
Type — library for type checking and mathematical
properties

Table of contents

Preface . iii

Type::AlgebraicConstant — a type representing algebraic con-
stants . 1

Type::AnyType — a type representing arbitrary MuPAD objects . 2

Type::Arithmetical — a type representing arithmetical objects 3

Type::Complex — a type and a property representing complex num-
bers . 4

Type::Constant — a type representing constant objects 6

Type::ConstantIdents — set of constant identifiers in MuPAD . 8

Type::Equation — a type representing equations 10

Type::Even — a type and a property representing even integers . 11

Type::Imaginary — a type and a property representing imaginary
numbers . 13

Type::IndepOf — a type representing objects that do not contain
given identifiers . 14

Type::Integer — a type and a property representing integers . . 16

Type::Interval — a property representing intervals 17

Type::ListOf — type for testing lists of objects with the same type 20

Type::ListProduct — type for testing lists 21

Type::NegInt — a type and a property representing negative inte-
gers . 23

Type::NegRat — a type and a property representing negative rational
numbers . 25

Type::Negative — a type and a property representing negative num-
bers . 26

Type::NonNegInt — a type and a property representing nonnegative
integers . 28

Type::NonNegRat — a type and a property representing nonnegative
rational numbers . 30

Type::NonNegative — a type and a property representing nonneg-
ative numbers . 32

i

Type::NonZero — a type and a property representing “unequal to
zero” . 34

Type::Numeric — a type for testing numerical objects 36

Type::Odd — a type and a property representing odd integers . . 37

Type::PolyExpr — type for testing polynomial expressions . . . 39

Type::PolyOf — type for testing polynomials 41

Type::PosInt — a type and a property representing positive inte-
gers . 42

Type::PosRat — a type and a property representing positive rational
numbers . 44

Type::Positive — a type and a property representing positive num-
bers . 45

Type::Prime — a type and a property representing prime numbers 47

Type::Product — type for testing sequences 49

Type::Property — type to identify properties 50

Type::RatExpr — type for testing rational expressions 52

Type::Rational — a type and a property representing rational num-
bers . 53

Type::Real — a type and a property representing real numbers . 55

Type::Relation — type for testing relations 57

Type::Residue — a property representing a residue class 58

Type::SequenceOf — type for testing sequences 60

Type::Series — type for testing series 62

Type::SetOf — type for testing sets 64

Type::Singleton — type to identify exactly one object 65

Type::TableOfEntry — type for testing tables with specified en-
tries . 67

Type::TableOfIndex — type for testing tables with specified in-
dices . 68

Type::Union — type for testing several types with one call 69

Type::Unknown — type for testing variables 71

Type::Zero — a type and a property representing zero 72

ii

The library Type

This library contains several objects to perform syntactical tests with testtype
(see example 1).

Some of the objects depends of arguments, that must be given by the user
(see example 2).

Some of the objects can be used as mathematical properties within assume
and is (see example 3).

All other objects that are not properties cannot be used within assume
and is (see example 4). !
The next tables gives an overview of all objects in this library:

Name syntactical test is a property has arguments
Type::AlgebraicConstant yes no no
Type::AnyType yes no no
Type::Arithmetical yes no no
Type::Complex yes yes no
Type::Constant yes no no
Type::ConstantIdents yes no no
Type::Equation yes no yes
Type::Even yes yes no
Type::Function yes no no
Type::Imaginary yes yes no
Type::IndepOf yes no yes
Type::Integer yes yes no
Type::Interval no yes yes
Type::ListOf yes no yes
Type::ListProduct yes no yes
Type::NegInt yes yes no
Type::NegRat yes yes no
Type::Negative yes yes no
Type::NonNegInt yes yes no
Type::NonNegRat yes yes no
Type::NonNegative yes yes no
Type::NonZero yes yes no
Type::Numeric yes no no
Type::Odd yes yes no
Type::PolyOf yes no yes
Type::PosInt yes yes no
Type::PosRat yes yes no
Type::Positive yes yes no
Type::Prime yes yes no
Type::Product yes no yes
Type::Property yes no no
Type::Rational yes yes no
Type::Real yes yes no

iii

Type::Relation yes no no
Type::Residue yes yes yes
Type::SequenceOf yes no yes
Type::Series yes no yes
Type::SetOf yes no yes
Type::Singleton yes no no
Type::TableOfEntry yes no yes
Type::TableOfIndex yes no yes
Type::Union yes no yes
Type::Unknown yes no no
Type::Zero yes yes no

Example 1. testtype performs syntactical tests:

>> testtype([1, 2, 3], Type::ListOf(Type::PosInt))

TRUE

>> testtype(3 + 4*I, Type::Constant)

TRUE

Example 2. Some types depends on parameters and cannot be used without
parameters:

>> testtype([1, 2, 3], Type::ListOf)

FALSE

>> testtype(x = 0, Type::Equation(Type::Unknown, Type::Zero))

TRUE

An interval must be given with borders, otherwise it is not a property:

>> assume(x, Type::Interval)

Error: second argument must be a property [property::assume]

>> assume(x, Type::Interval(0, infinity))

]0, infinity[of Type::Real

iv

Example 3. is derives mathematical properties:

>> assume(x > 0):
is(sqrt(x^2), Type::NonNegative)

TRUE

>> is(-(2*x + 1) < 0)

TRUE

Example 4. Type::Property and Type::Constant are not properties:

>> assume(x, Type::Property)

Error: second argument must be a property [property::assume]

>> is(x, Type::AnyType)

Error: wrong type of second argument ’Type::AnyType’ (’Type::P\
roperty’ expected) [property::is]

v

Type::AlgebraicConstant – a type representing algebraic con-
stants

Type::AlgebraicConstant represents algebraic constants.

Call(s):

A testtype(obj, Type::AlgebraicConstant)

Parameters:

obj — any MuPAD object

Return Value: see testtype

Related Functions: testtype , Type::Constant

Details:

A In MuPAD, algebraic constants are characterized as follows: a complex
number is an algebraic constant, if both its real part and its imaginary
part are rational. Sums and products of algebraic constants are again
algebraic constants. Further, rational powers of algebraic constants are
again algebraic constants.

Taken together, these rules characterize algebraic constants over the ra-
tionals defined as usual, i.e., as roots of polynomial expressions.

A This type does not represent a property: it cannot be used in assume to
mark an identifier as an algebraic constant.

Example 1. The following number is composed of radicals involving rational
numbers and therefore is an algebraic constant:

>> testtype((3^(1/2)*I + 1/8)^(1/7), Type::AlgebraicConstant)

TRUE

The following objects are not algebraic constants:

>> testtype(2^I, Type::AlgebraicConstant),
testtype(PI, Type::AlgebraicConstant)

FALSE, FALSE

1

Example 2. Symbolic objects cannot represent algebraic constants:

>> testtype(x, Type::AlgebraicConstant)

FALSE

Example 3. The following call selects the algebraic constants in an expression:

>> select(x + PI + 2^(1/2) + I, testtype, Type::AlgebraicConstant)

1/2
2 + I

Changes:

A No changes.

Type::AnyType – a type representing arbitrary MuPAD objects

Type::AnyType represents arbitrary MuPAD objects.

Call(s):

A testtype(obj, Type::AnyType)

Parameters:

obj — any MuPAD object

Return Value: testtype always returns TRUE

Related Functions: testtype

Details:

A This type is meant to represent arbitrary MuPAD objects in constructors
of composite types such as Type::ListOf .

A This type does not represent a property: it cannot be used in assume .

2

Example 1. Any object matches this type:

>> testtype(3, Type::AnyType),
testtype(x, Type::AnyType),
testtype(array(1..1, [x]), Type::AnyType),
testtype(Dom::Matrix(), Type::AnyType)

TRUE, TRUE, TRUE, TRUE

This type is meant for constructing composite types. The following call tests,
whether an object is a list with arbitrary elements:

>> testtype([3, x, array(1..1, [x]), Dom::Matrix()],
Type::ListOf(Type::AnyType))

TRUE

Changes:

A No changes.

Type::Arithmetical – a type representing arithmetical objects

Type::Arithmetical represents arithmetical objects.

Call(s):

A testtype(obj, Type::Arithmetical)

Parameters:

obj — any MuPAD object

Return Value: see testtype

Related Functions: testtype

Details:

A In MuPAD, arithmetical objects are objects for which arithmetical oper-
ations such as addition, multiplication, exponentiation etc. are defined.
These include numbers, most expressions, infinity and elements of
certain library domains. In particular, the latter include rectform ob-
jects and series expansions of domain type Series::Puiseux .

3

A The following objects are not regarded as arithmetical objects:

• equations and inequalities,

• Boolean objects and Boolean expressions involving and , or , not ,

• lists,

• sets and set expressions involving union , intersect , minus ,

• polynomials of domain type DOM_POLY,

• functions and procedures,

• arrays and tables.

A This type does not represent a property: it cannot be used in assume to
mark an identifier as an arithmetical object.

Example 1. Numbers and expressions are regarded as arithmetical objects:

>> testtype(3 + I, Type::Arithmetical),
testtype(x + sqrt(2) + I*PI, Type::Arithmetical),
testtype(x/y + y/x, Type::Arithmetical)

TRUE, TRUE, TRUE

Equations and inequalities are not regarded as arithmetical objects:

>> testtype(x^2 = 2, Type::Arithmetical),
testtype(x <> 2, Type::Arithmetical),
testtype(x < 2, Type::Arithmetical),
testtype(x >= 2, Type::Arithmetical)

FALSE, FALSE, FALSE, FALSE

Sets, lists, tables and arrays are not arithmetical:

>> testtype({a, b, c}, Type::Arithmetical),
testtype(array(1..1, [x]), Type::Arithmetical)

FALSE, FALSE

However, domain objects such as matrices of some matrix domain are arith-
metical:

>> testtype(Dom::Matrix()([[1, 2], [3, 4]]), Type::Arithmetical)

TRUE

4

Changes:

A Type::Arithmetical is a new function.

