
Pref — user preferences

Table of contents

Pref::alias — controls the output of aliased expressions 1

Pref::ansi — Use ANSI control sequences in terminal help . . . 3

Pref::callBack — informations during evaluation 3

Pref::callOnExit — defines an exit handler 5

Pref::echo — suppress displaying of user inputs 6

Pref::floatFormat — representation of floating point numbers 7

Pref::ignoreNoDebug — controls debugging of procedures . . . 8

Pref::keepOrder — order of terms in sum outputs 9

Pref::kernel — the version number of the presently used MuPAD
kernel . 11

Pref::matrixSeparator — sets the separator of matrix entries . 12

Pref::maxMem — memory limit for calculation 13

Pref::maxTime — time limit for calculation 14

Pref::noProcRemTab — disable “remember” tables 15

Pref::output — influence output of objects 16

Pref::postInput — actions after input 18

Pref::postOutput — actions after any output 19

Pref::prompt — visible “prompt” 21

Pref::promptString — user defined “prompt” 22

Pref::report — informations during evaluation 24

Pref::timesDot — determines the output of products 25

Pref::trailingZeroes — trailing zeroes when printing floating
point numbers . 26

Pref::typeCheck — type checking of formal parameters 27

Pref::userOptions — additionally options when starting MuPAD 29

Pref::verboseRead — shows reading of files 29

Pref::warnChanges — warnings about changes wrt. the previous
version of MuPAD . 31

i

Pref::warnDeadProcEnv — warnings about wrong usage of lexical
scope . 32

Pref::warnLexProcEnv — warnings about usage of variables from
lexical scope . 34

ii

Pref::alias – controls the output of aliased expressions

Pref::alias(TRUE) switches the usage of alias abbrevations in outputs
on.

Pref::alias(FALSE) switches the usage of alias abbrevations in outputs
off.

Pref::alias() returns the current setting.

Call(s):

A Pref::alias()

A Pref::alias(TRUE)

A Pref::alias(FALSE)

A Pref::alias(NIL)

Return Value: the last defined value

Side Effects: Pref::alias changes the output of aliased expressions.

Related Functions: alias , expr2text , fprint , print

Details:

A An alias is an abbrevation for a MuPAD expression. If Pref::alias
is enabled, the alias abbrevations will be used for output.

A Pref::alias() returns the current value.

A Pref::alias(TRUE) switches the usage of alias abbrevations in out-
puts on. This is the default setting.

A Pref::alias(FALSE) switches the usage of aliases in outputs off.

A Pref::alias(NIL) restores the default value which is TRUE.

A Pref::alias has no effect on print and fprint .

Example 1. If an aliased expression occurs in output, it is replaced by the alias
abbrevation:

>> alias(X = a + b):
X, a + b

X, X

1

This only works if the syntactical structure of expression matches the aliased
expression:

>> 2*X

2 a + 2 b

prog::exprtree shows that 2*X does not contain a + b any more:

>> prog::exprtree(X): prog::exprtree(2*X):

_plus
|
+-- a
|
‘-- b

_plus
|
+-- _mult
| |
| +-- a
| |
| ‘-- 2
|
‘-- _mult

|
+-- b
|
‘-- 2

The same holds for X+c:

>> X + c; prog::exprtree(X + c):

a + b + c

_plus
|
+-- a
|
+-- b
|
‘-- c

With Pref::alias(FALSE) the back translation of aliases in the output is
disabled:

>> Pref::alias(FALSE):
X

2

a + b

Pref::alias has no effect on print and fprint outputs:

>> Pref::alias(TRUE):
print(X):

a + b

Changes:

A Pref::alias is a new function.

Pref::ansi – Use ANSI control sequences in terminal help

Pref::ansi(FALSE) causes ? to emit plain text help. Use if your terminal
cannot display ANSI/vt100.

Call(s):

A Pref::ansi(<value >)

Parameters:

value — TRUE, FALSE, or NIL

Return Value: the previously defined value

Related Functions: help

Details:

A When using the terminal version of MuPAD, the documentation will usu-
ally be displayed using ANSI/vt100 sequences for boldface and under-
lining. If your terminal or your pager do not support these sequences,
you will see them printed directly, which resembles noise. Use Pref::ansi(FALSE)
to switch these sequences off.

A A call of Pref::ansi without arguments will return the current value.
The argument NIL will reset the default value, which is TRUE.

3

Changes:

A Pref::ansi is a new function.

Pref::callBack – informations during evaluation

Pref::callBack(func) defines a function func , that will be called fre-
quently during evaluation.

Call(s):

A Pref::callBack(<func >)

Parameters:

func — function to display informations

Return Value: the previously defined function

Related Functions: Pref::report , Pref::postInput ,
Pref::postOutput

Details:

A The function func defined by Pref::callBack(func) will be called
permanently, when the MuPAD kernel works. Therewith informations
can be displayed to inform the user.

