
Table of contents

contourplot — contour and implicit plots 1

dataplot — 2- and 3-dimensional plot of list of data 2

densityplot — two-dimensional density plots 4

implicitplot — implicit plot of smooth functions 5

cylindricalplot — cylindrical coordinates 10

fieldplot — Vectorfields . 11

inequalityplot — two dimensional plot of inequalities 13

polarplot — polar coordinates . 15

polygonplot — plotting of 2-dimensional polygons 16

sphericalplot — spherical coordinates 18

xrotate — Surfaces of revolution (x-axis) 20

yrotate — Surfaces of revolution (y-axis) 21

i

contourplot – contour and implicit plots

!! This file has not been edited yet !!

Call(s):

A contourplot(<scene-option, ... >object, ...)

Parameters:
expr_x, expr_y, expr_z — expressions
identifier_1, identifier_2 — identifier
expr_1, expr_2, expr_3 — expressions

Options:

Related Functions:

Details:

A contourplot serves for the graphical representation of contour plots
of surfaces and plots of implicit defined functions. A three-dimensional
surface is described in a call of the above function by the following ex-
pression sequence:

[expr_x, expr_y, expr_z], var_u = [expr_1, expr_2],
var_v = [expr_3, expr_4]

Here, expr_x , expr_y and expr_z are MuPAD expressions depend-
ing on the variables var_u and var_v . These expressions are used to
describe the x -, y - and the z -coordinate of the different sample points
of the surface. var_u and var_v have to be identifier. The expres-
sions expr_1 and expr_2 specify the lower and the upper bound of
the range, in which the variable var_u is evaluated. The same is valid
for the expressions expr_3 , expr_4 and the variable var_v .

The contour lines are drawn on the bottom of the viewing box. The con-
tour lines are drawn with respect to the height when using the option
Style = Attached .

Apart from the different objects the user can give many options in order
to specify the graphical representation of the scene as well as the indi-
vidual objects. Since a call of the above routine serves for the generation
of a three-dimensional surface plot, all options available for such a scene
and objects of the mode Surface can be used here.

1

The procedures of the library plotlib can be exported by export(plotlib) ,
so that the short notation contourplot instead of contourplot can
be used.

Example 1.

>> plotlib::contourplot([[x,y,exp(x*y)],x=[-1,1],y=[-1,1]]):

>> plotlib::contourplot([[x,y,exp(x*y)],x=[-1,1],y=[-1,1],Colors=[Height]]):

>> [notest]
plotlib::contourplot([[x,y,exp(x*y)],x=[-1,1],y=[-1,1],Style=Attached]):

>> // Contour plot of two functions
plotlib::contourplot(

[[x,y,sin(x*y)],x=[-PI,PI],y=[-PI,PI],Grid=[20,20]],
[[x,y,x + 2*y] ,x=[-PI,PI],y=[-PI,PI],Colors=[Flat,RGB::Blue]]

):

>> // Plot of the implicit function defined by (x^2+y^2)^3-
(x^2-y^2)^2 = 0

plotlib::contourplot([[x,y,(x^2+y^2)^3-(x^2-y^2)^2],x=[-
1,1],y=[-1,1],

Contours=[0], Grid=[20,20]]):

Background:

A

dataplot – 2- and 3-dimensional plot of list of data

!! This file has not been edited yet !!

Call(s):

A dataplot(type,list <,Colors=colors >
<,Titles=titles >)

Parameters:
colors — a list of RGB values
type — the plotting type
list — a list or list of lists of data
titles — a list of strings

2

Options:

Related Functions:

Details:

A dataplot creates a 2- or 3-dimensional plot of a list of numeric values.
The first argument specifies how to plot the data - the plotting type. The
second argument is a list or a list of lists of numeric values, depending
on the plotting type. The next two arguments, which are optional, are
used to specify colors for the objects and to specify titles for the objects.
You can move the titles inside VCam. Just click on the title and move it
with the cursor.

