
plot — graphics library

Table of contents

Preface . iii

plot::Curve2d — graphical primitive for a two-dimensional curve 1

plot::Curve3d — graphical primitive for a three-dimensional curve 13

plot::Ellipse2d — graphical primitive for a two-dimensional el-
lipse . 23

plot::Function2d — graphical primitive for a two-dimensional graph
of a function . 33

plot::Function3d — graphical primitive for a three-dimensional
graph of a function . 47

plot::Group — a group of graphical primitives 58

plot::Lsys — graphical primitive for a Lindenmayer system . . . 66

plot::Point — graphical primitive for a point 70

plot::Pointlist — graphical primitive for a list of points 79

plot::Polygon — graphical primitive for a polygon 90

plot::Rectangle2d — graphical primitive for a two-dimensional
rectangle . 100

plot::Scene — a graphical scene 109

plot::Surface3d — graphical primitive for a three-dimensional sur-
face plot . 123

plot::Turtle — graphical primitive for turtle graphics 132

plot::contour — generate contour and implicit plots 136

plot::copy — create a copy of a graphical primitive 138

plot::cylindrical — generate plots in cylindrical coordinates . 140

plot::data — create two- and three-dimensional plots of data . . 142

plot::density — generate two-dimensional density plots 145

plot::HOrbital — visualize the electron orbitals of a hydrogen atom 146

plot::implicit — implicit plot of smooth functions 148

plot::inequality — generate a 2D plot of inequalities 153

plot::line — graphical object for lines 155

plot::modify — create modified copies of graphical objects . . . 156

i

plot::ode — plot the numerical solution of an ordinary differential
equation . 158

plot::polar — generate plots in polar coordinates 164

plot::spherical — generate plots in spherical coordinates . . . 165

plot::vector — graphical object for vectors 166

plot::vectorfield — generate plots of two-dimensional vector
fields . 168

plot::xrotate — generate plots of surface of revolution (x-axis) 170

plot::yrotate — generate plots of surface of revolution (y-axis) 172

ii

Notes

The library plot can be categorized into three parts:

1. So-called “graphical primitives”, such as a point, a polygon, a two-dimensional
graph of a (real) function, a graph of a two-dimensional curve, and more.

2. So-called “graphical structs”, such as lines, vectors, and more. Graphical
structs ease the use of more complex graphical objects. They are build
from graphical primitives.

3. Functions for creating complex graphics, such as vectorfields, ode plots,
graphs of implicit functions, and more.

For example, to plot the graph of the function sin(x) for x ∈ [0,2π], we enter:

>> f := plot::Function2d(sin(x), x = 0..2*PI)

plot::Function2d(sin(x), x = 0..2 PI)

What happens here? We create a graphical primitive representing the graph
of sin(x) in the specified interval and stored the result in the variable f . The
result is an object of the domain plot::Function2d .

To plot the graph on the screen, use the function plot :

>> plot(f)

In general, to plot a graphical scene consisting of the graphical primitives
o1, o2, ... , call plot(o1, o2, ...) .

One may first create a graphical scene with scene:= plot::Scene(o1,
o2, ...) , and then call plot(scene) . We give an example:

>> scene := plot::Scene(f);
plot(scene)

plot::Scene()

See the following help pages for further examples.

iii

plot::Curve2d – graphical primitive for a two-dimensional curve

plot::Curve2d([x, y], t = a..b) represents a plot of the curve de-
fined by t 7→

(
x(t); y(t)

)
with t ∈ [a, b].

Creating Elements:

A plot::Curve2d([x, y], t = a..b <, option1, option2, ... >)

Parameters:
x, y — arithmetical expressions in t
t — identifier
a, b — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

Related Domains: plot::Curve3d , plot::Function2d , RGB

Related Functions: plot , plot2d , plot::copy

Details:

A Objects generated by plot::Curve2d represent graphical primitives
for two-dimensional curves that can be displayed via plot(...) , or
used with other graphical primitives of the plot library.

A An object of plot::Curve2d has the type "graphprim" , i.e., if o is
such an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Height]

Discont TRUE, FALSE TRUE
Grid [n] [100]
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30

1

OptionName admissible values default value
RealValuesOnly TRUE, FALSE TRUE
Smoothness [n] [0]
Style [Points] , [Lines] ,

[LinesPoints] ,
[Impulses]

[Lines]

Title strings ""
TitlePosition [x, y]

See plot2d for further details on each option, except for Discont and
RealValuesOnly , which are described in detail below.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the call of plot , or use
plot::Scene to create an object representing a graphical scene.
Cf. example 1.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a curve primitive:

attribute meaning properties
options A table of plot options of the

curve primitive. Note that if
you change the value of this at-
tribute, the entries of the as-
signed table are not checked to
be valid plot options for curve
primitives. Invalid entries lead
to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

2

attribute meaning properties
plotdata List of the plot data of the curve

primitive in a plot2d con-
forming syntax (see the method
"getPlotdata" below). Note
that the value of this attribute
should only be used if the at-
tribute refreshPlotdata has
the value FALSE(see below).

read

range The parameter of the curve and
its range. The initial value is the
parameter t = a..b .

read/write

refreshPlotdata A boolean value which sig-
nals whether the plot data
of the curve primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the curve primitive
is stored in the attribute plot-
data . The initial value is TRUE.
Cf. example 5.

read/write

term The term of the curve. Its initial
value is the parameter [x, y] .

read/write

Example 5 illustrates how to read and write such attributes.

Option <Discont = value >:

A This option determines, whether the parametrization [x(t), y(t)] of
the curve is checked for discontinuities. Admissible values are TRUEand
FALSE; the default is Discont = TRUE.

• Discont = TRUEenables symbolic checking of discontinuities. If
found, unwanted graphical effects such as spurious lines at the dis-
continuities are eliminated.

• Discont = FALSEdisables the check.

See example 3.

Option <RealValuesOnly = value >:

A If the parametrization [x(t), y(t)] of the curve produces a complex
value during the evaluation of the plot, then an error occurs. Specifying

3

RealValuesOnly = TRUE, such errors are trapped. Only those parts of
the curve producing real values are plotted.

With RealValuesOnly = FALSE no internal check is performed. The
renderer produces an error, when it encounters a complex value. The
default is RealValuesOnly = TRUE.

See example 4.

Operands: An object of plot::Curve2d consists of two operands. The first
operand is the term of the curve specified as the list [x, y] . The second one
is the parameter of the curve and its range in the form t = a..b .

Important Operations:

A Operands of a curve primitive can be accessed either using the system
function op , the index operator [] , or using the attributes described
above. For example, if curve is such an object, then the calls op(curve,1) ,
curve[1] and curve::term return the list [x, y] .

Via curve[1] := [new_x, new_y] or curve::term := [new_x,
new_y] , the term of a curve primitive can be changed.

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if curve is such
an object, then curve::Color := RGB::Red changes the color of the
curve primitive curve to red.

Result of Evaluation: Evaluating an object of the domain type plot::Curve2d
returns itself.

Function Call: Calling an object of plot::Curve2d as a function yields the
object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions is a table of plot options for curve primitives and their
default values. Each entry has the form OptionName = default_value .

When an object of the domain plot::Curve2d is created, then a
copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parameters

4

option1, option2, ... of the creating call (see “Creating El-
ements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot2d which is used to plot the object. See the table of plot op-
tions above, which gives a summary of the available plot options
for curve primitives and their default values. See example 2.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of two-dimensional
curves.

Access Methods

Method _index : indexed access to the operands of a curve primitive

_index(dom curve, positive integer i)

A Returns the i th operand of curve . See “Operands” above for a
description of the operands of curve . If i is greater than 2, then
FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form curve[i] , or in functional notation _index(curve,
i) .

Method dimension : dimension of a curve primitive

dimension(dom curve)

A Returns the integer 2.

Method getPlotdata : create the plot data of a curve primitive

getPlotdata(dom curve)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of curve in a plot2d conforming syntax, i.e., it has the form
[Mode = Curve, [...], ...] .
For example, with s := plot::Curve2d::getPlotdata(curve)
the call plot2d(s[1]) gives a plot of curve .

5

A Only those plot options will be included in the plot data of the
curve, that are contained in the table stored under the attribute op-
tions (see the table of attributes above). For any other plot option
not contained in this table, the corresponding default value set by
the function plot2d for curves is used when plotting the object.

A The result is stored as the value of the attribute plotdata of curve .

A A call of this method sets the value of the attribute refreshPlot-
data of curve to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a curve primitive

nops(dom curve)

A Returns the integer 2.

A This method overloads the system function nops , i.e., one may use
it in the form nops(curve) .

Method op : extract operands of a curve primitive

op(dom curve, positive integer i)

A Returns the i th operand of curve . See “Operands” above for a
description of the operands of curve . If i is greater than 2, then
FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(curve, i) .

Method set_index : set operands of a curve primitive

set_index(dom curve, positive integer i, any val)

A Replaces the i th operand of curve by the value val . See “Operands”
above for a description of the operands of curve .

A If i is greater than 2, or if val is not an admissible value for the i th
operand, then a warning message is issued. In this case the call of
this method has no effect on the object curve .

A A call of this method sets the value of the attribute refreshPlot-
data of curve to TRUE.

6

Method slot : read and write attributes and plot options

slot(dom curve, string slotname)

A Reads the value of the slot slotname of curve . slotname may
either be the name of an attribute or the name of a plot option. See
the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may use
it in the form curve::slotname_id (here, slotname_id must
be the identifier corresponding to the string slotname), or in func-
tional notation slot(curve, slotname) .

slot(dom curve, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form curve::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(curve, slotname, val) .

A The value of the attribute refreshPlotdata of curve is set to
TRUE.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is an available plot op-
tion for curve primitives (see the table of available plot options
above), and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

7

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a curve primitive

copy(dom curve)

A Returns a copy of the object curve .

A This method is called from the function plot::copy . See its help
page for details.

Method modify : modify a copy of a curve primitive

modify(dom curve, equation(s) Name1 = value1, ...)

A Creates a copy of the object curve and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot op-
tions of the domain plot::Curve2d . Otherwise a warning mes-
sage is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of curve to TRUE.

A This method is called from the function plot::modify .

Method print : print a curve primitive

print(dom curve)

A This method returns an unevaluated expression of the form plot::Curve2d([x,
y], t = a..b) . It is used to print objects of plot::Curve2d to
the screen.

A See the system function print for details.

8

Example 1. The following call returns an object representing the graph of the
unit circle:

>> c := plot::Curve2d([sin(t), cos(t)], t = 0..2*PI)

plot::Curve2d([sin(t), cos(t)], t = 0..2 PI)

To plot this curve in a graphical scene, call plot :

>> plot(c)

Plot options of the curve can be given as additional parameters in the cre-
ating call, such as increasing the width of the lines of a graph and plotting the
graph in red color:

>> c2 := plot::Curve2d([sin(t), cos(t)], t = 0..2*PI,
Color = RGB::Red, LineWidth = 50

)

plot::Curve2d([sin(t), cos(t)], t = 0..2 PI)

>> plot(c2)

To change default values of some scene options, pass the scene options to
the function plot as additional arguments. For example, change the scaling
of the plot and increase the number of ticks on both axes:

>> plot(c2, Scaling = Constrained, Ticks = [10,10])

See the help page of plot::Scene for available scene options.

Example 2. If a curve primitive is created, values of some plot options of the
created object can be read, or replaced by new values.

To illustrate this, we create the following curve:

>> c1 := plot::Curve2d([t*cos(t), t*sin(t)], t = 0..4*PI)

plot::Curve2d([t cos(t), t sin(t)], t = 0..4 PI)

We create a copy of this curve, change some plot options of the copied object,
and plot both objects in a graphical scene:

>> c2 := plot::copy(c1):
c2::Style := [Points]: c2::Grid := [30]:
plot(c1, c2)

Plot options, which are explicitely set for a curve primitive, are stored un-
der the attribute options and can be read with the slot operator :: . The plot
options for the first created object are:

>> c1::options

9

table(
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [100],
Color = [Flat, [1.0, 0.0, 0.0]]

)

These are the default values of some plot options for two-dimensional curve
primitives, defined by the entry "defaultOptions" of the domain plot::Curve2d :

>> plot::Curve2d::defaultOptions

table(
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [100],
Color = [Flat, [1.0, 0.0, 0.0]]

)

When the plot data of a curve primitive is created (calling the method
"getPlotdata"), only those plot options are used that are contained in the
table c1::options . Here these are:

>> plot::Curve2d::getPlotdata(c1)

[[Mode = Curve, [t cos(t), t sin(t)], t = [0.0, 12.56637061],

Grid = [100], Color = [Flat, [1.0, 0.0, 0.0]]]]

This means that for any other available plot option not contained in the table
c1::options , the default value is either set by plot::Scene , if the option
also exists as a scene option, or it is internally set by the function plot2d when
plotting the object.

You might wonder why the options RealValuesOnly and Discont are
not contained in the plot structure returned by the method "getPlotdata" .
The options are special options for objects of the domain plot::Curve2d .
They are used to determine the plot data of such an object. They are not ac-
cepted as valid options for the mode Curve of the plot2d command.

The curve primitive c2 contains the following options:

>> c2::options

table(
Style = [Points],
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [30],
Color = [Flat, [1.0, 0.0, 0.0]]

)

10

As you see, the option Style was added to this table, and the default value of
the option Grid was replaced by the new value [30] . Use delete to remove
plot options:

>> delete c2::options[Style]: c2::options

table(
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [30],
Color = [Flat, [1.0, 0.0, 0.0]]

)

Example 3. In order to illustrate the effect of the option Discont , we create
the following curve primitive:

>> c := plot::Curve2d([tan(t), t], t = 0..4*PI)

plot::Curve2d([tan(t), t], t = 0..4 PI)

The tangens has singularities at multiplicities of π/2, which is determined by
plot::Curve2d , if the option Discont is set to TRUE. This is the default
behaviour of plot::Curve2d :

>> plot(c)

Setting this option to FALSEcauses spurious lines at the singularities:

>> c::Discont := FALSE: plot(c)

Example 4. If the option RealValuesOnly is disabled, complex arguments
produced by the parametrization of the curve lead to runtime errors during
the evaluation of the plot:

>> c := plot::Curve2d([sqrt(t), -sqrt(t)], t = -5..5,
RealValuesOnly = FALSE

):
plot(c)

Error: Non-real values detected (try option RealValuesOnly = \
TRUE) [plotlib::clip2d_Curve]

11

Example 5. This example illustrates how to read and write attributes of curve
primitives (see the table of available attributes in “Details” above).

In example 2, we already used the attribute options , which stores plot
options defined individually for a curve primitive and which overrides the
corresponding default values set by MuPAD.

The attribute term holds the term of a curve primitive. For example, if
curve is an object of plot::Curve2d such as:

>> c := plot::Curve2d([tan(t), t], t = 0..4*PI, Color = RGB::Blue)

plot::Curve2d([tan(t), t], t = 0..4 PI)

then c::term returns the list:

>> c::term

[tan(t), t]

We plot this curve:

>> plot(c)

Because the attribute term has the “write” property, you can change the
value of this attribute as follows:

>> c::term := [1/cos(t), t]: plot(c)

The value of term must be a list of two arithmetical expressions, otherwise an
error message is issued.

An example of a “read-only” attribute is the attribute plotdata . It stores
the plot data of a curve primitive in a plot2d conforming syntax. However,
the value of this attribute should only be used if the attribute refreshPlot-
data has the value FALSE.

For example, if we create a new curve primitive, then the value of plot-
data is the empty list:

>> c2 := plot::Curve2d([t^2, t^2], t = -5..5):
c2::plotdata

[]

and refreshPlotdata signals that the plot data must be created:

>> c2::refreshPlotdata

TRUE

A call of the method "getPlotdata" , which is caused by plotting the curve,
for example, creates the plot data of a curve primitive:

>> plot::Curve2d::getPlotdata(c2)

12

2 2
[[Mode = Curve, [t , t], t = [-5.0, 5.0], Grid = [100],

Color = [Flat, [1.0, 0.0, 0.0]]]]

This plot data is the new value of the attribute plotdata , and refresh-
Plotdata was set to FALSE. Thus, an unnecessary rebuilding of the plot data
of this object can be avoided by reading the value of plotdata :

>> c2::refreshPlotdata(c2), c2::plotdata

2 2
FALSE, [[Mode = Curve, [t , t], t = [-5.0, 5.0],

Grid = [100], Color = [Flat, [1.0, 0.0, 0.0]]]]

Any change of a plot option or an attribute of the curve primitive sets the value
of refreshPlotdata to TRUE:

>> c2::Color:= RGB::Black: c2::refreshPlotdata(c2)

TRUE

This means that the value of plotdata is not longer valid, and the method
"getPlotdata" must be called to rebuild the plot data of c2 .

Changes:

A plot::Curve2d is a new function.

plot::Curve3d – graphical primitive for a three-dimensional curve

plot::Curve3d([x, y, z], t = a..b) represents a plot of the curve
defined by t 7→

(
x(t); y(t); z(t)

)
with t ∈ [a, b].

Creating Elements:

A plot::Curve3d([x, y, z], t = a..b <, option1, option2,
... >)

Parameters:
x, y, z — arithmetical expressions in t
t — identifier
a, b — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

13

Related Domains: plot::Curve2d , plot::Function3d ,
plot::Surface3d , RGB

Related Functions: plot , plot3d , plot::copy

Details:

A Objects generated by plot::Curve3d represent graphical primitives
for three-dimensional curves that can be displayed via plot(...) , or
used with other graphical primitives of the plot library.

A An object of plot::Curve3d has the type "graphprim" , i.e., if o is
such an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Height]

Grid [integer] [100]
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Smoothness [integer] [0]
Style [Points] , [Lines] ,

[LinesPoints] ,
[Impulses]

[Lines]

Title strings ""
TitlePosition [x, y]

See plot3d for further details on each option.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the call of plot , or use
plot::Scene to create an object representing a graphical scene.
Cf. example 1.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also

14

has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a curve primitive:

attribute meaning properties
options A table of plot options of the

curve primitive. Note that if
you change the value of this at-
tribute, the entries of the as-
signed table are not checked to
be valid plot options for curve
primitives. Invalid entries lead
to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

plotdata List of the plot data of the curve
primitive in a plot3d con-
forming syntax (see the method
"getPlotdata" below). Note
that the value of this attribute
should only be used if the at-
tribute refreshPlotdata has
the value FALSE(see below).

read

range The parameter of the curve and
its range. The initial value is the
parameter t = a..b .

read/write

refreshPlotdata A boolean value which sig-
nals whether the plot data
of the curve primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the curve primi-
tive is stored in the attribute
plotdata . The initial value
is TRUE. See the help page of
plot::Curve2d for an exam-
ple.

read/write

15

attribute meaning properties
term The term of the curve. The ini-

tial value is the parameter [x,
y, z] .

read/write

See example 3.

Operands: An object of plot::Curve3d consists of two operands. The first
operand is the term of the curve specified as the list [x, y, z] . The second
one is the parameter of the curve and its range in the form t = a..b .

Important Operations:

A Operands of a curve primitive can be accessed either using the system
function op , the index operator [] , or using the attributes described
above. For example, if curve is such an object, then the calls op(curve,1) ,
curve[1] and curve::term return the list [x, y, z] .

Via curve[1] := [new_x, new_y, new_z] or curve::term :=
[new_x, new_y, new_z] , the term of a curve primitive can be changed.

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if curve is such
an object, then curve::Color := RGB::Red changes the color of the
curve primitive curve to red.

Result of Evaluation: Evaluating an object of the domain type plot::Curve3d
returns itself.

Function Call: Calling an object of plot::Curve3d as a function yields the
object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions is a table of plot options for curve primitives and their
default values. Each entry has the form OptionName = default_value .

When an object of the domain plot::Curve3d is created, then a
copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parameters

16

option1, option2, ... of the creating call (see “Creating El-
ements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot3d which is used to plot the object. See the table of plot op-
tions above, which gives a summary of the available plot options
for curve primitives and their default values. See example 2.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of three-dimensional
curves.

Access Methods

Method _index : indexed access to the operands of a curve primitive

_index(dom curve, positive integer i)

A Returns the i th operand of curve . See “Operands” above for a
description of the operands of curve . If i is greater than 2, then
FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form curve[i] , or in functional notation _index(curve,
i) .

Method dimension : dimension of a curve primitive

dimension(dom curve)

A Returns the integer 3.

Method getPlotdata : create the plot data of a curve primitive

getPlotdata(dom curve)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of curve in a plot3d conforming syntax, i.e., it has the form
[Mode = Curve, [...], ...] .
For example, with s := plot::Curve3d::getPlotdata(curve)
the call plot3d(s[1]) gives a plot of curve .

17

A Only those plot options will be included in the plot data of the
curve, that are contained in the table stored under the attribute op-
tions (see the table of attributes above). For any other plot option
not contained in this table, the corresponding default value set by
the function plot3d for curves is used when plotting the object.

A The result is stored as the value of the attribute plotdata of curve .

A A call of this method sets the value of the attribute refreshPlot-
data of curve to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a curve primitive

nops(dom curve)

A Returns the integer 2.

A This method overloads the system function nops , i.e., one may use
it in the form nops(curve) .

Method op : extract operands of a curve primitive

op(dom curve, positive integer i)

A Returns the i th operand of curve . See “Operands” above for a
description of the operands of curve . If i is greater than 2, then
FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(curve, i) .

Method set_index : set operands of a curve primitive

set_index(dom curve, positive integer i, any val)

A Replaces the i th operand of curve by the value val . See “Operands”
above for a description of the operands of curve .

A If i is greater than 2, or if val is not an admissible value for the i th
operand, then a warning message is issued. In this case the call of
this method has no effect on the object curve .

A A call of this method sets the value of the attribute refreshPlot-
data of curve to TRUE.

18

Method slot : read and write attributes and plot options

slot(dom curve, string slotname)

A Reads the value of the slot slotname of curve . slotname may
either be the name of an attribute or the name of a plot option. See
the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may use
it in the form curve::slotname_id (here, slotname_id must
be the identifier corresponding to the string slotname), or in func-
tional notation slot(curve, slotname) .

slot(dom curve, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form curve::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(curve, slotname, val) .

A The value of the attribute refreshPlotdata of curve is set to
TRUE.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is an available plot op-
tion for curve primitives (see the table of available plot options
above), and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

19

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a curve primitive

copy(dom curve)

A Returns a copy of the object curve .

A This method is called from the function plot::copy . See its help
page for details.

Method modify : modify a copy of a curve primitive

modify(dom curve, equation(s) Name1 = value1, ...)

A Creates a copy of the object curve and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot op-
tions of the domain plot::Curve3d . Otherwise a warning mes-
sage is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of curve to TRUE.

A This method is called from the function plot::modify .

Method print : print a curve primitive

print(dom curve)

A This method returns an unevaluated expression of the form plot::Curve3d([x,
y, z], t = a..b) . It is used to print objects of plot::Curve3d
to the screen.

A See the system function print for details.

20

Example 1. The following call returns an object representing the graph of a
spiral:

>> c1 := plot::Curve3d([sin(t), cos(t), t], t = 0..2*PI)

plot::Curve3d([sin(t), cos(t), t], t = 0..2 PI)

To plot this curve in a graphical scene, call plot :

>> plot(c1)

Plot options of the curve can be given as additional parameters in the cre-
ating call, such as increasing the width of the lines of a graph and plotting the
graph in green color:

>> c2 := plot::Curve3d([sin(t), cos(t), t], t = 0..2*PI,
Color = RGB::Green, LineWidth = 50

)

plot::Curve3d([sin(t), cos(t), t], t = 0..2 PI)

>> plot(c2)

To change default values of some scene options, pass the scene options to
the function plot as additional arguments. For example, change the scaling
of the plot and change the number of ticks on the axes:

>> plot(c2, Scaling = Constrained, Ticks = [3, 3, 10])

See the help page of plot::Scene for available scene options.

Example 2. If a curve primitive is created, values of some plot options of the
created object can be read, or replaced by new values.

To illustrate this, we create the following curve:

>> c1 := plot::Curve3d([t*sin(t), t*cos(t), t], t = 0..4*PI)

plot::Curve3d([t sin(t), t cos(t), t], t = 0..4 PI)

We create a copy of this curve, change some plot options of the copied object,
and plot both objects in a graphical scene:

>> c2 := plot::copy(c1):
c2::Style := [Points]: c2::Grid := [30]:
plot(c1, c2)

Plot options, which are explicitely set for a curve primitive, are stored un-
der the attribute options and can be read with the slot operator :: . The plot
options for the first created object are:

>> c1::options

21

table(
Grid = [100]

)

These are default values of some plot options of two-dimensional curve primi-
tives, defined by the entry "defaultOptions" of the domain plot::Curve3d :

>> plot::Curve3d::defaultOptions

table(
Grid = [100]

)

When the plot data of a curve primitive is created (calling the method
"getPlotdata"), only those plot options are used that are contained in the
table c1::options . Here these are:

>> plot::Curve3d::getPlotdata(c1)

[[Mode = Curve, [t sin(t), t cos(t), t],

t = [0.0, 12.56637061], Grid = [100]]]

This means that for any other available plot option not contained in the table
c1::options , the default value is either set by plot::Scene , if the option
also exists as a scene option, or internally set by the function plot2d when
plotting the object.

The curve primitive c2 contains the following options:

>> c2::options

table(
Style = [Points],
Grid = [30]

)

As you see, the option Style was added to this table, and the default value of
the option Grid was replaced by the new value [30] . Use delete to remove
plot options:

>> delete c2::options[Style]: c2::options

table(
Grid = [30]

)

22

Example 3. This example illustrates how to read and write attributes of curve
primitives (see the table of available attributes in “Details” above).

In the last example, we already used the attribute options , which stores
plot options defined individually for a curve primitive and which overrides
the corresponding default values set by MuPAD.

