polylib — library for polynomial manipulation

Table of contents

Preface
polylib::Dpoly — differential operator for polynomials
polylib::Poly — domain of polynomials
polylib::cyclotomic — cyclotomic polynomials
polylib::decompose — functional decomposition of a polynomial
polylib::divisors — divisors of a polynomial, polynomial expres-
sion, or Factored element
polylib::discrim — discriminant of a polynomial
polylib::elemSym — elementary symmetric polynomials
polylib::makerat — convert expression into rational function over
asuitablefield
polylib::minpoly — approximate minimal polynomial
polylib::primpart — primitive part of a polynomial
polylib::primitiveElement — primitive element for tower of
fieldextensions Lo
polylib::randpoly — creates a random polynomial
polylib::realroots — isolate all real roots of a real univariate poly-
nomial
polylib::representByElemSym — represent symmetric by ele-
mentary symmetric polynomials,
polylib::resultant — resultant of two polynomials
polylib::sortMonomials — sorting monomials with respect to a

termordering Lo
polylib::splitfield — the splitting field of a polynomial . . .

polylib::sqrfree — square-free factorization of polynomials

B W N =

Q1

11
12

14
16

18

23
24

25
27
29

The library polylib provides functions for polynomials, i. e. such who
accept polynomials as arguments as well as such returning polynomials. Many
of the first kind also accept polynomial expressions.

ii

polylib::Dpoly — differential operator for polynomials

Iff is a polynomial in the indeterminates X1 through xn, polylib::Dpoly([il,..,ik],

f) computes the k-th partial derivative of

8x1-1 . ..ax,»k :

polylib::Dpoly(f) returns the derivative of f with respect to its only vari-
able for an univariate polynomial f .

Call(s):
@ polylib::Dpoly(f)
@ polylib::Dpoly(indexlist, f)

Parameters:
f — polynomial
indexlist — list of positive integers
Return Value: polylib::Dpoly returns a polynomial in the same indeter-

minates and over the same coefficient ring as the input.
Overloadable by: f

Related Functions: D, diff

Details:
¢ If some element of indexlist is greater than the number of indetermi-
nates of f , the zero polynomial is returned.

@ polylib::Dpoly([], p) returns p.

¢ If the coefficients of the polynomial are elements of a domain d, then
this domain must have the method "intmult": d::intmult(e,i) ,
that must calculate the integer multiple of a domain element e and a
positive integer i .

& polylib::Dpoly is a function of the system kernel.

Example 1. We differentiate a univariate polynomial with respect to its only
indeterminate. In this case, we may leave out the first argument.

>> polylib::Dpoly(poly(2*x*2 + x + 1));

poly(4 x + 1, [X])

Example 2. No we differentiate a bivariate polynomial, and must specify the
indeterminate in this case.

>> polylib::Dpoly([1], poly(x*2*y + 3*x + 'y, [X, Y]));

poly2 x y + 3, [X, y])

Example 3. Itis also possible to compute second or higher partial derivatives.
>> polylib::Dpoly([1, 2], poly(x"2*y + 3*x + vy, [X, Y]));

poly(2 x, [x, Y])

Changes:
@ polylib::Dpoly used to be Dpoly .

polylib::Poly — domain of polynomials

polylib::Poly([x1,...,xn], R) creates the ring of polynomials in the
unknowns X1 through xn over the coefficient ring R If the argument Ris miss-
ing, Expr is used.

Domain:
& polylib::Poly([x1, ...] <, R>)
Parameters:
x1 — unknown
R — admissible coefficient ring for polynomials. See poly .
Details:
polylib::Poly is a facade domain; it has no domain elements. It

serves only as a coefficient ring for polynomials.
£ The attempt to create an element of polylib::Poly resultsina DOM_POLY

£ The arithmetical operations of the domain are realized by the correspond-
ing kernel methods.

Related Domains: Dom::DistributedPolynomial

Entries:

zero the zero polynomial
one the constant polynomial one
indets list of unknowns

coeffRing the coefficient ring R

Example 1. polylib::Poly can be used for defining polynomials in X whose
coefficients are polynomials in y. Such polynomials must not be confused with
bivariate polynomials in X and y.

>> delete x,y: e:= x*(y"2*2 + y) + 3*y:
poly(e, [x, yl); poly(e, [x], polylib::Poly([y]))
2
poly2 x y +xy + 3y, [X Y]

2
poly((y + 2y) x + 3y, [x], polylib::Poly([y], Expr))

Changes:
& polylib::Poly used to be Poly .

polylib::cyclotomic — cyclotomic polynomials

polylib::cyclotomic(n, Xx) computes the n-th cyclotomic polynomial,
expressed in the indeterminate x.

Call(s):
polylib::cyclotomic(n, x)

Parameters:
n — positive integer
X — identifier

Return Value: a polynomial over Expr in the indeterminate X.

Related Functions: numlib::phi

Details:

£ The n-th cyclotomic polynomial is defined to be the minimal polynomial
of any n-th primitive root of unity over the field of rational numbers.