A A call of Pref::callBack without arguments returns the current value.
The argument NIL resets the default value, which is NIL .

Example 1. The following combination of Pref::postInput (initialization)
and time count with Pref::callBack shows the seconds during evaluating.

>> Pref::postInput(proc() begin START:= time(); TIME:= START end_proc):
Pref::callBack(proc()

begin
if time() - TIME > 1000 then // 1 sec

TIME:= TIME+1000;
print((time() - START) div 1000)

end_if
end_proc):

NOW:= time():
while time() - NOW <= 10000 do 1 end_while:

4

1

2

3

4

5

6

7

8

9

Changes:

A No changes.

Pref::callOnExit – defines an exit handler

Pref::callOnExit(f) defines a function f which is called on exit of Mu-
PAD.

Call(s):

A Pref::callOnExit(f)

A Pref::callOnExit(list)

A Pref::callOnExit(NIL)

A Pref::callOnExit()

Parameters:
f — a function
list — a list of functions

Return Value: Pref::callOnExit returns the previously defined function,
list of functions, or NIL .

Related Functions: _quit , Pref::postOutput

5

Details:

A Pref::callOnExit(f) defines a function f which is called on exit of
MuPAD.

A Pref::callOnExit(list) defines a list of functions which are exe-
cuted in the order of their occurence in list on exit of MuPAD.

A Pref::callOnExit(NIL) sets the default value, which is NIL .

A Pref::callOnExit() returns the current value.

Example 1. This example shows how to print some text on exit of MuPAD. It
only works in the UNIX terminal versions of MuPAD:

>> Pref::callOnExit(
()->print(Unquoted, "Good by, thank You for using MuPAD.")

):
quit

Good by, thank You for using MuPAD.

In the frontends on all platforms the output is the following since

Background:

A Pref::callOnExit can be used to send communication modules a
disconnect message or to remove temporary user-defined files when leav-
ing MuPAD.

Changes:

A No changes.

Pref::echo – suppress displaying of user inputs

Pref::echo(FALSE) suppresses the displaying of user inputs.

Call(s):

A Pref::echo(<value >)

Parameters:

value — TRUE, FALSEor NIL

Return Value: the previously defined value

6

Details:

A Pref::echo(FALSE) suppresses the displaying of user inputs. This
is useful when using MuPAD without frontend and inputs should not
be printed on screen. Pref::echo(TRUE) enables the printing of any
input.

A Pref::echo works only in the terminal version of MuPAD.

A A call of Pref::echo without arguments will return the current value.
The argument NIL will reset the default value, which is TRUE.

Changes:

A No changes.

Pref::floatFormat – representation of floating point numbers

Pref::floatFormat controls the representation of floating point numbers.

Call(s):

A Pref::floatFormat(<modus>)

Parameters:
modus — the kind of representation as character "e" , "f" , "g" or

"h" , or NIL

Return Value: the previously defined representation

Related Functions: DIGITS , Pref::trailingZeroes , print

Details:

A The argument of Pref::floatFormat can be one of "e" , "f" , "g"
and "h" . These are the standard C–command printf switches.

A The meaning is:

"e" exponential representation

"f" decimal representation without exponents

"g" mix between "e" and "f" , only numbers less than 2^-32 will be
displayed with exponential representation

"h" hexadecimal representation

7

A The default value is "g" (see examples).

A A call of Pref::floatFormat without arguments returns the current
value. The argument NIL resets the default value, which is "g" .

Example 1. The default display:

>> Pref::floatFormat(NIL):
12345.67890, 0.00012345

12345.6789, 0.00012345

The exponential representation:

>> Pref::floatFormat("e"):
12345.67890, 0.00012345

1.23456789e4, 1.2345e-4

The mixed representation:

>> Pref::floatFormat("g"):
12345.67890, 0.00000000012345

12345.6789, 0.00000000012345

Hexadecimal display:

>> Pref::floatFormat("h"):
12345.67890, 0.00012345

0x0.CE6B7318FC50481*2^(0x00000E),

0x0.81725B672EE3425A*2^(-0x00000C)

Changes:

A The character "h" can be used instead of "x" to switch to hexadecimal
representation.

Pref::ignoreNoDebug – controls debugging of procedures

Pref::ignoreNoDebug(TRUE) allows debugging of procedures even if
they have the option noDebug set.

8

Call(s):

A Pref::ignoreNoDebug()

A Pref::ignoreNoDebug(TRUE)

A Pref::ignoreNoDebug(FALSE)

A Pref::ignoreNoDebug(NIL)

Return Value: TRUEor FALSE

Related Functions: debug , DOM_PROC

Details:

A Pref::ignoreNoDebug() returns the current value.

