
prog — programmer’s toolbox

Table of contents

Preface . ii

prog::allFunctions — overview of all functions 1

prog::calltree — visualize the call structure of nested function
calls . 2

prog::changes — generate obsolete functions of MuPAD version 1.4 4

prog::check — Checking MuPAD objects 8

prog::exprtree — visualize an expression as tree 12

prog::error — error message and internal error number 14

prog::find — find operands of expressions 15

prog::getname — the name of an object 16

prog::init — loading objects . 17

prog::isGlobal — information about reserved identifiers 19

prog::makeBinLib — binary version of a library 20

prog::memuse — memory usage of a computation 21

prog::profile — display timing data of nested function calls . . 23

prog::test — automatic comparing of calculation results 24

prog::testexit — closing tests 28

prog::testfunc — initialize tests 28

prog::testinit — initialize tests 29

prog::trace — observe functions 30

prog::traced — find traced functions 35

prog::untrace — terminates observation of functions 36

i

Library prog

This library contains programming utilities.
With this utilities MuPAD functions can be analyzed, traced and errors can

be found easier.

ii

prog::allFunctions – overview of all functions

prog::allFunctions reads in all functions and libraries and all names will
be printed.

Call(s):

A prog::allFunctions(<Recursive <, Recursive >>)

Options:

Recursive — also domains and their operands will be examined

Return Value: the void object null()

Related Functions: prog::init

Details:

A prog::allFunctions initializes all functions and libraries and prints
a table with all these objects. The functions will be sorted alphabetically.

Option <Recursive >:

A With Recursive given once, domains will be examined too and their
operands be printed. If Recursive is given twice, also these operands
will be inspected. This may take a while . . .

Example 1. prog::allFunctions reads in and prints out every library and
function:

>> prog::allFunctions()

Warning: Reading all MuPAD objects, this may take a while... [\
prog::allFunctions]
DOM_EXEC: [189]
_act_proc_env _and _assign
_break _case _concat
...

>> prog::allFunctions(Recursive, Recursive)

1

Warning: Reading all MuPAD objects, this may take a while... [\
prog::allFunctions]
DOM_EXEC: [189]
_act_proc_env _and _assign
_break _case _concat
...

Changes:

A prog::allFunctions is a new function.

prog::calltree – visualize the call structure of nested function
calls

With prog::calltree the call structure of nested function calls can be visu-
alized.

Call(s):

A prog::calltree(statement <, maxdepth > <,
excl_funcs > <, option >)

Parameters:
statement — a MuPAD statement to examine
maxdepth — maximal “call depth” to show calls on screen
excl_funcs — set of MuPAD objects to exclude from showing on

screen
option — a set or one of Plain and Args

Options:

Args — The arguments of any function call are printed additionally.
Tree — The call of prog::calltree returns an object of type

adt::Tree .

Return Value: prog::calltree returns the result of the execution of state-
ment . Additionally, information on the flow of control is printed.

Related Functions: prog::trace , setuserinfo , debug ,
prog::profile

2

Details:

A prog::calltree visualizes the call structure of nested function calls.

A statement can be any MuPAD statement. If a function is called, prog::calltree
prints all functions called while executing statement in a tree structure.

A Using this output, dependencies between functions can be observed and
analyzed.

Option <Args >:

A The arguments of every function call are printed.

Option <Tree >:

A The call of prog::calltree returns an object of type adt::Tree . No
output is printed on screen. The return object contains all call structure
informations, that would be printed on screen without this option (see
adt::Tree).

Example 1. fib is a self-calling procedure, prog::calltree visualizes the
calling structure:

>> fib:= proc(n)
begin

if n < 2 then
n

else
fib(n - 1) + fib(n - 2)

end_if
end_proc:

prog::calltree(fib(4))

fib
|
+-- fib
| |
| +-- fib
| | |
| | +-- fib
| | |
| | ‘-- fib
| |

3

| ‘-- fib
|
‘-- fib

|
+-- fib
|
‘-- fib

3

With the option Args , the arguments of each function call are printed:

>> prog::calltree(fib(3), Args)

fib(fib(3))
|
+-- fib(fib(2))
| |
| +-- fib(fib(1))
| |
| ‘-- fib(fib(0))
|
‘-- fib(fib(1))

2

Changes:

A prog::calltree is a new function.

prog::changes – generate obsolete functions of MuPAD version 1.4

prog::changes() invokes a “compatibility mode” between the MuPAD ver-
sions 1.4 and 2.0. This call generates “dummy” implementations of system
functions that existed in version 1.4 but do not exist in 2.0 anymore. Calling
one of these obsolete functions produces a warning. The corresponding func-
tion of version 2.0 is called automatically by its new name.

prog::changes(object) prints information on changes of the object.

Call(s):

A prog::changes(<option > <, Quiet >)

A prog::changes(object)

4

Parameters:
option — either Warning or Error or Remove. The default is

Warning .
object — any MuPAD object

Options:

Warning — Calling an obsolete function produces a warning. If a
corresponding function exists in version 2.0, it is called
automatically by its new name.

Error — Calling an obsolete function produces an error.
Remove — Switches the “compatibility mode” off. All functions and

domains generated by a previous call to
prog::changes are removed.

Quiet — No messages are printed during the call to
prog::changes .

Return Value: the void object null() .