The attribute term holds the term of a curve primitive. For example, if
curve is an object of plot::Curve3d such as:

>> c := plot::Curve3d([cos(t)*sin(t), t, t], t = -5..5, Color = RGB::Blue)

plot::Curve3d([cos(t) sin(t), t, t], t = -5..5)

then curve::term returns the list:

>> c::term

[cos(t) sin(t), t, t]

We plot this curve:

>> plot(c)

Because the attribute term has the “write” property, you can change the
value of this attribute as follows:

>> c::term:= [t, t, sin(t)*cos(t)]: plot(c)

The value of term must be a list of three arithmetical expressions, otherwise
an error message is issued.

Changes:

A plot::Curve3d is a new function.

plot::Ellipse2d – graphical primitive for a two-dimensional el-
lipse

plot::Ellipse2d(p, l1, l2) represents a plot of a two-dimensional el-
lipse with center point p = (px; py) and semi-axes of lengths l1 and l2.

Creating Elements:

A plot::Ellipse2d(m, l1, l2 <, option1, option2, ... >)

A plot::Ellipse2d(p, l1, l2 <, option1, option2, ... >)

23

Parameters:
m — a list of two arithmetical expressions
p — a two-dimensional point, i.e., an object

of the domain plot::Point or
DOM_POINT

l1, l2 — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

Related Domains: plot::Point , plot::Rectangle2d , plot::Scene ,
RGB

Related Functions: plot , plot2d , plot::copy

Details:

A Objects generated by plot::Ellipse2d represent graphical primitives
for two-dimensional ellipses that can be displayed via the call plot , or
used with other graphical primitives of the plot library. See example 1.

A If the first parameter of the call of plot::Ellipse2d is a point p, then
it is converted into a list containing the two coordinates of p. Specified
plot options for p are ignored! (Cf. example 2.)

A An object of plot::Ellipse2d has the type "graphprim" , i.e., if o is
such an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Flat , RGB::Red]

Filled TRUE, FALSE FALSE
Grid [n] [100]
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Smoothness [n] [0]
Style [Points] , [Lines] ,

[LinesPoints] ,
[Impulses]

[Lines]

24

OptionName admissible values default value
Title strings ""
TitlePosition [x, y]

See plot2d for further details on each option, except of the option Filled ,
which is described in detail below.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the call of plot , or use
plot::Scene to create an object representing a graphical scene.
Cf. example 1.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for an ellipse primitive:

attribute meaning properties
center A list of two arithmetical ex-

pressions describing the center
point of the ellipse. The initial
value is the parameter m, or the
list of the coordinates of p, re-
spectively.

read/write

options A table of plot options of the
ellipse primitive. Note that if
you change the value of this at-
tribute, the entries of the as-
signed table are not checked to
be valid plot options for ellipse
primitives. Invalid entries lead
to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

25

attribute meaning properties
plotdata List of the plot data of the

ellipse primitive in a plot2d
conforming syntax (see the
method "getPlotdata" be-
low). Note that the value of this
attribute should only be used
if the attribute refreshPlot-
data has the value FALSE (see
below).

read

radius1 The length of the first semi-
axis (an arithmetical expres-
sion). The initial value is the pa-
rameter l1 .

read/write

radius2 The length of the second semi-
axis (an arithmetical expres-
sion). The initial value is the pa-
rameter l2 .

read/write

range A range of the form a..b speci-
fying the range of the parameter
of the ellipse in parametrized
form. a and b must be arith-
metical expressions. The initial
value is 0..2*PI . Cf. exam-
ple 3.

read/write

refreshPlotdata A boolean value which sig-
nals whether the plot data
of the ellipse primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the ellipse is stored
in the attribute plotdata . The
initial value is TRUE.

read/write

See the examples 2 and 3.

Option <Filled = value >:

A With Filled = TRUEthe ellipse is filled with the color specified with the
option Color .

In this case, the ellipse is approximated by a (filled) polygon. The num-
ber of the vertices of the polygon is the value n of the option Grid (see
the table of options above).

26

Note that drawing a filled polygon with more than three vertices is quite
time consuming in MuPAD!

The default is Filled = FALSE.

Operands: An object of plot::Ellipse2d consists of the three operands m,
l1 and l2 .

Important Operations:

A Operands of an ellipse primitive can be accessed either using the sys-
tem function op , the index operator [] , or using some attributes de-
scribed above. For example, if ellipse is such an object, then the calls
op(ellipse,1) , ellipse[1] and ellipse::center return the cen-
ter point of the ellipse.

Via ellipse[1] := new_point or ellipse::center := new_point ,
the center point of an ellipse can be changed.

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects af-
terwards, i.e., when they have been created. For example, if ellipse
is such an object, then ellipse::Color := RGB::Red changes the
color of ellipse to red.

Result of Evaluation: Evaluating an object of the domain type plot::Ellipse2d
returns itself.

Function Call: Calling an object of plot::Ellipse2d as a function yields
the object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions is a table of plot options for ellipse primitives and their
default values. Each entry has the form OptionName = default_value .

When an object of the domain plot::Ellipse2d is created, then
a copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parameters
option1, option2, ... of the creating call (see “Creating El-
ements” above).

27

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot2d which is used to plot the object. See the table of plot op-
tions above, which gives a summary of the available plot options
for curve primitives and their default values.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of two-dimensional
ellipses.

Access Methods

Method _index : indexed access to the operands of an ellipse primitive

_index(dom ellipse, positive integer i)

A Returns the i th operand of ellipse . See “Operands” above for a
description of the operands of ellipse . If i is greater than 3, then
FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form ellipse[i] , or in functional notation _in-
dex(ellipse, i) .

Method dimension : dimension of an ellipse primitive

dimension(dom ellipse)

A Returns the integer 2.

Method getPlotdata : create the plot data of an ellipse primitive

getPlotdata(dom ellipse)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of ellipse in a plot2d conforming syntax. If the option
Filled of ellipse is set to FALSE, then the plot description has
the form [Mode = Curve, [...], ...] . Otherwise, it has the
form [Mode = List, [polygon(...)], ...] .
For example, with s := plot::Ellipse2d::getPlotdata(ellipse)
the call plot2d(s[1]) gives a plot of ellipse .

28

A Only those plot options will be included in the plot data of the el-
lipse, that are contained in the table stored under the attribute op-
tions (see the table of attributes above). For any other plot option
not contained in this table, the corresponding default value set by
the function plot2d for curves is used when plotting the object.

A The result is stored as the value of the attribute plotdata of el-
lipse .

A A call of this method sets the value of the attribute refreshPlot-
data of ellipse to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of an ellipse primitive

nops(dom ellipse)

A Returns the integer 3.

A This method overloads the system function nops , i.e., one may use
it in the form nops(ellipse) .

Method op : extract operands of an ellipse primitive

op(dom ellipse, positive integer i)

A Returns the i th operand of ellipse . See “Operands” above for a
description of the operands of ellipse . If i is greater than 3, then
FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(ellipse, i) .

Method set_index : set operands of an ellipse primitive

set_index(dom ellipse, positive integer i, any val)

A Reset the i th operand of ellipse to the value val . See “Operands”
above for a description of the operands of ellipse .

A If i is greater than 3, or if val is not an admissible value for the i th
operand, then a warning message is issued. In this case the call of
this method has no effect on the object ellipse .

A A call of this method sets the value of the attribute refreshPlot-
data of ellipse to TRUE.

29

Method slot : read and write attributes and plot options

slot(dom ellipse, string slotname)

A Reads the value of the slot slotname of ellipse . slotname may
either be the name of an attribute or the name of a plot option. See
the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may
use it in the form ellipse::slotname_id (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(ellipse, slotname) .

slot(dom ellipse, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val . See the Details above for existing attributes
and options of an ellipse primitive.

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form ellipse::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(ellipse, slotname, val) .

A The value of the attribute refreshPlotdata of ellipse is set to
TRUE.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is an available plot op-
tion for ellipse primitives (see the table of available plot options
above), and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

30

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of an ellipse primitive

copy(dom ellipse)

A Returns a copy of the object ellipse .

A This method is called from the function plot::copy . See its help
page for details.

Method modify : modify a copy of an ellipse primitive

modify(dom ellipse, equation(s) Name1 = value1, ...)

A Creates a copy of the object ellipse and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot
options of the domain plot::Ellipse2d . Otherwise a warning
message is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of ellipse to TRUE.

A This method is called from the function plot::modify .

Method print : print an ellipse primitive

print(dom ellipse)

A This method returns an unevaluated expression of the form plot::Ellipse2d(p,
l1, l2 . It is used to print objects of plot::Ellipse2d to the
screen.

A See the system function print for details.

31

Example 1. We create a plot of an ellipse with center point (1; 2) and semi-axes
of length 3 and 4:

>> ellipse := plot::Ellipse2d([1, 2], 3, 4)

plot::Ellipse2d([1, 2], 3, 4)

The center point can also be an object of the domain plot::Point . The fol-
lowing example creates the unit circle around the point (−1;−1), filled with
green color:

>> circle := plot::Ellipse2d(
plot::Point(-1, -1), 1, 1, Filled = TRUE, Color = RGB::Green

)

plot::Ellipse2d([-1, -1], 1, 1)

We plot these two objects in a graphical scene, where the scaling of the plot is
changed to be constrained:

>> plot(ellipse, circle, Scaling = Constrained)

Example 2. The attribute center , which specifies the center point of the el-
lipse, is a list of two arithmetical expressions. This is also the case if the center
point of the created object was given as an object of the domain plot::Point
or DOM_POINT:

>> c := plot::Point([-1, 1]):
ellipse := plot::Ellipse2d(c, 2, -2):
ellipse::center

[-1, 1]

If you replace the value of the attribute center , then the point must be given
as a list of two arithmetical expressions, otherwise a warning message is is-
sued:

>> ellipse::center:= point(0, 0)

Warning: attribute ’center’: expecting a list of two arithmeti\
cal expressions; assignment ignored [plot::Ellipse2d::slot]

point(0, 0)

>> ellipse::center

[-1, 1]

32

Note that if you specify an object of the domain plot::Point or DOM_POINT
as the center point of the ellipse, then plot options of the point are ignored. For
example, if we change the color of the point c created above to blue and create
a new ellipse:

>> c::Color := RGB::Blue: ellipse := plot::Ellipse2d(c, 1, 1):
plot(ellipse)

then the ellipse is still drawn in red color (the default color of objects of the
domain plot::Ellipse2d). You must use the color option of the object el-
lipse to change the color of the object:

>> ellipse::Color := RGB::Blue: plot(ellipse)

Example 3. The value of the attribute range specifies the range of the param-
eter of the ellipse in parametrized form. For example, if we create a plot of the
unit circle arount the point (0; 0):

>> circle := plot::Ellipse2d([0, 0], 1, 1)

plot::Ellipse2d([0, 0], 1, 1)

and restrict the parameter of the circle to the interval [0, π], we get the follow-
ing plot:

>> circle::range := 0..PI: plot(circle)

See the help page of plot::Curve2d for more examples for working with
attributes of graphical primitives.

Changes:

A plot::Ellipse2d is a new function.

plot::Function2d – graphical primitive for a two-dimensional graph
of a function

plot::Function2d(f, x = a..b) represents a plot of the function f (x)
with x ∈ [a, b].

Creating Elements:

A plot::Function2d(f, x = a..b <, option1, option2, ... >)

A plot::Function2d(f, x = a..b, y = ymin..ymax <, option1,
option2, ... >)

33

Parameters:
f — arithmetical expression in x
x, y — identifiers
a, b, ymin, ymax — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

Related Domains: plot::Curve2d , plot::Function3d , RGB

Related Functions: plot , plot2d , plotfunc2d , plot::copy

Details:

A Objects generated by plot::Function2d represent graphical primi-
tives for two-dimensional graphs of functions which can be displayed
via plot(...) , or used with other graphical primitives of the plot li-
brary.

A plot::Function2d(f, x = a..b, y = ymin..ymax, ...) clips
the graph of f to the rectangle with lower left corner (a; ymin) and upper
right corner (b, ymax).

The clipping of the graph to the given rectangle is implemented by
plot::Function2d as follows: It tries to determine subintervals
of [a, b], where f (x) lies in the interval [ymin, ymax]. This process
does not work in general, and thus can produce graph plots out-
side the specified rectangle. It also depends on the value of the op-
tion Grid , and increasing the value of calculated grid points can
be necessary. This is the case, for example, if f strongly oscillates
in the interval [a, b]. See example 3.

!

A plot::Function2d automatically attempts to determine the locations
of discontinuities before plotting. If f has discontinuities that can be de-
termined, then the result of plot::Function2d consists of n + 1 sub-
graphs, where n is the number of discontinuities of f .

Use the option Discont to disable the determination of discontinuities.

A Note that plotfunc2d is also used to plot two-dimensional graphs of
functions. But in contrast to plot::Function2d , it does not return the
graph in form of a graphical object but displays the graph immediatly
after executing the command.

The main advantage of using plot::Function2d is, that you get the
representation of the graph as an object. It can be manipulated after-
wards or combined easily with other graphical primitives, such as poly-
gons, curves or lists of points, to a common graphical scene.

See example 2 below.

34

A An object of plot::Function2d has type "graphprim" , i.e., if o is
such an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Flat ,[1,0,0]]

Discont TRUE, FALSE TRUE
Grid [n] [100]
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
RealValuesOnly TRUE, FALSE TRUE
Smoothness [n] [0]
Style [Points] , [Lines] ,

[LinesPoints] ,
[Impulses]

[Lines]

Title strings ""
TitlePosition [x, y]

See plot2d for further details on each option, except for Discont and
RealValuesOnly , which are described in detail below.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the function plot ,
or use plot::Scene to create an object representing a graphical
scene. Cf. example 1.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value . See example 5.

The following attributes are available for a function primitive:

35

attribute meaning properties
objects If f has discontinuities and if the value of

the option Discont is TRUE, then the graph
of the function is splitted into a left and a
right part around each determined disconti-
nuity. The attribute objects is then the list
of these parts, where each part is an object of
plot::Function2d .
If f has no discontinuities, or if the value of
the option Discont is FALSE, then this list
only consists of one entry, the (whole) graph.
Note that if you extract an object of this list
and do some changes to this object, then you
must set the value of the attribute refresh-
Plotdata to TRUEin order to force a rebuild
of the plot data of the graph.

read

options A table of plot options of the function primi-
tive. Note that if you change the value of this
attribute, the entries of the assigned table are
not checked to be valid plot options for func-
tion primitives. Invalid entries lead to run-
time errors.
The initial value of this attribute is the
table stored under the domain entry
"defaultOptions" , where such options
are replaced and added, respectively, which
are given with the parameters option1,
option2, ... of the creating call.

read/write

plotdata List of the plot data of the function primi-
tive in a plot2d conforming syntax (see the
method "getPlotdata" below). Note that
the value of this attribute should only be used
if the attribute refreshPlotdata has the
value FALSE(see below).

read

range The variable of the function and its range in
the form ident = a..b . The initial value is
the parameter x = a..b .

read/write

refreshPlotdata A boolean value which signals whether the
plot data of the function primitive must be
(re-)build with the method "getPlotdata"
(see below). If its value is FALSE, then the
plot data of the function primitive is stored in
the attribute plotdata . The initial value is
TRUE. See the help page of plot::Curve2d
for an example.

read/write

36

attribute meaning properties
term The term of the function (an arithmetical ex-

pression). The initial value is the parameter
f .

read/write

yrange The “y-range” of the graph (see above). It is
either of the form ymin..ymax , or the value
Automatic . The initial value is the parame-
ter ymin..ymax , if the parameter was given
in the function call, or the value Automatic
otherwise.

read/write

Option <Discont = value >:

A This option determines, whether the function f(x) is checked for dis-
continuities. Admissible values are TRUEand FALSE; the default is Dis-
cont = TRUE.

• Discont = TRUEenables symbolic checking of discontinuities of f .
If found, unwanted graphical effects such as spurious lines at the
discontinuities are eliminated.

• Discont = FALSEdisables the check.

See example 4.

Option <RealValuesOnly = value >:

A If the function f(x) produces a complex value during the evaluation of
the plot, then an error occurs. Specifying RealValuesOnly = TRUE,
such errors are trapped. Only those parts of the function producing real
values are plotted. E.g., with this option the function sqrt(x) can be
plotted over the interval x ∈ [−1,1]: the plot only displays the real func-
tion values for x ≥ 0.

With RealValuesOnly = FALSE no internal check is performed. The
renderer produces an error, when it encounters a complex value. The
default is RealValuesOnly = TRUE.

Operands: An object of plot::Function2d consists of three operands. The
first operand is the term f of the function. The second one is the variable x
of the term and its range in the form x = a..b . The third one is the value
Automatic , or the range ymin..ymin if the parameter y = ymin..ymax
was given.

37

Important Operations:

A Operands of a function primitive can be accessed either using the sys-
tem function op , the index operator [] , or using the attributes described
above. For example, if function is such an object, then the calls op(function,1) ,
function[1] and function::term return the term f .

Via function[1] := f or function::term := f , the term of a func-
tion primitive can be changed.

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if function
is such an object, then function::Color := RGB::Red changes the
color of the function primitive function to red.

Result of Evaluation: Evaluating an object of the domain type plot::Function2d
returns itself.

Function Call: Calling an object of plot::Function2d as a function yields
the object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions is a table of plot options for function primitives and their
default values. Each entry has the form OptionName = default_value .

When an object of the domain plot::Function2d is created,
then a copy of this table is stored under the attribute options (see
the table of attributes above), where those options are added and
replaced, respectively, which are given by the (optional) parame-
ters option1, option2, ... of the creating call (see “Creating
Elements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot2d which is used to plot the object. See the table of plot op-
tions above, which gives a summary of the available plot options
for function primitives and their default values. See example 4.

38

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of two-dimensional
graphs of functions.

Access Methods

Method _index : indexed access to the operands of a function primitive

_index(dom function, positive integer i)

A Returns the i th operand of function .See “Operands” above for
a description of the operands of function . If i is greater than 3,
then FAIL is returned.
A This method overloads the system function _index , i.e., one may

use it in the form function[i] , or in functional notation _in-
dex(function, i) .

Method dimension : dimension of a function primitive

dimension(dom function)

A Returns the integer 2.

Method getPlotdata : the plot data of a function primitive

getPlotdata(dom function)

A Returns a list of inner lists, where each inner list is a plot description
of a two-dimensional curve in a plot2d conforming syntax, i.e., an
inner list has the form [Mode = Curve, [...], ...] .
For example, with s := plot::Function2d::getPlotdata(function)
the call plot2d(op(s)) gives a plot of function .
A Only those plot options will be included in the plot data of the func-

tion, that are contained in the table stored under the attribute op-
tions (see the table of attributes above). For any other plot option
not contained in this table, the corresponding default value set by
the function plot2d for curves is used when plotting the object.
A The result is stored as the value of the attribute plotdata of func-

tion .
A A call of this method sets the value of the attribute refreshPlot-

data of function to FALSE.
A This method is called from plot::Scene to build the plot data of

the graphical scene.

39

Method nops : number of operands of a function primitive

nops(dom function)

A Returns the integer 3.

A This method overloads the system function nops , i.e., one may use
it in the form nops(function) .

Method op : extract operands of a function primitive

op(dom function, positive integer i)

A Returns the i th operand of function . See “Operands” above for
a description of the operands of function . If i is greater than 3,
then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(function, i) .

Method set_index : set operands of a function primitive

set_index(dom function, positive integer i, any val)

A Replaces the i th operand of function by the value val . See “Operands”
above for a description of the operands of function .

A If i is greater than 3, or if val is not an admissible value for the i th
operand, then a warning message is issued. In this case the call of
this method has no effect on the object function .

A A call of this method sets the value of the attribute refreshPlot-
data of function to TRUE.

Method slot : read and write attributes and plot options

slot(dom function, string slotname)

A Reads the value of the slot slotname of function . slotname
may either be the name of an attribute or the name of a plot option.
See the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may
use it in the form function::slotname_id (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(function, slotname) .

40

slot(dom function, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may use
it in the form function::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(function, slotname,
val) .

A The value of the attribute refreshPlotdata of function is set
to TRUE.

Technical Methods

Method checkOption : check a plot options

checkOption(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for function primitives (see the table of available plot options above),
and value is an admissible for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a function plot

copy(dom function)

A Returns a copy of the object function .

A This method is called from the function plot::copy . See its help
page for details.

41

Method modify : modify a copy of a function plot

modify(dom function, equation(s) Name1 = value1, ...)

A Creates a copy of the object function and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot
options of the domain plot::Function2d . Otherwise a warning
message is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of function to TRUE.

A This method is called from the function plot::modify .

Method print : print a function primitive

print(dom function)

A This method returns an unevaluated expression of the form plot::Function2d(f,
x = a..b) . It is used to print objects of plot::Function2d to
the screen.

A See the system function print for details.

Example 1. The following call returns an object representing the graph of the
sine function in the interval [0,2π]:

>> f := plot::Function2d(sin(x), x = 0..2*PI)

plot::Function2d(sin(x), x = 0..2 PI)

To plot the graph in a graphical scene, call plot :

>> plot(f)

To restrict the y-range of the graph, for example, to the interval [0,1], spec-
ify a second range in the call of plot::Function2d :

>> f2 := plot::Function2d(sin(x), x = 0..2*PI, y = 0..1):
plot(f)

The variable of the second range can be any identifier, that, of course, dif-
fers from the variable of the function term (here: x).

Plot options of the curve can be given as additional parameters in the cre-
ating call, such as plotting the graph in green color and changing its style so
that it is drawn as impulses:

42

>> f3 := plot::Function2d(sin(x), x = 0..2*PI,
Color = RGB::Green, Style = [Impulses]

)

plot::Function2d(sin(x), x = 0..2 PI)

>> plot(f3)

To change default values of some scene options, pass the scene options to
the call of plot as additional arguments. For example, to draw grid lines in
the background of the plot, call:

>> plot(f, GridLines = Automatic)

See the help page of plot::Scene for available scene options.

Example 2. We want to plot a graph of the sequence n 7→ sin(n)
n in the interval

[1,50], enclosed by the graphs of the functions x 7→ 1
x and x 7→ − 1

x . We start by
creating the three different graphical primitives as follows:

>> f1 := plot::Function2d(1/x, x = 1..50);
f2 := plot::Function2d(-1/x, x = 1..50);
a := plot::Pointlist([n, sin(n)/n] $ n = 1..50, Color = RGB::Blue)

/ 1 \
plot::Function2d| -, x = 1..50 |

\ x /

/ 1 \
plot::Function2d| - -, x = 1..50 |

\ x /

plot::Pointlist()

To plot the scene of these objects, pass them as parameters to the function
plot :

>> plot(f1, f2, a)

Example 3. The process of the clipping the graph of a function plot can fail
and produce plots outside the specified rectangle. This is the case, for example,
if the function strongly oscillates in the given interval.

Consider the function sin(ex) for x ∈ [−5,5]. We are interested only in the
positive part of the graph, and thus enter:

>> f := plot::Function2d(sin(exp(x)), x = -5..5, y = 0..1):
plot(f)

43

The clipping of the graph fails in this example (see the note in the “Details”
above). It can be helpful in such cases to increase the value of the option Grid :

>> f::Grid:= [500]: plot(f)

Example 4. If a function primitive is created, values of some plot options of
the created object can be read, or replaced by new values.

To illustrate this, we create the following function:

>> f1 := plot::Function2d(1/x^2, x = -5..5, Color = RGB::Blue)

/ 1 \
plot::Function2d| --, x = -5..5 |

| 2 |
\ x /

We create a copy of the graph, change some plot options of the copied object,
and plot both objects in a graphical scene:

>> f2 := plot::copy(f1):
f2::Style := [Impulses]: f2::Grid := [20]:
f2::Color := RGB::Red:
plot(f1, f2)

Plot options, which are explicitely set for a function primitive, are stored
under the attribute options and can be read with the slot operator :: . The
plot options for the first created object are:

>> f1::options

table(
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [100],
Color = [Flat, [0.0, 0.0, 1.0]]

)

These are default values of some plot options of two-dimensional function
primitives, defined by the entry "defaultOptions" of the domain plot::Function2d :

>> plot::Function2d::defaultOptions

table(
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [100],
Color = [Flat, [1.0, 0.0, 0.0]]

)

44

When the plot data of a function primitive is created (calling the method
"getPlotdata"), only those plot options are used that are contained in the
table stored under the attribute options (here this is the table f1::options):

>> plot::Function2d::getPlotdata(f1)

-- -- -- 1 --
| | Mode = Curve, | x, -- |, x = [-5.0, -0.1413648217],
| | | 2 |
-- -- -- x --

--
Grid = [100], Color = [Flat, [0.0, 0.0, 1.0]] |,

|
--

-- -- 1 --
| Mode = Curve, | x, -- |, x = [0.1413648217, 5.0],
| | 2 |
-- -- x --

-
-

Title = "", Grid = [100], Color = [Flat, [0.0, 0.0, 1.0]] |
|

-
-

--
|
|

--

This means that for any other available plot option not contained in the table
f1::options , the default value is either set by plot::Scene , if the option
also exists as a scene option, or it is internally set by the function plot2d when
plotting the object.

This example also illustrates that plot::Function2d automatically de-
termines discontinuities and splits the graph into two subgraphs around each
discontinuity (these subgraphs are stored in the attribute objects , see above).

Here, the graph of 1
x2 was splitted around 0 into two subgraphs. Thus, the

plot structure in a plot2d conforming syntax consists of two objects of the
mode Curve .