Example 1. We compute the 20th cyclotomic polynomial.
>> polylib::cyclotomic(20, z);

8 6 4 2
poly(z -z +z -2z + 1, [z

Changes:

polylib::cyclotomic is a new function.
polylib::decompose — functional decomposition of a polynomial
polylib::decompose(p,X) returns a sequence of polynomials g1,...,qx

such that p(x) = g1(.. . gu(x) .. .).

Call(s):
& polylib::decompose(p)
polylib::decompose(p, x)

Parameters:

p — polynomial or polynomial expression
X — one of the indeterminates of the polynomial p

Return Value: If a decomposition is possible, polylib::decompose returns

it as an expression sequence, each element being of the same type as the input.
If no decomposition is possible, the input is returned.

Overloadable by: p

Related Functions: factor

Details:

¢ The second argument may be left out if the polynomial is univariate, as
in Example 1.

& If a polynomial has several decompositions, it is not specified which of
them is returned.

Example 1. In the simplest case, an univariate polynomial is decomposed
with respect to its only variable:

>> polylib::decompose(x*4+x"2+1)

Example 2. If there are several variables, a main variable must be specified:

>> polylib::decompose(y*x 4+y,y);

Background:

£ A description of the algorithm behind polylib::decompose can be
found in Barton and Zippel, Polynomial decomposition algorithms, Jour-
nal of Symbolic Computation, 1 (1985), pp. 159-168.

Changes:
& polylib::decompose used to be decompose .
polylib::divisors —divisors of a polynomial, polynomial expres-

sion, or Factored element

polylib::divisors(p) computes the set of all monic divisors of the poly-
nomial or polynomial expression p.

Call(s):
& polylib::divisors(p)
polylib::divisors(f)
& polylib::divisors(e)

Parameters:
p — a polynomial or polynomial expression
f — Factored (return value of factor)

e — element of a domain of category Cat::Polynomial

Return Value: polylib::divisors returns a set of polynomials. The poly-
nomials are from the same type as the polynomials in the argument.

Related Functions: Cat::Polynomial , DOM_POLYDom::Polynomial ,

Dom::MultivariatePolynomial , Dom::UnivariatePolynomial ,
factor ,irreducible , humlib::divisors , polylib::sqrfree
Details:

polylib::divisors(f) returns all monic divisors of a pre-factored

polynomial. Cf. example 3.

& polylib::divisors works on polynomials of category Cat::Polynomial
as well. Cf. example 4.

Example 1. If the argument is a polynomial, a set of polynomials is returned:
>> polylib::divisors(poly(x"2 - 2*x + 1))

2
{poly(1, [x]), poly(x - 1, [x]), poly(x - 2 x + 1, [x])}

Example 2. If the argument is a polynomial expression, a set of polynomial
expressions is returned:

>> polylib::divisors(x*2 - 1)

2
{1, x -1, x+ 1, x -1}

Example 3. If the argument is of type Factored (a factor return value) a
set of polynomials is returned:

>> p := factor(poly(x*2 - 1));
polylib::divisors(p)

poly(x - 1, [x]) poly(x + 1, [X])
{poly(1, [x]), poly(x - 1, [x]), poly(x + 1, [x]),

2
poly(x - 1, [x])}

The polynomials in the resulting set have the same type as the polynomials in
the Factored element:

>> p = factor(x"2 - 1);
polylib::divisors(p)

x-1) x+1)

2
{1, x -1, x+ 1, x -1}

Example 4. polylib::divisors works on polynomials from category Cat::Polynomial
as well:

>> P := Dom::Polynomial(Dom::IntegerMod(7)):
polylib::divisors(P(x*3 + 2*x"2 + 1))

3 2
L mod 7, (1 mod 7) x + (2 mod 7) x + (1 mod 7)}

Changes:
polylib::divisors is a new function.
polylib::discrim — discriminant of a polynomial
polylib::discrim(p, x) returns the discriminant of the polynomial p

with respect to the variable x.

Call(s):
polylib::discrim(p,x)

Parameters:
X — indeterminante
p — polynomial or polynomial expression
Return Value: polylib::discrim returns an element of the coefficient ring

of p. If the coefficient ring is Expr or IntMod(n) , an expression is returned.
Overloadable by: p

Related Functions: polylib::resultant

Details:

¢ The function normal is applied to the discriminant before returning it.

Example 1. We compute the discriminant of the general quadratic equation:
>> polylib::discrim(a*x*2 + b*x + ¢, X);

2
b -4ac

Background:

¢ The discriminant of p with respect to the variable x is defined as:

(—1)@=D2res (p, p')

where d is the degree and c is the leading coefficient of p.

Changes:

@ polylib::discrim used to be discrim
polylib::elemSym — elementary symmetric polynomials
polylib::elemSym([x1,...,xn], k) returns the k-th elementary sym-

metric polynomial in the given variables x1 through xn.

Call(s):
& polylib::elemSym(l, k)

Parameters:

| — Ilist of indeterminatess
k — positive integer

Return Value: The result is a polynomial over the coefficient ring Expr . If k
is greater than the number of operands of | , undefined is returned.

Related Functions: polylib::representByElemSym

Details:

£ A given list| is a valid first argument only if its elements can be used as
indeterminates of a polynomial .