The following plotting types are available:

• Piechart and Piechart3d:
The second argument is a list [d_1,...,d_n] . A piechart is drawn.
You can specify a color for every d_i . The current implementation
of piechart drawing is however quite slow.

• Line, Curve, Column, Beam:
These plotting types are used to create a 2-d plotting from data. The
second argument is a list of lists of numeric values. Each of the val-
ues in the list [y_1,...,y_n] are interpreted as the y-value corre-
sponding to the x-values 1,...,n , i.e. the points (1,y_1),...,(n,y_n)
are plotted. The values of one list defines an object. You can specify
a color for every object with the third argument. Curve computes
the Lagrange interpolation polynomial to plot the curve.

• Plain and Surface:
These plotting types are used to create a 3-d surface plotting from
data. The second argument is a list of lists of numeric values. Each
of the values in the list [z_i_1,...,z_i_n] are interpreted as
the z-value corresponding to the y-value i and x-values 1,...,n ,
i.e. the points (1,i,z_1),...,(n,i,z_n) . Consists the list of
mlists i=1,...,m . Surface computes the 2-dimensional Lagrange
interpolation polynomial to plot the surface.

Example 1.

>> export(plotlib): export(RGB):
dataplot(Piechart, [5,12,38,14,25]):

>> dataplot(Piechart3d, [5,12,38], Colors=[RoyalBlue,VioletRed,GreenPale]):

3

>> dataplot(Line,
[[5,10,24,-3],[6,5,2,18],[19,45,12,-10]],
Colors=[Red,Green,Blue]):

>> dataplot(Curve,
[[5,10,24,-3],[6,5,2,18],[19,45,12,-10]],
Colors=[Red,Green,Blue]):

>> dataplot(Column,
[[5,10,24,-3],[6,5,2,18],[19,45,12,-10]],
Colors=[Red,Green,Blue]):

>> dataplot(Beam,
[[5,10,24,-3],[6,5,2,18],[19,45,12,-10]],
Colors=[Red,Green,Blue]):

>> dataplot(Column, [[5,10,24,-3,6,5,2,18]]):

>> dataplot(Plain,
[[5,10,24,-3],[6,5,2,18],[19,45,12,-10]],
Colors=[Red,Red,Green]):

>> dataplot(Surface, [[5,10,24,-3],[6,5,2,18],[19,45,12,-10]]):

Background:

A

densityplot – two-dimensional density plots

!! This file has not been edited yet !!

Call(s):

A densityplot(<scene-option, ... >object, ...)

Parameters:
expr_x, expr_y, expr_z — expressions
identifier_1, identifier_2 — identifier
expr_1, expr_2, expr_3 — expressions

Options:

4

Related Functions:

Details:

A densityplot serves for the graphical representation of two dimen-
sional density plots of surfaces.

A three-dimensional surface is described in a call of the above function
by the following expression sequence:

[expr_x, expr_y, expr_z], var_u = [expr_1, expr_2],
var_v = [expr_3, expr_4]

Here, expr_x , expr_y and expr_z are MuPAD expressions depend-
ing on the variables var_u and var_v . These expressions are used to
describe the x -, y - and the z -coordinate of the different sample points
of the surface. var_u and var_v have to be identifier. The expres-
sions expr_1 and expr_2 specify the lower and the upper bound of
the range, in which the variable var_u is evaluated. The same is valid
for the expressions expr_3 , expr_4 and the variable var_v .

Apart from the different objects the user can give many options in order
to specify the graphical representation of the scene as well as the indi-
vidual objects. Since a call of the above routine serves for the generation
of a three-dimensional surface plot, all options available for such a scene
and objects of the mode Surface can be used here.

The procedures of the library plotlib can be exported by export(plotlib) ,
so that the short notation densityplot instead of densityplot can
be used.

Example 1.