The determination of discontinuities can be controlled with the option Dis-
cont . If we set this option to FALSE, discontinuities are not determined. The
plot structure of the function primitive then only consists of one object:

>> f1::Discont:= FALSE: plot::Function2d::getPlotdata(f1)

45

-- -- -- 1 --
| | Mode = Curve, | x, -- |, x = [-5.0, 5.0],
| | | 2 |
-- -- -- x --

-- --
Grid = [100], Color = [Flat, [0.0, 0.0, 1.0]] | |

| |
-- --

Computation problems during the evaluation of the plot is the consequence
here:

>> plot(f1)

The function primitive f2 contains the following options:

>> f2::options

table(
Style = [Impulses],
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [20],
Color = [Flat, [1.0, 0.0, 0.0]]

)

As you see, the option Style was added to this table, and the default value of
the option Grid was replaced by the new value [20] . Use delete to remove
plot options set for a curve primitive:

>> delete f2::options[Style]: f2::options

table(
RealValuesOnly = TRUE,
Discont = TRUE,
Grid = [20],
Color = [Flat, [1.0, 0.0, 0.0]]

)

You might wonder why the options RealValuesOnly and Discont are
not contained in the plot structure returned by the method "getPlotdata" .
They are special options for objects of the domain plot::Function2d , used
to determine the plot data of such an object. They are not accepted as valid
options for curves plotted directly with plot2d .

Example 5. This example illustrates how to read and write attributes of func-
tion primitives (see the table of available attributes in “Details” above).

46

In the last example, we already used the attribute options , which stores
plot options defined individually for a function primitive to override the cor-
responding default values set by MuPAD.

The attribute yrange holds the “y-range” of the function graph. Its value
is either a range of the form y = ymin..ymax , or the identifier Automatic .

For example, if function is an object of plot::Function2d such as:

>> f := plot::Function2d(ln(x), x = 0..10)

plot::Function2d(ln(x), x = 0..10)

then f::yrange returns the default value of this attribute:

>> f::yrange

Automatic

We plot this curve:

>> plot(f)

Because the attribute yrange has the “write” property, you can change the
value of this attribute as follows:

>> f::yrange := 0..1: plot(f)

Changes:

A plot::Function2d is a new function.

plot::Function3d – graphical primitive for a three-dimensional
graph of a function

plot::Function3d(f, x = a..b, y = c..d) represents a plot of the
function f (x, y) with (x, y) ∈ [a, b]× [c, d].

Creating Elements:

A plot::Function3d(f, x = a..b, y = c..d <, option1, op-
tion2, ... >)

Parameters:
f — arithmetical expression in x and y
x, y — identifiers
a, b, c, d — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

47

Related Domains: plot::Curve2d , plot::Function2d ,
plot::Surface3d , RGB

Related Functions: plot , plot3d , plotfunc3d , plot::copy

Details:

A Objects generated by plot::Function3d represent graphical primi-
tives for two-dimensional graphs of functions that can be displayed via
plot(...) , or used with other graphical primitives of the plot library.

A Note that plotfunc3d is also used to plot three-dimensional graphs of
functions. But in contrast to plot::Function3d , it does not return the
graph in form of a graphical object but displays the graph immediatly
after executing the command.

The main advantage of using plot::Function3d is, that you get the
representation of the graph as an object. It can be manipulated after-
wards or combined easily with other graphical primitives, such as poly-
gons, curves or surfaces, to a common graphical scene.

See example 2 below.

A An object of plot::Function3d has type "graphprim" , i.e., if o is
such an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Height]

Grid [integer] [20,20]
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Smoothness [integer] [0]
Style [Points] [ColorPatches ,

[WireFrame , Mesh] AndMesh]
[WireFrame , ULine]
[WireFrame , VLine]
[HiddenLine , Mesh]
[HiddenLine , ULine]
[HiddenLine , VLine]

48

OptionName admissible values default value
[ColorPatches , Only]
[ColorPatches , AndMesh]
[ColorPatches , AndU-
Line]
[ColorPatches , AndV-
Line]
[Transparent , Only]
[Transparent , AndMesh]
[Transparent , AndULine]
[Transparent , AndVLine]

Title strings ""
TitlePosition [x, y]

See plot3d for further details on each option.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the function plot ,
or use plot::Scene to create an object representing a graphical
scene. Cf. example 1.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value . See example 4.

The following attributes are available for a function primitive:

49

attribute meaning properties
options A table of plot options of the

function primitive. Note that
if you change the value of this
attribute, the entries of the as-
signed table are not checked to
be valid plot options for func-
tion primitives. Invalid entries
lead to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

plotdata List of the plot data of the func-
tion primitive in a plot3d con-
forming syntax (see the method
"getPlotdata" below). Note
that the value of this attribute
should only be used if the at-
tribute refreshPlotdata has
the value FALSE(see below).

read

range1 The first variable of the func-
tion and its range in the form
ident1 = a..b . The initial
value is the parameter x =
a..b .

read/write

range2 The second variable of the func-
tion and its range in the form
ident2 = c..d . The initial
value is the parameter y =
c..d .

read/write

50

attribute meaning properties
refreshPlotdata A boolean value which sig-

nals whether the plot data of
the function primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the function prim-
itive is stored in the attribute
plotdata . The initial value
is TRUE. See the help page of
plot::Curve2d for an exam-
ple.

read/write

term The term of the function. The
initial value is the parameter f .

read/write

Operands: An object of plot::Function3d consists of three operands. The
first operand is the term f of the graph. The second operand is the first variable
of the function and its range in the form x = a..b , and the third one is the
second variable of f and its range in the form y = c..d .

Important Operations:

A Operands of a function primitive can be accessed either using the sys-
tem function op , the index operator [] , or using the attributes described
above. For example, if function is such an object, then the calls op(function,1) ,
function[1] and function::term return the expression f .

Via function[1] := g or function::term := g , the term of a func-
tion plot can be changed to the value g.

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if function
is such an object, then function::Color := RGB::Red changes the
color of the function primitive function to red.

Result of Evaluation: Evaluating an object of the domain type plot::Function3d
returns itself.

Function Call: Calling an object of plot::Function3d as a function yields
the object itself, regardless of the arguments. The arguments are not evaluated.

51

Entries:

defaultOptions is a table of plot options for function primitives and their
default values. Each entry has the form OptionName = default_value .

When an object of the domain plot::Function3d is created,
then a copy of this table is stored under the attribute options (see
the table of attributes above), where those options are added and
replaced, respectively, which are given by the (optional) parame-
ters option1, option2, ... of the creating call (see “Creating
Elements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot3d which is used to plot the object. See the table of plot op-
tions above, which gives a summary of the available plot options
for function primitives and their default values. See example 3.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of three-dimensional
graphs of functions.

Access Methods

Method _index : indexed access to the operands of a function primitive

_index(dom function, positive integer i)

A Returns the i th operand of function . See “Operands” above for
a description of the operands of function . If i is greater than 3,
then FAIL is returned.
A This method overloads the system function _index , i.e., one may

use it in the form function[i] , or in functional notation _in-
dex(function, i) .

Method dimension : dimension of a function primitive

dimension(dom function)

A Returns the integer 3.

52

Method getPlotdata : the plot data of a function primitive

getPlotdata(dom function)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of function in a plot3d conforming syntax, i.e., it has the
form [Mode = Surface, [...], ...] .
For example, with s := plot::Function3d::getPlotdata(function)
the call plot3d(s[1]) gives a plot of function .

A Only those plot options will be included in the plot data of the func-
tion, that are contained in the table stored under the attribute op-
tions (see the table of attributes above). For any other plot option
not contained in this table, the corresponding default value set by
the function plot3d for surfaces is used when plotting the object.

A The result is stored as the value of the attribute plotdata of func-
tion .

A A call of this method sets the value of the attribute refreshPlot-
data of function to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a function primitive

nops(dom function)

A Returns the integer 3.

A This method overloads the system function nops , i.e., one may use
it in the form nops(function) .

Method op : extract operands of a function primitive

op(dom function, positive integer i)

A Returns the i th operand of function . See “Operands” above for
a description of the operands of function . If i is greater than 3,
then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(function, i) .

Method set_index : set operands of a function primitive

set_index(dom function, positive integer i, any val)

A Replaces the i th operand of function by the value val . See “Operands”
above for a description of the operands of function .

53

A If i is greater than 3, or if val is not an admissible value for the i th
operand, then a warning message is issued. In this case the call of
this method has no effect on the object function .
A A call of this method sets the value of the attribute refreshPlot-

data of function to TRUE.

Method slot : read and write attributes and plot options

slot(dom function, string slotname)

A Reads the value of the slot slotname of function . slotname
may either be the name of an attribute or the name of a plot option.
See the tables of available plot options and attributes above.
A If slotname is the name of a plot option, but the option is not con-

tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.
A This method overloads the system function slot , i.e., one may

use it in the form function::slotname_id (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(function, slotname) .

slot(dom function, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .
A If there is no attribute or option with the name slotname , or if val

is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.
A This method overloads the system function slot , i.e., one may use

it in the form function::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(function, slotname,
val) .
A The value of the attribute refreshPlotdata of function is set

to TRUE.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for function primitives (see the table of available plot options above),
and value is an admissible value for this option.

54

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a function primitive

copy(dom function)

A Returns a copy of the object function .

A This method is called from the function plot::copy . See its help
page for details.

Method modify : modify a copy of a function plot

modify(dom function, equation(s) Name1 = value1, ...)

A Creates a copy of the object function and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot
options of the domain plot::Function3d . Otherwise a warning
message is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of function to TRUE.

A This method is called from the function plot::modify .

Method print : print a function primitive

print(dom function)

A This method returns an unevaluated expression of the form plot::Function3d(f,
x = a..b, y = c..d) . It is used to print objects of plot::Function3d
to the screen.

A See the system function print for details.

55

Example 1. The following call returns an object representing the graph of the
function (x, y) 7→ sin(xy) for x ∈ [0,2π] and y ∈ [−π, π]:

>> f1 := plot::Function3d(sin(x*y), x = 0..2*PI, y = -PI..PI)

plot::Function3d(sin(x y), x = 0..2 PI, y = -PI..PI)

To plot this function in a graphical scene, call:

>> plot(f1)

Plot options of the surface can be given as additional parameters in the
creating call, such as plotting the graph in blue color:

>> f2 := plot::Function3d(sin(x*y), x = 0..2*PI, y = -PI..PI,
Color = [Flat, RGB::Blue])

plot::Function3d(sin(x y), x = 0..2 PI, y = -PI..PI)

>> plot(f2)

To change default values of some scene options, pass the scene options to
the call of plot as additional arguments. For example, to change the style of
the axes:

>> plot(f1, Axes = Corner)

See the help page of plot::Scene for available scene options.

Example 2. We want to display a graph of the function (x, y) 7→ sin(x) and the
curve defined by t 7→ (t, sin(t), sin(t)). We start by creating the two different
graphical primitives as follows:

>> f := plot::Function3d(sin(x), x = -PI..PI, y = -5..5);
c := plot::Curve3d(

[t, sin(t), sin(t)], t = -PI..PI,
Color = RGB::Blue, LineWidth = 20

)

plot::Function3d(sin(x), x = -PI..PI, y = -5..5)

plot::Curve3d([t, sin(t), sin(t)], t = -PI..PI)

To plot the scene of these objects, pass them as parameters to the function
plot :

>> plot(f, c)

56

Example 3. If a function primitive is created, values of some plot options of
the created object can be read, or replaced by new values.

To illustrate this, we create the following function:

>> f := plot::Function3d(sin(x)*cos(y), x = 0..2*PI, y = 0..2*PI)

plot::Function3d(cos(y) sin(x), x = 0..2 PI, y = 0..2 PI)

and plot the graph:

>> plot(f)

The graph is drawn in color patches, together with the parameter lines of
the two parameters of the surface. To change the style of the graph, use the
option Style . For example, to display the graph as an opaque object together
with the parameter lines, call:

>> f::Style:= [HiddenLine, Mesh]: plot(f)

and plot the graph:

>> plot(f)

The options that are set for an object are stored under the attribute op-
tions . You can read the value of this attribute as follows:

>> f::options

table(
Style = [HiddenLine, Mesh],
Grid = [20, 20]

)

If an option is not contained in this table, then its value is set either by plot::Scene ,
if the option also exists as a scene option, or internally set by the function
plot3d when plotting the surface.

For example, the option Color is not contained in this table. If you try to
read its value, you get the following result:

>> f::Color

FAIL

The default value of this option is the list [Height] , set by the function
plot3d (see the table of options above). The default colors are taken from
the preferences of the MuPAD’s graphic tool VCam.

To override the default value of this option for the object f , enter:

>> f::Color:= [Flat, RGB::Red]: plot(f)

If we now take a look at the table stored under the attribute options , we
get:

57

>> f::options

table(
Color = [Flat, [1.0, 0.0, 0.0]],
Style = [HiddenLine, Mesh],
Grid = [20, 20]

)

To delete some plot options set for a graphical primitive, call:

>> delete f::options[Style]: f::options

table(
Color = [Flat, [1.0, 0.0, 0.0]],
Grid = [20, 20]

)

If we now plot the object f , the default value of the option Style is used,
which is the list [ColorPatches, AndMesh] :

>> plot(f)

Example 4. This example illustrates how to read and write attributes of func-
tion primitives (see the table of available attributes in “Details” above).

In the previous example we already introduced the attribute options . The
attributes range1 and range2 , for example, hold the ranges for the variables
of the function graph. We give an example:

>> f := plot::Function3d(x^2 + y^2, x = -5..5,y = -5..5)

2 2
plot::Function3d(x + y , x = -5..5, y = -5..5)

We can read the ranges of the variables:

>> f::range1, f::range2

x = -5..5, y = -5..5

Because these attributes have the “write” property, we can also change their
values as follows:

>> f::range1:= x = -10..10: f::range2:= y = -10..10:
plot(f)

58

Changes:

A plot::Function3d is a new function.

plot::Group – a group of graphical primitives

plot::Group(object1, object2, ...) groups the graphical primitives
object1, object2, ... into a single graphical primitives.

Creating Elements:

A plot::Group(object1 <, object2, ... ><, option1, option2,
... >)

Parameters:
object1, object2 — either two- or three-dimensional

graphical primitives, i.e., objects of
type "graphprim" of the same
dimension

option1, option2, ... — plot option(s) of the form
OptionName = value

Related Domains: plot::Scene , RGB

Related Functions: plot , plot2d , plot3d , plot::copy

Details:

A Objects generated by plot::Group represent groups of graphical prim-
itives that can be displayed via the call plot(...) , or used with other
graphical primitives of the plot library.

A The given graphical primitives must either be two-dimensional or three-
dimensional, otherwise an error message is issued.

A Note that the call plot::Group(object1) returns an object of the
domain plot::Group , i.e., a group can consists of only one graphical
primitive.

A An object of plot::Group has type "graphprim" , i.e., if o is such an
object, then the result of type(o) is the string "graphprim" .

A The plot options option1, option2, ... must be valid plot options
for two- and three-dimensional graphical primitives, respectively. Avail-
able options and their default values can be found on the corresponding
help pages for the objects object1, object2,

59

The plot options option1, option2, ... are passed to each
graphical primitive object_i . This means, a plot option should
be a valid plot option for every given graphical primitive ob-
ject_i ! If an invalid option is given for some primitives of the
group, then a warning message is issued, and the setting of this
option has no effect on the corresponding graphical primitives.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a group of graphical objects:

attribute values properties
dimension The dimension of the group,

that is the dimension of the
graphical primitives object1,
object2, ... where the
dimension of object1, ob-
ject2, ... must be equal.
This attribute exists in order to
have an efficient access to the
dimension of a group primi-
tive. Because not every graph-
ical primitive has this attribute,
one should call the method
"dimension" (see below) in-
stead in order to determine the
dimension of graphical primi-
tives.

read

objects A list of the graphical primi-
tives of the group. A graphical
primitive is an object of type
"graphprim" . The initial
value is the list [object1,
object2, ...] of the param-
eters object1, object2,
...

read/write

60

attribute values properties
plotdata List of the plot data of the

group primitive in a plot2d
and plot3d conforming syn-
tax, respectively. The value of
this attribute can be read if the
method "getPlotdata" (see
below) was called before. The
initial value is the empty list [] .

read

See the examples of the help page of plot::Scene about working with
attributes.

Operands: The operands of an object of plot::Group are the parameters
object1, object2, ... (in that order).

Important Operations:

A Operands of a group primitive can be accessed either using the system
function op , the index operator [] , or using the attribute objects de-
scribed above. For example, if group is such an object, then the calls
op(group,1) , group[1] and group::objects[1] return the first
graphical object object1 of the group.

Via group[i] := g or group::objects[i] := g , the ith object of
the group is replaced by the graphical primitive g (which must be an
object of type "graphprim").

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of the grouped graphi-
cal primitives. For example, if group is such an object, then group::Color
:= RGB::Red changes the color of each graphical primitive of group to
red.

Result of Evaluation: Evaluating an object of the domain type plot::Group
returns itself.

Function Call: Calling an object of plot::Group as a function yields the
object itself, regardless of the arguments. The arguments are not evaluated.

Access Methods

Method _index : indexed access to the operands of a group primitive

_index(dom group, positive integer i)

61

A Returns the i th graphical primitive of group . If i is greater than
the number of graphical primitive of group , then FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form function[i] , or in functional notation _in-
dex(group, i) .

Method dimension : dimension of a group primitive

dimension(dom group)

A Returns the value of the attribute dimension , i.e., the integer 2 or
3 (see the table of attributes above).

Method getPlotdata : create the plot data of a group primitive

getPlotdata(dom group)

A Returns a list of inner lists, where each inner list is a plot description
of a graphical primitive of group in a plot2d and plot3d con-
forming syntax, respectively, i.e., an inner list has the form [Mode
= ..., ...] .
For example, with s := plot::Group::getPlotdata(group)
the call plot2d(op(s)) and plot3d(op(s)) , respectively, gives
a plot of group .

A The result is stored as the value of the attribute plotdata of group .

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a group primitive

nops(dom group)

A Returns the number of graphical primitives of group .

A This method overloads the system function nops , i.e., one may use
it in the form nops(group) .

Method op : extract operands of a group primitive

op(dom group, positive integer i)

A Returns the i th graphical primitive of group . If i is greater than
the number of graphical primitives of group , then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(group, i) .

62

Method set_index : set operands of a group primitive

set_index(dom group, positive integer i, graphprim ob-
ject)

A Replaces the i th graphical primitive of group by the graphical prim-
itive object .
A If i is greater than the number of graphical primitives of group , or

if object is not of type "graphprim" , then a warning message is
issued. In this case the call of this method has no effect on the object
group .

Method slot : read attributes, and write attributes and plot options

slot(dom group, string slotname)

A Reads the value of the slot slotname of group . slotname must
be the name of an attribute of a group primitive (see the table of
attributes above), otherwise an error message is issued.
A This method overloads the system function slot , i.e., one may use

it in the form group::slotname_id (here, slotname_id must
be the identifier corresponding to the string slotname), or in func-
tional notation slot(group, slotname) .

slot(dom group, string slotname, any val)

A If slotname is an attribute of a group primitive, then this method
changes the value of this attribute to val (see the table above for
the attributes of a group primitive).
Otherwise the slot slotname of each primitive of the group is changed
to the value val . If slotname is an invalid attribute or plot option
of some primitives of the group, then a warning message is issued
that the change is ignored for the corresponding primitive.
A This method overloads the system function slot , i.e., one may

use it in the form group::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(group, slotname, val) .

Technical Methods

Method copy : create a copy of a group primitive

copy(dom group)

A Returns a copy of the object group .
A This method is called from the function plot::copy . See its help

page for details.

63

Method expose : expose the definition of a group

expose(dom group)

A This method returns a sequence of the graphical primitives of group .

A This method overloads the system function expose , i.e., one may
use it in the form expose(group) .

Method modify : modify a copy of a group primitive

modify(dom group, equation(s) Name1 = value1, ...)

A Creates a copy of the object group and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes of a group
primitive or plot options of graphical primitives of group . Other-
wise a warning message is issued, and the slot remains unchanged.
Also, if one of the values value1, ... is not an admissible value
for the corresponding attribute or plot option, respectively, the change
of the slot is ignored.
See the tables of available attributes above.

A This method is called from the function plot::modify .

Method print : printing a group primitive

print(dom group)

A This method returns an unevaluated expression of the form plot::Group() .
It is used to print objects of plot::Group to the screen.

A Call expose(group) to expose the graphical primitives of the group.

A See the system function print for details.

Example 1. We create a group consisting of a graph of function and two ver-
tical dashed lines from some points on the x-axis to the corresponding points
on the graph:

>> g := plot::Group(
plot::Function2d(4 - x^2, x = -2..2),
plot::line([-1, 0], [-1, 3], LineStyle = DashedLines),
plot::line([1, 0], [1, 3], LineStyle = DashedLines)

)

plot::Group()

To plot the object in a graphical scene, enter:

64

>> plot(g)

Plot options can either be specified as additional arguments to the call
plot::Group(...) , or set via the slot operator :: as follows:

>> g::Color := RGB::Blue: plot(g)

If a plot option is invalid for some primitives of the group, then a warning
message is issued. For example, the plot option Grid only exists for graphs
of functions but not for polygons (the two lines here), and thus specifying this
option only has an effect on the first primitive of the group g:

>> g::Grid := [200]:

Warning: unknown option name ’Grid’; assignment ignored [plot:\
:Polygon::slot]
Warning: unknown option name ’Grid’; assignment ignored [plot:\
:Polygon::slot]

Example 2. This example illustrates how primitives of the group can be ex-
tracted and manipulated seperately. We take the group of the previous exam-
ple:

>> g := plot::Group(
plot::Function2d(4 - x^2, x = -2..2),
plot::line([-1, 0], [-1, 3], LineStyle = DashedLines),
plot::line([1, 0], [1, 3], LineStyle = DashedLines)

)

plot::Group()

With expose one can see the definition of the group g and the definition of its
graphical primitives:

>> expose(g)

2
plot::Group(plot::Function2d(- x + 4, x = -2..2),

plot::Polygon(plot::Point(-1, 0), plot::Point(-1, 3)),

plot::Polygon(plot::Point(1, 0), plot::Point(1, 3)))

In order to change the color of the graph, which is the first graphical primitive
of the group into blue, we enter:

>> (g[1])::Color := RGB::Blue: plot(g)

65

Changes:

A plot::Group is a new function.

plot::Lsys – graphical primitive for a Lindenmayer system

plot::Lsys(deg, start, rule, ...) represents a Lindenmayer sys-
tem with turning degree deg , starting word start and rule set rule... .

Creating Elements:

A plot::Lsys(deg, start, rule, ...)

Parameters:
deg — the degree by which the turtle turns left or right, an

arithmetical expression
start — the starting word of the system, a string
rule — a rule of the system, an equation

Related Domains: plot::Scene , plot::Turtle

Related Functions: plot

Details:

A Objects generated by plot::Lsys represent Lindenmayer systems. Lin-
denmayer systems are a means to describe the growth of plants and may
be used to create beautiful recursive drawings.

A A Lindenmayer system (A,R, s) is quite similar to a usual context-free
grammar. One has a finite set A of characters (the alphabet), a map R :
A→ A? and a non-empty starting word s, an element of A?. (A? are the
words with characters from A.) For each a ∈ A the pair (a,R(a)) is called
a rule and is written as a→ b1b2 . . . bn where R(a) = b1b2 . . . bn ∈ A?. a is
the left hand side and b1b2 . . . bn the right hand side of the rule.

A Lindenmayer system describes a language L, a subset of A?. The lan-
guage is defined as follows:

• s is an element of L.
• Let w be an element of L, let w̃ be the word where each character a

of w has been replaced by R(a). Then w̃ is in L.

The language L can be created as follows: From the starting word s = s0
the word s1 is created (by replacing all characters by right hand sides of
the corresponding rules). From s1 the word s2 is created, from that s3 and
so on. Call si the i-th generation of the starting word s.

66

A The interesting part of the story is the interpretation of the words si of
the language L. Here a creature called turtle enters the picture, it helps to
visualize the words of the language. A turtle is a drawing device which
understands few simple commands. Given a word of the language L
each character of the word is interpreted as a command for the turtle.
The word turns into a picture with the help of the turtle.

A turtle has a position in the plane, a direction and a colour. It under-
stands only few commands: Move forward and draw a line, move with-
out drawing, turn left, turn right, change your colour. Further a turtle
may remember its current state (position, direction and colour) by push-
ing it onto a stack and change its state to a former one by popping it off
from the stack. For each character of the alphabet A one of these turtle
commands may be defined. A character may also have no command,
causing the turtle to do nothing.

A plot::Lsys allows the definition of Lindenmayer systems and the plot-
ting of words defined by the system. The domain plot::Turtle cre-
ates turtles, it may be useful for other purposes than plotting words of
Lindenmayer systems.

A Regarding the definition of a Lindenmayer system:

• The starting word start is interpreted as the starting word of the
Lindenmayer system, each character in the string represents a char-
acter of the system.

• Each rule must be of the form lhs = rhs where the left hand side
lhs must be a string of lenght 1. The right hand side rhs must be
a string, a turtle command or a colour value.
A left hand side is interpreted as single character of the Linden-
mayer system. A right hand side which is a string is interpreted as
the word which replaces the left hand character. Each character in
the string represents a character of the system.
A right hand side which is a turtle command or a colour value
desribe how a word generated by the Lindenmayer system is to
be interpreted by the turtle. A turtle command or a colour value
changes the actual state of the turtle and moves it around.
A turtle command may be one of the identifiers Move, Line , Left ,
Right , Push or Pop. These commands cause the turtle to move
without drawing, to draw a line, to turn left or right and to push or
pop its current state. A colour value must be a list of three numbers
[r,g,b] defining new red-, green- and blue colour values of the
turtle. The colour values must be in the range between 0 and 1 like
the colour values in the other plot commands.

The following default rules for the turtle commands exist:

• "F" = Line

67

• "f" = Move

• "+" = Left

• "-" = Right

• "[" = Push

• "]" = Pop

These rules are used if no other rules for the turtle commands are de-
fined.

A In order to do a turtle plot defined by a Lindenmayer system one further
needs to specify which generation of the starting word of the system is
to be plotted. The default generation is the fifth one. One may use the
systems "generations" attribute to change the generation, see below.