Related Functions: help , info , Pref::warnChanges

Details:

A Many functions and domains that existed in version 1.4 were given new
names, or were moved to other places in the library. prog::changes()
generates “dummy” versions of all obsolete functions and domains. A
subsequent call to such a “dummy” function produces a warning inform-
ing the user about the nature of the change. Depending on the option
Warning or Error used in the call to prog::changes , the correspond-
ing function of version 2.0 is called automatically, or an error is produced,
respectively. Cf. examples 1 and 2.

A prog::changes(object) prints information about changes of the ob-
ject. Such information is available for functions, function environments,
domains and environment variables. Cf. example 3.

Option <Warning >:

A When an obsolete function is called, a warning is printed. The corre-
sponding function of version 2.0 is called automatically with the same
arguments. If no corresponding function exists in version 2.0, a warning
is printed and FAIL is returned.

A The calls prog::changes() and prog::changes(Warning) are equiv-
alent.

5

Option <Error >:

A When an obsolete function is called, an error is produced. In particular,
no corresponding new function is called. Cf. example 2.

Option <Remove>:

A With this option, all obsolete functions and domains generated by a pre-
vious call to prog::changes are deleted. Also a call to reset deletes
the objects generated by prog::changes .

Option <Quiet >:

A This option disables the printing of messages while prog::changes is
executed. The messages produced by calling the obsolete objects are not
influenced.

Example 1. The MuPAD version 1.4 provides the function asin for the inverse
sine function. This function has become obsolete in the current version. The
same holds for the function unassign of version 1.4:

>> a := asin(1)

asin(1)

>> unassign(a)

unassign(asin(1))

A call to prog::changes is useful to find out information and to execute
code written for version 1.4. The following command makes MuPAD produce
“dummy” versions of all missing functions:

>> prog::changes()

Info: Obsolete functions of MuPAD version 1.4 are ’restored’.
Any call to an obsolete function will produce a warning.
A function from the present library with the same or a
similar functionality will be called automatically.

The “dummy” functions can be called and produce useful hints. They also
forward the arguments to an appropriate new function of version 2.0:

>> a := asin(1)

6

Warning: ’asin’ was changed to ’arcsin’ [asin]

PI
--
2

>> unassign(a):

Warning: ’unassign’ was removed. Use the new keyword ’delete’ \
[unassign]

>> a

a

To remove all obsolete functions, prog::changes can be called with the op-
tion Remove:

>> prog::changes(Remove)

Info: All redefined functions and domains are removed.

Example 2. prog::changes is called with the option Error . The “dummy”
functions generated by this call produce error messages. The option Quiet
suppresses all messages during the execution of prog::changes :

>> reset():
prog::changes(Error, Quiet):

>> a := asin(1)

Error: ’asin’ was changed to ’arcsin’ [asin]

>> READ_PATH

Error: system variable ’READ_PATH’ was renamed, please use ’RE\
ADPATH’

Example 3. prog::changes provides information about specific objects:

>> reset():
prog::changes(fun)

Info: ’fun’ is removed. [prog::changes]

>> prog::changes(asin)

7

Info: ’asin’ is a renamed function.
’asin’ is changed to ’arcsin’. [prog::changes]

>> prog::changes(sharelib::trace)

Info: ’sharelib::trace’ is a renamed function.
’sharelib::trace’ is changed to ’prog::trace’. [prog::changes]

Changes:

A prog::changes is a new function.

prog::check – Checking MuPAD objects

prog::check checks MuPAD objects and draws attention to errors and pos-
sible problems in programming. prog::check is very helpful for finding
errors in user-defined domains and procedures.

Call(s):

A prog::check(object <, infolevel <, options >>)

Parameters:
object — procedure, function environment or domain to check,

the identifier All , or a list of objects
infolevel — positive integer that determines the completeness of

messages
options — set of options, a single option, or All

Options:

Global — report unknown global identifiers
Local — report unused local variables
Localf — report unused local variables and unused formal

parameters
Assign — report assignments to formal parameters of

procedures
Level — report applications of level to local variables
Domain — report undefined entries of domains (uses the slot

"undefinedEntries")
Environment — report assignments to environment variables
Protect — report assignments to (global) protected identifiers
Special — report special statements
Escape — report possible pointers to procedure environments

8

Return Value: prog::check returns the void object null() . Output mes-
sages are printed on the screen.

Related Functions: debug , prog::init , prog::isGlobal ,
prog::trace , prog::getname

Details:

A The call prog::check(object) checks the MuPAD object object . ob-
ject may be a procedure, a function environment, or a domain. One
may also give a list of such objects.

A If All is given as first parameter, all defined procedures, function envi-
ronments and domains are checked (see anames).

A infolevel determines the amount of information given while check-
ing. The following values are useful:

1 number of warnings per checked object, if at least one warning occurs
(default)

2 as 1, but a short message is printed even if no warning was produced

3 summary of warnings per checked object

5 displays each checked object, followed by individual warnings, fol-
lowed by a summary and the number of warnings, if any.

10 . . . 15 additional outputs (for debugging)

A options can be a set containing one or more of the following options, a
single option or All (see options).

A With option All , all are checked. Without options, the set {Domain,
Global, Level, Local, Protect} is used.

A The arguments of hold expressions are not checked.
!