A Pref::ignoreNoDebug(TRUE) causes the debugger to ignore the op-
tion noDebug of procedures. This allows to debug even such proce-
dures.

A Pref::ignoreNoDebug(NIL) resets the default value, which is FALSE.

A Pref::ignoreNoDebug(FALSE) resets the default value, which is FALSE.

Changes:

A Pref::ignoreNoDebug is a new function.

Pref::keepOrder – order of terms in sum outputs

Pref::keepOrder influences the output order of terms in sums.

Call(s):

A Pref::keepOrder(Always)

A Pref::keepOrder(DomainsOnly)

A Pref::keepOrder(System)

A Pref::keepOrder(NIL)

A Pref::keepOrder()

Options:

Always — the output always corresponds to the internal order
DomainsOnly — only polynomials and domain elements are printed

in their internal order
System — the output system always decides the output order

9

Return Value: the previously defined value: Always , DomainsOnly , or Sys-
tem .

Related Functions: DOM_POLY, Dom::MultivariatePolynomial ,
Dom::Polynomial , Dom::UnivariatePolynomial , print

Details:

A Usually, the output system uses its own ordering of the terms in a sum to
optimize the appearance of the output. This order may be different from
the internal ordering of the sum. The output system prefers to re-order
the terms such that the first term is positive.

A Sometimes it is desirable to see the terms of a sum in the internal order.
This can be achieved with Pref::keepOrder(Always) .

A By default, the term order of polynomials and domain elements is left
unchanged.

A Pref::keepOrder(NIL) restores the default state, which is Domain-
sOnly .

A Pref::keepOrder() returns the currently set value.

Option <Always >:

A The output always corresponds to the internal order.

Option <DomainsOnly >:

A In polynomials and domain elements, the ordering of terms corresponds
to the internal order. Other sums may be re-ordered by the output sys-
tem.

A This is the default setting of Pref::keepOrder .

Option <System >:

A The output order of terms in sums is determined by the output system
and does not necessarily correspond to the internal order.

10

Example 1. Here we create a domain element e, an expression f , and a poly-
nomial p containing sums. With the default setting DomainsOnly , only the
output of the expression f is not in the internal order:

>> d := newDomain("d"): d::print := x -> extop(x):
e := new(d, b - a): f := b - a: p := poly(1 - x):
e, f, p

- a + b, b - a, poly(- x + 1, [x])

With the setting Always , e, f , and p are all printed in the internal order:

>> Pref::keepOrder(Always):
e, f, p

- a + b, - a + b, poly(- x + 1, [x])

With the setting System , the output order differs from the internal ordering
for e, f , and p:

>> Pref::keepOrder(System):
e, f, p

b - a, b - a, poly(1 - x, [x])

Pref::keepOrder(NIL) restores the default state; Pref::keepOrder()
returns the current setting:

>> Pref::keepOrder(NIL): Pref::keepOrder()

DomainsOnly

Changes:

A Pref::keepOrder is now taken into account in both PRETTYPRINT
modes.

Pref::kernel – the version number of the presently used MuPAD
kernel

Pref::kernel() returns the version number of the presently used kernel.

Call(s):

A Pref::kernel()

11

Return Value: the version number: a list of three nonnegative integers.

Related Functions: patchlevel , version

Details:

A The version numbers of the kernel and the library may differ. Pref::kernel
refers to the kernel, whereas the call version() returns the version
number of the installed MuPAD library.

Example 1. Do the version numbers of kernel and library coincide?

>> Pref::kernel() = version()

[2, 0, 0] = [2, 0, 0]

Changes:

A No changes.

Pref::matrixSeparator – sets the separator of matrix entries

Pref::matrixSeparator("") sets the separator of matrix entries to be a
space.

Call(s):

A Pref::matrixSeparator(<string >)

Parameters:

string — string, that separates matrix entries for printing, or NIL

Return Value: the previously defined string

Related Functions: print

12

Details:

A The default value is ", " . The separator string should not contain a
tabulator, and should be at least one character.

A A call of Pref::matrixSeparator without arguments returns the cur-
rent value. The argument NIL resets the default value.

A The setting of Pref::matrixSeparator only configures the ASCII
output with PRETTYPRINTset to TRUE. It does not influence the type-
setting output.

Example 1.

>> A:= array(1..2, 1..2, [[1, 2], [2, 3]])

+- -+
| 1, 2 |
| |
| 2, 3 |
+- -+

>> Pref::matrixSeparator(" "):
A

+- -+
| 1 2 |
| |
| 2 3 |
+- -+

Changes:

A No changes.

Pref::maxMem – memory limit for calculation

Pref::maxMem(kbyte) sets a memory limit for calculations in kilobyte.