>> plotlib::densityplot([Mode=Surface,
[u,v,1/2*sin(u*u + v*v)],
u=[0,PI], v=[0, PI]]):

Background:

A

implicitplot – implicit plot of smooth functions

implicitplot is used to get a plot of f = 0 for a smooth f from R
2 → R. f

must be regular almost everywhere on this curve.

5

Call(s):

A implicitplot(expr,x=a..b,y=c..d <, options >)

A implicitplot([expr, ...],x=a..b,y=c..d, <, options >)

Parameters:
expr — Function(s) to plot, given as expression(s) in two

indeterminates
x,y — Indeterminates used in expr
a..b,c..d — Ranges to plot

Options:

Grid = gridval — Grid division to use for finding
starting points

Colors = [col1, ...] — Colors used for plotting the
components.

MinStepsize = hmin — The minimum step-size for
tracing a contour

MaxStepsize = hmax — The maximum step-size for
tracing a contour

StartingStepsize = hstart — The step-size the iteration starts
with

Precision = eps — Precision of the Newton iteration
Ticks = [tx, ty] — Number of ticks on the

coordinate axes
Contours = [c1, ...] — Contours to plot
Splines = Boolean — If set to TRUE, the contours will

be plotted with cubic splines;
otherwise, straight lines will be
used. Default: FALSE.

Factor = Boolean — If set to TRUE, each function will
be (attempted to be) factorized
prior to iterating. This may
improve the results. Default:
FALSE.

Return Value: implicitplot returns the value of type DOM_NULL.

Related Functions: plotlib::contourplot

Details:

A implicitplot plots f = 0 by a curve tracking method. For this, it first
generates startpoints with a Newton iteration starting ad grid points (the
number of grid points can be controlled with the optional parameter)
and then iteratively applies the implicit function lemma to get a local
approximation to the curve. This approximation is then improved with

6

another Newton step. On hitting a point where f is not regular, the iter-
ation stops.

Option <Grid = gridval >:

A gridval must either be a list of two positive integers, the number of
divisions in the two coordinates, or a single integer, which is equivalent
to repeating this integer twice.

A Increase this number if you suspect not all components are found. The
default is [5, 5] .

Option <Colors = [col1, ...] >:

A The colors used for plotting the components. A list is expected, each
element of which must be a valid argument for the Color=[Flat,...]
option of plot2d .

A Default: [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0],
[1.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0,
1.0, 1.0]] .

Option <MinStepsize = hmin >:

A The minimum step-size for the iteration following a contour. This is a
lower limit for the adaptive iteration to avoid spending a lot of time with-
out real progress.

A The default is 1/1.000.000 of the minimum of width or height of the area
under consideration.

A Increase this number if you think the algorithm gets stuck in a place
unimportant to your application.

Option <MaxStepsize = hmax>:

A MaxStepsize is complementary to MinStepsize in that it defines the
maximum step-width for the iteration.

A If this value is set too high, the algorithm may skip over details of the
curves; if it is set lower than needed, the computation takes longer.

A The default is 1/100 of the shorter of width and height.

7

Option <StartingStepsize = hstart >:

A The step-size the iteration starts with. The default is 1/1.000 of the shorter
side of the area.

Option <Precision = eps >:

A This floating-point value indicates the relative precision which should be
achieved in the Newton iteration.

A Lower values may lead to more accurate results, but slow down the com-
putation. Values smaller than 10.0−DIGITS may cause the function not to
return.

A The default is 10.02−DIGITS.

Option <Ticks = [tx, ty] >:

A The number of ticks to be displayed on the coordinate axes. Either indi-
cate values for both axes as a list or a single integer which is taken for
both axes.

A The default is [10, 10] .

Option <Contours = [c1, ...] >:

A A list of values for which the functions implicitly defined by f (x, y) = ci
should be plotted.

A Default: [0] .

Example 1. We plot the family x = y2 + c for c in −5, ...,5.

>> plotlib::implicitplot(y^2 - x, x = -1..25, y = -5..5, Con-
tours = [$-5..5])

Example 2. To demonstrate how to plot multiple implicit functions, we plot
y = x2, y = x and x = y2.

