
Dom— predefined domains

Table of contents

Dom::AlgebraicExtension — simple algebraic field extensions 1

Dom::ArithmeticalExpression — the domains of arithmetical ex-
pressions . 8

Dom::BaseDomain — the root of the domain hierarchy 13

Dom::Complex — the field of complex numbers 18

Dom::DihedralGroup — dihedral groups 23

Dom::DistributedPolynomial — the domains of distributed poly-
nomials . 26

Dom::Expression — the domain of all MuPAD objects of basic type 52

Dom::ExpressionField — the domains of expressions forming a
field . 55

Dom::Float — the real floating point numbers 70

Dom::Fraction — the field of fractions of an integral domain . . . 73

Dom::GaloisField — finite fields 82

Dom::Ideal — the domains of sets of ideals 87

Dom::ImageSet — the domain of images of sets under mappings 90

Dom::Integer — the ring of integer numbers 93

Dom::IntegerMod — residue class rings modulo integers 98

Dom::Interval — intervals of real numbers 103

Dom::Matrix — matrices . 111

Dom::MatrixGroup — the Abelian group of m× n matrices 143

Dom::MonomOrdering — monomial orderings 153

Dom::Multiset — multisets . 157

Dom::MultivariatePolynomial — the domains of multivariate
polynomials . 166

Dom::Numerical — the field of numbers 176

Dom::PermutationGroup — permutation groups 180

Dom::Polynomial — the domains of polynomials in arbitrarily many
indeterminates . 184

Dom::Product — homogeneous direct products 187

i

Dom::Quaternion — the skew field of quaternions 196

Dom::Rational — the field of rational numbers 203

Dom::Real — the field of real numbers 206

Dom::SparseMatrixF2 — the domain of sparse matrices over the
field with two elements . 210

Dom::SquareMatrix — the rings of square matrices 214

Dom::UnivariatePolynomial — the domains of univariate polyno-
mials . 223

ii

Dom::AlgebraicExtension – simple algebraic field extensions

For a given field F and a polynomial f ∈ F[x], Dom::AlgebraicExtension(F,
f, x) creates the residue class field F[x]/〈 f 〉.

Dom::AlgebraicExtension(F, f1=f2, x) does the same for f = f1 −
f2.

Domain:

A Dom::AlgebraicExtension(F, f)

A Dom::AlgebraicExtension(F, f, x)

A Dom::AlgebraicExtension(F, f1=f2)

A Dom::AlgebraicExtension(F, f1=f2, x)

Parameters:
F — the ground field: a domain of category Cat::Field
f, f1, f2 — polynomials or polynomial expressions
x — identifier

Details:

A Dom::AlgebraicExtension(F, f, x) creates the field F[x]/〈 f 〉 of
residue classes of polynomials modulo f . This field can also be written
as F(x)/〈 f 〉, the field of residue classes of rational functions modulo f .

A The parameter x may be omitted if f is a univariate polynomial or a
polynomial expression that contains exactly one indeterminate; it is then
taken to be the indeterminate occurring in f .

A The field F must have normal representation.

A f must not be a constant polynomial.

A f must be irreducible; this is not checked.

A f may be a polynomial over a coefficient ring different from F, or multi-
variate; however, it must be possible to convert it to a univariate polyno-
mial over F. See Example 2.

Dom::AlgebraicExtension(F, f)(g) creates the residue class of g mod-
ulo f .

1

Creating Elements:

A Dom::AlgebraicExtension(F,f)(g)

A Dom::AlgebraicExtension(F, f)(rat)

Parameters:
g — element of the residue class to be defined: polynomial over F in

the variable x , or any object convertible to such.
rat — rational function that belongs to the residue class to be defined:

expression whose numerator and denominator can be
converted to polynomials over F in the variable x . The
denominator must not be a multiple of f .

Details:

A If rat has numerator and denominator p and q, respectively, then Dom::AlgebraicExtension(F,f)(rat)
equals Dom::AlgebraicExtension(F,f)(p) divided by Dom::AlgebraicExtension(F,f)(q) .

Categories:

Cat::Field , Cat::Algebra(F) , Cat::VectorSpace(F) ,

if F::hasProp(Cat::DifferentialRing) then
Cat::DifferentialRing

if F::hasProp(Cat::PartialDifferentialRing) then
Cat::PartialDifferentialRing

Related Domains: Dom::GaloisField

Entries:

zero the zero element of the field extension

one the unit element of the field extension

groundField the ground field of the extension

minpoly the minimal polynomial f

deg the degree of the extension, i.e., of f

variable the unknown of the minimal polynomial f

characteristic the characteristic, which always equals the characteristic
of the ground field. This entry only exists if the characteristic of
the ground field is known.

degreeOverPrimeField the dimension of the field when viewed as a vec-
tor space over the prime field. This entry only exists if the ground
field is a prime field, or its degree over its prime field is known.

2

Mathematical Methods

Method _plus : sum of field elements

_plus(dom a, ...)

A This method returns the sum of its arguments.
A This method overloads the function _plus of the system kernel.

Method _mult : product of field elements

_mult(any a, ...)

A This method returns the product of its arguments. The arguments
must be either field elements, or convertible to such, or integers.
A This method overloads the function _mult of the system kernel.

Method _negate : negate a field element

_negate(dom a)

A This method returns the negative of a.
A This method overloads the function _negate of the system kernel.

Method _subtract : difference of field elements

_subtract(dom a, dom b)

A This method returns the difference a− b.
A This method overloads the function _subtract of the system ker-

nel.

Method iszero : tests whether a field element is zero.

iszero(dom a)

A This method returns TRUEif a is known to be zero, and FALSEoth-
erwise. If equality to zero can be decided for elements of the ground
field, the answer FALSEimplies that a cannot be zero.
A This method overloads the function iszero .

Method intmult : multiply a field element by an integer

intmult(dom a, integer b)

A This method computes a*b .
A This method is more efficient than "_mult" in this special case.

3

Method _invert : inverse of a field element

_invert(dom a)

A This method returns the inverse of a with respect to multiplication.
a must be nonzero.
A This method overloads the function _invert .

Method gcd : gcd of field elements

gcd(dom a, ...)

A If the arguments are not all zero, any nonzero field element is a gcd.
This method tries to find a gcd such that dividing the arguments by
it gives most “simple” objects.
A This method overloads the function gcd .

Method conjNorm : norm of an element

conjNorm(dom a)

A This method computes the norm of a, i.e., the product of all conju-
gates of a (images of a under Galois automorphisms).

Method conjTrace : trace of an element

conjTrace(dom a)

A This method computes the trace of a, i.e., the sum of all conjugates
of a (images of a under Galois automorphisms).

Method minimalPolynomial : minimal polynomial of an element

minimalPolynomial(dom a)

A This method chooses a free identifier and computes the (uniquely
determined) monic irreducible polynomial over the ground field in
that variable of which a is a root.

Method D: differential operator

D(dom a)

A This method implements the continuation of the differential opera-
tor of the ground field; it exists only if the ground field has a method
"D" , too.
A This method overloads the function D.
A This method must not be called for inseparable extensions; note that

MuPAD cannot check whether an extension is separable.
A See Example 3.

4

Method diff : partial differentiation

diff(dom a, identifier x1, ...)

A This method computes ∂a
∂x1

.

A Differentiation is defined to be the continuation of differentiation of
the ground field; this method exists only if the ground field has a
method "diff" , too.

A Differentiation is not possible in inseparable extensions.

A This method overloads the function diff .

A This method must not be called for inseparable extensions; note that
MuPAD cannot check whether an extension is separable.

A See Example 3.

Method random : random element of the field

random()

A This method returns a random element of the field.

A The random method of the ground field is used to generate coeffi-
cients of a random polynomial of the ground field; the residue class
of that polynomial is the return value. Hence the probability dis-
tribution of the elements returned depends on that of the random
method of the ground field.

Conversion Methods

Method convert : convert into a field element

convert(any x)

A This method tries to convert x into a field element.

A If the conversion fails, then FAIL is returned.

Method convert_to : convert a field element into another type

convert_to(dom a, domain T)

A This method converts a into an element of T, or returns FAIL if the
conversion is impossible.

A Field elements can be converted to polynomials or expressions. Field
elements represented by constant polynomials can also be converted
to the same types as the elements of the ground field; in particular,
they can be converted to elements of the ground field.

5

Method expr : convert an element of the field into an expression

expr(dom a)

A This method converts the polynomial representing a into an expres-
sion.

A This method overloads the function expr .

Example 1. We adjoin a cubic root alpha of 2 to the rationals.

>> G := Dom::AlgebraicExtension(Dom::Rational, alpha^3 = 2)

3
Dom::AlgebraicExtension(Dom::Rational, alpha - 2 = 0, alpha)

The third power of a cubic root of 2 equals 2, of course.

>> G(alpha)^3

2

The trace of α is zero:

>> G::conjTrace(G(alpha))

0

You can also create random elements:

>> G::random()

2
- 65 alpha - 814 alpha + 824

Example 2. The ground field may be an algebraic extension itself. In this
way, it is possible to construct a tower of fields. In the following example,
an algebraic extension is defined using a primitive element alpha , and the
primitive element beta of a further extension is defined in terms of alpha . In
such cases, when a minimal equation contains more than one identifier, a third
argument to Dom::AlgebraicExtension must be explicitly given.

>> F := Dom::AlgebraicExtension(Dom::Rational, alpha^2 = 2):
G := Dom::AlgebraicExtension(F, bet^2 + bet = alpha, bet)

Dom::AlgebraicExtension(Dom::AlgebraicExtension(Dom::Rational,

2 2
alpha - 2 = 0, alpha), bet - alpha + bet = 0, bet)

6

Example 3. We want to define an extension of the field of fractions of the ring
of bivariate polynomials over the rationals.

>> P:= Dom::DistributedPolynomial([x, y], Dom::Rational):
F:= Dom::Fraction(P):
K:= Dom::AlgebraicExtension(F, alpha^2 = x, alpha)

Dom::AlgebraicExtension(Dom::Fraction(

Dom::DistributedPolynomial([x, y], Dom::Rational, LexOrder))

2
, alpha - x = 0, alpha)

Now K = Q[sqrt(x), y]. Of course, the square root function has the usual
derivative; note that 1/sqrt(x) can be expressed as α/x:

>> diff(K(alpha), x)

alpha

2 x

On the other hand, the derivative of sqrt(x) with respect to y is zero, of course:

>> diff(K(alpha), y)

0

We must not use D here. This works only if we start our construction with a
ring of univariate polynomials:

>> P:= Dom::DistributedPolynomial([x], Dom::Rational):
F:= Dom::Fraction(P):
K:= Dom::AlgebraicExtension(F, alpha^2 = x, alpha):
D(K(alpha))

alpha

2 x

Super-Domain: Dom::BaseDomain

Axioms

if F::hasProp(Ax::canonicalRep) then
Ax::canonicalRep

else
Ax::normalRep

7

Changes:

A An additional method minimalPolynomial is now available.

A Methods diff and D are now available for (partial) differential fields if
such methods exist in the ground field.

Dom::ArithmeticalExpression – the domains of arithmetical ex-
pressions

Dom::ArithmeticalExpression creates the domain of arithmetical expres-
sions built up by the system functions and operators like + and * .

Creating Elements:

A Dom::ArithmeticalExpression(x)

Parameters:

x — an arithmetical expression

Categories:

Cat::BaseCategory

Related Domains: Dom::Expression

Details:

A Dom::ArithmeticalExpression is a façade domain of arithmetical
expressions built up by the system functions and operators like + and * .

A This domain has almost no algebraic structure because unqualified ex-
pressions have no normal form. (For example, there are rational expres-
sions for zero which are not normalized to 0.) The main purpose of
Dom::ArithmeticalExpression is to provide implementations for
methods used by façade sub-domains like Dom::Integer which are
represented by a subset of the arithmetical expressions.

A Elements of Dom::ArithmeticalExpression are usually not created
explicitly. However, if one creates elements using the usual syntax, the
input is converted to an expression using expr , then it is checked whether
the result is an arithmetical expression.

8

Entries:

key The name of this domain.

one The neutral element w.r.t. "_mult" : the constant 1.

zero The neutral element w.r.t. "_plus" : the constant 0.

Mathematical Methods

Method _divide : divides arithmetical expressions

_divide(dom f, dom g)

A Returns the arithmetical expression f/g .

A This method overloads the function _divide .

A For details, please see _divide .

Method _invert : inverts an arithmetical expression

_invert(dom f)

A Returns the arithmetical expression 1/f .

A This method overloads the function _invert .

A For details, please see _invert .

Method _mult : multiplies arithmetical expressions

_mult(<f,g, ... >)

A Multiplies an arbitrary number of arithmetical expressions and re-
turns the (simplified) arithmetical expression f*g*...

A This method overloads the function _mult .

A For details, please see _mult .

Method _negate : negates an arithmetical expression

_negate(dom f)

A Returns the arithmetical expression -f .

A This method overloads the function _negate .

A For details, please see _negate .

9

Method _plus : adds arithmetical expressions

_plus(<f,g, ... >)

A Adds an arbitrary number of arithmetical expressions and returns
the (simplified) arithmetical expression f+g+...

A This method overloads the function _plus .

A For details, please see _plus .

Method _power : power operator

_power(dom f, dom g)

A Returns the arithmetical expression f^g .

A This method overloads the function _power .

A For details, please see _power .

Method _subtract : subtracts an arithmetical expression

_subtract(dom f, dom g)

A Returns the arithmetical expression f-g .

A For details, please see _subtract .

Method D: differential operator for functions

D(function f)

D(list of nonnegative integers [n1,...], function f)

A D(f) computes the derivative of f and returns a function or func-
tional expression which may contain unevaluated calls of D.

A This method overloads the function D.

A For details, please see D.

Method diff : differentiates an arithmetical expression

diff(dom f <,x, ... >)

A Differentiates f with respect to the given sequence of variables in
the given order and returns an arithmetical expression. If x is not a
variable, f will be evaluated and returned without differentiation.

A This method overloads the function diff .

A For details, please see diff .

10

Method intmult : multiplies an arithmetical expression with an integer

intmult(dom f, integer n)

A Returns the arithmetical expression f*n .
A This method overloads the function _mult .
A For details, please see _mult .

Method iszero : test for zero

iszero(dom f)

A Tests whether f is zero and returns TRUEor FALSE.
A This method overloads the function iszero .
A For details, please see iszero .

Method max: maximum of numbers

max(dom x <,y, ... >)

A Calculates the maximum of numerical elements. If one of the argu-
ments cannot be evaluated to a number, then the function call with
all non–numerical and the minimum of the numerical arguments is
returned.
A All numerical arguments must be real.
A This method overloads the function max.
A For details, please see max.

Method min : minimum of numbers

min(dom x <,y, ... >)

A Calculates the minimum of numerical elements. If one of the argu-
ments cannot be evaluated to a number, then the function call with
all non–numerical and the minimum of the numerical arguments is
returned.
A All numerical arguments must be real.
A This method overloads the function min .
A For details, please see min .

Method norm : norm of an arithmetical expression

norm(dom f)

A Computes the norm of f as the absolute value of f .
A This method overloads the function abs .
A For details, please see abs .

11

Conversion Methods

Method convert : check for being an arithmetical expression

convert(any x)

A Tests whether x is an arithmetical expression. If yes, x is returned;
otherwise the result is FAIL .

Example 1. For brevity, we will use AEas a shorthand notation for Dom::ArithmeticalExpression :

>> AE := Dom::ArithmeticalExpression

Dom::ArithmeticalExpression

An element of this domain can not be created as follows:

>> e := AE(2*sin(x) + f(x)/y)

f(x)
2 sin(x) + ----

y

Since Dom::ArithmeticalExpression is a façade domain, e is not a do-
main element, but an expression:

>> domtype(e)

DOM_EXPR

The fact that no error was returned yields the information that e is an arith-
metical expression. This can also be checked as follows:

>> testtype(e,AE)

TRUE

In contrast to its super-domain Dom::Expression , this domain only allows
elements which are valid arguments for the arithmetical functions, thus the
following yields an error:

>> AE([a, b])

Error: illegal arguments [Dom::ArithmeticalExpression::new]

Super-Domain: Dom::Expression

12

Axioms

Ax::systemRep

Changes:

A No changes.

Dom::BaseDomain – the root of the domain hierarchy

Dom::BaseDomain is the root of the domain hierarchy of the Dompackage.
Every domain of the package inherits from it.

Domain:

A Dom::BaseDomain

Details:

A Dom::BaseDomain is the root of the domain hierarchy as defined by the
Dompackage. Every domain of the package inherits from it.

A The only purpose of Dom::BaseDomain is to supply all domains of
the package with some basic methods like "hasProp" . Elements of
Dom::BaseDomain cannot be created.

A Unlike other super-domains this domain does not impose any restric-
tions on the representation of the elements of its sub-domains. Thus it
may be a super-domain for any domain created by a domain construc-
tor.

Categories:

Cat::BaseCategory

Entries:

create_dom This domain entry is used to revive the domain when it is read
from a binary MCode stream.

If this entry is present it is written to the MCode stream instead of
the contents of the domain. When the stream is read it is used to
create the domain.

If this entry does not exist all entries of the domain are written to
the stream and read in later to create the domain.

Dom::BaseDomain defines "create_dom" to have the same value
as the key of the domain, as stored in the entry "key" . All domains

13

of the Dompackage inherit this entry, thus they must be created
by the reader of the MCode stream by evaluating the expression
stored in the key.

Mathematical Methods

Method equal : test for mathematical equality

equal(dom x, dom y)

A This method must return TRUEif it can decide that x is equal to y
in the mathematical sense imposed by this domain. It must return
FALSE if it can decide that x is not equal to y mathematically. If
the method cannot decide the equality it must return UNKNOWN, see
Cat::BaseCategory .

A If this domain has the axiom Ax::canonicalRep , which implies
that two domain elements are mathematically equal if and only if
they are structurally equal, the kernel function _equal is used to
decide the equality. In this case UNKNOWNis never returned.

A If the axiom Ax::canonicalRep does not hold the method will
return TRUEif x and y are structurally equal (in the sense of the
function _equal) and UNKNOWNotherwise.

Conversion Methods

Method convert_to : convert element

convert_to(dom x, type T)

A This method may be used to convert elements of this domain to a
given type T. It returns FAIL if a conversion is not possible.

A The implementation provided here can convert x to an element of
this domain (the trivial case) or to an element of Dom::Expression
(by using the method "expr" , see Cat::BaseCategory).

Method TeX: generate TeX output

TeX(dom x)

A Returns a TeX-formatted string for x .

A The default implementation provided here converts x into an ex-
pression using the method "expr" and then uses the function generate::TeX
to convert the expression.

