
solvelib — data types and utilities for the solver

Table of contents

Preface . ii

solvelib::BasicSet — the basic infinite sets 1

solvelib::conditionalSort — possible sortings of a list depend-
ing on parameters . 2

solvelib::getElement — get one element of a set 4

solvelib::isFinite — test whether a set is finite 5

solvelib::pdioe — solve polynomial Diophantine equations . . 6

solvelib::preImage — preimage of a set under a mapping . . . 8

solvelib::Union — union of a system of sets 8

i

The library solvelib contains various methods used by the function solve .
Most of them are only for internal use.

ii

solvelib::BasicSet – the basic infinite sets

The domain solvelib::BasicSet comprises the four sets of integers, reals,
rationals, and complex numbers, respectively.

Z_, or equivalently solvelib::BasicSet(Dom::Integer) , represents the
set of integers.

Q_, or equivalently solvelib::BasicSet(Dom::Rational) , represents
the set of rational numbers.

R_, or equivalently solvelib::BasicSet(Dom::Real) , represents the set
of real numbers.

C_, or equivalently solvelib::BasicSet(Dom::Complex) , represents the
set of complex numbers.

Creating Elements:

A solvelib::BasicSet(Dom::Integer)

A solvelib::BasicSet(Dom::Rational)

A solvelib::BasicSet(Dom::Real)

A solvelib::BasicSet(Dom::Complex)

Z_
Q_
R_
C_

Categories:

Cat::Set

Related Domains: Dom::Interval

Details:

A The four basic sets are assigned to the identifiers Z_, Q_, R_, and C_
during system initialization.

1

Mathematical Methods

Method contains : tests whether some object is a member

contains(arithmetical expression a, dom S)

A tries to decide whether a ∈ S, and returns TRUE, FALSE, or UN-
KNOWN.

A Equivalently, is(a in S) may be used.

Conversion Methods

Method convert : converts a domain into a basic set

convert(any d)

A This method converts d into a basic set; it returns FAIL unless d is
one of the four domains Dom::Integer , Dom::Rational , Dom::Real ,
and Dom::Complex .

Method set2prop : converts a set to a property

set2prop(dom S)

A This method returns the type of the Type library equivalent to S.

Example 1. The domain of basic sets know about the basic arithmetical and
set–theoretic functions.

>> J:=Dom::Interval(3/2, 21/4):
Z_ intersect J

{2, 3, 4, 5}

Super-Domain: Dom::BaseDomain

Axioms

Ax::canonicalRep

2

Changes:

A solvelib::BasicSet is a new function.

solvelib::conditionalSort – possible sortings of a list depend-
ing on parameters

solvelib::conditionalSort(l) sorts the list l in ascending order. Un-
like for sort , only the usual order on the real numbers and not the internal
order (see sysorder) is used. solvelib::conditionalSort does a case
analysis if list elements contain indeterminates.

Call(s):

A solvelib::conditionalSort(l)

Parameters:

l — list of arithmetical expressions

Return Value: A list if the sorting is the same for all possible parameter val-
ues; or an object of type piecewise if some case analysis is necessary.

Side Effects: solvelib::conditionalSort takes into account the assump-
tions on all occurring identifiers.

Related Functions: sort , piecewise

Details:

A solvelib::conditionalSort invokes the inequality solver to get
simple conditions in the case analysis. The ability of solvelib::conditionalSort
to recognize sortings as impossible is thus limited by the ability of the in-
equality solver to recognize an inequality as unsolvable. See Example 2.

A Only expressions representing real numbers can be sorted. It is an error
if non–real numbers occur in the list; it is implicitly assumed that all
parameters take on only such values that cause all list elements to be
real.

A Sorting is unstable, i.e. equal elements may be placed in any order in the
resulting list; these cases may be listed separately in the case analysis.

A The usual simplifications for piecewise defined objects are applied, e.g.,
equalities that can be derived from a condition are applied (by substitu-
tion) to the list.

3

Example 1. In the simplest case, sorting a two-element list [a,b] just amounts
to solving the inequation a<=b w.r.t. all occuring parameters.

>> solvelib::conditionalSort([x,x^2])

2
piecewise([x , x] if 0 <= x and x <= 1,

2
[x, x] if (x < 0 or 1 < x))

Example 2. Sometimes cases are not recognized as impossible.

>> assume(x>5): solvelib::conditionalSort([x,exp(x)])

piecewise([exp(x), x] if - x + exp(x) <= 0,

[x, exp(x)] if x - exp(x) < 0)

Background:

A The complexity of sorting a list of n elements is up to n!.

Changes:

A solvelib::conditionalSort is a new function.

solvelib::getElement – get one element of a set

solvelib::getElement(S) returns an element of S.

Call(s):

A solvelib::getElement(S)

Parameters:

S — any set

Return Value: solvelib::getElement returns a MuPAD object represent-
ing an object of S, or FAIL if no element could be determined.

Overloadable by: S

4

Related Functions: solve

Details:

A solvelib::getElement may return FAIL either if S is the empty set,
or if no element of the set could be computed because the solver is not
strong enough, or if the answer depends on the value of some parameter.

Example 1. If S is a finite set, just one of its elements is returned.

