		,		, [a c - c - a + 1 = 0], [b - a <> 0]
	1 - a		0	
	-----	+- -+		
	b - a			
-- +- -+ -

-

This is the general solution, assuming a 6= b. We now set b = a to investigate
further solution branches:

>> A := subs(A, b = a):
>> numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

-- +- -+ +- -+ --
	1		0	
		,		, [1 - a = 0], [c - 1 <> 0]
	0		0	
-- +- -+ +- -+ --

This is the general solution for a = b, assuming c 6= 1. We finally set c = 1 to
obtain the last solution branch:

87

>> A := subs(A, c = 1):
>> numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

-- +- -+ +- -+ --
	1		-1	
		,		, [1 - a = 0], []
	0		1	
-- +- -+ +- -+ --

From the constraint on a we conclude that there is a 1-dimensional solution
space for the special values a = b = c = 1 of the symbolic parameters.

>> delete A, B:

Example 8. Matrices from a domain such as Dom::Matrix(..) are con-
verted to arrays with numbers or expressions. Hence numeric::matlinsolve
finds no solution for the following system:

>> M := Dom::Matrix(Dom::IntegerMod(7)):
>> A := M([[1, 4], [6, 3], [3, 2]]): B := M([[9], [5], [0]]):
>> numeric::matlinsolve(A, B)

[FAIL, NIL]

Use linalg::matlinsolve to solve the system over the coefficient field of
the matrices. A solution does exist over the field Dom::IntegerMod(7) :

>> linalg::matlinsolve(A, B)

+- -+
| 1 mod 7 |
| |
| 2 mod 7 |
+- -+

>> delete M, A, B:

Changes:

A numeric::matlinsolve is a new function.

numeric::ncdata – weights and abscissae of Newton-Cotes quadra-
ture

numeric::ncdata(n) returns the weights and the abscissae of the Newton-
Cotes quadrature rule with n equidistant nodes.

88

Call(s):

A numeric::ncdata(n)

Parameters:

n — the number of nodes: a positive integer

Return Value: A list [b,c] is returned. The lists b=[b[1],..,b[n]] and
c=[c[1],..,c[n]] are the rational weights and abscissae of the Newton-
Cotes quadrature rule, respectively.

Side Effects: The function uses option remember . It is not sensitive to the
environment variable DIGITS .

Related Functions: numeric::gldata , numeric::gtdata ,
numeric::quadrature

Details:

A The Newton-Cotes quadrature rule ∑n
i=1 bi f (ci) produces the exact inte-

gral
∫ 1

0 f (x) dx for all polynomials f through degree n− 1. If n is odd,
then the quadrature rule is exact through degree n.

A The equidistant abscissae c = [c1, . . . , cn] are given by ci = (i− 1)/(n− 1).

Example 1. The following call produces exact data for the quadrature rule
with four nodes:

>> numeric::ncdata(4)

[[1/8, 3/8, 3/8, 1/8], [0, 1/3, 2/3, 1]]

Background:

A The numerical integrator numeric::quadrature calls numeric::ncdata
to provide the data for Newton-Cotes quadrature.

Changes:

A No changes.

numeric::odesolve – numerical solution of an ordinary differen-
tial equation

89

numeric::odesolve(t0..t, f, Y0, ..) returns a numerical approxi-
mation of the solution Y(t) of the first order differential equation (dynamical
system)

dY
d t

= f (t,Y) , Y(t0) = Y0 , t0, t ∈ R , Y0,Y(t) ∈ Cn .

Call(s):

A numeric::odesolve(t0..t, f, Y0 <, method > <, Rela-
tiveError = tol > <, Stepsize = h>
<, Alldata = n> <, Symbolic >)

Parameters:
t0 — numerical real value for the initial time t0
t — numerical real value (the “time”)
f — procedure representing the vector field
Y0 — list or 1-dimensional array of numerical values representing the

initial condition Y0

Options:

method — name of the numerical scheme
RelativeError = tol — forces internal numerical Runge-Kutta

steps to use stepsizes with local
discretization errors below tol . This
tolerance must be a numerical real value
≥ 10−DIGITS.

Stepsize = h — switches off the internal error control and
uses a Runge-Kutta iteration with
constant stepsize h. h must be a
numerical real value.

Alldata = n — makes numeric::odesolve return a
list of numerical mesh points generated
by the internal Runge-Kutta iteration.
The integer n controls the size of the
output list.

Symbolic — makes numeric::odesolve return a
vector of symbolic expressions
representing a single symbolic step of the
Runge-Kutta iteration.

Return Value: The solution vector Y(t) is returned as a list or as a 1-dimensional
array of floating point values. The type of the result vector coincides with the
type of the input vector Y0. With the option Alldata a list of mesh data is
returned.

90

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: numeric::butcher , numeric::odesolve2 ,
plot::ode

Details:

A numeric::odesolve is a general purpose solver able to deal with ini-
tial value problems of various kinds of (non-stiff) ordinary differential
equations. Equations y(p) = f (t, y, y′, . . . , y(p−1)) of order p can be solved
by numeric::odesolve after reformulation to dynamical system form.
This can alway be achieved by writing the equation as a first order sys-
tem

d
dt

Y1
...

Yp−1
Yp

 =

Y2
...

Yp
f (t,Y1, . . . ,Yp)

for the vector [Y1, . . . ,Yp] = [y, y′, . . . , y(p−1)]. Cf. example 4.

A The input data t0 , t and Y0 must not contain symbolic objects which
cannot be converted to floating point values via float . Numerical ex-
pressions such as exp(PI) , sqrt(2) etc. are accepted.

A The vector field f defining the dynamical system Y′ = f (t,Y) must be
represented by a procedure with two input parameters: the scalar time
t and the vector Y. numeric::odesolve internally calls this function
with real floating point values t and a list Y of floating point values. It
has to return the vector f (t,Y) either as a list or as a 1-dimensional array.
The output of f may contain numerical expressions such as PI , exp(2)
etc. However, all values must be convertible to real or complex floating
point numbers by float .

A Also autonomous systems, where f (t,Y) does not depend on t, must be
represented by a procedure with 2 arguments t and Y.

A Also for scalar equations Y has to be represented by a list or an array
with one element. For instance, the input data for the scalar initial value
problem y′ = t sin(y), y(0) = 1 may be of the form

f := proc(t,Y) /* Y is a 1-dimensional vector */
local y; /* represented by a list with */
begin /* one element: Y = [y]. */

y := Y[1];
[t*sin(y)] /* the output is a list with 1 element */

end_proc:
Y0 := [1]: /* the initial value */

91

A The numerical precision is controlled by the global variable DIGITS : an
adaptive control of the stepsize keeps local relative discretization errors
below tol = 10−DIGITS, unless a different tolerance is specified via the
option RelativeError =tol . The error control may be switched off by
specifying a fixed Stepsize = h.

A Only local errors are controlled by the adaptive mechanism. No
control of the global error is provided! !

A With Y := t -> numeric::odesolve(t0..t, f, Y0 <,options >)
the numerical solution can be repesented by a MuPAD function: the call
Y(t) will start the numerical integration from t0 to t . A more sophisti-
cated form of this function may be generated via

Y := numeric::odesolve2(f, t0, Y0 <, options >)

This equips Y with a remember mechanism that uses previously com-
puted values to speed up the computation. Cf. example 2.

A For systems of the special form Y′ = f (t,Y)Y with a matrix valued func-
tion f (t,Y) there is a special solver numeric::odesolveGeometric
which preserves geometric features of the system more faithfully than
numeric::odesolve .

Option <method >:

A Presently the following single step Runge-Kutta type methods are im-
plemented:

EULER1(order 1), RKF43 (order 3), xRKF43 (order 3),
RKF34 (order 4), xRKF34 (order 4), RK4 (order 4),
RKF54a (order 4), RKF54b (order 4), DOPRI54 (order 4),
xDOPRI54(order 4), CK54 (order 4), xRKF54a (order 4),
xRKF54b (order 4), xCK54 (order 4), RKF45a (order 5),
RKF45b (order 5), DOPRI45 (order 5), CK45 (order 5),
xRKF45a (order 5), xRKF45b (order 5), xDOPRI45(order 5),
xCK45 (order 5), BUTCHER6(order 6), RKF87 (order 7),
xRKF87 (order 7), RKF78 (order 8), xRKF78 (order 8).

The Background below provides some information on these methods.

A There is usually no need to change the default method RKF78by this op-
tion. This method is an embedded Runge-Kutta-Fehlberg pair of orders
7 and 8.

A Cf. example 6.

92

Option <RelativeError = tol >:

A The internal control mechanism estimates the local relative discretization
error of a Runge-Kutta step and adjusts the stepsize adaptively to keep
this error below tol .

A The default setting of tol = 10−DIGITS ensures that the local discretiza-
tion errors are of the same order of magnitude as numerical roundoff.

Usually there is no need to use this option to change this setting. How-
ever, occasionally the numerical evaluation of the Runge-Kutta steps
may be ill-conditioned or stepsizes are so small that the time parameter
cannot be incremented by the stepsize within working precision. In such
a case this option may be used to bound the local discretization error by
tol and use a higher working precision given by DIGITS .

A Only real numerical values tol ≥ 10−DIGITS are accepted.

A The global error of the result returned by numeric::odesolve
is usually larger than the local errors bounded by tol . Although
the result is displayed with DIGITS decimal places one should not
expect that all of them are correct. The relative precision of the final
result is tol at best!

!

A Cf. example 7.

Option <Stepsize = h>:

A By default, numeric::odesolve uses an adaptive stepsize control mech-
anism in the numerical iteration. The option Stepsize =h switches off
this adaptive mechanism and uses the Runge-Kutta method specified by
method (or the default method RKF78) with constant stepsize h.

A A final step with smaller stepsize is used to match the end t of the inte-
gration interval t0..t , if (t-t0)/h is not integer.

A With this option there is no automatic error control! Depending on
the problem and on the order of the method the result may be a
poor numerical approximation of the exact solution.

!

A There is usually no need to invoke this option. However, occasionally
the built-in adaptive error control mechanism may fail when integrating
close to a singularity. In such a case this option may be used to customize
a control mechanism for the global error by using different stepsizes and
investigating the convergence of the corresponding results.

A Cf. example 8.

93

Option <Alldata = n>:

A With this option numeric::odesolve returns a list of numerical mesh
points

[[t0, Y0], [t1, Y1], .., [t, Y(t)]]

generated by the internal Runge-Kutta iteration.

A The integer n controls the size of the output list. For n = 1 all internal
mesh points are returned. This case may also be invoked by entering
the simplified option Alldata , which is equivalent to Alldata =1. For
n > 1 only each n-th mesh point is stored in the list. The list always
contains the initial point [t0,Y0] and the final point [t,Y(t)] . For
n ≤ 0 only the data [[t0,Y0],[t,Y(t)]] are returned.

A The output list may be useful to inspect the internal numerical process.
Also further graphical processing of the mesh data may be useful.

A Cf. example 9.

Option <Symbolic >:

A The call numeric::odesolve(t0..t, f, Y0, <method >, Sym-
bolic) returns a vector (list or array) of expressions representing a sin-
gle step of the numerical scheme with stepsize t-t0 . In this mode sym-
bolic values for t0 , t and the components of Y0 are accepted.

A This option may be useful, if the specified numerical method applied to
a given differential equation is to be investigated symbolically.

A Cf. example 10.

Example 1. We compute the numerical solution y(10) of the initial value prob-
lem y′ = t sin(y), y(0) = 2:

>> f := proc(t, Y) begin [t*sin(Y[1])] end_proc:
>> numeric::odesolve(0..10, f, [2])

[3.141592654]

>> delete f:

94

Example 2. We consider y′ = y, y(0) = 1. The numerical solution may be
represented by the function

>> Y := t -> numeric::odesolve(0..t, (t,Y) -> Y, [1]):

Calling Y(t) starts the numerical integration:

>> Y(-5), Y(0), Y(1), Y(PI)

[0.006737946999], [1.0], [2.718281828], [23.14069263]

>> delete Y:

Example 3. We compute the numerical solution Y(π) = [x(π), y(π)] of the sys-
tem

x′ = x + y , y′ = x− y , x(0) = 1 , y(0) =
√
−1 .

>> f := (t, Y) -> [Y[1] + Y[2], Y[1] - Y[2]]: Y0 := [1, I]:
>> numeric::odesolve(0..PI, f, Y0)

[72.57057162 + 30.05484302 I, 30.05484302 + 12.46088558 I]

The solution of a linear dynamical system Y′ = A Y with a constant matrix A
is Y(t) = exp(t A) Y0. The solution of the system above can also be computed
by:

>> t := PI: tA := array(1..2, 1..2, [[t, t], [t, -t]]):
>> numeric::expMatrix(tA, Y0)

[72.57057163 + 30.05484303 I, 30.05484303 + 12.46088558 I]

>> delete f, Y0, t, tA:

Example 4. We compute the numerical solution y(1) of the differential equa-
tion y′′ = y2 with initial conditions y(0) = 0, y′(0) = 1. The second order equa-
tion is converted to a first order system for Y = [y, y′] = [y, z]:

y′ = z , z′ = y2 , y(0) = 0 , z(0) = 1 .