>> plotlib::implicitplot([x^2 - y, x - y, x - y^2], x = -4..4, y = -
4..4)

8

Example 3. Let’s have a look at elliptic curves.

>> plotlib::implicitplot((x^3 + x + 2) - y^2, x = -5..5, y = -
5..5)

Example 4. implicitplot handles quite complex expressions:

>> plotlib::implicitplot((1-0.99*exp(x^2+y^2))*(x^10-1-y),
x=-1.25..1.25,y=-1.1..2):

>> F2 := (x,y) -> x^4*y^4+sin(x)*cos(y)-(x-1)*(y-2)*exp(-x^2):
plotlib::implicitplot(F2(x,y),x=-10..10,y=-10..10):

>> plotlib::implicitplot(F2(x,y),x=-3.5..1,y=-10..2.5):
>> plotlib::implicitplot(F2(x,y),x=-10..-6,y=-1..1):
>> plotlib::implicitplot(F2(x,y),x=-0.5..0.5,y=-25..-20):

delete F2:

In some cases, DIGITS must be increased to get a correct result. In the fol-
lowing example, problems occur around the origin with the default setting of
DIGITS when a small region is to be displayed. First, we display the whole
picture:

>> F3 := (x,y) -> y*(3*x^2-y^2)-(x^2+y^2)^2:
plotlib::implicitplot(F3(x, y), x = -1..1, y = -1.3..0.7):

Near the origin, numeric cancellation occurs. If you try to depict a small area
around the origin of the above curve, you need to increase DIGITS .

>> delete DIGITS:
plotlib::implicitplot(F3(x, y), x = -0.005..0.005, y = -

0.005..0.005):

>> DIGITS := 15:
plotlib::implicitplot(F3(x, y), x = -0.005..0.005, y = -

0.005..0.005):
delete DIGITS:

Example 5. When plotting functions with many components in their set of
zeroes, you should use the option Grid to increase the number of found com-
ponents. This situation cannot be detected automatically.

>> plotlib::implicitplot(sin(x^3 - x*y), x = -10..10, y = -
5..5)
>> plotlib::implicitplot(sin(x^3 - x*y), x = -10..10, y = -
5..5, Grid = 50);

9

Background:

A Curve Tracking algorithms are usually found in numerics to track stable
and instable manifolds of dynamic systems and in homotopy methods
for finding roots of highly complicated functions.

cylindricalplot – cylindrical coordinates

!! This file has not been edited yet !!

Call(s):

A cylindricalplot(<scene-option, ... >object, ...)

Parameters:
identifier_1, identifier_2 — identifier
expr_r, expr_phi, expr_z — expressions
expr_1, expr_2, expr_3 — expressions

Options:

Related Functions:

Details:

A cylindricalplot serves for the graphical representation of three-dimensional
surfaces in cylindrical coordinates. With this any number of objects in
cylindrical coordinates can be grouped to a scene and displayed.

A three-dimensional surface in cylindrical coordinates is described in a
call of the above function by the following expression sequence:

[expr_r, expr_phi, expr_z], var_phi = [expr_1,
expr_2],

var_z = [expr_3, expr_4]

Here, expr_r , expr_phi and expr_z are MuPAD expressions depend-
ing on the variables var_phi and var_z . These expressions are used to
describe the radius, the angle and the z -coordinate of the different sam-
ple points of the surface. var_phi and var_z have to be identifier. The
expressions expr_1 and expr_2 specify the lower and the upper bound
of the range, in which the variable var_phi is evaluated. The same is
valid for the expressions expr_3 , expr_4 and the variable var_z .

10

Apart from the different objects the user can give many options in order
to specify the graphical representation of the scene as well as the indi-
vidual objects. Since a call of the above routine serves for the generation
of a three-dimensional surface plot, all options available for such a scene
and objects of the mode Surface can be used here.

Furthermore the procedures can be exported by export(plotlib) ,
so that the short notation cylindricalplot instead of cylindri-
calplot can be used.