Option <Global >:

A Unknown (global) identifiers

Option <Local >:

A Information about unused local variables are printed. These are vari-
ables that were declared by local , but never used in the procedure.

9

Option <Localf >:

A The same as Local , but the same check is additionally performed for
formal parameters of a procedure. Those are the argument names as
given in the definition of the procedure.

Option <Assign >:

A Information about assignments to formal parameters are printed. Be-
cause a formal parameter will be overwritten in MuPAD 2.0, unlike in
previous versions, those assignments could indicate a programming er-
ror (however, not imperative).

Option <Level >:

A The application of level to local variables is reported. Starting with Mu-
PAD 2.0, local variables are simply replaced by their values on evaluation
and calling level on them does not have any effect.

Option <Domain >:

A Information about undefined required entries of domains are printed.

Option <Environment >:

A Information about assignments to environment variables of MuPAD are
printed. These assignments could change the global behavior of Mu-
PADif the change is not undone (preferably using save , to catch error
conditions).

Option <Protect >:

A Information about assignments to protected variables of MuPAD are printed.

10

Option <Special >:

A Information about some special cases are printed. Currently, the only
implemented special case is assignments to HISTORY.

Option <Escape >:

A prog::check prints warnings about procedures which may require the
option escape .

Example 1. The following function contains a number of mistakes, some of
which were actually legal in previous versions of MuPAD.Lines 1 and 2 con-
tains declarations of local variables. In line 4 an undeclared (global) variable
g is used. Line 7 applies level to a local variable (the call simply returns the
value of X in MuPAD 2.0). Line 10 contains an assignment to a formal param-
eter. This parameter will be overwritten and its old value lost:

>> f:= proc(X, Y) // 1 Local
local a, b; // 2 Local

begin // 3
g:= proc(X) // 4 Global

option hold; // 5
begin // 6

a:= level(X, 2); // 7 Level
a:= a + X // 8

end_proc; // 9
Y:= g(Y); // 10 Assign, Global

end_proc:
prog::check(f, 3)

’level’ applied to variables: {X} in [f, proc in ’f’]
Global idents: {g} in [f]
Unused local var’s: {b} in [f]
Warnings: 3 [f]

Only search for global variables, but give more messages:

>> prog::check(f, 5, Global)

checking f (DOM_PROC)
Warning: Global variable ’g’ in f []
Warning: Global variable ’g’ in f []
Global idents: {g} in [f]
Warnings: 1 [f]

11

Now check everything:

>> prog::check(f, 5, All)

checking f (DOM_PROC)
Warning: Global variable ’g’ in f []
Warning: critical usage of ’level’ on local variable ’X’ in proc in ’f’ [f]
’level’ applied to variables: {X} in [f, proc in ’f’]
Procedure environment of [f] used by

[f, proc in ’f’]
Warning: assignment to FORMAL parameter ’Y’ in f []
Warning: Global variable ’g’ in f []
Global idents: {g} in [f]
Unused local var’s: {b} in [f]
Unused formal par’s: {X} in [f]
Assignments to formal parameters: {Y} in [f]
Warnings: 5 [f]

Further Documentation: From MuPAD 1.4 to MuPAD 2.0

Changes:

A prog::check is a new function.

A prog::check includes the functionality of the obsolete functions misc::checkLib
and misc::checkFunction .

prog::exprtree – visualize an expression as tree

prog::exprtree(ex) visualizes any MuPAD expression ex as tree.

Call(s):

A prog::exprtree(ex <, Quiet >)

Parameters:

ex — expression to visualize

Options:

Quiet — suppress screen output

Return Value: an object of type adt::Tree

Related Functions: prog::calltree , adt::Tree

12

Details:

A prog::exprtree visualizes the tree structure of any MuPAD expres-
sion.

A Every expression in MuPAD is internally a tree. The operations are the
nodes, and the operands are the leafs.

Option <Quiet >:

A With this option no output will be printed on screen. The return value of
type adt::Tree represents the tree structure of ex .

Example 1. The example shows the structure of the expression a + b*2 -
d*(a + c) :

>> prog::exprtree(a + b*2 - d*(a + c))

_plus
|
+-- a
|
+-- _mult
| |
| +-- b
| |
| ‘-- 2
|
‘-- _mult

|
+-- d
|
+-- _plus
| |
| +-- a
| |
| ‘-- c
|
‘-- -1

Tree1

Tree1 is the return value of type adt::Tree . This object can be exposed or
taken for other operations.

The option Quiet suppresses the output, only the tree is returned:

13

>> prog::exprtree(a + b*2 - d*(a + c), Quiet)

Tree2

Changes:

A prog::exprtree is a new function.

prog::error – error message and internal error number

prog::error converts an internal error number into the corresponding mes-
sage and vice versa.

Call(s):

A prog::error(number)

A prog::error(message)

Parameters:
number — an integer internal error number
message — an error message as string

Return Value: a string with the error message or an integer internal error
number

Related Functions: error , warning , traperror , lasterror

Details:

A prog::error converts an internal error number into the corresponding
message and vice versa.

Example 1. The corresponding message to the internal error number 1010 is:

>> prog::error(1010)

"Recursive definition"

The error message "Division by zero" has the internal number:

>> prog::error("Division by zero")

1025

14

Changes:

A prog::error is a new function.

prog::find – find operands of expressions

prog::find(ex, opr) returns all “paths” to the operand opr in the expres-
sion ex .