14

Access Methods

Method allAxioms : return all axioms

allAxioms()

A Returns a set containing all axioms holding for this domain, as stated
explicitly or in the inherited domains or categories.

Method allCategories : return all categories

allCategories()

A Returns a list containing all all categories of this domain. The order
of the categories in the list is the order which is used to search for
entries of the categories.

Method allEntries : return the names of all entries

allEntries()

A Returns a set containing the names of all entries of this domain.

Method allSuperDomains : return all super-domains

allSuperDomains()

A Returns a list containing all super-domains of this domain. The or-
der of the domains in the list is given by the domain hierarchy: The
first domain is the direct super-domain, the second the direct super-
domain of the first and so on.

A The last, most general, super-domain of all domains of the Dom
package is Dom::BaseDomain .

Method getAxioms : return axioms stated in the constructor

getAxioms()

A Returns a set containing the axioms stated directly for this domain.

Method getCategories : return categories stated in the constructor

getCategories()

A Returns a list containing the categories of this domain which are are
listed directly by the domain constructor.

15

Method getSuperDomain : return super-domain stated in the constructor

getSuperDomain()

A Returns the direct super-domain of this domain as given by the do-
main constructor.

Method hasProp : test for a certain property

hasProp(DOM_DOMAINd)

A Tests if the domain d is this domain or a super-domain of this do-
main.

hasProp(DomainConstructor dc)

A Tests if this domain or a super-domain of it was defined by the do-
main constructor dc .

hasProp(Axiom a)

A Tests if this domain has the axiom a.

hasProp(AxiomConstructor ac)

A Tests if an axiom of this domain was defined by the axiom construc-
tor ac .

hasProp(Category c)

A Tests if this domain has the category c .

hasProp(CategoryConstructor cc)

A Tests if a category of this domain was defined by the category con-
structor cc .

Method info : prints short information about this domain

info()

A This method overloads the function info .

A It prints out the super-domains, categories, axioms and entry names
of this domain.

A If an entry "info_str" , which must be a string, is defined for this
domain it is used to print the header line.

16

Method printMethods : prints out methods

printMethods(<function sort, > Table)

A Sorts the names of all entries of this domain using the function sort
and then prints them. The entries are grouped according to the do-
mains and categories defining them and printed out in a tabular
form.

A If no sorting function is given, sort is used as default.

printMethods(<function sort, > Tree)

A Similar as above, only that the names of the entries are inserted
into a tree, an element of the domain adt::Tree . The tree is both
printed out and returned by the method.

printMethods(<function sort >)

A Does the same as dom::printMethods(sort, Table) .

Method subs : avoid substitution

subs(dom x, ...)

A This method overloads the function subs . The implementation
provided here simply returns x in any case, so it avoids unwanted
substitutions inside of domain elements.

A Sub-domains should provide a new implementation of this method
with sensible semantics if possible.

Method subsex : avoid extended substitution

subsex(dom x, ...)

A This method overloads the function subsex . The implementation
provided here simply returns x in any case, so it avoids unwanted
substitutions inside of domain elements.

A Sub-domains should provide a new implementation of this method
with sensible semantics if possible.

Method undefinedEntries : return missing entries

undefinedEntries()

A Returns a set containing the names of all those entries of this do-
main that are missing.

A An entry is missing if it should have a definition according to a
category of the domain, but the definition is not present.

17

Method whichEntry : return the domain or category implementing an entry

whichEntry(e)

A Returns the domain or category which implements the entry with
name e.

A FAIL is returned if no entry with the given name is defined for this
domain.

Changes:

A New methods: "create_dom" and "printMethods" .

Dom::Complex – the field of complex numbers

Dom::Complex is the field of complex numbers represented by elements of
the domains DOM_INT, DOM_RAT, DOM_FLOAT, DOM_COMPLEXand DOM_EXPR.

Creating Elements:

A Dom::Complex(x)

Parameters:
x — An expression of type DOM_INT, DOM_RAT, DOM_FLOAT,

DOM_COMPLEX. An expression of type DOM_EXPRis also possible
if it is of type Type::Arithmetical and if it contains only
indeterminates which are of type Type::ConstantIdents or if
it contains no indeterminates.

Categories:

Cat::DifferentialRing , Cat::Field

Related Domains: Dom::Float , Dom::Integer , Dom::Numerical ,
Dom::Rational , Dom::Real

Details:

A Dom::Complex is the domain of complex constants represented by ex-
pressions of type DOM_INT, DOM_RAT, DOM_FLOATor DOM_COMPLEX.
An expression of type DOM_EXPRis considered a complex number if it
is of type Type::Arithmetical and if it contains only indeterminates
which are of type Type::ConstantIdents or if it contains no indeter-
minates, cf. example 2.

18

A Dom::Complex is of category Cat::Field due to pragmatism. This
domain actually is not a field because bool(1.0 = float(3) / float(3))
returns FALSE, for example.

A Elements of Dom::Complex are usually not created explicitly. However,
if one creates elements using the usual syntax, it is checked whether the
input expression can be converted to a number. This means Dom::Complex
is a facade domain which creates elements of domain type DOM_INT,
DOM_RAT, DOM_FLOAT, DOM_COMPLEXor DOM_EXPR.

A Dom::Complex has no normal representation, because 0 and 0.0 both
represent the zero.

A Viewed as a differential ring, Dom::Complex is trivial. It only contains
constants.

A Dom::Complex has the domain Dom::BaseDomain as its super do-
main, i.e., it inherits each method which is defined by Dom::BaseDomain
and not re-implemented by Dom::Complex . Methods described below
are re-implemented by Dom::Complex .

Entries:

characteristic the characteristic of this field is 0.

one the unit element; it equals 1.

zero The zero element; it equals 0.

Mathematical Methods

Method _divide : divide numbers

_divide(dom x, dom y)

A Behaves like the function _divide .

Method _invert : invert numbers

_invert(dom x)

A Behaves like the function _invert .

Method _mult : multiplies numbers

_mult(dom x, dom y, ...)

A Behaves like the function _mult .

19

Method _negate : negate numbers

_negate(dom x)

A Behaves like the function _negate .

Method _plus : add numbers

_plus(dom x, dom y, ...)

A Behaves like the function _plus .

Method _power : power operator

_power(dom x, dom y)

A Behaves like the function _power .

Method _unequal : inequalities

_unequal(dom x, dom y)

A Behaves like the function _unequal .

Method conjugate : conversion to a basic type

conjugate(dom x)

A Behaves like the function conjugate .

Method D: differential operator

D(dom x)

A This method returns 0.

Method diff : differentiates

diff(dom z, <, any x, ... >)

A This method returns z if it is called with only one argument. Other-
wise it returns 0.

Method equal : equations

equal(dom x, dom y)

A Behaves like the function _equal .

20

Method expr : conversion to a basic type

expr(dom x)

A Behaves like the function expr .

Method iszero : zero test

iszero(dom x)

A Behaves like the function iszero .

Method norm : the absolute value of a number

norm(dom x)

A This method returns |x|.

Method random : random number generation

random()

A This method returns a randomly generated complex number where
the real part and the imaginary part are positive integers between 0
and 1012− 1 generated by random .

random(integer n)

A This method returns a random number generator which creates com-
plex random numbers where the real parts and the imaginary parts
are positive integers between 0 and n− 1.

random(integer m.. integer n)

A This method returns a random number generator which creates com-
plex random numbers where the real parts and the imaginary parts
are positive integers between m and n.

Method unequal : inequalities

unequal(dom x, dom y)

A Behaves like the function _unequal .

21

Conversion Methods

Method convert : conversion into this domain

convert(any x)

A This method tries to convert x to a number of type Dom::Complex .
Currently this method can convert elements of type DOM_INT, DOM_RAT,
DOM_FLOAT, DOM_COMPLEX. It also can convert constant identifier
like PI , EULERand CATALAN.

A An arithmetical expression can be converted if it only contains subex-
pression of the types just mentioned.

A If the conversion fails, FAIL is returned.

Method convert_to : conversion to other domains

convert_to(dom x, any T)

A This method tries to convert the number x to an element of type T,
or if T is not a domain, to the domain type of T.

A If the conversion fails, FAIL is returned.

A The following domains are allowed for T: DOM_INT, Dom::Integer ,
DOM_RAT, Dom::Rational , DOM_FLOAT, Dom::Float , Dom::Numerical ,
DOM_COMPLEXand DOM_EXPR.

Method normal : normal form of objects

normal(dom x)

A Behaves like the function normal .

Example 1. Creating some complex numbers using Dom::Complex :

>> Dom::Complex(2/3)

2/3

>> Dom::Complex(2/3 + 4*I)

2/3 + 4 I

22

Example 2. It’s also possible to use expressions or constants for creating an
element of Dom::Complex :

>> Dom::Complex(PI)

PI

>> Dom::Complex(sin(2))

sin(2)

>> Dom::Complex(sin(2/3*I) + 3)

I sinh(2/3) + 3

If the expression cannot be converted to an element of Dom::Complex we
will get an error message:

>> Dom::Complex(sin(x))

Error: illegal arguments [Dom::Complex::new]

Super-Domain: Dom::ArithmeticalExpression

Axioms

Ax::systemRep , Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult") ,
Ax::efficientOperation("_invert")

Changes:

A No changes.

Dom::DihedralGroup – dihedral groups

Dom::DihedralGroup(n) creates the group of all congruent mappings of
the plane that induce a bijective mapping of the set of corners of a regular
n-angle to itself.

Domain:

A Dom::DihedralGroup(n)

23

Parameters:

n — positive integer

Dom::DihedralGroup(n)([a,b]) represents the group element “ta car-
ried out after rb”, where r is a rotation that maps each corner to its left neighbor,
and t is a reflection w.r.t. some fixed central diagonal.

Creating Elements:

A Dom::DihedralGroupn(l)

Parameters:

l — list or array of two integers

Categories:

Cat::Group

Related Domains: Dom::PermutationGroup

Entries:

size the number of elements, which equals 2n.

one the mapping leaving each point fixed.

Mathematical Methods

Method _mult : functional composition of elements

_mult(dom a, ...)

A The product of elements of Dom::DihedralGroup is defined as
their functional composition, with the factors applied from right to
left.

A This method overloads the kernel function _mult .

Method _invert : inverse of an element

_invert(dom a)

A The inverse of a is defined to be the mapping that sends every cor-
ner to its pre-image under a. (This agrees with the usual notion of
the inverse of a bijective mapping.)

A This method overloads the kernel function _invert .

24

Method _power : power of an element

_power(dom a, integer n)

A This method computes an.
A It overloads the kernel function _power .

Method order : order of a group element

order(dom a)

A This method returns the smallest positive integer k for which ak = 1.

Method random : random element

random()

A This method returns a random element of the group; the results are
uniformly distributed.

Conversion Methods

Method expr : convert group element to list

expr(dom a)

A This method returns a list of two elements; the meaning is the same
as in the case of creating elements of Dom::DihedralGroup .

Method TeX: TeX output of a group element

TeX(dom a)

A The element a is returned as a TEXstring generated from its list rep-
resentation. This avoids using fixed names for the generators, as
there is no standard for them in the literature.

Example 1. Define the group D6, i.e., the group of congruence mappings of
the hexagon:

>> G := Dom::DihedralGroup(6)

Dom::DihedralGroup(6)

Then elements may be created as follows:

>> a := G([7, 19]);

[1, 1]

This means that 19 rotations—mapping each corner to its left neighbor—and 7
reflections have the same effect as one operation of either type.

25

Super-Domain: Dom::BaseDomain

Axioms

Ax::canonicalRep

Changes:

A No changes.

Dom::DistributedPolynomial – the domains of distributed poly-
nomials

Dom::DistributedPolynomial(Vars, R, ..) creates the domain of poly-
nomials in the variables of the list Vars over the commutative ring R in dis-
tributed representation.

Domain:

A Dom::DistributedPolynomial(<Vars <, R <, Order >>>)

Parameters:
Vars — a list of indeterminates. Default is [] (the empty list,

indicating “arbitrary indeterminates”).
R — a commutative ring, i.e., a domain of category

Cat::CommutativeRing . Default is
Dom::ExpressionField(normal) .

Order — a monomial ordering, i.e., one of the predefined orderings
LexOrder , DegreeOrder or DegInvLexOrder or any
object of type Dom::MonomOrdering . Default is
LexOrder .

Details:

A Dom::DistributedPolynomial(Vars, R, Order) creates a domain
of polynomials in the variables of the list Vars over a domain of category
Cat::CommutativeRing in sparse distributed representation with re-
spect to the monomial ordering Order .

A If Dom::DistributedPolynomial is called without any argument, a
polynomial domain in arbitrarily many indeterminates over the domain
Dom::ExpressionField(normal) with respect to the lexicographic
monomial ordering is created.

26

A If Dom::DistributedPolynomial is called only with the variable list
Vars as argument, the polynomial domain in the variable list Vars over
the domain Dom::ExpressionField(normal) with respect to the lex-
icographic monomial ordering is created.

A Only commutative coefficient rings of type DOM_DOMAINare al-
lowed which inherit from Dom::BaseDomain . If R is of type
DOM_DOMAINbut does not inherit from Dom::BaseDomain , the
domain Dom::ExpressionField(normal) will be used in-
stead.

!

A Dom::DistributedPolynomial accepts expressions as indeterminates,
similar to the kernel domain DOM_POLY. Hence, for example, [x,cos(x)]
is a valid variable list.

A If the variable list Vars is the empty list ([]), a polynomial domain in ar-
bitrarily many indeterminates is created. In this case, when creating new
elements from polynomials or polynomial expressions, the system func-
tion indets is first called to get the variables and then the polynomial
is created with respect to these variables. Hence, in this case only iden-
tifiers can be valid indeterminates, because indets returns only identi-
fiers.

A It is not allowed to create polynomial domains in arbitrarily many inde-
terminates over another polynomial domain of category Cat::Polynomial ,
but it is possible to create multivariate polynomial domains with a given
list of variables over any polynomial domain.

A Dom::DistributedPolynomial represents polynomials over arbitrary
commutative rings. It is intended as a basic domain for distributed poly-
nomials from which it is easy to create new distributed polynomial do-
mains.

All usual algebraic and arithmetical polynomial operations are imple-
mented, including Gröbner basis computation.

A It is highly recommend to use only coefficient rings with unique
zero representation. Otherwise it can happen that, e.g., a poly-
nomial division will not terminate or a wrong degree will be re-
turned.

!

A Please note that for reasons of efficiency not all methods check their ar-
guments, not even at the interactive level. In particular this is true for
many access methods, converting methods and technical methods.

Creating Elements:

A Dom::DistributedPolynomial(Vars, R, Order)(p)

A Dom::DistributedPolynomial(Vars, R, Order)(lm)

27

A Dom::DistributedPolynomial(Vars, R, Order)(lm,v)

Parameters:
p — a polynomial or a polynomial expression.
lm — list of monomials, which are represented as lists containing the

coefficients together with the exponents or exponent vectors.
v — list of indeterminates. This parameter is only valid for Vars =

[] .

Categories:

if Vars has a single variable, then
Cat::UnivariatePolynomial(R)

else
Cat::Polynomial(R)

Related Domains: Dom::Polynomial ,
Dom::MultivariatePolynomial , Dom::UnivariatePolynomial

Entries:

characteristic The characteristic of this domain.

coeffRing The coefficient ring of this domain as defined by the parameter
R.

key The name of the created domain.

one The neutral element w.r.t. "_mult" .

ordering The monomial order as defined by the parameter Order .

variables The list of variables as defined by the parameter Vars .

zero The neutral element w.r.t. "_plus" .

Mathematical Methods

Method _divide : exact polynomial division

_divide(dom a, dom b)

_divide(dom a, R b)

_divide(dom a, DOM_INT b)

A Divides a by b and returns the divisor, if a is divisible by b other-
wise FAIL .

A It overloads the function _divide for polynomials, i.e., one may
use it either in the form a / b , or in functional form _divide(a,
b) .

28

A This method only exists if R is an integral domain, i.e., a do-
main of category Cat::IntegralDomain . !

Method _invert : inverse of an element

_invert(dom a)

A Returns the inverse of a if it exists, otherwise FAIL .

Method _mult : multiplies polynomials and coefficient ring elements

_mult(<a,b, ... >)

A Multiplies an arbitrary number of polynomials of this domain, ele-
ments of the coefficient ring R and elements of type DOM_INTand
returns an element of this domain. If any element of a different do-
main occurs as an argument, the method from that domain is called
and the result of that call is returned. If this call fails, FAIL is re-
turned.

A This method overloads the function _mult for polynomials, i.e.,
one may use it either in the form a * b * ... or in functional
notation _mult(a, b, ...) .

Method _negate : negates a polynomial

_negate(dom a)

A Negates a, i.e., multiplies a by −1.

A This method overloads the function _negate for polynomials, i.e.,
one may use it either in the form -a or in functional notation _negate(a) .

Method _plus : adds polynomials and coefficent ring elements

_plus(<a,b, ... >)

A Adds an arbitrary number of polynomials of this domain together
with elements of the coefficient ring Rand elements of type DOM_INT
and returns an element of this domain. When any other element of
a different domain occurs as argument, the method from that do-
main is called and an element of that domain is returned. If this call
fails, FAIL is returned.

A This method overloads the function _plus for polynomials, i.e.,
one may use it either in the form a + b + ... or in functional
notation _plus(a, b, ...) .

29

Method _power : nth power of a polynomial

_power(dom a, NonNegativeInteger n)

A Returns the n-th power of a, i.e., multiplies a n times by itself.
A This method overloads the function _power for polynomials, i.e.,

one may use it either in the form a^n or in functional notation
_power(a,n) .

Method _subtract : subtracts a polynomial or a coefficient ring element

_subtract(a, b)

A Subtracts a by b, whereby both arguments can be either polynomi-
als of this domain or elements of the coefficient ring R or elements
of type DOM_INTand returns an element of this domain. If not pos-
sible, an error message will occur.
A This method overloads the function _subtract for polynomials,

i.e., one may use it either in the form a - b or in functional nota-
tion _subtract(a, b) .

Method content : content of a polynomial

content(dom a)

A computes the content of a, i.e., the gcd of all coefficients.
A This method only exists if R is a domain of category

Cat::GcdDomain . !

Method D: differential operator for polynomials

D(dom a)

D(list of positive integers l, dom a)

A This method overloads the function polylib::Dpoly for polyno-
mials and is simply another name for the method "Dpoly" .

Method Dpoly : differential operator for polynomials

Dpoly(dom a)

Dpoly(list of positive integers l, dom a)

A Dpoly(a) computes the derivative of a, if a has exactly one inde-
terminate.
A Dpoly(l,a) computes the partial derivative of a with respect to

l . For details see polylib::Dpoly .
A This method overloads the function polylib::Dpoly for polyno-

mials.