Example 1.

>> export(plotlib):
cylindricalplot(Axes = Box, Ticks = 0,

[[1, u, z],
u = [-PI, PI], z = [-1, 1],
Grid = [20, 20],
Style = [HiddenLine, Mesh]

]);

>> export(plotlib):
cylindricalplot(Axes = Corner, Ticks = 0,

[[u, u, z],
u = [-PI, PI], z = [-PI, PI],
Grid = [30, 30],
Color = [Height],
Style = [ColorPatches, AndMesh]

],
[[-u, u, z],

u = [-PI, PI], z = [-2, 2],
Grid = [30, 30],
Color = [Height],
Style = [ColorPatches, AndMesh]

]);

Background:

A

fieldplot – Vectorfields

!! This file has not been edited yet !!

11

Call(s):

A fieldplot(<scene-option, ... >object, ...)

Parameters:
expr_x, expr_y — expressions
int_1, int_2 — positive integers greater than 1
identifier_1, identifier_2 — identifier
expr_1, expr_2, expr_3 — expressions

Options:

Related Functions:

Details:

A fieldplot serves for the graphical representation of two-dimensional
vectorfields. With this any number of such objects can be grouped to a
scene and displayed.

A two-dimensional vectorfield is described by the following expression
sequence:

[expr_x, expr_y], var_x = [expr_1, expr_2],
var_y = [expr_3, expr_4]

Here, expr_x and expr_y are expressions depending on the variables
var_x and var_y . These expressions are used to specify the vector-
field to be plotted. var_x and var_y have to be identifier. The expres-
sions expr_1 and expr_2 specify the lower and the upper bound of the
range, in which the variable var_x is evaluated. The same is valid for
the expressions expr_3 , expr_4 and the identifier var_y .

Apart from the specification of the different vectorfields the user can give
many options in order to influence the graphical representation of the
scene and the corresponding objects. Since a call of the above routine
internally is represented as a two-dimensional scene containing only ob-
jects, which consist out of graphical primitives, all options available for
such scenes and objects can be chosen here.

Furthermore these procedures can be exported, by use of export(plotlib) ,
so that the short notation fieldplot instead of fieldplot can be
used.

12

Example 1.

>> export(plotlib):
fieldplot(Axes = Origin, Ticks = 0,

[[1,sin(y+cos(x))],
x = [-PI, PI], y = [-PI, PI],
Grid = [30, 30], Color = [Height]

]);

>> export(plotlib):
fieldplot(Axes = Origin, Ticks = 0,

[[-y^2, x^2],
x = [-4, 4], y = [-4, 4],
Grid = [30, 30], Color = [Height]

]);

Background:

A

inequalityplot – two dimensional plot of inequalities

!! This file has not been edited yet !!

Call(s):

A inequalityplot(inequalities ,left..right ,bot-
tom..top <n> <Colors = [color1,
color2, color3] > <Sceneoptions =
[option_sequence] >)

Parameters:
color1, color2, color3 — color names (RGB values)
option_sequence — a sequence of equations

representing the scene options of a
plot2d command

left, right, bottom, top — real numerical values
inequalities — a list [f1,f2,..] of real valued

functions of two arguments
n — optional non-negative integer

Options:

13

Related Functions:

Details:

A inequalityplot serves for displaying points (x, y) in the rectangle

Q = [left , right]× [bottom , top]

satisfying the inequalities

f1(x, y) ≥ 0 and f2(x, y) ≥ 0 and . . . (1)

specified by the list of functions inequalities = [f1, f2, . . .].

The rectangle Q is divided into 2n × 2n subrectangles. The default value
for n is 6.

A subrectangle is displayed with the color color1 , if all its points (x, y)
satisfy f1(x, y) > 0 and f2(x, y) > 0 etc. Consequently, all points of this
color are guaranteed to satisfy (1).