Example 1. The first elementary symmetric polynomial is just the sum of its
variables:

>> polylib::elemSym([x,y,z], 1);

poly(x + vy + z, [X, Y, Z])

Example 2. Indeterminates may also be e.g. trigonometric functions:
>> polylib::elemSym([sin(u),cos(u), exp(u)], 2);
poly(sin(u) cos(u) + sin(u) exp(u) + cos(u) exp(u),

[sin(u), cos(u), exp(w)])

Background:

& For more information about elementary symmetric polynomials, see v.d.
Waerden, Algebra, vol. 1.

Changes:

& polylib::elemSym is a new function.
polylib::makerat — convert expression into rational function over
a suitable field
polylib::makerat(a) returns two polynomials f and g over some exten-

sion field of the rationals and a list of substitutions such that applying the
substitutions to the rational function g gives a.

polylib::makerat(l) does the same for every element of a list | of ex-
pressions such that the same extension field is chosen for all elements of the
list.

Call(s):
polylib::makerat(a)
& polylib::makerat(l)

Parameters:

a — polynomial over Expr or arithmetical expression
| — list or set of polynomials over Expr or arithmetical expressions

Return Value: polylib::makerat returns an expression sequence consist-
ing of three operands:

¢ The first operand represents the numerator (or the list/set of numerators,
respectively). Itis a single polynomial if the call was polylib::makerat(a)
otherwise it is a set or list of polynomials (the same type as the input).
The polynomial(s) may have more indeterminates than the input. The
coefficient ring is either Expr or a Dom::AlgebraicExtension ;ifitis
Expr , the polynomial has only integer coefficients.

& The second operand represents the denominator (or the list/set of de-
nominators, respectively). It is of the same type as the first operand.

¢ The third operand is a list of equations.

Related Functions: rationalize

Example 1. In the simplest case (integer polynomial), the numerator equals
the input, the denominator equals 1, and no substitutions are necessary:

>> polylib::makerat(x"2+3)

2
poly(x + 3, [x]), poly(1, [x]), [I

10

Example 2. Floating point numbers are considered transcendental:
>> polylib::makerat(0.27*x)

poly(x D1, [x, D1]), poly(1, [x, D1]), [D1 = 0.27]

Example 3. Radicals are replaced by elements of algebraic extensions:
>> polylib::makerat(sqrt(2)/x)
poly(D2, [x], Dom::AlgebraicExtension(Dom::Rational,

2
D2 - 2 = 0, D2)), poly(x, [X],

2
Dom::AlgebraicExtension(Dom::Rational, D2 - 2 = 0, D2)),

1/2
[D2 =2]
Changes:
polylib::makerat is a new function.
polylib::minpoly — approximate minimal polynomial
polylib::minpoly(a, n, x) computes a univariate polynomial f in the

variable x of degree n with integer coefficients such that a equals a root of f
up to the precision given by DIGITS , and such that the sum of squares of its
coefficients is minimal among all polynomials with this property.

Call(s):
& polylib::minpoly(a, n, X)

Parameters:
a — arithmetical expression that can be converted to a floating point
number
n — positive integer
X — identifier

11

Return Value: polylib::minpoly returns a polynomial in X. Its coefficient
ring is Expr , all of its coefficients are integers.

Side Effects: polylib::minpoly is sensitive to the environment variable
DIGITS.
Related Functions: |lllint , Stats::linReg , humeric::lagrange

Example 1. We compute a polynomial of degree 4 that has a root close to Pl
(up to 6 decimal digits) and small integer coefficients:

>> DIGITS:=6: polylib::minpoly(PI, 4, X); delete DIGITS:

4 3 2
poly(7 x - 16 x - 16 x -6 x -9, [X])

If the root has to be even closer to Pl , bigger coefficients are needed:
>> DIGITS:=20: polylib::minpoly(Pl, 4, x); delete DIGITS

4 3 2
poly(- 1951 x + 6379 x - 422 x + 283 x - 4468, [X])

Background:

¢ The problem reduces to finding a shortest integer vector in the lattice
{e;+a'-e,,1;0 <i<n}, where e; denotes the vector with ¢;[j] = d; j (Kro-
necker symbol). This problem is solved using the algorithm of Lenstra/Lenstra/Lovasz.
See Lenstra/Lenstra/Lovasz, Factoring polynomials with rational coef-
ficients, Math. Ann. 261(1982), pp. 515-534.

Changes:

polylib::minpoly used to be numeric::minpoly
polylib::primpart — primitive part of a polynomial
polylib::primpart(f) returns the primitive part of the polynomial f .
Call(s):

@ polylib::primpart(f)
polylib::primpart(q)
& polylib::primpart(xpr <inds>)

12

Parameters:

f — polynomial
q — rational number
Xpr — expression
inds — list of identifiers
Return Value: polylib::primpart returns an object of the same type as

the input, or FAIL .

Related Functions: content ,factor ,gcd,icontent , irreducible

Details:

& If the input is a polynomial , the greatest common divisor of its coeffi-
cients is removed. The function gcd must be able to calculate this gcd.

&7 If the first argument is an expression, it is converted into a polynomial
in the indeterminates specified by the second argument, or in all of its
indeterminates if no second argument is given. polylib::primpart
returns FAIL if the expression cannot be converted into a polynomial.

¢ For a rational number, its sign is returned.