30

Method decompose : functional decomposition of a polynomial

decompose(dom a <, indeterminate var >)

A Returns a sequence of of polynomials of this domain p1, ..., pn
such that a = p1(...pn(var)...) .

A If a is a polynomial in only one variable, the second argument is not
necessary.

A This method overloads the function polylib::decompose for poly-
nomials.

Method diff : differentiates a polynomial

diff(dom a, sequence of indeterminates varseq)

A Returns the partial derivative of a with respect to the sequence of
indeterminates varseq .

A If varseq is an empty sequence, a is returned unchanged.

A If in varseq an expression occurs which is not a variable of a, the
zero polynomial is returned.

A This method overloads the function diff for polynomials.

Method dimension : dimension of affine variety

dimension(list of dom ais <, monomial ordering ord >)

dimension(set of dom ais <, monomial ordering ord >)

A Computes the dimension of the affine variety generated by the poly-
nomials of ais with respect to the monomial ordering ord , if ex-
plicitly given, otherwise Order will be used instead.

A This method is merely an interface for the function groebner::dimension .

A This method only exists if R is a field, i.e., a domain of cate-
gory Cat::Field and Vars is not the empty list. !

Method divide : divides polynomials

divide(dom a, dom b <, Quo, Rem or Exact opt >)

divide(dom a, dom b, indeterminate var <, Quo, Rem or
Exact opt >)

A Divides a by b, whereby both polynomials are univariate in a com-
mon variable or with respect to the given indeterminate var . Note
that if Vars has a single variable the second call leads to an error. If
no indeterminate is given the main variable of the first polynomial
will be used.

31

A If no option is given, the quotient s and the remainder r are com-
puted such that a = s*b + r and the degree of r in the relevant
indeterminate is smaller than that of b. The sequence consisting of
s, r is returned, otherwise FAIL .

A If the option Quo is given, only the quotient s is returned.

A If the option Remis given, only the remainder r is returned.

A If the option Exact is given, only the quotient s is returned, in case
the remainder is zero, otherwise FAIL .

A divide(a,b,Exact) divides the multivariate polynomial a by b.
If a cannot be divided by b, the method returns FAIL .

A This method overloads the function divide for polynomials.

A This method only exists if R is a field, i.e., a domain of cat-
egory Cat::Field and either this domain is of category
Cat::UnivariatePolynomial(R) or R has characteristic
zero (R::characteristic = 0). If the first pair of condi-
tions is true then the first call is valid otherwise the second
one.

!

Method evalp : evaluates a polynomial

evalp(dom a, sequence of equations var = e)

A Evaluates the polynomial a by substituting the variables var, ...
by e, The values e, ... should be elements of the coef-
ficient ring or expressions that could be used as coefficients. The
variables are evaluated in the sequence given by the equations us-
ing Horner’s rule. An element of this domain or an element of the
coefficient ring respectively is returned.

A This method overloads the function evalp for polynomials.

Method factor : factors a polynomial

factor(dom a)

A Computes a factorization of the polynomial a into irreducible fac-
tors such that a = u*a1^e1 ...*an^en where u is the content of
a and ai (1 ≤ i ≤ n) are the irreducible factors of a and returns an
element of domain type Factored . See factor for more details.

A This method overloads the function factor for polynomials.

A This method only exists if R is a domain of category
Cat::Field or if R is the domain Dom::Integer . !

32

Method func_call : applies expressions to a polynomial

func_call(dom a, R e1, ..., R en, <Expr >)

func_call(dom a, dom e1, ..., dom en, <Expr >)

func_call(dom a, expression e1, ..., expression en, Expr)

A This method may also be used either in the form a(e1,..., en,
<Expr >) or in functional notation func_call(a, e1,..., en,
<Expr >) .
A a(e1,..., en) applies the sequence e1,..., en of either ele-

ments of this domain or elements of R with respect to Vars (where
n is the number of variables) to the polynomial a. An element of
this domain or an element of the coefficient ring respectively is re-
turned.
A a(e1,..., en, Expr) applies the sequence of expressions or

of elements of this domain or of elements of R to the polynomial
a. With this call a is first converted into an expression. After-
wards e1,..., en is substituted into this expression with respect
to Vars . The return value may be any object.
A The number of variables must be equal to the number of applied

expressions.
A This method only exists if Vars has at least one indetermi-

nate. !

Method gcd : greatest common divisor of polynomials

gcd(dom a, dom b, ...)

A Computes a greatest common divisor of the polynomials a, b,
...

A This method overloads the function gcd for polynomials.
A This method only exists if R is a domain of category

Cat::GcdDomain . !

Method gcdex : extended Euclidean algorithm for polynomials

gcdex(dom a, dom b)

A Applies the extended Euclidean algorithm to compute polynomials
s and t such that g = s*a+t*b , where g is a greatest common divi-
sor of a and b and degree(s) < degree(b) and degree(t) <
degree(a) . The sequence of the three polynomials of this domain
g, s, t is returned.
A This method overloads the function gcdex for polynomials. Espe-

cially, it only works for coefficient rings described there.
A This method only exists if R is a domain of category

Cat::GcdDomain . !

33

Method groebner : reduced Gröbner basis

groebner(list of dom ais <, monomial ordering ord > <,
Reorder >)

groebner(set of dom ais <, monomial ordering ord > <,
Reorder >)

A Computes a reduced normalized Gröbner-basis for the ideal gener-
ated by the polynomials of ais with respect to the monomial order-
ing ord (w.r.t. Order , if ord is not explicitly given) and returns a
list of polynomials of this domain.
A If the option Reorder is given, the lexicographical order of vari-

ables may change to another one that is likely to decrease the run-
ning time.
Note that this may also cause a change of the returned list,
which may now have polynomials over the same coefficient
ring R but with a possibly re-ordered variable list. Thus, it
may contain elements not belonging to this domain.

!

A This method is merely an interface for the function groebner::gbasis .
A This method only exists if R is a field, i.e., a domain of cate-

gory Cat::Field , and Vars is not the empty list. !

Method int : definite and indefinite integration of a polynomial

int(dom a <, indeterminate x>)

int(dom a <, x=x0..x1 >)

A int(a,x) returns the indefinite integral
∫

a dx as an element ei-
ther of this domain (if R is of category Cat::Field or of category
Cat::Algebra(Dom::Rational) or Cat::Algebra(Dom::Fraction(Dom::Integer)))
or as an element of a polynomial domain over Dom::Fraction(R)
or FAIL , if the antiderivative cannot be converted into one of the
previously given domains. If a has only one variable, the second
argument is not necessary.

A int(a,x=x0..x1) returns the definite integral
∫ x1

x0 a dx or FAIL ,
if the result is not an element of this domain or an element of a
polynomial domain over Dom::Fraction(R) .
A This method overloads the function int for polynomials.

Method intmult : multiplies a polynomial with an integer

intmult(dom a, integer z)

A Multiplies a by z .
A This method is more efficient than using polynomial multiplication

and is, e.g., necessary for the method "Dpoly" .

34

Method isone : test for one

isone(dom a)

A Tests if a is the multiplicative neutral element of this domain and
returns TRUEif this is the case, otherwise FALSE.
A The result can only be valid if the coefficients of a are in nor-

mal form (i.e., if zero has a unique representation in R). Thus,
R should have at least Ax::normalRep .

!

Method iszero : test for zero

iszero(dom a)

A Tests if a is the additive neutral element of this domain and returns
TRUEif this is the case, otherwise FALSE.
A The result can only be valid, if the coefficients of a are in nor-

mal form (i.e., if zero has a unique representation in R). Thus,
the coefficient ring R should have at least Ax::normalRep .

!

Method lcm : least common multiple of polynomials

lcm(dom a, dom b, ...)

A Computes the least common multiple of the polynomials a, b,
...

A This method overloads the function lcm for polynomials.
A This method only exists if R is a domain of category

Cat::GcdDomain . !

Method makeIntegral : makes the coefficients fraction free

makeIntegral(dom a)

A Multiplies a by the lcm of all coefficient denominators.
A This method only exists if R is a domain of category

Cat::GcdDomain and Rhas the method "denom" . !

Method monic : normalizes a polynomial

monic(dom a)

A Normalizes a, i.e., the leading coefficient of the resulting polyno-
mial is R::one . For this, a is divided by its leading coefficient.
A The zero polynomial returns itself.
A This method only exists if R is a field, i.e., a domain of cate-

gory Cat::Field . !

35

Method normalForm : complete reduction modulo an ideal

normalForm(dom a, list of dom ais <, monomial ordering
ord >)

normalForm(dom a, set of dom ais <, monomial ordering
ord >)

A Reduces the polynomial a completely modulo all polynomials of
ais (see groebner::normalf) with respect to the monomial or-
dering ord (i.e., w.r.t. Order , if ord is not explicitly given).
A reduced form of a always exists, but need not be unique; if ais
form a Gröbner basis, it is unique.

A This method is merely an interface for the function groebner::normalf .

A This method only exists if R is a field, i.e., a domain of cate-
gory Cat::Field , and Vars is not the empty list. !

Method numericSolve : numerical zeros of polynomials

numericSolve(dom a <, indeterminate var > <, options >)

numericSolve(dom a <, list or set of indeterminates vars >
<, options >)

numericSolve(list or set of dom ais <, indeterminate var >
<, options >)

numericSolve(list or set of dom ais <, list or set of
indeterminates vars > <, options >)

A numericSolve(a, ..) tries to find the zeros of a numerically. It
is possible to control the behavior of numericSolve by passing a
variable or a set or list of variables together with options. For details
see the function numeric::solve).

A numericSolve(ais, ..) tries to find the zeros of the polyno-
mial system ais numerically, with the exact behavior depending on
further arguments. For details see the function numeric::solve).

A All coefficients must be convertible into the basic domain DOM_EXPR,
since in a precomputation step all polynomials of this domain are
converted into the basic polynomial domain DOM_POLYover DOM_EXPR.

A For a detailed description of possible return values and options see
function numeric::solve .

A This method overloads the function numeric::solve .

Method pdioe : solves polynomial Diophantine equations

pdioe(dom a, dom b, dom c)

36

A Returns a sequence of two polynomials u and v that satisfy the
equation a*u + b*v = c or FAIL , if this equation is not solvable.

A This method overloads the function solvelib::pdioe .

A This method only exists if R is a field, i.e., a domain of cate-
gory Cat::Field and Vars consists of a single variable. !

Method pdivide : pseudo-division of polynomials

pdivide(dom a, dom b <, Quo or Rem opt >)

A Computes the pseudo-division of a by b and returns the sequence
consisting of an element p of Rand two polynomials q and r of this
domain satisfying p*a = q*b+r , where p = lcoeff(b)^(degree(a)-
degree(b)+1) .

A If the option Quo is given, only the pseudo-quotient q is returned.

A If the option Remis given, only the pseudo-remainder r is returned.

A This method overloads the function pdivide for polynomials.

A This method only exists if Vars consists of a single variable.
!

Method pquo : pseudo-quotient of polynomials

pquo(dom a, dom b)

A Computes the pseudo-quotient of a by b. For details see method
"pdivide" .

A This method only exists if Vars consists of a single variable.
!

Method prem : pseudo-remainder of polynomials

prem(dom a, dom b)

A Computes the pseudo-remainder of a by b. For details see method
"pdivide" .

A This method only exists if Vars consists of a single variable.
!

37

Method random : creates a random polynomial

random()

A Returns a random generated polynomial of this domain.

A With every call the global variable SEEDis changed by a call of ran-
dom() . Thus it is hard to create the same random sequence twice,
see random .

A If the parameter Vars is the empty list, first a list of 1 to 4 variables
is generated randomly and the random polynomial is generated in
these indeterminates afterwards.

A This method overloads the function polylib::randpoly for poly-
nomials.

Method realSolve : isolates all real roots of a real univariate polynomial

realSolve(dom a <, positive real number eps>)

A realSolve(a) returns intervals isolating the real roots of the real
univariate polynomial a.

A realSolve(a, eps) returns refined intervals approximating the
real roots of a to the relative precision given by eps .

A For a detailed description see function polylib::realroots .

A All coefficients must be convertible into either integers, rational num-
bers or (real) floating point numbers.

A This method overloads the function polylib::realroots for poly-
nomials.

A This method only exists if Vars consists of a single variable.
!

Method resultant : resultant of two polynomials

resultant(dom a, dom b <, indeterminate var >)

A resultant(a, b) returns the resultant of a and b with respect to
their main variable, i.e., the return value of the call a::dom::mainvar(a) .

A resultant(a, b, var) returns the resultant of a and b with re-
spect to the variable var .

A The value returned is a polynomial of this domain or FAIL .

A This method overloads the function polylib::resultant for poly-
nomials.

A This method only exists if Rhas the method "_divide" .
!

38

Method ringmult : multiplies a polynomial with a coefficient ring element

ringmult(dom a, R c)

A Multiplies a by the coefficient ring element c .

Method solve : zeros of polynomials

solve(dom a <, indeterminate var > <, options >)

solve(dom a <, list or set of indeterminates vars > <,
options >)

solve(list or set of dom ais <, indeterminate var > <,
options >)

solve(list or set of dom ais <, list or set of indeter-
minates vars > <, options >)

A solve(a, ..) tries to find the zeros of a. It is possible to con-
trol the behavior of solve by passing a variable or a set or list of
variables together with options.

A solve(ais, ..) tries to find the zeros of the polynomial system
ais . The exact behavior depends on further arguments.

A For a detailed description of possible return values and options see
function solve .

A This method overloads the function solve .

Method SPolynomial : computes the S-polynomial of two polynomials

SPolynomial(dom a, dom b <, monomial ordering ord >)

A Computes the S-polynomial of a and b with respect to the mono-
mial ordering ord (or w.r.t. Order , if ord is not explicitly given).

A This method is merely an interface for the function groebner::spoly .

A This method only exists if R is a field, i.e., a domain of cate-
gory Cat::Field , and Vars is not the empty list. !

Method sqrfree : square-free factorization of polynomials

sqrfree(dom a)

A Returns the square-free factorization of a as a list in the form [u,
a1, e1, ..., an, en] which means that a = u * a1^e1 *
... * an^en .

A The ai are primitive and pairwise different square-free divisors of
a and represented as elements of this domain. u is a unit of the
coefficient ring and represented as an element of this domain. The
ei are integers.

39

A This method overloads the function polylib::sqrfree for poly-
nomials.

A This method only exists if R is a field, i.e., a domain of cate-
gory Cat::Field , or if R is Dom::Integer . !

Access Methods

Method coeff : coefficients of a polynomial

coeff(dom a)

coeff(dom a, indeterminate var, NonNegativeInteger n)

coeff(dom a, NonNegativeInteger n)

A coeff(a) returns a sequence with all coefficients of a as elements
of the coefficient ring R. The coefficients are ordered according to
the monomial ordering Order .

A coeff(a,var,n) returns the coefficient of the term var^n —as an
element of this domain if it is of category Cat::Polynomial(R) ,
or as an element of the coefficient ring Rif it is of Cat::UnivariatePolynomial(R) ,
where a is considered as a univariate polynomial in a valid variable
var .

A coeff(a,n) returns the coefficient of the term var^n —as an ele-
ment of this domain if it is of category Cat::Polynomial(R) , or
as an element of the coefficient ring Rif it is of Cat::UnivariatePolynomial(R) ,
where a is considered as a univariate polynomial in var and var is
the main variable of a, i.e., the variable returned by dom::mainvar(a) .

A This method overloads the function coeff for polynomials.

Method degree : degree of a polynomial

degree(dom a)

degree(dom a, indeterminate var)

A degree(a) returns the total degree of a.

A degree(a, var) returns the degree of a with respect to var .

A The degree of the zero polynomial is defined as zero.

A This method overloads the function degree for polynomials.

Method degreevec : vector of exponents of the leading term of a polyno-
mial

degreevec(dom a <, monomial ordering ord >)

40

A Returns the vector of exponents of the leading term of a with re-
spect to the monomial ordering ord as a list. If var1^e1 * ...
* varm^em is the leading term then the list [e1, ..., em] is
returned. If ord is not explicitely given, the ordering Order will be
used instead.

A The degree vector of the zero polynomial is defined as a list of zeros.

A This method overloads the function degreevec for polynomials.

Method euclideanDegree : Euclidean degree function

euclideanDegree(dom a)

A Returns the Euclidean degree of a, which is here simply defined as
the degree of a.

A This method only exists if Vars consists of a single variable.
!

Method ground : ground term of a polynomial

ground(dom a)

A Returns the term of a in which no variable of a occurs.

A This method overloads the function ground for polynomials.

Method has : existence of an object in a polynomial

has(dom a, any obj)

A Tests if a contains the object obj . Only complete subexpressions
and operators are found. If the second argument is a list or set then
these elements are tested to see if at least one of it is a subexpression
of a. See function has for more details.

A This method overloads the function has .

Method indets : indeterminates of a polynomial

indets(<dom a>)

A Returns a set of all indeterminates of a.

A In case Vars is not the empty list, indets can be called without
argument.

A Since this domain allows expressions as indeterminates, the returned
set may contain expressions, too.

A This method overloads the function indets for polynomials.

41

Method lcoeff : leading coefficient of a polynomial

lcoeff(dom a)

lcoeff(dom a <, list of indeterminates vars > <, mono-
mial ordering ord >)

A lcoeff(a) returns the leading coefficient of a with respect to the
monomial ordering Order as an element of the coefficient ring R.

A lcoeff(a, ord) returns the leading coefficient of a with respect
to the monomial ordering ord as an element of the coefficient ring
R.

A lcoeff(a, vars <, ord >) returns the leading coefficient of a
with respect to the variable list vars and the monomial ordering
ord as an element of this domain if it is of category Cat::Polynomial(R) ,
or as an element of the coefficient ring Rif it is of Cat::UnivariatePolynomial(R) .

• If ord is not explicitly given, the lexicographical order Lex-
Order will be used instead.
• It tries to convert a into a polynomial in the specified list of in-

determinates vars over the coefficient ring Rand returns FAIL
if this conversions fails.

A This method overloads the function lcoeff for polynomials.

Method ldegree : lowest degree of a polynomial

ldegree(dom a)

ldegree(dom a, indeterminate x)

A ldegree(a) returns the lowest total degree of the terms of a.

A ldegree(a, x) returns the lowest degree of the variable x in a.

A This method overloads the function ldegree for polynomials.

Method lmonomial : leading monomial of a polynomial

lmonomial(dom a <, monomial ordering ord >)

lmonomial(dom a <, list of indeterminates vars > <, mono-
mial ordering ord > <, Rem>)

A lmonomial(a <, ord >) returns the leading monomial of a with
respect to the monomial ordering ord as an element of this domain.
If ord is not explicitly given, the ordering Order will be used in-
stead.