A subrectangle is displayed with color3 , if there is a function f in in-
equalities such that all points in the subrectangle satisfy f (x, y) < 0.
Consequently, all points of this color are guaranteed not to satisfy (1).

The remaining subrectangles are displayed with the color color2 . They
cover the boundary of the region defined by (1).

The default colors are Colors = [RGB::Green, RGB::Yellow, RGB::Red] .

The plot is constructed via plot2d(option_sequence, [Mode = List,
[..]]) , where [..] is a list of polygons computed by inequali-
typlot . option_sequence may consist of all valid scene options for
plot2d . The default values are

Sceneoptions=[Scaling=UnConstrained, Labeling=TRUE, La-
bels=["",""]] .

Interval arithmetic is used to check the inequalities. The input functions
must be suitable for this kind of arithmetic, i.e., the calls

f1(Dom::Interval(left..right), Dom::Interval(bottom..top))

etc. must produce valid intervals.

Example 1.

>> f1:= proc(x,y) begin x^2 + y^2 - 1 end_proc:

>> plotlib::inequalityplot([f1], -1..1, -1..1, 5);

>> f2:= (x,y) -> cos(x) - y: f3:= (x,y) -> cos(x) + y:

14

>> plotlib::inequalityplot([f2, f3], -PI..PI, -2..2, 5);

>> scene_options:= [Scaling=Constrained, Labeling=TRUE, Axes=Box,
BackGround=RGB::White, ForeGround=RGB::Black]:

>> colors:=[RGB::Red, RGB::Black, RGB::White]:

>> plotlib::inequalityplot([f1, f2, f3], -2..2, -1..1, 5,
Colors=colors, Sceneoptions=scene_options);

Background:

A

polarplot – polar coordinates

!! This file has not been edited yet !!

Call(s):

A polarplot(<scene-option, ... >object, ...)

Parameters:
identifier_1, identifier_2 — identifier
expr_r, expr_phi — expressions
expr_1, expr_2, expr_3 — expressions

Options:

Related Functions:

Details:

A polarplot serves for the graphical representation of two-dimensional
curves in polar coordinates. With this any number of objects in polar
coordinates can be grouped to a scene and displayed.

A two-dimensional curve in polar coordinates is described in a call of the
above function by the following expression sequence:

[expr_r, expr_phi], var_phi = [expr_1, expr_2]

15

Here, expr_r and expr_phi are MuPAD expressions depending on the
variable var_phi . These expressions are used to describe the radius as
well as the angle of the different sample points of the curve. var_phi
has to be an identifier. The expressions expr_1 and expr_2 specify the
lower and the upper bound of the range, in which the variable var_phi
is evaluated.

Apart from the different objects the user can give many options in order
to specify the graphical representation of the scene as well as the individ-
ual objects. Since a call of the above routine serves for the generation of a
two-dimensional curve, all options available for such a scene and objects
of the mode Curve can be used here.

These procedures can be exported, by use of export(plotlib) , so that
the short notation polarplot instead of polarplot can be used.

Example 1.

>> export(plotlib):
polarplot(Axes = None, Ticks = 0,

[[Phi, Phi],
Phi = [0, 4*PI], Grid = [100]

]);

Background:

A

polygonplot – plotting of 2-dimensional polygons

!! This file has not been edited yet !!

Call(s):

A polygonplot(<scene-option, ... >polygons
<option><,specification >)

Parameters:
specification — Options Convex or Concave
r, g, b — real numbers between 0 and 1
polygon_i — DOM_POLYGON
identifier, expr — expressions

Options:

16

Related Functions:

Details:

A polygonplot serves for graphical representation of 2-dimensional poly-
gons.

With option it is optionally possible to color the border lines of the poly-
gons, whereby r , g und b have to be real values between 0.0 and 1.0
determining the amount of red, green and blue in the RGB color model.
The default value of option is the list [0.0, 0.0, 1.0] .

To specify the kind of the polygons the options Convex and Concave
can be chosen. If no specification is given then the objects will be consid-
ered as arbitrary (e.g. self intersecting) polygons.