Call(s):

A prog::find(ex, opr)

Parameters:
ex — any MuPAD expression of type DOM_EXPR
opr — any MuPAD object

Return Value: a list of numbers that determine the position of the given object
inside of the given expression, or a sequence of lists, if the expression contains
the object several times

Related Functions: op , subsop , prog::exprtree

Details:

A prog::find(ex, obj) returns the position of the object obj in the
expression ex as list. The list represents a “path” to the given object.
With this list and the functions op and subsop , the object can directly be
accessed.

A A path to an object is a list that contains integers i1, ..., in .

The meaning is that the object is the in -th operand of the (in - 1) -st
operand etc. of the i1 -st operand of the expression ex .

Stated differently, op(ex, [i1, ..., in]) = opr .

A If the expression contains the object several times, a sequence of lists is
returned.

Example 1. The identifier a is the first operand of the expression:

>> prog::find(a + b + c, a)

[1]

The number 1 occurs several times:

15

>> prog::find(f(1, 1, 1), 1)

[1], [2], [3]

Example 2. The identifier a is the first operand of the second operand of the
first operand of the expression:

>> prog::find(b*(a - 1) + b*(x - 1), a)

[1, 2, 1]

The result of prog::find can be used to access the element with op or replace
it with subsop :

>> op(b*(a - 1) + b*(x - 1), [1, 2, 1]);
subsop(b*(a - 1) + b*(x - 1), [1, 2, 1] = A)

a

b (A - 1) + b (x - 1)

Background:

A prog::find can be used to manipulate complex MuPAD objects with
subsop .

Changes:

A prog::find is a new function.

prog::getname – the name of an object

prog::getname(object) returns the name of the MuPAD object object .

Call(s):

A prog::getname(object)

Parameters:

object — any MuPAD object

Return Value: the name as string

Related Functions: op , print , expr2text , text2expr , info

16

Details:

A prog::getname returns the name of any MuPAD object. The return
value is a string, irrespective of the type of the input.

A Names can be extracted from procedures, identifiers, function environ-
ments, domains and their methods (and strings, of course). If no name
can be extracted from an object, the string "(noname)" is returned.

A For all other MuPAD objects the result of expr2text(object) is re-
turned as name.

Example 1. My own name:

>> prog::getname(prog::getname)

"prog::getname"

The name of a Domain:

>> prog::getname(Dom::ExpressionField())

"Dom::ExpressionField()"

The “name” of an arbitrary MuPAD object:

>> prog::getname(1)

"1"

>> prog::getname(a + 2*b)

"a + 2*b"

Changes:

A prog::getname is a new function.

prog::init – loading objects

prog::init(object) initializes the MuPAD object object .

Call(s):

A prog::init(object)

17

Parameters:

object — MuPAD object to initialize or option All

Options:

All — initialising all MuPAD objects

Return Value: prog::init returns the void object null() .

Related Functions: loadproc , Pref::verboseRead , prog::check

Details:

A prog::init can be used to initialize MuPAD objects.

A Almost all MuPAD objects (domains, procedures etc.) are loaded into
memory at their first use. This mechanism saves a lot of memory and
time while starting MuPAD. Most of the MuPAD objects are not needed
in a given session and would only fill up the system.

A This strategy is transparent with respect to the usage of MuPAD objects.
On slower computers, you may notice a delay on the first use of a func-
tion or domain.

A Using Pref::verboseRead , you can make MuPAD print information
on files loaded automatically.

Option <All >:

A With this option (instead of some MuPAD object), all MuPAD objects will
be initialized.

Example 1. Initializing all MuPAD objects takes a lot of time and greatly in-
creases the memory requirements:

>> bytes()

522304, 815604, 2147483647

>> prog::init(All):

Check the memory usage again:

>> bytes()

15990660, 16507016, 2147483647

18

Example 2. Using Pref::verboseRead , we obtain information on what is
loaded by the system:

>> reset():
Pref::verboseRead(2):
prog::init(prog::trace)

loading package ’prog’ [lib/]
reading file lib/PROG/checkini.mu
reading file lib/PROG/trace.mu

Changes:

A prog::init is a new function.

prog::isGlobal – information about reserved identifiers

prog::isGlobal(ident) determines whether the identifier ident is used
by the system.

Call(s):

A prog::isGlobal(ident)

Parameters:

ident — identifier to check

Return Value: prog::isGlobal return TRUE, if the given identifier is used
by the system, otherwise FALSE.

Related Functions: prog::check , anames, type , domtype

Details:

A prog::isGlobal(ident) checks if the identifier ident is “used by
the system”. Here, “used by the system” means that ident is an en-
vironment variable (e.g., PRETTYPRINT), a system-wide constant (e.g.,
PI and undefined), an option (for some function call, e.g., All), or a
system function (such as sin).

19

Example 1. Assume you would like to use some identifiers as options for a
new function you wrote. In this example, we will check the elements of the
list [All, Beta, Circle, D, eval, First] for suitability. (Note that
eval would not be a good choice, even if it was not a system function, because
options should start with a capital letter.)