Call(s):

A Pref::maxMem(<kbyte >)

13

Parameters:

kbyte — integer in kilobyte, or NIL

Return Value: the last defined memory limit

Related Functions: Pref::maxTime , bytes , MAXDEPTH

Details:

A The value 0 effects no limitation.

A A call of Pref::maxMem without arguments returns the current value.
The argument NIL resets the default value, which is 0.

Example 1. The memory usage will be limited to a value above the current
memory usage, displayed by bytes .

>> bytes()

507780, 717300, 2147483647

>> Pref::maxMem(1):
[i] $ i = 1 .. 1000000:

Error: Watchdog reset [watchdog-memory]

Changes:

A No changes.

Pref::maxTime – time limit for calculation

Pref::maxTime(seconds) sets a time limit for calculations in seconds.

Call(s):

A Pref::maxTime(<seconds >)

Parameters:

seconds — integer in seconds, or NIL

Return Value: the previously defined memory

14

Related Functions: Pref::maxMem , time

Details:

A The value 0 effects no limitation.

A A call of Pref::maxTime without arguments returns the current value.
The argument NIL resets the default value, which is 0.

Example 1. No computation can take more than ten seconds.

>> Pref::maxTime(10):
TIME:= time(): while time() - TIME < 11111 do null() end_while

Error: Watchdog reset [watchdog-time]

Changes:

A No changes.

Pref::noProcRemTab – disable “remember” tables

Pref::noProcRemTab(TRUE) disables the “remember” tables.

Call(s):

A Pref::noProcRemTab(<value >)

Parameters:

value — TRUE, FALSE, or NIL

Return Value: the last defined value

Side Effects: Without the “remember” tables the computation of any func-
tions will be very much slower. The results are the same.

Related Functions: proc

15

Details:

A With Pref::noProcRemTab(TRUE) the “remember” tables of proce-
dures can be disabled. Pref::noProcRemTab(FALSE) enables the
“remember” tables.

A With the option remember of procedures results of calculations will be
kept and “recycled”: If a function will be called with the same arguments
once again the previously calculated result will be returned immediately.

A A call of Pref::noProcRemTab without arguments returns the current
value. The argument NIL resets the default value, which is FALSE.

Example 1. Because of the unclever definition, the function fac (factorial
function) will be called permamently with the same arguments, and thats very
often. The option remember corrects this, as a previous calculated result will
be returned immediately without a new call of the function fac .

>> reset():
fac:= proc(n = 1)

option remember;
begin

if n > 2 then
fac(n - 1)*fac(n - 2)

else
n

end_if
end_proc:

time(fac(28))

890

Without this “remember” mechanism the effect of the unclever definition will
be gigantic, even on a very hurry computer. Don’t try fac(32) .

>> reset():
Pref::noProcRemTab(TRUE):
time(fac(28))

13600

Changes:

A No changes.

16

Pref::output – influence output of objects

With Pref::output the output of objects can be influenced.

Call(s):

A Pref::output(function)

Parameters:

function — function, that influence the output

Return Value: the previously defined value

Related Functions: Pref::postOutput , Pref::postInput ,
Pref::keepOrder

Details:

A With Pref::output a function can be defined that manipulates the out-
put of objects.

A The given function will be called before any object will be outputted. The
argument is the object, that will be outputted. The result of the function
will be outputted instead of the given object.

A A call of Pref::output without arguments will return the current value.
The argument NIL will reset the default value, which is NIL .

Example 1. All numbers shall be displayed as floating point numbers, but
the input and calculations should not be influenced. Therefor a function, that
applies float to all numeric objects, will be mapped to all objects of the result.

>> Pref::output(
proc()
begin

map(args(), proc(num)
begin

if testtype(num, Type::Numeric) then
float(num)

else
num

end_if
end_proc)

end_proc):
1, 528/44, 194/8, 2 + 4/5*I

17

1.0, 12.0, 24.25, 2.0 + 0.8 I

In the next example the procedure generate::TeX will be applied to every
output, before any object will be displayed.

>> Pref::output(generate::TeX):
sqrt(x^2 - 1/x)

"\\sqrt{x^2 - \\frac{1}{x}}"

Changes:

A No changes.

Pref::postInput – actions after input

With Pref::postInput , actions directly after the data input can be initiated.

Call(s):

A Pref::postInput(value)

Parameters:

value — function to be executed after data input

Return Value: the previously defined function

Related Functions: Pref::postOutput , Pref::promptString

Details:

A With Pref::postInput a function can be defined to initiate actions
after ending every complete input line with <RETURN>.

A The function will be called with the complete input line as argument.

A After the execution of the defined function the normally execution will
be continued.