If a polygon is simple, i.e. its borders do not intersect, the option Con-
cave will be used. A polygon is convex if each line between two points
of the polygon lies inside the polygon.

If a polygon is either convex or concave it is recommended to specify the
corresponding option due to effeciency. However, in cases where this
can not be decided a specification should not be given in order to avoid
incorrect filling of the objects.

scene-option can be used to specify the scene. See table Options for a Scene
for a complete description of possible values for identifier and expr .

This function is part of the library plotlib and can be exported with
export(plotlib,polygonplot) in order to use the short notation
polygonplot .

Example 1.

>> export(plotlib,polygonplot);

>> polygonplot(LineWidth=2,
Title="Example 1: square",
[polygon(point(0,0),point(0,1),point(1,1),point(1,0),
Filled=TRUE,Closed=TRUE)],Convex);

>> polygonplot(LineWidth=2,
Title="Example 2: self-intersecting 2D-polygon",
[polygon(point(0,0),point(1,1),point(0,1),point(1,0),
Color=[1,1,0],Filled=TRUE,Closed=TRUE)],[.7,0,1]);

17

>> polygonplot(LineWidth=2,
Title="Example 3: three different 2D-polygons",
[polygon(point(0,0),point(1,0),point(2,1),point(1,2),
point(0,2),Color=[0,.9,.2],Filled=TRUE,Closed=TRUE),
polygon(point(2,0),point(3,0),point(4,1),point(3,2),
point(2,2),point(3,1),
Color=[0,.8,.8],Filled=TRUE,Closed=TRUE),
polygon(point(4,0),point(6,0),point(6,2),point(4,2),
point(5,1),Color=[0,0,1],Filled=TRUE,Closed=TRUE)],
[0,0,0],Concave);

It is possible that the algorithm works different by self-intersecting poly-
gons. The following example demonstrates that the hole which comes from
the intersection can either be filled or unfilled:

>> plotlib::polygonplot(LineWidth=2,Title=
"Example 4: Different kinds of self-intersected 2D-polygons",
[polygon(point(0,3),point(4,3),point(4,1),point(2,1),
point(2,5),point(1,5),point(1,0),point(5,0),point(5,4),
point(0,4),Color=[1,0.9,0],Closed=TRUE,Filled=TRUE),
polygon(point(6,0),point(10,0),point(10,5),point(9,5),
point(9,1),point(7,1),point(7,3),point(11,3),point(11,4),
point(6,4),Color=[1,0.9,0],Closed=TRUE,Filled=TRUE)],
[0.9,0.4,0]);

Background:

A

sphericalplot – spherical coordinates

!! This file has not been edited yet !!

Call(s):

A sphericalplot(<scene-option, ... >object, ...)

Parameters:
identifier_1, identifier_2 — identifier
expr_1, expr_2, expr_3 — expressions
expr_r, expr_phi, expr_theta — expressions

Options:

18

Related Functions:

Details:

A sphericalplot serves for the graphical representation of three-dimen-
sional surfaces in spherical coordinates. With this any number of objects
in spherical coordinates can be grouped to a scene and displayed.

A three-dimensional surface in spherical coordinates is described in a
call of the above function by the following expression sequence:

[expr_r, expr_phi, expr_z], var_phi = [expr_1,
expr_2],

var_theta = [expr_3, expr_4]

Here, expr_r , expr_phi and expr_theta are MuPAD expressions
depending on the variables var_phi and var_theta . These expres-
sions are used to describe the radius as well as the horicontal and ver-
tical angle of the different sample points of the surface. var_phi and
var_theta have to be identifier. The expressions expr_1 and expr_2
specify the lower and the upper bound of the range, in which the variable
var_phi is evaluated. The same is valid for the expressions expr_3 ,
expr_4 and the variable var_theta .