Type::Complex – a type and a property representing complex num-
bers

Type::Complex represents complex numbers. This type can also be used as
a property to mark identifiers as complex numbers.

Call(s):

A testtype(obj, Type::Complex)

A assume(x, Type::Complex)

A is(ex, Type::Complex)

Parameters:
obj — any MuPAD object
x — an identifier
ex — an arithmetical expression

Return Value: see assume , is and testtype

Related Functions: assume , is , testtype , Type::Imaginary ,
Type::Property , Type::Real

Details:

A The call testtype(obj, Type::Complex) checks, whether obj is a
complex number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects
of type DOM_INT, DOM_RAT, DOM_FLOATand DOM_COMPLEX. This does
not include arithmetical expressions such as exp(1) , which are not iden-
tified as of type Type::Complex .

A The call assume(x, Type::Complex) marks the identifier x as a com-
plex number.

The call is(ex, Type::Complex) derives, whether the expression ex
is a complex number (or this property can be derived).

A This type represents a property that can be used in assume and is .

5

Example 1. The following numbers are of type Type::Complex :

>> testtype(2, Type::Complex),
testtype(3/4, Type::Complex),
testtype(0.123, Type::Complex),
testtype(1 + I/3, Type::Complex),
testtype(1.0 + 2.0*I, Type::Complex)

TRUE, TRUE, TRUE, TRUE, TRUE

The following expressions are exact representations of complex numbers. Syn-
tactically, however, they are not of type Type::Complex :

>> testtype(exp(3), Type::Complex),
testtype(PI^2 + 5, Type::Complex),
testtype(sin(2) + PI*I, Type::Complex)

FALSE, FALSE, FALSE

Example 2. Identifiers may be assumed to represent a complex number:

>> assume(x, Type::Complex): is(x, Type::Complex)

TRUE

The real numbers are a subset of the complex numbers:

>> assume(x, Type::Real): is(x, Type::Complex)

TRUE

Without further information, it cannot be decided whether a complex number
is real:

>> assume(x, Type::Complex): is(x, Type::Real)

UNKNOWN

>> unassume(x):

Changes:

A No changes.

Type::Constant – a type representing constant objects

Type::Constant represents constant objects, i.e., objects not containing sym-
bolic identifiers.

6

Call(s):

A testtype(obj, Type::Constant)

Parameters:

obj — any MuPAD object

Return Value: see testtype

Related Functions: testtype

Details:

A Numbers, strings, Boolean constants, points, polygons, NIL , FAIL and
the identifiers PI , EULERand CATALANin the set Type::ConstantIdents
are regarded as constant objects. A composite object is constant, if all its
operands are constant.

A Any function is identified as a constant, if all arguments are constant,
also if the function is not defined (e.g., an identifier).

A This type does not represent a property: it cannot be used in assume to
mark an identifier as a constant.

Example 1. The following objects are elementary constants:

>> testtype(3, Type::Constant),
testtype(sin(3/2), Type::Constant),
testtype(TRUE, Type::Constant),
testtype("MuPAD", Type::Constant),
testtype(FAIL, Type::Constant)

TRUE, TRUE, TRUE, TRUE, TRUE

The following expression contains an indeterminate x and, consequently, is
not a constant object:

>> testtype(exp(x + 1), Type::Constant)

FALSE

All constant operands of an expression are selected:

>> select(x^2 + 3*x - 2, testtype, Type::Constant)

-2

Any function call is considered constant, if the arguments are constant:

>> testtype(f(1, 2, 3, 4), Type::Constant)

TRUE

7

Changes:

A No changes.

Type::ConstantIdents – set of constant identifiers in MuPAD

Type::ConstantIdents is the set {PI, EULER, CATALAN} .

Call(s):

A contains(Type::ConstantIdents, obj)

Parameters:

obj — any MuPAD object

Return Value: see contains

Related Functions: contains , indets , Type::Constant

Details:

A Type::ConstantIdents is the set of identifiers that represent con-
stants. As of version 2.0, these are PI , EULERand CATALAN. The con-
stant E is not in this set, because MuPAD replaces it directly after the
input by exp(1) .

A These constants will be returned by the function indets , but they can-
not be treated like other identifiers. For example, they cannot have prop-
erties or be the left-hand side of an assignment.

See example 1 for an application.

A Type::Constant makes use of Type::ConstantIdents , see exam-
ple 2.

Example 1. MuPAD implements π as the identifier PI .

>> domtype(PI)

DOM_IDENT

However, PI is constant (although rumors keep raising their heads that China,
Alabama, or whoever it may be next time had tried to change its value by
means of a legislative process):

>> testtype(PI, Type::Constant)

8

TRUE

Still, indets regards PI as an identifier with no value (which is syntactically
correct), and you can even use PI as an indeterminate of a polynomial:

>> indets(PI/2*x);
poly(PI/2*x)

{x, PI}

poly(1/2 PI x, [PI, x])

To find the “real” indeterminates, use the following call:

>> indets(PI/2*x) minus Type::ConstantIdents

{x}

Example 2. Assume you want MuPAD to regard the identifier KHINTCHINE
as a constant. (Probably, it should represent the Khintchine constant K, which
is approximately 2.685452, but we will not implement this.) First of all, you
should make sure that the identifier does not have a value yet and protect it:

>> testtype(KHINTCHINE, DOM_IDENT);
protect(KHINTCHINE, Error)

TRUE

None

Next, add KHINTCHINE to Type::ConstantIdents (note that we have to
unprotect the identifier Type , because Type::ConstantIdents is a slot of
it):

>> old_protection := unprotect(Type):
Type::ConstantIdents := Type::ConstantIdents union {KHINTCHINE}:
protect(Type, old_protection):
Type::ConstantIdents

{PI, EULER, CATALAN, KHINTCHINE}

Now, MuPAD regards KHINTCHINE as a constant:

>> testtype(sin(PI + KHINTCHINE), Type::Constant)

TRUE

>> solve(x^2 = KHINTCHINE)

1/2 1/2
{[x = KHINTCHINE], [x = - KHINTCHINE]}

9

Changes:

A The constant CATALANwas added.

Type::Equation – a type representing equations

Type::Equation represents equations. The types of the left hand side and
the right hand side can be specified.

Call(s):

A testtype(obj, Type::Equation(<lhs_type <,
rhs_type >>))

Parameters:
obj — any MuPAD object
lhs_type — the type of the left hand side; a type can be an object of

the library Type or one of the possible return values of
domtype and type

rhs_type — the type of the right hand side

Return Value: see testtype

Related Functions: testtype

Details:

A The call testtype(obj, Type::Equation(lhs_type,rhs_type))
checks whether type(obj) yields "_equal" and testtype(lhs(obj),
lhs_type) and testtype(rhs(obj), rhs_type) both yield TRUE
and returns TRUE, if all holds, otherwise FALSE.

A The two optional parameters lhs_type and rhs_type determine the
types of the left hand side and the right hand side, respectively.

A The default values of lhs_type and rhs_type are Type::AnyType .

A The equations lhs=rhs and rhs=lhs are considered
different! E.g., the equation x=3 matches the type
Type::Equation(DOM_IDENT,DOM_INT) , but it does not
match the type Type::Equation(DOM_INT,DOM_IDENT) .

!

A This type does not represent a property, it cannot be used in an assume
call.

10

Example 1. The following object is an equation:

>> testtype(x = 3, Type::Equation())

TRUE

The following calls test, whether the object is an equation with an unknown
on the left hand side and a positive integer on the right hand side:

>> testtype(x = 3, Type::Equation(Type::Unknown, Type::PosInt)),
testtype(x = 0, Type::Equation(Type::Unknown, Type::PosInt))

TRUE, FALSE

Changes:

A Type::Equation is a new function.

Type::Even – a type and a property representing even integers

Type::Even represents even integers. This type can also be used as a prop-
erty to mark identifiers as even integers.

Call(s):

A testtype(obj, Type::Even)

A assume(x, Type::Even)

A is(ex, Type::Even)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see assume , is and testtype

Related Functions: is , assume , testtype , Type::Odd ,
Type::Property

11

Details:

A The call testtype(obj, Type::Even) checks, whether obj is an even
number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects
of type DOM_INTand checks, if bool(domtype(x/2) = DOM_INT)
holds.

A The call assume(x, Type::Even) marks the identifier x as an even
number.

The call is(ex, Type::Even) derives, whether the expression ex is
an even number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::Even :

>> testtype(2, Type::Even),
testtype(-4, Type::Even),
testtype(8, Type::Even),
testtype(-11114, Type::Even),
testtype(4185296581467695598, Type::Even)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. We use this type as a property:

>> assume(x, Type::Even):

The following calls to is derive the properties of a composite expression from
the properties of its indeterminates:

>> is(3*x^2, Type::Even), is(x + 1, Type::Even)

TRUE, FALSE

>> is(x, Type::Integer), is(2*x, Type::Integer),
is(x/2, Type::Integer), is(x/3, Type::Integer)

TRUE, TRUE, TRUE, UNKNOWN

>> assume(y, Type::Odd): is(x + y, Type::Even)

FALSE

>> is(2*(x + y), Type::Even)

TRUE

>> delete x, y:

12

Changes:

A No changes.

Type::Imaginary – a type and a property representing imaginary
numbers

Type::Imaginary represents complex numbers with vanishing real part.
This type can also be used as a property to mark identifiers as imaginary num-
bers.

Call(s):

A testtype(obj, Type::Imaginary)

A assume(x, Type::Imaginary)

A is(ex, Type::Imaginary)

Parameters:
obj — any MuPAD object
x — an identifier
ex — an arithmetical expression

Parameters:

obj — any MuPAD object

Return Value: see assume , is and testtype

Related Functions: assume , is , testtype , Type::Complex ,
Type::Property

Details:

A The call testtype(obj, Type::Imaginary) checks, whether obj is
an imaginary number (or zero) and returns TRUE, if it holds, otherwise
FALSE.