>> f := proc(t, Y) begin [Y[2], Y[1]^2] end_proc: Y0 := [0, 1]:
>> numeric::odesolve(0..1, f, Y0)

[1.087473533, 1.362851121]

>> delete f, Y0:

95

Example 5. We demonstrate how numerical data can be obtained on a user
defined time mesh t[i] . The initial value problem is y′ = sin(t)− y, y(0) = 1,
the sample points are t[0]=0.0 , t[1]=0.1 , . . . , t[100]=10.0 . First, we
define the differential equation and the initial condition:

>> f := (t, Y) -> [sin(t) - Y[1]]: Y[0] := [1]:

We define the time mesh:

>> for i from 0 to 100 do t[i] := i/10 end_for:

The equation is integrated iteratively from t[i-1] to t[i] with a working
precision of 4 significant decimal places:

>> DIGITS := 4:
>> for i from 1 to 100 do

Y[i] := numeric::odesolve(t[i-1]..t[i], f, Y[i-1])
end_for:

The following mesh data are produced:

>> [t[i], Y[i]] $ i = 0..100

[[0, [1]], [1/10, [0.9097]], [1/5, [0.8374]], [3/10, [0.7813]],

[2/5, [0.7397]], ... , [99/10, [0.2159]], [10, [0.1476]]]

These data can be displayed by a list plot:

>> plotpoints := [point(t[i], op(Y[i])) $ i = 0..100]:
>> plot2d([Mode = List, plotpoints])

The same plot can be obtained directly via plot::ode :

>> plot(plot::ode(
[t[i] $ i = 0..100], f, Y[0],
[(t, Y) -> [t, Y[1]], Style = Points]))

>> delete f, t, DIGITS, Y, plotpoints:

Example 6. We compute the numerical solution y(1) of y′ = y, y(0) = 1 by the
classical 4-th order Runge-Kutta method RK4. By internal local extrapolation,
its effective order is 5:

>> f := (t, Y) -> Y: DIGITS := 13:
>> numeric::odesolve(0..1, f, [1], RK4)

[2.718281828459]

96

Next we use local extrapolation xRKF78 of the 8-th order submethod of the
Runge-Kutta-Fehlberg pair RKF78. This scheme has effective order 9:

>> numeric::odesolve(0..1, f, [1], xRKF78)

[2.718281828459]

Both methods yield the same result because of the internal adaptive error con-
trol. However, due to its higher order, the method xRKF78 is faster.

>> delete f, DIGITS:

Example 7. We consider the initial value problem y′ = −1010 y (1− cos(y)),
y(0) = 1. We note that the numerical evaluation of the right hand side of the
equation suffers from cancellation effects, when |y| is small.

>> f := (t, Y) -> [-10^10*Y[1]*(1 - cos(Y[1]))]: Y0 := [1]:

We first attempt to compute y(1) with a working precision of 4 digits using the
default setting RelativeError = 10DIGITS = 10−4:

>> DIGITS := 4: numeric::odesolve(0..1, f, Y0)

[2.931e-5]

Due to numerical roundoff in the internal steps no digit of this result is correct.
Next we use a working precision of 20 significant decimal places to eliminate
roundoff effects:

>> DIGITS := 20:
>> numeric::odesolve(0..1, f, Y0, RelativeError = 10^(-4))

[0.0000099999997577602193132]

Since relative local discretization errors are of the magnitude 10−4, not all dis-
played digits are trustworthy. We finally use a working precision of 20 digits
and constrain the local relative discretization errors by the tolerance 10−10:

>> numeric::odesolve(0..1, f, Y0, RelativeError = 10^(-10))

[0.000010000000000493745906]

>> delete f, Y0, DIGITS:

97

Example 8. We compute the numerical solution y(1) of y′ = y, y(0) = 1 with
various methods and various constant stepsizes. We compare the result with
the exact solution y(1) = exp(1) = 2.718281828....

>> f := (t, Y) -> Y: Y0 := [1]:

We first use the Euler method of order 1 with two different stepsizes:

>> Y := numeric::odesolve(0..1, f, Y0, EULER1, Stepsize = 0.1):
>> Y, globalerror = float(exp(1)) - Y[1]

[2.59374246], globalerror = 0.1245393684

Decreasing the stepsize by a factor of 10 should reduce the global error by a
factor of 10. Indeed:

>> Y := numeric::odesolve(0..1, f, Y0, EULER1, Stepsize = 0.01):
>> Y, globalerror = float(exp(1)) - Y[1]

[2.70481383], globalerror = 0.01346799904

Next we use the classical Runge-Kutta method of order 4 with two different
stepsizes:

>> Y := numeric::odesolve(0..1, f, Y0, RK4, Stepsize = 0.1):
>> Y, globalerror = float(exp(1)) - Y[1]

[2.718279744], globalerror = 0.000002084323879

Decreasing the stepsize by a factor of 10 in a 4-th order scheme should reduce
the global error by a factor of 104. Indeed:

>> Y := numeric::odesolve(0..1, f, Y0, RK4, Stepsize = 0.01):
>> Y, globalerror = float(exp(1)) - Y[1]

[2.718281828], globalerror = 0.0000000002246438649

>> delete f, Y0, Y:

Example 9. We integrate y′ = y2, y(0) = 1 over the interval t ∈ [0,0.99] with a
working precision of 4 digits. The exact solution is y(t) = 1/(1− t). Note the
singularity at t = 1.

>> DIGITS := 4: f := (t, Y) -> [Y[1]^2]: Y0 := [1]:

The option Alldata , equivalent to Alldata =1, yields all mesh data gener-
ated during the internal adaptive process:

>> numeric::odesolve(0..0.99, f, Y0, Alldata)

98

[[0.0, [1.0]], [0.5668, [2.308]], [0.7784, [4.513]],

[0.8842, [8.636]], [0.9371, [15.9]], [0.9636, [27.43]],

[0.9768, [43.05]], [0.99, [99.99]]]

With Alldata =2, only each second point is returned:

>> numeric::odesolve(0..0.99, f, Y0, Alldata = 2)

[[0.0, [1.0]], [0.7784, [4.513]], [0.9371, [15.9]],

[0.9768, [43.05]], [0.99, [99.99]]]

One can control the time mesh using the option Stepsize =h:

>> numeric::odesolve(0..0.99, f, Y0, Stepsize=0.1, Alldata = 1)

[[0.0, [1.0]], [0.1, [1.111]], [0.2, [1.25]], [0.3, [1.429]],

[0.4, [1.667]], [0.5, [2.0]], [0.6, [2.5]], [0.7, [3.333]],

[0.8, [5.0]], [0.9, [10.0]], [0.99, [131.2]]]

However, with the option Stepsize =h, no automatic error control is pro-
vided by numeric::odesolve . Note the poor approximation y(t) = 131.1
for t = 0.99 (the exact value is y(0.99) = 100.0). The next computation with
smaller stepsize yields better results:

>> numeric::odesolve(0..0.99, f, Y0, Stepsize = 0.01, All-
data = 10)

[[0.0, [1.0]], [0.1, [1.111]], [0.2, [1.25]], [0.3, [1.429]],

[0.4, [1.667]], [0.5, [2.0]], [0.6, [2.5]], [0.7, [3.333]],

[0.8, [5.0]], [0.9, [10.0]], [0.99, [100.0]]]

Example 5 demonstrates how accurate numerical data on a user defined time
mesh can be generated using the automatic error control of numeric::odesolve .

>> delete DIGITS, f, Y0:

Example 10. The second order equation y′′ + sin(y) = 0 is written as the dy-
namical system y′ = z, z′ =− sin(y) for the vector Y = [y, z]. A single symbolic
step

[y(t0), z(t0)] 7→ [y(t0 + h), z(t0 + h)]

of the Euler method is computed:

99

>> f := proc(t, Y) begin [Y[2], -sin(Y[1])] end_proc:
>> numeric::odesolve(t0..t0+h, f, [y0, z0], EULER1, Symbolic)

[y0 + h z0, z0 - h sin(y0)]

>> delete f:

Background:

A All methods presently implemented are adaptive versions of Runge-Kutta
type single step schemes. References:

J.C. Butcher: “The Numerical Analysis of Ordinary Differential Equa-
tions”, Wiley, Chichester (1987).

E. Hairer, S.P. Nørsett and G. Wanner: “Solving Ordinary Differential
Equations I”, Springer, Berlin (1993).

A The methods RKF43, RKF34, RKF54a, RKF54b, RKF45a, RKF45b, RKF87,
RKF78, DOPRI54, DOPRI45, CK54, CK45 are embedded pairs of Runge-
Kutta-Fehlberg, Dormand-Prince and Cash-Karp type, respectively. Es-
timates of the local discretization error are obtained in the usual way by
comparing the results of the two submethods of the pair. The names indi-
cate the orders of the subprocesses. For instance, RKF34 and RKF43 de-
note the same embedded Runge-Kutta-Fehlberg pair with orders 3 and 4.
In RKF34 the result of the fourth order submethod is accepted, whereas
RKF43 advances using the result of the third order submethod. In both
cases the discretization error of the lower order subprocess is estimated
and controlled.

A For the single methods EULER1(the first order Euler scheme), RK4 (the
classical fourth order Runge-Kutta scheme) and BUTCHER6(a Runge-
Kutta scheme of order 6) the relative local error is controlled by compar-
ing steps with different stepsizes. The effective order of these methods is
increased by one through local extrapolation.

A Local extrapolation is also available for the submethods of the embed-
ded pairs. For instance, the method xRKF78 uses extrapolation of the
8-th order subprocess of RKF78, yielding a method of effective order 9.
The 7-th order subprocess is ignored. The cheap error estimate based on
the embedded pair is not used implying some loss of efficiency when
comparing RKF78 (order 8) and RKF78 (effective order 9).

A The call numeric::butcher(method) returns the Butcher data of the
methods used in numeric::odesolve . Here method is one of EU-
LER1, RKF43, RK4, RKF34, RKF54a, RKF54b, DOPRI54, CK54, RKF45a,
RKF45b, DOPRI45, CK45, BUTCHER6, RKF87, RKF78.

A Only local errors are controlled by the adaptive mechanism. No
control of the global error is provided! !

100

A The run time of the numerical integration with a method of order
p grows like O(10DIGITS/(p+1)), when DIGITS is increased. Compu-
tations with high precision goals are very expensive! High order
methods such as the default method RKF78 should be used.

!

A Presently only explicit single step methods of Runge-Kutta type are im-
plemented. Stiff problems cannot be handled efficiently with these meth-
ods.

A For problems of the special type Y′ = f (t,Y)Y with a matrix valued func-
tion f (t,Y) there is a specialized (“geometric”) integration routine nu-
meric::odesolveGeometric . Generally, numeric::odesolve is
faster than the geometric integrator. However, odesolveGeometric
preserves certain invariants of the sytem more faithfully.

Changes:

A The new option RelativeError =tol allows to set a precision goal in-
dependent of the working precision.

numeric::odesolve2 – numerical solution of an ordinary differen-
tial equation

numeric::odesolve2(f, t0, Y0, ..) returns a function representing
the numerical solution Y(t) of the first order differential equation (dynamical
system)

dY
d t

= f (t,Y) , Y(t0) = Y0 , t0, t ∈ R , Y0,Y(t) ∈ Cn .

Call(s):

A numeric::odesolve2(f, t0, Y0 <, method > <, Rela-
tiveError = tol > <, Stepsize =
h>)

Parameters:
f — procedure representing the vector field of the dynamical system
t0 — numerical real value for the initial time t0
Y0 — list or 1-dimensional array of numerical values representing the

initial value Y0.

101

Options:

method — name of the numerical scheme, see
numeric::odesolve .

RelativeError = tol — forces internal numerical Runge-Kutta
steps to use stepsizes with local
discretization errors below tol . This
tolerance must be a numerical real value
≥ 10−DIGITS.

Stepsize = h — switches off the internal error control and
uses a Runge-Kutta iteration with
constant stepsize h. h must be a
numerical real value.

Return Value: a procedure.

Side Effects: The function returned by numeric::odesolve2 is sensitive to
the environment variable DIGITS , which determines the numerical working
precision. It uses option remember .

Related Functions: numeric::odesolve

Details:

A The function generated by

Y := numeric::odesolve2(f, t0, Y0 <, options >)

is essentially

Y := t -> numeric::odesolve(t0..t, f, Y0 <,options >).

A Numerical integration is launched, when Y is called with a real numeri-
cal argument. The call Y(t) returns the solution vector in a format cor-
responding to the type of the initial condition Y0 with which Y was de-
fined: Y(t) either yields a list or a 1-dimensional array.

If t is not a real numerical value, then Y(t) returns an unevaluated func-
tion call.

A See the help page of numeric::odesolve for details on the parameters
and the options.

A The options Alldata =n and Symbolic accepted by numeric::odesolve
have no effect: numeric::odesolve2 ignores these options.

102

A The function Y remembers all values it has computed. When call-
ing Y(t) it searches its remember table for the time T closest to t
and integrates from T to t using the previously computed Y(T) as
initial value. This reduces the costs of a call considerably, if Y has
to be evaluated many times (e.g., when plotting). However, the re-
sult Y(t) depends on the history of the MuPAD session! This can
lead to unexpected side effects. Cf. example 3. We recommend
to call Y only with a monotonically increasing (or decreasing) se-
quence of values t starting from t0 . Further, the function must be
re-initialized whenever DIGITS is increased. Cf. example 4.

!

A After the command setuserinfo(Y,1) information on the current in-
tegration interval is displayed by each call to Y.