A lmonomial(a, vars <, ord >) returns the leading monomial
of a with respect to the variable list vars and the monomial order-
ing ord as an element of this domain.

42

• If ord is not explicitly given, the lexicographical order Lex-
Order will be used instead.
• It tries to convert a into a polynomial in the specified list of in-

determinates vars over the coefficient ring Rand returns FAIL
if this conversions fails.

A lmonomial(a <, vars > <, ord >, Rem) returns the list con-
sisting of the leading monomial and the reductum of a with respect
to the variable list vars and the monomial ordering ord as a list of
elements of this domain.

• If ord is not explicitly given, the lexicographical order Lex-
Order will be used instead.
• It tries to convert a into a polynomial in the specified list of in-

determinates vars over the coefficient ring Rand returns FAIL
if this conversions fails.

A In MuPAD a monomial denotes a coefficient together with a
power product as, e.g., 3x2. !
A This method overloads the function lmonomial for polynomials.

Method lterm : leading term of a polynomial

lterm(dom a)

lterm(dom a <, list of indeterminates vars > <, mono-
mial ordering ord >)

A lterm(a) returns the leading term of a with respect to the mono-
mial ordering Order as an element of this domain.

A lterm(a, ord) returns the leading coefficient of a with respect to
the monomial ordering ord as an element of this domain.

A lterm(a, vars <, ord >) returns the leading term of a with
respect to the variable list vars and the monomial ordering ord as
an element of this domain.

• If ord is not explicitly given, the lexicographical order Lex-
Order will be used instead.
• It tries to convert a into a polynomial in the specified list of in-

determinates vars over the coefficient ring Rand returns FAIL
if this conversions fails.

A In MuPAD a term denotes a power product without a coeffi-
cient as, e.g., x2y3z. !
A This method overloads the function lterm for polynomials.

43

Method mainvar : main variable of a polynomial

mainvar(<dom a>)

A Returns the main indeterminate of a, i.e., the first element of dom::orderedVariableList(a) .

A If Vars is not the empty list, mainvar can be called without argu-
ment.

Method mapcoeffs : applies a function to the coefficients of a polynomial

mapcoeffs(dom a, function f <, sequence of arguments e1,
... >)

A Applies the function f to the coefficients of a and returns a with the
new coefficients.

• mapcoeffs(a, f) : f(ci) is executed for each coefficient ci
of a.
• mapcoeffs(a, f, e1, ..., en) : f(ci, e1, ..., en)

is executed for each coefficient ci of a with the additional ar-
guments e1, ..., en .

A This method overloads the function mapcoeffs for polynomials.

Method multcoeffs : multiplies the coefficients of a polynomial with a fac-
tor

multcoeffs(dom a, R c)

A Multiplies all the coefficients of a with the factor c .

A This method overloads the function multcoeffs for polynomials.

Method nterms : number of terms of a polynomial

nterms(dom a)

A Returns the number of non-zero terms of a. The zero polynomial
has no terms.

A This method overloads the function nterms for polynomials.

Method nthcoeff : n-th coefficient of a polynomial

nthcoeff(dom a, integer n <, monomial ordering ord >)

A Returns the n-th (non-zero) coefficient of a with respect to the mono-
mial ordering ord . If ord is not explicitly given, the ordering Or-
der will be used instead.

A If n is larger than the number of monomials of the polynomial then
the function returns FAIL .

44

A The zero polynomial has no monomials. nthcoeff returns FAIL
when invoked on the zero polynomial.

A This method overloads the function nthcoeff for polynomials.

Method nthmonomial : n-th monomial of a polynomial

nthmonomial(dom a, integer n <, monomial ordering ord >)

A Returns the n-th (non-zero) monomial of a with respect to the mono-
mial ordering ord . If ord is not explicitly given, the ordering Or-
der will be used instead.

A If n is larger than the number of monomials of the polynomial then
the function returns FAIL .

A The zero polynomial has no monomials. nthmonomial returns
FAIL for the zero polynomial.

A This method overloads the function nthmonomial for polynomi-
als.

Method nthterm : n-th term of a polynomial

nthterm(dom a, integer n <, monomial ordering ord >)

A Returns the n-th (non-zero) term of a with respect to the monomial
ordering ord . If ord is not explicitly given, the ordering Order will
be used instead.

A If n is larger than the number of monomials of the polynomial then
the function returns FAIL .

A The zero polynomial has no monomials. nthterm returns FAIL
when called with the zero polynomial.

A This method overloads the function nthterm for polynomials.

Method orderedVariableList : ordered list of indeterminates of a poly-
nomial

orderedVariableList(<dom a>)

A Returns the ordered list of variables as specified when creating the
domain. If no variable was specified for this domain (i.e., Vars =
[] , a sorted list of all variables of a is returned.

A In case Vars is not the empty list, orderedVariableList can be
called without an argument.

45

Method pivotSize : size of a pivot element

pivotSize(dom a)

A Returns the “size” of a as a pivot element, which is simply the total
degree of a.

A This method is called if this domain is used as the component ring
of a matrix domain to perform a Gaussian elimination.

Method reductum : reductum of a polynomial

reductum(dom a <, monomial ordering ord >)

A Returns the reductum of a (i.e., a-lmonomial(a)) with respect
to the monomial ordering ord . If ord is not explicitly given, the
ordering Order will be used instead.

Method tcoeff : lowest coefficient of a polynomial

tcoeff(dom a <, monomial ordering ord >)

A Returns the lowest coefficient of a with respect to the monomial
ordering ord . If ord is not explicitly given, the ordering Order
will be used instead.

A This method overloads the function tcoeff for polynomials.

Conversion Methods

Method convert : conversion to a polynomial

convert(any p)

A Tries to convert a polynomial expression or a polynomial p to an
element of this domain and returns either an element of this domain
or FAIL .

Method expr : conversion to a basic type

expr(dom a)

A Converts the polynomial a of this domain into an element of a basic
domain. Thus the coefficients may no longer belong to the coeffi-
cient ring R.

A This method overloads the function expr .

46

Method poly : converts to a basic polynomial domain

poly(dom a)

A Converts the polynomial a of this domain into an element of the
basic domain DOM_POLY.

A This method overloads the function poly .

Method TeX: TeX formatting of a polynomial

TeX(dom a)

A Returns a TEX-formatted string for the polynomial a.

Method TeXCoeff : TeX formatting of a polynomial coefficient

TeXCoeff(R c)

A Returns a TEX-formatted string for the polynomial coefficient c .

Method TeXident : TeX formatting of a polynomial indeterminate

TeXident(indeterminate var)

A Returns a TEX-formatted string for the polynomial indeterminate
var .

Method TeXTerm: TeX formatting of a polynomial term

TeXTerm(dom t)

A Returns a TEX-formatted string for the polynomial term t .

Technical Methods

Method adaptIndets : converts polynomials to common indeterminates

adaptIndets(<dom a, dom b , ... >)

A Computes a common sorted list of indeterminates of all arguments
and returns the sequence of polynomials converted to polynomials
of type DOM_POLYwith respect to this list of indeterminates.

A This method only exists if the parameter Vars is the empty
list ([]). !

47

Method isNeg : test on leading output token

isNeg(dom a)

A Tests the leading output token of a and returns TRUEif it is the
minus token - and FALSE if that is not the case or MuPAD cannot
determine that token (e.g., if a domain involved does not have this
method).

Method mult : multiplies polynomials

mult(dom a, dom b, ...)

A Multiplies an arbitrary number of elements of this domain.

Method new: creates a new element

new(any p)

new(list of lists lm)

new(list of lists lm, list of indeterminates v)

A One may use this method either in the form dom::new(p) or in the
form dom(p) .

A dom(p) creates an element of this domain from a polynomial or
a polynomial expression p and returns that element. If this is not
possible, an error message is given.

A If Vars is chosen as the empty list ([]) then in creating new el-
ements from a polynomial or polynomial expression the function
indets is first called to get the identifiers. Afterwards the element
is created with this list of identifiers. For creating an element from a
constant the dummy variable _dummyis introduced. The drawback
of this approach is that two mathematically equal polynomials may
have variable lists which differ by the dummy variable.

A dom(lm) creates, if Vars 6= [] , a polynomial from the list lm of the
form [[c1, [e11,... e1n]],... [cm,[em1,... emn]]]
where the ci are coefficients and the eij are the exponents with re-
spect to Vars . For a univariate polynomial this list can be simplified
to [[c1,e1],... [cm,em]] .

A dom(lm,v) creates, if Vars = [] , a polynomial from the list lm of
the form [[c1, [e11,... e1n]],... [cm,[em1,... emn]]]
where the ci are coefficients and the eij are the exponents with
respect to v . For a univariate polynomial this list can be simplified
to [[c1,e1],... [cm,em]] . The list of indeterminates v must
contain valid indeterminates.

48

Method plus : adds polynomials

plus(dom a, dom b, ...)

A Adds an arbitrary number of elements of this domain.

Method print : prints polynomials

print(dom a)

A Prints the polynomial a. The terms are printed with respect to the
given monomial ordering Order in descending order.

A This method overloads the function print .

Method printMonomial : prints a monomial in defined order

printMonomial(R c, list of NonNegativeIntegers d, list
of indeterminates v)

A Returns an ordered expression c*v[1]^d[1]*.. , where d is the
degree vector with respect to variable list v .

Method printTerm : prints a term in defined order

printTerm(list of NonNegativeIntegers d)

printTerm(list of NonNegativeIntegers d, list of inde-
terminates v)

A printTerm(d) returns an ordered sequence of the indeterminates
together with their powers as given in Vars and the degree vector
d respectively.
Note that this call is only valid if Vars is not the empty list.

A printTerm(d,v) returns an ordered sequence of the indetermi-
nates together with their powers as given in the variable list v and
the degree vector d respectively.
Note that this call is only valid if nops(v)=nops(d) .

Method Rep: data representation of a polynomial

Rep(dom a)

A Returns the internal data representation of a.

49

Method sign : leading sign of a polynomial

sign(dom a)

A Determines the sign of a, which is 0 if a is zero, 1 if a is either a
positive constant or a positive monomial, sign(a) if nterms(a)
> 1 and -1 otherwise. This method is currently used within the
"printMonomial" method for pretty printing elements of this do-
main and is more or less intended to be an internal procedure. It is
planned to replace this method by the method "isNeg" in future
versions.

A Note: this method does not have the meaning of a mathematical
sign function!

Example 1. The following call creates a polynomial domain in x, y and z.

>> DP := Dom::DistributedPolynomial([x, y, z])

Dom::DistributedPolynomial([x, y, z],

Dom::ExpressionField(normal, iszero@normal), LexOrder)

Since neither the coefficient ring nor the monomial ordering was specified, this
domain is created with the default values for these parameters.

It is rather easy to create elements of this domain, as e.g.

>> a := DP(x + 2*y*z + 3)

x + 2 y z + 3

>> b := DP(z^4 - 2*y^2*x^2)

2 2 4
- 2 x y + z

In contrast to expressions all elements of this domain have a representation
which is fixed by the chosen Order , the representation of the coefficient ring
Rand the way of representing monomials.

With these elements one can now perform usual arithmetic operations as,
e.g., (scalar) multiplication, multiplication with integers and adding polyno-
mials and ring elements:

>> 4*b^2 + a/3 + 1/2

4 4 2 2 4 8
16 x y - 16 x y z + 1/3 x + 2/3 y z + 4 z + 3/2

There are a lot of methods for manipulating polynomials and to get access to
all parts of a polynomial. For example one has access to the leading monomial
of a as follows:

50

>> lmonomial(a)

x

The leading monomial of a polynomial depends on the monomial ordering, so
with respect to the degree order one gets a different result:

>> lmonomial(a, DegreeOrder)

2 y z

To get a minus its leading monomial one may call:

>> DP::reductum(a)

2 y z + 3

Obviously the following identity holds:

>> a - lmonomial(a) - DP::reductum(a)

0

There are also methods for converting elements of this domain into other do-
mains, like a basic polynomial domain or the domain of arbitrary expressions:

>> poly(a), domtype(poly(a))

poly(x + 2 y z + 3, [x, y, z], Dom::ExpressionField(normal,

iszero@normal)), DOM_POLY

>> expr(b), domtype(expr(b))

4 2 2
z - 2 x y , DOM_EXPR

Super-Domain: Dom::BaseDomain

Axioms

if Rhas Ax::normalRep , then
Ax::normalRep

if Rhas Ax::canonicalRep , then
Ax::canonicalRep

51

Changes:

A Dom::DistributedPolynomial used to be Dom::PolynomialExplicit .

A The former implementation of this domain does no longer exist and is re-
placed by the former (undocumented) domain constructor Dom::PolynomialExplicit .

A It is now allowed to call this domain with zero, one, two or three ar-
guments. With the third argument one can now choose an appropriate
monomial ordering.

A The method "indets" now returns a set of indeterminates.

A The methods "Rep" , "SPolynomial" , "decompose" , "dimension" ,
"func_call" , "groebner" , "ground" , "int" , "makeIntegral" ,
"monic" , "numericSolve" , "orderedVariableList" , "ordering" ,
"realSolve" , "reductum" , "resultant" , "variables" were added.

A The method "Factor" was removed.

Dom::Expression – the domain of all MuPAD objects of basic type

Dom::Expression comprises all objects only consisting of operands of built-
in types.

Creating Elements:

A Dom::Expression(x)

Parameters:
x — An object of basic type consisting only of operands of built-in

types, or any other object convertible to such using expr .

Categories:

Cat::BaseCategory

Related Domains: Dom::ExpressionField

Details:

A Dom::Expression is a façade domain: it has no domain elements, but
uses system representation.

A Unlike Dom::ExpressionField , Dom::Expression does not belong
to any arithmetical category, and its elements need not be arithmetical
expressions.

A Dom::Expression mainly serves as a super–domain to Dom::ArithmeticalExpression ;
it rarely makes sense to use it directly.

52

Entries:

randomIdent an identifier used for creating random elements

Conversion Methods

Method convert : conversion of objects

convert(any x)

A expr is used to convert x into an object of basic type. This method
does not create elements of Dom::Expression , since Dom::Expression
has system representation.

Method convert_to : conversion to other domains

convert_to(expression x, any T)

A This method always returns FAIL unless T is Dom::Expression ;
in the latter case, x is returned.

Method expr : just return the argument

expr(expression x)

A Since the argument(s) are expressions already, they are just returned.

Method testtype : tests whether its argument is an expression

testtype(any x, Dom::Expression)

A This method returns TRUEif x can be converted to an expression,
and FAIL otherwise. The second argument must equal Dom::Expression ;
this is not checked.

A This method overloads testtype ; since Dom::Expression has
no domain elements, the overloading can only be caused by the sec-
ond argument.

Method float : convert numbers to floats

float(expression x)

A This method is identical to the kernel function float .

53

Technical Methods

Method subs : substitution

subs(expression x, substitution s, ...)

A This is just the method subs of the standard library; see there for
details about the calling syntax.

Method subsex : extended substitution

subsex(expression x, substitution s, ...)

A This is just the method subsex of the standard library; see there for
details about the calling syntax.

Method random : create random expression

random()

A This method returns a randomly chosen rational expression in one
variable.

Example 1. Almost every MuPAD object can be converted to an expression.
Objects of basic type are expressions.

>> Dom::Expression([3, array(1..2), rectform(exp(I))])

-- +- -+ --
| 3, | ?[1], ?[2] |, cos(1) + I sin(1) |
-- +- -+ --

The convert method flattens its argument: hence expression sequences are
not allowed.

>> Dom::Expression((3, x))

Error: expecting one argument [Dom::Expression::convert]

Super-Domain: Dom::BaseDomain

Axioms

Ax::systemRep , Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult") ,
Ax::efficientOperation("_invert")

54

Changes:

A No changes.

Dom::ExpressionField – the domains of expressions forming a
field

Dom::ExpressionField(Normal, IsZero) creates a domain of expres-
sions forming a field, where the functions Normal and IsZero are used to
normalize expressions and test for zero.

Domain:

A Dom::ExpressionField(<Normal <, IsZero >>)

Parameters:
Normal — a function used to normalize the expressions of the

domain; default is id .
IsZero — a function used to test the expressions of the domain for

zero; default is iszero @ Normal .

Details:

A Dom::ExpressionField(Normal, IsZero) creates a domain which
is supposed to be a field, where the field elements are represented as ex-
pressions. The function Normal is used to normalize the expressions
representing the elements, the function IsZero is used to test the ex-
pressions for zero. It is assumed that the field has characteristic 0.

A The domain cannot decide if the element expressions—given the normal-
izing function and zero test—actually form a field. It is up to the user to
choose correct functions for normalizing and zero test and to enter only
valid expressions as domains elements.

A One should view this domain constructor as a pragmatic way to create a
field of characteristic 0 in an ad-hoc fashion. Note that the default of us-
ing id and iszero does not yield a field really, but it is often convenient
and sensible to use the resulting structure as a field.

A Normal must be a function which takes an expression representing a
domain element and returns the normalized expression. Normal should
return FAIL if the expression is not valid.

A If Normal is not given, then the system function id is used, i.e., only the
kernel simplifier is used to normalize expressions.

55

A If a normalizing function other than id is given, it is assumed that this
functions returns a normal form where the zero element is uniquely rep-
resented by the constant 0.

A IsZero must be a function which takes an expression representing a
domain element and returns TRUEif the expression represents zero and
FALSEotherwise.

A If IsZero is not given, then iszero @ Normal is used for zero test-
ing. If Normal is equal to id this functional expression is simplified to
iszero .

A If Normal is equal to id and IsZero is equal to iszero , a façade do-
main is created, i.e., the domain elements are simply expressions and are
not explicitly created by new.

Otherwise the elements of the domain are explicitly created by new. Each
such element has one operand, which is the expression representing the
domain element. The element expressions are normalized after each op-
eration using the function Normal .

Categories:

Cat::Field , Cat::DifferentialRing

Dom::ExpressionField(Normal, IsZero)(e) creates a field element rep-
resented by the expression e.

Creating Elements:

A Dom::ExpressionField(Normal, IsZero)(e)

Parameters:

e — an expression representing a field element.

Details:

A Dom::ExpressionField(Normal, IsZero)(e) creates a field ele-
ment represented by the expression e. The expression is normalized us-
ing the function Normal .

A If Normal returns FAIL , it is assumed that the expression does not repre-
sent a valid field element. If this test is not fully implemented the domain
cannot decide if the expression represents a valid field element. In this
case it is up to the user to enter only valid expressions as field elements.

56

A If Normal is equal to id and IsZero is equal to iszero , the domain
is only a façade domain. In this case the expression e is returned after
being simplified by the built-in kernel simplifier.