A A certain generation of a Lindenmayer system l can be displayed via
the call plot(l) , or used with other graphical primitives of the plot
library.

A An object of plot::Lsys has type "graphprim" , i.e., if o is such an
object, then the result of type(o) is the string "graphprim" .

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a Lindenmayer system:

attribute meaning properties
generations The generation of the system

which is to be plotted, a positive
integer.

read/write

See the help page of plot::Curve2d for examples for working with
attributes of graphical primitives.

Result of Evaluation: Evaluating an object of the domain type plot::Lsys
returns itself.

Access Methods

Method getPlotdata : create the plot data of a Lindenmayer system

getPlotdata(dom l)

68

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of l in a plot2d and plot3d conforming syntax, respectively,
i.e., it has the form [Mode = List, [polygon(...)], ...] .

A The plot data returned are the plot data of the turtle defined by the
actual generation of the system.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method slot : read and write attributes and plot options

slot(dom l, string slotname)

A Reads the value of the slot slotname of l . slotname may be
the name of an attribute. See the tables of available plot attributes
above.

A If slotname is an invalid attribute, then an error message is issued.

A This method overloads the system function slot , i.e., one may use
it in the form l::slotname_id (here, slotname_id must be the
identifier corresponding to the string slotname), or in functional
notation slot(l, slotname) .

slot(dom l, string slotname, any val)

A Changes the value of the attribute with the name slotname to the
value val .

A If there is no attribute with the name slotname , or if val is not an
admissible value for slotname , then a warning message is issued.
In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form l::slotname_id := val (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(l, slotname, val) .

Technical Methods

Method print : print a Lindenmayer system

print(dom l)

A This method returns an unevaluated expression of the form plot::Lsys(deg,
start, rule...) . It is used to print objects of plot::Lsys to
the screen.

A See the system function print for details.

69

Example 1. We simply list some examples without any interpretation:

>> L := plot::Lsys(90, "F-F-F-F", "F"="F-F+F+FF-F-F+F"):
L::generations := 4:
plot(L, Axes = None)

>> L := plot::Lsys(90, "F-F-F-F", "F"="FF-F--F-F"):
L::generations := 4:
plot(L, Axes = None)

>> L := plot::Lsys(90, "F-F-F-F", "F"="FF-F+F-F-FF"):
L::generations := 4:
plot(L, Axes = None)

>> L := plot::Lsys(90, "L", "L"="L+R+", "R"="-L-R", "L"=Line, "R"=Line):
L::generations := 10:
plot(L, Axes = None)

>> L := plot::Lsys(60, "R", "L"="R+L+R", "R"="L-R-L", "L"=Line, "R"=Line):
L::generations := 7:
plot(L, Axes = None)

>> L := plot::Lsys(20, "L", "L"="R[+L]R[-L]+L", "R"="RR", "L"=Line, "R"=Line):
L::generations := 6:
plot(L, Axes = None)

>> L := plot::Lsys(20, "L", "L"="BR[+HL]BR[-GL]+HL", "R"="RR",
"L"=Line, "R"=Line,
"B"=RGB::Brown, "H"=RGB::ForestGreen,
"G"=RGB::SpringGreen):

L::generations := 6:
plot(L, Axes = None)

>> L := plot::Lsys(60, "F++F++F", "F"="F-F++F-F"):
L::generations := 5:
plot(L, Axes = None)

Changes:

A plot::Lsys used to be Lsys .

A Adapted to comply with the plot library.

plot::Point – graphical primitive for a point

plot::Point(x, y) represents a plot of a two-dimensional point with the
coordinates (x; y).

70

plot::Point(x, y, z) represents a plot of a three-dimensional point with
the coordinates (x; y; z).

Creating Elements:

A plot::Point(x, y <, option1, option2, ... >)

A plot::Point(x, y, z <, option1, option2, ... >)

Parameters:
x, y, z — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

Related Domains: DOM_POINT, plot::Pointlist , plot::Scene , RGB

Related Functions: plot , plot2d , plot3d , plot::copy , point

Details:

A Objects generated by plot::Point represent graphical primitives for
two- or three-dimensional points that can be displayed via the call plot(...) ,
or used with other graphical primitives of the plot library.

A Note that plot::Point , in difference to the standard graphical primi-
tive point , allows arbitrary arithmetical expressions. These expressions
must evaluate to numbers at the time where you plot the points.

A An object of plot::Point has type "graphprim" , i.e., if o is such an
object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Height]

LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Title strings ""
TitlePosition [x, y]

71

See plot2d and plot3d , respectively, for further details on each option.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the call of plot , or use
plot::Scene to create an object representing a graphical scene.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a point primitive:

attribute meaning properties
coords The list of the coordinates of the

point (list of two or three arith-
metical expressions). The initial
value is the list [x, y] and x,
y, z] , respectively.

read/write

options A table of plot options of the
point primitive. Note that if
you change the value of this at-
tribute, the entries of the as-
signed table are not checked to
be valid plot options for point
primitives. Invalid entries lead
to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

plotdata List of the plot data of the point
primitive in a plot2d and
plot3d conforming syntax,
respectively (see the method
"getPlotdata" below). Note
that the value of this attribute
should only be used if the at-
tribute refreshPlotdata has
the value FALSE(see below).

read

72

attribute meaning properties
refreshPlotdata A boolean value which sig-

nals whether the plot data
of the point primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the point primitive
is stored in the attribute plot-
data . The initial value is TRUE.

read/write

See the help page of plot::Curve2d for examples for working with
attributes of graphical primitives.

Operands: An object of plot::Point has either two or three operands, namely
the coordinates x , y and z , respectively.

Important Operations:

A Operands of a point primitive can be accessed either using the system
function op , the index operator [] , or using the attribute coords de-
scribed above. For example, if point is such an object, then the calls
op(point,1) , point[1] and point::coords[1] return the first co-
ordinate of point .

Via point[1] := x_new or point::coords[1] := x_new , the first
coordinate of point is replaced by x_new .

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if point is such
an object, then point::Color := RGB::Red changes the color of the
point to red.

Result of Evaluation: Evaluating an object of the domain type plot::Point
returns itself.

Function Call: Calling an object of plot::Point as a function yields the
object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions is a table of plot options for point primitives and their
default values. Each entry has the form OptionName = default_value .

73

When an object of the domain plot::Point is created, then a
copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parameters
option1, option2, ... of the creating call (see “Creating El-
ements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot2d and plot3d , respectively, which are used to plot the ob-
ject. See the table of plot options above, which gives a summary
of the available plot options for point primitives and their default
values.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of points.

Access Methods

Method _index : indexed access to the operands of a point primitive

_index(dom point, positive integer i)

A Returns the i th coordinate of point . If i is greater than the number
of coordinates of point , then FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form point[i] , or in functional notation _index(point,
i) .

Method dimension : dimension of a point primitive

dimension(dom point)

A Returns the number of coordinates of point .

Method getPlotdata : create the plot data of a point primitive

getPlotdata(dom point)

74

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of point in a plot2d and plot3d conforming syntax, re-
spectively, i.e., it has the form [Mode = List, [point(...)],
...] .
For example, with s := plot::Point::getPlotdata(point)
the call plot2d(s[1]) and plot3d(s[1]) , respectively, gives a
plot of point .

A Only those plot options will be included in the plot data of the point,
that are contained in the table stored under the attribute options
(see the table of attributes above). For any other plot option not
contained in this table, the corresponding default value set by the
function plot2d and plot3d , respectively, for lists of primitives is
used when plotting the object.

A The result is stored as the value of the attribute plotdata of point .

A A call of this method sets the value of the attribute refreshPlot-
data of point to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a point primitive

nops(dom point)

A Returns the number of coordinates of point , i.e., the integer 2 or 3.

A This method overloads the system function nops , i.e., onemay use
it in the form nops(point) .

Method op : extract operands of a point primitive

op(dom point, positive integer i)

A Returns the i th coordinate of point . If i is greater than the number
of coordinates of point , then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(point, i) .

Method set_index : set operands of a point primitive

set_index(dom point, positive integer i, arithm. expr.
x)

A Replaces the i th coordinate of point to the value x .

A If i is greater than the number of coordinates of point , or if x is
not an arithmetical expression, then a warning message is issued.
In this case the call of this method has no effect on the object point .

75

A A call of this method sets the value of the attribute refreshPlot-
data of point to TRUE.

Method slot : read and write attributes and plot options

slot(dom point, string slotname)

A Reads the value of the slot slotname of point . slotname may
either be the name of an attribute or the name of a plot option. See
the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may use
it in the form point::slotname_id (here, slotname_id must
be the identifier corresponding to the string slotname), or in func-
tional notation slot(point, slotname) .

slot(dom point, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form point::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(point, slotname, val) .

A The value of the attribute refreshPlotdata of point is set to
TRUE.

Conversion Methods

Method convert : conversion of objects into a point primitive

convert(any p)

A This method tries to convert p into an object of the domain plot::Point .
If this is not possible, then FAIL is returned.

A Currently this method handles objects of the following two domain
types:

76

• p is an object of the domain DOM_POINT. If p does not have a
color specification, then the default color for objects of plot::Point
is used (see “Details” above).
• p is a list of two or three arithmetical expressions.

Method convert_to : conversion of a point primitive

convert_to(dom point, domain T)

A This method tries to convert point into an object of the domain T.
If this is not possible, then FAIL is returned.
A Currently this method handles the following domains:
• T is the domain DOM_LIST. Then the result is a list of the coor-

dinates of point .
• T is the domain DOM_POINT. Then the result is a system point

primitive, i.e., an object of the domain type DOM_POINT.
Note that plot options can not be stored in such an object, ex-
cept of the option Color . However, the color specification is
used only if it is contained in the attribute options of the
point primitive point (see the table of attributes above). Other-
wise the default color specification for system point primitives
is used (see the help page of DOM_POINT).

Method expr : conversion into a system point primitive

expr(dom point)

A This method converts point into an object of the domain type DOM_POINT.
See the method "convert_to" above for details.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for point primitives (see the table of available plot options above),
and value is an admissible value for this option.
A If both is correct, then the list [TRUE, OptionName, newValue]

is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .
A Otherwise, the list [FALSE, error_msg] is returned. The string

error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

77

Method copy : create a copy of a point primitive

copy(dom point)

A Returns a copy of the object point .

A This method is called from the function plot::copy . See its help
page for details.

Method modify : modify a copy of a point primitive

modify(dom point, equation(s) Name1 = value1, ...)

A Creates a copy of the object point and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot op-
tions of the domain plot::Point . Otherwise a warning message
is issued, and the slot remains unchanged. Also, if one of the values
value1, ... is not an admissible value for the corresponding at-
tribute or plot option, respectively, the change of the slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of point to TRUE.

A This method is called from the function plot::modify .

Method print : print a point primitive

print(dom point)

A This method returns an unevaluated expression of the form plot::Point([x,
y] and plot::Point([x, y, z] , respectively. It is used to print
objects of plot::Point to the screen.

A See the system function print for details.

Example 1. We create the points (1; 2) and (3;−1), setting the color of the sec-
ond point to green and its size to 50:

>> p1 := plot::Point([1, 2]);
p2 := plot::Point([3, 1], Color = RGB::Blue, PointWidth = 50)

plot::Point(1, 2)

plot::Point(3, 1)

To plot these two points in a graphical scene, enter:

>> plot(p1, p2)

78

Scene options may be given to the call of plot , such as changing the style of
the axes and drawing grid lines in the background of the plot:

>> plot(p1, p2, Axes = Box, GridLines = Automatic)

Example 2. Objects of the domain plot::Point , and objects of the basic
domain DOM_POINTare graphical primitives for two- or three dimensional
points. The main difference between objects of these two domains is, that ob-
jects of plot::Point can be used together with other graphical primitives of
the library plot such as function graphs, surface plots, point-list plots, and
more.

To ease the use of such different objects, you can easily convert objects of
one domain into the other. For example, an object of the domain plot::Point
such as:

>> p := plot::Point([1, 2])

plot::Point(1, 2)

can be converted into the domain DOM_POINTas follows:

>> plot::Point::convert_to(p, DOM_POINT)

point(1.0, 2.0)

Note that because objects of the domain DOM_POINTonly know the plot option
Color , any other plot option set for the object p is lost by this conversion.

With the method "convert" , objects can be converted into the domain
plot::Point . For example, we convert the list [1, 2, 3] into the point
(1; 2; 3) as an object of the domain plot::Point :

>> l := [1, 2, 3]: p:= plot::Point::convert(l)

plot::Point(1, 2, 3)

One may now override default values of some plot options for the object p as
follows:

>> p::Color := RGB::Blue: p::PointWidth := 50:
plot(p, Axes = None)

Changes:

A plot::Point is a new function.

79

plot::Pointlist – graphical primitive for a list of points

plot::Pointlist(p1, p2, ...) represents a plot of either two- or three-
dimensional points. Several drawing options exist such as drawing a line from
point to point, or drawing a horizontal or vertical line from the axes to each
point.

Creating Elements:

A plot::Pointlist(p1, p2, ... <, option1, option2, ... >)

Parameters:
p1, p2 — plot points, i.e., objects that can be

converted into the domain
plot::Point ; the points must have
the same dimension

option1, option2, ... — plot option(s) of the form
OptionName = value

Related Domains: plot::Point , plot::Scene

Related Functions: plot , plot2d , plot3d , plot::copy

Details:

A Objects generated by plot::Pointlist represent graphical primitives
for lists of two- or three-dimensional points that can be displayed via
plot , or used with other graphical primitives of the plot library.

A Points p1, p2, ... of the represented list which are not given as ob-
jects of the domain plot::Point , are converted into objects of this do-
main. See the help page of this domain for information about the default
plot options used in this case.

A Use the option DrawMode to connect every two points of the list with a
line, or to draw a line from the x-axis and y-axis, respectively, to each
point of the list.

A An object of plot::Pointlist has type "graphprim" , i.e., if o is such
an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

80

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Height]

DrawMode None, Connected ,
Horizontal , Vertical , set
of these values

None

LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Title strings ""
TitlePosition [x, y]

See plot2d for further details on each option, except of DrawMode that
is explained in detail below.

A Plot options acts on every point of the list as well as on the connect-
ing lines (see option DrawMode). One can specify plot options for each
point individually by creating the list of points with objects of the do-
main plot::Point . See example 2.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the function plot ,
or use plot::Scene to create an object representing a graphical
scene.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a point-list primitive:

81

attribute meaning properties
objects A list of objects of the domain

plot::Point , the points of
the point-list primitive. The ini-
tial value is the list [p1, p2,
...] of the parameters p1,
p2, ... , where each parame-
ter was converted into an object
of the domain plot::Point .
Note that if you extract an ob-
ject of this list and do some
changes on this object, then you
must set the value of the at-
tribute refreshPlotdata to
TRUEin order to force a rebuild
of the plot data of the point list.

read/write

options A table of plot options of the
point-list primitive. Note that
if you change the value of this
attribute, the entries of the as-
signed table are not checked to
be valid plot options for point-
list primitives. Invalid entries
lead to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

plotdata List of the plot data of the point-
list primitive in a plot2d and
plot3d conforming syntax,
respectively (see the method
"getPlotdata" below). Note
that the value of this attribute
should only be used if the at-
tribute refreshPlotdata has
the value FALSE(see below).

read

82

attribute meaning properties
refreshPlotdata A boolean value which sig-

nals whether the plot data of
the point-list primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the point-list prim-
itive is stored in the attribute
plotdata . The initial value is
TRUE.

read/write

See the help page of plot::Curve2d for examples for working with
attributes of graphical primitives.

Option <DrawMode = value >:

A With this option lines between points and axes can be drawn. Admissible
values are None, Connected , Horizontal , Vertical , or a combina-
tion of Connected , Horizontal and Vertical given in form of a set;
the default is DrawMode = None.

• DrawMode = None disables lines between the points.

• DrawMode = Connected enables lines from point to point.

• DrawMode = Horizontal enables lines from the y-axis to each
point.

• DrawMode = Vertical enables lines from the x-axis to each point.

• DrawMode = modes enables the modes given in the set modes. For
example, with DrawMode= { Horizontal , Vertical } , a line from
the x-axis to each point and a line from the y-axis to each point is
drawn.

A Each line is a polygon with two vertices. Use the plot options of the
point-list object to change their color or width, for example. See exam-
ple 2.

A This option is only available for lists of two-dimensional points.

Operands: The operands of an object of plot::Pointlist are the parame-
ters p1, p2, ... (in this order).

83

Important Operations:

A Operands of a point-list primitive can be accessed either using the sys-
tem function op , the index operator [] , or using the attribute objects
described above. For example, if pointlist is such an object, then the
calls op(pointlist,1) , pointlist[1] and pointlist::objects[1]
return the first point of pointlist .

Via pointlist[1] := new_point or pointlist::objects[1] :=
new_point , the first point of pointlist is replaced by new_point .

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if pointlist is
such an object, then pointlist::Color := RGB::Red changes the
color of each point of pointlist to red.

Result of Evaluation: Evaluating an object of the domain type plot::Pointlist
returns itself.

Function Call: Calling an object of plot::Pointlist primitive as a func-
tion yields the object itself, regardless of the arguments. The arguments are not
evaluated.

Entries:

defaultOptions is a table of plot options for point-list primitives and
their default values. Each entry has the form OptionName = de-
fault_value .

When an object of the domain plot::Pointlist is created, then
a copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parameters
option1, option2, ... of the creating call (see “Creating El-
ements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot2d and plot3d , respectively, which are used to plot the ob-
ject. See the table of plot options above, which gives a summary of

84

the available plot options for point-list primitives and their default
values.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of point-lists.

Access Methods

Method _index : indexed access to the operands of a point-list primitive

_index(dom pointlist, positive integer i)

A Returns the i th point of pointlist . If i is greater than the number
of points of pointlist , then FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form pointlist[i] , or in functional notation _in-
dex(pointlist, i) .

Method dimension : dimension of a point-list primitive

dimension(dom pointlist)

A Returns the integer 2 or 3.

Method getPlotdata : create the plot data of a point-list primitive

getPlotdata(dom pointlist)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of pointlist in a plot2d and plot3d conforming syntax,
respectively, i.e., it has the form [Mode = List, [point(...),
...]] .
For example, with s := plot::Pointlist::getPlotdata(pointlist)
the call plot2d(s[1]) and plot3d(s[1]) , respectively, gives a
plot of pointlist .

A Only those plot options will be included in the plot data of the
point-list, that are contained in the table stored under the attribute
options (see the table of attributes above). For any other plot op-
tion not contained in this table, the corresponding default value set
by the function plot2d and plot3d , respectively, for lists of prim-
itives is used when plotting the object.

A The result is stored as the value of the attribute plotdata of pointlist .

A A call of this method sets the value of the attribute refreshPlot-
data of pointlist to FALSE.

85

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a point-list primitive

nops(dom pointlist)

A Returns the number of points of pointlist .

A This method overloads the system function nops , i.e., one may use
it in the form nops(pointlist) .

Method op : extract operands of a point-list primitive

op(dom pointlist, positive integer i)

A Returns the i th point of pointlist . If i is greater than the number
of points of pointlist , then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(pointlist, i) .

Method set_index : set operands of a point-list primitive

set_index(dom pointlist, positive integer i, plot::Point
p)

A Replaces the i th point of pointlist by the point p.

A If i is greater than the number of coordinates of pointlist , or if p
not an object of the domain plot::Point , then a warning message
is issued. In this case the call of this method has no effect on the
object pointlist .

A A call of this method sets the value of the attribute refreshPlot-
data of pointlist to TRUE.

Method slot : read and write attributes and plot options

slot(dom pointlist, string slotname)

A Reads the value of the slot slotname of pointlist . slotname
may either be the name of an attribute or the name of a plot option.
See the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

86

A This method overloads the system function slot , i.e., one may use
it in the form pointlist::slotname_id (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(pointlist, slotname) .

slot(dom pointlist, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may use
it in the form pointlist::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(pointlist, slotname,
val) .

A The value of the attribute refreshPlotdata of point is set to
TRUE.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for point-list primitives (see the table of available plot options above),
and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a point-list primitive

copy(dom pointlist)

A Returns a copy of the object pointlist .

A This method is called from the function plot::copy . See its help
page for details.

87

Method expose : expose the definition of a point-list

expose(dom pointlist)

A This method returns a sequence of the points of pointlist .

A This method overloads the system function expose , i.e., one may
use it in the form expose(pointlist) .

Method modify : modify a copy of a point-list primitive

modify(dom pointlist, equation(s) Name1 = value1, ...)

A Creates a copy of the object pointlist and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot
options of the domain plot::Pointlist . Otherwise a warning
message is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of pointlist to TRUE.

A This method is called from the function plot::modify .

Method print : print a point-list primitive

print(dom pointlist)

A This method returns an unevaluated expression of the form plot::Pointlist() .
It is used to print objects of plot::Pointlist to the screen.

A Call expose(pointlist) to expose the points of pointlist .

A See the system function print for details.

Example 1. This example illustrates the different modes for plotting lists of
points. We start with the default mode, that is plotting each point of the list in
the order as specified:

>> p1 := plot::Pointlist(
plot::Point(i, exp(i)) $ i = 1..5

)

plot::Pointlist()

To plot the list of points created, call:

88

>> plot(p1)

If you want to connect every two points by a line, then use the option
DrawMode=Connected :

>> p2 := plot::Pointlist(
plot::Point(i, exp(i)) $ i = 1..5, DrawMode = Connected

):
plot(p2)

Set the value of the option DrawMode to Vertical or Horizontal in
order to draw a line from the x-axis and the y-axis, respectively, to each point
of the list:

>> p2::DrawMode := Vertical:
plot(p2)

>> p2::DrawMode := Horizontal:
plot(p2)

Here, we used the slot operator :: to change the value of some plot options
of the graphical primitive p2 .

One can also combine plot modes for lists of points, such as plotting verti-
cal and horizontal lines to each point:

>> p2::DrawMode := {Horizontal, Vertical}:
plot(p2)

Example 2. One can specify plot options for each point of the list. For exam-
ple, to plot the points of a list in different sizes, enter:

>> p := plot::Pointlist(
plot::Point(i, sin(i), PointWidth = 10*i) $ i = 1..10

):
plot(p)

A plot option of the object p acts on every point of the list, except of the
points of the list, for which a plot option is set explicitely.

For example, if we change the value of the option Color of the object p to
blue, then every point is drawn in blue color:

>> p::Color := RGB::Blue:
plot(p)

To set the color option for some points explicitely, such as changing the
color of the last point to red, one may enter:

>> (p[10])::Color := RGB::Red:
plot(p)

89

The plot options of a plot-list object (here: p) also act on the connecting
lines, if the option DrawMode is used.

For example, if we create a point-list and set the color of the points ex-
plicitely to blue, then connecting lines are still drawn in the default color of
objects of the domain plot::Pointlist , i.e., in red color:

>> p2 := plot::Pointlist(
plot::Point(i, i^2, Color = RGB::Blue) $ i = -5..5,
DrawMode = Connected

):
plot(p2)

Changes:

A plot::Pointlist is a new function.

plot::Polygon – graphical primitive for a polygon

plot::Polygon(p1, p2, ...) represents a plot of a polygon build of the
points p1, p2, . . . , where the points must either be of dimension two or three.

Creating Elements:

A plot::Polygon(p1, p2, ... <, option1, option2, ... >)

Parameters:
p1, p2 — plot points, i.e., objects that can be

converted into the domain
plot::Point ; the points must have
the same dimension

option1, option2, ... — plot option(s) of the form
OptionName = value

Related Domains: DOM_POLYGON, plot::Point , plot::Rectangle2d ,
plot::Scene , RGB

Related Functions: plot , plot2d , plot3d , plot::copy , plot::line ,
polygon

90

Details:

A Objects generated by plot::Polygon represent graphical primitives
for two- or three-dimensional polygons that can be displayed via the call
plot(...) , or used with other graphical primitives of the plot library.

A An object of plot::Polygon has type "graphprim" , i.e., if o is such
an object, then the result of type(o) is the string "graphprim" .

A Note that plot::Polygon , in difference to the standard graphical ob-
ject polygon , allows to build a polygon of points of arbitrary arithmeti-
cal expressions. These expressions must evaluate to numbers at the time
where you plot the polygon.

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Closed TRUE, FALSE FALSE
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Height]

Filled TRUE, FALSE FALSE
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Title strings ""
TitlePosition [x, y]

See plot2d and polygon for further details on each option.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the call of plot , or use
plot::Scene to create an object representing a graphical scene.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a polygon primitive:

91

attribute meaning properties
objects A list of the points of the poly-

gon primitive. The initial value
is the list [p1, p2, ...] of
the parameters p1, p2, ... ,
where each parameter was con-
verted into an object of the do-
main plot::Point .
Note that if you extract an ob-
ject of this list and do some
changes on this object, then you
must set the value of the at-
tribute refreshPlotdata to
TRUEin order to force a rebuild
of the plot data of the polygon.

read/write

options A table of plot options of the
polygon primitive. Note that
if you change the value of this
attribute, the entries of the as-
signed table are not checked to
be valid plot options for poly-
gon primitives. Invalid entries
lead to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

plotdata List of the plot data of the poly-
gon primitive in a plot2d and
plot3d conforming syntax,
respectively (see the method
"getPlotdata" below). Note
that the value of this attribute
should only be used if the at-
tribute refreshPlotdata has
the value FALSE(see below).

read

92

attribute meaning properties
refreshPlotdata A boolean value which sig-

nals whether the plot data
of the polygon primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the polygon prim-
itive is stored in the attribute
plotdata . The initial value is
TRUE.

read/write

See the help page of plot::Curve2d for examples for working with
attributes of graphical primitives.

Operands: The operands of an object of plot::Polygon are the points p1,
p2, ... (in this order).