Example 1. The numerical solution of the initial value problem y′ = t sin(y),
y(0) = 2 is represented by the following function Y = [y]:

>> f := (t, Y) -> [t*sin(Y[1])]: t0 := 0: Y0 := [2]:
>> Y := numeric::odesolve2(f, 0, [2])

proc Y(t) ... end

It starts numerical integration upon call with a numerical argument:

>> Y(-2), Y(0), Y(0.1), Y(PI + sqrt(2))

[2.968232567], [2.0], [2.004541745], [3.141552691]

Calling Y with a symbolic argument yields an unevaluated call:

>> Y(t), Y(t + 5), Y(t^2 - 4)

2
Y(t), Y(t + 5), Y(t - 4)

>> eval(subs(%, t = PI))

[3.13235701], [3.141592654], [3.141592611]

The numerical solution can be plotted. Note that Y(t) returns a list, so we
plot the list element Y(t)[1] :

>> plotfunc2d(Y(t)[1], t = -5..5)
>> delete f, t0, Y0, Y:

103

Example 2. We consider the differential equation y′′ = y2 with initial condi-
tions y(0) = 0, y′(0) = 1. The second order equation is converted to a first order
system for Y = [Y1,Y2] = [y, y′]:

Y′1 = Y2 , Y′2 = Y2
1 , Y1(0) = 0 , Y2(0) = 1 .

>> f := (t, Y) -> [Y[2], Y[1]^2]: t0 := 0: Y0 := [0, 1]:
>> Y := numeric::odesolve2(f, t0, Y0):
>> Y(1), Y(PI)

[1.087473533, 1.362851121], [1274.867468, 37166.5226]

>> delete f, t0, Y0, Y:

Example 3. We demonstrate a pitfall with the remember mechanism built into
the functions returned by numeric::odesolve2 . Consider the initial value
problem y′ = t sin(y), y(0) = 2:

>> DIGITS := 5:
Y := numeric::odesolve2((t, Y) -> [t*sin(Y[1])], 0, [2]):

The following result is stored in the remember table of Y:

>> setuserinfo(Y, 1): Y(8.0)

Info: integrating from t0=0 to t=8.0 using Y(t0)=[2]

[3.1416]

The following value Y(4.1) is obtained using the previously computed Y(8.0) ,
integrating backward in time from t = 8.0 to t = 4.1:

>> Y(4.1)

Info: integrating from t0=8.0 to t=4.1 using Y(t0)=[3.1416]

[4.1634]

We erase the remember table (the fifth operand) of Y:

>> Y := subsop(Y, 5 = NIL):

The direct integration from the initial time t0 = 0 to t = 4.1 yields a more accu-
rate result than the previous computation:

>> Y(4.1)

Info: integrating from t0=0 to t=4.1 using Y(t0)=[2]

[3.1413]

104

The reason for this phenomenon becomes obvious, when the solution of the
ode is computed for various initial values Y(0) = 2,3,4:

>> A := numeric::odesolve2((t, Y) -> [t*sin(Y[1])], 0, [2]):
B := numeric::odesolve2((t, Y) -> [t*sin(Y[1])], 0, [3]):
C := numeric::odesolve2((t, Y) -> [t*sin(Y[1])], 0, [4]):

>> plotfunc2d(A(t)[1], B(t)[1], C(t)[1], t = 0..8, Grid = 25)

In fact, all solutions with initial values Y(0) in the interval [0,2π] approach the
same attracting point Y(∞) = π. While numerical integration forward in time
is a very stable process, it is virtually impossible to recover the correct solution
curve integrating backward in time starting at a point close to the attractor.

>> setuserinfo(Y, 0): delete DIGITS, Y, A, B, C:

Example 4. We consider the system

x′ = x + y , y′ = x− y , x(0) = 1 , y(0) =
√
−1 :

>> f := (t, Y) -> [Y[1] + Y[2], Y[1] - Y[2]]:
Y := numeric::odesolve2(f, 0, [1, I]):

>> DIGITS := 5: Y(1)

[3.5465 + 1.3683 I, 1.3683 + 0.80989 I]

Increasing DIGITS does not lead to a more accurate result because of the re-
member mechanism:

>> DIGITS := 15: Y(1)

[3.54647799893142 + 1.36829578207979 I,

1.36829578207979 + 0.80988643477182 I]

This is the previous value computed with 5 digits, printed with 15 digits. In-
deed, only 5 digits are correct. For getting a result that is accurate to full
precision one has to erase the remember table via Y:=subsop(Y,5=NIL) .
Alternatively, one may create a new numerical solution with a fresh (empty)
remember table:

>> Y := numeric::odesolve2(f, 0, [1, I]): Y(1)

[3.54648242861716 + 1.36829887200859 I,

1.36829887200859 + 0.80988468459998 I]

>> delete f, Y, DIGITS:

105

Changes:

A numeric::odesolve2 is a new function.

numeric::polyroots – numerical roots of a univariate polynomial

numeric::polyroots(p, ..) returns numerical approximations of all real
and complex roots of the univariate polynomial p.

Call(s):

A numeric::polyroots(p <, FixedPrecision > <, Square-
Free > <, Factor >)

Parameters:
p — a univariate polynomial expression or a univariate polynomial of

domain type DOM_POLY.

Options:

FixedPrecision — launches a quick numerical search with fixed
precision

SquareFree — a squarefree factorization of p is computed
before the numerical search starts

Factor — a factorization of p is computed before the
numerical search starts

Return Value: a list of numerical roots.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: RootOf , numeric::fsolve ,
numeric::polysysroots , numeric::realroot ,
numeric::realroots , polylib::realroots , solve

Details:

A The coefficients may be real or complex numbers. Also symbolic coeffi-
cients are accepted if they can be converted to floats.

A The trivial polynomial p = 0 results in an error message. The empty list
is returned for constant polynomials p 6= 0.

A Multiple roots are listed according to their multiplicities, i.e., the length
of the root list coincides with the degree of p.

106

A The root list is sorted by numeric::sort .

A Up to roundoff effects, the numerical roots should be accurate to DIGITS
significant digits, unless the option FixedPrecision is used.

A All floating point entries in p are internally approximated by rational
numbers: numeric::polyroots(p) computes the roots of numeric::rationalize(p,
Minimize) .

A For polynomial expressions in factored form, the numerical search is ap-
plied to each factor separately.

A With setuserinfo(numeric::polyroots, 2) , detailed information
on the internal search is provided.

A It is recommended to use polylib::realroots if p is a real polyno-
mial and only real roots are of interest.

Option <FixedPrecision >:

A This option provides the fastest way to obtain approximations of the
roots by a numerical search with a fixed internal precision of 2 DIGITS
decimal places.

A Note that badly isolated roots or multiple roots will usually not be ap-
proximated to DIGITS decimals when using this option. The problem of
finding such roots is numerically ill-conditioned, i.e., such roots cannot
be found to full precision with fixed precision arithmetic. Typically, a q-
fold root will be approximated only to about 2DIGITS/q decimal places.
Cf. example 3.

A Without this option, numeric::polyroots internally increases the work-
ing precision until all roots are found to DIGITS decimal places.

Option <SquareFree >:

A With this option, a symbolic square free factorization is computed via
polylib::sqrfree(p) . The numerical root finding algorithm is then
applied to each square free factor.

A This option is recommended, when p is known to have multiple roots.
Such roots force numeric::polyroots to increase the working preci-
sion internally increasing the costs of the numerical search. A square free
factorization reduces the multiplicity of each root to one, speeding up the
final numerical search. Cf. example 3.

107

A For polynomials with real rational coefficients, a square free factorization
is always used, i.e., this option does not have any effect for such polyno-
mials. For all other types of coefficients, a square free factorization may
be costly and must be requested by this option.

A Multiple roots of p can be successfully dealt with by this option. How-
ever, for badly separated distinct roots the square free factorization will
not improve the performance of the numerical search.

Option <Factor >:

A With this option, a symbolic factorization of p via factor is computed.
The numerical root finding algorithm is then applied to each factor.

A This option is useful, when p can be successfully factorized (e.g., when
p has multiple roots). The numerical search on the factors is much more
efficient than the search on the original polynomial. On the other hand,
symbolic factorization of p may be costly.

Example 1. Both polynomial expressions as well as DOM_POLYobjects may
be used to specify the polynomial:

>> numeric::polyroots(x^3 - 3*x - sqrt(2))

[-1.414213562, -0.5176380902, 1.931851653]

>> numeric::polyroots(PI*z^4 + I*z + 0.1)

[- 0.5936837297 - 0.3729248918 I, 0.1003181767 I,

0.6455316068 I, 0.5936837297 - 0.3729248918 I]

>> numeric::polyroots(poly(x^5 - x^2, [x]))

[- 0.5 - 0.8660254038 I, - 0.5 + 0.8660254038 I, 0.0, 0.0, 1.0]

Example 2. The following polynomial has exact coefficients:

>> p := poly((x - 1)*(x - PI)^3, [x]):

>> numeric::polyroots(p)

[1.0, 3.141592654, 3.141592654, 3.141592654]

Note that roundoff errors in the coefficients of p have a dramatic effect on
multiple roots:

108

>> p := poly((x - 1.0)*(x - float(PI))^3, [x]):

>> numeric::polyroots(p)

[0.9999999995, 3.140177788 - 0.00244957836 I,

3.140177788 + 0.00244957836 I, 3.144422386]

These are the roots of the rationalized polynomial

>> numeric::rationalize(p, Minimize)

4 3 2
poly(x - 461286/44249 x + 176627/4525 x - 2515405/41498 x +

1837649/59267, [x])

>> delete p:

Example 3. The multiple root I/3 of the following polynomial can only be
computed with restricted precision by fixed precision arithmetic:

>> p := poly((x^2 - 6*x +8)*(x - I/3)^5, [x]):

>> numeric::polyroots(p, FixedPrecision)

[- 0.006109919675 + 0.3322082825 I,

- 0.002938026857 + 0.3387257645 I,

- 0.0007618302219 + 0.3271290976 I,

0.004162114315 + 0.3378408591 I,

0.005647662459 + 0.330762663 I, 2.0, 4.0]

Without the option FixedPrecision , the working precision is increased in-
ternally to compute better approximations:

>> setuserinfo(numeric::polyroots, 1): numeric::polyroots(p)

Info: computing roots of factor poly(x^7 - .. , [x])
Info: increasing working precision to DIGITS=20
Info: increasing working precision to DIGITS=40
Info: increasing working precision to DIGITS=80
Info: increasing working precision to DIGITS=160
Info: accepting last approximation

[0.3333333333 I, 0.3333333333 I, 0.3333333333 I,

0.3333333333 I, 0.3333333333 I, 2.0, 4.0]

109

A square free factorization reduces the multiplicity of the root I/3 :

>> numeric::polyroots(p, SquareFree)

Info: starting squarefree factorization
Info: computing roots of factor poly(3*x - I, [x])
Info: increasing working precision to DIGITS=20
Info: computing roots of factor poly(x^2 - 6*x + 8, [x])
Info: increasing working precision to DIGITS=20

[0.3333333333 I, 0.3333333333 I, 0.3333333333 I,

0.3333333333 I, 0.3333333333 I, 2.0, 4.0]

>> setuserinfo(numeric::polyroots, 0): delete p:

Example 4. The following polynomial has badly separated roots. numeric::polyroots
does not manage to separate them properly:

>> p := poly(_mult((x - 1 - i/10^9) $ i=0..5), [x]):

>> numeric::polyroots(p)

[0.9999999987, 1.000000003, 1.000000003, 1.000000003,

1.000000003, 1.000000003]

One can preprocess the polynomial by a symbolic factorization:

>> numeric::polyroots(p, Factor)

[1.0, 1.000000001, 1.000000002, 1.000000003, 1.000000004,

1.000000005]

Alternatively, one can increase the working precision to separate the roots:

>> DIGITS := 20: numeric::polyroots(p)

[1.0, 1.000000001, 1.000000002, 1.000000003, 1.000000004,

1.000000005]

>> delete p, DIGITS:

110

Background:

A The numerical root finding algorithm implemented by numeric::polyroots
is Laguerre’s method: W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T.
Vetterling: Numerical Recipes in C, Cambridge University Press, 1988.

Changes:

A numeric::polyroots is a new function.

numeric::polysysroots – numerical roots of a system of polyno-
mial equations

numeric::polysysroots(eqs, ..) returns numerical approximations
of all real and complex roots of the polynomial system of equations eqs .

Call(s):

A numeric::polysysroots(eqs)

A numeric::polysysroots(eqs, vars)

Parameters:
eqs — a polynomial equation or a list or a set of such equations. Also

expressions and polynomials of domain type DOM_POLYare
accepted wherever an equation is expected. They are
interpreted as homogeneous equations.

vars — an unknown or a list or set of unknowns. Unknowns may be
identifiers or indexed identifiers.

Return Value: a set of lists of equations. The set {[]} containing an empty
list is returned, if no solutions can be computed.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linsolve , numeric::fsolve ,
numeric::linsolve , numeric::polyroots , numeric::realroot ,
numeric::realroots , polylib::realroots , solve

Details:

A The coefficients of the polynomials may contain symbolic parameters.

A If no unknowns are specified by vars , then numeric::indets(eqs)
is used in place of vars .

111

A The solution is a set of lists of solved equations of the form

[x1 = value1, x2 = value2, . . .],

where x1, x2, . . . are the unknowns. These simplified equations should
be regarded as constraints on the unknowns. E.g., if an unknown x1, say,
does not turn up in the form x1 = . . . in the solution, then there is no
constraint on this unknown and it is an arbitrary parameter. This holds
true in general for all unknowns that do not turn up on the left hand side
of the solved equations. Cf. example 2.

A The ordering of the unknowns in vars determines the ordering of the
solved equations. If a set vars is used, then an internal ordering is used.

A If the solution set of eqs is not finite, then nu-
meric::polysysroots may return solutions with some of
the unknowns remaining as free parameters. In this case the
representation of the solution depends on the ordering of the un-
knowns! Cf. example 3. Further, if higher degree polynomials are
involved, then numeric::polysysroots may fail to compute
roots. Cf. example 5. The same may happen, when eqs contains
symbolic parameters.