Entries:

characteristic The characteristic of the fields created by this constructor
is assumed to be 0.

one The element represented by the expression 1 is assumed to be a
neutral element w.r.t. "_mult" .

zero The element represented by the expression 0 is assumed to be a
neutral element w.r.t. "_plus" .

Mathematical Methods

Method abs : absolute value

abs(dom x)

A Returns the absolute value of x . Maps abs to the expression repre-
senting x . See abs for details.

A Overloads the function abs , thus may be called via abs(x) .

Method combine : combines terms of the same algebraic structure

combine(dom x <, a >)

A Combines terms of the same algebraic structure. Maps combine to
the expression representing x . See combine for details and optional
additional arguments.

A Overloads the function combine , thus may be called via combine(x,...) .

Method conjugate : complex conjugate

conjugate(dom x)

A Returns the complex conjugate of x . Maps conjugate to the ex-
pression representing x . See conjugate for details.

A Overloads the function conjugate , thus may be called via con-
jugate(x) .

57

Method D: differential operator

D(<list l, > dom x)

A Returns the derivative of x , where x is viewed as functional expres-
sion. Maps D to the expression representing x . See D for details and
a description of the optional additional argument l .

A Overloads the function D, thus may be called via D(x) or D(l, x) .

Method denom: denominator

denom(dom x)

A Returns the denominator of x . Maps denom to the expression rep-
resenting x . See denom for details.

A Overloads the function denom, thus may be called via denom(x) .

Method diff : differentiates an element

diff(dom x <, v ... >)

A Differentiates x with respect to the remaining arguments. Maps
diff to the expression representing x . See diff for details and
optional additional arguments.

A Overloads the function diff , thus may be called via diff(x,...) .

Method _divide : divides elements

_divide(dom x, dom y)

A Computes x/y by dividing the expressions representing x and y .

A Overloads the function _divide , thus may be called via x/y or
_divide(x, y) .

Method equal : test for mathematical equality

equal(dom x, dom y)

A Tests if x is mathematically equal to y . This is implemented by test-
ing if x-y is zero.

Method expand : expands an element

expand(dom x)

A Expands x by mapping expand to the expression representing x .

A Overloads the function expand , thus may be called via expand(x) .

58

Method factor : factorizes an element

factor(dom x)

A Returns the factorization of x by mapping factor to the expression
representing x .

A Overloads the function factor , thus may be called via factor(x) .

Method float : floating-point approximation

float(dom x)

A Returns a floating-point approximation of x by mapping float to
the expression representing x .

A Overloads the function float , thus may be called via float(x) .

Method gcd : greatest common divisor

gcd(dom x, ...)

A Computes a greatest common divisor of the arguments by mapping
the function gcd to the expressions representing the arguments.

A Overloads the function gcd , thus may be called via gcd(x, ...) .

Method Im : imaginary part of an element

Im(dom x)

A Returns the imaginary part of x . Maps Im to the expression repre-
senting x . See Im for details.

A Overloads the function Im , thus may be called via Im(x) .

Method int : definite and indefinite integration

int(dom x <, v >)

A Computes the definite or indefinite formal integral of x by mapping
int to the expression representing x . See int for details and addi-
tional arguments.

A Overloads the function int , thus may be called via int(x,...) .

Method intmult : integer mutiple

intmult(dom x, DOM_INT n)

A Returns the integer multiple x*n by multiplying the expression rep-
resenting x by n.

59

Method _invert : inverts an element

_invert(dom x)

A Returns the inverse 1/x of x by computing the inverse of the ex-
pression representing x .

A Overloads the function _invert , thus may be called via 1/x or
_invert(x) .

Method iszero : test for zero

iszero(dom x)

A Tests if x is zero by calling IsZero with the expression representing
x as argument.

A Overloads the function iszero , thus may be called via iszero(x) .

Method lcm : least common multiple

lcm(dom x, ...)

A Computes a least common multiple of the arguments by mapping
the function lcm to the expressions representing the arguments.

A Overloads the function lcm , thus may be called via lcm(x, ...) .

Method _leequal : tests if less or equal

_leequal(dom x, dom y)

A Tests if x is less than or equal to y by mapping the function _leequal
to the arguments.

A Please note that the function _leequal can only test numbers (in a
syntactical sense), but not constant expressions like PI or sqrt(2) .

A Overloads the function _leequal , thus may be called via x <= y ,
y >= x or _leequal(x, y) .

Method _less : tests if element is less

_less(dom x, dom y)

A Tests if x is less than y by mapping the function _less to the argu-
ments.

A Please note that the function _less can only test numbers (in a
syntactical sense), but not constant expressions like PI or sqrt(2) .

A Overloads the function _less , thus may be called via x < y , y >
x or _less(x, y) .

60

Method limit : limit computation

limit(dom x <, v, ... >)

A Computes the limit of x by mapping the function limit to the ex-
pression representing x . See limit for details and additional argu-
ments.
A Overloads the function limit , thus may be called via limit(x,...) .

Method max: maximum of arguments

max(dom x, ...)

A Computes the maximum of the arguments by mapping the function
max to the expressions representing the arguments.
A Overloads the function max, thus may be called via max(x,...) .

Method min : minimum of arguments

min(dom x, ...)

A Computes the minimum of the arguments by mapping the function
min to the expressions representing the arguments.
A Overloads the function min , thus may be called via min(x,...) .

Method _mult : multiplies elements

_mult(dom x, ...)

A Returns the product of the arguments.
A If all arguments are of this domain or can be coerced to this domain

(using the method coerce), the product of the expressions repre-
senting the arguments is calculated using the function _mult .
If one of the arguments cannot be coerced, the arguments up to the
offending one are multiplied and then the method "_mult" of the
domain of the offending argument is called to multiply the remain-
ing arguments.
A Overloads the function _mult , thus may be called via x*... or

_mult(x,...) .

Method _negate : negates an element

_negate(dom x)

A Returns the negative -x of x by computing the negative of the ex-
pression representing x .
A Overloads the function _negate , thus may be called via -x or _negate(x) .

61

Method norm : norm of an element

norm(dom x)

A Computes the norm of x as the absolute value of the expression
representing x . See the function abs for details.

A Overloads the function norm , thus may be called via norm(x) .

A Please note that the system function norm , applied to an expression,
computes the norm of that expression interpreted as a polynomial
expression and not the absolute value of the expression. This may
be regarded as an inconsistency.

Method normal : normal form

normal(dom x)

A Computes the normal form of x by applying the function Normal
to the expression representing x .

A Overloads the function normal , thus may be called via normal(x) .

Method numer : numerator

numer(dom x)

A Returns the numerator of x . Maps numer to the expression repre-
senting x . See numer for details.

A Overloads the function numer , thus may be called via numer(x) .

Method _plus : adds elements

_plus("dom" x, ...)

A Returns the sum of the arguments.

A If all arguments are of this domain or can be coerced to this domain
(using the method coerce) the sum of the expressions representing
the arguments is calculated using the function _plus .
If one of the arguments cannot be coerced the arguments up to the
offending one are added and then the method "_plus" of the do-
main of the offending argument is called to add the remaining ar-
guments.

A Overloads the function _plus , thus may be called via x+... or
_plus(x,...) .

62

Method _power : exponentiates arguments

_power(dom x, any y)

_power(any x, dom y)

A Returns x to the power of y .

A If both arguments are of this domain the power is calculated by
mapping the function _power to the expressions representing the
arguments.
If one of the arguments is not of this domain it is coerced to this
domain, then the power is computed. If the coercion fails an error
is raised.
Note that it is assumed that at least one of the arguments is of this
domain.

A Overloads the function _power , thus may be called via x^y or _power(x,
y) .

Method radsimp : simplifies radicals

radsimp(dom x)

A Simplifies radicals in x . Maps the function radsimp to the expres-
sion representing x . See radsimp for details.

A Overloads the function radsimp , thus may be called via radsimp(x) .

Method random : creates a random element

random()

A Creates a random element of this domain by creating a univariate
random polynomial expression which is then normalized using the
function Normal .

A See polylib::randpoly for details about creating random poly-
nomials.

Method Re: real part of an element

Re(dom x)

A Returns the real part of x . Maps Re to the expression representing
x . See Re for details.

A Overloads the function Re, thus may be called via Re(x) .

63

Method sign : sign of an element

sign(dom x)

A Computes the sign of x by mapping the function sign to the ex-
pression representing x . See sign for details.

A Overloads the function sign , thus may be called via sign(x) .

Method simplify : general simplification of an element

simplify(dom x <, a >)

A Tries to simplify x by mapping the function simplify to the ex-
pression representing x . See simplify for details and optional ad-
ditional arguments.

A Overloads the function simplify , thus may be called via sim-
plify(x,...) .

Method solve : solves an equation

solve(dom x <, a, ... >)

A Tries to solve the equation x = 0 using the standard solver func-
tion solve . Maps solve to the expression representing x and the
additional arguments and directly returns the result of solve .

A Note that this method will never return an element of this domain.
See solve for details about results and optional additional argu-
ments.

A Overloads the function solve , thus may be called via solve(x,...) .

Method sqrfree : square-free factorization

sqrfree(dom x)

A Returns the square-free factorization of x by mapping polylib::sqrfree
to the expression representing x .

A Overloads the function polylib::sqrfree , thus may be called
via polylib::sqrfree(x) .

Method _subtract : subtracts elements

_subtract(dom x, dom y)

A Computes x-y by subtracting the expressions representing x and y .

A Overloads the function _subtract , thus may be called via x-y or
_subtract(x, y) .

64

Conversion Methods

Method convert : convert to this domain

convert(any x)

A Tries to convert x to an element of this domain:

• If x is from a domain defined by Dom::ExpressionField the
expression representing x is used as the expression represent-
ing the new element of this domain.
• Otherwise x is converted to an expression using the function

expr and the resulting expression is used to represent the new
element.

Returns FAIL if the conversion fails.

Method convert_to : convert to other domain

convert_to(dom x, DOM_DOMAINT)

A Tries to convert x to an element of the domain T:

• If T is defined by Dom::ExpressionField the expression rep-
resenting x is used as the expression representing the new ele-
ment of T.
• Otherwise the method "convert" of T is called with the ex-

pression representing x as argument.

Returns FAIL if the conversion fails.

Method expr : convert to basic type

expr(dom x)

A Converts x to an expression containing only elements of basic types.
Maps expr to the expression representing x .

A This method is called by the function expr if a subexpression of the
argument is an element of this domain.

Method new: creating an element

new(any x)

A Tries to create an element of this domain given x : First the method
"convert" of this domain and then, if this fails, the method "convert_to"
of the domain of x is called. If both methods fail an error is raised.

A Overloads the function call operator for this domain, thus may be
called via F(x) where F is this domain.

65

Access Methods

Method nops : number of operands

nops(dom x)

A Returns the number of operands of the expression representing x .
See nops for details.

A Overloads the function nops , thus may be called via nops(x) .

Method op : get operands

op(dom x)

A Returns an expression sequence with the operands of the expres-
sion representing x . The operands are converted to elements of this
domain.

op(dom x, NonNegInt i)

A Returns the operand with index i of the expression representing
x . If i is 0 then the operator of the expression is returned, which
usually is not an element of this domain. The other operands are
converted to elements of this domain.

A This method is called by the function op when an element of this
domain is contained, as a subexpression, in the first argument of
op . Operand ranges and paths are handled by op and need not be
handled by this method. See op for details.

Method subs : substitute subexpressions

subs(dom x, equation e, ...)

A Substitutes complete subexpressions in the expression representing
x as specified by the substitution equations e, The equations
must be of the form o = n , where o is the original subexpression
to replace and n is the new value that is inserted instead.

A Maps subs to the expression representing x . The resulting expres-
sion is converted to an element of this domain.

A This method is called by the function subs when an element of this
domain is contained, as a subexpression, in the first argument of
subs . See subs for details.

66

Method subsex : extended substitution

subsex(dom x, equation e, ...)

A Substitutes partial subexpressions in the expression representing x
as specified by the substitution equations e, The equations
must be of the form o = n , where o is the original partial subex-
pression to replace and n is the new value that is inserted instead.

A Maps subsex to the expression representing x . The resulting ex-
pression is converted to an element of this domain.

A This method is called by the function subsex when an element of
this domain is contained, as a subexpression, in the first argument
of subsex . See subsex for details.

Method subsop : substitute operand

subsop(dom x, equation e)

A Substitutes in the expression representing x the operand given by
the substitution equation e. The equation must be of the form i =
v , where i is the index of the operand and v is its new value.
Maps subsop to the expression representing x . The resulting ex-
pression is converted to an element of this domain.

A This method is called by the function subsop when an element of
this domain is contained, as a subexpression, in the first argument
of subsop . Operand ranges and pathes are handled by subsop
and need not be handled by this method. See subsop for details.

Technical Methods

Method indets : the identifiers of an element

indets(dom x <, option optionName >)

A Returns a set of the identifiers contained in x . An identifier is an
object of the domain DOM_IDENT. See indets for details and avail-
able options.

A Overloads the function indets , thus may be called via indets(x)
and indets(x, optionName) , respectively.

Method length : size of an element

length(dom x)

A Returns the size of x . Maps length to the expression representing
x . See length for details.

A Overloads the function length , thus may be called via length(x) .

67

Method map: applies function to operands

map(dom x, function f <, a, ... >)

A Applies the function f to the operands of the expression represent-
ing x . Additional arguments a, ... may be handled to the func-
tion. See map for details.

A Overloads the function map, thus may be called via map(x, f,...) .

Method rationalize : approximate floating point numbers by rationals

rationalize(dom x <, a, ... >)

A Replaces all floating point numbers in the expression representing x
by rational numbers. Maps the function numeric::rationalize
to the expression representing x . See numeric::rationalize for
details and additional optional arguments.

A Note that this method does not overload the function rationalize
from the standard library package, but the function numeric::rationalize
from the numeric package instead. Thus the method may be called
via numeric::rationalize(x,...) .

Method pivotSize : pivot size

pivotSize(dom x)

A Returns the pivot size used during Gaussian elemination, which is
computed as length of the expression representing x .

Super-Domain:

if Normal = id and IsZero = iszero then
Dom::ArithmeticalExpression

else
Dom::BaseDomain

Axioms

if Normal = id then
Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult") ,
Ax::efficientOperation("_invert") ,
if IsZero = iszero then

Ax::systemRep

else
Ax::normalRep

68

Example 1. Dom::ExpressionField(normal) creates a field of rational
expressions over the rationals. The expressions representing the field elements
are allways normalized by normal :

>> Fn := Dom::ExpressionField(normal):
a := Fn((x^2 - 1)/(x - 1))

x + 1

The field elements are explicit elements of the domain:

>> domtype(a)

Dom::ExpressionField(normal, iszero@normal)

Example 2. In the domain Dom::ExpressionField(id, iszero@normal)
the expressions representing the elements are normalized by the kernel simpli-
fier only:

>> Fi := Dom::ExpressionField(id, iszero@normal):
a := Fi((x^2 - 1)/(x - 1))

2
x - 1

x - 1

The elements of this domain are not normalized (when viewed as rational
expressions over the rationals), thus the domain does not have the axiom
Ax::normalRep :

>> b := a/Fi(x + 1) - Fi(1)

2
x - 1

--------------- - 1
(x - 1) (x + 1)

But nevertheless this domain also represents the field of rational expressions
over the rationals, because zero is detected correctly by the function iszero
@ normal :

>> iszero(b)

TRUE

69

Changes:

A New methods "sign" , "convert_to" , "_less" , "_leequal" , "rationalize" ,
"solve" , "int" and "limit" were implemented.

A The method "Factor" disappeared. The methods "factor" and "sqrfree"
now return objects of the domain type Factored .

A The method "equal" can return UNKNOWN.

A If Normal = id , then Dom::ExpressionField has the axiom Ax::efficientOperation
for division, multiplication and inversion of elements.

A The domain Dom::ExpressionField(id,iszero) is printed as Dom::ExpressionField() .

Dom::Float – the real floating point numbers

Dom::Float is the set of real floating point numbers represented by elements
of the domain DOM_FLOAT.

Creating Elements:

A Dom::Float(x)

Parameters:
x — an expression which can be converted to a DOM_FLOATby the

function float .

Categories:

Cat::DifferentialRing , Cat::Field , Cat::OrderedSet

Related Domains: Dom::Complex , Dom::Integer , Dom::Numerical ,
Dom::Rational , Dom::Real

Details:

A Dom::Float is the domain of real floating point numbers represented
by expressions of type DOM_FLOAT.

A Dom::Float has category Cat::Field out of pragmatism. This do-
main actually is not a field because bool(1.0 = float(3) / float(3))
returns FALSEfor example.

70

A Elements of Dom::Float are usually not created explicitly. However, if
one creates elements using the usual syntax, it is checked whether the in-
put expression may be converted to a floating point number. This means
Dom::Float is a facade domain which creates elements of domain type
DOM_FLOAT.

A Viewed as a differential ring Dom::Float is trivial, it contains constants
only.

A Dom::Float has the domain Dom::Numerical as its super domain,
i.e., it inherits each method which is defined by Dom::Numerical and
not implemented by Dom::Float . Methods described below are re-
implemented by Dom::Float .

Entries:

one the unit element; it equals 1.0 .

zero The zero element; it equals 0.0 .

Mathematical Methods

Method random : random number generation

random()

A This methods returns a randomly generated number.

Conversion Methods

Method convert : conversion of objects

convert(any x)

A This method tries to convert x to a number of type Dom::Float . If
the conversion fails, FAIL is returned.

A In general, if float(x) evaluates to a real floating point number of
type DOM_FLOAT, this number is the result of the conversion.

Method convert_to : conversion to other domains

convert_to(dom x, any T)

A This method tries to convert the number x to an element of type T,
or, if T is not a domain, to the domain type of T. If the conversion
fails, then FAIL is returned.

A The following domains are allowed for T: DOM_FLOAT, Dom::Float
and Dom::Numerical .

71

Method testtype : type checking

testtype(any x, dom T)

A This method checks whether it can convert x to the domain Dom::Float .
It returns TRUEif it can perform the conversion. Otherwise FAIL is
returned.

A In general this method is called from the function testtype and
not directly by the user. Example 2 demonstrates this behavior.

Example 1. Creating some floating point numbers using Dom::Float . This
example also shows that Dom::Float is a facade domain.

>> Dom::Float(2.3); domtype(%)

2.3

DOM_FLOAT

>> Dom::Float(sin(2/3*PI) + 3)

3.866025404

>> Dom::Float(sin(x))

Error: illegal arguments [Dom::Float::new]

Example 2. By tracing the method Dom::Float::testtype we can see the
interaction between testtype and Dom::Float::testtype .