A testtype only performs a syntactical test identifying MuPAD objects
of type DOM_COMPLEXand checks, whether iszero(Re(obj)) holds,
or whether iszero(obj) is TRUE. This does not include arithmeti-
cal expressions such as I*exp(1) , which are not identified as of type
Type::Imaginary .

A The call assume(x, Type::Imaginary) marks the identifier x as an
imaginary number.

The call is(ex, Type::Imaginary) derives, whether the expression
ex is an imaginary number (or this property can be derived).

13

A This type represents a property that can be used in assume and is .

A The call assume(Re(x) = 0) has the same meaning as assume(x,
Type::Imaginary) .

Example 1. The following numbers are of type Type::Imaginary :

>> testtype(5*I, Type::Imaginary),
testtype(3/2*I, Type::Imaginary),
testtype(-1.23*I, Type::Imaginary)

TRUE, TRUE, TRUE

The following expressions are exact representations of imaginary numbers.
However, syntactically they are not of type Type::Imaginary , because their
domain type is not DOM_COMPLEX:

>> testtype(exp(3)*I, Type::Imaginary),
testtype(PI*I, Type::Imaginary),
testtype(sin(2*I), Type::Imaginary)

FALSE, FALSE, FALSE

In contrast to testtype , the function is performs a semantical test:

>> is(exp(3)*I, Type::Imaginary),
is(PI*I, Type::Imaginary),
is(sin(2*I), Type::Imaginary)

TRUE, TRUE, TRUE

Example 2. Identifiers may be assumed to represent an imaginary number:

>> assume(x, Type::Imaginary): is(x, Type::Imaginary), Re(x), Im(x)

TRUE, 0, -I x

The imaginary numbers are a subset of the complex numbers:

>> is(x, Type::Complex)

TRUE

>> unassume(x):

14

Changes:

A No changes.

Type::IndepOf – a type representing objects that do not contain
given identifiers

Type::IndepOf(x) represents objects that do not contain the identifier x .

Type::IndepOf({x1, x2, ...}) represents objects that do not contain
any of the identifiers x1 , x2 etc.

Call(s):

A testtype(obj, Type::IndepOf(x))

A testtype(obj, Type::IndepOf({x1, ...}))

Parameters:
obj — any MuPAD object
x, x1, x2 — identifiers of domain type DOM_IDENT

Return Value: see testtype

Related Functions: has , indets , testtype

Details:

A The call testtype(obj, Type::IndepOf(x)) checks, whether obj
does not contain the identifier x and returns TRUE, if it holds, otherwise
FALSE.

A Type::IndepOf uses has to check whether the object contains at least
one of the specified identifiers.

A This type expects one argument x or {x1, ...} .

A This type does not represent a property.

Example 1. The following expression depends on x :

>> testtype(x^2 - x + 3, Type::IndepOf(x))

FALSE

It is independend of y :

15

>> testtype(x^2 - x + 3, Type::IndepOf(y))

TRUE

The following expression is independend of x and y :

>> testtype(2*(a + b)/c, Type::IndepOf({x, y}))

TRUE

The following call selects all operands of the expression that are independend
of x :

>> select(sin(y) + x^2 - 3*x + 2, testtype, Type::IndepOf(x))

sin(y) + 2

Changes:

A Type::IndepOf is a new function.

Type::Integer – a type and a property representing integers

Type::Integer represents integers. This type can also be used as a property
to mark identifiers as integers.

Call(s):

A testtype(obj, Type::Integer)

A assume(x, Type::Integer)

A is(ex, Type::Integer)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see assume , is and testtype

Related Functions: assume , is , testtype , Type::Real ,
Type::Property

16

Details:

A The call testtype(obj, Type::Integer) checks, whether obj is an
integer number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INT.

A The call assume(x, Type::Integer) marks the identifier x as an in-
teger number.

The call is(ex, Type::Integer) derives, whether the expression ex
is an integer number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::Integer :

>> testtype(0, Type::Integer), testtype(55, Type::Integer),
testtype(-111, Type::Integer)

TRUE, TRUE, TRUE

Example 2. We use this type as a property:

>> assume(x, Type::Integer):

The following calls to is derive the properties of a composite expression from
the properties of its indeterminates:

>> is(3*x, Type::Real), is(2*x, Type::Even), is(x/2, Type::Integer)

TRUE, TRUE, UNKNOWN

>> assume(y, Type::Integer): is(x + y^2, Type::Integer)

TRUE

>> unassume(x), unassume(y):

17

Changes:

A No changes.

Type::Interval – a property representing intervals

Type::Interval(a, b, ..) represents the interval (a, b).

Type::Interval([a], b, ..) represents the interval [a, b).

Type::Interval(a, [b], ..) represents the interval (a, b].

Type::Interval([a], [b], ..) represents the interval [a, b].

Type::Interval([a, b], ..) represents the interval [a, b].

Call(s):

A Type::Interval(a, b <, domain >)

A Type::Interval([a], b <, domain >)

A Type::Interval(a, [b] <, domain >)

A Type::Interval([a], [b] <, domain >)

A Type::Interval([a, b] <, domain >)

Parameters:
a, b — the borders of the interval: arithmetical objects
domain — a type object such as Type::Real , Type::Integer or

Type::Rational representing a subset of the real
numbers. The default domain is Type::Real .

Return Value: a Type object

Related Functions: assume , is , testtype , Type::Integer ,
Type::Rational , Type::Real

Details:

A With the default domain Type::Real , the type object created by Type::Interval
represents a real interval, i.e., the set of all real numbers between the bor-
der points a and b. If another domain is specified, then the type object
represents the intersection of the real interval with the set represented by
the domain. E.g., Type::Interval(a, b, Type::Rational) rep-
resents the set of all rational numbers between a and b.

18

A The type object represents a property that may be used in assume and
is . With

assume(x, Type::Interval(a, b, domain))

the identifier x is marked as a number from the interval represented by
the type object. With

is(x, Type::Interval(a, b, domain))

one queries, whether x is contained in the interval.

A Interval types should not be used in testtype . No MuPAD object matches
these types syntactically, i.e., testtype always returns FALSE.

Example 1. The following type object represents the open interval (−1,1):

>> Type::Interval(-1, 1)

]-1, 1[of Type::Real

The following calls are equivalent: both create the type representing a closed
interval:

>> Type::Interval([-1], [1]), Type::Interval([-1, 1])

[-1, 1] of Type::Real, [-1, 1] of Type::Real

The following call creates the type representing the set of all integers from -10
to 10:

>> Type::Interval([-10, 10], Type::Integer)

[-10, 10] of Type::Integer

The following call creates the type representing the set of all rational numbers
in the interval [0,1):

>> Type::Interval([0], 1, Type::Rational)

[0, 1[of Type::Rational

Example 2. We use intervals as a property. The following call marks x as a
real number from the interval [0,2):

>> assume(x, Type::Interval([0], 2)):

Consequently, x2 + 1 lies in the interval [1,5):

>> is(x^2 + 1 >= 1), is(x^2 + 1 < 5)

19

TRUE, TRUE

The following call marks x as an integer larger than -10 and smaller than 100:

>> assume(x, Type::Interval(-10, 100, Type::Integer)):

Consequently, x3 is an integer larger than -730 and smaller than 970300:

>> is(x^3, Type::Integer), is(x^3 >= -729), is(x^3 < 970300),
is(x^3, Type::Interval(-10^3, 100^3, Type::Integer))

TRUE, TRUE, TRUE, TRUE

>> is(x <= -730), is(x^3 >= 970300)

FALSE, FALSE

>> is(x > 0), is(x^3, Type::Interval(0, 10, Type::Integer))

UNKNOWN, UNKNOWN

>> unassume(x):

Changes:

A the internal structure was revised completely

A the output is changed

Type::ListOf – type for testing lists of objects with the same type

Type::ListOf describes lists of objects of a specified type.

Call(s):

A testtype(obj, Type::ListOf(obj_type <, min_nr <,
max_nr >>))

Parameters:
obj — any MuPAD object
obj_type — the type of the objects; a type can be an object of the

library Type or one of the possible return values of
domtype and type

min_nr — the minimal number of objects as nonnegative integer
max_nr — the maximal number of objects as nonnegative integer

20

Return Value: see testtype

Related Functions: DOM_LIST, testtype , Type::ListProduct ,
Type::SetOf , Type::Union

Details:

A The call testtype(obj, Type::ListOf(obj_types, ...)) checks,
whether obj is a list with elements of the given type obj_type, ...
and returns TRUE, if it holds, otherwise FALSE.

A This type expects one or more arguments obj_type, ... ,<, min_nr
<, max_nr >>.

A The two optional parameters min_nr and max_nr determine the min-
imum and maximum number of elements in the analyzed list. If the
numbers are not be given, the number of elements in the list will not
be checked. If only the minimum is given, only the minimal number of
elements in the list is checked.

A Note especially that Type::Union provides a way to allow more than
one type for the list elements.

A This type does not represent a property.

Example 1. Is the given list a list of identifiers?

>> testtype([a, b, c, d, e, f], Type::ListOf(DOM_IDENT))

TRUE

Is the given list a list of at least five real numbers?

>> testtype([0, 0.5, 1, 1.5, 2, 2.5, 3], Type::ListOf(Type::Real, 5))

TRUE

Example 2. testtype is used to select lists with exactly two identifiers:

>> S := {[a], [a, b], [d, 1], [0, d], [e], [d, e]}:
select(S, testtype, Type::ListOf(DOM_IDENT, 2, 2))

{[a, b], [d, e]}

21

Changes:

A No changes.

Type::ListProduct – type for testing lists

With Type::ListProduct , lists with different object types can be identified.

Call(s):

A testtype(obj, Type::ListProduct(typedef, ...))

Parameters:
obj — any MuPAD object
typedef — a sequence of types; a type can be an object of the library

Type or one of the possible return values of domtype and
type

Return Value: see testtype

Related Functions: testtype , Type::ListOf , Type::Product

Details:

A The call testtype(obj, Type::ListProduct(typedef)) checks,
whether obj is a list of objects, which have the types given by typedef
and returns TRUE, if it holds, otherwise FALSE.