We define a test function which is mapped to the list and returns FAIL , if
the tested object is not an identifier, TRUE, if the identifier is used by the system
and FALSEotherwise:

>> reset():
LIST:= [All, Beta, Circle, D, eval, First]:
map(LIST, X -> if domtype(X) <> DOM_IDENT then

X = FAIL
else

X = prog::isGlobal(X)
end_if)

[All = TRUE, Beta = FALSE, Circle = FALSE, D = FAIL,

eval = FAIL, First = TRUE]

The identifiers All and First can be used as options because they have al-
ready been protected by the system (actually, they are already used as options,
which makes them a good choice), the identifiers Beta and Circle are free
and one must only take care that they have no value if they will be used as
options—they should be protected first. D and eval have values and cannot
be used as options.

Changes:

A prog::isGlobal is a new function.

prog::makeBinLib – binary version of a library

prog::makeBinLib creates a binary version of a function or library.

Call(s):

A prog::makeBinLib()

A prog::makeBinLib(path)

A prog::makeBinLib(path, fname)

Parameters:
path — string that determines a path
fname — string that determines a file

20

Return Value: the void object null()

Side Effects: prog::makeBinLib creates a binary version file.mb corre-
sponding to a MuPAD source file file.mu .

Details:

A This function ist mostly obsolete with MuPAD 2.0, due to the fol-
lowing changes:

• The parse process is much faster than in earlier versions.

• The binary code takes considerably more space than the
source generating it.

!

A Using prog::makeBinLib does not stop anyone from reading your
MuPAD code, it only causes the parsing step to be omitted when read-
ing the file.

A The binary format is platform independent.

Changes:

A prog::makeBinLib used to be misc::makeBinLib .

prog::memuse – memory usage of a computation

prog::memuse(stmt) shows the memory usage for computation and load-
ing library functions while evaluating stmt .

Call(s):

A prog::memuse(stmt)

Parameters:

stmt — a MuPAD statement

Return Value: the result of stmt

Related Functions: Pref::verboseRead , prog::trace ,
prog::profile

21

Details:

A prog::memuse(stmt) shows the memory used while evaluating stmt .

A stmt is evaluated by prog::memuse . If any function or library is loaded,
prog::memuse prints the increment of memory usage.

In the end, a summary is printed showing the memory usage in two
parts: loadproc means the memory used by loaded functions and li-
braries, executing means the memory allocated while computing.

A The result of prog::memuse is the result of the evaluation of stmt .

A prog::memuse works only on Unix-like machines. It uses the tempo-
rary file /tmp/mem.tmp .

Example 1. The example shows the memory usage of a first call of the func-
tion testtype : The library Type and the object Type::Unknown are loaded:

>> reset():
prog::memuse(testtype(x, Type::Unknown))

’LIBFILES/Type’ : 16.4 kB
’TYPE/Unknown’ : 1.4 kB

loadproc = 17.9 kB
executing = 0.4 kB
All = 17.5 kB

TRUE

The next example shows the memory usage for creating a large MuPAD object.
The result is not shown (suppressed by :):

>> prog::memuse([random()] $ i = 1..1000):

loadproc = 0.0 kB
executing = 112.3 kB
All = 112.3 kB

Background:

A MuPAD does not load all its library functions on startup or after a reset() .
This saves a lot of time and memory. The library functions are loaded on
their first use, which may in some cases cause a noticeable delay on the
first invocation.

22

Changes:

A prog::memuse is a new function.

prog::profile – display timing data of nested function calls

prog::profile(stmt) evaluates the MuPAD statement stmt and displays
timing data of all nested function calls.

Call(s):

A prog::profile(stmt)

Parameters:

stmt — a MuPAD statement

Return Value: the result of stmt

Related Functions: prog::calltree , prog::trace

Details:

A The time usage of functions can be measured and displayed with prog::profile .
For every function called during the evaluation of stmt , prog::profile
prints the time spent in this function and the number of calls.

A prog::profile can be helpful in finding time critical functions and
unnecessary nested function calls.

Example 1. We define three functions f , g and h. prog::profile displays
the time spent in each function and the number of calls to it:

>> f := proc() local i; begin for i from 1 to 20000 do end_for end_proc:
g := proc() begin f(), f() end_proc:
h := proc() begin g(), f(), g() end_proc:
prog::profile(h()):

Total time: 300 ms

f:100.0 % 300 ms total 5 call(s) 0 lookup(s) 60.0 ms/call
g: 0.0 % 0 ms total 2 call(s) 0 lookup(s) 0.0 ms/call
h: 0.0 % 0 ms total 1 call(s) 0 lookup(s) 0.0 ms/call

<h> calls
f : 1 time(s)

23

g : 2 time(s)

<g> calls
f : 4 time(s)

Background:

A The timings displayed by prog::profile are generated by the kernel.

A Evaluation of stmt inside prog::profile takes substantially longer
than evaluating stmt directly. This extra time does not influence the
validity of the result, i.e., if prog::profile reports f taking three times
as long as g, then this is also the case when evaluating stmt directly.

Changes:

A No changes.

prog::test – automatic comparing of calculation results

prog::test(stmt, res) evaluates both MuPAD expressions stmt and res
and compares the results.