>> prog::trace(Dom::Float::testtype):
delete x:
testtype(x, Dom::Float);
testtype(3.4, Dom::Float);
prog::untrace(Dom::Float::testtype):

enter ’Dom::Float::testtype’ with args : x, Dom::Float
leave ’Dom::Float::testtype’ with result : FAIL

FALSE
enter ’Dom::Float::testtype’ with args : 3.4, Dom::Float
leave ’Dom::Float::testtype’ with result : TRUE

TRUE

72

Super-Domain: Dom::Numerical

Axioms

Ax::canonicalRep , Ax::systemRep , Ax::canonicalOrder ,
Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult") ,
Ax::efficientOperation("_invert")

Changes:

A No changes.

Dom::Fraction – the field of fractions of an integral domain

Dom::Fraction(R) creates a domain which represents the field of fractions
of an integral domain R.

Domain:

A Dom::Fraction(R)

Parameters:
R — an integral domain, i.e., a domain of category

Cat::IntegralDomain

Details:

A Dom::Fraction(R) creates a domain which represents the field of frac-
tions F =

{
x
y | x, y ∈ R, y 6= 0

}
of the integral domain R.

A An element of the domain Dom::Fraction(R) has two operands, the
numerator and denominator.

A If Dom::Fraction(R) has the axiom Ax::canonicalRep (see below),
the denominators have unit normal form and the gcds of numerators and
denominators cancel.

A The domain Dom::Fraction(Dom::Integer) represents the field of
rational numbers. But the created domain is not the domain Dom::Rational ,
because it uses a different representation of its elements. Arithmetic in
Dom::Rational is much more efficient than it is in Dom::Fraction(Dom::Integer) .

73

Creating Elements:

A Dom::Fraction(R)(r)

Parameters:

r — a rational expression, or an element of R

Categories:

Cat::QuotientField(R)

if R is a Cat::DifferentialRing , then
Cat::DifferentialRing

if R is a Cat::PartialDifferentialRing , then
Cat::PartialDifferentialRing

Related Domains: Dom::Rational

Details:

A If r is a rational expression, then an element of the field of fractions
Dom::Fraction(R) is created by going through the operands of r and
converting each operand into an element of R. The result of this process is
r in the form x

y , where x and y are elements of R. If Rhas Cat::GcdDomain ,
then x and y are coprime.

If one of the operands can not be converted into the domain R, an error
message is issued.

Entries:

characteristic is the characteristic of R.

coeffRing is the integral domain R.

one is the one of the field of fractions of R, i.e., the fraction 1
1 .

zero is the zero of the field of fractions of R, i.e., the fraction 0
1 .

Mathematical Methods

Method _divide : divides two fractions

_divide(dom x, dom y)

A This method divides the fraction x by y , i.e., it computes xy−1.
A This method overloads the function _divide for fractions, i.e., one

may use it in the form x / y or in functional notation: _divide(x,
y) .

74

Method _invert : inverts a fraction

_invert(dom r)

A This method computes the inverse of r = x
y , i.e., it returns r−1 = y

x
for x 6= 0 (if x = 0, then an error message is issued).
A This method overloads the function _invert for fractions, i.e., one

may use it in the form 1/r or r^(-1) , or in functional notation:
_invert(r) .

Method _less : less-than relation

_less(dom q, dom r)

A This method returns TRUEif q = xq
yq

is smaller than r = xr
yr

, i.e., if
xq · yr < xr · yq.
A An implementation is provided only if R is an ordered set, i.e., a

domain of category Cat::OrderedSet .
A This method overloads the function _less for fractions, i.e., one

may use it in the form q < r , or in functional notation: _less(q,
r) .

Method _mult : multiplies fractions by fractions or rational expressions

_mult(any q, any r)

A If q and r are both fractions of the same type, the product q · r is
computed directly. The resulting fraction is normalized (see the
methods "normalize" and "normalizePrime").
A If q is not of the domain type Dom::Fraction(R) , it is considered

as a rational expression which is converted into a fraction over R
and multiplied with q. If the conversion fails, FAIL is returned.
The same applies to r .
A This method also handles more than two arguments. In this case,

the argument list is splitted into two parts of the same length which
both are multiplied with the function _mult . The two results are
multiplied again with _mult whose result then is returned.
A This method overloads the function _mult for fractions, i.e., one

may use it in the form q * r or in functional notation: _mult(q,
r) .

Method _negate : negates a fraction

_negate(dom r)

A This method computes −r by negating the numerator of r.
A This method overloads the function _negate for fractions, i.e., one

may use it in the form -r or in functional notation: _negate(r) .

75

Method _power : the integer power of a fraction

_power(dom r, integer n)

A This method computes rn for integers n.

A This method overloads the function _power for fractions, i.e., one
may use it in the form r^n or in functional notation: _power(r,
n) .

Method _plus : adds fractions

_plus(dom q, dom r, ...)

A Returns the sum q + r + · · · of fractions. The returned fraction is nor-
malized (see the methods "normalize" and "normalizePrime").

A If one of the arguments is not of the domain type Dom::Fraction(R) ,
then FAIL is returned.

A This method overloads the function _plus for fractions, i.e., one
may use it in the form q + r or in functional notation: _plus(q,
r) .

Method D: the differential operator

D(dom r)

A This method takes the derivative of the fraction r = x
y , i.e., it returns

the fraction D(x)y−xD(y)
y2 .

The resulting fraction is normalized (see the methods "normalize"
and "normalizePrime").

A An implementation is provided only if Ris a partial differential ring,
i.e., a domain of category Cat::PartialDifferentialRing .

A This method overloads the operator D for fractions, i.e., one may
use it in the form D(r) .

Method denom: the denominator of a fraction

denom(dom r)

A This method returns the denominator of r , an element of the inte-
gral domain R.

A This method overloads the function denom for fractions, i.e., one
may use it in the form denom(r) .

76

Method diff : differentiation of fractions

diff(dom r, variable u)

A This method returns the fraction which results when differentiating
the fraction r = x

y , i.e., it returns the fraction
(
∂x
∂u y− x ∂y

∂u

)
/y2.

The resulting fraction is normalized (see the methods "normalize"
and "normalizePrime").

A This method overloads the function diff for fractions, i.e., one may
use it in the form diff(r, u) .

A An implementation is provided only if Ris a partial differential ring,
i.e., a domain of category Cat::PartialDifferentialRing .

Method equal : test on equality of fractions

equal(dom q, dom r)

A This method tests if the fraction q is equal to r , and returns TRUE,
FALSEor UNKNOWN, respectively.

Method factor : factorizes the numerator and denominator of a fraction

factor(dom r)

A This method factorizes the numerator and denominator of r into
irreducible factors and returns r in the form r = u · re1

1 · . . . · r
en
n .

The result is a factored object, i.e., an element of the domain type
Factored . Its factorization type is "irreducible" and the fac-
torization ring is R.

A The factors u, r1, . . . , rn are fractions of type Dom::Fraction(R) ,
the exponents e1, . . . , en are integers.

A The system function factor is used to perform the factorization of
the numerator and denominator of r .

A This method overloads the function factor for fractions, i.e., one
may use it in the form factor(r) .

Method intmult : integer multiple of a fraction

intmult(dom r, integer n)

A This method computes nr.

77

Method iszero : test for zero

iszero(dom r)

A This method returns TRUEif r is zero, and FALSEotherwise.

A An element of the field Dom::Fraction(R) is zero if its numera-
tor is the zero element of R. Note that there may be more than one
representation of the zero element if Rdoes not have Ax::canonicalRep .

A This method overloads the function iszero for fractions, i.e., one
may use it in the form iszero(r) .

Method numer : the numerator of a fraction

numer(dom r)

A This method returns the numerator of r , an element of the integral
domain R.

A This method overloads the function numer for fractions, i.e., one
may use it in the form numer(r) .

Method random : random fraction generation

random()

A This method returns a randomly generated fraction. It uses the
method "random" of the domain R to randomly generate its nu-
merator and denominator.

A The returning fraction is normalized (see the methods "normalize"
and "normalizePrime" .

Conversion Methods

Method convert_to : fraction conversion

convert_to(dom r, any T)

A This method tries to convert r into an element of the domain T, or,
if T is not a domain, to the domain type of T.

A If the conversion fails, FAIL is returned.

A The conversion succeeds if T is one of the following domains: Dom::Expression
or Dom::ArithmeticalExpression .

A Use the function expr to convert r into an object of a kernel domain
(see below).

78

Method expr : converts a fraction into an object of a kernel domain

expr(dom r)

A This method converts r into an expression by converting numerator
and denominator into expressions (using the method "expr" of R).

A The result is an object of a kernel domain (e.g., DOM_RATor DOM_EXPR).

A This method overloads the function expr for fractions, i.e., one may
use it in the form expr(r) .

Method TeX: TeX formatting of a fraction

TeX(dom r)

A This method returns a TEX-formatted string for the fraction r in
form of a TEX \frac construct.

A The method TeX of the component ring R is used to get the TEX-
representations of the numerator and denominator of r , respec-
tively.

Method retract : retraction to base domain

retract(dom r)

A This method divides the numerator of r by the denominator of r
and returns the result, if it is an element of R. Otherwise, FAIL is
returned.

Technical Methods

Method normalize : normalizing fractions

normalize(R x, R y)

A This method normalizes the fraction x
y which then is returned.

A Normalization means to remove the gcd of x and y . Hence, Rneeds
to be of category Cat::GcdDomain . Otherwise, normalization can-
not be performed and the result of this method is the fraction x

y .

Method normalizePrime : normalizing fractions over integral domains with
a gcd

normalizePrime(R x, R y)

A This method returns the fraction x
y . If x is zero, the fraction is nor-

malized to zero.

79

A In rings of category Cat::GcdDomain , elements are assumed to be
relatively prime. Hence, there is no need to normalize the fraction
x
y .

A In rings not of category Cat::GcdDomain , normalization of ele-
ments can not be performed and the result of this method is the
fraction x

y .

Example 1. We define the field of rational functions over the rationals:

>> F := Dom::Fraction(Dom::Polynomial(Dom::Rational))

Dom::Fraction(Dom::Polynomial(Dom::Rational, LexOrder))

and create an element of F:

>> a := F(y/(x - 1) + 1/(x + 1))

x + y + x y - 1

2
x - 1

To calculate with such elements use the standard arithmetical operators:

>> 2*a, 1/a, a*a

2
2 x + 2 y + 2 x y - 2 x - 1
---------------------, ---------------,

2 x + y + x y - 1
x - 1

2 2 2 2 2 2
- 2 x - 2 y + x + y + 2 x y + 2 x y + x y + 1

2 4
- 2 x + x + 1

Some system functions are overloaded for elements of domains generated by
Dom::Fraction , such as diff , numer or denom (see the description of the
corresponding methods "diff" , "numer" and "denom" above).

For example, to differentiate the fraction a with respect to x enter:

>> diff(a, x)

2 2
2 x - y - 2 x y - x - x y - 1

2 4
- 2 x + x + 1

80

If one knows the variables in advance, then using the domain Dom::DistributedPolynomial
yields a more efficient arithmetic of rational functions:

>> Fxy := Dom::Fraction(
Dom::DistributedPolynomial([x, y], Dom::Rational)

)

Dom::Fraction(Dom::DistributedPolynomial([x, y],

Dom::Rational, LexOrder))

>> b := Fxy(y/(x - 1) + 1/(x + 1)):
b^3

2 3 2 3 2 2
(3 x + 3 y - 3 x y - 3 x + x - 3 y + y - 3 x y - 3 x y +

3 3 2 2 2 3 3 2 3 3
3 x y + 3 x y + 3 x y + 3 x y + 3 x y + x y -

1) /

2 4 6
(3 x - 3 x + x - 1)

Example 2. We create the field of rational numbers as the field of fractions of
the integers, i.e., Q =

{
x
y | x, y ∈ Z

}
:

>> Q := Dom::Fraction(Dom::Integer):
Q(1/3)

1/3

>> domtype(%)

Dom::Fraction(Dom::Integer)

Another representation of Q in MuPAD is the domain Dom::Rational where
the rationals are of the kernel domains DOM_INTand DOM_RAT. Therefore it is
much more efficient to work with Dom::Rational than with Dom::Fraction(Dom::Integer) .

Super-Domain: Dom::BaseDomain

Axioms

Ax::normalRep

if Rhas Ax::canonicalRep
if R is a Cat::GcdDomain

if Rhas Ax::canonicalUnitNormal
Ax::canonicalRep

81

Changes:

A New method "factor" for factoring fractions.

Dom::GaloisField – finite fields

Dom::GaloisField(p, n, f) creates the residue class field Zp[X]/〈 f 〉, a
finite field with pn elements. If f is not given, it is chosen at random among all
irreducible polynomials of degree n.

Dom::GaloisField(q) (where q = pn) is equivalent to Dom::GaloisField(p,n) .

Dom::GaloisField(F, n, f) creates the residue class field F[X]/〈 f 〉, a fi-
nite field with |F|n elements. If f is not given, it is chosen at random among all
irreducible polynomials of degree n.

Domain:

A Dom::GaloisField(q)

A Dom::GaloisField(p, n)

A Dom::GaloisField(p, n, f)

A Dom::GaloisField(F, n)

A Dom::GaloisField(F, n, f)

Parameters:
q — prime power
p — prime
n — positive integer
f — univariate irreducible polynomial over Dom::IntegerMod(p)

or F, or polynomial expression convertible to such
F — finite field of type Dom::IntegerMod or Dom::GaloisField .

Details:

A If f is not given, a random irreducible polynomial of appropriate degree
is used; some free identifier is chosen as its variable, and this one must
also be used when creating domain elements.

A Although n = 1 is allowed, Dom::IntegerMod should be used for rep-
resenting prime fields.

A If F is of type Dom::GaloisField , consisting of residue classes of poly-
nomials, the variable of these polynomials must be distinct from the vari-
able of f . If a tower several of Galois fields is constructed, the variable
used in the uppermost Galois field must not equal any of those used in

82

the tower. A special entry "VariablesInUse" serves to keep track of
all variables appearing somewhere in the tower.

Dom::GaloisField(p,n,f)(g) (or, respectively, Dom::GaloisField(F,n,f)(g))
creates the residue class of g modulo f . It is represented by the unique poly-
nomial in that class that has smaller degree than f .

Creating Elements:

A Dom::GaloisField(p, n, f)(g)

Parameters:
g — univariate polynomial over the ground field in the same variable

as f , or polynomial expression convertible to such

Categories:

Cat::Field , Cat::Algebra(F) , Cat::VectorSpace(F)

Related Domains: Dom::AlgebraicExtension , Dom::IntegerMod

Entries:

zero the zero element of the field

one the unit element of the field

characteristic the characteristic of the field

size the number of elements of the field

PrimeField the prime field, which equals Dom::IntegerMod(p) .

Variable the variable of the polynomial f .

VariablesInUse a list consisting of "Variable" and the variables used
by the ground field.

companionMatrix an n times n–matrix over the ground field, where n is
the degree of the field over its ground field. It can be used for rep-
resenting field elements as matrices since its minimal polynomial
is f .

companionPowers a list of the first n− 1 powers of the companion matrix.

83

Mathematical Methods

Method iszero : test for zero

iszero(dom a)

A This method returns TRUEif a equals the zero element of the field,
and FALSEif not.

A It overloads the function iszero .

Method _power : integer power of an element

_power(dom a, integer n)

A This method computes an.

A It overloads _power .

Method frobenius : Frobenius map

frobenius(dom a)

A This method computes ap, where p is the size of the ground field.

Method conjugates : conjugates of an element

conjugates(dom a)

A This method computes the list of all distinct conjugates of a.

Method order : order of an element

order(dom a)

A This method computes the smallest postive integer n such that an =
1.

Method isSquare : test whether an element is a square

isSquare(dom a)

A This method returns TRUEif there exists an x in the field such that
x2 = a, and FALSEotherwise.

84

Method ln : discrete logarithm

ln(dom a, dom b)

A This method returns the smallest positive integer n such that bn = a,
or infinity if such an integer does not exist. b must be nonzero.

Method elementNumber : enumerate field elements

elementNumber(dom a)

A This method assigns to every element ∑n−1
i=0 aixi the number ∑n−1

i=0 φ(ai)qi,
where q is the number of elements of the ground field, and φ assigns
to each element of the ground field a number between 0 and q− 1:
if the ground field is a Dom::GaloisField itself, its method ele-
mentNumber is used; if the ground field is a prime field, φ is taken
to be the mapping that assigns, to each residue class modulo q, its
smallest nonnegative member.

A The inverse of this mapping has not been implemented.

Method matrixRepresentation : isomorphism to the algebra generated
by the companion matrix

matrixRepresentation(dom a)

A This method implements the unique isomorphism between the field
F[X]/〈 f 〉 and the algebra of all linear combinations of powers of the
companion matrix that maps X to the companion matrix.

A If A is the companion matrix, the image of ∑i aiXi is ∑i ai Ai.

Method randomPrimitive : choose a primitive element at random

randomPrimitive()

A This method returns a randomly chosen primitive element of the
field. The result is uniformly distributed.

Method isBasis : tests elements for being a basis over the ground field

isBasis(list of dom l)

A This method tests whether the field elements in the list l constitute
a basis of the field, viewed as vector space over the ground field.

85

Method isNormal : tests whether a given field element is normal

isNormal(dom a)

A Let n be the degree of the field over its ground field. This method
tests whether the powers a0 . . . an−1 form a base of the field over
its ground field. If this is the case, TRUEis returned; otherwise the
result is FALSE.

Method randomNormal : choose normal element at random

randomNormal()

A This method chooses a random normal element simply by choosing
random elements until a normal one is found.

Method isPrimitivePolynomial : tests whether a polynomial over the
field is primitive

isPrimitivePolynomial(univariate polynomial over dom h)

A Let G be the field represented by dom. If h is a polynomial in z, this
method returns TRUEif h is irreducible and all nonzero elements of
the extension field G[z]/〈h〉 are powers of z. Otherwise, FALSE is
returned.

Conversion Methods

Method convert : conversion from other types

convert(any a)

A The object a can be converted to an element of the Galois field
exactly if it can be converted to an element of the super-domain,
Dom::AlgebraicExtension .

Method convert_to : conversion to other types

convert_to(dom a, domain T)

A returns an object of type T if a can converted to that type, or FAIL
otherwise. In the current version, only conversions to the type DOM_POLY
are possible.

86

Example 1. We define L to be the field with 4 elements. Then a4 = a for every
a ∈ L, by a well-known theorem.

>> L:=Dom::GaloisField(2, 2, u^2+u+1): L(u+1)^4

u + 1

Super-Domain: Dom::AlgebraicExtension

Axioms

Ax::canonicalRep

Changes:

A No changes.