!

A You may try numeric::fsolve to compute a single numerical root,
if numeric::polysysroots cannot compute all roots of the system.
Note, however, that numeric::fsolve does not accept symbolic pa-
rameters in the equations.

A We recommend to use numeric::polyroots to compute all roots of a
single univariate polynomial with numerical coefficients.

A numeric::polysysroots is a hybrid routine: it calls the symbolic
solver

solve (eqs, vars, BackSubstitution = FALSE)

and processes its symbolic result numerically via solvelib::allvalues .
Cf. example 4.

Example 1. Equations, expressions as well as DOM_POLYobjects may be used
to specify the polynomials:

>> numeric::polysysroots(x^2 = PI^2, x)

{[x = -3.141592654], [x = 3.141592654]}

>> numeric::polysysroots({x^2 + y^2 - 1, x^2 - y^2 = 1/2}, [x, y])

{[x = -0.8660254038, y = -0.5], [x = -0.8660254038, y = 0.5],

[x = 0.8660254038, y = -0.5], [x = 0.8660254038, y = 0.5]}

112

>> numeric::polysysroots({poly(x^2 + y + 1), y^2 + x = 1}, [x, y])

{[x = -0.4533976515, y = -1.20556943], [x = 0.0, y = -1.0],

[x = 0.2266988258 - 1.467711509 I,

y = 1.102784715 + 0.6654569512 I],

[x = 0.2266988258 + 1.467711509 I,

y = 1.102784715 - 0.6654569512 I]}

Symbolic parameters are accepted:

>> numeric::polysysroots(x^2 + y + exp(z), [x, y])

1/2
{[x = (- 1.0 y - 1.0 exp(z))],

1/2
[x = - 1.0 (- 1.0 y - 1.0 exp(z))]}

Example 2. The returned solutions may contain some of the unknowns re-
maining as free parameters:

>> numeric::polysysroots({x^2 + y^2 = z}, [x, y, z])

2 1/2 2 1/2
{[x = (z - 1.0 y)], [x = - 1.0 (z - 1.0 y)]}

Example 3. The ordering of the unknowns determines the representation of
the solution, if the solution set is not finite. First, the following equation is
solved for x leaving y as a free parameter:

>> numeric::polysysroots({x^3 = y^2}, [x, y])

2 1/3 2 1/3
{[x = (y)], [x = - (0.5 + 0.8660254038 I) (y)],

2 1/3
[x = - (0.5 - 0.8660254038 I) (y)]}

Reordering the unknowns leads to a representation with x as a free parameter:

>> numeric::polysysroots({x^3 = y^2}, [y, x])

3 1/2 3 1/2
{[y = (x)], [y = - 1.0 (x)]}

113

Example 4. The symbolic solver produces a RootOf solution of the following
system:

>> eqs := {y^2 - y = x, x^3 = y^3 + x}:
>> solve(eqs, BackSubstitution = FALSE)

2
{[x = 0, y = 0], [x = y - y, y =

3 2 4 5
RootOf(3 X3 - 2 X3 - X3 - 3 X3 + X3 + 1, X3)]}

Internally, numeric::polysysroots calls solve and processes this result
numerically:

>> numeric::polysysroots(eqs, [x, y])

{[x = -0.238328984, y = 0.6080324762], [x = 0.0, y = 0.0],

[x = 0.8911259621, y = -0.5682349751],

[x = 2.237302267, y = 2.077118343],

[x = - 1.445049623 + 0.1279930535 I,

y = 0.441542078 - 1.094745154 I],

[x = - 1.445049623 - 0.1279930535 I,

y = 0.441542078 + 1.094745154 I]}

>> delete eqs:

Example 5. The following equation is solved for the first of the specified un-
knowns:

>> eqs := y^5 - PI*y = x: solve(eqs, [x, y])

5
{[x = y - y PI]}

numeric::polysysroots processes this output numerically:

>> numeric::polysysroots(eqs, [x, y])

5
{[x = y - 3.141592654 y]}

114

The equation is solved for y when the unknowns are reordered. However, no
simple representation of the solution exists, so a RootOf object is returned:

>> solve(eqs, [y, x])

5
{[y = RootOf(x + X5 PI - X5 , X5)]}

The roots represented by the RootOf expression cannot be computed numer-
ically, because the symbolic parameter x is involved:

>> numeric::polysysroots(eqs, [y, x])

5
{[y = RootOf(x + 3.141592654 X6 - 1.0 X6 , X6)]}

>> delete eqs:

Changes:

A numeric::polysysroots is a new function.

numeric::quadrature – numerical integration

numeric::quadrature(f(x), x=a..b, ..) computes a numerical ap-
proximation of

∫ b
a f (x) dx.

Call(s):

A numeric::quadrature(f(x), x=a..b, <, method=n > <,
Adaptive =v> <, MaxCalls =m>)

Parameters:
f(x) — expression in x
x — identifier or indexed identifier
a,b — real or complex numerical values or ±infinity

Options:

method=n — method is the name of the underlying quadrature
scheme, either GaussLegendre ,
GaussTschebyscheff , or NewtonCotes . Each
quadrature rule can be used with an arbitray number
of nodes specified by the positive integer n.

Adaptive =v — v may be TRUEor FALSE. With Adaptive=FALSE
the internal error control is switched off.

MaxCalls =m — mmust be a (large) positive integer or infinity . It is
the maximal number of evaluations of the integrand,
before numeric::quadrature gives up.

115

Return Value: A floating point number is returned, unless non-numerical
symbolic objects in the integrand f(x) or in the boundaries a,b prevent nu-
merical evaluation. In this case numeric::quadrature returns itself un-
evaluated. If numerical problems occur, then FAIL is returned.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: int , numeric::gldata , numeric::gtdata ,
numeric::int , numeric::ncdata

Details:

A numeric::quadrature returns itself unevaluated, if the integrand f(x)
contains symbolic objects apart from the integration variable x that can-
not be converted to numerical values via float . Symbolic objects such
as PI or sqrt(2) etc. are accepted.

A The integrand f(x) should be integrable in the Riemann sense. In partic-
ular, f(x) should be bounded on the integration interval x=a..b . Cer-
tain types of mild singularities are handled, but numerical convergence
is not guaranteed and will be slow in most cases. Also discontinuities
and singularities of (higher) derivatives of f(x) slow down numerical
convergence. For integrands with irregular points it is recommended to
split the integration into several parts, using subintervals on which the
integrand is smooth. Cf. example 4.

A Integrands given by user-defined procedures can be handled. Cf. Exam-
ples 4 and 5.

A numeric::quadrature returns itself unevaluated, if the boundaries
a,b contain symbolic objects that cannot be converted to numerical val-
ues via float . Symbolic objects such as PI or sqrt(2) etc. as well as
infinity and -infinity are accepted.

A For infinite ranges the user should make sure that the integral ex-
ists! If f(x) does not decay as fast as O(|x|−2) at infinity, then
convergence may be slow.

!

A Boundaries a > b are accepted. Note:

quadrature(f(x),x = a..b) = −quadrature(f(x),x = b..a).

A For complex values of a,b the integration is to be understood as a con-
tour integral along a straight line from a to b. Complex boundaries must
not involve infinity .

116

A Multi-dimensional integration such as

numeric::quadrature(numeric::quadrature(f(x,y), y=A(x)..B(x)),
x=a..b)

is possible. Cf. examples 3 and 5.

A Internally an adaptive mechanism based on a fixed quadrature rule spec-
ified by method=n is used. It tries to keep the relative quadrature error
of the result below 10−DIGITS. The last digit(s) of the result may be incor-
rect due to roundoff effects.

A The routine numeric::quadrature is purely numerical: no symbolic
check for singularities etc. is carried out.

Option <method = n >:

A Usually there is no need to use this option to change the default method
GaussLegendre =n with n=20,40,80 or 160 , depending on the preci-
sion goal determined by the environment variable DIGITS . Due to the
corresponding high quadrature orders 40, 80, 160 or 320, respectively, the
default settings are suitable for high precision computations.

A With GaussLegendre =n an adaptive version of Gauss-Legendre quadra-
ture with n nodes is used.

For DIGITS ≤ 200 the weights and abscissae of Gaussian quadrature with
n = 20, 40, 80 and 160 nodes are available and the integration starts im-
mediately.

For DIGITS >200 the routine numeric::gldata is called to compute
the Gaussian data before the actual integration starts. This will be noted
by some delay in the first call of numeric::quadrature .

For DIGITS� 200 it is recommended not to use the default setting but to
use GaussLegendre =n with sufficiently high n (approximately DIGITS)
instead.

A With GaussTschebyscheff=n non-adaptive Gauss-Tschebyscheff quadra-
ture with n nodes is used. This method may only be used in conjunction
with Adaptive=FALSE .

A With NewtonCotes=n an adaptive version of Newton-Cotes
quadrature with n nodes is used. Note that these quadrature rules
become numerically unstable for large n (� 10).

!

A Following alternative names for the methods are accepted:

GaussLegendre , Gauss , GL,

GaussTschebyscheff , GT, GaussChebyshev , GC,

NewtonCotes , NC.

117

Option <Adaptive = v>:

A The default setting is Adaptive=TRUE . An adaptive quadrature scheme
with automatic control of the quadrature error is used.

A The call numeric::quadrature(f(x), x=a..b, method=n, Adap-
tive=FALSE) returns the quadrature sum (b− a) ∑n

i=1 Bi f (a + Ci (b− a))
approximating

∫ b
a f (x) dx without any control of the quadrature error.

The weights Bi and abscissae Ci are determined by the quadrature rule
given by method=n . For the methods GaussLegendre , GaussTschebyscheff
and NewtonCotes these data are available via numeric::gldata , numeric::gtdata
and numeric::ncdata , respectively.

A Adaptive=FALSE may only be used in conjunction with method=n .

A Usually there is no need to switch off the internal adaptive quadrature
via Adaptive=FALSE . This option is meant to give easy access to stan-
dard non-adaptive quadrature rules of Gauss-Legendre, Gauss-Tschebyscheff
and Newton-Cotes type, respectively. The user may want to build his
own adaptive quadrature based on these non-adaptive rules. Cf. exam-
ple 6.

Option <MaxCalls = m>:

A numeric::quadrature gives up after mevaluations of the integrand.
When called interactively, numeric::quadrature returns the approx-
imation it has computed so far and issues a warning. Cf. example 7.
When called from inside a procedure, numeric::quadrature returns
FAIL .

A The default value is m=MAXDEPTH*n. The environment variable MAXDEPTH
(default value 500) represents the maximal recursive depth of a func-
tion. n is the number of nodes of the basic quadrature rule specified
by the optional argument method=n . If no such method is specified
by the user, then Gauss-Legendre quadrature is used with n= 20 for
DIGITS ≤ 10, n= 40 for 10 <DIGITS ≤ 50, n= 80 for 50 <DIGITS ≤ 100,
n= 160 for 100 <DIGITS . Thus, for DIGITS=10 , the default setting is
MaxCalls =10 000.

A The default value of mensures that the MaxCalls limit is reached before
numeric::quadrature reaches its maximal internal recursive depth.
Specifying MaxCalls =infinity removes this restriction and numeric::quadrature
computes until it obtains an approximation with about DIGITS correct
digits or until it runs into an internal error. The typical error that may
occur is the evaluation of the integrand at a singularity. There also is the

118

danger of numeric::quadrature reaching its maximal internal recur-
sive depth. When called interactively, numeric::quadrature returns
the approximation it has computed so far and issues a warning. Cf. ex-
ample 8. When called from inside a procedure, numeric::quadrature
returns FAIL .

Example 1. We demonstrate the standard calls for adaptive numerical inte-
gration:

>> numeric::quadrature(exp(x^2), x=-1..1)

2.925303492

>> numeric::quadrature(max(1/10, cos(PI*x)), x=-2..0.0123)

0.7521024709

>> numeric::quadrature(exp(-x^2), x=-2..infinity)

1.768308316

The precision goal is set by DIGITS :

>> DIGITS := 50:
>> numeric::quadrature(besselJ(0, x), x=0..PI)

1.3475263146739901712314731279612149642205400522774

Note that due to the internal adaptive mechanism the choice of different meth-
ods should not have any significant effect on the quadrature result:

>> DIGITS := 10:
>> numeric::quadrature(sin(x)/x, x=-1..10, GaussLegendre=5),

numeric::quadrature(sin(x)/x, x=-1..10, GaussLegendre=160),
numeric::quadrature(sin(x)/x, x=-1..10, NewtonCotes=8)

2.604430665, 2.604430665, 2.604430665

Example 2. The user should make sure that the integrand is well defined and
sufficiently regular. The following fails, because Newton-Cotes quadrature
tries to evaluate the integrand at the boundaries:

>> numeric::quadrature(sin(x)/x, x=0..1, NewtonCotes=8)

Error: Division by zero [_power];
during evaluation of ’Quadsum’

119

One may cure this problem be assigning a value to f(0) . The integrand
is passed to the integrator as hold(f) to prevent premature evaluation of
f(x) to sin(x)/x . Internally, numeric::quadrature replaces x by nu-
merical values and then evaluates the integrand. Note that one has to define
f(0.0):= 1 rather than f(0):= 1 :

>> f := x -> sin(x)/x: f(0.0) := 1:
>> numeric::quadrature(hold(f)(x), x=0..1, NewtonCotes=8)

0.9460830704

The default method (Gauss-Legendre quadrature) does not evaluate the inte-
grand at the end points:

>> numeric::quadrature(sin(x)/x, x=0..1)

0.9460830704

Nevertheless, problems may still arise for improper integrals:

>> numeric::quadrature(ln(1 - cos(x)), x=0..PI)

Error: singularity [ln]

In this example the integrand is evaluated close to 0. Due to numerical cancel-
lation 1− cos(x) may yield 0.0 for non-zero x. A numerically stable represen-
tation is 1− cos(x) = 2 sin(x/2)ˆ2:

>> numeric::quadrature(ln(2*sin(x/2)^2), x=0..PI)

-2.17758609

Note that convergence is rather slow, because the integrand is not bounded.