A Pref::postInput in joint with Pref::promptString und Pref::postOutput
can be used to create status informations about evaluation. Possibili-
ties are informations to time, memory usage, types of results etc. (see
Pref::postOutput)

A A call of Pref::postInput without arguments will return the current
value. The argument NIL will reset the default value, which is NIL .

18

Example 1. Pref::postInput will be used to numerate the input lines in
joint with Pref::promptString . The global variable NumberOfLine must
be initialized with 0. This all can be done in the file “userinit.mu ”.

>> NumberOfLine:= 0:
Prompt:= Pref::promptString():
Pref::postInput(proc()

begin
NumberOfLine:= NumberOfLine + 1;
Pref::promptString(expr2text(NumberOfLine) . Prompt)

end_proc):

Example 2. Time mesure in seconds.

>> Pref::postInput(() -> (TIME:= time())):
Pref::postOutput(proc()

local Time;
begin

Time:= trunc((time() - TIME)/1000);
stringlib::format("Time: ".expr2text(Time)." s",

TEXTWIDTH, Right)
end_proc):

T:= time(): while time() - T < 1000 do null() end_while

Time: 2 s

The output depends on the value of the variable TEXTWIDTH.

Changes:

A No changes.

Pref::postOutput – actions after any output

Pref::postOutput controls user defined actions directly after any output.

Call(s):

A Pref::postOutput(<func >)

Parameters:

func — function to be executed after output, or NIL

19

Return Value: the last defined function

Related Functions: Pref::postInput , Pref::promptString

Details:

A Pref::postOutput(func) declares the function func to be called af-
ter every output.

A The function func will be called with the result of any evaluation after
the output of the result.

A A call of Pref::postOutput without arguments returns the current
value. The argument NIL resets the default value, which is NIL .

A Pref::postOutput in joint with Pref::promptString und Pref::postInput
can be used to create status informations about evaluation. Possibilities
are informations to time and memory usage, types of results etc. (see
Pref::postInput)

Example 1.

>>

Example 2. Pref::postOutput will be used to numerate the output lines
and show the type of the result. The global variable NumberOfLine must be
initialized with 0. This all can be done in the file “userinit.mu ”.

>> NumberOfLine:= 0:
Pref::postOutput(proc()

begin
NumberOfLine:= NumberOfLine + 1;
stringlib::format(NumberOfLine, TEX-

TWIDTH, Right)."\n".
stringlib::format("Type: ".expr2text(map([args()], dom-

type)),
TEXTWIDTH, Right)

end_proc):

20

Example 3. Time mesure in seconds.

>> Pref::postInput(() -> (TIME:= time())):
Pref::postOutput(proc()

local Time;
begin

Time:= trunc((time() - TIME)/1000);
stringlib::format("Time: ".expr2text(Time)." s",

TEXTWIDTH, Right)
end_proc):

T:= time(): while time() - T < 1000 do null() end_while

Time: 2 s

The output depends on the value of the variable TEXTWIDTH.

Example 4. Show all identifiers of the result, that have properties assumed
by the user.The first assignment to ID selects all identifiers of the output, that
have properties. The second assignment to ID collects the properties of all
identifiers.

>> Pref::postOutput(proc()
local ID;

begin
if args(0) > 0 then

ID := select(indets(args()), property::hasprop);
else

ID := {};
end_if;
if nops(ID) > 0 then

stringlib::format("Props: ".expr2text(op(ID)),
TEXTWIDTH, Right)

else
null()

end_if
end_proc):

assume(a>0): a

a
Props: a

The output depends on the value of the variable TEXTWIDTH.

Changes:

A No changes.

21

Pref::prompt – visible “prompt”

Pref::prompt determines, whether the string in front of any input line (the
“prompt”) will be printed.

Call(s):

A Pref::prompt(<value >)

Parameters:
value — TRUE(to enable the prompt), FALSE(to disable the prompt),

or NIL

Return Value: the last defined value

Related Functions: Pref::promptString , Pref::echo

Details:

A The “prompt” is a string that will be printed in front of each input line to
mark it as input line. With Pref::prompt(FALSE) the “prompt” can
be disabled (and also be enabled again with Pref::prompt(TRUE)).

A A call of Pref::prompt without arguments will return the current value.
The argument NIL will reset the default value, which is TRUE.

Example 1. Disabling the “prompt”:

>> Pref::prompt(FALSE):

Background:

A In combination with Pref::echo , MuPAD can be caused to be totally
quiet, that only the output can be seen.

Changes:

A No changes.

Pref::promptString – user defined “prompt”

Pref::promptString determines the string, that will be printed in front of
any input line—the “prompt”.

22

Call(s):

A Pref::promptString(<prompt >)

Parameters:

prompt — string, that contains the “prompt”, or NIL

Return Value: the last defined string

Related Functions: Pref::prompt , Pref::postInput ,
Pref::postOutput

Details:

A Pref::promptString changes the user “prompt”.