Example 1. In the following example, a bivariate polynomial is given. Its co-
efficients are the integers 3, 6, and 9; the primitive part is obtained by dividing
the polynomial by their ged.

>> polylib::primpart(poly(6*x"3*y + 3*x*y + 9*y, [x, Vy]));

3
poly2 x y +xy + 3y, [X Y]

However, consider the same polynomial viewed as a univariate polynomial in
X. Its coefficients are polynomials in y in this case, and their gcd 3*y is divided
off.

>> polylib::primpart(poly(6*x"3*y + 3*x*y + 9%y, [X]);

3
poly(2 x + x + 3, [X])

13

Example 2. polylib::primpart divides the coefficients by their gcd, but
does not normalize the result. This must be done explicitly:

>> polylib:primpart(4*x*y + 6*x"3 + 6*x*y"2 + 9*x 3%y, [])

3 2
X Oy+6) x@y+6y)
+
3y +2 3y +2

>> normal(polylib::primpart(4*x*y + 6*x"3 + 6*x*y"2 + 9*x"3*y, [X]))

3
2 Xy +3X

Background:

¢ The primitive part of a polynomial f is a polynomial ¢ whose coefficients
are relatively prime such that f = rg for some element r of the coefficient

ring.
Changes:
polylib::primpart used to be primpart
polylib::primitiveElement — primitive element for tower of field
extensions

For given field extensions F = K(«) and G = F(/3), polylib::primitiveElement(F,
G) returns a list consisting of a simple algebraic extension of K that is K-
isomorphic to G, a symbol for a primitive element of that extension, and the
images of o and 3 under some fixed K-isomorphism.

Call(s):
@ polylib::primitiveElement(F, G)

Parameters:
F — afield created by Dom::AlgebraicExtension
G — afield created by Dom::AlgebraicExtension with ground
field F

14

Return Value: The list returned consists of four operands:

t7 a field Hof type AlgebraicExtension over the same ground field as
F

¢ an identifier that equals the entry H::variable
¢ an object of type Hthat satisfies the minimal polynomial for «;

£ an object of type Hthat satisfies the minimal polynomial for 3.

Related Functions: polylib::splitfield ,
Dom::AlgebraicExtension

Details:

& It is presumed that the extension is separable. Otherwise, it may happen
that the algorithm does not terminate.

Example 1. Since the rational numbers are perfect, extensions of them can
always be handled:

>> F:=Dom::AlgebraicExtension(Dom::Rational, sqrt2/2-2):
G:=Dom::AlgebraicExtension(F, sqrt3"2-3):

Now G = Q(v/2,v/3), and we use polylib::primitiveElement to find a
primitive element for G

>> polylib::primitiveElement(F, G)

I
| Dom::AlgebraicExtension(Dom::Rational,

4 2 9 X1 X1 11 X1 X1

X1 -10 X1 + 1 =0, X1), X1, - - + -, - - -
-

This means that a primitive element X; of the extension is determined by its
minimal polynomial X} — 10X? + 1. The last two operands of the list are field
elements whose squares are 2 and 3, respectively.

15

Example 2. The function works also for subdomains of AlgebraicExtension
e.g. Galois fields.

>> F:=Dom::GaloisField(7,2):
G:=Dom::GaloisField(F,2):
polylib::primitiveElement(F, G)

[Dom::AlgebraicExtension(Dom::IntegerMod(7),

2 3 4
3X5-X5 +2X5 + X5 -1=0, X5), X5,

2 3
-3 X5 +3X5 -3X5 -2 X5

Background:

£ The chosen primitive element is o + s 3, where s is a positive integer.

polylib::randpoly — creates a random polynomial

polylib::randpoly() returns a univariate random polynomial with inte-
ger coefficients; the global identifier X is used as an unknown.

polylib::randpoly(list) returns a random polynomial in all unknowns
given in list
polylib::randpoly(list, ring) returns a random polynomial in the

identifiers given in list over the coefficient ring ring .

Call(s):
polylib::randpoly()
& polylib::randpoly(list <, Degree = n> <, Terms= k>
<, Coeffs = f >)
polylib::randpoly(ring <, Degree= n> <, Terms= k>
<, Coeffs = f >)
polylib::randpoly(list, ring <, Degree = n> <,
Terms= k> <, Coeffs = f >)
Parameters:
list — list of unknowns
rng — coefficient ring

16

Options:

Degree = k — determines the maximum degree the result can have in
each variable. kK must be a non—negative integer.
Default is 6.

Terms=t — makes polylib::randpoly generate the sum of t

random terms. t must be a positive integer or
infinity .Ift equalsinfinity
polylib::randpoly returns a dense polynomial.
Default is 5.

Coeffs = f — Create the coefficients of the result by calling f()

Return Value: a polynomial in the given unknowns over the given ring. If no
list of indeterminates is given, [X] is used. If no ring is given, EXpr is used.