>> delete f:

Example 3. We demonstrate multi-dimensional quadrature:

>> Q := numeric::quadrature: Q(Q(exp(x*y), x=0..y), y=0..1)

0.6589510757

Also more complex types of nested calls are possible. We use numerically
defined functions

>> b := y -> Q(exp(-t^2-t*y), t=y..infinity):

and

>> f := y -> cos(y^2) + Q(exp(x*y), x=0..b(y)):

120

for the following quadrature:

>> Q(f(y), y=0..1)

1.261578952

Multi dimensional quadrature is computationally expensive. Note that a call
to numeric::quadrature evaluates the integrand at least 3 n times, where
n is the number of nodes of the internal quadrature rule (by default, n = 20 for
DIGITS ≤ 10). The following triple quadrature would call the the exp function
no less than (3× 20)3 = 216 000 times!

>> Q(Q(Q(exp(x*y*z), x=0..y+z), y=0..z), z=0..1)

For low precision goals low order quadrature rules suffice. In the following
we reduce the computational costs by using Gauss-Legendre quadrature with
5 nodes. We use the shorthand notation GL to specify the GaussLegendre
method:

>> DIGITS := 4:
>> Q(Q(Q(exp(x*y*z), x=0..y+z, GL=5), y=0..z, GL=5), z=0..1, GL=5)

0.665

>> delete Q, b, f, DIGITS:

Example 4. We demonstrate how integrands given by user-defined proce-
dures should be handled. The following integrand

>> f := proc(x) begin
if x<1 then sin(x^2) else cos(x^5) end_if

end_proc:

cannot be called with a symbolic argument:

>> f(x)

Error: Can’t evaluate to boolean [_less];
during evaluation of ’f’

Consequently, one must use hold to prevent premature evaluation of f(x) :

>> numeric::quadrature(hold(f)(x), x=-1..PI/2)

0.5354101317

Note that the above integrand is discontinuous at x = 1, causing slow con-
vergence of the numerical quadrature. It is much more efficient to split the
integral into two subquadratures with smooth integrands:

121

>> numeric::quadrature(sin(x^2), x=-1..1) +
numeric::quadrature(cos(x^5), x=1..PI/2)

0.5354101318

See example 5 for multi-dimensional quadrature of user-defined procedures.

>> delete f:

Example 5. The following integrand

>> f := proc(x, y) begin
if x<y then x-y else (x-y) + (x-y)^5 end_if

end_proc:

can only be called with numerical arguments and must be delayed twice for
2-dimensional quadrature:

>> Q := numeric::quadrature:
>> Q(Q(hold(hold(f))(x, y), x=0..1), y=0..1)

0.0238095238

Note that delaying the integrand via hold will not work for triple or higher-
dimensional quadrature! The user can handle this by making sure that the
integrand can also be evaluated for symbolic arguments:

>> f := proc(x, y, z)
begin

if not testtype([args()], Type::ListOf(Type::Numeric))
then return(procname(args()))

end_if;
if x^2 + y^2 + z^2 <= 1

then return(1)
else return(0)

end_if
end_proc:

Note that this function is not continuous, implying slow convergence of the
numerical quadrature. For this reason we use a low precision goal of only 2
digits and reduce the costs by using a low order quadrature rule:

>> DIGITS := 2:
>> Q(Q(Q(f(x, y, z), x=0..1, GL=5), y=0..1, GL=5), z=0..1, GL=5)

0.53

>> delete f, Q, DIGITS:

122

Example 6. The following example uses non-adaptive Gauss-Tschebyscheff
quadrature with an increasing number of nodes. The results converge quickly
to the exact value:

>> a := exp(x)/sqrt(1 - x^2), x=-1..1:
>> numeric::quadrature(a, Adaptive=FALSE, GT=n) $ n=3..7

3.97732196, 3.977462635, 3.977463259, 3.977463261, 3.977463261

>> delete a:

Example 7. The improper integral
∫ 1

0 x−9/10 dx = 10 exists. Numerical con-
vergence, however, is rather slow because of the singularity at x = 0:

>> numeric::quadrature(x^(-9/10), x=0..1)

Warning: Precision goal not achieved after 10000 function call\
s!
Increase MaxCalls and try again for a more accurate result. [n\
umeric::quadrature]

9.998221196

We remove the limit for the number of function calls and let numeric::quadrature
grind along until a result is found. The time for the computation grows accord-
ingly, the last digit is incorrect due to roundoff effects:

>> numeric::quadrature(x^(-9/10), x=0..1, MaxCalls=infinity)

9.999999993

Example 8. The following integral does not exist in the Riemann sense, be-
cause the integrand is not bounded:

>> numeric::quadrature(1/x, x=-1..1)

Warning: Precision goal not achieved after 10000 function call\
s!
Increase MaxCalls and try again for a more accurate result. [n\
umeric::quadrature]

93.14572971

We increase MaxCalls . There is no convergence of the numerical algorithm,
because the integral does not exist. Consequently, some internal problem must
arise: numeric::quadrature reaches its maximal recursive depth:

123

>> numeric::quadrature(1/x, x=-1..1, MaxCalls=infinity)

Warning: Precision goal not achieved after MAXDEPTH=500 recurs\
ive calls!
There may be a singularity of 1/x close to x=1.466369455e-

149.
Increase MAXDEPTH and try again for a more accurate result! [a\
daptiveQuad]

343.1078544

Changes:

A Handling of infinite ranges was added. Quadrature now stops after m
function calls.

A The option MaxCalls =mwas introduced to set the maximal number of
calls.

numeric::rationalize – approximate a floating point number by
a rational number

numeric::rationalize(object, ..) replaces all floating point num-
bers in object by rational numbers.

Call(s):

A numeric::rationalize(object <, mode> <, digits >)

Parameters:

object — an arbitrary MuPAD object

Options:

mode — either Exact , or Minimize , or Restore . This controls the
strategy for approximating floating point numbers by
rational numbers.

digits — a positive integer (the number of decimal digits) not bigger
than the environment variable DIGITS . It determines the
precision of the rational approximation.

Return Value: If the argument is an object of some kernel domain, then it is
returned with all floating point operands replaced by rational numbers. An
object of some library domain is returned unchanged.

124

Overloadable by: object

Side Effects: The function is sensitive to the environment variable DIGITS .

Details:

A An object of a library domain, characterized by

domtype(extop(object,0)) = DOM_DOMAIN,

is returned unchanged. For all other objects numeric::rationalize
is applied recursively to all operands. Objects of library domains can be
rationalized, if the domain has an appropriate map method. Cf. exam-
ple 5.

Option <digits >:

A A floating point number f is approximated by a rational number r satis-
fying | f − r| < ε | f |.
With the options Exact and Minimize the guaranteed precision
is ε = 10−digits. With Restore the guaranteed precision is only
ε = 10−digits/2.

!

A The default precision is digits=DIGITS .

A The user defined precision must not be larger then the internal floating
point precision set by DIGITS : an error occurs for digits>DIGITS .

Option <Exact >:

A Any real floating point number f 6= 0.0 has a unique representation

f = sign(f)×mantissa× 10exponent

with integer exponent and 1.0≤mantissa < 10.0. With the option Exact
the float mantissa is replaced by the rational approximation

round (mantissa× 10digits)
10digits

.

This guarantees a relative precision of digits significant decimals of
the rational approximation.

A This is the default strategy, so there is no real need to pass this option as
a parameter to numeric::rationalize .

125

Option <Minimize >:

A This strategy tries to minimize the complexity of the rational approxima-
tion, i.e., numerators and denominators are to be small.

A The guaranteed precision of the rational approximation is digits .

A Cf. example 3.

Option <Restore >:

A This strategy tries to restore rational numbers obtained after elementary
arithmetical operations applied to floating point numbers. E.g., for ratio-
nal r the float division f = 1/float(r) introduces additional round-
off, which the Restore algorithm tries to eliminate: numeric::rationalize(f,
Restore) = 1/r . This strategy, however, is purely heuristic and will
not succeed, when significant round-off is caused by arithmetical float
operations!

A The guaranteed precision of the rational approximation is only
digits/2 ! !

A Cf. example 4.

Example 1. numeric::rationalize is applied to each operand of a com-
posite object:

>> numeric::rationalize(0.2*a+b^(0.7*I))

a 7/10 I
- + b
5

>> numeric::rationalize([{poly(0.2*x, [x]), sin(7.2*PI) + 1.0*I},
exp(3 + ln(2.0*x))])

-- { / 36 PI \ } -
-

| { poly(1/5 x, [x]), sin| ----- | + I }, exp(ln(2 x) + 3) |
-- { \ 5 / } -

-

126

Example 2. We demonstrate the default strategy Exact :

>> numeric::rationalize(12.3 + 0.5*I),
numeric::rationalize(0.33333),
numeric::rationalize(1/3.0)

123/10 + 1/2 I, 33333/100000, 33333333333/100000000000

>> numeric::rationalize(10^12/13.0),
numeric::rationalize(10^(-12)/13.0)

76923076923, 76923076923/1000000000000000000000000

We reduce the precision of the approximation to 5 digits:

>> numeric::rationalize(10^12/13.0, 5),
numeric::rationalize(10^(-12)/13.0, 5)

76923100000, 769231/10000000000000000000

Example 3. We demonstrate the strategy Minimize for minimizing the com-
plexity of the resulting rational number:

>> numeric::rationalize(1/13.0, 5),
numeric::rationalize(1/13.0, Minimize, 5),
numeric::rationalize(0.333331, 5),
numeric::rationalize(0.333331, Minimize, 5),
numeric::rationalize(14.285, 5),
numeric::rationalize(14.2857, Minimize, 5),
numeric::rationalize(1234.1/56789.2),
numeric::rationalize(1234.1/56789.2, Minimize)

769231/10000000, 1/13, 333331/1000000, 1/3, 2857/200, 100/7,

21731244673/1000000000000, 12341/567892

We compute rational approximations of π with various precisions:

>> numeric::rationalize(float(PI), Minimize, i) $ i = 1..10

3, 22/7, 22/7, 355/113, 355/113, 355/113, 355/113,

102573/32650, 104348/33215, 208341/66317

127

Example 4. We demonstrate the strategy Restore for restoring rational num-
bers after elementary float operations. In many cases also the Minimize strat-
egy restores:

>> numeric::rationalize(1/7.3, Exact),
numeric::rationalize(1/7.3, Minimize),
numeric::rationalize(1/7.3, Restore)

13698630137/100000000000, 10/73, 10/73

However, using Restore improves the chances of recovering from round-off
effects:

>> numeric::rationalize(10^12/13.0, Minimize),
numeric::rationalize(10^12/13.0, Restore)

76923076923, 1000000000000/13

>> numeric::rationalize(123.456/12.34567, Minimize),
numeric::rationalize(123.456/12.34567, Restore)

529097/52910, 12345600/1234567

In some cases Restore manages to recover from round-off error propagation
in composite arithmetical operations:

>> x := 125/12.34567: y := 123/12.34567: z := (x^2 - y^2)/(x + y)

0.1620001183

>> numeric::rationalize(z, Minimize),
numeric::rationalize(z, Restore)

35612/219827, 200000/1234567

The result with Restore corresponds to exact arithmetic:

>> rx := numeric::rationalize(x, Restore):
>> ry := numeric::rationalize(y, Restore):
>> (rx^2 - ry^2)/(rx + ry)

200000/1234567

Note that an approximation with Restore may have a reduced precision of
only digits/2 :

>> x := 1.0 + 1/10^6:
>> numeric::rationalize(x, Exact),

numeric::rationalize(x, Restore)

1000001/1000000, 1

>> delete x, y, z, rx, ry:

128

Example 5. The floats inside objects of library domains are not rationalized
directly. However, for most domains the corresponding map method can for-
ward numeric::rationalize to the operands:

>> Dom::Multiset(0.2, 0.2, 1/5, 0.3)

{[0.3, 1], [0.2, 2], [1/5, 1]}

>> numeric::rationalize(%), map(%, numeric::rationalize, Restore)

{[0.3, 1], [0.2, 2], [1/5, 1]}, {[1/5, 3], [3/10, 1]}

Background:

A Continued fraction (CF) expansion is used with the options Minimize
and Restore .

A With Minimize the first CF approximation satisfying the precision cri-
terion is returned.

A The Restore algorithm stops, when large coefficients of the CF expan-
sion are found.

Changes:

A numeric::rationalize used to be sharelib::rational .

A Option Approx is now called Minimize . The option Restore was in-
troduced.

numeric::realroot – numerical search for a real root of a real uni-
variate function

numeric::realroot(f(x), x=a..b, ..) computes a numerical real root
of f (x) in the interval [a, b].

Call(s):

A numeric::realroot(f(x), x = a..b <, SearchLevel =
s>)

Parameters:
f(x) — an arithmetical expression in one unknown x . Alternatively,

an equation f1(x)=f2(x) equivalent to the expression
f1(x)-f2(x) .

x — an identifier or an indexed identifier
a, b — finite real numerical values

129

Options:

SearchLevel = s — s is a small non-zero integer. It controls the
internal refinement of the search.