>> solvelib::getElement({2, 7, a})

a

Example 2. For image sets, an element is obtained by replacing every param-
eter by a constant.

>> S:=Dom::ImageSet(k*PI, k, solvelib::BasicSet(Dom::Integer))

{ X1*PI | X1 in Z_ }

>> solvelib::getElement(S)

0

Example 3. solvelib::getElement may fail to find an element of a set
although that set is not empty.

>> solvelib::getElement(solve(exp(x)+x=0,x))

FAIL

Changes:

A solvelib::getElement is a new function.

solvelib::isFinite – test whether a set is finite

solvelib::isFinite(S) returns TRUE, FALSE, or UNKNOWNdepending on
whether S is finite, infinite, or the question could not be settled.

5

Call(s):

A solvelib::isFinite(S)

Parameters:

S — any set

Return Value: Boolean value

Overloadable by: S

Related Functions: solve

Example 1. A DOM_SETis always finite.

>> solvelib::isFinite({2,5})

TRUE

Example 2. The set of integers is infinite.

>> solvelib::isFinite(Z_)

FALSE

Changes:

A solvelib::isFinite is a new function.

solvelib::pdioe – solve polynomial Diophantine equations

solvelib::pdioe(a, b, c) returns polynomials u and v that satisfy the
equation au + bv = c .

solvelib::pdioe(aexpr, bexpr, cexpr, x) does the same after con-
verting the arguments into univariate polynomials a, b, c in the variable
x .

Call(s):

A solvelib::pdioe(a,b,c)

A solvelib::pdioe(aexpr, bexpr, cexpr, x)

6

Parameters:
x — identifier or indexed identifier
a, b, c — univariate polynomials
aexpr, bexpr, cexpr — polynomial expressions

Return Value: If the equation is solvable, solvelib::pdioe returns an ex-
pression sequence consisting of two operands of the same type as the input
(expressions or polynomials). If the equation has no solution, solvelib::pdioe
returns FAIL .

Related Functions: solve

Details:

A The coefficient ring of the polynomials a, b, and c must be either Expr ,
or IntMod(p) for some prime p, or a domain belonging to the category
Cat::Field .

Example 1. If expressions are passed as arguments, a fourth argument must
be provided:

>> solvelib::pdioe(x, 13*x + 22*x^2 + 18*x^3 + 7*x^4 + x^5 + 3, x^2 + 1, x)

3 4
19 x 2 7 x x

- ---- - 6 x - ---- - -- - 13/3, 1/3
3 3 3

Example 2. x is not a multiple of the gcd of x + 1 and x2 − 1. Hence the
equation u(x + 1) + v(x2− 1) = x has no solution for u and v:

>> solvelib::pdioe(x + 1, x^2 - 1, x, x)

FAIL

Example 3. If the arguments are polynomials, the fourth argument may be
omitted:

>> solvelib::pdioe(poly(a + 1, [a]), poly(a^2 + 1, [a]), poly(a -
1, [a]))

poly(a, [a]), poly(-1, [a])

7

Changes:

A solvelib::pdioe used to be pdioe .

solvelib::preImage – preimage of a set under a mapping

solvelib::preImage(a, x, S) returns the set of all numbers y such that
substituting y for x in a gives an element of S.

Call(s):

A solvelib::preImage(a, x, S)

Parameters:
a — arithmetic expression
x — identifier
S — set

Return Value: set

Related Functions: solve

Details:

A S can be a set of any type (finite or infinite).

Example 1. In case of a finite set S, the preimage of S is just the union of all
sets solve(a=s, x) , where s ranges over the elements of S.

>> solvelib::preImage(x^2+2, x, {11, 15});

1/2 1/2
{-3, 3, 13 , - 13 }

Example 2. For intervals, the preimage is usually an interval or a union of
intervals.

>> solvelib::preImage(x^2+2, x, Dom::Interval(3..7));

]1, 5^(1/2)[union]-5^(1/2), -1[

8

Changes:

A solvelib::preImage is a new function.

solvelib::Union – union of a system of sets

solvelib::Union(set, param, paramset) returns the set of all objects
that can be obtained by replacing, in some element of set , the free parameter
param by an element of paramset .

Call(s):

A solvelib::Union(set, param, paramset)

Parameters:
set — set of any type
param — identifier
paramset — set of any type

Return Value: solvelib::Union returns a set of any type; see solve for
an overview of the different types of sets. It may also return the unevaluated
call if the union could not be computed.

Overloadable by: set

Related Functions: solve

Details:

A set may be a set of any type; it need not depend on the parameter
param , and it may also contain other free parameters. However, it must
not use param as a bound parameter, e.g. Dom::ImageSet(sin(param),
param, S) (for some set S) .

A paramset may be a set of any type and may depend on some free pa-
rameters. See example 1.

A If paramset is empty, the result is the empty set. Overloading has no
effect in this case.

Example 1. We compute the set of all numbers that are equal to k + 1 or k + 3
for k = 2, k = 4, or k = l, where l is a free parameter.

>> solvelib::Union({k+1, k+3}, k, {2,4,l});

{3, 5, 7, l + 1, l + 3}

9

Changes:

A solvelib::Union is a new function.

10