Apart from the different objects the user can give many options in order
to specify the graphical representation of the scene as well as the indi-
vidual objects. Since a call of the above routine serves for the generation
of a three-dimensional surface plot, all options available for such a scene
and objects of the mode Surface can be used here.

The procedures implemented in this library can be exported by export(plotlib) ,
such that instead of sphericalplot the short notation sphericalplot
can be used.

Example 1.

>> export(plotlib):
sphericalplot(Axes = Box, Ticks = 0,

[[1, Phi, Theta],
Phi = [-PI, PI], Theta = [0, PI],
Grid = [20, 20],
Style = [HiddenLine, Mesh]

]);

19

Background:

A

xrotate – Surfaces of revolution (x-axis)

!! This file has not been edited yet !!

Call(s):

A xrotate(<scene-option, ... >object, ...)

Parameters:
expr_x, expr_y — expressions
identifier_1, identifier_2 — identifier
expr_1, expr_2, expr_3 — expressions

Options:

Related Functions:

Details:

A xrotate serves for the representation of surfaces of revolution of two-
dimensional curves around the x -axis. With this any number of surfaces
of revolution can be grouped to a scene and displayed.

A surface of revolution is described in a call of the above function by the
following expression sequence:

[expr_x, expr_y, expr_z], var = [expr_1, expr_2],
angle = [expr_3, expr_4]

Here, expr_x and expr_y are MuPAD expressions depending on the
variable var . These expressions are used to describe the two-dimensional
curve to be rotated around the x -axis. var has to be an identifier. The ex-
pressions expr_1 and expr_2 specify the lower and the upper bound,
in which the curve variable var is evaluated. Furthermore the expres-
sions expr_3 and expr_4 give the range, in which the rotation angle
angle is evaluated.

Apart from the different surfaces of revolution the user can give many
options in order to influence the graphical representation of the scene

20

and the individual obejcts. Since a call of the above function is internally
represented by a three-dimensional scene, all options available for such
scenes and objects with the mode Surface can be used here.

The procedures implemented in this library can be exported by use of
export(plotlib) , such that instead of xrotate the short notation
xrotate can be used.

Example 1.

>> export(plotlib):
xrotate(Axes = Box, Ticks = 0,

[[x, 2*sin(x)], x = [0, 2*PI],
angle = [0, 2*PI], Grid = [30, 30]

]);

Background:

A

yrotate – Surfaces of revolution (y-axis)

!! This file has not been edited yet !!

Call(s):

A yrotate(<scene-option, ... >object, ...)

Parameters:
expr_x, expr_y — expressions
identifier_1, identifier_2 — identifier
expr_1, expr_2, expr_3 — expressions

Options:

Related Functions:

21

Details:

A yrotate serves for the representation of surfaces of revolution of two-
dimensional curves around the y -axis. With this any number of surfaces
of revolution can be grouped to a scene and displayed.

A surface of revolution is described in a call of the above function by the
following expression sequence:

[expr_x, expr_y], var = [expr_1, expr_2],
angle = [expr_3, expr_4]

Here, expr_x and expr_y are MuPAD expressions depending on the
variable var . These expressions are used to describe the two-dimensional
curve to be rotated around the y -axis. var has to be an identifier. The ex-
pressions expr_1 and expr_2 specify the lower and the upper bound,
in which the curve variable var is evaluated. Furthermore the expres-
sions expr_3 and expr_4 give the range, in which the rotation angle
angle is evaluated.

Apart from the different surfaces of revolution the user can give many
options in order to influence the graphical representation of the scene
and the individual obejcts. Since a call of the above function is internally
represented by a three-dimensional scene, all options available for such
scenes and object with the mode Surface can be used here.

The procedures implemented in this library can be exported by use of
export(plotlib) , such that instead of yrotate the short notation
yrotate can be used.

Example 1.

>> export(plotlib):
yrotate(Axes = Box, Ticks = 0,

[[x, 2*sin(x)], x = [0, 2*PI],
angle = [0, 3/2*PI], Grid = [30, 30]

]);

Background:

A

22