Return Value: a single numerical real root of domain type DOM_FLOAT. If no
solution is found, then FAIL is returned.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: numeric::fsolve , numeric::polyroots ,
numeric::realroots , polylib::realroots , solve

Details:

A The expression f(x) must not contain symbolic objects other than the
indeterminate x that cannot be converted to numerical values via float .
Symbolic objects such as PI or sqrt(2) etc. are accepted. The same
holds true for the boundaries a,b of the search interval.

A The function must produce real values. If float(f(x)) does not yield
real floating point numbers for all real floating point numbers x from the
interval [a,b] , then internal problems may occur. Cf. example 5.

A numeric::realroot never tries to evaluate f(x) outside the search
interval. Consequently, singularities outside the interval do not cause
any problems. In many cases also singularities inside the interval do
not affect the numerical search. However, numeric::realroot is not
guaranteed to work in such a case. An error may occur, if the internal
search accidentally hits a singularity. Cf. example 5.

A Up to round-off effects numerical roots r with |r| ≥ 10−DIGITS are com-
puted to a relative precision of DIGITS significant decimal places. Roots
of smaller absolute size are computed to an absolute precision of 10−2DIGITS.
These precision goals are not achieved, if significant round-off occurs in
the numerical evaluation of f (x).

A If f takes opposite signs at the endpoints a,b of the search interval and
does not have zero-crossing singularities, then numeric::realroot is
bound to find a root in the interval [a,b] .

A User defined functions can be handled. Cf. example 2.

A numeric::realroot approximates a point where f(x) changes
its sign. This is a root only if the function f is continuous. Cf.
example 3.

!

A setuserinfo(numeric::realroot,1) provides information on the
internal search.

130

A Note that numeric::realroots may be used to isolate all real roots.
However, this function is much slower than numeric::realroot , if f
is not a polynomial.

A For univariate polynomials we recommend to use polylib::realroots
rather than numeric::realroot .

Option <SearchLevel = s>:

A The nonnegative integer s controls the internal refinement of the search.
The default value is s = 1. Increasing s increases the chance of finding
roots that are difficult to detect numerically. Cf. example 6.

A Note that increasing s by 1 may quadruple the time before FAIL is re-
turned, if no real root is found. For this reason we recommend to restrict
s to small values (s ≤ 5, say).

Example 1. The following functions assume different signs at the boundaries,
so the searches are bound to succeed:

>> numeric::realroot(x^3 - exp(3), x = -PI..10)

2.718281829

>> numeric::realroot(exp(-x[1]) = x[1], x[1] = 0..1)

0.5671432904

Example 2. The following function cannot be evaluated for non-numerical x .
So one has to delay evaluation via hold :

>> f := proc(x) begin
if x<0 then 1 - x else exp(x) - 10*x end_if

end_proc:
>> numeric::realroot(hold(f)(x), x = -10..10)

0.1118325592

>> delete f:

131

Example 3. numeric::realroot approximates a point, where f (x) changes
its sign. For the following function this happens at the discontinuity x = 1:

>> f := proc(x) begin if x<1 then -1 else x end_if end_proc:
>> numeric::realroot(hold(f)(x), x = 0..3)

1.0

>> delete f:

Example 4. The following function does not have a real root. Consequently,
numeric::realroot fails:

>> numeric::realroot(x^2 + 1, x = -2..2)

FAIL

The following function does not have a real root in the search interval:

>> numeric::realroot(x^2 - 1, x = 2..3)

FAIL

Example 5. The following function is complex valued for x2 < 3.5. An error
occurs, when the internal search hits such a point:

>> numeric::realroot(ln(x^2 - 3.5), x = -2..3)

Error: Complex arguments are not allowed in comparisons;
during evaluation of ’numeric::BrentFindRoot’

The singularity at x = 2 does not cause any problem in the following call:

>> numeric::realroot((x-1)/(x-2), x = -10..PI)

1.0

However, the singularity may be hit accidentally in the internal search:

>> numeric::realroot((x-1)/(x-2), x = -10..14)

Error: Division by zero [_power];
during evaluation of ’f’

132

Example 6. The following function has a root close to 1.0, which is difficult to
detect. With the default search level s = 1 this root is not found:

>> f := 2 - exp(-100*(x - 2)^2) - 2*exp(-1000*(x - 1)^2):
>> numeric::realroot(f, x = 0..5)

FAIL

The root is detected with an increased search level:

>> numeric::realroot(f, x = 0..5, SearchLevel = 3)

1.0

>> delete f:

Background:

A A mixture of bisectioning, secant steps and quadratic interpolation is
used by numeric::realroot .

Changes:

A numeric::realroot is a new function.

numeric::realroots – isolate intervals containing real roots of an
expression

numeric::realroots(f(x), ..) returns a list of intervals in which real
roots of f(x) may exist.

Call(s):

A numeric::realroots(f(x), x = a..b <, eps > <,
Merge>)

Parameters:
f(x) — an expression in one indeterminate x . Alternatively, an

equation f1(x)=f2(x) equivalent to f(x)=f1(x)-f2(x) .
x — an identifier or an indexed identifier
a, b — finite real numbers or numerical expressions satisfying a < b

Options:

eps — a (small) positive real numerical value defining the precision
goal

Merge — makes numeric::realroots merge adjacent intervals to
larger intervals

133

Return Value: a list [[a1, b1], [a2, b2], . . .] of distinct floating point intervals
[ai, bi] ⊂ [a, b] which may contain roots of f (x). The empty list is returned,
if no root exists in the search interval.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: Dom::Interval , numeric::fsolve ,
numeric::polyroots , numeric::realroot , polylib::realroots ,
solve

Details:

A All intervals returned by numeric::realroots have length bi − ai <
eps with a default value eps = 0.01. The absolute precision eps of the root
isolation may be redefined using the optional parameter eps .

A The intervals returned by numeric::realroots may contain
roots. However, this is not conclusive: some intervals may con-
tain no root. Cf. example 5.

!

A The complement [a, b] \ ∪i[ai, bi] of the subintervals [ai, bi] returned by
numeric::realroots is guaranteed not to contain any real roots. In
particular, from the return value [] one may positively conclude that no
root exists in the search interval [a, b]. Cf. example 2.

A Symbolic parameters in f (x) are not allowed: float(f(x)) must eval-
uate to a floating point number for all x from the interval [a, b]. Also
float(a) and float(b) must produce floating point numbers.

A f (x) must not produce non-real values for real input x from the
interval [a, b]. Note that this may happen, if f (x) involves non-
integer powers (such as sqare roots) or logarithms.

!

A The expression f(x) must be suitable for interval arith-
metic. In particular, MuPAD must be able to evaluate
f(Dom::Interval([a,b])) . Note that not all MuPAD func-
tions support this kind of arithmetic.

!

A For non-polynomial expressions f (x) this routine is rather slow. It
is fast for polynomial expressions. !

Option <eps >:

A The default value is eps = 0.01. User defined precision goals must satisfy
eps≥ 10−DIGITS.

134

A For non-polynomial expressions computations with small preci-
sion goals may need some time! !

Option <Merge >:

A By default all isolating intervals [ai, bi] satisfy bi − ai < eps where eps
is the precision goal. However, adjacent intervals [ai, bi], [ai+1, bi+1] with
bi = ai+1 may be produced. This option combines such intervals to larger
intervals [ai, bi+1]. Cf. examples 3 and 4.

Example 1. The following expression has integer zeros. The solutions in the
specified interval are approximated to the default precision 0.01:

>> numeric::realroots(sin(PI*x), x = -2..sqrt(2))

[[-2.0, -1.99], [-1.005969517, -0.9993206625],

[-0.001992470411, 0.004656384203],

[0.9953357217, 1.001984576]]

The following equation is solved with an absolute precision of 4 digits:

>> numeric::realroots(x*sin(x) = exp(-x), x = -1..1, 0.001)

[[0.7265625, 0.7275390625]]

Example 2. The following expression does not have a real root:

>> numeric::realroots(exp(x) + x^2, x = -100..100)

[]

Example 3. We demonstrate the option Merge . If interval arithmetic can not
isolate roots to the desired precision eps (default 0.01), then adjacent intervals
are returned, each of length smaller than eps. This happens in the following
example:

>> numeric::realroots(ln(x^2 -2*x + 2) = 0, x = -10..10)

135

[[0.869140625, 0.87890625], [0.87890625, 0.888671875],

[0.888671875, 0.8984375], ...,

[1.123046875, 1.1328125], [1.1328125, 1.142578125]]

With the option Merge these intervals are combined to a single larger interval:

>> numeric::realroots(ln(x^2 -2*x + 2) = 0, x = -10..10, Merge)

[[0.869140625, 1.142578125]]

Example 4. The following expression has infinitely many solutions x = 1/n
with n = 1,2, . . . in the search interval [0,1]:

>> numeric::realroots(sin(PI/x), x = 0..1, 0.1)

[[0.0, 0.05625], [0.05625, 0.1125], [0.1125, 0.16875],

[0.16875, 0.225], [0.225, 0.28125], [0.28125, 0.3375],

[0.45, 0.50625], [0.9, 1.0]]

The first of the following intervals contains infinitely many roots:

>> numeric::realroots(sin(PI/x), x = 0..1, 0.1, Merge)

[[0.0, 0.3375], [0.45, 0.50625], [0.9, 1.0]]

Example 5. The following equation has no root close to 0. However, interval
arithmetic does not produce realistic values of sin(π x)/x for small intervals
containing 0, so an isolating interval around 0 is returned:

>> numeric::realroots(sin(PI*x)/x = 0, x = -1..1.2)

[[-1.0, -0.99], [-0.0062109375, 0.00234375],

[0.9946875, 1.003242188]]

A similar phenomenon occurs with xx (= ex ln(x)) in a neighbourhood of x = 0.
An isolating interval around 0 is returned, although no solution exists there:

>> numeric::realroots(x^x*cos(PI*x) = tan(x), x = 0..1)

[[0.0, 0.0078125], [0.328125, 0.3359375]]

136

This cannot be cured by increasing the precision goal:

>> numeric::realroots(x^x*cos(PI*x) = tan(x), x = 0..1,
10^(-DIGITS))

[[0.0, 5.820766091e-11], [0.3334737903, 0.3334737903]]

Background:

A Let X be a subset of the real numbers. Interval arithmetic produces a set
f (X) such that the set of image values { f (x); x ∈ X} is contained in f (X).
The MuPAD domain Dom::Interval facilitates this kind of arithmetic.
The routine numeric::realroots computes F:=f(Dom::Interval([a.i,b.i]))
for various subintervals [ai, bi] of [a, b]. If F does not contain zero, then
this subinterval is eliminated from the search interval. Otherwise the
subinterval is returned as a candidate for containing zeros of f (x). How-
ever, one cannot conclude that F does indeed contain at least one zero,
since F is larger than the true image set { f (x); x ∈ [ai, bi]}.

A For polynomials f (x) the routine polylib::realroots is called. Its
results are intersected with the search interval [a, b]. No interval arith-
metic is used.

Changes:

A numeric::realroots used to be numeric::fsolve .

A The search interval is now specified by x=a..b . Merging of intervals
used to be the default. It now must be requested by the option Merge .

A The option eps for controlling the precision goal was introduced. The
new option Merge controls merging of the return intervals.

numeric::singularvalues – numerical singular values of a ma-
trix

numeric::singularvalues(A) returns numerical singular values of the
matrix A.

Call(s):

A numeric::singularvalues(A)

Parameters:
A — a numerical matrix of domain type DOM_ARRAYor of category

Cat::Matrix .

137

Return Value: an ordered list of real floating point values

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linalg::eigenvalues , linalg::eigenvectors ,
numeric::eigenvalues , numeric::eigenvectors ,
numeric::singularvectors , numeric::spectralradius

Details:

A The singular values of an m× n matrix A are the p = min(m,n) real non-
negative square roots of the eigenvalues of AH A (for p = n) or of AAH

(for p = m). The Hermitean transpose AH is the complex conjugate of the
transpose of A.

A numeric::singularvalues returns a list of real singular values [d1, . . . , dp]
sorted by numeric::sort , i.e., 0.0 ≤ d1 ≤ · · · ≤ dp.

A All entries of Amust be numerical. Numerical expressions such as exp(PI),
sqrt(2) etc. are accepted and converted to floats. Non-numerical sym-
bolic entries lead to an error.

A Cat::Matrix objects, i.e., matrices Aof a matrix domain such as Dom::Matrix(..)
or Dom::SquareMatrix(..) , are internally converted to arrays over
expressions via A::dom::expr(A) .

A Singular values are approximated with an absolute precision of
10−DIGITS r, where r is the spectral radius of A (i.e., r is the absolute
value of the largest eigenvalue). Consequently, large singular val-
ues should be computed correctly to DIGITS decimal places. The
numerical approximations of the small singular values are less ac-
curate.

!

A Singular values may also be computed via

map(numeric::eigenvalues (AAH), sqrt);

or

map(numeric::eigenvalues (AH A), sqrt);

respectively. The use of numeric::singularvalues avoids the costs
of the matrix multiplication. Further, the eigenvalue routine requires
about twice as many DIGITS to compute small singular values with the
same precision as numeric::singularvalues . Cf. example 2.