Call(s):

A prog::test(stmt, res <, message >)

A prog::test(stmt, TrapError = errnr <, message >)

A prog::test(stmt <, message >)

Parameters:
statement — a MuPAD statement to test
res — a MuPAD expression or statement that determines the

expected result.
errnr — a positive integer that determines a MuPAD error
message — a string that will be displayed as message if the test

fails

Options:

TrapError = errnr — With this option it is possible to check the
error behavior of a function. The tested call
must produce an error, and the internal
error number must be equal to errnr . In
this case no error message is printed. In all
other cases the test fails and an error
message is printed.

24

Return Value: prog::test returns the void object null() . While execut-
ing, messages will be printed on screen or into files.

Related Functions: prog::error , prog::testinit , prog::testexit ,
prog::testfunc , TESTPATH

Details:

A If the results of the evaluation of both arguments stmt and res are dif-
ferent, a message is printed on screen that contains several information.

A prog::test works in two different modes: interactive and inside of
test files.

A In interactive mode a single call of prog::test can be used to compare
two MuPAD statements.

If the evaluation of both first arguments leads to the same MuPAD object,
nothing is printed and prog::test returns the void object null() .

If the results are different, the test fails and an error message is printed.

A The other mode is using prog::test inside of test files.

A test file must contain at least a starting and an exit statement.

First the function prog::testinit initializes the test file. Next prog::testfunc
determines the name of the tested function.

Now several tests can be performed (see next paragraph).

With prog::testfunc another function can be initialized in the same
file. The number of the tests is reseted by prog::testfunc .

The last statement in a test file must be prog::testexit .

A The tests can be arbitrary MuPAD statements and prog::test state-
ments. However, most of the functionality should be executed as argu-
ment of prog::test . Only initialization of variables should be per-
formed outside of prog::test statements in a test file, because:

prog::test traps every error (with the function traperror) and prints
a specific error message.

If an error occurs outside of prog::test , the reading of the test
file is interrupted. !
If no error occurs (as should be the default case), the results are compared
and a message is printed, if they are different.

A If a test fails, i.e., the two first arguments of prog::test lead to differ-
ent MuPAD objects, a message is printed in the format:

Error in test ’interactive’ 1: 1 + 2 = 4 [<> 3] (first
test)

prog::test emits messages with up to six pieces of information:

25

1. The name of the test as given by prog::testfunc or interac-
tive , if prog::test is called without a prior call to prog::testinit .

2. All tests are numbered (in this case we get number 1 for the first
interactive test). The numbering is reset by prog::testfunc (and
also by reset).

3. Then the unevaluated test equation is printed (1 + 2 = 4), 1 + 2
is the first argument of prog::test ,

4. 4 is the second argument.

5. Next, we get the result of the first statement (3), which is different
from the expected test result 4.

6. The string first test was given by the last optional argument
of prog::test and can be used to identify a test (see next para-
graph).

A If the third argument string is given, string is evaluated and ap-
pended to the end of a message, if the test fails (in the last example
"first test"). With this message a test inside of a test file can be
identified easier.

A If only one argument is given, the argument is evaluated and compared
with TRUE, i.e., prog::test(ex) is equivalent to prog::test(ex,
TRUE).

A After the statement setuserinfo(prog::test, 2) , additional in-
formation for every test is printed on screen.

A When a test is initialized with prog::testinit and ended by prog::testexit ,
a short message is printed with the format:

Info: 2 tests, 1 error, time: 3.10 / 4.52 s

The message contains the number of all tests performed (2), the number
of errors (1), and two times: the first time is the number of seconds for
only the evaluations of all first statements, the second time is the time
between the call of prog::testinit and prog::testexit .

Option <TrapError >:

A The evaluation of stmt may lead to a MuPAD error on purpose. In this
case the result can be the equation TrapError = errnr , whereby er-
rnr is the internal MuPAD error number, which is returned by the func-
tion traperror .

26

Example 1. prog::test can be called interactively:

>> prog::test(1 + 1, 2):
prog::test(is(2 > 1)):
prog::test(sin(PI), 0, "check sin"):

These tests checked all right, therefore nothing was printed. In the next tests
wrong results are tested against, to demonstrate the messages given by prog::test :

>> prog::test(1 + 2, 2):
prog::test(is(x > 1)):
prog::test(sin(PI), PI, "check sin"):

Error in test ’interactive’ 3: 1 + 2 = 2 [<> 3]
Error in test ’interactive’ 4: is(1 < x) = TRUE [<> UNKNOWN]
Error in test ’interactive’ 5: sin(PI) = PI [<> 0] (check sin)

Example 2. This is a short example for a test file with name "test.tst" :

// test file "test.tst"
test:= (a, b) -> a^2 + 2*b^2 - a*b:
prog::testinit("test"):
prog::testfunc(test):
prog::test(test(1, 4), 29, "my first example"):
prog::test(test(3, -2), 24, "the second example"):
prog::test(error("test"), TrapError = 1028):
prog::testexit():

The first statement is only a comment. The second line contains an initializa-
tion of a test procedure called test . Then the test is initialized with prog::testinit
and the function name is set with prog::testfunc .

After that three tests are performed: The first test is right, the second ex-
pected result is wrong, and the third test produces an error, but the expected
result is this error, the error number returned by traperror is 1028 (user call
of error).