Important Operations:

A Operands of a polygon primitive can be accessed either using the sys-
tem function op , the index operator [] , or using the attribute objects
described above. For example, if polygon is such an object, then the
calls op(polygon,1) , polygon[1] and polygon::objects[1] re-
turn the first point of polygon .

Via polygon[1] := new_point or polygon::objects[1] := new_point ,
the first point of polygon is replaced by new_point .

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects af-
terwards, i.e., when they have been created. For example, if polygon
is such an object, then polygon::Color := RGB::Red changes the
color of each point of polygon to red.

Result of Evaluation: Evaluating an object of the domain type plot::Polygon
returns itself.

Function Call: Calling an object of plot::Polygon as a function yields the
object itself, regardless of the arguments. The arguments are not evaluated.

93

Entries:

defaultOptions is a table of plot options for polygon primitives and their
default values. Each entry has the form OptionName = default_value .

When an object of the domain plot::Polygon is created, then a
copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parameters
option1, option2, ... of the creating call (see “Creating El-
ements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot2d and plot3d , respectively, which are used to plot the ob-
ject. See the table of plot options above, which gives a summary of
the available plot options for polygon primitives and their default
values.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of polygons.

Access Methods

Method _index : indexed access to the operands of a polygon primitive

_index(dom polygon, positive integer i)

A Returns the i th point of polygon . If i is greater than the number
of points of polygon , then FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form polygon[i] , or in functional notation _in-
dex(polygon, i) .

Method dimension : dimension of a polygon primitive

dimension(dom polygon)

A Returns the integer 2 or 3.

94

Method getPlotdata : create the plot data of a polygon primitive

getPlotdata(dom polygon)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of polygon in a plot2d and plot3d conforming syntax, re-
spectively, i.e., it has the form [Mode = List, [polygon(...)],
...] .
For example, with s := plot::Polygon::getPlotdata(polygon)
the call plot2d(s[1]) and plot3d(s[1]) , respectively, gives a
plot of polygon .

A Only those plot options will be included in the plot data of the point,
that are contained in the table stored under the attribute options
(see the table of attributes above). For any other plot option not
contained in this table, the corresponding default value set by the
function plot2d and plot3d , respectively, for lists of primitives is
used when plotting the object.

A The result is stored as the value of the attribute plotdata of poly-
gon .

A A call of this method sets the value of the attribute refreshPlot-
data of polygon to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a polygon primitive

nops(dom polygon)

A Returns the number of points of polygon .

A This method overloads the system function nops , i.e., one may use
it in the form nops(polygon) .

Method op : extract operands of a polygon primitive

op(dom polygon, positive integer i)

A Returns the i th point of polygon . If i is greater than the number
of points of polygon , then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(polygon, i) .

95

Method set_index : set operands of a polygon primitive

set_index(dom polygon, positive integer i, plot::Point
p)

A Replaces the i th point of polygon by the point p.

A If i is greater than the number of points of polygon , or if p is not
an object of the domain plot::Point , then a warning message is
issued. In this case the call of this method has no effect on the object
polygon .

A A call of this method sets the value of the attribute refreshPlot-
data of point to TRUE.

Method slot : read and write attributes and plot options

slot(dom polygon, string slotname)

A Reads the value of the slot slotname of polygon . slotname may
either be the name of an attribute or the name of a plot option. See
the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may
use it in the form polygon::slotname_id (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(polygon, slotname) .

slot(dom polygon, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form polygon::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(polygon, slotname, val) .

A The value of the attribute refreshPlotdata of polygon is set to
TRUE.

96

Conversion Methods

Method convert : conversion of objects into a polygon primitive

convert(any p)

A This method tries to convert p into an object of the domain plot::Polygon .
If this is not possible, then FAIL is returned.

A Currently this method only handles objects of the domain type DOM_POLYGON.
If p does not have a color specification, then the default color for ob-
jects of plot::Polygon is used (see “Details” above).

Method convert_to : conversion of a polygon primitive

convert_to(dom polygon, domain T)

A This method tries to convert polygon into an object of the domain
T. If this is not possible, then FAIL is returned.

A Currently this method only implements the case where T is the do-
main DOM_POLYGON. The result is a system polygon primitive, i.e.,
an object of the domain DOM_POLYGON.
Note that plot options can not be stored in such an object, except of
the options Color , Filled and Closed . However, the color speci-
fiaction is used only if it is contained in the attribute options of the
polygon primitive polygon (see the table of attributes above). Oth-
erwise the default color specification for system polygon primitives
is used (see the help page of DOM_POLYGON).

Method expr : conversion into a system polygon primitive

expr(dom polygon)

A This method converts polygon into an object of the domain type
DOM_POLYGON. See the method "convert_to" for details.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for polygon primitives (see the table of available plot options above),
and value is an admissible value for this option.

97

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a polygon primitive

copy(dom polygon)

A Returns a copy of the object polygon .

A This method is called from the function plot::copy . See its help
page for details.

Method expose : expose the definition of a polygon

expose(dom polygon)

A This method returns a sequence of the points of polygon .

A This method overloads the system function expose , i.e., you may
use it in the form expose(polygon) .

Method modify : modify a copy of a polygon primitive

modify(dom polygon, equation(s) Name1 = value1, ...)

A Creates a copy of the object polygon and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot op-
tions of the domain plot::Polygon . Otherwise a warning mes-
sage is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of polygon to TRUE.

A This method is called from the function plot::modify .

98

Method print : print a polygon primitive

print(dom polygon)

A This method returns an unevaluated expression of the form plot::Polygon() .
It is used to print objects of plot::Polygon to the screen.

A Call expose(polygon) to expose the points of polygon .

A See the system function print for details.

Example 1. We create a polygon build of the points (1; 2), (10; 2) and (10; 10):

>> p := plot::Polygon(
plot::Point(1, 2), plot::Point(10, 2), plot::Point(10, 10)

)

plot::Polygon()

and plot the polygon in a graphical scene:

>> plot(p)

Plot options may be specified as additional arguments. For example, to
close the polygon created above, set the option Closed to the value TRUE:

>> p := plot::Polygon(
plot::Point(1, 2), plot::Point(10, 2), plot::Point(10, 10),
Closed = TRUE

):
plot(p)

You can also set plot options of an object of the domain plot::Polygon
via the slot operator :: . For example, to change the color of the polygon p into
green and increase the width of the lines of the polygon, e.g., to the value 50,
we enter:

>> p::Color := RGB::Red: p::LineWidth:= 50:
plot(p)

Scene options may be given to the call of plot , such as removing axes from
the plot:

>> plot(p, Axes = None)

99

Example 2. Objects of the domain plot::Polygon , and objects of the basic
domain DOM_POLYGONare graphical primitives for two- or three dimensional
polygons. The main difference between objects of these two domains is, that
objects of plot::Polygon can be used together with other graphical primi-
tives of the library plot such as function graphs, surface plots, point-list plots,
and more.

To ease the use of such different objects, you can easily convert objects of
one domain into the other. For example, an object of the domain plot::Polygon
such as:

>> p := plot::Polygon([1, 2], [2, 3], [0, 3], [-1,2])

plot::Polygon()

can be converted into the domain DOM_POLYGONas follows:

>> plot::Polygon::convert_to(p, DOM_POLYGON)

polygon(point(1.0, 2.0), point(2.0, 3.0), point(0.0, 3.0), poi\
nt(-1.0, 2.0))

Note that because objects of the domain DOM_POLYGONonly know the plot
options Color , Filled and Closed , any other plot option set for the object
p is lost by this conversion.

With the method "convert" , objects can be converted into the domain
plot::Polygon . For example, we convert the polygon polygon(point(1,
2, 3), point(2, 4, 6)) into an object of the domain plot::Polygon :

>> p := polygon(point(1, 2, 3), point(2, 4, 6)):
q := plot::Polygon::convert(p)

plot::Polygon()

One may now override default values of some plot options for the object q as
follows:

>> q::Color := RGB::Blue: q::LineWidth := 50:
plot(q, Axes = None)

Changes:

A plot::Polygon is a new function.

plot::Rectangle2d – graphical primitive for a two-dimensional
rectangle

plot::Rectangle2d(p, w, h) represents a plot of a two-dimensional rect-
angle with lower left corner p = (px; py), width w and height h.

100

Creating Elements:

A plot::Rectangle2d(c, w, h <, option1, option2, ... >)

A plot::Rectangle2d(p, w, h <, option1, option2, ... >)

Parameters:
c — a list of two arithmetical expressions
p — a two-dimensional point, i.e., an object

of the domain plot::Point or
DOM_POINT

w, h — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

Related Domains: plot::Ellipse2d , plot::Point , plot::Polygon ,
plot::Scene , RGB

Related Functions: plot , plot2d , plot::copy , plot::line

Details:

A Objects generated by plot::Rectangle2d represent graphical prim-
itives for two-dimensional rectangles that can be displayed via the clal
plot(...) , or used with other graphical primitives of the plot library.
See example 1.

A If the first parameter of the call of plot::Rectangle2d is a point p,
then it is converted into a list of the two coordinates of p. Specified plot
options for p are ignored! (Cf. example 2.)

A The values for the width w and height h can also be negative numbers.
The rectangle drawn consists of the four points p = (px; py), (px; py + h),
(px + w; py + h) and (px + w; py).

A An object of plot::Rectangle2d has type "graphprim" , i.e., if o is
such an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Flat , RGB::Red]

101

OptionName admissible values default value
Filled TRUE, FALSE FALSE
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Title strings ""
TitlePosition [x, y]

See plot2d and polygon for further details on each option.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the call of plot , or use
plot::Scene to create an object representing a graphical scene.
Cf. example 1.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a rectangle primitive:

attribute meaning properties
corner a list of two arithmetical expres-

sions being the lower left cor-
ner of the rectangle. The initial
value is the parameter c , or the
list of the coordinates of p, re-
spectively.

read/write

dimension The dimension of the rectangle
primitive, i.e., the integer 2.

read

height The height of the rectangle (an
arithmetical expression). The
initial value is the parameter h.

read/write

102

attribute meaning properties
options A table of plot options of the

rectangle primitive. Note that
if you change the value of this
attribute, the entries of the as-
signed table are not checked to
be valid plot options for rectan-
gle primitives. Invalid entries
lead to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

plotdata List of the plot data of the rect-
angle primitive in a plot2d
and plot3d conforming
syntax, respectively (see the
method "getPlotdata" be-
low). Note that the value of this
attribute should only be used
if the attribute refreshPlot-
data has the value FALSE (see
below).

read

refreshPlotdata A boolean value which sig-
nals whether the plot data of
the rectangle primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the rectangle prim-
itive is stored in the attribute
plotdata . The initial value is
TRUE.

read/write

width The width of the rectangle (an
arithmetical expression). The
initial value is the parameter w.

read/write

See example 2.

Operands: An object of plot::Rectangle2d consists of the three operands
c , wand h.

103

Important Operations:

A Operands of a rectangle primitive can be accessed either using the sys-
tem function op , the index operator [] , or using the attributes cor-
ner , height and width described above. For example, if rectangle is
such an object, then the calls op(rectangle,1) , rectangle[1] and
rectangle::corner return the list representing the lower left corner
of rectangle .

Via rectangle[1] := new_point or rectangle::corner := new_point ,
the lower left corner of rectangle is replaced by the list new_point .

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if rectangle is
such an object, then rectangle::Color := RGB::Red changes the
color of of rectangle to red.

Result of Evaluation: Evaluating an object of the domain type plot::Rectangle2d
returns itself.

Function Call: Calling an object of plot::Rectangle2d as a function yields
the object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions is a table of plot options for rectangle primitives and
their default values. Each entry has the form OptionName = de-
fault .

When an object of the domain plot::Rectangle2d is created,
then a copy of this table is stored under the attribute options (see
the table of attributes above), where those options are added and
replaced, respectively, which are given by the (optional) parame-
ters option1, option2, ... of the creating call (see “Creating
Elements” above).

Plot options, which are not contained in this table, will not be in-
cluded in the plot data of the object created by the method "getPlotdata"
(see below).

optionNames is a set of the available options for plots of two-dimensional
rectangles.

104

Access Methods

Method _index : indexed access to the operands of a rectangle primitive

_index(dom rectangle, positive integer i)

A Returns the i th operand of rectangle . See “Operands” above for
a description of the operands of curve . If i is greater than 2, then
FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form rectangle[i] , or in functional notation _in-
dex(rectangle, i) .

Method dimension : dimension of a rectangle primitive

dimension(dom rectangle)

A Returns the integer 2.

Method getPlotdata : create the plot data of a rectangle primitive

getPlotdata(dom rectangle)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of rectangle in a plot2d conforming syntax, i.e., it has the
form [Mode = List, [polygon(...)], ...] .
For example, with s := plot::Rectangle2d::getPlotdata(rectangle)
the call plot2d(s[1]) gives a plot of rectangle .

A Only those plot options will be included in the plot data of the rect-
angle, that are contained in the table stored under the attribute op-
tions (see the table of attributes above). For any other plot option
not contained in this table, the corresponding default value set by
the function plot2d for curves is used when plotting the object.

A The result is stored as the value of the attribute plotdata of rect-
angle .

A A call of this method sets the value of the attribute refreshPlot-
data of rectangle to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

105

Method nops : number of operands of a rectangle primitive

nops(dom rectangle)

A Returns the integer 3.

A This method overloads the system function nops , i.e., one may use
it in the form nops(rectangle) .

Method op : extract operands of a rectangle primitive

op(dom rectangle, positive integer i)

A Returns the i th operand of rectangle . See “Operands” above for
a description of the operands of rectangle . If i is greater than 3,
then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(rectangle, i) .

Method set_index : set operands of a rectangle primitive

set_index(dom rectangle, positive integer i, any val)

A Replaces the i th operand of rectangle by the value val . See
“Operands” above for a description of the operands of rectangle .

A If i is greater than 3, or if val is not an admissible value for the i th
operand, then a warning message is issued. In this case the call of
this method has no effect on the object rectangle .

A A call of this method sets the value of the attribute refreshPlot-
data of rectangle to TRUE.

Method slot : read and write attributes and plot options

slot(dom rectangle, string slotname)

A Reads the value of the slot slotname of rectangle . slotname
may either be the name of an attribute or the name of a plot option.
See the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may use
it in the form rectangle::slotname_id (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(rectangle, slotname) .

106

slot(dom rectangle, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may use
it in the form rectangle::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(rectangle, slotname,
val) .

A The value of the attribute refreshPlotdata of rectangle is set
to TRUE.

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for rectangle primitives (see the table of available plot options above),
and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a rectangle primitive

copy(dom rectangle)

A Returns a copy of the object rectangle .

A This method is called from the function plot::copy . See its help
page for details.

107

Method modify : modify a copy of a rectangle primitive

modify(dom rectangle, equation(s) Name1 = value1, ...)

A Creates a copy of the object rectangle and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot
options of the domain plot::Rectangle2d . Otherwise a warn-
ing message is issued, and the slot remains unchanged. Also, if one
of the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of rectangle to TRUE.

A This method is called from the function plot::modify .

Method print : print a rectangle primitive

print(dom rectangle)

A This method returns an unevaluated expression of the form plot::Rectangle2d(p,
w, h) . It is used to print objects of plot::Rectangle2d to the
screen.

A See the system function print for details.

Example 1. We define a rectangle with lower left corner at point (1; 2), width
3 and height 4, and a square of length one with lower left corner at the point
(0; 0):

>> r := plot::Rectangle2d([1, 2], 3, 4);
s := plot::Rectangle2d([0, 0], 1, 1, Filled = TRUE)

plot::Rectangle2d([1, 2], 3, 4)

plot::Rectangle2d([0, 0], 1, 1)

The area of the square is filled in the color of the border of the rectangle (which
is red by default). We plot these two objects in a graphical scene, without
showing axes:

>> plot(r, s, Axes = None)

108

Example 2. The attribute corner , which specifies the lower left point of the
rectangle, is a list of two arithmetical expressions also if the corner point of
the object created was given as an object of the domain plot::Point or
DOM_POINT:

>> c := plot::Point([-1, 1]):
r := plot::Rectangle2d(c, 2, -2):
r::corner

[-1, 1]

If you replace the value of the attribute corner , then the point must be given
as a list of two arithmetical expressions, otherwise a warning message is is-
sued, saying that the assignment is ignored:

>> r::corner:= point(0, 0)

Warning: 3rd argument: expecting a list of two arithmeti-
cal ex\

pressions; assignment ignored [plot::Rectangle2d::slot]

point(0, 0)

>> r::corner

[-1, 1]

Note that if you specify an object of the domain plot::Point or DOM_POINT
as the corner of the rectangle, then plot options of the point are ignored. For
example, if we change the color of the point c created above to blue and create
a new rectangle:

>> c::Color := RGB::Blue: r := plot::Rectangle2d(c, 1, 1):
plot(r)

then the rectangle is still drawn in red color (the default color of objects of the
domain plot::Rectangle2d). You must use the color option of the object r
to change the color of the rectangle:

>> r::Color := RGB::Blue: plot(r)

See the help page of plot::Curve2d for more examples for working with
attributes of graphical primitives.

Changes:

A plot::Rectangle2d is a new function.

109

plot::Scene – a graphical scene

plot::Scene(object1, object2, ...) combines the graphical objects
object1 , object2 etc. to a graphical scene.

Creating Elements:

A plot::Scene(object1 <, object2, ... > <, option1, op-
tion2, ... >)

Parameters:
scene — a graphical scene: an object of domain

type plot::Scene
object1, object2, ... — 2D or 3D graphical objects
option1, option2, ... — scene options of the form

OptionName = value

Related Domains: RGB

Related Functions: plot , plot2d , plot3d , plot::copy

Details:

A Objects generated by plot::Scene represent two- or three-dimensional
graphical scenes that can be displayed via plot(...) .

The parameters object1 , object2 etc. must be graphical objects gen-
erated by routines of the library plot . Graphical primitives include
graphs of functions (of domain type plot::Function2d and plot::Function3d),
points and polygons (of domain type plot::Point and plot::Polygon ,
respectively), and surfaces (of domain type plot::Surface3d).

See examples 1 and 2.

A Scene options option1 , option2 etc. are specified by equations Op-
tionName = value . The following tables give an overview of the avail-
able options for two- and three-dimensional scenes.

This table contains options and their default values for two-dimensional
graphical scenes:

OptionName (2D) admissible values default value
Arrows TRUE, FALSE FALSE
Axes Box , Corner , None, Origin Origin
AxesOrigin Automatic , [x0, y0] Automatic
AxesScaling [Lin /Log , Lin /Log] [Lin , Lin]

110

OptionName (2D) admissible values default value
BackGround [r, g, b] RGB::White
Discont TRUE, FALSE FALSE
FontFamily "helvetica" , "lucida" , .. "helvetica"
FontSize positive integers 8
FontStyle "bold" , .. "bold"
ForeGround [r, g, b] RBG::Black
GridLines Automatic , None or [xValue,

yValue] . Admissible values for
xValue , yValue are
Automatic , integers, Steps = d
or Steps = [d, n] .

None

GridLinesColor [r, g, b] RGB::Gray
GridLinesWidth positive integers 1
GridLinesStyle SolidLines , DashedLines DashedLines
Labeling TRUE, FALSE TRUE
Labels [string, string] ["x", "y"]
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PlotDevice Screen , "filename" ,

["filename", Ascii] ,
["filename", Binary]

Screen

PointStyle Circles , FilledCircles ,
FilledSquares , Squares

FilledSquares

PointWidth positive integers 30
RealValuesOnly TRUE, FALSE FALSE
Scaling Constrained , UnConstrained UnConstrained
Ticks Automatic , None, an integer or

[xValue, yValue] .
Admissible values for xValue ,
yValue are Automatic , an
integer, Steps = d, Steps = [d,
n] or a list of user defined ticks.

Automatic

Title strings ""
TitlePosition Above , Below , [x, y] Above
ViewingBox Automatic or [xValue,

yValue] . Admissible values for
xValue , yValue are Automatic
or a range a..b .

Automatic

See plotOptions2d for further details on each option.

A For three-dimensional graphical scenes the following options are avail-
able:

111

OptionName (3D) admissible values default value
Arrows TRUE, FALSE FALSE
Axes Box , Corner , None, Origin Box
AxesOrigin Automatic , [x0, y0, z0] Automatic
AxesScaling [Lin /Log , Lin /Log ,

Lin /Log]
[Lin , Lin , Lin]

BackGround [r, g, b] RGB::White
CameraPoint Automatic , [x, y, z] Automatic
FocalPoint Automatic , [x, y, z] Automatic
FontFamily "helvetica" , "lucida" , .. "helvetica"
FontSize positive integers 8
FontStyle "bold" , .. "bold"
ForeGround [r, g, b] RGB::Black
Labeling TRUE, FALSE TRUE
Labels [string, string,

string]
["x","y","z"]

LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PlotDevice Screen , "filename" ,

["filename", Ascii] ,
["filename", Binary]

Screen

PointStyle Circles , FilledCircles ,
FilledSquares , Squares

FilledSquares

PointWidth positive integers 30
Scaling Constrained ,

UnConstrained
UnConstrained

Ticks Automatic , None or integers Automatic
Title strings ""
TitlePosition Above , Below , [x, y] Above
ViewingBox Automatic Automatic

See plotOptions3d for further details on each option.

A A so-called attribute of an object of the domain plot::Scene is a named
entry of the object which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value . See example 3.

The following attributes are available for an object representing a graph-
ical scene:

attribute meaning properties
dimension The dimension of the scene, i.e.,

the integer 2 or 3.
read

112

attribute meaning properties
objects A list of the graphical primi-

tives of the scene. A graphical
primitive is an object of type
"graphprim" . The initial
value is the list [object1,
object2, ...] of the param-
eters object1, object2,
...

read/write

options A table of plot options of the
graphical scene. Note that if
you change the value of this at-
tribute, the entries of the as-
signed table are not checked to
be valid plot options for graph-
ical scenes. Invalid entries lead
to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions2d" and
"defaultOptions3d" , re-
spectively, where such options
are replaced and added, respec-
tively, which are given with the
parameters option1, ... of
the creating call.

read/write

plotdata List of the plot data of the
graphical scene in a plot2d
and plot3d conforming syn-
tax, respectively. The value of
this attribute can be read if the
method "getPlotdata" (see
below) was called before. The
initial value is the empty list [] .

read

A The graphical objects object1 , object2 etc. must have the same
dimension. A mix of two- and three-dimensional primitives in a
single scene is not supported!

!

Operands: The operands of an object of plot::Scene are the parameters
object1, object2, ... (in this order).

Important Operations:

A Operands of a graphical scene can be accessed either using the system

113

function op , the index operator [] , or using the attribute objects de-
scribed above. For example, if scene is such an object, then the calls
op(scene,1) , scene[1] and scene::objects[1] return the param-
eter object1 .

Via scene[1] := g , the first object of the scene is replaced by the graph-
ical primitive g (that must be of the type "graphprim").

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects after-
wards, i.e., when they have been created. For example, if scene is such
an object, then scene::Axes := None removes the axes in the graph-
ical scene.

Result of Evaluation: Evaluating an object of the domain type plot::Scene
returns itself.

Function Call: Calling an object of plot::Scene as a function yields the
object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions2d is a table of plot options for two-dimensional graph-
ical scenes and their default values. Each entry has the form Op-
tionName = default_value .

When an object of the domain plot::Scene is created, then a
copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parame-
ters option1, ... of the creating call (see “Creating Elements”
above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value internally set
by the function plot2d is used when plotting the object. See the
table of plot options above, which gives a summary of the avail-
able plot options for two-dimensional graphical scenes and their
default values.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

114

optionNames2d is a set of the available option names for plots of two-
dimensional graphical scenes.

defaultOptions3d is a table of plot options for three-dimensional graph-
ical scenes and their default values. Each entry has the form Op-
tionName = default_value .

When an object of the domain plot::Scene is created, then a
copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parame-
ters option1, ... of the creating call (see “Creating Elements”
above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value internally set
by the function plot3d is used when plotting the object. See the
table of plot options above, which gives a summary of the avail-
able plot options for three-dimensional graphical scenes and their
default values.

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames3d is a set of the available option names for plots of three-
dimensional graphical scenes.

Access Methods

Method _index : indexed access to the operands of a graphical scene

_index(dom scene, positive integer i)

A Returns the i th graphical primitive of scene . If i is greater than
the number of graphical primitives of scene , then FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form scene[i] , or in functional notation _index(scene,
i) .

Method dimension : dimension of a graphical scene

dimension(dom scene)

A Returns the value of the attribute dimension , i.e., the integer 2 or
3 (see the table of attributes above).

115

Method getPlotdata : create the plot data of a graphical scene

getPlotdata(dom scene)

A Returns a list in the form [SceneOptions, [Mode = ...], ...] ,
i.e., a plot description of scene in a plot2d and plot3d conform-
ing syntax, respectively.
For example, with s := plot::Scene::getPlotdata(scene)
the call plot2d(op(s) and plot3d(op(s) , respectively, gives a
plot of scene .

A Only those plot options will be included in the plot data of the point,
that are contained in the table stored under the attribute options
(see the table of attributes above). For any other plot option not
contained in this table, the corresponding default value set by the
function plot2d and plot3d , respectively, for graphical scenes is
used when plotting the object.

A The result is stored as the value of the attribute plotdata of scene .

Method nops : number of operands of a graphical scene

nops(dom scene)

A Returns the number of graphical primitives of scene .

A This method overloads the system function nops , i.e., one may use
it in the form nops(scene) .

Method op : extract operands of a graphical scene

op(dom scene, positive integer i)

A Returns the i th graphical primitive of scene . If i is greater than
the number of graphical primitives of scene , then FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(scene, i) .

Method set_index : set operands of a graphical scene

set_index(dom scene, positive integer i, graphprim o)

A Replaces the i th graphical primitive of scene by o.

A If i is greater than the number of graphical primitives of scene , or
if g is not an object of type "graphprim" , then a warning message
is issued. In this case the call of this method has no effect on the
object scene .