A The “prompt” is the string, that will be printed in front of each input line
to mark it as input line.

A The prompt can be extended to display additional information. In joint
with Pref::postInput and Pref::postOutput the “prompt” can
be formed alterable (see example 2).

A A call of Pref::promptString without arguments returns the current
value. The argument NIL will reset the default value, which is "» " .

Example 1. Prints out the current prompt:

>> Pref::promptString()

">> "

Example 2. Pref::promptString will be used to numerate the input lines
in joint with Pref::postInput . I.e., after each input the variable Num-
berOfLine will be incremented. The variable NumberOfLine must be ini-
tialized with 0. (This all could be done in the file “userinit.mu ”.)

>> NumberOfLine:= 0:
Pref::postInput(proc()

begin
NumberOfLine:= NumberOfLine + 1;
Pref::promptString(expr2text(NumberOfLine) . " >> ")

end_proc):

23

Changes:

A No changes.

Pref::report – informations during evaluation

Pref::report controls the output of informations during evaluation.

Call(s):

A Pref::report(level)

Parameters:

level — integer level between 0 and 9, or NIL

Return Value: the last defined level

Related Functions: Pref::callBack

Details:

A Pref::report controls the frequence of report messages of the MuPAD
kernel during evaluation.

A A kernel function displayes frequently the three informations memory
used, memory reserved and evaluation time in seconds.

A The level 0 disables printing information. If level is 1, about every
hour a message will be printed. With 9 as argument the most reports
will be printed. The frequency is dependent on the machines speed.

A A call of Pref::report without arguments returns the current value.
The argument NIL resets the default value, which is 0.

Example 1. Frequently information:

>> Pref::report(9):
limit((1+1/n)^n,n=infinity)

[used=1612k, reserved=1738k, seconds=1]
[used=2716k, reserved=2856k, seconds=2]

exp(1)

Reset to no information:

>> Pref::report(0):

24

Changes:

A The frequency of message was decreased.

Pref::timesDot – determines the output of products

Pref::timesDot(str) sets the output of the multiplication symbol in prod-
ucts to the string str .

Call(s):

A Pref::timesDot()

A Pref::timesDot(str)

A Pref::timesDot(i)

A Pref::timesDot(NIL)

Parameters:
str — a string
i — an integer between 1 and 255
NIL — the MuPAD object NIL

Return Value: the previously defined value

Side Effects: Changes the output of products.

Related Functions: _mult , print

Details:

A Pref::timesDot determines the output of the multiplication symbol
between factors of a product in PRETTYPRINToutput mode.

A Pref::timesDot() returns the current multiplication symbol.

A Pref::timesDot(str) sets the multiplication symbol to the given string
str .

A Pref::timesDot(i) interprets i as an ASCII code and sets the multi-
plication symbol to the corresponding ASCII character.

A Pref::timesDot(NIL) restores the default value: the blank character.

25

Example 1. By default factors of products are separated by blanks.

>> a*b

a b

This can be changed by calling Pref::timesDot with an argument of type
string .

>> Pref::timesDot(" * "):
a*b

a * b

183 is the ASCII code for the character ’·’.

>> Pref::timesDot(183):
a*b

a·b

NIL restores the default output.

>> Pref::timesDot(NIL):
a*b

a b

Changes:

A Pref::timesDot is a new function.

Pref::trailingZeroes – trailing zeroes when printing floating point
numbers

Pref::trailingZeroes determines, whether trailing zeroes will be appended,
when floating point numbers are printed.

Call(s):

A Pref::trailingZeroes(value)

A Pref::trailingZeroes(<NIL >)

Parameters:

value — TRUE, FALSEor NIL

26

Return Value: the last defined value

Related Functions: DIGITS , Pref::floatFormat , print

Details:

A If enabled (with argument TRUE), after the significant numbers of a float-
ing point number (behind the point) zeroes will be appended until the
number of digits reaches the value of DIGITS .

A A call of Pref::trailingZeroes without arguments will return the
current value. The argument NIL will reset the default value, which is
FALSE.

Example 1. By default trailing zeroes will not be displayed:

>> DIGITS:= 10:
1.4

1.4

Display of trailing zeroes will be enabled:

>> Pref::trailingZeroes(TRUE):
1.4

1.400000000

Changes:

A No changes.

Pref::typeCheck – type checking of formal parameters

Pref::typeCheck determines the kind of type checking of procedure pa-
rameters.

Call(s):

A Pref::typeCheck(value)

A Pref::typeCheck(<NIL >)

Parameters:

value — one of Always , Interactive , None, or NIL

27

Return Value: the last defined value

Related Functions: args , DOM_PROC, domtype , hastype , proc ,
testargs , testtype , Type , type

Details:

A The definition of a MuPAD procedure can be contain formal parameters.
A type can be determined to every formal parameter with a new syntax.
If the type checking will be enabled, the types of given parameters of
such a procedure will be checked and results an error if it fails.