A obj must have the same number of arguments as the sequence type-
def . The elements of obj are checked one after another: the first element
of obj is checked against the type given by the first element of typedef ,
and so on. All elements and types must match.

A This type expects one or more arguments Type::ListProduct(typedef,
...) .

A typedef, ... must be a nonempty sequence of types. A type can
be an object of the library Type or one of the possible return values of
domtype and type .

A This type does not represent a property.

22

Example 1. The argument is a list of a positive integer followed by an identi-
fier:

>> testtype([5, x], Type::ListProduct(Type::PosInt, Type::Unknown))

TRUE

Is the argument is a list of a five positive integers? (We use $ here to repeat
Type::PosInt five times.)

>> testtype([5, 3, 5, -1, 0], Type::ListProduct(Type::PosInt $ 5))

FALSE

Changes:

A No changes.

Type::NegInt – a type and a property representing negative inte-
gers

Type::NegInt represents negative integers. Type::NegInt is a property,
too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::NegInt)

A assume(x, Type::NegInt)

A is(ex, Type::NegInt)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Property

23

Details:

A The call testtype(obj, Type::NegInt) checks, whether obj is a
negative integer number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand checks, if bool(obj < 0) holds.

A The call assume(x, Type::NegInt) marks the identifier x as a nega-
tive integer number.

The call is(ex, Type::NegInt) derives, whether the expression ex
is a negative integer number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::NegInt :

>> testtype(-2, Type::NegInt),
testtype(-3, Type::NegInt),
testtype(-55, Type::NegInt),
testtype(-1, Type::NegInt),
testtype(-111111111, Type::NegInt)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. Assume an identifier is a negative integer:

>> assume(x, Type::NegInt):
is(x, Type::NegInt)

TRUE

Negative integers are integers, of course:

>> assume(x, Type::NegInt):
is(x, Type::Integer)

TRUE

However, integers can be negative or not:

>> assume(x, Type::Integer):
is(x, Type::NegInt)

UNKNOWN

>> delete x:

24

Changes:

A No changes.

Type::NegRat – a type and a property representing negative rational
numbers

Type::NegRat represents negative rational numbers. Type::NegRat is a
property, too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::NegRat)

A assume(x, Type::NegRat)

A is(ex, Type::NegRat)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Property

Details:

A The call testtype(obj, Type::NegRat) checks, whether obj is a
negative rational number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand DOM_RATand checks, if bool(obj < 0) holds.

A The call assume(x, Type::NegRat) marks the identifier x as a nega-
tive rational number.

The call is(ex, Type::NegRat) derives, whether the expression ex
is a negative rational number (or this property can be derived).

A This type represents a property that can be used in assume and is .

25

Example 1. The following numbers are of type Type::NegRat :

>> testtype(-2, Type::NegRat),
testtype(-3/4, Type::NegRat),
testtype(-55/111, Type::NegRat),
testtype(-1, Type::NegRat),
testtype(-111/111111, Type::NegRat)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. Assume an identifier is negative rational:

>> assume(x, Type::NegRat):
is(x, Type::NegRat)

TRUE

Also negative rational numbers are rational:

>> assume(x, Type::NegRat):
is(x, Type::Rational)

TRUE

However, rational numbers can be negative rational or not:

>> assume(x, Type::Rational):
is(x, Type::NegRat)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::Negative – a type and a property representing negative num-
bers

Type::Negative represents negative numbers. Type::Negative is a prop-
erty, too, which can be used in an assume call.

26

Call(s):

A testtype(obj, Type::Negative)

A assume(x, Type::Negative)

A is(ex, Type::Negative)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Real ,
Type::Property

Details:

A The call testtype(obj, Type::Negative) checks, whether obj is
a negative real number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects
of type DOM_INT, DOM_RATand DOM_FLOATand checks, if bool(obj
< 0) holds. This does not include arithmetical expressions such as -
exp(1) , which are not identified as of type Type::Negative .

A The call assume(x, Type::Negative) marks the identifier x as a
negative real number.

The call is(ex, Type::Negative) derives, whether the expression
ex is a negative real number (or this property can be derived).

A This type represents a property that can be used in assume and is .

A Instead of Type::Negative the assumption can also be assume(x <
0) .

Example 1. The following numbers are of type Type::Negative :

>> testtype(-2, Type::Negative),
testtype(-3/4, Type::Negative),
testtype(-0.123, Type::Negative),
testtype(-1, Type::Negative),
testtype(-1.02, Type::Negative)

TRUE, TRUE, TRUE, TRUE, TRUE

27

The following expressions are exact representations of negative numbers, but
syntactically they are not of Type::Negative :

>> testtype(-exp(1), Type::Negative),
testtype(-PI^2 - 5, Type::Negative),
testtype(-sin(2), Type::Negative)

FALSE, FALSE, FALSE

Example 2. Assume an identifier is negative:

>> assume(x, Type::Negative):
is(x, Type::Negative)

TRUE

This is equal to:

>> assume(x < 0):
is(x < 0)

TRUE

Also negative numbers are real:

>> assume(x, Type::Negative):
is(x, Type::Real)

TRUE

However, real numbers can be negative or not:

>> assume(x, Type::Real):
is(x, Type::Negative)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::NonNegInt – a type and a property representing nonnegative
integers

Type::NonNegInt represents nonnegative integers. Type::NonNegInt is
a property, too, which can be used in an assume call.

28

Call(s):

A testtype(obj, Type::NonNegInt)

A assume(x, Type::NonNegInt)

A is(ex, Type::NonNegInt)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Integer ,
Type::Property

Details:

A The call testtype(obj, Type::NonNegInt) checks, whether obj
is a nonnegative integer number and returns TRUE, if it holds, otherwise
FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand checks, if bool(obj >= 0) holds.

A The call assume(x, Type::NonNegInt) marks the identifier x as a
nonnegative integer number.

The call is(ex, Type::NonNegInt) derives, whether the expression
ex is a nonnegative integer number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::NonNegInt :

>> testtype(2, Type::NonNegInt),
testtype(3/4, Type::NonNegInt),
testtype(55/111, Type::NonNegInt),
testtype(1, Type::NonNegInt),
testtype(111/111111, Type::NonNegInt)

TRUE, FALSE, FALSE, TRUE, FALSE

29

Example 2. Assume an identifier is nonnegative rational:

>> assume(x, Type::NonNegInt):
is(x, Type::NonNegInt)

TRUE

Also nonnegative integers are integers:

>> assume(x, Type::NonNegInt):
is(x, Type::Integer)

TRUE

However, integers can be nonnegative or not:

>> assume(x, Type::Integer):
is(x, Type::NonNegInt)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::NonNegRat – a type and a property representing nonnegative
rational numbers

Type::NonNegRat represents nonnegative rational numbers. Type::NonNegRat
is a property, too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::NonNegRat)

A assume(x, Type::NonNegRat)

A is(ex, Type::NonNegRat)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

30

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Rational ,
Type::Property

Details:

A The call testtype(obj, Type::NonNegRat) checks, whether obj is
a nonnegative rational number and returns TRUE, if it holds, otherwise
FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand DOM_RATand checks, if bool(obj >= 0) holds.

A The call assume(x, Type::NonNegRat) marks the identifier x as a
nonnegative rational number.

The call is(ex, Type::NonNegRat) derives, whether the expression
ex is a nonnegative rational number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::NonNegRat :

>> testtype(2, Type::NonNegRat),
testtype(3/4, Type::NonNegRat),
testtype(55/111, Type::NonNegRat),
testtype(0, Type::NonNegRat),
testtype(111/111111, Type::NonNegRat)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. Assume an identifier is nonnegative rational:

>> assume(x, Type::NonNegRat):
is(x, Type::NonNegRat)

TRUE

Also nonnegative rational numbers are rational:

>> assume(x, Type::NonNegRat):
is(x, Type::Rational)

TRUE

However, rational numbers can be nonnegative rational or not:

31

>> assume(x, Type::Rational):
is(x, Type::NonNegRat)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::NonNegative – a type and a property representing nonnega-
tive numbers

Type::NonNegative represents nonnegative numbers. Type::NonNegative
is a property, too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::NonNegative)

A assume(x, Type::NonNegative)

A is(ex, Type::NonNegative)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Real ,
Type::Property

Details:

A The call testtype(obj, Type::NonNegative) checks, whether obj
is a nonnegative real number and returns TRUE, if it holds, otherwise
FALSE.

A testtype only performs a syntactical test identifying MuPAD objects
of type DOM_INT, DOM_RATand DOM_FLOATand checks, if bool(obj
>= 0) holds. This does not include arithmetical expressions such as
exp(1) , which are not identified as of type Type::NonNegative .

32

A The call assume(x, Type::NonNegative) marks the identifier x as
a nonnegative real number.

The call is(ex, Type::NonNegative) derives, whether the expres-
sion ex is a nonnegative real number (or this property can be derived).

A This type represents a property that can be used in assume and is .

A Instead of Type::NonNegative the assumption can also be assume(x
>= 0) .