138

Example 1. The singular values of A and AH coincide:

>> A := array(1..3, 1..2, [[1, 2*I], [2, 3],[3, PI]]):
>> numeric::singularvalues(A)

[1.503668692, 5.882906158]

The Hermitean transpose B = AH:

>> B := array(1..2, 1..3,[[1, 2, 3], [-2*I, 3, PI]]):
>> numeric::singularvalues(B)

[1.503668692, 5.882906158]

>> delete A, B:

Example 2. We use numeric::eigenvalues to compute singular values:

>> M := Dom::Matrix():
>> A := M([[1, 2*I], [PI, 312689/49766*I], [2, 4*I]]):

The Hermitean transpose B = AH can be computed by the methods conju-
gate and transpose of the matrix domain:

>> B := M::conjugate(M::transpose(A)):

Note that AH A is positive semi-definite and cannot have negative eigenvalues.
However, computing small eigenvalues is numerically ill-conditioned and a
small negative value occurs due to round-off:

>> numeric::eigenvalues(B*A)

[-8.67361738e-19, 74.34802201]

Consequently, an illegal imaginary singular value is computed:

>> map(%, sqrt)

[0.0000000009313225746 I, 8.622529908]

We have to increase DIGITS in order to compute this value more accurately:

>> DIGITS := 20: map(numeric::eigenvalues(B*A), sqrt)

[0.000000000015115433585415141592, 8.6225299075259371493]

With numeric::singularvalues the standard precision suffices:

>> DIGITS := 10: numeric::singularvalues(A)

[1.511542232e-11, 8.622529908]

>> delete M, A, B:

139

Background:

A The function implements standard numerical algorithms from the Hand-
book of Automatic Computation by Wilkinson and Reinsch.

Changes:

A Internal conversion of Cat::Matrix objects now uses the method "expr"
of the matrix domain.

A The singular values are now sorted by numeric::sort from small val-
ues to large values.

numeric::singularvectors – numerical singular value decompo-
sition of a matrix

numeric::singularvectors(A, ..) returns numerical singular values
and singular vectors of the matrix A.

Call(s):

A numeric::singularvectors(A <, NoLeftVectors > <,
NoRightVectors > <, NoEr-
rors >)

Parameters:
A — a numerical matrix of domain type DOM_ARRAYor of category

Cat::Matrix

Options:

NoLeftVectors — suppresses the computation of left singular
vectors

NoRightVectors — suppresses the computation of right singular
vectors

NoErrors — suppresses the computation of error estimates

Return Value: a list [U,d,V,resU,resV] . U is a unitary square float matrix
of domain type DOM_ARRAY, whose columns are left singular vectors. d is
a list of singular float values. V is a unitary square float matrix of domain
type DOM_ARRAY, whose columns are right singular vectors. The lists of float
residues resU and resV provide error estimates for the numerical data.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

140

Related Functions: linalg::eigenvalues , linalg::eigenvectors ,
numeric::eigenvalues , numeric::eigenvectors ,
numeric::singularvalues , numeric::spectralradius

Details:

A All entries of Amust be numerical. Numerical expressions such as exp(PI),
sqrt(2) etc. are accepted and converted to floats. Non-numerical sym-
bolic entries lead to an error.

A Cat::Matrix objects, i.e., matrices Aof a matrix domain such as Dom::Matrix(..)
or Dom::SquareMatrix(..) are internally converted to arrays over
expressions via A::dom::expr(A) .

A The list [U,d,V,resU,resV] returned by numeric::singularvectors
corresponds to the singular data of an m×n matrix A as described below.

A Let VH denote the Hermitean transpose of the matrix V, i.e., the complex
conjugate of the transpose. The singular value decomposition of an m×n
matrix A is a factorization A = UDVH.

A D is a sparse m×n matrix with real nonnegative “diagonal” entries Dii =
di, i = 1, . . . , p, p = min(m,n) :

D =

d1 0

. . .
dp

0 0

 or

 d1 0
. . .

0 dp 0

 .

The list d = [d1, . . . , dp] returned by numeric::singularvectors are
the “singular values” of A. They are sorted by numeric::sort , i.e.,
0.0 ≤ d1 ≤ · · · ≤ dp.

A U is a unitary m×m matrix. Its i-th column is an eigenvector of AAH

associated with the eigenvalue d2
i (di = 0 for i> p). These are the “left sin-

gular vectors” of A. They are returned by numeric::singularvectors
as an array of floating point numbers.

A V is a unitary n×n matrix. Its i-th column is an eigenvector of AH A asso-
ciated with the eigenvalue d2

i (di = 0 for i> p). These are the “right singu-
lar vectors” of A. They are returned by numeric::singularvectors
as an array of floating point numbers. It is normalized such that its diag-
onal entries are real and nonnegative.

A resU=[resU[1],..,resU[m]] is a list of float residues associated with
the left singular vectors:

resU[i] = 〈AHui,AHui〉 − d2
i , i = 1, . . . ,m.

141

Here ui is the (normalized) i-th column of U, 〈., .〉 is the usual complex
Euclidean scalar product and di = 0 for p < i ≤ m.

A resV=[resV[1],..,resV[n]] is a list of float residues associated with
the right singular vectors:

resV[i] = 〈Avi,Avi〉 − d2
i , i = 1, . . . ,m.

Here vi is the (normalized) i-th column of V, di = 0 for p < i ≤ n.

A The residues resU,resV vanish for exact singular data U, d,V. Their
size indicate the quality of the numerical data U,d,V .

A Singular values are approximated with an absolute precision of
10−DIGITS r, where r is the spectral radius of A (i.e., r is the absolute
value of the largest eigenvalue). Consequently, large singular val-
ues should be computed correctly to DIGITS decimal places. The
numerical approximations of the small singular values are less ac-
curate.

!

A The singular values computed by numeric::singularvectors are
identical to those computed by numeric::singularvalues .

A Singular data may also be computed via

[d2, U, errU] := numeric::eigenvectors (AAH);

or

[d2, V, errV] := numeric::eigenvectors (AH A);

respectively. The list d2 is related to the singular values by

d2 = [0, . . . ,0, d2
1, d

2
2, . . . , d

2
p] .

The use of numeric::singularvectors avoids the costs of the ma-
trix multiplication. Further, the eigenvector routine requires about twice
as many DIGITS to compute the data associated with small singular val-
ues with the same precision as numeric::singularvectors . Also
note that the normalization of Uand V may be different.

Option <NoLeftVectors >:

A If only right singular vectors are required, then this option may be used
to suppress the computation of U and the corresponding residues resU .
The return values for these data are NIL .

142

Option <NoRightVectors >:

A If only left singular vectors are required, then this option may be used
to suppress the computation of V and the corresponding residues resV .
The return values for these data are NIL .

Option <NoErrors >:

A If no error estimates are required, then this option may be used to sup-
press the computation of the residues resU and resV . The return values
for these data are NIL .

Example 1. Numerical expressions are converted to floats:

>> DIGITS := 5:
>> A :=array(1..3, 1..2, [[1, PI], [2, 3], [3, exp(sqrt(2))]]):
>> [U, d, V, resU, resV] := numeric::singularvectors(A):

The singular data are:

>> U, d, V

+- -+
| -0.88078, 0.45729, 0.12293 |
| |
| 0.14947, 0.51483, -0.84417 |, [0.89905, 6.9986],
| |
| 0.44932, 0.72515, 0.5218 |
+- -+

+- -+
| 0.85215, 0.5233 |
| |
| -0.52331, 0.85215 |
+- -+

The residues indicate that these results are not severely affected by round-off
within the working precision of 5 digits:

>> resU, resV

[2.0954e-9, 2.9802e-8, 1.7347e-18], [3.4925e-9, 7.4506e-
8]

>> delete DIGITS, A, U, d, V, resU, resV:

143

Example 2. We demonstrate how to reconstruct a matrix from its singular
data:

>> DIGITS := 3: A := array(1..2, 1..3, [[1.0, I, PI], [2, 3, I]]):
>> [U, d, V, resU, resV] := numeric::singularvectors(A, NoErrors):

For convenience, the matrix domain Dom::Matrix() is used to process the
matrices:

>> M := Dom::Matrix(): U := M(U)

+- -+
| - 0.789 + 0.336 I, 0.511 + 0.0665 I |
| |
| 0.487 - 0.168 I, 0.84 + 0.17 I |
+- -+

A “diagonal” matrix is built from the singular values:

>> DD := M(2, 3, d, Diagonal)

+- -+
| 3.27, 0, 0 |
| |
| 0, 3.9, 0 |
+- -+

>> V := M(V)

+- -
+

| 0.0568, 0.562 + 0.104 I, - 0.681 - 0.454 I |
| |
| 0.55 + 0.0871 I, 0.663, 0.454 + 0.208 I |
| |
| - 0.81 + 0.174 I, 0.455 - 0.162 I, 0.283 |
+- -

+

We use the methods conjugate and transpose of the matrix domain to
compute the Hermitean transpose of V and reconstruct A up to numerical
round-off:

>> VH := M::conjugate(M::transpose(V)):
>> U*DD*VH

+- -
+

| 1.0 + 2.62e-10 I, 1.0 I, 3.14 + 4.66e-10 I |
| |
| 2.0 + 5.02e-10 I, 3.0 - 1.16e-10 I, - 3.73e-9 + 1.0 I |
+- -

+

144

>> delete DIGITS, A, U, d, V, resU, resV, M, DD, VH:

Changes:

A Conversion of Cat::Matrix objects now uses the method "expr" of
the matrix domain.

A The singular values are now sorted by numeric::sort from small val-
ues to large values. Matrices of singular vectors are now returned as
arrays.

numeric::sort – sort a numerical list

numeric::sort(list) sorts the elements in list .

Call(s):

A numeric::sort(list)

Parameters:

list — a list of numbers or numerical expressions

Return Value: a sorted list

Side Effects: The function is sensitive to the environment variable DIGITS .

Related Functions: sort

Details:

A The elements of the list are converted to floating point numbers via float .
Elements that cannot be converted lead to an error.

A The floating point numbers are sorted from small real part to large real
part. Elements with the same real part are sorted from small absolute
value to large absolute value. In case of a tie (i.e., two elements form a
complex conjugate pair) the element with positive imaginary part comes
first.

A This function is used to sort the return values of numeric::eigenvalues ,
numeric::eigenvectors , numeric::polyroots , numeric::singularvalues
and numeric::singularvectors .

145

Example 1.

>> numeric::sort([1, 2.0, I, -3, -I, PI, sqrt(2)])

[-3.0, 1.0 I, - 1.0 I, 1.0, 1.414213562, 2.0, 3.141592654]

In the following example the sorting criterion does not seem to be satisfied:

>> x := sin(PI/3):
>> L := numeric::sort([x, sin(float(PI/3)) - I, x + I])

[0.8660254038 - 1.0 I, 0.8660254038, 0.8660254038 + 1.0 I]

This is explained by the fact that the floating point numbers internally have a
more accurate representation than shown on the screen. The real part of the
first element is indeed a little bit smaller than the other real parts:

>> DIGITS := 20: L

[0.86602540378443864668 - 1.0 I, 0.86602540378443864673,

0.86602540378443864673 + 1.0 I]

>> delete x, L, DIGITS:

Changes:

A numeric::sort is a new function.

numeric::solve – numerical solution of equations (the float attribute
of solve)

numeric::solve computes numerical solutions of equations.

Call(s):

A numeric::solve(eqs, <, vars > <, Options >)
float(hold(solve)(eqs, <, vars > <, Options >))

float(freeze(solve)(eqs, <, vars > <, Options >))

Parameters:
eqs — an equation, a list of equations, or a set of equations. Also

arithmetical expressions are accepted and interpreted as
homogeneous equations.

146

Options:

vars — an unknown, a list of unknowns or a set of
unknowns. Unknowns may be identifiers or
indexed identifiers. Also equations of the
form x=a or x=a..b are accepted wherever
an unknown x is expected. This way starting
points and search ranges are specified for the
numerical search. They must be numerical,
infinite search ranges are accepted.

Options — a combination of Multiple ,
FixedPrecision , SquareFree , Factor ,
RestrictedSearch , or Random

Multiple — only to be used if eqs is a polynomial
equation or a system of polynomial
equations. With this option, information on
the multiplicity of degenerate polynomial
roots is returned.

FixedPrecision — only to be used if eqs is a single univariate
polynomial. It launches a quick numerical
search with fixed internal precision.

SquareFree — only to be used if eqs is a single univariate
polynomial. Symbolic square free
factorization is applied, before the numerical
search starts.

Factor — only to be used if eqs is a single univariate
polynomial. Symbolic factorization is
applied, before the numerical search starts.

RestrictedSearch — only to be used for non-polynomial
equations. The numerical search is restricted
to the search ranges specified in vars .

Random — only to be used for non-polynomial
equations. With this option, several calls to
numeric::solve may lead to different
solutions of the equation(s).

Return Value: a set of numerical solutions. With the option Multiple , a set
of domain type Dom::Multiset is returned.

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linsolve , numeric::fsolve ,
numeric::linsolve , numeric::polyroots ,
numeric::polysysroots , numeric::realroot ,
numeric::realroots , polylib::realroots , solve

147

Details:

A The call numeric::solve(arguments) is equivalent to calling the
float attribute of solve by float(hold(solve)(arguments)) or al-
ternatively by float(freeze(solve)(arguments))

A numeric::solve is a simple interface function unifying the functional-
ity of the numerical solvers numeric::fsolve , numeric::polyroots
and numeric::polysysroots . The return format of these routines
is changed to make it consistent with the return values of the symbolic
solver solve .

A You may call the specialized numerical solvers directly. However, note
the return types specific to each of these solvers.