A As types MuPAD standard types and objects of the domain Type can be
used. With Type , user defined types can be easily added to the system
to extend the type checking mechanism.

A The arguments of Pref::typeCheck can be:

None no parameter will be checked
Interactive only when calculate interactively the formal parameters

will be checked (default)
Always the formal parameters will always be checked

A The default value Interactive means: When the user is calling a pro-
cedure f , their parameters will be checked, but all procedures, that will
be called by the user called procedure f , performs no type checking.

A A call of Pref::typeCheck without arguments returns the current value.
The argument NIL resets the default value, which is Interactive .

Example 1. The parameters of the procedure f must be an identifier followed
by an integer:

>> f:= proc(a : DOM_IDENT, b : DOM_INT)
begin

evalassign(a, b)
end_proc:

f(a, 2)

2

Now a has the value 2, but an identifier is expected:

>> f(a, a + 2)

Error: Wrong type of 2. argument (type ’DOM_INT’ expected,
got argument ’a + 2’);

during evaluation of ’f’

28

Background:

A The new syntax to test parameters directly (without a test in the proce-
dure body) is the formal parameter followed by a colon and then the type
object: proc(a : DOM_IDENT, b : Type::Integer) . That means:
a must be of the type DOM_IDENTand b must be of the type Type::Integer .

A The objects of Type covers generally more objects as the MuPAD kernel
types.

Changes:

A Pref::typeCheck is a new function.

Pref::userOptions – additionally options when starting MuPAD

Pref::userOptions() returns additional options, given by the user when
calling MuPAD.

Call(s):

A Pref::userOptions()

Return Value: the user defined options as strings

Details:

A When starting the MuPAD kernel with the flag "-U" the user can define
options, that can be used in the MuPAD session.

Example 1. When enter MuPAD with the command mupad -U "Hello World"
the current directory will be stored and can be restored with Pref::userOptions :

>> Pref::userOptions()

"Hello World"

Changes:

A No changes.

Pref::verboseRead – shows reading of files

With Pref::verboseRead the reading of library files can be shown.

29

Call(s):

A Pref::verboseRead(value)

Parameters:

value — 0, 1, 2 or NIL

Return Value: the last defined value

Related Functions: read , fread , prog::trace , loadproc

Details:

A With Pref::verboseRead the reading of library packages and files can
be shown.

A The arguments of Pref::verboseRead stays for

0 no messages when reading files (default)
1 message if a library packages will be read
2 messages if a package or any library function will be read

A A call of Pref::verboseRead without arguments returns the current
value. The argument NIL will reset the default value, which is 0.

Example 1. Show the reading of library packages:

>> reset():
Pref::verboseRead(1):
sin(x)

loading package ’Type’ [mupad/share/lib/lib.tar#lib/]

0.8414709848

Show reading of all library files:

>> reset():
Pref::verboseRead(2):
sin(1.0)

reading file mupad/share/lib/lib.tar#lib/SPECFUNC/sin.mu
reading file mupad/share/lib/lib.tar#lib/SPECFUNC/sinh.mu
reading file mupad/share/lib/lib.tar#lib/STDLIB/infinity.mu
loading package ’Type’ [mupad/share/lib/lib.tar#lib/]
reading file mupad/share/lib/lib.tar#lib/TYPE/Arith.mu

0.8414709848

30

Changes:

A No changes.

Pref::warnChanges – warnings about changes wrt. the previous
version of MuPAD

Pref::warnChanges(TRUE) switches on parser warnings about the usage
of obsolete features from previous MuPAD versions.

Call(s):

A Pref::warnChanges()

A Pref::warnChanges(TRUE)

A Pref::warnChanges(FALSE)

A Pref::warnChanges(NIL)

Return Value: the previously defined value

Side Effects: Allows or suppresses warning messages.

Further Documentation: changes

Related Functions: Pref::warnDeadProcEnv , Pref::warnLexProcEnv

Details:

A Pref::warnChanges() returns the current value.

A Pref::warnChanges(TRUE) switches warning messages on. Now the
parser warns if environment variables are declared as local variables (use
save instead) or obsolete environment variables are used.

A Pref::warnChanges(NIL) or Pref::warnChanges(FALSE) will re-
set the default value, which is FALSE.