Example 1. The following numbers are of type Type::NonNegative :

>> testtype(2, Type::NonNegative),
testtype(3/4, Type::NonNegative),
testtype(0.123, Type::NonNegative),
testtype(0, Type::NonNegative),
testtype(1.02, Type::NonNegative)

TRUE, TRUE, TRUE, TRUE, TRUE

The following expressions are exact representations of nonnegative numbers,
but syntactically they are not of Type::NonNegative :

>> testtype(exp(1), Type::NonNegative),
testtype(PI^2 + 5, Type::NonNegative),
testtype(sin(2), Type::NonNegative)

FALSE, FALSE, FALSE

The function is , however, can find these expressions to be nonnegative:

>> is(exp(1), Type::NonNegative),
is(PI^2 + 5, Type::NonNegative),
is(sin(2), Type::NonNegative)

TRUE, TRUE, TRUE

Example 2. Assume an identifier is nonnegative:

>> assume(x, Type::NonNegative):
is(x, Type::NonNegative)

TRUE

This is equal to:

>> assume(x >= 0):
is(x >= 0)

33

TRUE

Also nonnegative numbers are real:

>> assume(x, Type::NonNegative):
is(x, Type::Real)

TRUE

But real numbers can be nonnegative or not:

>> assume(x, Type::Real):
is(x, Type::NonNegative)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::NonZero – a type and a property representing “unequal to
zero”

Type::NonZero is a type of objects unequal to zero. Type::NonZero is a
property, too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::NonZero)

A assume(x, Type::NonZero)

A is(ex, Type::NonZero)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Zero

34

Details:

A The call testtype(obj, Type::NonZero) checks, whether obj is
not zero and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test and uses the function iszero
to determine, whether the object is not zero. This implies that identifiers
without a value, for example, are considered as being different from zero,
see example 1.

A The call assume(x, Type::NonZero) marks the identifier x as a com-
plex number unequal to zero.

The call is(ex, Type::NonZero) derives, whether the expression ex
is a complex number unequal to zero (or this property can be derived).

A This type represents a property that can be used in assume and is .

A The call assume(x <> 0) has the same meaning as assume(x, Type::NonZero) .

Example 1. Usage of Type::NonZero whith testtype :

>> testtype(1.0, Type::NonZero)

TRUE

Since iszero(x) returns FALSE, the following call returns TRUE:

>> testtype(x, Type::NonZero)

TRUE

Example 2. Usage of Type::NonZero whith assume and is :

>> is(x, Type::NonZero)

UNKNOWN

Assumption: x is Type::NonZero :

>> assume(x, Type::NonZero):
is(x, Type::NonZero)

TRUE

The same again:

>> assume(x <> 0):
is(x <> 0)

35

TRUE

The difference between testtype and is :

>> delete x:
is(x, Type::NonZero), testtype(x, Type::NonZero)

UNKNOWN, TRUE

x could be zero:

>> assume(x >= 0):
is(x, Type::NonZero), testtype(x, Type::NonZero)

UNKNOWN, TRUE

>> delete x:

Changes:

A No changes.

Type::Numeric – a type for testing numerical objects

With Type::Numeric , numeric objects (numbers) can be identified.

Call(s):

A testtype(obj, Type::Numeric)

Parameters:

obj — any MuPAD object

Return Value: see testtype

Related Functions: assume , is , testtype , Type::Complex

Details:

A The call testtype(obj, Type::Numeric) checks, whether obj is a
number and returns TRUE, if it holds, otherwise FALSE.

A A number has the domain type DOM_INT, DOM_RAT, DOM_FLOATor
DOM_COMPLEX.

A This type does not represent a property.

36

Example 1. The following objects are numbers.

>> testtype(2, Type::Numeric),
testtype(3/4, Type::Numeric),
testtype(0.123, Type::Numeric),
testtype(1 + I/3, Type::Numeric),
testtype(1.0 + 2.0*I, Type::Numeric)

TRUE, TRUE, TRUE, TRUE, TRUE

The following objects are not numerical objects.

>> testtype(ln(2), Type::Numeric),
testtype(sin(3/4), Type::Numeric),
testtype(x + I/3, Type::Numeric)

FALSE, FALSE, FALSE

Changes:

A No changes.

Type::Odd – a type and a property representing odd integers

Type::Odd represents odd integers. Type::Odd is a property, too, which can
be used in an assume call.

Call(s):

A testtype(obj, Type::Odd)

A assume(x, Type::Odd)

A is(ex, Type::Odd)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Even ,
Type::Property

37

Details:

A The call testtype(obj, Type::Odd) checks, whether obj is an odd
number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand checks, if bool(domtype((x-1)/2) = DOM_INT)
holds.

A The call assume(x, Type::Odd) marks the identifier x as an odd num-
ber.

The call is(ex, Type::Odd) derives, whether the expression ex is an
odd number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::Odd :

>> testtype(1, Type::Odd),
testtype(-3, Type::Odd),
testtype(7, Type::Odd),
testtype(-11113, Type::Odd),
testtype(4185296581467695597, Type::Odd)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. Assume an identifier is odd:

>> assume(x, Type::Odd):
is(x, Type::Odd)

TRUE

All odd numbers are integer:

>> assume(x, Type::Odd):
is(x, Type::Integer)

TRUE

However, integers can be odd or not:

>> assume(x, Type::Integer):
is(x, Type::Odd)

UNKNOWN

38

However, even numbers are not odd:

>> assume(x, Type::Odd):
is(2*x, Type::Odd)

FALSE

>> assume(n, Type::Even):
is(x*n, Type::Odd)

FALSE

>> is(x*n + 1, Type::Odd)

TRUE

>> delete x, n:

Changes:

A No changes.

Type::PolyExpr – type for testing polynomial expressions

With Type::PolyExpr , polynomial expressions can be identified.

Call(s):

A testtype(obj, Type::PolyExpr(unknowns <,
coeff_type >))

Parameters:
obj — any MuPAD object
unknowns — an indeterminate or a list of indeterminates
coeff_type — the type of the coefficients; a type can be an object of

the library Type or one of the possible return values
of domtype and type

Return Value: see testtype

Related Functions: testtype , Type::PolyOf , poly , indets

39

Details:

A The call testtype(obj, Type::PolyExpr(unknowns)) checks, whether
obj is a polynomial expression in the indeterminates unknowns and, if
so, returns TRUE, otherwise FALSE.

A A polynomial expression in indet is a MuPAD expression, where indet
occurs only as operand of _plus or _mult expressions and in the base
of _power with a positive integer exponent.

A A polynomial expression is a representation of a polynomial, but it has
the MuPAD type DOM_EXPRand is not produced by the function poly .

A This type expects one or more arguments Type::PolyExpr(indets
<, coeff_type >) .

indets must be an identifier or a list of identifiers.

The optional argument coeff_type determines the type of the coeffi-
cients. If it is not given, Type::AnyType will be used.

A This type does not represent a property.

Example 1. Is the object a polynomial expression with variable x?

>> X := -x^2 - x + 3:
testtype(X, Type::PolyExpr(x))

TRUE

But X is not a MuPAD polynomial in x :

>> testtype(X, Type::PolyOf(x))

FALSE

Is the object a polynomial expression with variables x and y and with integer
coefficients?

>> X := -x^2 - x + 3:
testtype(X, Type::PolyExpr([x, y], Type::Integer))

TRUE

The next example too?

>> X := -x^2 - y^2 + 3*x + 3*y - 1:
testtype(X, Type::PolyExpr([x, y], Type::Integer))

TRUE

>> delete X:

40

Changes:

A No changes.

Type::PolyOf – type for testing polynomials

With Type::PolyOf , polynomials can be identified.

Call(s):

A testtype(obj, Type::PolyOf(coeff_type <, num_ind >))

Parameters:
obj — any MuPAD object
coeff_type — the type of the coefficientes; a type can be an object of

the library Type or one of the possible return values
of domtype and type

num_ind — the number of indeterminates

Return Value: see testtype

Related Functions: testtype , poly , indets

Details:

A The call testtype(obj, Type::PolyOf(coeff_type)) checks, whether
obj is a polynomial with coefficients of type coeff_type and, if so, re-
turns TRUE, otherwise FALSE.

A Only polynomials of type DOM_POLYcan be identified with
Type::PolyOf , see Type::PolyExpr for polynomial expres-
sions.

!

A This type expects one or more arguments Type::PolyOf(coeff_type
<, num_ind >) .

coeff_type determines the type of the coefficients.

The optional argument num_ind determines the number of indetermi-
nates. If this argument is not given, the polynomial may have any num-
ber of indeterminates.

A This type does not represent a property.

41

Example 1. Is the object a polynomial with integer coefficients?

>> P := poly(-x^2 - x + 3):
testtype(P, Type::PolyOf(Type::Integer))

TRUE

Is the object a polynomial with integer coefficients and two indets?

>> P := poly(-x^2 - x + 3, [x, y]):
testtype(P, Type::PolyOf(Type::Integer, 2))

TRUE

>> delete P:

Changes:

A No changes.

Type::PosInt – a type and a property representing positive integers

Type::PosInt represents positive integers. Type::PosInt is a property,
too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::PosInt)

A assume(x, Type::PosInt)

A is(ex, Type::PosInt)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Property

42

Details:

A The call testtype(obj, Type::PosInt) checks, whether obj is a
positive integer number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand checks, if bool(obj > 0) holds.

A The call assume(x, Type::PosInt) marks the identifier x as a posi-
tive integer number.

The call is(ex, Type::PosInt) derives, whether the expression ex
is a positive integer number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::PosInt :

>> testtype(2, Type::PosInt),
testtype(3, Type::PosInt),
testtype(55, Type::PosInt),
testtype(1, Type::PosInt),
testtype(111, Type::PosInt)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. Assume an identifier is positive integer:

>> assume(x, Type::PosInt):
is(x, Type::PosInt)

TRUE

Also positive integers are integers:

>> assume(x, Type::PosInt):
is(x, Type::Integer)

TRUE

However, integers can be positive or not:

>> assume(x, Type::Integer):
is(x, Type::PosInt)

UNKNOWN

>> delete x:

43

Changes:

A No changes.

Type::PosRat – a type and a property representing positive rational
numbers

Type::PosRat represents positive rational numbers. Type::PosRat is a
property, too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::PosRat)

A assume(x, Type::PosRat)

A is(ex, Type::PosRat)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Property

Details:

A The call testtype(obj, Type::PosRat) checks, whether obj is a
positive rational number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand DOM_RATand checks, if bool(obj > 0) holds.

A The call assume(x, Type::PosRat) marks the identifier x as a posi-
tive rational number.

The call is(ex, Type::PosRat) derives, whether the expression ex
is a positive rational number (or this property can be derived).

A This type represents a property that can be used in assume and is .