A numeric::solve classifies the equations as follows:

a) If eqs is a single univariate polynomial equation, then it is directly
passed to numeric::polyroots . Cf. example 2. The roots are
returned as a set or as a Dom::Multiset , if Multiple is used.

b) If eqs is a multivariate polynomial equation or a list or set con-
taining such an equation, then the equations and the appropriate
optional arguments are passed to numeric::polysysroots . Cf.
example 3. The roots are returned as a set or as a Dom::Multiset ,
if Multiple is used.

c) If eqs is a non-polynomial equation or a set or list containing such
an equation, then then the equations and the appropriate optional
arguments are passed to the numerical solver numeric::fsolve .
Note that for non-polynomial equations there must not be
more equations than unknowns! !
Using Multiple for non-polynomial equations leads to an error!
A single numerical root is returned. Cf. example 4.

A For convenience, also polynomials of domain type DOM_POLYare ac-
cepted, wherever an equation is expected.

A In contrast to the symbolic solver solve , the numerical solver
does not react to properties of identifiers set via assume . !

Option <vars >:

A If the user does not specify indeterminates to be solved for, then the in-
determinates are internally chosen by numeric::indets(eqs) .

A Starting points such as x=a or search ranges such as x=a..b specified in
vars are ignored, if eqs is a polynomial equation or a system of poly-
nomial equations.

148

Option <Multiple >:

A This option may only be used when solving polynomial equations!
It changes the return type from DOM_SETto Dom::Multiset . !

Option <FixedPrecision >:

A This option only has an effect if eqs is a single univariate polynomial
equation. It is passed to numeric::polyroots , which uses a numer-
ical search with fixed internal precision. This is fast, but degenerate
roots may be returned with a restricted precision. See the help page of
numeric::polyroots for details.

Option <SquareFree >:

A This option only has an effect if eqs is a single univariate polynomial
equation. It is passed to numeric::polyroots , which preprocesses
the polynomial by a symbolic square free factorization. See the help page
of numeric::polyroots for details.

Option <Factor >:

A This option only has an effect if eqs is a single univariate polynomial
equation. It is passed to numeric::polyroots , which preprocesses
the polynomial by a symbolic factorization. See the help page of numeric::polyroots
for details.

Option <RestrictedSearch >:

A This option only has an effect if eqs contains a non-polynomial equa-
tion. It is passed to numeric::fsolve , which restricts the search to the
search range specified in vars . See the help page of numeric::fsolve
for details.

A This option should only be used in conjunction with search ranges.

149

Option <Random>:

A This option only has an effect if eqs contains a non-polynomial equation.
It is passed to numeric::fsolve which switches to a random search
strategy. See the help page of numeric::fsolve for details.

Example 1. The following three calls are equivalent:

>> eqs := {x^2 = sin(y), y^2 = cos(x)}:
>> numeric::solve(eqs, {x, y}),

float(hold(solve)(eqs, {x, y})),
float(freeze(solve)(eqs, {x,y}))

{[y = 0.8116062152, x = 0.8517004887]},

{[y = 0.8116062152, x = 0.8517004887]},

{[y = 0.8116062152, x = 0.8517004887]}

>> delete eqs:

Example 2. We demonstrate the root search for univariate polynomials:

>> numeric::solve(x^6 - PI*x^2 = sin(3), x)

{-1.339589767, 1.339589767, - 1.322706295 I, - 0.2120113223 I,

0.2120113223 I, 1.322706295 I}

Polynomials of type DOM_POLYcan be used as input:

>> numeric::solve(poly((x - 1/3)^3, [x]), x)

{0.3333333333}

With Multiple , a Dom::Multiset is returned, indicating the multiplicity of
the root:

>> numeric::solve(x^3 - x^2 + x/3 -1/27, x, Multiple)

{[0.3333333333, 3]}

150

Example 3. We demonstrate the root search for polynomial systems. Note
that the symbolic solver solve is involved. Symbolic parameters are accepted:

>> numeric::solve({x^2 + y^2 = 1, x^2 - y^2 = exp(z)}, {x, y})

1/2
{[y = - 0.7071067812 (1.0 - 1.0 exp(z)) ,

1/2
x = - 0.7071067812 (exp(z) + 1.0)],

...
1/2

[y = 0.7071067812 (1.0 - 1.0 exp(z)) ,

1/2
x = 0.7071067812 (exp(z) + 1.0)]}

Example 4. We demonstrate the root search for non-polynomial equations.

>> eq := exp(-x) - 10*x^2:
>> numeric::solve(eq, x)

{0.2755302947}

Since numeric::solve just calls the root finder numeric::fsolve , one
may also use this routine directly. Note the different output format:

>> numeric::fsolve(eq, x)

[x = 0.2755302947]

The input syntax of numeric::solve and numeric::fsolve are identical,
i.e., starting points, search ranges and options may be used. E.g., another solu-
tion of the previous equation is found by a restricted search over the interval
[−1,0]:

>> numeric::solve(eq, x = -1..0, RestrictedSearch)

{-0.3829657727}

The following search for a solution in the entire 2-dimensional plane fails:

>> eqs := [exp(x) = 2*y^2, sin(y) = y*x^3]:
>> numeric::solve(eqs, [x, y])

{[]}

151

Assisted by starting points for the internal search a solution is found:

>> numeric::solve(eqs, [x = 1, y = 1.5])

{[x = 0.9290711315, y = 1.125201325]}

Another solution with negative y is found with an appropriate search range:

>> numeric::solve(eqs, [x = 1, y = -infinity..0])

{[x = 0.9290711314, y = -1.125201325]}

>> delete eq, eqs:

Changes:

A numeric::solve is a new function.

numeric::spectralradius – the spectral radius of a matrix

numeric::spectralradius(A, ..) returns the eigenvalue of the matrix
A that has the largest absolute value.

Call(s):

A numeric::spectralradius(A, x0, n)

Parameters:
A — an m×m matrix of domain type DOM_ARRAYor of category

Cat::Matrix
x0 — a starting vector: a 1-dimensional array or a list of length m
n — the maximal number of iterations: a positive integer

Return Value: A list [lambda, x, residue] is returned. lambda is a
floating point approximation of the the eigenvalue of largest absolute value.
The 1-dimensional array x is a numerical eigenvector corresponding to lambda .
residue is a floating point number indicating the numerical quality of lambda
and x .

Side Effects: The function is sensitive to the environment variable DIGITS ,
which determines the numerical working precision.

Related Functions: linalg::eigenvalues , linalg::eigenvectors ,
numeric::eigenvalues , numeric::eigenvectors ,
numeric::singularvalues , numeric::singularvectors

152

Details:

A The spectral radius of a matrix with eigenvalues λi is max |λi|.

A The return value lambda is an approximation of the corresponding eigen-
value: abs(lambda) is the spectral radius.

A The return value x is the corresponding normalized eigenvector: ||x||2 =
1.

A The return value residue = ||Ax − lambda x||2 provides an error esti-
mate for the eigenvalue. For Hermitean matrices this is a rigorous upper
bound for the error |lambda−λexact|, where λexact is the exact eigenvalue.

A numeric::spectralradius implements the power method to com-
pute the eigenvalue and the associated eigenvector defining the spectral
radius: the vector iteration xi = (Ai x0)/||Ai x0||2 “converges” towards the
eigenspace associated with the spectral radius. The starting vector x0 is
provided by the second argument of numeric::spectralradius .

A The iteration does not converge (converges slowly), if the spectral
radius is generated by several distinct eigenvalues with the same
(similar) absolute value.

!

A Internally, the iteration stops, when the approximation of the eigenvalue
becomes stationary within the relative precision given by DIGITS . If
this does not happen within n iterations, then a warning is issued and
the present values are returned. Cf. example 2.

Example 1. We define a starting vector as a 1-dimensional array and allow a
maximum of 1000 internal iterations:

>> A := array(1..2, 1..2, [[1, 2], [5, -10]]):
x0 := array(1..2, [1, 1]):
numeric::spectralradius(A, x0, 1000)

-- +- -+
| -10.84429006, | 0.166500972, -0.9860412904 |,
-- +- -+

--
1.041382012e-11 |

--

Next we use a list to specify a starting vector:

>> A := array(1..2, 1..2, [[I, 3], [3, I]]):
numeric::spectralradius(A, [1, 1], 1000)

153

-- +- -+ -
-

| 3.0 + 1.0 I, | 0.7071067812, 0.7071067812 |, 0.0 |
-- +- -+ -

-

>> delete A, x0:

Example 2. The following matrix has two distinct eigenvalues 1 and -1 of the
same absolute value. The power method must fail.

>> A := array(1..2, 1..2, [[1, 0], [0, -1]]):

We allow a maximum of 1000 internal steps. The call results in a warning. The
large residue also indicates that the power method did not converge:

>> numeric::spectralradius(A, [1, 1], 1000)

Warning: no convergence of vector iteration [numeric::spectral\
radius]

-- +- -+ --
| 0.0, | 0.7071067812, -0.7071067812 |, 1.0 |
-- +- -+ --

>> delete A:

Changes:

A numeric::spectralradius used to be numeric::vonMises .

numeric::sum – numerical approximation of sums (the float attribute
of sum)

numeric::sum(f[i], i=a..b) computes a numerical approximation of
∑b

i=a fi.

numeric::sum(f(x), x = RootOf(p(X), X)) computes a numerical ap-
proximation of ∑x∈RootOf(p(X),X) f (x).

154

Call(s):

A numeric::sum(f[i], i = a..b))
float(hold(sum)(f[i], i = a..b))

float(freeze(sum)(f[i], i = a..b))

A numeric::sum(f(x), x = RootOf(p(X), X)))

float(hold(sum)(f(x), x = RootOf(p(X), X)))

float(freeze(sum)(f(x), x = RootOf(p(X), X)))

Parameters:
f[i] — an arithmetical expression in i
i — the summation index: an identifier or an indexed identifier
a, b — integers or ±infinity satisfying a ≤ b
f(x) — an arithmetical expression in x
x — the summation variable: an identifier or an indexed identifier
p(X) — a univariate polynomial in X
X — the indeterminate of p: an identifier or an indexed identifier

Return Value: a floating point number.

Related Functions: _plus , int , numeric::quadrature , sum

Details:

A The call numeric::sum(..) is equivalent to calling the float attribute
of sum via float(hold(sum)(..)) or float(freeze(sum)(..)) .

A The summation variable i (respectively, x) must be the only symbolic
parameter in fi (respectively, f (x)), otherwise an error occurs! Numerical
expressions such as exp(PI) , sqrt(2) etc. are accepted and converted
to floating point numbers.

A For infinite sums, the expression fi with integer i must have an
extension f (x) to all real x in the interval [a, b], i.e., f (i) = fi. Inter-
nally, the integral

∫ b
a f (x) dx is computed numerically and used in

the approximation process.

!

A For finite sums, numeric::sum just returns
_plus(float(f[i]$i=a..b) . Note that numerical can-
cellation may occur! If f[i] does not contain floating point
numbers, then cancellation can be avoided summing the symbolic
terms by _plus(f[i]$i=a..b) . Cf. example 3.

!

A Convergence is fast, if fi decays rapidly for |i| →∞.

155

A Convergence may be slow for alternating sums containing expres-
sions such as (−1)i. Such sums are also often subject to cancellation
problems!

!

A The call numeric::sum(f(x), x = RootOf(p(X), X)) computes
numerical approximations of all roots of p, substitutes these values into
f (x) and adds up the results. Cf. example 4. This process may be subject
to cancellation problems!

Example 1. We demonstrate some equivalent calls for numerical summation:

>> numeric::sum(1/i!, i = 0..infinity),
float(hold(sum)(1/i!, i = 0..infinity)),
float(freeze(sum)(1/i!, i = 0..infinity))

2.718281829, 2.718281829, 2.718281829

MuPAD’s symbolic summation does not find a simple representation of the
following sum:

>> sum(1/i!/(i+1)!, i = 0..infinity)

/ 1 \
sum| -------------------, i = 0..infinity |

\ fact(i) fact(i + 1) /

The following float evaluation calls numeric::sum :

>> float(%)

1.590636855

The exact value of the following sum is π coth(π):

>> numeric::sum(1/(1+i^2), i = -infinity..infinity) =
float(PI*coth(PI))

3.153348095 = 3.153348095

Example 2. The following sum cannot be evaluated numerically because of
the symbolic parameter x :

>> numeric::sum(1/(x+i^2), i = -infinity..infinity)

Error: first argument may only contain i as symbolic parameter\
[numeric::sum]

156

Example 3. We demonstrate numerical cancellation when summing the Tay-
lor series for exp(−20):

>> exp(-20.0) <> numeric::sum((-20)^i/i!, i = 0..100)

0.000000002061153622 <> 0.000000002068277833

Also the infinite sum suffers from cancellation:

>> exp(-20.0) <> numeric::sum((-20)^i/i!, i = 0..infinity)

0.000000002061153622 <> 0.000000002068334676

Cancellation can be avoided using a finite sum with exact terms:

>> exp(-20.0) = float(_plus((-20)^i/i! $ i = 0..100))

0.000000002061153622 = 0.000000002061153622

Example 4. The following call computes the numerical roots of the polyno-
mial in the RootOf expression and sums over all the roots:

>> numeric::sum(exp(x)/x, x = RootOf(X^10 - X - PI, X))

9.681693381

Background:

A numeric::sum makes use of the Euler-MacLaurin formula

b

∑
i=a

f (i) =
f (a) + f (b)

2
+
∫ b

a
f (x) dx

+
M

∑
m=1

B2m

(2 m)!

(
f (2m−1)(b)− f (2m−1)(a)

)
+ · · ·

involving the Bernoulli numbers B2m.

Changes:

A numeric::sum used to be funcattr(sum, "float") .

A Lower bounds a =-infinity are now accepted.

A Summation over RootOf expressions was introduced.

157