Related Functions: poly , random

Details:

£ See poly for a detailed description of possible unknowns and coefficient
rings.

t¢ The polynomial is created by adding the given number (or the default
number) of terms, unless the option Terms=infinity is given. Each
term is created by generating its coefficient and its degree vector at ran-
dom. Since the same degree vector may be generated several times, the
actual number of terms in the result can be smaller than the value of the
option Terms .

t¢ The random coefficients are generated by calling f() , if the option Co-
effs=f is given. If this option is missing and ring is Expr the coef-
ficients will be random integers in the range —999...999. If ring is a
user-defined domain, it must have a method "random" to create the co-
efficients if no function is given.

Example 1. We generate a univariate random polynomial and use the default
values for the options. Six random monomials are generated and added. Since
it is unlikely that each of the possible exponents 0 to 5 is generated exactly
once, the result is very likely to have less than six terms.

>> polylib::randpoly([z])

5 4 3
poly(663 z - 764 z - 806 z + 381 z, [z])

17

Example 2. We create a bivariate random polynomial over the finite field with
7 elements. This works because Dom::IntegerMod has a "random" slot that
generates random elements:

>> polylib::randpoly([x,y],Dom::IntegerMod(7),Degree=3,Terms=4);

3 2 2
poly2 x y + 6 x y + 5 X, [x, y], Dom:IntegerMod(7))

Changes:
polylib::randpoly used to be randpoly
polylib::realroots —isolate all real roots of a real univariate poly-
nomial
polylib::realroots(p) returns intervals isolating the real roots of the

real univariate polynomial p.

polylib::realroots(p, eps) returns refined intervals approximating the
real roots of p to the relative precision given by eps.

Call(s):
& polylib::realroots(p)
& polylib::realroots(p, eps)

Parameters:
P — aunivariate polynomial: either an expression or a polyomial of
domain type DOM_POLY
eps — a (small) positive real number determining the size of the

returned intervals.

Return Value: A list of lists [[a1, b1], [a2, b>], . . .] with rational numbers a; < b;
is returned. Lists with a; = b; represent exact rational roots. Lists with a; < b;
represent open intervals containing exactly one real root. If the polynomial has
no real roots, then the empty list [] is returned.

Side Effects: The function is sensitive to the environment variable DIGITS , if
there are non-integer or non-rational coefficients in the polynomial. Any such
coefficient is replaced by a rational number approximating the coefficient to
DIGITS significant decimal places.

Related Functions: numeric::fsolve , humeric::polyroots ,
numeric::realroot , humeric::realroots

18

Details:

£ All coefficients of p must be real and numerical, i.e., either integers, ra-
tionals or floating point numbers. Numerical symbolic objects such as
sqrt(2) , exp(10*PI) etc. are accepted, if they can be converted to
real floating point numbers via float . The same holds for the precision
goal eps.

¢ The isolating intervals are ordered such that their centers are increasing,
ie.,a;+b; < iy + bi+1.

The number nops(realroots(p)) of intervals is the number of real
roots of p. Multiple roots are counted only once. Cf. Example 3.

& Isolating intervals may be quite large. The optional argument eps may
be used to refine the intervals such that they approximate the real roots
to a relative precision eps. With this argument the returned intervals

. i+b;
satisfy b; —a; < eps | "5~

, 1.e., each center (a; + b;)/2 approximates a
root with a relative precision eps/2 .

£ Some care should be taken when trying to obtain highly accurate @
approximations of the roots via small values of eps . Internally, bi-
sectioning with exact rational arithmetic is used to locate the roots
to the precision eps. This process may take much more time than
determining the isolating intervals without using the second ar-
gument eps in polylib::realroots . It may be faster to use
moderate values of eps to obtain first approximations of the roots
via polylib::realroots . These approximations may then be
improved by a fast numerical solver such as numeric::fsolve
with an appropriately high value of DIGITS. Cf. Example 6.
However, note that polylib::realroots will always succeed
in locating the roots to the desired precision eventually. Numeri-
cal solvers may fail or return a root not belonging to the interval
which was used for the initial approximation.

& Unexpected results may be obtained when the polynomial con- @
tains irrational coefficients. Internally, any such coefficient c is con-
verted to a floating point number. This float is then replaced by an
approximating rational number r satisfying |r — ¢| < 107 PI¢ITS|¢|.
Finally, polylib::realroots returns rigorous bounds for the
real roots of the rationalized polynomial. Despite the fact that all
coefficients are approximated correctly to DIGITS decimal places
this may change the roots drastically. In particular, multiple roots
or clusters of poorly separated simple roots are very sensitive to
small perturbations in the coefficients of the polynomial. Cf. Ex-
amples 4 and 5.

19

Example 1. We use a polynomial expression as input to polylib::realroots
>> p o= (x - 13)*(x - 1)*(x - 4/3)*(x - 2)*(x - 17):
>> polylib::realroots(p)

o, 1], [1, 1], [1, 2], [2, 2], [16, 32]]

The roots 1 and 2 are found exactly: the corresponding intervals have length 0.
The other isolating intervals are quite large. We refine the intervals such that
they approximate the roots to 12 decimal places. Note that this is independent
of the current value of DIGITS , because no floating point arithmetic is used:

>> polylib::realroots(p, 107(-12))
[[1466015503701/4398046511104, 733007751851/2199023255552],

[1, 1], [1466015503701/1099511627776,

733007751851/549755813888], [2, 2], [17, 17]]