Dom::Ideal – the domains of sets of ideals

Dom::Ideal(R) creates the domain of finitely generated ideals of the ring R.

Domain:

A Dom::Ideal(R)

Parameters:

R — domain of category Cat::Ring

Dom::Ideal(R)([a1, ...,an]) or Dom::Ideal(R)({a1, ...,an}) cre-
ates the ideal generated by the elements a1 through an .

Creating Elements:

A Dom::Ideal(R)([a1, ...])

A Dom::Ideal(R)({a1, ...})

Parameters:

a1, ... — elements of R

Categories:

Cat::Monoid

87

Entries:

coeffRing the ring R

zero the ideal consisting only of the zero element of R.

one the ideal generated by R::one , i.e., R itself.

Mathematical Methods

Method iszero : tests whether an ideal is zero

iszero(dom J)

A This method returns TRUEif J is the zero ideal, and FALSE other-
wise.

A It overloads the function iszero .

Method _mult : product of ideals

_mult(dom J1, ...)

A The product of ideals J1 · · · · · Jk is defined to be the ideal generated
by all products a1 · · · · · ak, where ai ∈ Ji.

A This method overloads the function _mult .

Method _plus : sum of ideals

_plus(dom J1, ...)

A The sum of ideals J1 + . . .+ Jk is defined to be the ideal of all sums
a1 + . . .+ ak, where ai ∈ Ji.

A This method overloads the function _plus .

Method _negate : negate an ideal

_negate(dom J)

A Since−1 is a unit in every ring, negating an ideal just gives the ideal
itself.

A This method overloads the function _negate .

88

Method _subtract : difference of ideals

_subtract(dom J1, dom J2)

A This is the same as J1 + J2 since J2 = −J2.
A This method overloads the function _subtract .

Method normal : normal form of an ideal

normal(dom J)

A This method only exists for ideals over polynomial rings over fields;
in this case, it returns a Gröbner base for the ideal.
A It overloads the function normal .

Conversion Methods

Method convert : convert list or set to ideal

convert(list or set of ring elements l)

A returns the ideal generated by the elements of l .

Method expr : list of generators of an ideal

expr(dom J)

A This method returns the list of generators defining J .
A It overloads the function expr .

Example 1. We define R to be the polynomial ring Q[x, y, z].

>> R:=Dom::DistributedPolynomial([x,y,z], Dom::Rational)

Dom::DistributedPolynomial([x, y, z], Dom::Rational, LexOrder)

Next, we define an ideal J over Rby giving a list of generators.

>> J:=Dom::Ideal(R)([x*y+y^2*x+x*y+z+1, z^2-x*z-y*x-7])

<[x*y^2 + 2*x*y + z + 1, - x*y - x*z + z^2 - 7]>

Since R is a polynomial ring over a field, a Gröbner base of J can be obtained
as follows:

>> normal(J)

<[z - 13*y + y*z - 7*y^2 + z^2 + 2*y*z^2 + y^2*z^2, 8*z -
7*y \

- 2*x*z + 2*z^2 - z^3 + x*z^2 + y*z^2 - 13, x*y + x*z - z^2 + \
7]>

89

Super-Domain: Dom::BaseDomain

Changes:

A Dom::Ideal is a new domain.

Dom::ImageSet – the domain of images of sets under mappings

Dom::ImageSet is the domain of all sets of complex numbers that can be
written as the set of all values taken on by some mapping, i.e., sets of the form
{ f (x1, . . . , xn); xi ∈ Si} for some function f and some sets S1, . . . , Sn.

Domain:

A Dom::ImageSet

Details:

A Image sets are mainly used by solve to express sets like {k ∗ π; k ∈ Z} .

A Dom::ImageSet belongs to the category Cat::Set —arithmetical and
set-theoretic operations are inherited from there.

Dom::ImageSet(f, x, S) represents the set of all values that can be ob-
tained by substituting some element of S for x in the expression f .

Dom::ImageSet(f, [x1, ...], [S1, ...]) represents the set of all
values that can be obtained by substituting, for each i, the identifier xi by some
element of Si in the expression f .

Creating Elements:

A Dom::ImageSet(f, x, S)

A Dom::ImageSet(f, [x1, ...], [S1, ...])

Parameters:
f — arithmetical expression
x — identifier or indexed identifier
S — set of any type

90

Categories:

Cat::Set

Details:

A See solve for an overview of the different kinds of sets in MuPAD.

A If a list of several identifiers is given, the identifiers must be distinct.

Mathematical Methods

Method changevar : change the name of a variable

changevar(dom A, identifier oldvar, identifier newvar)

A replaces oldvar by newvar both in the expression and in the list of
variables. This gives (mathematically) the same set, since { f (x); x ∈
S} = { f (y); y ∈ S}.
A The new variable newvar must not equal any element of the list of

variables; this is not checked!

Method setvar : set the name of the variable

setvar(dom A, identifier newvar)

A The only variable of A is replaced by newvar both in the expression
and in the (one-element) list of variables. This method may only be
applied for image sets in one variable.

setvar(any A, identifier newvar)

A For an argument A that is not an image set, the method "setvar"
is applied to all image sets contained in the expression A. A might
be, for example, a union, intersection, etc. of image sets and other
sets.

Method homogpointwise : define an n-ary pointwise operator for image
sets

homogpointwise(any Op)

A This method returns a procedure which implements a continuation
of the function Op. Op must be a function that maps each finite
sequence of (arbitrarily many) complex numbers to a single com-
plex number (e.g. their sum or product). Op is set forth to the
class of image sets by defining Op(A1,...,An) to be the set of
all Op(a1,..,an) , where ai ∈ Ai for each i.
A Opmust accept arithmetical expressions as arguments.

91

Method isEmpty : tests whether a set is empty

isEmpty(dom A)

A A is empty if and only if one of its parameters ranges over the empty
set. This method tries to decide whether this is the case and returns
TRUE, FALSE, or UNKNOWN.

Method substituteBySet : substitute an ImageSet for a variable

substituteBySet(arithmetical expression a, identifier x,
dom A)

A This method returns the set of all numbers that can be obtained by
substituting some element of A for x in the expression a. That is,
viewing a = a(x) as a function C 7→ C, this method returns {a(x); x ∈
A}, the image of the restriction of that function to A.

Method indets : free parameters of a set

indets(dom A)

A This method returns the set of free parameters the set A depends on.

A If A = { f (x1, . . . , xn, y1, . . . yk); xi ∈ Si}, the xi are called bound and
the yi are called free parameters.

A Use the slot "variables" to obtain the bound parameters.

A This method overloads the function indets .

Access Methods

Method expr : the defining mapping as an expression

expr(dom A)

A If A = { f (x); x ∈ S}, this method returns the expression f ; similarly
if several variables range over several sets.

A This method overloads the function expr .

Method variables : list of variables

variables(dom A)

A If A = { f (x1, .., xn); xi ∈ Si}, this method returns the list of variables
[x1,...,xn] .

A The free parameters (identifiers appearing in f other than the xi)
can be obtained using indets .

92

Method nvars : number of variables

nvars(dom A)

A If A = { f (x1, .., xn); xi ∈ Si}, this method returns the number n of
variables.

Method sets : list of sets

sets(dom A)

A If A = { f (x1, .., xn); xi ∈ Si}, this method returns the list of sets [S1,...,Sn] .

Technical Methods

Method print : print image set

print(dom A)

A This method returns a string used for displaying A on the screen.

Example 1. We define S to be the set of all integer multiples of π.

>> S:=Dom::ImageSet(k*PI, k, Z_)

{ X1*PI | X1 in Z_ }

We may now apply the usual set–theoretic operations.

>> S intersect Dom::Interval(3..7)

{PI, 2 PI}

Super-Domain: Dom::BaseDomain

Changes:

A Dom::ImageSet is a new domain.

Dom::Integer – the ring of integer numbers

Dom::Integer is the ring of integer numbers represented by elements of the
domain DOM_INT.

93

Creating Elements:

A Dom::Integer(x)

Parameters:

x — an integer

Categories:

Cat::EuclideanDomain , Cat::FactorialDomain ,
Cat::DifferentialRing , Cat::OrderedSet

Related Domains: Dom::Complex , Dom::Float , Dom::Numerical ,
Dom::Rational , Dom::Real

Details:

A Dom::Integer is the domain of integer numbers represented by ex-
pressions of type DOM_INT.

A Elements of Dom::Integer are usually not created explicitly. However,
if one creates elements using the usual syntax, it is checked whether the
input is an integer number. This means that Dom::Integer is a façade
domain which creates elements of domain type DOM_INT.

A Viewed as a differential ring Dom::Integer is trivial, it contains con-
stants only.

A Dom::Integer has the domain Dom::Numerical as its super domain,
i.e., it inherits each method which is defined by Dom::Numerical and
not re-implemented by Dom::Integer . Methods described below are
those implemented by Dom::Integer .

Mathematical Methods

Method associates : associate elements

associates(dom x, dom y)

A This method returns TRUEif x and y are associates, i.e., if abs(x)
= abs(y) , otherwise it returns FALSE.

Method _divide : division of two objects

_divide(dom x, dom y)

A This method returns x/y if y divides x and FAIL otherwise.

94

Method _divides : decide if a number divides another one

_divides(dom x, dom y)

A This method returns TRUEif x divides y

Method euclideanDegree : Euclidean degree

euclideanDegree(dom x)

A This method returns the Euclidean degree of x , i.e., abs(x) .

Method factor : factorization

factor(dom x)

A This method returns the factorization of x . The result of this method
is an object of the domain Factored .

Method gcd : gcd computation

gcd(dom x1, dom x2, ...)

A This method returns the gcd of the given arguments x1, x2, ...

Method gcdex : applies the extended Euclidean algorithm

gcdex(dom x, dom y)

A This method returns g, v,w such that g = gcd(x, y) = x ∗ v + y ∗w.

Method _invert : inverse of an element

_invert(dom x)

A This method returns the multiplicative inverse of x . This is x if x is
1 or -1 , and FAIL otherwise.

Method irreducible : prime number test

irreducible(dom x)

A This method returns TRUEif and only if x is prime.

Method isUnit : tests if an element is a unit

isUnit(dom x)

A This method returns TRUEif x is a unit, i.e., if x is 1 or -1 , otherwise
it returns FALSE.

95

Method lcm : computes the lcm

lcm(dom x1, dom x2, ...)

A This method returns the lcm of the given arguments x1, x2, ...

Method quo : computes the euclidean quotient

quo(dom x, dom y)

A This method returns the euclidean quotient of x and y , i.e., x div
y .

Method random : random number generation

random()

A This methods returns a random integer number between −999 and
999.

random(integer n)

A This methods returns a random number between 0 and n− 1.

random(integer m.. integer n)

A This methods returns a random number between mand n.

Method rem : computes the Euclidean reminder

rem(dom x, dom y)

A This method returns the Euclidean reminder of x and y , i.e., modp(x,y) .

Method unitNormal : unit normal part

unitNormal(dom x)

A This method returns the unit normal part of x , i.e., abs(x) .

Method unitNormalRep : unit normal representation

unitNormalRep(dom x)

A This method returns the unit normal representation of x , i.e., the list
[abs(x), sign(x), -sign(x)] .

96

Conversion Methods

Method convert : conversion of objects

convert(any x)

A This method tries to convert x to a integer of type Dom::Integer .
This is only possible if x is of type DOM_INT. If the conversion fails,
FAIL is returned.

Method convert_to : conversion to other domains

convert_to(dom x, any T)

A This method tries to convert the number x to an element of type T,
or, if T is not a domain, to the domain type of T. If the conversion
fails, then FAIL is returned.

A The following domains are allowed for for T: DOM_INT, Dom::Integer ,
Dom::Rational , DOM_FLOAT, Dom::Float and Dom::Numerical .

Method testtype : type checking

testtype(any x, dom T)

A This method checks whether it can convert x to the domain Dom::Integer .
This is the case if x is of type DOM_INT. It returns TRUEif it can per-
form the conversion. Otherwise FAIL is returned.

A Usually, this method is called from the function testtype and not
directly by the user. Example 2 demonstrates this behavior.

Example 1. Creating some integer numbers using Dom::Integer . This ex-
ample also shows that Dom::Integer is a façade domain.

>> Dom::Integer(2); domtype(%)

2

DOM_INT

>> Dom::Integer(2/3)

Error: illegal arguments [Dom::Integer::new]

97

Example 2. By tracing the method Dom::Integer::testtype we can see
the interaction between testtype and Dom::Integer::testtype .

>> prog::trace(Dom::Integer::testtype):
delete x:
testtype(x, Dom::Integer);
testtype(3, Dom::Integer);
prog::untrace(Dom::Integer::testtype):

enter ’Dom::Integer::testtype’ with args : x, Dom::Integer
leave ’Dom::Integer::testtype’ with result : FAIL

FALSE
enter ’Dom::Integer::testtype’ with args : 3, Dom::Integer
leave ’Dom::Integer::testtype’ with result : TRUE

TRUE

Super-Domain: Dom::Numerical

Axioms

Ax::canonicalRep , Ax::systemRep , Ax::canonicalOrder ,
Ax::canonicalUnitNormal , Ax::closedUnitNormals ,
Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult")

Changes:

A No changes.

Dom::IntegerMod – residue class rings modulo integers

Dom::IntegerMod(n) creates the residue class ring of integers modulo n.

Domain:

A Dom::IntegerMod(n)

Parameters:

n — positive integer greater than 1

Dom::IntegerMod(n)(a) creates the residue class of a modulo n.

98

Creating Elements:

A Dom::IntegerMod(n)(a)

Parameters:
a — any integer or a rational number whose denominator is coprime

to n

Categories:

if n has Type::Prime
Cat::Field

else
Cat::CommutativeRing

Related Domains: Dom::Integer , Dom::GaloisField

Entries:

characteristic the characteristic of the residue class ring, n

one the unit element, 1 mod n

zero the zero element, 0 mod n

Mathematical Methods

Method _divide : division of two elements

_divide(dom element1, dom element2)

A This method divides two elements. The result is an element of the
residue class ring.
A This method overloads _divide .

Method _invert : invert elements

_invert(dom element)

A This method inverts an element. The result is an element of the
residue class ring.
A This method overloads _invert .

Method _mult : multiply elements

_mult(dom element, ...)

A This method multiplies elements. The result is an element of the
residue class ring.
A This method overloads _mult .

99

Method _negate : negate elements

_negate(dom element)

A This method negates an element. The result is an element of the
residue class ring.

A This method overloads _negate .

Method _plus : add elements

_plus(dom element, ...)

A This method adds elements. The result is an element of the residue
class ring.

A This method overloads _plus .

Method _power : power of elements

_power(dom element, integer power)

A This method returns the power th power of an element. The result
is an element of the residue class ring.

A This method overloads _power .

Method _subtract : subtraction of two elements

_subtract(dom element1, dom element2)

A This method subtracts two elements. The result is an element of the
residue class ring.

A This method overloads _subtract .

Method isSquare : test for being a square

isSquare(dom element)

A This method returns TRUEif element is the square of another ele-
ment, and FALSEotherwise.

Method iszero : zero test

iszero(dom element)

A This method returns TRUE, if element is zero, otherwise FALSE.

A This method overloads iszero .

100

Method ln : discrete logarithm

ln(dom element, dom base)

A This method returns the discrete logarithm of element with re-
spect to the base base .
A The result is infinity if element is not in the subgroup gener-

ated by base .
A The result is FAIL if base is not a unit.
A This method overloads ln .

Method order : order

order(dom element)

A This method returns the order of element in the group of multi-
plicative units.
A The result is FAIL if element is not a unit.

Conversion Methods

Method TeX: TeX output

TeX(dom element)

A This method converts element to a TeX-formatted string.

Method convert : conversion

convert(Type::Rational number)

A This method converts an integer or rational number into an element
of the domain.
A The conversion fails if the denominator of number and the modulus

n are not relatively prime.

Method convert_to : conversion

convert_to(dom element, DOM_DOMAINdomain)

A This method converts element into an element of the given do-
main if possible (now DOM_INTand Dom::Integer).

Method expr : convert an element to an expression

expr(dom element)

A This method converts element into an integer number.
A This method overloads expr .

101

Technical Methods

Method print : printing elements

print(dom element)

A This method returns an expression used for displaying the element.

Method random : random element

random()

A This method creates a random element of the domain.

A This method overloads random .

Example 1. We define the residue class ring Z7:

>> Z7:= Dom::IntegerMod(7)

Dom::IntegerMod(7)

Next, we create some elements:

>> a:= Z7(1); b:= Z7(2); c:= Z7(3)

1 mod 7

2 mod 7

3 mod 7

We may use infix notation for arithmetical operations since the operators have
been overloaded:

>> a + b, a*b*c, 1/c, b/c/a/c

3 mod 7, 6 mod 7, 5 mod 7, 1 mod 7

a and b are squares while c is not:

>> Z7::isSquare(a), Z7::isSquare(b), Z7::isSquare(c)

TRUE, TRUE, FALSE

Indeed, c is a generator of the group of units:

>> Z7::order(a), Z7::order(b), Z7::order(c)

1, 3, 6

102

Super-Domain: Dom::BaseDomain

Axioms

Ax::normalRep , Ax::canonicalRep , Ax::noZeroDivisors ,
Ax::closedUnitNormals , Ax::canonicalUnitNormal ,
Ax::efficientOperation("_invert") ,
Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult")

Changes:

A No changes.

Dom::Interval – intervals of real numbers

Dom::Interval represents the set of all intervals of real numbers.

Dom::Interval(l, r) creates the interval of all real numbers between l
and r . If a border is given as a list with l or r as the sole element, this border
will be regarded as a closed border, otherwise the interval does not contain l
and r .

A border can be any arithmetical expression that could represent a real num-
ber, e.g., sqrt(2*x) and a + I . Properties are ignored.

Creating Elements:

A Dom::Interval(l, r)

A Dom::Interval([l], r)

A Dom::Interval(l, [r])

A Dom::Interval([l], [r])

A Dom::Interval([l, r])

Parameters:
l — The left border. If given as a list of one element (the left border),

the interval will be created as left closed.
r — The right border. If given as a list of one element (the right

border), the interval will be created as right closed.

103

Categories:

Cat::Set , Cat::AbelianMonoid

Related Domains: Type::Interval

Details:

A Dom::Interval creates real intervals. The domain Dom::Interval
provides fundamental operations to combine intervals with intervals and
other mathematical objects.

A The return value can be either an interval of type Dom::Interval or
the empty set of type DOM_SET, if the interval is empty.