44

Example 1. The following numbers are of type Type::PosRat :

>> testtype(2, Type::PosRat),
testtype(3/4, Type::PosRat),
testtype(55/111, Type::PosRat),
testtype(1, Type::PosRat),
testtype(111/111111, Type::PosRat)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. Assume an identifier is positive rational:

>> assume(x, Type::PosRat):
is(x, Type::PosRat)

TRUE

Also positive rational numbers are rational:

>> assume(x, Type::PosRat):
is(x, Type::Rational)

TRUE

However, rational numbers can be positive rational or not:

>> assume(x, Type::Rational):
is(x, Type::PosRat)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::Positive – a type and a property representing positive num-
bers

Type::Positive represents positive numbers. Type::Positive is a prop-
erty, too, which can be used in an assume call.

45

Call(s):

A testtype(obj, Type::Positive)

A assume(x, Type::Positive)

A is(ex, Type::Positive)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Property

Details:

A The call testtype(obj, Type::Positive) checks, whether obj is
a positive real number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INT, DOM_RATand DOM_FLOATand checks, if bool(obj >
0) holds. This does not include arithmetical expressions such as exp(1) ,
which are not identified as of type Type::Positive .

A The call assume(x, Type::Positive) marks the identifier x as a
positive real number.

The call is(ex, Type::Positive) derives, whether the expression
ex is a positive real number (or this property can be derived).

A This type represents a property that can be used in assume and is .

A Instead of Type::Positive the assumption can also be assume(x >
0) .

Example 1. The following numbers are of type Type::Positive :

>> testtype(2, Type::Positive),
testtype(3/4, Type::Positive),
testtype(0.123, Type::Positive),
testtype(1, Type::Positive),
testtype(1.02, Type::Positive)

TRUE, TRUE, TRUE, TRUE, TRUE

The following expressions are exact representations of positive numbers, but
syntactically they are not of Type::Positive :

46

>> testtype(exp(1), Type::Positive),
testtype(PI^2 + 5, Type::Positive),
testtype(sin(2), Type::Positive)

FALSE, FALSE, FALSE

Ths function is , however, realizes that they are, indeed, positive:

>> is(exp(1), Type::Positive),
is(PI^2 + 5, Type::Positive),
is(sin(2), Type::Positive)

TRUE, TRUE, TRUE

Example 2. Assume an identifier is positive:

>> assume(x, Type::Positive):
is(x, Type::Positive)

TRUE

This is equivalent to:

>> assume(x > 0):
is(x > 0)

TRUE

Also positive numbers are real:

>> assume(x, Type::Positive):
is(x, Type::Real)

TRUE

But real numbers can be positive or not:

>> assume(x, Type::Real):
is(x, Type::Positive)

UNKNOWN

>> delete x:

47

Changes:

A No changes.

Type::Prime – a type and a property representing prime numbers

Type::Prime represents prime numbers. Type::Prime is a property, too,
which can be used in an assume call.

Call(s):

A testtype(obj, Type::Prime)

A assume(x, Type::Prime)

A is(ex, Type::Prime)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , isprime , Type::Property

Details:

A The call testtype(obj, Type::Prime) checks, whether obj is a prime
number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand checks, if isprime(obj) holds.

A The call assume(x, Type::Prime) marks the identifier x as a prime
number.

The call is(ex, Type::Prime) derives, whether the expression ex is
a prime number (or this property can be derived).

A This type represents a property that can be used in assume and is .

48

Example 1. The following numbers are of type Type::Prime :

>> testtype(2, Type::Prime),
testtype(3, Type::Prime),
testtype(7, Type::Prime),
testtype(11113, Type::Prime),
testtype(4185296581467695597, Type::Prime)

TRUE, TRUE, TRUE, TRUE, TRUE

Example 2. Assume an identifier is prime:

>> assume(x, Type::Prime):
is(x, Type::Prime)

TRUE

Also prime numbers are integers:

>> assume(x, Type::Prime):
is(x, Type::Integer)

TRUE

However, integer numbers can be prime or not:

>> assume(x, Type::Integer):
is(x, Type::Prime)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::Product – type for testing sequences

Type::Product is the type of sequences of objects of different types.

Call(s):

A testtype(obj, Type::Product(typedef, ...))

49

Parameters:
obj — any MuPAD object
typedef — a sequence of types; a type can be an object of the library

Type or one of the possible return values of domtype and
type

Return Value: see testtype

Related Functions: testtype , Type::ListProduct

Details:

A The call testtype(obj, Type::Product(typedef)) checks, whether
obj is a sequence of objects, which have the types given by typedef and
returns TRUE, if it holds, otherwise FALSE.

A obj must have the same number of arguments as the sequence type-
def . The elements of obj are checked one after another: the first element
of obj is checked against the type given by the first element of typedef
and so on. All elements and types must match.

A This type expects one or more arguments Type::Product(typedef,
...) .

A typedef, ... must be a nonempty sequence of types. A type can
be an object of the library Type or one of the possible return values of
domtype and type .

A This type does not represent a property.

Example 1. The argument is a sequence of a positive integer followed by an
identifier:

>> testtype((5, x), Type::Product(Type::PosInt, Type::Unknown))

TRUE

Is the argument is a sequence of five positive integers? (For help on $ see
_seqgen .)

>> testtype((5, 3, 5, -1, 0), Type::Product(Type::PosInt $ 5))

FALSE

50

Changes:

A No changes.

Type::Property – type to identify properties

With Type::Property , properties can be identified.

Call(s):

A testtype(obj, Type::Property)

Parameters:

obj — any MuPAD object

Return Value: see testtype

Related Functions: testtype , is

Details:

A The call testtype(obj, Type::Property) checks, whether the Mu-
PAD object obj is a property and returns TRUE, if it holds, otherwise
FALSE.

A Some elements of the library Type serve two functions. One is to per-
form syntactical tests to identify the type of an object (with testtype),
the other is to occur as a property within assume and is .

Type::Property itself is not a property.
!

A To determine whether an element of Type is a property, Type::Property
can be used with testtype .

A This type does not represent a property.

Example 1. Is Type::PosInt a property?

>> testtype(Type::PosInt, Type::Property)

TRUE

Also an interval created with Type::Interval is a property:

>> testtype(Type::Interval(0, 1), Type::Property)

51

TRUE

Is Type::Constant a property?

>> testtype(Type::Constant, Type::Property)

FALSE

Type::Constant is not a property and cannot be used as argument of assume :

>> assume(x, Type::Constant)

Error: second argument must be a property [property::assume]

The next example shows the usage of testtype to select properties among
operands of Type :

>> T := Type::Numeric, Type::PosInt, Type::Unknown, Type::Zero:
select(T, testtype, Type::Property)

Type::PosInt, Type::Zero

>> delete x, T:

Changes:

A Type::Property is a new function.

Type::RatExpr – type for testing rational expressions

With Type::RatExpr , rational expressions can be identified.

Call(s):

A testtype(obj, Type::RatExpr(indet <, coeff_type >))

Parameters:
obj — any MuPAD object
indet — an indeterminante
coeff_type — a type for the coefficientes; a type can be an object of

the library Type or one of the possible return values
of domtype and type

Return Value: see testtype

Related Functions: testtype , indets

52

Details:

A The call testtype(obj, Type::RatExpr(indet)) checks, whether
obj is a rational expression in the indeterminante indet , i.e., the quo-
tient of two polynomial expressions in indet . If it is, the result is TRUE,
otherwise FALSE.

A A rational expression in indet is a MuPAD expression, and indet oc-
curs only as operand of _plus or _mult expressions and in _power
with an integer exponent.

A This type expects one or more arguments Type::RatExpr(indet <,
coeff_type >) .

A indet must be an identifier, and coeff_type a type for the coefficients
of the rational expression.

A This type does not represent a property.

Example 1. A polynomial expression in x is also a rational expression in x :

>> testtype(-x^2 - x + 3, Type::RatExpr(x))

TRUE

testtype is used to select all rational operands in x with positive integer
coefficients:

>> EX := sin(x) + x^2 - 3*x + 2 + 3/x:
select(EX, testtype, Type::RatExpr(x, Type::PosInt))

3 2
- + x + 2
x

>> delete EX:

Changes:

A No changes.

Type::Rational – a type and a property representing rational num-
bers

Type::Rational represents rational numbers. Type::Rational is a prop-
erty, too, which can be used in an assume call.

53

Call(s):

A testtype(obj, Type::Rational)

A assume(x, Type::Rational)

A is(ex, Type::Rational)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Property

Details:

A The call testtype(obj, Type::Rational) checks, whether obj is
a rational number and returns TRUE, if it holds, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INTand DOM_RAT.

A The call assume(x, Type::Rational) marks the identifier x as a ra-
tional number.

The call is(ex, Type::Rational) derives, whether the expression
ex is a rational number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::Rational :

>> testtype(2, Type::Rational),
testtype(3/4, Type::Rational),
testtype(-1/2, Type::Rational),
testtype(-1, Type::Rational),
testtype(1024/11111, Type::Rational)

TRUE, TRUE, TRUE, TRUE, TRUE

54

Example 2. Integers are rational:

>> assume(x, Type::Integer):
is(x, Type::Rational)

TRUE

However, rational numbers can be integer or not:

>> assume(x, Type::Rational):
is(x, Type::Integer)

UNKNOWN

>> delete x:

Changes:

A No changes.

Type::Real – a type and a property representing real numbers

Type::Real represents real numbers. Type::Real is a property, too, which
can be used in an assume call.

Call(s):

A testtype(obj, Type::Real)

A assume(x, Type::Real)

A is(ex, Type::Real)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::Property

55

Details:

A The call testtype(obj, Type::Real) checks, whether obj is a real
number and, if it is, returns TRUE, otherwise FALSE.

A testtype only performs a syntactical test identifying MuPAD objects of
type DOM_INT, DOM_RATand DOM_FLOAT. This does not include arith-
metical expressions such as exp(1) , which are not identified as of type
Type::Real .

A The call assume(x, Type::Real) marks the identifier x as a real num-
ber.