116

Method slot : read and write attributes and plot options

slot(dom scene, string slotname)

A Reads the value of the slot slotname of scene . slotname may
either be the name of an attribute or the name of a plot option. See
the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may use
it in the form scene::slotname_id (here, slotname_id must
be the identifier corresponding to the string slotname), or in func-
tional notation slot(scene, slotname) .

slot(dom scene, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form scene::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(scene, slotname, val) .

Technical Methods

Method checkOption2d : check a plot option

checkOption2d(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for a two-dimensional scene (see the table of available plot options
above), and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

117

Method checkOption3d : check on plot options

checkOption3d(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for a three-dimensional scene (see the table of available plot options
above), and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to throw an error
message to the user.

Method copy : create a copy of a graphical scene

copy(dom scene)

A Returns a copy of the object scene .

A This method is called from the function plot::copy . See its help
page for details.

Method expose : expose the definition of a scene

expose(dom scene)

A This method returns a sequence of the graphical primitives of scene .

A This method overloads the system function expose , i.e., one may
use it in the form expose(scene) .

Method modify : modify a copy of a graphical scene

modify(dom scene, equation ident = val, ...)

A Creates a copy of the object scene and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot op-
tions of the domain plot::Scene . Otherwise a warning message
is issued, and the slot remains unchanged. Also, if one of the values
value1, ... is not an admissible value for the corresponding at-
tribute or plot option, respectively, the change of the slot is ignored.
See the tables of available options and attributes above.

A This method is called from the function plot::modify .

118

Method print : print a graphical scene

print(dom scene)

A This method returns an unevaluated expression of the form plot::Scene() .
It is used to print objects of plot::Scene to the screen.

A Call expose(scene) to expose the graphical primitives of the scene.

A See the system function print for details.

Example 1. The following calls return objects representing the graphs of the
sinus and cosinus function in the interval [0,2π]:

>> f1 := plot::Function2d(sin(x), x = 0..2*PI);
f2 := plot::Function2d(

cos(x), x = 0..2*PI, Color = RGB::Blue
)

plot::Function2d(sin(x), x = 0..2 PI)

plot::Function2d(cos(x), x = 0..2 PI)

The call plot(f1, f2) displays these graphs f1 and f2 . In fact, the function
plot first creates a graphical scene consisting of these two graphs as follows:

>> s := plot::Scene(f1, f2)

plot::Scene()

and then displays this scene:

>> plot(s)

To change default values of some scene options, pass the scene options to
the call of plot::Scene as additional arguments, or, if an object of plot::Scene
is already created, change the value of the corresponding option with the slot
operator :: and call plot again to display the changed object.

For example, to draw grid lines in the background of the plot of the graph-
ical scene s created in the previous input, we enter:

>> s::GridLines := Automatic:
plot(s)

119

Example 2. We create a graphical scene consisting of a graph of the sequence
n 7→ sin(n)

n in the interval [1,50], enclosed by the graphs of the functions x 7→ 1/x
and x 7→ −1/x:

>> s := plot::Scene(
plot::Function2d(1/x, x = 1..50),
plot::Pointlist([n, sin(n)/n] $ n = 1..50, Color = RGB::Blue),
plot::Function2d(-1/x, x = 1..50)

)

plot::Scene()

We plot the scene:

>> plot(s)

One can access the graphical primitives of a graphical scene using the index
operator [] . For example, the sequence created above is the second operand
of the scene s :

>> pl := s[2]

plot::Pointlist()

Any change of the object pl , for example, a change of some plot options, reacts
on the plot of the scene s :

>> pl::PointWidth := 15: plot(s)

This is due to the reference effect for domains. If changes of an object should
not reflect the scene in that the object is contained, one must first explicitly
create a copy of the corresponding object using the function plot::copy :

>> pl2 := plot::copy(pl)

plot::Pointlist()

Now changes on the object pl2 do not react on the object pl of the graphical
scene s . For example, if we change the draw mode of the point list pl2 in
order to connect every two points of the point list by a line, the plot of the
scene s remains unchanged:

>> pl2::DrawMode := Connected: plot(s)

whereas the copied object pl2 is displayed as follows:

>> plot(pl2)

120

Example 3. This example illustrates how to read and write attributes of graph-
ical scenes (see the table of available attributes in “Details” above).

Plot options, which are explicitly set for a graphical scene, are stored under
the attribute options and can be read with the slot operator :: :

>> s := plot::Scene(
plot::Curve2d([sin(x), cos(x)], x = 0..2*PI),
Axes = Box

):
s::options

table(
TitlePosition = Above,
PointWidth = 30,
LineStyle = SolidLines,
AxesScaling = [Lin, Lin],
Axes = Box,
BackGround = [1.0, 1.0, 1.0],
Ticks = Automatic,
ViewingBox = Automatic,
RealValuesOnly = FALSE,
Labeling = TRUE,
Discont = FALSE,
GridLinesStyle = DashedLines,
ForeGround = [0.0, 0.0, 0.0],
AxesOrigin = Automatic,
LineWidth = 1,
PointStyle = FilledSquares,
GridLines = None,
Arrows = FALSE,
GridLinesWidth = 1,
Scaling = UnConstrained,
GridLinesColor = [0.752907, 0.752907, 0.752907]

)

These are default values of some options of two-dimensional graphical scenes,
defined by the entry "defaultOptions2d" of the domain plot::Scene :

>> plot::Scene::defaultOptions2d

table(
TitlePosition = Above,
PointWidth = 30,
LineStyle = SolidLines,
AxesScaling = [Lin, Lin],
Axes = Origin,
BackGround = [1.0, 1.0, 1.0],
Ticks = Automatic,

121

ViewingBox = Automatic,
RealValuesOnly = FALSE,
Labeling = TRUE,
Discont = FALSE,
GridLinesStyle = DashedLines,
ForeGround = [0.0, 0.0, 0.0],
AxesOrigin = Automatic,
LineWidth = 1,
PointStyle = FilledSquares,
GridLines = None,
Arrows = FALSE,
GridLinesWidth = 1,
Scaling = UnConstrained,
GridLinesColor = [0.752907, 0.752907, 0.752907]

)

When the plot data of a graphical scene is created (calling the method
"getPlotdata"), only those plot options are used that are contained in the
table s::options :

>> plot::Scene::getPlotdata(s)

[TitlePosition = Above, PointWidth = 30,

LineStyle = SolidLines, AxesScaling = [Lin, Lin],

Axes = Box, BackGround = [1.0, 1.0, 1.0],

Ticks = Automatic, ViewingBox = Automatic,

RealValuesOnly = FALSE, Labeling = TRUE, Discont = FALSE,

GridLinesStyle = DashedLines, ForeGround = [0.0, 0.0, 0.0],

AxesOrigin = Automatic, LineWidth = 1,

PointStyle = FilledSquares, GridLines = None,

Arrows = FALSE, GridLinesWidth = 1,

Scaling = UnConstrained, GridLinesColor =

[0.752907, 0.752907, 0.752907],

[Mode = Curve, [sin(x), cos(x)], x = [0.0, 6.283185307],

Grid = [100], Color = [Flat, [1.0, 0.0, 0.0]]]]

122

This means that for any other available scene option not contained in the table
s::options (e.g., the option Title), the default value is internally set by the
function plot2d when plotting the scene.

Use delete to remove plot options set for a graphical scene:

>> delete s::options[Axes]: s::options

table(
TitlePosition = Above,
PointWidth = 30,
LineStyle = SolidLines,
AxesScaling = [Lin, Lin],
BackGround = [1.0, 1.0, 1.0],
Ticks = Automatic,
ViewingBox = Automatic,
RealValuesOnly = FALSE,
Labeling = TRUE,
Discont = FALSE,
GridLinesStyle = DashedLines,
ForeGround = [0.0, 0.0, 0.0],
AxesOrigin = Automatic,
LineWidth = 1,
PointStyle = FilledSquares,
GridLines = None,
Arrows = FALSE,
GridLinesWidth = 1,
Scaling = UnConstrained,
GridLinesColor = [0.752907, 0.752907, 0.752907]

)

Now the value of the option Axes is the default value set by plot2d (which is
the value Origin), or read from the preferences of the MuPAD’s graphic tool
VCam:

>> plot(s)

Changes:

A plot::Scene is a new function.

plot::Surface3d – graphical primitive for a three-dimensional sur-
face plot

plot::Surface3d([x, y, z], u = a..b, v = c..d) represents a plot
of the surface defined by (u, v) 7→

(
x(u, v); y(u, v); z(u, v)

)
with (u, v) ∈ [a, b]×

[c, d].

123

Creating Elements:

A plot::Surface3d([x, y, z], u = a..b, v = c..d <, option1,
option2, ... >)

Parameters:
x, y, z — arithmetical expressions in u and v
u, v — identifiers
a, b, c, d — arithmetical expressions
option1, option2, ... — plot option(s) of the form

OptionName = value

Related Domains: plot::Curve3d , plot::Function3d , RGB

Related Functions: plot , plot3d , plot::copy

Details:

A Objects generated by plot::Surface3d represent graphical primitives
for three-dimensional surfaces that can be displayed via plot(...) , or
used with other graphical primitives of the plot library.

A An object of plot::Surface3d has type "graphprim" , i.e., if o is such
an object, then the result of type(o) is the string "graphprim" .

A Options option1, option2, ... are specified by equations Option-
Name = value . The following table gives an overview of the available
options:

OptionName admissible values default value
Color [Flat] , [Flat , [r,g,b]] ,

[Height] ,
[Height , [r,g,b], [R,G,B]] ,
[Function , f]

[Height]

Grid [integer] [20,20]
LineStyle SolidLines , DashedLines SolidLines
LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Smoothness [integer] [0]
Style [Points] [ColorPatches ,

[WireFrame , Mesh] AndMesh]
[WireFrame , ULine]
[WireFrame , VLine]

124

OptionName admissible values default value
[HiddenLine , Mesh]
[HiddenLine , ULine]
[HiddenLine , VLine]
[ColorPatches , Only]
[ColorPatches , AndMesh]
[ColorPatches , AndU-
Line]
[ColorPatches , AndV-
Line]
[Transparent , Only]
[Transparent , AndMesh]
[Transparent , AndULine]
[Transparent , AndVLine]

Title strings ""
TitlePosition [x, y]

See plot3d for further details on each option.

A Scene options for the parameters option1, option2, ... are
not allowed! One may pass scene options to the call of plot , or use
plot::Scene to create an object representing a graphical scene.
Cf. example 1.

!

A A so-called attribute of a graphical primitive is a named entry of the object
which can be accessed via the slot operator :: .

Each attribute has the property “read”, i.e., the value of an attribute attr
of a graphical primitive o can be read with o::attr . If the attribute also
has the “write” property, then the value of the attribute can be changed
with o::attr := new_value .

The following attributes are available for a surface primitive:

125

attribute values properties
options A table of plot options of the

surface primitive. Note that if
you change the value of this at-
tribute, the entries of the as-
signed table are not checked to
be valid plot options for surface
primitives. Invalid entries lead
to runtime errors.
The initial value of this at-
tribute is the table stored
under the domain entry
"defaultOptions" , where
such options are replaced and
added, respectively, which
are given with the parameters
option1, option2, ... of
the creating call.

read/write

plotdata List of the plot data of the sur-
face primitive in a plot3d con-
forming syntax (see the method
"getPlotdata" below). Note
that the value of this attribute
should only be used if the at-
tribute refreshPlotdata has
the value FALSE(see below).

read

range1 The first parameter of the sur-
face and its range in the form
ident1 = a..b . The initial
value is the parameter u =
a..b .

read/write

range2 The second parameter of the
surface and its range in the
form ident2 = c..d . The
initial value is the parameter v
= c..d .

read/write

126

attribute values properties
refreshPlotdata A boolean value which sig-

nals whether the plot data
of the surface primitive must
be (re-)build with the method
"getPlotdata" (see below).
If its value is FALSE, then the
plot data of the surface prim-
itive is stored in the attribute
plotdata . The initial value
is TRUE. See the help page of
plot::Curve2d for an exam-
ple.

read/write

term The term of the surface in form
of a list of three arithmetical ex-
pressions. The initial value is
the parameter [x, y, z] .

read/write

See the examples of the help page of plot::Function3d about work-
ing with attributes.

Operands: An object of plot::Surface3d consists of three operands. The
first operand is the list [x, y, z] . The second operand is the first parameter
of the surface and its range in the form u = a..b , and the third one is the
second parameter of the surface and its range in the form v = c..d .

Important Operations:

A Operands of a surface primitive can be accessed either using the system
function op , the index operator [] , or using the attributes described
above. For example, if surface is such an object, then the calls op(surface,1) ,
surface[1] and surface::term return the list [x, y, z] .

Via surface[1] := [x_new, y_new, z_new] or surface::term
:= [x_new, y_new, z_new , the parametrization of a surface plot can
be changed.

See the methods "op" , "_index" , "set_index" and "slot" below.

A Use the slot operator :: to get or set plot options of such objects af-
terwards, i.e., when they have been created. For example, if surface
is such an object, then surface::Color := RGB::Red changes the
color of the surface primitive surface to red.

Result of Evaluation: Evaluating an object of the domain type plot::Surface3d
returns itself.

127

Function Call: Calling an object of plot::Surface3d as a function yields
the object itself, regardless of the arguments. The arguments are not evaluated.

Entries:

defaultOptions is a table of plot options for surface primitives and their
default values. Each entry has the form OptionName = default_value .

When an object of the domain plot::Surface3d is created, then
a copy of this table is stored under the attribute options (see the
table of attributes above), where those options are added and re-
placed, respectively, which are given by the (optional) parameters
option1, option2, ... of the creating call (see “Creating El-
ements” above).

Plot options, which are not contained in the table stored under the
attribute options will not be included in the plot data of the ob-
ject created by the method "getPlotdata" (see below).

For those options, the corresponding default value either is set by
a graphical scene, if the option also exists as a scene option (such
as the option PointWidth), or it is internally set by the function
plot3d which is used to plot the object. See the table of plot op-
tions above, which gives a summary of the available plot options
for function primitives and their default values.

See the examples of the help page of plot::Function3d .

To change the default value of some plot options, the option name
and its default value may be added to the table "defaultOptions" ,
or replaced by a new value, respectively.

optionNames is a set of the available option names for plots of three-dimensional
surfaces.

Access Methods

Method _index : indexed access to the operands of a surface primitive

_index(dom surface, positive integer i)

A Returns the i th operand of surface . See “Operands” above for a
description of the operands of surface . If i is greater than 3, then
FAIL is returned.

A This method overloads the system function _index , i.e., one may
use it in the form surface[i] , or in functional notation _in-
dex(surface, i) .

128

Method dimension : dimension of a surface primitive

dimension(dom surface)

A Returns the integer 3.

Method getPlotdata : the plot data of a surface primitive

getPlotdata(dom surface)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of surface in a plot3d conforming syntax, i.e., it has the form
[Mode = Surface, [...], ...] .
For example, with s := plot::Function3d::getPlotdata(surface)
the call plot3d(s[1]) gives a plot of surface .

A Only those plot options will be included in the plot data of the sur-
face, that are contained in the table stored under the attribute op-
tions (see the table of attributes above). For any other plot option
not contained in this table, the corresponding default value set by
the function plot3d for surfaces is used when plotting the object.

A The result is stored as the value of the attribute plotdata of sur-
face .

A A call of this method sets the value of the attribute refreshPlot-
data of surface to FALSE.

A This method is called from plot::Scene to build the plot data of
the graphical scene.

Method nops : number of operands of a surface primitive

nops(dom surface)

A Returns the integer 3.

A This method overloads the system function nops , i.e., one may use
it in the form nops(surface) .

Method op : extract operands of a surface primitive

op(dom surface, positive integer i)

A Returns the i th operand of function . See “Operands” above for a
description of the operands of surface . If i is greater than 3, then
FAIL is returned.

A This method overloads the system function op , i.e., one may use it
in the form op(surface, i) .

129

Method set_index : set operands of a surface primitive

set_index(dom surface, positive integer i, any val)

A Replaces the i th operand of surface by the value val . See “Operands”
above for a description of the operands of surface .

A If i is greater than 3, or if val is not an admissible value for the i th
operand, then a warning message is issued. In this case the call of
this method has no effect on the object surface .

A A call of this method sets the value of the attribute refreshPlot-
data of surface to TRUE.

Method slot : read and write attributes and plot options

slot(dom surface, string slotname)

A Reads the value of the slot slotname of surface . slotname may
either be the name of an attribute or the name of a plot option. See
the tables of available plot options and attributes above.

A If slotname is the name of a plot option, but the option is not con-
tained in the table stored under the attribute options , then FAIL
is returned.
If slotname is an invalid attribute or option, then an error message
is issued.

A This method overloads the system function slot , i.e., one may
use it in the form surface::slotname_id (here, slotname_id
must be the identifier corresponding to the string slotname), or in
functional notation slot(surface, slotname) .

slot(dom surface, string slotname, any val)

A Changes the value of the attribute or option with the name slot-
name to the value val .

A If there is no attribute or option with the name slotname , or if val
is not an admissible value for slotname , then a warning message
is issued. In this case, the value of slotname remains unchanged.

A This method overloads the system function slot , i.e., one may
use it in the form surface::slotname_id := val (here, slot-
name_id must be the identifier corresponding to the string slot-
name), or in functional notation slot(surface, slotname, val) .

A The value of the attribute refreshPlotdata of surface is set to
TRUE.

130

Technical Methods

Method checkOption : check a plot option

checkOption(equation OptionName = value)

A This method checks whether OptionName is a known plot option
for surface primitives (see the table of available plot options above),
and value is an admissible value for this option.

A If both is correct, then the list [TRUE, OptionName, newValue]
is returned. Note that the value of the option could have been con-
verted into an admissible format. Thus, newValue must be used as
the value of the option OptionName instead of value .

A Otherwise, the list [FALSE, error_msg] is returned. The string
error_msg is a description of the located problem, which can be
passed, for example, to the system function error to raise a user-
specified exception.

Method copy : create a copy of a surface primitive

copy(dom surface)

A Returns a copy of the object surface .

A This method is called from the function plot::copy . See its help
page for details.

Method modify : modify a copy of a surface primitive

modify(dom surface, equation(s) Name1 = value1, ...)

A Creates a copy of the object surface and changes the slots Name1,
... of this copy to the new values value1, ...

A The identifiers Name1, ... must be names of attributes or plot
options of the domain plot::Surface3d . Otherwise a warning
message is issued, and the slot remains unchanged. Also, if one of
the values value1, ... is not an admissible value for the cor-
responding attribute or plot option, respectively, the change of the
slot is ignored.
See the tables of available options and attributes above.

A A call of this method sets the value of the attribute refreshPlot-
data of the copy of surface to TRUE.

A This method is called from the function plot::modify .

131

Method print : print a surface primitive

print(dom surface)

A This method returns an unevaluated expression of the form plot::Surface3d([x,
y, z], u = a..b, v = c..d) . It is used to print objects of
plot::Surface3d to the screen.

A See the system function print for details.

Example 1. The following call returns an object representing a plot of the sur-
face defined by (u, v) 7→ (u, sin(v), cos(v)) with (u, v) ∈ [0,2π]× [−1,1]:

>> s1 := plot::Surface3d(
[u, sin(v), cos(v)], u = 0..2*PI, v = -1..1

)

plot::Surface3d([u, sin(v), cos(v)], u = 0..2 PI, v = -1..1)

To plot this surface in a graphical scene, call:

>> plot(s1)

Plot options of the surface can be given as additional parameters in the
creating call, such as displaying the graph as an opaque object together with
the parameter lines:

>> s2 := plot::Surface3d(
[u, sin(v), cos(v)], u = 0..2*PI, v = -1..1,
Style = [HiddenLine, Mesh]

)

plot::Surface3d([u, sin(v), cos(v)], u = 0..2 PI, v = -1..1)

>> plot(s2)

To change default values of some scene options, pass the scene options to
the call of plot as additional arguments. For example, to change the style of
the axes:

>> plot(s2, Axes = Corner)

See the help page of plot::Scene for available scene options.
Please refer to the examples of the help page of plot::Function3d about

working with options and attributes.

132

Changes:

A plot::Surface3d is a new function.

plot::Turtle – graphical primitive for turtle graphics

plot::Turtle() creates a turtle, which is a drawing device which under-
stands few simple commands.

Creating Elements:

A plot::Turtle()

Related Domains: plot::Lsys , plot::Scene

Related Functions: plot

Details:

A Objects generated by plot::Turtle represent a simple drawing device
called a turtle. A turtle may be used to create 2-dimensional line draw-
ings.

A A turtle has a position in the plane, a direction and a colour. It under-
stands only few commands: Move forward and draw a line, move with-
out drawing, turn left, turn right, change your colour. Further a turtle
may remember its current state (position, direction and colour) by push-
ing it onto a stack and change its state to a former one by popping it off
from the stack.

A One may display the path which a turtle has been taken since its creation
using the function plot . One may also insert a turtle into a graphical
scene of the plot library like any other graphical object.

A The state of a turtle may be changed by procedures which are called meth-
ods of the turtle. These methods can be accessed via the slot operator :: .
One method of a turtle for example has the name line . With the call
t::line(1) one causes the turtle t to draw a line of length 1 in its cur-
rent direction.

The following methods are available for a turtle t :

A t::color(c) changes the actual colour of the turtle t to c . The colour
must be given as a list of 3 real-valued numbers in the range between 0
and 1, similar to the other colour values of the plot library.

The method returns the turtle.

133

A t::left(deg) changes the direction of the turtle t . It rotates left for
deg degrees.

The method returns the turtle.

A t::right(deg) changes the direction of the turtle t . It rotates right for
deg degrees.

The method returns the turtle.

A t::line(len) causes the turtle t to move forward in its current direc-
tion, drawing a line in its current colour. The length of the line is len .

The method returns the turtle.

A t::move(len) causes the turtle t to move forward in its current direc-
tion without drawing a line. The length of the move is given by len .

The method returns the turtle.

A t::push() causes the turtle t to save its current state, i.e., its position,
direction and colour. The state is pushed onto a stack.

The method returns the turtle.

A t::pop() restores the state of the turtle to the one which is currently
stored on the stack. The top element of the stack is popped off the stack.

The method returns the turtle.

A The initial state of a turtle after creation is the following: It is located at
the origin, heading north in the direction of the point (0,1). Its colour is
green.

A An object of plot::Turtle has type "graphprim" , i.e., if o is such an
object, then the result of type(o) is the string "graphprim" .

Result of Evaluation: Evaluating an object of the domain type plot::Turtle
returns itself.

Access Methods

Method getPlotdata : create the plot data of a turtle

getPlotdata(dom t)

A Returns a list of an inner list, where the inner list is a plot descrip-
tion of t in a plot2d and plot3d conforming syntax, respectively,
i.e., it has the form [Mode = List, [polygon(...)], ...] .

A This method is called from plot::Scene to build the plot data of
the graphical scene.

134

Method slot : read turtle methods

slot(dom t, string slotname)

A Reads the value of the slot slotname of t . slotname must be the
name of a method of the turtle, see above.

A If slotname is an invalid method name, then an error message is
issued.

A This method overloads the system function slot , i.e., one may use
it in the form t::slotname_id (here, slotname_id must be the
identifier corresponding to the string slotname), or in functional
notation slot(t, slotname) .

A One may not change a turtles method or state using the slot func-
tion.

Technical Methods

Method print : print a turtle

print(dom t)

A This method returns a string representing the turtle. This string
shows the turtles current position and direction, but not the other
aspects of its state, like the path which has been taken by the tur-
tle in the past. It is used to print objects of plot::Turtle to the
screen.

A See the system function print for details.

Example 1. We create a turtle, let it draw a triangle and then show its path:

>> T := plot::Turtle():
T::right(90): T::line(1):
T::left(120): T::line(1):
T::left(120): T::line(1):
plot(T, Axes = None)

Example 2. We draw a star-like object:

>> T := plot::Turtle():
for i from 1 to 36 do

T::right(170); T::line(1)
end_for:
plot(T, Axes = None)

135

Changes:

A plot::Turtle used to be Turtle .

A Adapted to comply with the plot library.

plot::contour – generate contour and implicit plots

plot::contour([x, y, z], u = a..b, v = c..d) returns a contour
plot of the surface defined by (u, v) 7→

(
x(u, v); y(u, v); z(u, v)

)
with (u, v) ∈

[a, b]× [c, d].

Call(s):

A plot::contour([x, y, z], u = a..b, v = c..d <, op-
tion1, option2, ... >)

Parameters:
x, y, z — arithmetical expressions in u and v
u, v — identifiers
option1, option2, ... — plot option(s) of the form option =

value , including the special plot
options Colors and Contours (see
below)

Return Value: an object of the domain type plot::Group .

Options:

Colors — either the list [Flat <, color >] , [Height <,
fromColor, toColor >] or [Curve,color1,
...] , where color , fromColor , toColor and
color1, ... are RGB color specifications, i.e., lists of
three real numerical values between 0 and 1.

Contours — either an integer greater than two, or a list of the form
[r1, . . . , rn] of real numerical values.

Related Functions: plot , plot2d , plot::density , plot::implicit

Details:

A Call plot(...) to display the contour plot created on the screen.

A The contour lines are drawn on the bottom of the viewing box by default.
The result of plot::contour is a two-dimensional object, and the plot
options option1, option2, ... must be valid plot options for two-
dimensional graphical objects. See plot2d for details.

136

A With option Style = Attached , the contour lines are drawn with re-
spect to the height of the surface which results in a graphical object of
dimension three.

Here, the plot options option1, option2, ... must be valid plot
options for three-dimensional graphical objects. See plot3d for details.

A Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

Option <Colors >:

A The default value for color is red, the default values for fromColor
and toColor are yellow and red, respectively.

Option <Contours >:

A Giving in integer specifies the number of contour lines to be drawn. This
is the default case using eight contour lines.