We convert these exact bounds for the real roots to floating point approxima-
tions. Note that with the default value of DIGITS=10 we ignore 2 of the 12
correct digits the rational bounds could potentially give:

>> map(%, map, float)

[[0.3333333333, 0.3333333333], [1.0, 1.0],

[1.333333333, 1.333333333], [2.0, 2.0], [17.0, 17.0]]

>> delete p:

Example 2. Orthogonal polynomials of degree n have n simple real roots.
We consider the Legendre polynomial of degree 5, available in the library
orthpoly for orthogonal polynomials:

>> polylib::realroots(orthpoly::legendre(5, x), 10°(-DIGITS)):
>> map(%, float@op, 1)

[-0.9061798459, -0.5384693101, 0.0, 0.5384693101, 0.9061798459]

20

Example 3. We consider a polynomial with a multiple root:
>> p = poly((x - 13)"3*(x - 1), [X])

4 3 2
poly(x - 2 x + 4/3 x - 10/27 x + 1/27, [X])

Note that only one isolating interval [0, 1] is returned for the triple root 1/3:
>> polylib::realroots(p)
[0, 1], [1, 1]]

>> delete p:

Example 4. We consider a polynomial with non-rational roots:

>> p = (x - I)N2*(x - PH"2:

Converting the result of polylib::realroots to floating point numbers
one sees that the exact roots 3, 3, PI, Pl are approximated only to 3 deci-
mal places:

>> map(polylib::realroots(p, 107(-10)), map, float)
[[2.998807805, 2.998807805], [3.001213582, 3.001213583],

[3.140323518, 3.140323519], [3.142840401, 3.142840401]]

This is caused by the internal rationalization of the coefficients of p. Informa-
tion on the rationalized polynomial may be optained by a builtin userinfo
command:

>> setuserinfo(polylib::realroots, 1):
>> polylib::realroots(p, 107(-10))

Info: polynomial rationalized to poly(x*4 - 12283185307/1000..)

The intervals returned by polylib::realroots(p, 107(-10)) correctly
locate the 4 exact roots of this rationalized polynomial to a precision of 10
digits. However, because all 4 roots are close, the small perturbations of the
coefficients introduced by rationalization have a drastic effect on the location
of the roots. In particular, rationalization splits the two original double roots
into 4 simple roots.

>> setuserinfo(polylib::realroots, 0): delete p:

21

Example 5. We consider a further example involving non-exact coefficients.
First we approximate the roots of a polynomial with exact coefficients:

>> pl = (X - 1/3)"3*(x - 4/3):
>> map(polylib::realroots(pl, 107(-10)), map, float)
[[0.3333333333, 0.3333333333], [1.333333333, 1.333333333]]

Now we introduce roundoff errors by replacing one entry by a floating point
approximation:

>> p2 = (x - 1.0/3)"3*(x - 4/3):
>> map(polylib::realroots(p2, 107(-10)),map,float)
[[0.3332481323, 0.3332481323], [1.333333333, 1.333333333]]

In this example rationalization caused the triple root 1/3 to split into one real
root and two complex conjugate roots.

>> delete pl, p2:

Example 6. We want to approximate roots to a precision of 1000 digits:
>> p = x5 - 129/20*xM + 69/5*x"3 - 14*x"2 + 12*x - 8:

We recommend not to obtain the result directly by polylib::realroots(p,10”(-
1000)) , because the internal bisectioning process for refining crude isolating
intervals converges only linearly. Instead, we compute first approximations of
the roots to a precision of 10 digits:

>> approx := map(polylib::realroots(p, 107(-10)), float@op, 1)
[1.489177599, 1.752191733, 3.255184556]

These values are used as starting points for a numerical root finder. The inter-
nal Newton search in numeric::fsolve converges quadratically and yields
the high precision results much faster than polylib::realroots

>> DIGITS := 1000: Roots := []:
>> for x0 in approx do
Roots := append(Roots, numeric::fsolve([p = 0], [X
end_for

[[x = 1.489177598846870281338916114673844643894...],

xQ]));

[x = 1.752191733304413195335101727880090131407...]

[x = 3.255184555797733438479691333705558491124...]]

>> delete approx, Digits, Roots, xO:

22

Changes:

polylib::realroots is a new function.

polylib::representByElemSym —represent symmetric by elemen-
tary symmetric polynomials

polylib::representByElemSym(f, [x1,...,xn]) returns a polynomial
g in the identifiers x; through x, such that replacing each xi by the i -th ele-
mentary symmetric polynomial gives f .

Call(s):
@ polylib::representByElemSym(f, I)
Parameters:

f — symmetric polynomial
| — list of indeterminates

Return Value: The result is a polynomial having the same coefficient ring as
f.

Related Functions: polylib::elemSym

Details:

& The list| must have as many operands as f has indeterminates.

£ The input must be symmetric; this is not checked.