The call is(ex, Type::Real) derives, whether the expression ex is a
real number (or this property can be derived).

A This type represents a property that can be used in assume and is .

Example 1. The following numbers are of type Type::Real :

>> testtype(2, Type::Real),
testtype(3/4, Type::Real),
testtype(0.123, Type::Real),
testtype(-1, Type::Real),
testtype(-1.02, Type::Real)

TRUE, TRUE, TRUE, TRUE, TRUE

The following expressions are exact representations of real numbers, but syn-
tactically they are not of Type::Real :

>> testtype(exp(1), Type::Real),
testtype(PI^2 + 5, Type::Real),
testtype(sin(2), Type::Real)

FALSE, FALSE, FALSE

The function is performs a semantical, mathematically more useful check:

>> is(exp(1), Type::Real),
is(PI^2 + 5, Type::Real),
is(sin(2), Type::Real)

TRUE, TRUE, TRUE

56

Example 2. Integers are real numbers:

>> assume(x, Type::Integer):
is(x, Type::Real)

TRUE

But real numbers can be integer or not:

>> assume(x, Type::Real):
is(x, Type::Integer)

UNKNOWN

The sine of a real number is a real number in the interval [−1,1]:

>> getprop(sin(x))

[-1, 1] of Type::Real

>> delete x:

Changes:

A No changes.

Type::Relation – type for testing relations

With Type::Relation , relational expression can be identified.

Call(s):

A testtype(obj, Type::Relation)

Parameters:

obj — any MuPAD object

Return Value: see testtype

Related Functions: testtype

57

Details:

A The call testtype(obj, Type::Relation) checks, whether obj is
a relational expression and returns TRUE, if it is, otherwise FALSE.

A A relation in MuPAD is an expression of the type "_equal" , "_unequal" ,
"_less" and "_leequal" .

Expressions with the operations >= and > will be interpreted as
expressions with <= and < by exchanging the operands (see exam-
ple 2).

!

A This type does not represent a property.

Example 1. x > 3 is a relation, while TRUEis not:

>> testtype(x > 3, Type::Relation),
testtype(TRUE, Type::Relation)

TRUE, FALSE

Example 2. MuPAD always interprets expressions with the operations >= and
> as expressions with <= and < with the operands exchanged:

>> x > 3;
prog::exprtree(x > 3):

3 < x

_less
|
+-- 3
|
‘-- x

The operator is not >, but <, and the operands have been swapped:

>> op(x > 3, 0..2)

_less, 3, x

58

Changes:

A No changes.

Type::Residue – a property representing a residue class

Type::Residue(rem, class) represents the integers n for which n− rem
is divisible by class.

Call(s):

A assume(x, Type::Residue(rem, class <, subset >))

A is(ex, Type::Residue(rem, class <, subset >))

A testtype(obj, Type::Residue(rem, class <, subset >))

Parameters:
x — an identifier or one of the expressions Re(u) or Im(u)

with an identifier u
rem — remainder as integer number between 0 and class - 1 ;

an integer larger than class - 1 will be divided by
class and rem gets the remainder of this division

class — the divider as positive integer
subset — a subset of the integers (e.g., Type::PosInt); otherwise

Type::Integer is used
ex — an arithmetical expression
obj — any MuPAD object

Return Value: see assume , is and testtype

Related Functions: assume , is , testtype , Type::Even ,
Type::Integer , Type::Odd

Details:

A The call assume(x, Type::Residue(rem, class)) marks the iden-
tifier x as an integer divisible by class with remainder rem .

The call is(ex, Type::Residue(rem, class)) derives, whether
the expression ex is an integer divisible by class with remainder rem
(or this property can be derived).

A This type expects two or three arguments rem , class , <subset >.

A This type represents a property that can be used in assume and is .

A Type::Even and Type::Odd are objects created by Type::Residue .

59

A The call testtype(obj, Type::Residue(rem, class)) checks, whether
obj is an integer and is divisible by class with remainder rem . If
the optional argument subset is given, testtype checks additionally
testtype(obj, subset) .

Example 1. Type::Residue can be used in testtype :

>> testtype(6, Type::Residue(2, 4)),
testtype(13, Type::Residue(1, 20))

TRUE, FALSE

Example 2. x is assumed to be divisible by 3 with remainder 1:

>> assume(x, Type::Residue(1, 3))

3 Type::Integer + 1

Which properties has x + 2 got?

>> getprop(x + 2)

3 Type::Integer

x is an integer, but it may be odd or not:

>> is(x, Type::Integer), is(x, Type::Odd)

TRUE, UNKNOWN

The optional subset of the integers restricts the possible values of x :

>> assume(x, Type::Residue(2, 4, Type::PosInt)):
is(x > 0),
is(x^2 >= 4)

TRUE, TRUE

Changes:

A Type::Residue is a new function.

Type::SequenceOf – type for testing sequences

With Type::SequenceOf , sequences with specified objects can be identified.

60

Call(s):

A testtype(obj, Type::SequenceOf(obj_type <, min_nr <,
max_nr >>))

Parameters:
obj — any MuPAD object
obj_type — the type of the objects; a type can be an object of the

library Type or one of the possible return values of
domtype and type

min_nr — the minimal number of objects as nonnegative integer
max — the maximal number of objects as nonnegative integer

Return Value: see testtype

Related Functions: _exprseq , testtype , Type::ListOf

Details:

A The call testtype(obj, Type::SequenceOf(obj_type)) checks,
whether obj is a sequence with elements of the given type obj_type .
In that case, it TRUE, otherwise FALSE.

A A sequence has the domain type DOM_EXPRand the type "_exprseq" .

A This type expects one or more arguments obj_type <, min_nr <,
max_nr >>.

A The two optional parameters min_nr and max_nr determine the min-
imum and maximum number of arguments of the analysed sequence,
respectively. If the numbers are not be given, the number of elements
of the sequence will not be checked. If only the minimum is given, the
sequence must have at least min_nr elements for the test to succeed.

A This type does not represent a property.

Example 1. Is the given sequence a sequence of identifiers?

>> testtype((a, b, c, d, e, f), Type::SequenceOf(DOM_IDENT))

TRUE

Is the given sequence a sequence of at least five real numbers?

>> testtype((0, 0.5, 1, 1.5, 2, 2.5, 3), Type::SequenceOf(Type::Real, 5))

TRUE

61

Changes:

A No changes.

Type::Series – type for testing series

With Type::Series , series can be identified.

Call(s):

A testtype(obj, Type::Series(s_type <, pt >))

Parameters:
obj — any MuPAD object
s_type — the type of the series; one of Puiseux , Laurent and

Taylor
pt — additional parameter to specify the series (only for

Taylor)

Return Value: see testtype

Related Functions: testtype , series

Details:

A The call testtype(obj, Type::Series(s_types)) checks, whether
obj is a series of type s_type, ... and returns TRUE, if it holds, oth-
erwise FALSE.

A The series must be computed by series , otherwise
Type::Series cannot identify a series correctly. !

A This type expects one or two arguments s_type <, pt >.

s_type can be one of the types Puiseux , Laurent and Taylor . For
Taylor series an optional second argument can be given to specify the
point x0 with the equation x = x_0 .

Example 1. The following call returns a Puiseux series:

>> s := series(sin(sqrt(x)), x);
type(s);

62

3/2 5/2
1/2 x x 3

x - ---- + ---- + O(x)
6 120

Series::Puiseux

>> testtype(s, Type::Series(Puiseux)),
testtype(s, Type::Series(Laurent)),
testtype(s, Type::Series(Taylor))

TRUE, FALSE, FALSE

Next, examine a Laurent series:

>> s := series(1/sin(x), x);
type(s);

3
1 x 7 x 4
- + - + ---- + O(x)
x 6 360

Series::Puiseux

Note that, although, the type of s is again Series::Puiseux , this series is a
Laurent series, which is a special case of Puiseux series:

>> testtype(s, Type::Series(Puiseux)),
testtype(s, Type::Series(Laurent)),
testtype(s, Type::Series(Taylor))

TRUE, TRUE, FALSE

Finally, a Taylor series is a Laurent series as well:

>> s := series(exp(1/z), z = infinity);
type(s)

1 1 1 1 1 / 1 \
1 + - + ---- + ---- + ----- + ------ + O| -- |

z 2 3 4 5 | 6 |
2 z 6 z 24 z 120 z \ z /

Series::Puiseux

>> testtype(s, Type::Series(Puiseux)),
testtype(s, Type::Series(Laurent)),
testtype(s, Type::Series(Taylor))

63

TRUE, TRUE, TRUE

Note that for Taylor series, you can also check the indeterminate used and the
expansion point:

>> testtype(s, Type::Series(Taylor, z = infinity)),
testtype(s, Type::Series(Taylor, x = infinity)),
testtype(s, Type::Series(Taylor, z = 0))

TRUE, FALSE, FALSE

Changes:

A No changes.

Type::SetOf – type for testing sets

Type::SetOf(obj_type) describes sets of elements of type obj_type .

Call(s):

A testtype(obj, Type::SetOf(obj_type <, min_nr <,
max_nr >>))

Parameters:
obj — any MuPAD object
obj_type — the type of the objects; a type can be an object of the

library Type or one of the possible return values of
domtype and type

min_nr — the minimal number of objects as nonnegative integer
max_nr — the maximal number of objects as nonnegative integer

Return Value: see testtype

Related Functions: testtype , Type::ListOf , Type::Union , DOM_SET

Details:

A The call testtype(obj, Type::SetOf(obj_type)) checks, whether
obj is a set with elements of the given type obj_type . If it is, the func-
tion returns TRUE, otherwise FALSE.

A A set has the domain type DOM_SET.

64

A This type expects one or more arguments obj_type <, min_nr <,
max_nr >>.

The two optional parameters min_nr and max_nr determine the min-
imum and maximum number of elements in the analysed set. If the
numbers are not be given, the number of elements in the set will not
be checked. If only the minimum is given, the set must contain at least
min_nr elements for the test to succeed.