The whole test takes nearly no time:

>> read("test.tst")

Error in test ’test’ 2: test(3, -2) = 24 [<> 23] (the sec-
ond example)

Info: 2 tests, 1 error, time: 0.00 / 0.01 s

>> setuserinfo(prog::test, 2):
read("test.tst")

27

testing ’test’ 1
for test(1, 4) = 29

testing ’test’ 2
for test(3, -2) = 24

Error in test ’test’ 2: test(3, -2) = 24 [<> 23] (the sec-
ond example)

Info: 2 tests, 1 error, time: 0.00 / 0.01 s

Changes:

A prog::test can be used interactively.

A The expected result can be an error number to check the error behavior
of a function.

A If the test fails, the returned result will be printed at end of the message.

A An optional third argument can be given to identify tests.

prog::testexit – closing tests

prog::testexit closes automatic tests from test files.

Call(s):

A prog::testexit()

Return Value: prog::testexit returns the void object null() and closes
the last opened protocol file.

Related Functions: prog::test , prog::testinit , prog::testfunc

Details:

A prog::testexit closes automatic tests and prints a short statistic about
the test (see prog::test).

A prog::testexit closes the last opened protocol file.

A prog::testexit must be called before beginning of a new test
with prog::testinit . !

28

Changes:

A prog::testexit prints a short statistic about the test.

prog::testfunc – initialize tests

prog::testfunc initializes automatic tests from test files.

Call(s):

A prog::testfunc(func)

Parameters:

func — any MuPAD function to test

Return Value: prog::testfunc returns the void object null() .

Related Functions: prog::test , prog::testinit , prog::testexit

Details:

A The function prog::testfunc initializes automatic tests.

A The name of func will be used for printed messages (see prog::test).

Changes:

A No changes.

prog::testinit – initialize tests

prog::testinit initializes automatic tests from test files.

Call(s):

A prog::testinit(string)

Parameters:

string — string – the name of the protocol file

Return Value: prog::testinit returns the void object null() and opens
the protocol file with name "string .res".

29

Related Functions: prog::test , prog::testfunc , prog::testexit ,
TESTPATH

Details:

A The function prog::testinit initializes automatic tests (see prog::test).

A prog::testinit opens the protocol file named "string .res" (see TESTPATH)
and resets the test number.

Changes:

A No changes.

prog::trace – observe functions

prog::trace(obj) manipulates the MuPAD function obj to observe enter-
ing and leaving of this function.

Call(s):

A prog::trace(obj <, option >)

A prog::trace(obj_set <, option >)

A prog::trace(dom, meth_set <, option >)

Parameters:
obj — a MuPAD function, domain or domain method, or

function environment to observe
obj_set — a set of MuPAD functions to observe
dom — a MuPAD domain to observe
meth_set — a set of methods of the domain dom to observe, given by

their name as strings
option — one of the described options or a set with one or several

options

30

Options:

Backup — The option Backup can be used to trace a
function, that is already traced. The function will
be restored (by prog::untrace) and then
traced again. This option can be used, if a
function should be traced with another options.

Depth = level — level is a positive integer. If this option is given,
nested function calls will only be displayed, if the
recursion depth is less or equal to level .

Force — The option Force can be used to trace a function,
that is already traced. The function will traced
again and the backup of the original function will
be overwritten. This option can be useful, if a
function is newly defined and prog::trace
refuse a newly trace. The option Backup would
replace the new definition by the old backup (see
example 2).

Mem — The option Memcan be used to show the change
of memory usage between entering and leaving
of an observed function.

NoArgs — With a view to greater clarity the option NoArgs
hides the arguments when entering and leaving
of an observed function.

Plain — With the option Plain the messages are aligned
left and not indented to illustrate the
dependencies between function calls.

Return Value: prog::trace returns the void object null() .

Related Functions: prog::untrace , prog::traced , setuserinfo ,
debug , prog::profile , prog::calltree

Details:

A prog::trace is a very helpful function to observe functions to debug
or for information. While tracing functions, the inter-relations between
calls to these traced functions can be viewed.

A prog::trace will be called with the function obj to observe. After
that, every call of this function obj prints a message, when the func-
tion is entered and leaved. The arguments and the return value of the
function call will also be printed.

Every message is indented when entering a function and released when
leaving the function (to illustrate the dependencies between function
calls). The option Plain can be used to suppress this behaviour.

A If a set of functions is given, all functions in this set are traced.

31

A obj can be a domain or a function environment, too. Then all methods
of the domain or the function environment will be observed.

If the second argument meth_set is a set of method names of the do-
main or function environment dom, then all given methods are traced.

The method meth of the domain or function environment dom can also
be traced directly by prog::trace(dom::meth) .

A The function prog::untrace terminates the observation of a function.
The function prog::traced detects, whether the function is traced.