Example 1. The symmetric polynomial x> + y? can be written as (x + y)? —
2(x - y):
>> polylib::representByElemSym(poly(x*2+y”2), [u,V]);

2
poly(u - 2 v, [u, V])

Example 2. polylib::representByElemSym works over domains also:

>> f:=poly(x*2+y"2, Dom::IntegerMod(7)):
polylib::representByElemSym(f, [u,Vv])

2
poly(u + 5 v, [u, v], Dom:IntegerMod(7))

23

Background:

2 Itis a well-known theorem that every symmetric polynomial can be writ-
ten in this way.

Changes:

polylib::representByElemSym is a new function.
polylib::resultant —resultant of two polynomials
polylib::resultant(f, g) returns the resultant of f and g with respect

to their first variable.

polylib::resultant(f, g, x) returns the resultant of f and g with re-
spect to the variable X.

polylib::resultant(fexpr, gexpr, inds, x) returns the resultant
of fexpr and gexpr with respect to the variable x; fexpr and gexpr are
viewed as polynomials in the indeterminates inds .

Call(s):
polylib::resultant(f, g <, X >)
@ polylib::resultant(fexpr, gexpr <, inds ><, x >)
Parameters:
f, g — polynomials
fexpr, gexpr — expressions
X — indeterminate
inds — list of indeterminates

Return Value: If the input consists of polynomials in at least two variables,
polylib::resultant returns a polynomial in one variable less than the in-
put.

If the input consists of univariate polynomials, polylib::resultant re-
turns an element of the coefficient ring.

If the input consists of expressions, polylib::resultant returns an ex-
pression.

Overloadable by: p, q

Related Functions: polylib::discrim , linalg::det ,
linalg::sylvester

24

Details:

& Both input polynomials must have exactly the same second and third
operand, i.e. their variables and coefficient rings must be identical.

&7 If the arguments are expressions then these are converted into polynomi-
als using poly . polylib::resultant returns FAIL if the expressions
cannot be converted.

¢ If the argumentinds is missing, the input expressions are converted into
polynomials in all indeterminates occurring in at least one of them. They
are not independently converted, hence the conversion cannot result in
two polynomials with different variables causing an error. See example

1.
&2 If the coefficient ring is a domain, it must have a "_divide" method.
& If the coefficient ring is Expr , polylib::resultant returns an expres-

sion if called with two univariate polynomials. See example 2.

¢ For polynomials over IntMod(n) , the computation may stop with an
error if n is not prime.

Example 1. If the input consists of expressions, the sets of indeterminates oc-
curring in the expressions need not coincide:

>> polylib::resultant(a*x + ¢, ¢*x + d, X);

2
ad-c

Example 2. If the coefficient ring of two univariate input polynomials is Expr ,
the result is an expression:

>> polylib::resultant(poly(x*2 -1), poly(x + 1));

0

Background:

& The resultant of two polynomials is defined to be the determinant of their
Sylvester matrix. A call to polylib::resultant is more efficient than
consecutive calls to linalg::sylvester and linalg:.det

25

Changes:

polylib::resultant used to be resultant

polylib::sortMonomials — sorting monomials with respect to a
term ordering

polylib::sortMonomials(f, ord) returns a list of all monomials con-
stituting the polynomial f , sorted in descending order with respect to ord .

Call(s):
polylib::sortMonomials(f)
polylib::sortMonomials(f, vars)
& polylib::sortMonomials(f, ord)
& polylib::sortMonomials(f, vars, ord)

Parameters:
f — polynomial or polynomial expression
vars — nonempty list of identifiers
ord — monomial ordering

Return Value: a list of polynomials or expressions of the same type as f .
Overloadable by: f

Related Functions: Dom::MonomOrdering , Imonomial , nthmonomial

Details:

£ A monomial ordering may be: one of the identifiers LexOrder , De-
greeOrder , DeglnvLexOrder ;oran object of type Dom::MonomOrdering
or convertible to that type; or any object returning a number when called
as ord(ml1,m2) for two degree vectors mland m2 A degree vector is a
list of integers, as returned by degreevec .

& If no order is given, the lexikographical order is used.
¢ If no list of variables is given, all indeterminates of f are used.

¢ Given two degree vectors, mlis considered to be greater than m2if and
only if ord(m1,m2) is positive .

26

Example 1. The monomials of the polynomial below are compared using a
monomial ordering from Dom::MonomOrdering

>> polylib::sortMonomials(poly(x"*2+x*y"3+2, [X,y]), DegRevLex(2))

3 2
[poly(x y , [x, y]), poly(x , [x, y]), poly(2, [x, y])

Changes:
& polylib::sortMonomials is a new function.
polylib::splitfield — the splitting field of a polynomial
Given p € K[X], polylib::splitfield(p) returns a simple field extension
F of K and some elements o, ..., of F, such that [} ; X — «; is an associate

of p, and such that F is the smallest extension of K containing all of the «;.

Call(s):
& polylib::splitfield(p)

Parameters:
P — univariate polynomial over a field or univariate polynomial
expression
Return Value: polylib::splitfield returns a list of two operands: the

first one is the splitting field of the polynomial, i.e. a Dom::AlgebraicExtension
of the coefficient ring; the second one is a list of all roots of the polynomial in
the splitting field, each root followed by its multiplicity.

Related Functions: factor |, evalp

Details:

t7 If the input is a polynomial expression, as in Example 1, it is treated as a
polynomial over the rationals.

¢ The polynomial p need not be irreducible.

£ The name for the primitive element of the field extension is generated us-
ing genident and is therefore different in every call of polylib::splitfield
even if the same polynomial is passed.