A This type does not represent a property.

Example 1. Is the given set a set of identifiers?

>> testtype({a, b, c, d, e, f}, Type::SetOf(DOM_IDENT))

TRUE

Is the given set a set of at least five real numbers?

>> testtype({0, 0.5, 1, 1.5, 2, 2.5, 3}, Type::SetOf(Type::Real, 5))

TRUE

Example 2. testtype is used to select sets with exactly two idetifiers:

>> S := {{a}, {a, b}, {d, 1}, {0, d}, {e}, {d, e}}:
select(S, testtype, Type::SetOf(DOM_IDENT, 2, 2))

{{d, e}, {a, b}}

Changes:

A No changes.

Type::Singleton – type to identify exactly one object

testtype(x, Type::Singleton(y)) is equivalent to bool(x = y) .

Call(s):

A testtype(obj, Type::Singleton(t_obj))

65

Parameters:
obj — any MuPAD object
t_obj — any object to identify

Return Value: see testtype

Related Functions: _equal , bool , testtype , Type::Union

Details:

A The call testtype(obj, Type::Singleton(t_obj)) is equivalent
to bool(x = y) , but the latter is faster.

A Type::Singleton can be used to create combined types, especially in
conjunction with Type::Union , Type::Equation and other types ex-
pecting type information for subexpressions (see example 2).

A This type does not represent a property.

Example 1. Check, if x is really x :

>> testtype(x, Type::Singleton(x))

TRUE

But the next call does the same:

>> bool(x = x)

TRUE

Example 2. Type::Singleton exists to create special testing expressions:

>> T := Type::Union(Type::Singleton(hold(All)), Type::Constant):

With the type T the option All and any constant can be identified with one
call of testtype:

>> testtype(4, T), testtype(hold(All), T), testtype(x, T)

TRUE, TRUE, FALSE

But (e.g., in procedures) the following example works faster:

>> test := X -> testtype(X, Type::Constant) or bool(X = hold(All)):
test(4), test(hold(All)), test(x)

TRUE, TRUE, FALSE

66

One way to test a list of options for syntactical correctness is the following:

>> T := Type::Union(
// Name = "..."
Type::Equation(Type::Singleton(hold(Name)), DOM_STRING),
// Mode = n, n in {1, 2, 3}
Type::Equation(Type::Singleton(hold(Mode)),

Type::Interval([1,3], Type::Integer)),
// Quiet
Type::Singleton(hold(Quiet))

):

>> testtype((Name = "abcde", Quiet), Type::SequenceOf(T))

TRUE

We only allow the values 1, 2, and 3 for Mode, however:

>> testtype((Quiet, Mode = 0), Type::SequenceOf(T))

FALSE

Obviously, it would be a good idea to tell the user which options we could not
grok:

>> error("Unknown option(s): ".expr2text(
select((Quiet, Mode = 0),

not testtype, Type::SequenceOf(T))))

Error: Unknown option(s): Mode = 0

>> delete T, test:

Changes:

A No changes.

Type::TableOfEntry – type for testing tables with specified entries

Type::TableOfEntry(obj_type) describes tables with entries of type obj_type .

Call(s):

A testtype(obj, Type::TableOfEntry(obj_type))

67

Parameters:
obj — any MuPAD object
obj_type — the type of the entries; can be an object of the library

Type or one of the possible return values of domtype
and type

Return Value: see testtype

Related Functions: testtype , table , Type::TableOfIndex

Details:

A The call testtype(obj, Type::TableOfEntry(obj_type)) checks,
whether obj is a table and all entries of this table are of the type obj_type .
If both conditions are met, the call returns TRUE, otherwise FALSE.

A This type expects one argument obj_type .

A The entries of a table are the right hand sides of the operands of a table.

A This type does not represent a property.

Example 1. The following table uses identifiers as keys and integers as entries:

>> T := table(a = 1, b = 2, c = 3, d = 4):
testtype(T, Type::TableOfEntry(DOM_INT))

TRUE

Type::TableOfEntry only checks the type of the entries, not the keys:

>> T := table(a = 1, b = 2, c = 3, d = 4):
testtype(T, Type::TableOfEntry(DOM_IDENT))

FALSE

>> delete T:

Changes:

A No changes.

Type::TableOfIndex – type for testing tables with specified in-
dices

Type::TableOfIndex(obj_type) represents tables with indices (keys) of
type obj_type .

68

Call(s):

A testtype(obj, Type::TableOfIndex(obj_type))

Parameters:
obj — any MuPAD object
obj_type — the type of the indices; can be an object of the library

Type or one of the possible return values of domtype
and type

Return Value: see testtype

Related Functions: testtype , table , Type::TableOfEntry

Details:

A The call testtype(obj, Type::TableOfIndex(obj_type)) checks,
whether obj is a table and all indices (keys) are of the type obj_type .
If both conditions are met, the call returns TRUE, otherwise FALSE.

A This type expects one argument obj_type .

A The indices of a table are the left hand sides of the operands of a table.

A This type does not represent a property.

Example 1. The following table uses identifiers as keys and integers as values:

>> T := table(a = 1, b = 2, c = 3, d = 4):
testtype(T, Type::TableOfIndex(DOM_IDENT))

TRUE

Type::TableOfIndex only checks the types of the keys of the table, so the
following call returns FALSE:

>> T := table(a = 1, b = 2, c = 3, d = 4):
testtype(T, Type::TableOfIndex(DOM_INT))

FALSE

>> delete T:

69

Changes:

A No changes.

Type::Union – type for testing several types with one call

Type::Union(type1, type2, ...) represents all objects having at least
one of the types type1, type2, ...

Call(s):

A testtype(obj, Type::Union(obj_types, ...))

Parameters:
obj — any MuPAD object
obj_types — a sequence of types; a type can be an object of the

library Type or one of the possible return values of
domtype and type

Return Value: see testtype

Related Functions: testtype

Details:

A The call testtype(obj, Type::Union(obj_types, ...)) checks,
whether obj has the type of at least one of the given types obj_types,
... If such a type is found, the call returns TRUE, otherwise FALSE.

A The call testtype(obj, Type::Union(obj_types, ...)) is thus
equivalent to the call _lazy_or(map(obj_types, x -> testtype(obj,
x))) , testing obj against all types in turn until one is found which
matches.

A obj_types, ... must be a (nonempty) sequence of types (see testtype).

A This type does not represent a property.

Example 1. Check, whether the given object is a positive or negative integer:

>> testtype(2, Type::Union(Type::PosInt, Type::NegInt))

TRUE

x however, is neither a positive nor a negative number:

70

>> testtype(x, Type::Union(Type::Positive, Type::Negative))

FALSE

Example 2. testtype is used to select positive and negative integers:

>> SET:= {-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2}:
select(SET, testtype, Type::Union(Type::PosInt, Type::NegInt))

{-2, -1, 1, 2}

>> delete SET:

Changes:

A No changes.

Type::Unknown – type for testing variables

Type::Unknown represents identifiers and indexed identifiers.

Call(s):

A testtype(obj, Type::Unknown)

Parameters:

obj — any MuPAD object

Return Value: see testtype

Related Functions: testtype , indets

Details:

A The call testtype(obj, Type::Unknown) checks, whether obj is an
identifier or an indexed identifier with an integer index. If it is, the call
returns TRUE, otherwise FALSE.

A An identifier has the domain type DOM_IDENT. An indexed identifier is
an expression with type _index and two operands, the first of which is
an identifier and the second one is an integer. A local variable is not of
type Type::Unknown .

A This type does not represent a property.

71

Example 1. Type::Unknown accepts identifiers:

>> testtype(x, Type::Unknown)

TRUE

x[0] is an indexed identifier accepted by Type::Unknown :

>> testtype(x[0], Type::Unknown)

TRUE

The index must be an integer:

>> testtype(x[-1], Type::Unknown),
testtype(x[1.0], Type::Unknown)

TRUE, FALSE

Changes:

A No changes.

Type::Zero – a type and a property representing zero

testtype(obj, Type::Zero) is equivalent to iszero(obj) . Type::Zero
is a property, too, which can be used in an assume call.

Call(s):

A testtype(obj, Type::Zero)

A assume(x, Type::Zero)

A is(ex, Type::Zero)

Parameters:
obj — any MuPAD object
x — an identifier or one of the expressions Re(u) or Im(u) with an

identifier u
ex — an arithmetical expression

Return Value: see testtype , assume and is

Related Functions: testtype , is , assume , Type::NonZero

72

Details:

A The call testtype(obj, Type::Zero) is equivalent to iszero(obj) ,
which performs a syntactical test if obj is zero. If it is, the call returns
TRUE, otherwise, FALSEis returned.

A The call assume(x, Type::Zero) marks the identifier x as zero.

The call is(ex, Type::Zero) derives, whether the expression ex is
zero (or this property can be derived).

A This type represents a property that can be used in assume and is .

A The call assume(x = 0) has the same meaning as assume(x, Type::Zero) .

Example 1. testtype determines the syntactical equality to zero:

>> testtype(0.0, Type::Zero)

TRUE

>> testtype(x, Type::Zero)

FALSE

Example 2. Type::Zero can be used within assume and is :

>> is(x, Type::Zero)

UNKNOWN

Assumption that x is zero:

>> assume(x, Type::Zero):
is(x^2, Type::Zero)

TRUE

The next example shows the difference between testtype and is :

>> is(x, Type::Zero), testtype(x, Type::Zero)

TRUE, FALSE

Now the property of x is removed:

>> delete x:
is(x, Type::Zero), testtype(x, Type::Zero)

73

UNKNOWN, FALSE

A positive number cannot be zero:

>> assume(x > 0):
is(x, Type::Zero), testtype(x, Type::Zero)

FALSE, FALSE

But in the next example x could be zero:

>> assume(x >= 0):
is(x, Type::Zero), testtype(x, Type::Zero)

UNKNOWN, FALSE

>> delete x:

Changes:

A No changes.

74