Example 1. The following call returns an object representing a contour plot of
the surface defined by (u, v) 7→ (u, v, euv) with (u, v) ∈ [−1,1]× [−1,1]:

>> c:= plot::contour([x, y, exp(x*y)], x = -1..1, y = -1..1)

plot::Group()

To plot this object on the screen, call plot :

>> plot(c)

With the option Style = Attached , we get the following three-dimensional
contour plot of the same surface:

>> plot(plot::contour(
[x, y, exp(x*y)], x = -1..1, y = -1..1, Style = Attached

))

If you want to color the contour plot with respect to the height of the sur-
face, you may enter:

>> plot(plot::contour(
[x, y, exp(x*y)], x = -1..1, y = -1..1, Colors=[Height]

))

Here, the default color values from red to yellow are used.

137

Example 2. If you want to plot multiple contour plots in a single graphical
scene, first create the desired contour plots, such as:

>> c1:= plot::contour(
[x, y, sin(x*y)], x = -PI..PI, y = -PI..PI, Grid = [20,20]

):
c2:= plot::contour(

[x, y, x + 2*y], x= -PI..PI, y = -PI..PI, Colors=[Flat,RGB::Blue]
):

and collect them into a single graphical scene:

>> plot(c1, c2)

Example 3. We plot the implicit function defined by
(
x2 + y2)3−

(
x2− y2)2 =

0:

>> plot(plot::contour(
[x, y, (x^2 + y^2)^3 - (x^2 - y^2)^2], x = -1..1, y = -

1..1,
Contours=[0], Grid=[20,20]

))

Anyway, you may prefer the function plot::implicit that is used to plot
graphs of implicit functions and therefore usually yields better results:

>> plot(plot::implicit(
(x^2 + y^2)^3 - (x^2 - y^2)^2, x = -1..1, y = -1..1

))

Changes:

A plot::contour used to be plotlib::contourplot .

A plot::contour is now part of the new plot library plot , and its call-
ing syntax and the return value were changed.

plot::copy – create a copy of a graphical primitive

plot::copy(o) returns a copy of the graphical object o.

Call(s):

A plot::copy(o)

138

Parameters:

o — graphical object, i.e., an object of type "graphprim"

Return Value: an object of the same domain type as o.

Related Functions: plot::modify

Details:

A If a plot option of o is changed via the slot operator :: , e.g., the color
of o by calling o::Color:= rgbvalue , then the object o (and possibly
the objects of that o consists) is changed due to the reference effect of
domains (see Example 2). With plot::copy you can explicitly create a
copy of o first, before changing plot options of this copy.

Example 1. We create an object representing a two-dimensional function plot:

>> f:= plot::Function2d(sin(x), x = 0..2*PI):
plot(f)

If we want to add another graph to the same graphical scene, built of f by
changing its term to the cosine function and its color to blue, we must first
create a copy of f and then change the term attribute term and the options
Color and Title as desired:

>> g:= plot::copy(f): g::term:= cos(x):
g::Title := "cos(x)": g::Color:= RGB::Blue:
plot(f, g)

Example 2. This example illustrate the reference effect for graphical objects.
Let us create a scene consisting of three graphical objects:

>> s:= plot::Scene(
plot::Function2d(1/x, x = 1..50),
plot::Pointlist([n, sin(n)/n] $ n = 1..50, Color = RGB::Blue),
plot::Function2d(-1/x, x = 1..50)

):
plot(s)

If we want to increase the size of the points of the graph of the sequence
n 7→ sin(n)

n , we may extract the corresponding graphical object of that scene:

>> p:= s[2]

plot::Pointlist()

139

and set the corresponding plot option PointWidth to the value 50:

>> p::PointWidth:= 50: plot(s)

Changes on the object p reflects changes on every object that consists of
p, such as the graphical scene s in this example. This is called the "reference
effect".

Changes:

A plot::copy is a new function.

plot::cylindrical – generate plots in cylindrical coordinates

plot::cylindrical([rho, phi, z], u = a..b, v = c..d) represents
a plot of the surface defined by (u, v) 7→ (ρ(u, v);φ(u, v); z(u, v)) with (u, v) ∈
[a, b]× [u, v] in the cylindrical coordinates ρ, φ, z.

Call(s):

A plot::cylindrical([rho, phi, z], u = a..b, v =
c..d <, option1, option2 >, ...)

Parameters:
rho, phi, z — arithmetical expressions in u and v
u, v — identifiers
a, b, c, d — arithmetical expressions
option1, option2, ... — plot option(s) for three-dimensional

graphical objects

Related Domains: plot::Surface3d

Related Functions: plot , plot3d , plot::spherical , plot::polar

Return Value: a graphical object of the domain type plot::Surface3d .

Details:

A Call plot(...) to display the result on the screen.

A The following relationship between cylindrical coordinates and Carte-
sian coordinates holds:

x = ρ cosφ, y = ρ sinφ, z = z.

140

A The plot options option1, option2, ... must be valid plot options
for three-dimensional graphical objects. See plot::Surface3d for de-
tails.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

Example 1. We define a three-dimensional surface in cylindrical coordinates:

>> s:= plot::cylindrical(
[1, u, v], u = -PI..PI, v = -1..1, Grid = [20, 20]

)

plot::Surface3d([cos(u), sin(u), v], u = -PI..PI, v = -1..1)

and plot it on the screen:

>> plot(s, Axes = Box)

Example 2. Here we illustrate how to combine multiple cylindrical plots into
a single graphical scene. We start by creating the two objects representing the
cylindrical plots:

>> s1:= plot::cylindrical(
[u, u, v], u = -PI..PI, v = -PI..PI,
Grid = [30, 30], Color = [Height]

);
s2:= plot::cylindrical(

[-u, u, v], u = -PI..PI, v = -2..2,
Grid = [30, 30], Color = [Height]

)

plot::Surface3d([u cos(u), u sin(u), v], u = -PI..PI,

v = -PI..PI)

plot::Surface3d([-u cos(u), -u sin(u), v], u = -PI..PI,

v = -2..2)

Then the next call plots these two objects in one graphical scene and sets the
style of the axes to the value Box :

>> plot(s1, s2, Axes = Box)

141

Changes:

A plot::cylindrical used to be plotlib::cylindricalplot .

A plot::cylindrical is now part of the new plot library plot , and
thus its calling syntax and the return value were changed.

plot::data – create two- and three-dimensional plots of data

plot::data(format, datalist) plots data specified in datalist in dif-
ferent formats, such as points, columns, beams or pie-charts.

Call(s):

A plot::data(format, datalist <, option1, option2,
... >)

Parameters:
format — either Beam, Column , Curve , Line ,

Piechart2d , Piechart3d , Plain ,
Points , LinesPoints ,
CurvesPoints or Surface

datalist — either list of numerical values, or a list
of lists, where each inner list is a list of
numerical values

option1, option2, ... — plot option(s) of the form option =
value , including the special plot
option Colors

Options:

Colors — list of RGB color specifications, i.e., list of three real
numerical values between 0 and 1.

Return Value: an object of the domain type plot::Scene .

Related Functions: plot2d , plot3d , plot::Pointlist ,
plot::Polygon

Details:

A Call plot(...) to display the plot of the data on the screen.

A Note that plot::data does not return a graphical object but a
graphical scene! !

142

A The plot options option1, option2, ... must be valid plot options
for two or three-dimensional graphical scenes, respectively. See plot2d
and plot3d for details.

Option <Piechart2d and Piechart3d >:

A A two- or three-dimensional piechart is drawn, respectively.

A You can specify a color for every object with the plot option Colors .

Option <Plain and Surface >:

A These plotting types are used to create a 3-d surface plotting from data.
datalist must be a list of lists of numeric values. Each of the values in
the list [z_i_1,...,z_i_n] are interpreted as the z-value correspond-
ing to the y-value i and x-values 1,...,n , i.e., the points (1,i,z_1),...,(n,i,z_n) .
Consists the list of mlists i=1,...,m .

A Surface computes the 2-dimensional Lagrange interpolation polyno-
mial to plot the surface. datalist is a list [d_1,...,d_n] .

A You can specify a color for every object with the plot option Colors .

Option <Points , LinesPoints and CurvesPoints >:

A With Points a point for each entry of datalist is drawn.

A With LinesPoints , these points are connected by lines.

A With CurvesPoints , these points are connected by cubic splines.

A You can specify a color for every object with the plot option Colors .

Option <Line , Curve , Column and Beam>:

A These plotting types are used to create a 2-d plotting from data. datal-
ist must be a list of lists of numeric values. Each of the values in the
list [y_1,...,y_n] are interpreted as the y-value corresponding to the
x-values 1,...,n , i.e., the points (1,y_1),...,(n,y_n) are plotted.
The values of one list defines an object.

A Curve computes the Lagrange interpolation polynomial to plot the curve.

A You can specify a color for every object with the plot option Colors .

143

Example 1.

>> plot(plot::data(
Piechart2d, [5,12,38,14,25]

))

>> plot(plot::data(
Piechart3d, [5,12,38],
Colors = [RGB::RoyalBlue, RGB::VioletRed, RGB::GreenPale]

))

Example 2.

>> plot(plot::data(
Lines, [[5,10,24,-3], [6,5,2,18], [19,45,12,-10]],
Colors = [RGB::Red, RGB::Green, RGB::Blue]

))

Example 3.

>> plot(plot::data(
Columns, [[5,10,24,-3,6,5,2,18]]

))

>> plot(plot::data(
Columns, [[5,10,24,-3], [6,5,2,18], [19,45,12,-10]],
Colors = [RGB::Red, RGB::Green, RGB::Blue]

))

Example 4.

>> plot(plot::data(
Beams, [[5,10,24,-3], [6,5,2,18], [19,45,12,-10]],
Colors = [RGB::Red, RGB::Green, RGB::Blue],
Axes = Box

))

Example 5.

>> plot(plot::data(
Curves, [[5,10,24,-3], [6,5,2,18], [19,45,12,-10]],
Colors = [RGB::Red, RGB::Green, RGB::Blue]

))

144

Example 6.

>> plot(plot::data(
Surface, [[5,10,24,-3], [6,5,2,18], [19,45,12,-10]]

))

Example 7.

>> plot(plot::data(Plain,
[[5,10,24,-3], [6,5,2,18], [19,45,12,-10]],
Colors = [RGB::Red, RGB::Red, RGB::Green]

))

Changes:

A plot::data used to be plotlib::dataplot .

A plot::data is now part of the new plot library plot , and its calling
syntax and the return value were changed.

A new plot formats: Points , LinesPoints and LinesPoints .

plot::density – generate two-dimensional density plots

plot::density([x, y, z], u = a..b, v = c..d) returns a density
plot of the surface defined by (u, v) 7→

(
x(u, v); y(u, v); z(u, v)

)
with (u, v) ∈

[a, b]× [c, d].

Call(s):

A plot::density([x, y, z], u = a..b, v = c..d <, op-
tion1, option2, ... >)

Parameters:
x, y, z — arithmetical expressions in u and v
u, v — identifiers
option1, option2, ... — plot option(s) of the form option =

value

Return Value: an object of the domain type plot::Scene .

Related Functions: plot , plot3d , plot::contour

145

Details:

A Call plot(...) to display the density plot created on the screen.

A Note that plot::density does not return a graphical object but
a graphical scene consisting of the surface as defined!
Moreover, the scene returned is of dimension three, but the focal
point and the camera point is set such that the plot looks like a
two-dimensional plot.

!

A The plot options option1, option2, ... must be valid plot options
for three-dimensional graphical scenes. See plot3d for details.

Example 1. The following call returns an object representing a density plot of
the surface defined by (u, v) 7→

(
u, v, 1

2

(
sin(u2 + v2))with (u, v)∈ [0, π]× [0, π]:

>> d:= plot::density([u, v, 1/2*sin(u^2 + v^2)], u = [0,PI], v = [0, PI])

plot::Scene()

To plot this surface on the screen, call plot :

>> plot(d)

Changes:

A plot::density used to be plotlib::densityplot .

A plot::density is now part of the new plot library plot , and its call-
ing syntax and the return value were changed.

plot::HOrbital – visualize the electron orbitals of a hydrogen atom

plot::HOrbital(n, l, m) yields a visualization of the hydrogen electron
orbital with quantum numbers n, l , m.

Call(s):

A plot::HOrbital(n, l, m, Option1, Option2, ...)

Parameters:
n — the principal (energy) quantum number: a positive integer
l — the angular momentum quantum number: an integer between 0

and n - 1
m — the magnetic quantum number: an integer between -l and l

146

Options:

Option1, Option2, ... — options allowed in
plot::Surface3d

Return Value: an object of type plot::Surface3d .

Details:

A See the ’Background’ below for a physical interpretation of the surface
generated by plot::HOrbital .

A plot::HOrbital generates a surface of type plot::Surface3d . It
uses the default settings with one exception: a specialized color scheme
is used to depict information on the radial part of the electron orbit (see
“Background”). Using the Color option of plot::Surface3d , this
internal color scheme may be overridden by a user-defined color.

A The surface generated by plot::HOrbital may be passed to the func-
tion plot::Scene to create a graphical scene. In the call to plot::Scene ,
you may specify scene options. Call plot(...) to display the scene.

Alternatively, you can pass the surface directly to plot together with
scene options.

Example 1. The following call yields a symbolic surface object:

>> orbit := plot::HOrbital(3, 2, 0)

plot::Surface3d([cos(phi1) sin(theta1)

2 2
(1.5 cos(theta1) - 0.5) , sin(phi1) sin(theta1)

2 2
(1.5 cos(theta1) - 0.5) , cos(theta1)

2 2
(1.5 cos(theta1) - 0.5)], theta1 = 0..PI, phi1 = 0..2 PI)

We pass this object to plot to render the object:

>> plot(orbit, Ticks = None)

With the Grid -Option of plot::Surface3d , a smoother surface is gener-
ated. The scene option Axis = None is used in plot to switch off the default
box around the graphical scene:

>> orbit := plot::HOrbital(3, 2, 0, Grid = [30, 30],
Title = "quantum numbers: 3, 2, 0"):

plot(orbit, Axes = None)

147

The internal coloring is replaced by a new coloring scheme:

>> orbit := plot::HOrbital(3, 2, 0, Grid = [30, 30],
Color = [Height]):

plot(orbit)

>> delete orbit:

Background:

A The probability density of an electron is the absolute square of the quan-
tum mechanical wave function ψ(x, y, z). With the usual polar coordi-
nates

x(r, φ, θ) = r cos(φ) sin(θ) ,
y(r, φ, θ) = r sin(φ) sin(θ) ,
z(r, φ, θ) = r cos(θ) ,

the wave function has the form ψ(x, y, y) = R(r) Y(φ, θ). The surface is a
visualization of the real part of the function Y(φ, θ): the surface is defined
by the parameterization

x(φ, θ) = Re(Y(φ, θ))2 cos(φ) sin(θ) ,
y(φ, θ) = Re(Y(φ, θ))2 sin(φ) sin(θ) ,
z(φ, θ) = Re(Y(φ, θ))2 cos(θ) .

The distance of a surface point to the origin is Re(Y(φ, θ))2. Hence, the
real part of the electron density is reflected by the shape of the surface:
the “bulges” indicate high probabilities.

The radial part R(r) of the wave function ψ(x, y, z) = R(r) Y(φ, θ) is only
used in the coloring scheme of the surface: high values of R(r)2 yield
bright colors, small values yield dark colors. Red colors indicate points
where the real part of the wave function Re(ψ) is positive. Blue colors
indicate negative values.

A The orbits corresponding to an energy index n are referred to as a “shell”.
Traditionally, the following shell symbols are used:

n 1 2 3 4 ...
shell symbol K L M N ...

The following symbols are associated with the angular momentum:

l 0 1 2 3 4 5 ...
symbol s p d f g h ...

148

Changes:

A plot::HOrbital is a new function.

plot::implicit – implicit plot of smooth functions

plot::implicit is used to get a plot of f = 0 for a smooth f from R
2 → R.

f must be regular almost everywhere on this curve.

Call(s):

A plot::implicit(expr, x=a..b, y=c..d <, options >)

A plot::implicit([expr, ...], x=a..b, y=c..d <,
options >)

Parameters:
expr — function(s) to plot, given as arithmetical expression(s)

in two identifiers
x, y — identifiers used in expr
a..b, c..d — ranges to plot

Options:

Grid = gridval — grid division to use for finding
starting points

Colors = [col1, ...] — colors used for plotting the
components.

MinStepsize = hmin — minimum step-size for tracing a
contour

MaxStepsize = hmax — maximum step-size for tracing a
contour

StartingStepsize = hstart — step-size the iteration starts with
Precision = eps — precision of the Newton iteration
Contours = [c1, ...] — contours to plot
Splines = Boolean — If set to TRUE, the contours will

be plotted with cubic splines;
otherwise, straight lines will be
used. Default: FALSE.

Factor = Boolean — If set to TRUE, each function will
be factored prior to iterating.
This may improve the results.
Default: FALSE.

Return Value: a graphical object of the domain type plot::Group .

Related Functions: plot::contour , plotfunc2d , plot2d

149

Details:

A plot::implicit plots f = 0 by a curve tracking method. For this, it
first generates start points with a Newton iteration starting at grid points
(the number of grid points can be controlled with the option Grid) and
then iteratively applies the implicit function lemma to get a local approx-
imation to the curve. This approximation is then improved with another
Newton step. On hitting a point where f is not regular, the iteration
stops.

Option <Grid = gridval >:

A gridval must either be a list of two positive integers, the number of
divisions in the two coordinates, or a single integer, which is equivalent
to repeating this integer twice.

A Increase this number if you suspect not all components are found. The
default is [5, 5] .

Option <Colors = [col1, ...] >:

A The colors used for plotting the components. A list is expected, each
element of which must be a valid argument for the Color=[Flat,...]
option of plot2d .

A Default: [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0],
[1.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0,
1.0, 1.0]] .

Option <MinStepsize = hmin >:

A The minimum step-size for the iteration following a contour. This is a
lower limit for the adaptive iteration to avoid spending a lot of time with-
out real progress.

A The default is 1/1.000.000 of the minimum of width or height of the area
under consideration.

A Increase this number if you think the algorithm gets stuck in a place
unimportant to your application.

150

Option <MaxStepsize = hmax>:

A MaxStepsize is complementary to MinStepsize in that it defines the
maximum step-width for the iteration.

A If this value is set too high, the algorithm may skip over details of the
curves; if it is set lower than needed, the computation takes longer.

A The default is 1/100 of the shorter of width and height.

Option <StartingStepsize = hstart >:

A The step-size the iteration starts with. The default is 1/1.000 of the shorter
side of the area.

Option <Precision = eps >:

A This floating-point value indicates the relative precision which should be
achieved in the Newton iteration.

A Lower values may lead to more accurate results, but slow down the com-
putation. Values smaller than 10.0−DIGITS may cause the function not to
return.

A The default is 10.02−DIGITS.

Option <Contours = [c1, ...] >:

A A list of values for which the functions implicitly defined by f (x, y) = ci
should be plotted.

A Default: [0] .

Example 1. Let’s have a look at elliptic curves:

>> plot(
plot::implicit((x^3 + x + 2) - y^2,

x = -5..5, y = -5..5),
Scaling=Constrained

)

151

Example 2. To demonstrate how to plot multiple implicit functions, we plot
y = x2, y = x and x = y2:

>> s:= plot::implicit(
[x^2 - y, x - y, x - y^2], x = -4..4, y = -4..4

):
plot(s)

Example 3. We plot the family x = y2 + c for c ∈ [−5,5]:

>> p:= plot::implicit(
y^2 - x, x = -1..25, y = -5..5, Contours = [$-5..5]

):
plot(p, Axes = Origin)

Example 4. plot::implicit handles quite complex expressions. In the fol-
lowing example, the circle around the origin is left out by many similar tools:

>> plot(
plot::implicit((1-0.99*exp(x^2+y^2))*(x^10-1-y),

x=-1.25..1.25,y=-1.1..2)
):

>> F2 := (x,y) -> x^4*y^4+sin(x)*cos(y)-(x-1)*(y-2)*exp(-x^2):
plot(plot::implicit(F2(x,y),x=-10..10,y=-10..10)):

>> delete F2:

Example 5. In some cases, DIGITS must be increased to get a correct result.
In the following example, problems occur around the origin with the default
setting of DIGITS when a small region is to be displayed. First, we display the
whole picture:

>> F3 := (x,y) -> y*(3*x^2-y^2)-(x^2+y^2)^2:
plot(plot::implicit(F3(x, y), x = -1..1, y = -1.3..0.7)):

Near the origin, numeric cancellation occurs. If you try to depict a small
area around the origin of the above curve, you need to increase DIGITS :

>> delete DIGITS:
plot(

plot::implicit(F3(x, y), x = -0.005..0.005, y = -0.005..0.005)
):

152

>> DIGITS := 15:
plot(

plot::implicit(F3(x, y), x = -0.005..0.005, y = -0.005..0.005)
):
delete DIGITS:

Example 6. We plot sin(5 ∗ sin(x) ∗ y) = 0. This is an example where multiple
implicit functions are found. With a low setting of DIGITS , strange artefacts
occur:

>> DIGITS := 50:
plot(

plot::implicit(sin(5*sin(x)*y), x = -5..5, y = -5..5)
):
delete DIGITS:

Background:

A Curve Tracking algorithms are usually found in numerics to track stable
and instable manifolds of dynamic systems and in homotopy methods
for finding roots of highly complicated functions.

Changes:

A plot::implicit is a new function.

plot::inequality – generate a 2D plot of inequalities

plot::inequality([f1, f2,...], left..right, bottom..top) serves
for displaying points (x, y) in the rectangle Q = [le f t, right]× [bottom, top] sat-
isfying the inequalities

f1(x, y) ≥ 0 and f2(x, y) ≥ 0 and . . . (1)

Call(s):

A plot::inequality([f1, f2, ...], left..right, bot-
tom..top <, n > <Colors = [c1, c2,
c3] >)

153

Parameters:
f1, f2, ... — real valued functions of two

variables: procedures
left, right, bottom, top — real numerical values
n — a nonnegative integer determining

the mesh size. The default value is
6.

Options:

Colors = [c1, c2, c3] — each of the colors c1 , c2 , c3 must be
an RGB specification, i.e., a list of three
real numerical values between 0 and 1.
The default colors are c1 =
RGB::Green , c2 = RGB::Yellow ,
c3 = RGB::Red .

Return Value: an object of the domain type plot::Group .

Details:

A The rectangle Q is divided into 2n × 2n subrectangles. With the default
value n = 6 , the drawing area is divided into 64 × 64 subrectangles.
This default produces a rather “discretized” plot. “Smoother” plots are
generated by larger values of n. Note, however, that increasing n by 1
may increase the run time by a factor of 4.

A A subrectangle is displayed with the color c1 if all its points (x, y) satisfy
f1(x, y) > 0 and f2(x, y) > 0 etc. Consequently, all points of this color are
guaranteed to satisfy (1).

A A subrectangle is displayed with the color c3 if there is at least one func-
tion fi such that all points in the subrectangle satisfy fi(x, y) < 0. Conse-
quently, all points of this color are guaranteed to violate (1).

A The remaining subrectangles are displayed with the color c2 . They cover
the boundary of the region defined by the inequalities (1).

A An object generated by plot::inequality may be passed to the func-
tion plot::Scene to create a graphical scene. In the call to plot::Scene ,
you may specify scene options. Call plot(...) to display the scene.

Alternatively, if the scene consists of only one “inequality object”, you
can pass this object directly to plot together with scene options.

A Interval arithmetic is used to check the inequalities. The input functions
must be suitable for this kind of arithmetic, i.e., the calls f1(Dom::Interval(left..right),
Dom::Interval(bottom..top)) etc. must produce valid intervals.
In MuPAD, interval implementations exist for most of the elementary
functions such as sin , exp , ln etc. However, special functions such as
Bessel functions, polylogarithms etc. must not turn up in f1, f2,

154

Example 1.

>> f1:= (x,y) -> x^2 + y^2 - 1:
p1:= plot::inequality([f1], -1..1, -1..1, 5)

plot::Group()

>> plot(p1, Scaling = Constrained, Axes = Box)

>> f2:= (x,y) -> cos(x) - y: f3:= (x,y) -> cos(x) + y:
p23:= plot::inequality([f2, f3], -PI..PI, -2..2, 5)

plot::Group()

>> plot(p23, Scaling = Constrained, Axes = Box)

>> p123:= plot::inequality(
[f1, f2, f3], -2..2, -1..1, 5,
Colors = [RGB::Red, RGB::Black, RGB::White])

plot::Group()

>> plot(p123, Scaling = Constrained, Axes = Box)

Changes:

A plot::inequality is a new function.

plot::line – graphical object for lines

plot::line(p1, p2) returns a polygon connecting the point p1 with the
endpoint p2.

Call(s):

A plot::line(p1, p2 <, option1, option2, ... >)

Parameters:
p1, p2 — points, i.e., objects of domain type

plot::Point or lists of two or three
arithmetical expressions, respectively

option1, option2, ... — plot option(s) of the form option =
value

Return Value: a graphical object of the domain type plot::Polygon .

155

Related Functions: plot , plot2d , plot3d , plot::Polygon

Details:

A Use the function plot to display the result on the screen.

A The plot options option1, option2, ... must be valid plot op-
tions for two- or three-dimensional graphical objects, respectively. See
plot2d and plot3d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

Example 1. We define a line starting at point (1; 2) and ending at point (3;−1):

>> l := plot::line([1, 2], [3, -1])

plot::Polygon()

To plot this line, call plot :

>> plot(l)

Use expose to expose the points of a line:

>> expose(l)

plot::Polygon(plot::Point(1, 2), plot::Point(3, -1))

Example 2. To change the color of the line from the previous example, enter:

>> l::Color := RGB::Green: plot(l, Axes = Box)

Here the scene option Axes = Box was given.