Example 1. If an environment variable is declared as local variable a warning
is given:

>> Pref::warnChanges(TRUE):
p := proc() local DIGITS; begin x end:

Warning: Former environment variable ’DIGITS’ used as lo-
cal [l\

ine 2, col 25]

31

Use save instead of local for environment varibles:

>> p := proc() save DIGITS; begin x end:

>> Pref::warnChanges(FALSE):

Example 2. ERRORLEVELis obsolete:

>> Pref::warnChanges(TRUE):
p := proc() begin ERRORLEVEL end:

Warning: Obselete environment variable ’ERRORLEVEL’ used \
[_check_global]

>> Pref::warnChanges(FALSE):

Changes:

A Pref::warnChanges is a new function.

Pref::warnDeadProcEnv – warnings about wrong usage of lexical
scope

Pref::warnDeadProcEnv() returns the current setting.

Pref::warnDeadProcEnv(TRUE) switches on warnings about unreachable
procedure environments.

Pref::warnDeadProcEnv(FALSE) switches warning messages off.

Pref::warnDeadProcEnv(NIL) will reset the default value, which is FALSE.

Call(s):

A Pref::warnDeadProcEnv()

A Pref::warnDeadProcEnv(TRUE)

A Pref::warnDeadProcEnv(FALSE)

A Pref::warnDeadProcEnv(NIL)

Return Value: the previously defined value; TRUEor FALSE

Side Effects: Allows or suppresses warning messages.

32

Further Documentation: changes

Related Functions: Pref::warnChanges , Pref::warnLexProcEnv ,
proc

Details:

A If a procedure is executed a procedure environment is created for this pro-
cedure. It contains the current values of formal parameters and local
variables. On exit of the procedure this procedure environment is nor-
mally not needed any more and destroyed.

A If a procedure returns a local procedure as its result, this local procedure
escapes its scope. Usually this is no problem. Only if the escaping pro-
cedure contains references to formal parameters or local variables of the
outer procedure these variables escape their scope. These variables can not
be dereferenced since they reference values of a procedure environment
of the outer procedure which does not exist any more.

A Use option escape in the outer procedure in order to keep its procedure
environment untouched.

Example 1. Here we write procedure p which returns a local procedure. The
returned procedure adds the value of its argument y to the value of the argu-
ment x of the first procedure. The following naive implementation produces a
strange output and, when the resulting procedure is called, a warning message
and an error:

>> Pref::warnDeadProcEnv(FALSE):
p := proc(x) begin y -> x + y end:
f := p(1); f(2)

y -> DOM_VAR(1,2) + y
Warning: Uninitialized variable ’unknown’ used;
during evaluation of ’f’
Error: Illegal operand [_plus];
during evaluation of ’f’

If Pref::warnDeadProcEnv is set to TRUEMuPAD will print a warning mes-
sage when the local procedure escapes its scope:

>> Pref::warnDeadProcEnv(TRUE):
p := proc(x) begin y -> x + y end:
f := p(1)

Warning: Found dead closure of procedure ’p’

y -> DOM_VAR(1,2) + y

33

Use option escape in the outer procedure to prevent this warning. The returned
procedure f will then work as expected:

>> p := proc(x) option escape; begin y -> x + y end:
f := p(1); f(2)

y -> x + y

3

Changes:

A Pref::warnDeadProcEnv is a new function.

Pref::warnLexProcEnv – warnings about usage of variables from
lexical scope

Pref::warnLexProcEnv() returns the current setting.

Pref::warnLexProcEnv(TRUE) switches on parser warnings about the us-
age of variables from the lexical scope.

Pref::warnLexProcEnv(FALSE) switches warning messages off.

Pref::warnLexProcEnv(NIL) will reset the default value, which is FALSE.

Call(s):

A Pref::warnLexProcEnv()

A Pref::warnLexProcEnv(TRUE)

A Pref::warnLexProcEnv(FALSE)

A Pref::warnLexProcEnv(NIL)

Return Value: the previously defined value; TRUEor FALSE

Side Effects: Allows or suppresses warning messages of the parser.

Further Documentation: changes

Related Functions: Pref::warnChanges , Pref::warnDeadProcEnv ,
proc

34

Details:

A If Pref::warnLexProcEnv is enabled the parser warns if a procedure
defined in the lexical scope of another procedure uses variables from its
lexical scope.

A These warnings are not always critical. The example below shows a pro-
cedure which initiates a warning message but works without problems.

A Pref::warnDeadProcEnv switches on warnings about the critical us-
age of the lexical scope.

Example 1. Here you can see a procedure which computes the square of its
argument in a very complicated way. The inner procedure g makes use of the
variable x of procedure f , thus a warning is given. But this is no problem, since
g does not escape its scope. See Pref::warnDeadProcEnv about problems
of procedure leaving its scope.

>> Pref::warnLexProcEnv(TRUE):
f := proc(x) local g; begin g := y -> x*y; g(x) end:
f(5)

Warning: Procedure ’->’ is referring outer lexical closure \
[col 42]

25

Changes:

A Pref::warnLexProcEnv is a new function.

35