£ MuPAD must be able to factor polynomials over the coefficient field of p.

27

t¢ The coefficient field must be perfect. Otherwise, it may happen that
polylib::splitfield does not terminate.

Example 1. We adjoin y/—1 to the rationals:
>> polylib::splitfield(x*2+1)

2
[Dom::AlgebraicExtension(Dom::Rational, X1 + 1 = 0, X1),

[X1, 1, -X1, 1]]

Example 2. A call to polylib::splitfield becomes more interesting for
polynomials for of degree at least 3:

>> polylib::splitfield(x*3-2)

| 6
| Dom:AlgebraicExtension(Dom::Rational, X4 + 108 = 0, X4),

- 4 4 4 o -
| X4 X4 X4 X4 X4 |
| - -1 -1 ---— 1]

-2 36 18 2 36 -

Example 3. In this example, we work over the field of univariate rational
functions (the quotient field of the univariate polynomials) over the rationals:

>> R:=Dom::DistributedPolynomial([x], Dom::Rational):
F:=Dom::Fraction(R):

f:=poly(y"3-x,[y],F):
polylib::splitfield(f)

| Dom::AlgebraicExtension(Dom::Fraction(
Dom::DistributedPolynomial([x], Dom::Rational, LexOrder)),

- 4 4 4
2 6 | X6 X6 X6 X6 X6

28

27X + X6 =0, XB), | - - = 1, - 1, - - - -

-2 18 x 9 x 2 18 x
|
1]
Changes:
polylib::splitfield is a new function.
polylib::sqgrfree — square-free factorization of polynomials
polylib::sqrfree(f) returns the square-free factorization of f , that is, a
factorization of f in the form f =u - p{' - ... - py with primitive and pairwise
different square-free divisors p;.
Call(s):
2 polylib::sqrfree(f <, recollect >)
Parameters:
f — a polynomial or an arithmetical expression
recollect — TRUEor FALSE

Return Value: a factored object, i.e., an object of the domain type Factored

Related Functions: content ,factor , Factored , irreducible ,
polylib::primpart

Details:

@ polylib::sqrfree(f) returns the square-free factorization of the poly-
nomial f, that is, a factorization of f in the form f =u - fl ... ff with
primitive and pairwise different square-free divisors f; (i.e., gcd(f;, ;) =

1 for i # j).

u is a unit of the coefficient ring of f, and e; are positive integers.

The result of polylib::sqrfree is an object of the domain type Factored
Let g:= polylib::sqrfree(f) be such an object. It is represented

29

internally as the list [u, f1, el, ..., fr, er] of odd length (=
r+1).

You may extract the unit u, the factors f; as well as the exponents e; by
the ordinary index operator [] ,ie., g[1] = u, g[2] = f1, g[3]

= el, ..

For example, to extract all square-free divisors of f, enter g[2*i] $ i

= 1..nops(g) div 2 . The same can be achieved with the call Fac-
tored::factors(g) , and Factored::exponents(g) returns

a list of the exponents ¢; (1 < i < r) of the square-free factorization of f.

The call convert(g,DOM_LIST) gives the internal representation of
a factored object, i.e., the list as described above.

Note that the result of polylib::sqrfree is printed as an expression
and behaves like that. As an example, the result of polylib::sqrfree(
X"2+2*x+1) isthe object printed as (x+1)*2 whichis of type"_power"

Please read the help page of Factored for details.

The call polylib::sqrfree(f, FALSE) returns a square-free factor-
ization of f , where the exponents ¢; need not be pairwise different.

polylib::sqrfree can handle univariate and multivariate polyno-
mials over Expr, residue class rings IntMod(p) with prime modulus
p, domains representing a unique factorization domain of characteristic
zero, and finite fields.

¢ If the argument of polylib::sqrfree is an expression, its numerator
and denominator are converted into polynomials in all occurring inde-
terminates.

These polynomials are regarded as polynomials over some extension of
the rational numbers (i.e., over Expr , see poly). The choice of that ex-
tension follows the same rules as in the case of the function factor

Factors of the denominator of an expression are indicated by negative
multiplicities.

Example 1. The factors in a squarefree factorization are pairwise relatively
prime, but they need not be irreducible:

>> polylib::sqrfree(
2 - 2*X - 6*XM + 6*X"5 + 6*x"8 - 6*x"9 -2*x"12 + 2*x"13
)

4 2 3 3
2 x-1) x+x +x +1

30

Example 2. Evenif a factorization into irreducibles has been found, irreducible
factors with the same multiplicity are collected again:

>> polylib::sgrfree(x"6 + XxM*y*6 + Xx"2*y"2*9)

2 2
x By +x))

You can avoid this by giving a second argument:
>> polylib::sqrfree(xM6 + x™M*y*6 + x"2*y"2*9, FALSE)

2 2 2
x @By+x)

Example 3. polylib::sqrfree works also for polynomials:
>> polylib::sqrfree(poly(2 + 5*x + 4*x"2 + x"3))

2
poly(x + 1, [x]) poly(x + 2, [x])

Changes:
polylib::sqrfree used to be sqrfree
£ the return value of polylib::sqrfree is an object of the domain Factored

31