Changes:

A plot::line is a new function.

plot::modify – create modified copies of graphical objects

plot::modify(o, option1, option2, ...) creates a copy of the graph-
ical objects o and sets the plot options given in option1, option2, ... to
this copy.

156

Call(s):

A plot::modify(o <, option1, option2 >, ...)

Parameters:
o — graphical scene, or a graphical object

(i.e., an object of type "graphprim")
option1, option2, ... — plot option(s) of the form option =

value

Return Value: object of the domain type as o.

Related Functions: plot::copy

Details:

A If a plot option of o is changed via the slot operator :: , e.g., the color
of o by calling o::Color:= rgbvalue , then the object o (and possibly
the objects of that o consists) is changed due to the reference effect of
domains.

With plot::modify you can directly change plot options of a copy of
o.

A The plot options option1, option2, ... must be valid plot options
for two- or three-dimensional graphical scenes, respectively. See plot2d
and plot3d for details.

Note that plot options for graphical objects are not allowed! You
may give such options as optional arguments to the corresponding
function call creating the object oi (i = 1,2, . . .).

!

Example 1. We create an object representing a graph of a two-dimensional
function:

>> f:= plot::Function2d(sin(x), x = 0..2)

plot::Function2d(sin(x), x = 0..2)

Then the following call creates a copy of the object f and changes its color to
blue and the line width to the value 12:

>> g:= plot::modify(f, Color = RGB::Blue, LineWidth = 12)

plot::Function2d(sin(x), x = 0..2)

>> f::Color, f::LineWidth, g::Color, g::LineWidth

[Flat, [1.0, 0.0, 0.0]], FAIL, [Flat, [0.0, 0.0, 1.0]], 12

157

Changes:

A plot::modify is a new function.

plot::ode – plot the numerical solution of an ordinary differential
equation

plot::ode([t0, t1, ...], f, Y0, [G]) computes a mesh of numer-
ical sample points Y(t0),Y(t1), . . . representing the solution Y(t) of the first or-
der differential equation (dynamical system)

dY
d t

= f (t,Y) , Y(t0) = Y0 , t0, t ∈ R , Y0,Y(t) ∈ Cn .

The procedure

G : (t,Y)→ [x(t,Y), y(t,Y)] or G : (t,Y)→ [x(t,Y), y(t,Y), z(t,Y)]

maps these solution points (ti,Y(ti)) in R × Cn to a mesh of 2D plot points
[xi, yi] or 3D plot points [xi, yi, zi], respectively,

Call(s):

A plot::ode([t0, t1, ...], f, Y0, <method, >
<RelativeError = tol, > <Stepsize = h, >
[G1 <, Style = style1 > <, Color = c1>],
[G2 <, Style = style2 > <, Color = c2>],
...)

Parameters:
t0, t1, ... — the time mesh: real numerical values. If data are

displayed with Style = Splines , these values
must be in ascending order.

f — the vector field of the ODE: a procedure. See
numeric::odesolve .

Y0 — the initial condition of the ODE: a list or a
1-dimensional array. See numeric::odesolve .

G1, G2, ... — “generators of plot data”: procedures mapping a
solution point (t, Y(t)) to a list [x, y] or [x,
y, z] representing a plot point in 2D or 3D,
respectively.

158

Options:

method — use a specific numerical scheme (see
numeric::odesolve)

RelativeError = tol — sets a numerical discretization tolerance
(see numeric::odesolve)

Stepsize = h — sets a constant stepsize (see
numeric::odesolve)

Style = style — sets the style in which the plot data are
displayed. The following styles are
available: Points , Lines , Splines .
The default style is Lines .

Color = c — sets the RGB color c in which the plot
data are displayed. The default color is
RGB::Black .

Return Value: a graphical object of domain type plot::Group .

Related Functions: numeric::odesolve , plot , plot::Group ,
plot::Scene

Details:

A Internally, a sequence of numerical sample points

Y1 := numeric::odesolve(t0..t1, f, Y0 <, Options >) ,

Y2 := numeric::odesolve(t1..t2, f, Y1 <, Options >) etc.

is computed where Options is some combination of method , Rela-
tiveError = tol , and Stepsize = h. See numeric::odesolve for
details on the vector field procedure f , the initial condition Y0, and the
options.

A Each of the “generators of plot data” G1, G2 etc. creates a graphical so-
lution curve from the sample points Y0, Y1 etc. Each generator G, say, is
internally called in the form G(t0, Y0) , G(t1, Y1) , ... to produce
a sequence of plot points in 2D or 3D.

The solver numeric::odesolve returns the solution points Y0, Y1 etc.
as lists or 1-dimensional arrays (the actual type is determined by the ini-
tial value Y0). Consequently, each generator G must accept two argu-
ments (t, Y) : t is a real parameter, Y is a “vector” (either a list or a
1-dimensional array).

Each generator must return a list with 2 or 3 elements representing the
(x, y) or (x, y, z) coordinates of the graphical point associated with a so-
lution point (t, Y) of the ODE. All generators must produce graphical
data of the same dimension, i.e., either 2D data as lists with 2 elements,
or 3D data as lists with 3 elements.

Some examples:

159

G := (t, Y) -> [t, Y[1]] creates a 2D plot of the first component
of the solution vector along the y-axis, plotted against the time variable
t along the x-axis

G := (t, Y) -> [Y[1], Y[2]] creates a 2D phase plot, plotting the
first component of the solution along the x-axis and the second com-
ponent along the y-axis. The result is a solution curve in phase space
(parametrized by the time t).

G := (t, Y) -> [Y[1], Y[2], Y[3]] creates a 3D phase plot of
the first three components of the solution curve.

A Note that arbitrary values associated with the solution curve may be dis-
played graphically by an appropriate generator G. Cf. example 2.

A Several generators G1, G2etc. can be specified to generate several curves
associated with the same numerical mesh Y0, Y1, E.g., one can use
a generator twice to plot the data with the options Style = Splines
and Style = Points . This allows to display a smooth solution curve
together with the sample points. Cf. examples 1, 2, and 3.

A plot::ode returns a graphical object of type plot::Group containing
all graphical solution curves specified by the generators G1, G2etc. This
object can be combined with other plot objects to a graphical scene via
plot::Scene . Cf. example 3. A final call to plot calls the renderer to
display the scene.

Option <Color = c>:

A This option sets the color in which the graphical data are displayed. The
RGB color c must be a list of three numerical real values [r, g, b] be-
tween 0 and 1 representing the red, green and blue contributions accord-
ing to the RGB color model. A variety of colors is provided by MuPAD’s
RGBdata structure.

Option <Style = style >:

A The graphical data produced by each of the generators G1, G2 etc. con-
sists of a sequence of mesh points in 2D or 3D, respectively.

With Style = Points , the graphical data are displayed as a discrete
set of points.

With Style = Lines , the graphical data points are displayed as a curve
consisting of straight line segments between the sample points. The
points themselves are not displayed.

With Style = Splines , the graphical data points are displayed as a
smooth spline curve connecting the sample points. The points them-
selves are not displayed.

160

Example 1. The following procedure f together with the initial value Y0 rep-
resent the initial value problem dY/dt = f (t,Y) = t Y− Y2, Y(t0) = 1. In Mu-
PAD, the function Y is represented by a list with one element:

>> f := (t, Y) -> [t*Y[1] - Y[1]^2]: Y0 := [1]:

The solution is to be plotted as a function of the time t . We define an appro-
priate generator for the plot data:

>> G := (t, Y) -> [t, Y[1]]:

The numerical solution is to consist of sample points over the time mesh ti = i,
i = 0,1, . . . ,10. The generator G is used twice with different Style options.
This generates the sample points together with a smooth spline curve connect-
ing these points:

>> p := plot::ode([i $ i = 0..10], f, Y0,
[G, Style = Points, Color = RGB::Blue],
[G, Style = Splines, Color = RGB::Red])

plot::Group()

The point size of the point objects inside p is increased:

>> p:= plot::modify(p, PointWidth = 50):

The object p is converted to a graphical scene with various scene options:

>> s := plot::Scene(p, Labels = ["t", "y"],
Ticks = [Steps = [1.0, 1], Steps = [1.0, 1]],
GridLines = Automatic)

plot::Scene()

Finally, the scene is rendered by a call to plot :

>> plot(s)

>> delete f, Y0, G, p, s:

Example 2. We consider the nonlinear oscillator y′′+ y3 = sin(t), y(0) = 0 , y′(0) =
0.5. As a dynamical system for Y = [y, y′], we have to solve the following ini-
tial value problem dY/dt = f (t,Y), Y(0) = Y0:

>> f := (t, Y) -> [Y[2], sin(t) - Y[1]^3]: Y0 := [0, 0.5]:

The following generator produces a phase plot in the (x, y) plane, embedded
in a 3D plot:

161

>> G1 := (t, Y) -> [Y[1], Y[2], 0]:

Further, we use the z coordinate of the 3D plot to display the value of the
“energy” function E = y2/2 + y′2/2 over the phase curve:

>> G2 := (t, Y) -> [Y[1], Y[2], (Y[1]^2 + Y[2]^2)/2]:

The phase curve in the (x, y) plane is combined with the graph of the energy
function:

>> p := plot::ode([i/5 $ i = 0..100], f, Y0,
[G1, Style = Splines, Color = RGB::Red],
[G2, Style = Points, Color = RGB::Black],
[G2, Style = Lines, Color = RGB::Blue]):

We increase the size of the points used in the representation of the energy:

>> p:= plot::modify(p, PointWidth = 40):

The renderer is called:

>> plot(p, Axes = Box, Labels = ["y", "y’", "E"],
CameraPoint = [10, -15, 5]):

>> delete f, Y0, G1, G2, p:

Example 3. We consider the initial value problem y′ = f (t, y) = t sin(t + y2),
y(0) = 1.

>> f := (t, y) -> t*sin(t + y^2) - y:

The following vector field is tangent to the solution curves:

>> p1 := plot::vectorfield([1, f(t, y)], t = 1..3, y = 0..1,
Grid = [10, 5], Color = RGB::Black):

The following object represents the plot of the solution as a function of t :

>> p2 := plot::ode(
[i/3 $ i=0..12], (t,Y) -> [f(t, Y[1])], [0],
[(t, Y) -> [t, Y[1]], Style = Points, Color = RGB::Red],
[(t, Y) -> [t, Y[1]], Style = Splines, Color = RGB::Blue]):

We increase the point size:

>> p2:= plot::modify(p2, PointWidth = 40):

Finally, we combine the vector field and the ODE plot to a scene and call the
renderer:

162

>> plot(p1, p2, Scaling = Constrained, Labels = ["t", "y"],
GridLines = [Steps = 0.25, Steps = 0.25],
Ticks = [Steps = 1.0, Steps = 0.5]):

>> delete f, p1, p2:

Example 4. The Lorenz ODE is the system

d
dt

 x
y
z

 =

 p (y− x)
−x z + r x− y

x y− b z


with fixed parameters p, r, b. As a dynamical system for Y = [x, y, z], we have
to solve the ODE dY/dt = f (t,Y) with the following vector field:

>> f := proc(t, Y)
local x, y, z;
begin

[x, y, z] := Y:
[p*(y - x), -x*z + r*x - y, x*y - b*z]

end_proc:

We consider the following parameters and the following initial condition Y0:

>> p := 10: r := 28: b := 1: Y0 := [1, 1, 1]:

The following generator produces a 3D phase plot:

>> Gxyz := (t, Y) -> Y:

The following generator projects the solution curve to the (y, z) plane with
x = −20:

>> Gyz := (t, Y) -> [-20, Y[2], Y[3]]:

The following generator projects the solution curve to the (x, z) plane with
y = 30:

>> Gxz := (t, Y) -> [Y[1], 30, Y[3]]:

The following generator projects the solution curve to the (x, y) plane with
z = 0:

>> Gxy := (t, Y) -> [Y[1], Y[2], 0]:

With these generators, we create a 3D plot object consisting of the phase curve
and its projections. The following call is somewhat time consuming, because
it calls the numerical integrator to produce the graphical data:

163

>> obj := plot::ode([i/10 $ i=1..100], f, Y0,
[Gxyz, Style = Splines, Color = RGB::Red],
[Gyz, Style = Splines, Color = RGB::LightGrey],
[Gxz, Style = Splines, Color = RGB::LightGrey],
[Gxy, Style = Splines, Color = RGB::LightGrey]):

Finally, the plot is rendered. Again, this call is somewhat time consuming,
because internally, several thousand calls to spline functions occur:

>> plot(obj, Axes = Box, Ticks = 4,
CameraPoint = [400, -800, 1200]):

>> delete f, p, r, b, Y0, Gxyz, Gyz, Gxz, Gxy, obj:

Changes:

A plot::ode is a new function.

plot::polar – generate plots in polar coordinates

plot::polar([f1, f2], phi = pmin..pmax) represents a plot of the
curve defined by φ 7→

(
f1(φ); f2(φ)

)
with φ ∈ [φmin, φmax] in polar coordinates.

Call(s):

A plot::polar([f1, f2], phi = pmin..pmax <, option1,
option2 >, ...)

Parameters:
f1, f2 — arithmetical expressions in phi
phi — identifier (the angle)
pmin, pmax — arithmetical expressions
option1, option2, ... — plot option(s) for two-dimensional

graphical objects

Return Value: a graphical object of the domain type plot::Curve2d .

Related Functions: plot2d , plot::spherical , plot::cylindrical

Details:

A Call plot(...) to display the result on the screen.

164

A The plot options option1, option2, ... must be valid plot options
for two-dimensional graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

Example 1.

>> delete phi:
c:= plot::polar([phi, phi], phi = [0, 4*PI], Grid = [100])

plot::Curve2d([phi cos(phi), phi sin(phi)], phi = 0..4 PI)

>> plot(c, Axes = None)

Changes:

A plot::polar used to be plotlib::polarplot .

A plot::polar is now part of the new plot library plot , and thus its
calling syntax and the return value were changed.

plot::spherical – generate plots in spherical coordinates

plot::spherical([theta, phi, r], u = a..b, v = c..d) represents
a plot of the surface defined by (u, v) 7→ (θ(u, v);φ(u, v); r(u, v)) with (u, v) ∈
[a, b]× [c, d] in the spherical coordinates θ, φ, r.

Call(s):

A plot::spherical([theta, phi, r], u = a..b, v = c..d))

Parameters:
theta, phi, r — arithmetical expressions in u and v
u, v — identifiers
a, b, c, d — arithmetical expressions
option1, option2, ... — plot option(s) for three-dimensional

graphical objects

Return Value: Call plot(...) to display the result on the screen.
a graphical object of the domain type plot::Surface3d .

Related Domains: plot::Surface3d

165

Related Functions: plot , plot2d , plot::cylindrical , plot::polar

Details:

A The following relationship between spherical coordinates and Cartesian
coordinates holds:

x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ.

A The plot options option1, option2, ... must be valid plot options
for three-dimensional graphical objects. See plot::Surface3d for de-
tails.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

Example 1. We define a three-dimensional surface in spherical coordinates:

>> s:= plot::spherical(
[1, u, z], u = -PI..PI, z = -1..1, Grid = [20, 20]

)

plot::Surface3d([cos(u) sin(z), sin(u) sin(z), cos(z)],

u = -PI..PI, z = -1..1)

>> plot(s, Axes = Box)

Example 2. We plot the surface (φ, θ) 7→ (1, φ, θ) in [−π, π]× [0, π] (setting the
number of surface points to 20):

>> delete phi, theta:
plot(plot::spherical(

[1, phi, theta], phi = -PI..PI, theta = 0..PI, Grid = [20, 20]
), Axes = Box)

Changes:

A plot::spherical used to be plotlib::sphericalplot .

A plot::spherical is now part of the new plot library plot , and thus
its calling syntax and the return value were changed.

166

plot::vector – graphical object for vectors

plot::vector(p1, p2) returns a polygon consisting of three lines. Theses
lines are connecting the points p1 with p2 and the endpoints of the arrow with
the point p2.

Call(s):

A plot::vector(p1, p2, angle, l <, option1, option2,
... >)

Parameters:
p1, p2 — points with real valued coordinates,

i.e., objects of the domain type
plot::Point or lists of two or three
real numerical values, respectively

angle, l — real numerical values
option1, option2, ... — plot option(s) of the form option =

value

Return Value: a graphical object of the domain type plot::Polygon .

Related Functions: plot , plot2d , plot3d , plot::Polygon

Details:

A angle specifies the angle (in radian measure) between the line and the
arrow.

A l specifies the length of the arrow.

A Use the function plot to display the result on the screen.

A The plot options option1, option2, ... must be valid plot op-
tions for two- or three-dimensional graphical objects, respectively. See
plot2d and plot3d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

167

Example 1. We define a vector starting at (1; 2) and ending at (3;−1):

>> v := plot::vector([1, 2], [3, -1], 0.2, 0.1)

plot::Polygon()

The lenght of the arrow is 0.1, and the angle between the line and the arrow is
0.2 (in radian measure).

To plot this vector, call plot :

>> plot(v)

To change the color of the vector from the previous example, enter:

>> v::Color := RGB::Blue: plot(v, Axes = None)

Here the scene option Axes = None was given.

Changes:

A plot::vector is a new function.

plot::vectorfield – generate plots of two-dimensional vector fields

plot::vectorfield([v1, v2], x = a..b, y = c..d) represents a plot
of the vectorfield defined by (x, y) 7→

(
v1(x, y); v2(x, y)

)
with (x, y) ∈ [a, b]×

[c, d].

Call(s):

A plot::vectorfield([v1, v2], x = a..b, y = c..d <,
option1, option2, ... >)

Parameters:
v1, v2 — arithmetical expressions in x and y

(the x- and y-component of the
vectorfield)

x, y — identifiers
a, b, c, d — real numerical values
option1, option2, ... — plot option(s) for two-dimensional

graphical objects

Related Functions: plot , plot2d

168

Details:

A Call plot(...) to display the result on the screen.

A The plot options option1, option2, ... must be valid plot options
for two-dimensional graphical objects. See plot2d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

A The form of the arrows used for displaying the vectors is built for the
scene option Scaling = Constrained .

For Scaling = UnConstrained , you can resize the plot window and
change the scaling.

A The directions of the vectors change in the correct way. However, the tips
of the arrows will be distorted and may look strange (this is unavoidable)

So the user is advised to use Scaling = Constrained for a nice graph-
ical appearance of the arrows, whenever this is appropriate.

However, if the scale ratio ymax−ymin
xmax−xmin

of the viewing box is not close to one,
then Scaling = Constrained is usually not appropriate. If you do
not like the arrows, then you must re-parameterize the vector field such
that the scale ratio in the new x− y parameters is close to one.

Example 1. We demonstrate a plot of the vector field v(x, y) = (1, sin(x) +
cos(y)).

>> DIGITS:=5:
field:= plot::vectorfield(

[1,sin(x)+cos(y)], x = 0..3, y = 1..2,
Grid=[30,20], Color = [Flat, RGB::Red]

)

plot::Group()

It is the directional field associated with the ode y′(x) = sin(x) + cos(x). We
insert a curve representing the numerical solution of this ode into this plot.
We compute the numerical solution of y′(x) = sin(x) + cos(y), y(1) = 1.2 via
numeric::odesolve . DIGITS is increased to get rich sample of points:

>> DIGITS:=20:
f:= (x,y) -> [sin(x)+cos(y[1])]:
data:= numeric::odesolve(1..2, f, [1.2], Alldata):

169

>> curve:= plot::Polygon(
(

[data[i][1], data[i][2][1]], [data[i+1][1], data[i+1][2][1]]
) $ i=1..nops(data)-1,
Color = RGB::Blue

)

plot::Polygon()

Define a circle with center (1.5; 1.5) and radius 1
2 :

>> circle:= plot::Ellipse2d([1.5,1.5], 1/2, 1/2):

We plot the three objects in a single graphical scene:

>> plot(field, circle, curve,
Axes = Box, Labeling = TRUE, Scaling = Constrained

)

Compare the plot when setting Scaling = UnConstrained :

>> plot(field, circle, curve,
Axes = Box, Labeling = TRUE, Scaling = UnConstrained

)

Changes:

A plot::vectorfield used to be plotlib::fieldplot .

A plot::vectorfield is now part of the new plot library plot , and its
calling syntax and the return value were changed.

plot::xrotate – generate plots of surface of revolution (x-axis)

plot::xrotate(f, x = a..b) returns the surface of revolution defined
by the function f (x) around the x-axis in the interval [a, b]. The rotation angle
ranges from 0 to 2π.

plot::xrotate(f, x = a..b, Angle = r1..r2) returns the surface of
revolution defined by the function f (x) around the x-axis in the interval [a, b].
The rotation angle ranges from r1 to r2.

Call(s):

A plot::xrotate(f, x = a..b <, option1, option2 >, ...)

A plot::xrotate(f, x = a..b, Angle = r1..r2 <, option1,
option2 >, ...)

170

Parameters:
f — arithmetical expression in x
x — identifier
a, b, r1, r2 — arithmetical expressions
option1, option2, ... — plot option(s) of the form option =

value

Return Value: an object of the domain type plot::Surface3d .

Related Functions: plot , plot::Surface3d , plot::yrotate

Details:

A The result of plot::xrotate is the surface (x, α) 7→
(
x, f (x) cos(α), f (x) sin(α)

)
,

where x ranges from a to b and α from 0 to 2π or r1 to r2, respectively.
It is an object of the domain type plot::Surface3d in two variables,
namely the identifier x and an identifier built of the name "angle" .

A Use plot to display the revolution created on the screen.

A The plot options option1, option2, ... must be valid plot options
for three-dimensional graphical objects. See plot3d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

Example 1. Let us revolve the sinus function around the x-axis in the interval
x ∈ [0, π]:

>> r:= plot::xrotate(sin(x), x = 1..3)

plot::Surface3d([x, sin(x) cos(angle1), sin(x) sin(angle1)],

x = 1..3, angle1 = 0..2 PI)

The result is a graphical object of the domain type plot::Surface3d . To
display the surface on the screen, call plot :

>> plot(r)

Here you can give scene options, for example, to change the style of the axis:

>> plot(r, Axes = Box)

171

Example 2. We can restrict the rotation angle like in the following call:

>> r2:= plot::xrotate(sin(x), x = 1..3, Angle = 0..PI):
plot(r2)

Plot objects for the surface can be given together with the call of plot::xrotate ,
like in:

>> r2:= plot::xrotate(sin(x), x = 1..3, Color = RGB::Blue):
plot(r2)

Or use the slot operator :: to get or set afterwards plot options of such graph-
ical objects. For example, the rotation angle of the revolution r2 is the y-
variable of the surface kept in the attribute range2 :

>> angle:= r2::range2

angle3 = 0..2 PI

Hence, to restrict the rotation angle to the interval [0, π2], we enter:

>> r2::range2:= lhs(angle) = 0 .. PI/2:
plot(r2)

Changes:

A plot::xrotate used to be plotlib::xrotate .

A plot::xrotate is now part of the new plot library plot , and thus its
calling syntax and the return value were changed.

plot::yrotate – generate plots of surface of revolution (y-axis)

plot::yrotate(f, x = a..b) returns the surface of revolution defined
by the function f (x) around the y-axis in the interval [a, b]. The rotation angle
ranges from 0 to 2π.

plot::yrotate(f, x = a..b, Angle = r1..r2) returns the surface of
revolution defined by the function f (x) around the y-axis in the interval [a, b].
The rotation angle ranges from r1 to r2.

Call(s):

A plot::yrotate(f, x = a..b <, option1, option2 >, ...)

A plot::yrotate(f, x = a..b, Angle = r1..r2 <, option1,
option2 >, ...)

172

Parameters:
f — arithmetical expression in x
x — identifier
a, b, r1, r2 — arithmetical expressions
option1, option2, ... — plot option(s) of the form option =

value

Return Value: an object of the domain type plot::Surface3d .

Related Functions: plot , plot::Surface3d , plot::xrotate

Details:

A The result of plot::yrotate is the surface (x, α) 7→
(
x cos(α), x sin(α), f (x)

)
,

where x ranges from a to b and α from 0 to 2π or r1 to r2, respectively.
It is an object of the domain type plot::Surface3d in two variables,
namely the identifier x and an identifier built of the name "angle" .

A Use the function plot to display the revolution created on the screen.

A The plot options option1, option2, ... must be valid plot options
for three-dimensional graphical objects. See plot3d for details.

Note that scene options are not allowed! You may give scene
options as optional arguments for the function plot , or use
plot::Scene to create an object representing a graphical scene.

!

Example 1. Let us revolve the sinus function around the y-axis in the interval
x ∈ [0, π]:

>> r:= plot::yrotate(sin(x), x = 1..3, Title = "")

plot::Surface3d([x cos(angle1), x sin(angle1), sin(x)],

x = 1..3, angle1 = 0..2 PI)

The result is a graphical object of the domain type plot::Surface3d . To
display the surface on the screen, call plot :

>> plot(r)

Here you can give scene options, for example, to change the style of the axis:

>> plot(r, Axes = Box)

173

Example 2. We can restrict the rotation angle like in the following call:

>> r2:= plot::yrotate(sin(x), x = 1..3, Angle = 0..PI):
plot(r2)

Plot objects for the surface can be given together with the call of plot::yrotate ,
like in:

>> r2:= plot::yrotate(sin(x), x = 1..3, Color = RGB::Blue):
plot(r2)

Or use the slot operator :: to get or set afterwards plot options of such graph-
ical objects. For example, the rotation angle of the revolution r2 is the y-
variable of the surface kept in the attribute range2 :

>> angle:= r2::range2

angle3 = 0..2 PI

Hence, to restrict the rotation angle to the interval [0, π2], we enter:

>> r2::range2:= lhs(angle) = 0..PI/2:
plot(r2)

Changes:

A plot::yrotate used to be plotlib::yrotate .

A plot::yrotate is now part of the new plot library plot , and thus its
calling syntax and the return value were changed.

174