Example 1. Define a short function, that calls itself recursively, and the calls
are observed:

>> fib:= proc(n)
begin

if n < 2 then
n

else
fib(n - 1) + fib(n - 2)

end_if
end_proc:

prog::trace(fib):
fib(3)

enter ’fib’ with args : 3
enter ’fib’ with args : 2

enter ’fib’ with args : 1
leave ’fib’ with result : 1
enter ’fib’ with args : 0
leave ’fib’ with result : 0

leave ’fib’ with result : 1
enter ’fib’ with args : 1
leave ’fib’ with result : 1

leave ’fib’ with result : 2

2

First restore the function, and then use the option Plain :

>> prog::untrace(fib):
prog::trace(fib, Plain):
fib(3)

enter ’fib’ with args : 3
enter ’fib’ with args : 2
enter ’fib’ with args : 1
leave ’fib’ with result : 1

32

enter ’fib’ with args : 0
leave ’fib’ with result : 0
leave ’fib’ with result : 1
enter ’fib’ with args : 1
leave ’fib’ with result : 1
leave ’fib’ with result : 2

2

The option Depth limits the displaying, Backup restores the original code of
fib before tracing with new options:

>> prog::trace(fib, {Depth = 2, Backup}):
fib(12)

Warning: backup of object ’fib’ will be traced [prog::trace]
enter ’fib’ with args : 12

enter ’fib’ with args : 11
leave ’fib’ with result : 89
enter ’fib’ with args : 10
leave ’fib’ with result : 55

leave ’fib’ with result : 144

144

Example 2. Define a short function f and observe this function:

>> f := x -> if x > 0 then x else -f(-x) end:
prog::trace(f):
f(-2)

enter ’f’ with args : -2
enter ’f’ with args : 2
leave ’f’ with result : 2

leave ’f’ with result : -2

-2

Now the function is slightly changed and reassigned to f . But the trace mech-
anism does not know the change of the function f and denies the newly ob-
servation:

>> f := x -> if x > 0 then x else f(-x) end:
prog::trace(f):

Warning: object ’f’ is already traced [prog::trace]

33

In this situation the option Force can be used to force the tracing. The warn-
ing means, a possibly existing backup of the function f is overwritten:

>> prog::trace(f, Force):
f(-2)

Warning: backup of object ’f’ will be replaced [prog::trace]
enter ’f’ with args : -2

enter ’f’ with args : 2
leave ’f’ with result : 2

leave ’f’ with result : 2

2

Inattentive usage of option Force has following results (the function call prints
out multiple messages):

>> prog::trace(f, Force):
f(-2)

Warning: backup of object ’f’ will be replaced [prog::trace]
enter ’f’ with args : -2

enter ’f’ with args : -2
enter ’f’ with args : 2

enter ’f’ with args : 2
leave ’f’ with result : 2

leave ’f’ with result : 2
leave ’f’ with result : 2

leave ’f’ with result : 2

2

Example 3. With the option Memthe memory usage is printed:

>> prog::trace(sin, Mem):
sin(x)

enter ’sin’ with args : x
leave ’sin’ with result [1327 kB]: sin(x)

sin(x)

The function sin takes such a lot of memory. . . ? This happens, when this
function call is the first in the session or after a reset , because a lot of libraries
are loaded, e.g., property to preserve properties of identifiers in sin .

34

Background:

A When calling prog::trace with a function obj as argument, the func-
tion obj will be manipulated.

At beginning of the function a statement will inserted to print a message
and the function arguments when entering the function.

At every location that the function could be leaved a statement will be
placed to print a message and the return value of the function.

A The function prog::untrace rebuilds the original state of the function.
Therefore the function will be saved in an internal table.

Changes:

A prog::trace used to be sharelib::trace .

A all options are new implemented

prog::traced – find traced functions

prog::traced() lists all traced functions.

Call(s):

A prog::traced(<obj >)

Parameters:

obj — a MuPAD function, a function environment or a library

Return Value: prog::traced returns the void object null() .

Related Functions: prog::trace , prog::untrace

Details:

A prog::traced(obj) detects, whether the function obj is traced. If
obj is a library or a function enviroment, then all methods will be checked.
If no argument is given, all traced functions will be displayed.

A If a function is traced, a copy of the original function is saved, and the
function is manipulated to display additional information during evalu-
ation.

A prog::traced determines whether a copy exists and whether the func-
tion has been manipulated the way prog::trace does.

35

A There are two messages that occur:

A backup of object ’obj’ exists means, a backup of the origi-
nal object obj exists to restore obj with prog::untrace .

Object ’obj’ seems to be traced says, the object obj was ana-
lyzed and some points suggests this matter.

Example 1. The function sin is traced:

>> prog::trace(sin):
prog::traced(sin)

A backup of object ’sin’ exists.
Object ’sin’ seems to be traced.

Changes:

A prog::traced is a new function.

prog::untrace – terminates observation of functions

prog::untrace(obj) undoes the effect of prog::trace(obj) and restores
the original definition of obj .

Call(s):

A prog::untrace(obj)

A prog::untrace()

Parameters:
obj — the MuPAD function that is observed, or a domain or a function

environment

Return Value: prog::untrace returns the void object null() .

Related Functions: prog::trace , setuserinfo , debug ,
prog::profile , prog::calltree

36

Details:

A prog::untrace(obj) terminates the observation of the MuPAD func-
tion obj performed by prog::trace .

A obj can be a domain or a function environment, too. Then all methods
of the domain or function environment will be restored.

A If no argument is given, all observed objects will be restored from obser-
vation.

Example 1. The observation of a function will be terminated:

>> prog::untrace(sin):

Error: function was not traced [prog::untrace]

>> prog::trace(sin):
sin(2)

enter ’sin’ with args : 2
leave ’sin’ with result : sin(2)

sin(2)

>> prog::untrace(sin):
sin(2)

sin(2)

Changes:

A prog::untrace used to be sharelib::untrace .

37