A Most mathematical operations are overloaded to work with intervals
(such as sin). If f is a function of n real variables, its extension to in-
tervals is defined to be f (J1, . . . , Jn) := { f (j1, . . . , jn); ji ∈ Ji}. The return
value of such an operation is in most cases an interval, a union of inter-
vals, a Dom::ImageSet or a set. For example, the sine of an interval [a,
b] is the interval {sin(x), x in [a, b]} that contains all sine val-
ues of the given interval. In general, you should expect the return value
to be an interval larger than strictly necessary. Also note that, when using
the same interval twice in one formula, the uses are regarded as indepen-
dent, so interval1/interval1 does not return the interval [1, 1]
as you might expect.

The functions overloaded in this way are:

• _mult , _divide , _invert , _power

• _plus , _negate , _subtract

• abs

• cos , arccos , cosh , arccosh , cot , arccot , coth , arccoth , csc ,
arccsc , csch , arccsch , sec , arcsec , sech , arcsech , sin , arcsin ,
sinh , arcsinh , tan , arctan , tanh , arctanh

• dirac , heaviside

• exp , ln

• sign

A Furthermore, an interval is a special type of set. This is reflected by
Dom::Interval having the category Cat::Set . Among the meth-
ods inherited from Cat::Set , the following are especially important:
_intersect , _minus and _union .

A An interval can be open or closed. If one border is given as a list with
one element [x] , then this element x is taken as border and the interval
will be created as closed at this side. If the interval should be closed at
both sides, one list with the both borders as arguments can be given.

104

Entries:

one the unit element; it equals the one-point interval [1,1].

zero the zero element; it equals the one-point interval [0,0].

Mathematical Methods

Method Im : the imaginary part of an interval (this always equals zero)

Im(dom interval)

A This method returns the imaginary part of an interval (which is
zero).

A This method overloads Im .

Method Re: the real part of an interval (this is the interval)

Re(dom interval)

A This method returns the real part of an interval (which is the inter-
val).

A This method overloads Re.

Method contains : containing an element

contains(dom interval, any element)

A This method returns TRUEif element is an element of interval ,
FALSEif element is not an element of interval , and UNKNOWNif
the property mechanism could not prove either statement.

A This method overloads contains .

Method max: maximum of an interval

max(dom interval, ...)

A This method returns the maximum of intervals. The return value is
always an interval.

A This method overloads max.

105

Method min : minimum of an interval

min(dom interval, ...)

A This method returns the minimum of intervals. The return value is
always an interval.

A This method overloads min .

Method new: create an interval

new(Type::Arithmetical left, Type::Arithmetical right)

new(Type::Arithmetical [left], Type::Arithmetical right)

new(Type::Arithmetical left, Type::Arithmetical [right])

new(Type::Arithmetical [left], Type::Arithmetical [right])

A This method creates a new interval with the borders left and right .

Access Methods

Method borders : the borders of an interval

borders(dom interval)

A This method returns a list with the borders of an interval.

Method left : the left border of an interval

left(dom interval)

A This method returns the left border of an interval.

Method leftB : the left border of an interval

leftB(dom interval)

A This method returns the left border of an interval. If the interval
is left closed, then a list with the left border as element will be re-
turned.

Method isleftopen : a left open interval

isleftopen(dom interval)

A This method returns TRUEif the interval is left open.

106

Method isrightopen : a right open interval

isrightopen(dom interval)

A This method returns TRUEif the interval is right open.

Method iszero : null interval

iszero(dom interval)

A This method returns TRUEif the given interval contains only the
null, otherwise FALSE.

A This method overloads iszero .

Method op : the operands (borders) of an interval

op(dom interval)

A This method returns the both borders of an interval as given to cre-
ate this interval, i.e., closed borders will be returned as a list with
the border as operand.

A This method overloads op .

Method subs : substitution in intervals

subs(dom Interval, Type::Equation equation, ...)

A This method realizes substitution in intervals. The second and more
arguments are the same as for the function subs .

A This method overloads subs .

Method subsleft : substitute left border

subsleft(dom interval, Type::Arithmetical left)

A This method substitutes the left border of interval by left . If
the border will be given as list with one element, the border will be
taken as closed.

Method subsright : substitute right border

subsright(dom interval, Type::Arithmetical right)

A This method substitutes the right border of interval by right . If
the border will be given as list with one element, the border will be
taken as closed.

107

Method subsvals : substitute both borders

subsvals(dom interval, Type::Arithmetical left, Type::Arithmetical
right)

A This method substitutes both borders of interval . The call is the
same as in "subsleft" and "subsright" .

Conversion Methods

Method convert : converting objects to intervals

convert(Any object)

A This method tries to convert object to an interval. Objects that
can be converted are numbers, sets, properties, and arbitrary ex-
pressions.
A If the conversion fails, FAIL is returned.

Method expr : convert intervals to expressions

expr(dom interval)

A Converts an interval to an expression of type _range .
A This method overloads expr .

expr(dom interval, ident x)

A Returns a Boolean expression that is equivalent to x in inter-
val .

Method float : convert to floating point interval

float(dom interval)

A This method maps the function float to the borders of the interval.
A This method overloads float .

Method getElement : one element of an interval

getElement(dom interval)

A This method returns one element of the given interval.

Method simplify : simplify intervals

simplify(dom interval)

A This method tries to simplify a given interval.
A This method overloads simplify .

108

Technical Methods

Method emptycheck : check intervals

emptycheck(dom interval)

A This method returns the given interval, if it is non empty, otherwise
the empty set.

Method equal : comparison of intervals

equal(dom interval, dom interval)

A This method compares two given intervals and returns TRUE, if the
given intervals are equal, otherwise FALSE.

Method map: apply functions to intervals

map(dom interval, Type::Function function <Any argument,
... >)

A This method maps the function function to the given interval.
Additional arguments argument, ... are passed to the given
function (see map). The return value is a Dom::ImageSet (which
may simplify to a set or a Dom::Interval).

A This method overloads map.

Method mapBorders : apply functions to the borders of an interval

mapBorders(dom interval, Type::Function function <Any
argument, ... >)

A This method maps function to the borders of interval . If addi-
tional arguments are given, function is called with these as sec-
ond, third, etc. argument.

Method print : printing intervals

print(dom interval)

A This method returns a string used for displaying the interval.

A This method overloads print .

109

Method random : random interval

random()

A This method returns a random interval with numbers as borders.

Method zip : combine intervals

zip(dom interval, dom interval, Type::Function function)

A This method combines the two intervals with the given function
borderwise.

A This method overloads zip .

Example 1. First create a closed interval between 0 and 1.

>> A:= Dom::Interval([0], [1])

[0, 1]

Now another open interval between -1 and 1.

>> B:= Dom::Interval(-1, 1)

]-1, 1[

Intervals can be handled like other objects.

>> A + B, A - B, A*B, A/B

]-1, 2[,]-1, 2[,]-1, 1[,]0, infinity[union]-infinity, 0[

>> 2*A, 1 - A, (A - 1)^2

[0, 2], [0, 1], [0, 1]

Example 2. Standard functions are overloaded to work with intervals.

>> sin(B), float(sin(B))

]-sin(1), sin(1)[,]-0.8414709848, 0.8414709848[

110

Example 3. The next examples shows some technical methods to access and
manipulate intervals.

Get the borders and open/closed information about intervals.

>> A:= Dom::Interval([0], [1]):
Dom::Interval::left(A), Dom::Interval::leftB(A)

0, [0]

>> Dom::Interval::isleftopen(A), Dom::Interval::subsleft(A, -
1)

FALSE, [-1, 1]

Super-Domain: Dom::BaseDomain

Changes:

A Dom::Interval was complete reorganized internally.

A With a new syntax closed and open intervals can be created.

Dom::Matrix – matrices

Dom::Matrix(R) creates a domain of matrices over the component ring R.

Domain:

A Dom::Matrix(<R>)

Parameters:
R — a ring, i.e., a domain of category Cat::Rng ; default is

Dom::ExpressionField()

Details:

A Dom::Matrix(R) creates domains of matrices over a component do-
main Rof category Cat::Rng (a ring, possibly without unit).

If the optional parameter Ris not given, the domain Dom::ExpressionField()
is used.

A A vector with n entries is either an n× 1 matrix (a column vector), or a
1× n matrix (a row vector).

111

A Arithmetical operations with matrices can be performed by using the
standard arithmetical operators of MuPAD.

E.g., if A and B are two matrices defined by Dom::Matrix(R) , A + B
computes the sum, and A * B computes the product of the two matrices,
provided that the dimensions are correct.

Similarly, A^(-1) or 1/A computes the inverse of a square matrix A if it
exists, and returns FAIL otherwise. See example 1.

A Many system functions have been overloaded for matrices, such as map,
subs , has , zip , conjugate to compute the complex conjugate of a ma-
trix, norm to compute matrix norms, or exp to compute the exponential
of a matrix.

A Most of the functions in MuPAD’s linear algebra package linalg work
with matrices. For example, to compute the determinant of a square ma-
trix A, call linalg::det(A) . The command linalg::gaussJordan(A)
performs Gauss-Jordan elimination on A to transform A to its reduced
row echelon form.

See the documentation of linalg for a list of available functions of this
package.

A The domain Dom::Matrix(R) represents matrices over R of arbitrary
size, and it therefore does not have any algebraic structure (other than
being a set of matrices).

The domain Dom::SquareMatrix(n, R) represents the ring of n× n
matrices over R. The domain Dom::MatrixGroup(m, n, R) repre-
sents the Abelian group of m× n matrices over R.

A We use the following notations for a matrix A (an element of Dom::Matrix(R)):

• nrows(A) denotes the number of rows of A.

• ncols(A) denotes the number of columns of A.

• A row index is an integer in the range from 1 to nrows(A).

• A column index is an integer in the range from 1 to ncols(A).

Creating Elements:

A Dom::Matrix(R)(Array)

A Dom::Matrix(R)(List)

A Dom::Matrix(R)(ListOfRows)

A Dom::Matrix(R)(Matrix)

A Dom::Matrix(R)(m, n)

A Dom::Matrix(R)(m, n, ListOfRows)

A Dom::Matrix(R)(m, n, f)

112

A Dom::Matrix(R)(m, n, List, Diagonal)

A Dom::Matrix(R)(m, n, g, Diagonal)

A Dom::Matrix(R)(m, n, List, Banded)

A Dom::Matrix(R)(1, n, List)

A Dom::Matrix(R)(m, 1, List)

Parameters:
Array — a one- or two-dimensional array
Matrix — a matrix, i.e., an element of a domain of category

Cat::Matrix
m, n — matrix dimension (positive integers)
List — a list of matrix components
ListOfRows — a list of at most mrows; each row given as a list of at

most n matrix components
f — a function or a functional expression with two

parameters (the row and column index)
g — a function or a functional expression with one

parameter (the row index)

Options:

Diagonal — create a diagonal matrix
Banded — create a banded Toeplitz matrix

Categories:

Cat::Matrix(R)

Related Domains: Dom::SquareMatrix , Dom::MatrixGroup

Details:

A Dom::Matrix(R)(Array) and Dom::Matrix(R)(Matrix) create a
new matrix with the dimension and the components of Array and Ma-
trix , respectively.

The components of Array or Matrix are converted into elements of the
domain R. An error message is issued if one of these conversions fails.

A Dom::Matrix(R)(List) creates an m× 1 column vector with compo-
nents taken from the nonempty list, where m is the number of entries of
List .

A Dom::Matrix(R)(ListOfRows) creates an m× n matrix with compo-
nents taken from the nested list ListOfRows , where m is the number of
inner lists of ListOfRows , and n is the maximal number of elements of
an inner list. Each inner list corresponds to a row of the matrix. Both m
and n must be nonzero.

113

If an inner list has less than n entries, then the remaining components in
the corresponding row of the matrix are set to zero.

The entries of the inner lists are converted into elements of the domain
R. An error message is issued if one of these conversions fails.

A The call Dom::Matrix(R)(m, n) returns the m× n zero matrix.

Use the method "identity" to create the n× n identity matrix.

A Dom::Matrix(R)(m, n, ListOfRows) creates an m× n matrix with
components taken from the list ListOfRows .

If m ≥ 2 and n ≥ 2, then ListOfRows must consist of at most m inner
lists, each having at most n entries. The inner lists correspond to the
rows of the returned matrix.

If an inner list has less than n entries, then the remaining components of
the corresponding row of the matrix are set to zero. If there are less than
minner lists, then the remaining lower rows of the matrix are filled with
zeroes.

A Dom::Matrix(R)(m, n, f) returns the matrix whose (i, j)th compo-
nent is the value of the function call f(i,j) . The row index i ranges
from 1 to m and the column index j from 1 to n.

The function values are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

A Dom::Matrix(R)(1, n, List) returns the 1×n row vector with com-
ponents taken from List . The list List must have at most n entries. If
there are fewer entries, then the remaining vector components are set to
zero.

The entries of the list are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

A Dom::Matrix(R)(m, 1, List) returns the m×1 column vector with
components taken from List . The list List must have at most mentries.
If there are fewer entries, then the remaining vector components are set
to zero.

The entries of the list are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Option <Diagonal >:

A With the option Diagonal , diagonal matrices can be created with diago-
nal elements taken from a list, or computed by a function or a functional
expression.

A Dom::Matrix(R)(m, n, List, Diagonal) creates the m× n diag-
onal matrix whose diagonal elements are the entries of List .

114

List must have at most min(m,n) entries. If it has fewer elements, the
remaining diagonal elements are set to zero.

The entries of List are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

A Dom::Matrix(R)(m, n, g, Diagonal) returns the matrix whose
ith diagonal element is g(i) , where the index i runs from 1 to min(m,n).

The function values are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Option <Banded >:

A Dom::Matrix(R)(m, n, List, Banded) creates an m× n banded
Toeplitz matrix with the elements of List as entries. The number of
entries of List must be odd, say 2h + 1, and must not exceed n. The
resulting matrix has bandwidth at most 2h + 1.

A Toeplitz matrix is a matrix where the elements of each band are iden-
tical. See also example 7.

All elements of the main diagonal of the created matrix are initialized
with the middle element of List . All elements of the ith subdiagonal
are initialized with the (h + 1− i)th element of List . All elements of the
ith superdiagonal are initialized with the (h + 1 + i)th element of List .
All entries on the remaining sub- and superdiagonals are set to zero.

The entries of List are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Entries:

isSparse is always FALSE, as elements of Dom::Matrix(R) use a dense
representation of their matrix components.

randomDimen is set to [10,10] . See the method "random" below for de-
tails.

Mathematical Methods

Method _divide : divides matrices

_divide(dom A, dom B)

A This method computes the product A · B−1. The matrix B must be
nonsingular, otherwise FAIL is returned.

A An error message is issued if the dimensions of A and B do not
match.

115

A This method only exists if R is an integral domain, i.e., a domain of
category Cat::IntegralDomain .

A This method overloads the function _divide for matrices, i.e., one
may use it in the form A / B , or in functional notation: _divide(A,
B) .

Method _invert : computes the inverse of a matrix

_invert(dom A)

A This method computes the inverse of the matrix A. If A is singular,
FAIL is returned.

A If the component ring R is the domain Dom::Float , a floating-
point approximation of the inverse matrix is computed by the func-
tion numeric::inverse .

A This method only exists if Ris a domain of category Cat::IntegralDomain .

A This method overloads the function _invert for matrices, i.e., one
may use it in the form 1/A or A^(-1) , or in functional notation:
_invert(A) .

Method _mult : multiplies matrices by matrices, vectors and scalars

_mult(dom x, any y)

A If y is a matrix of the same domain type as x , the matrix product
x ∗ y is computed. An error message is issued if the dimensions of
the matrices do not match.

A If y is of the domain type R or can be converted into such an ele-
ment, the corresponding scalar multiplication is computed.
Otherwise, y is converted into a matrix of the domain type of x . If
this conversion fails, then this method calls the method "_mult" of
the domain of y giving all arguments in the same order.

_mult(any x, dom y)

A If x is a matrix of the same domain type as y , then the matrix prod-
uct x ∗ y is computed. An error message is issued if the dimensions
of the matrices do not match.

A If x is of the domain type R or can be converted into such an ele-
ment, the corresponding scalar multiplication is computed.
Otherwise, x is converted into a matrix of the domain type of y . If
this conversion fails, then FAIL is returned.

A This method handles more than two arguments by calling itself re-
cursively with the first half of all arguments and the last half of all
arguments. Then the product of these two results is computed with
the system function _mult .

116

A This method overloads the function _mult for matrices, i.e., one
may use it in the form x * y , or in functional notation: _mult(x,
y) .

Method _negate : negates a matrix

_negate(dom A)

A The matrix −A is returned.

A This method overloads the function _negate for matrices, i.e., one
may use it in the form -A , or in functional notation: _negate(A) .

Method _plus : adds matrices

_plus(matrix A, matrix B, ...)

A Returns the matrix sum A + B + · · · .
An error message is issued if the given matrices do not have the
same dimensions.

A The arguments A, B, ... are converted into matrices of the do-
main type Dom::Matrix(R) . FAIL is returned if one of these con-
versions fails.

A This method overloads the function _plus for matrices, i.e., one
may use it in the form A + B, or in functional notation: _plus(A,
B) .

Method _power : the integer power of a matrix

_power(dom A, integer n)

A This method computes An. If A is not square, FAIL is returned.

A If the power n is a negative integer then A must be nonsingular and
R must be a domain of category Cat::IntegralDomain . Other-
wise FAIL is returned.

A If n is zero and the component ring R is a ring with no unit (i.e.,
of category Cat::Rng , but not of category Cat::Ring), FAIL is
returned.

A This method overloads the function _power for matrices, i.e., one
may use it in the form A^n , or in functional notation: _power(A,
n) .

117

Method conjugate : the complex conjugate of a matrix

conjugate(dom A)

A The complex conjugate matrix of A is the matrix obtained by com-
puting the complex conjugate of each component of A.

A This method only exists if Rimplements the method "conjugate" ,
which computes the complex conjugate of an element of the domain
R.

A This method overloads the function conjugate for matrices, i.e.,
one may use it in the form conjugate(A) .

Method diff : differentiation of matrix components

diff(dom A, ...)

A This method differentiates each component of the matrix A using
the method "diff" of the component ring R.
Additional arguments are passed to the method "diff" of the do-
main R. See the system function diff for details.

A This method only exists if R implements the method "diff" .

A This method overloads the function diff for matrices, i.e., one may
use it in the form diff(A, ...) .

Method equal : equality test of matrices

equal(dom A, dom B)

A This method tests if the two matrices A and B are equal and returns
TRUE, FALSE, or UNKNOWN, respectively.

A Note that if Rhas the axiom Ax::systemRep then normal is used
to simplify the components of A and B before testing their equality.

Method exp : the exponential of a matrix

exp(dom A<, R t >)

A This method computes the matrix exponential of the n× n matrix
A, defined by In + At + 1

2 (At)2 + . . . , where In is the n× n identity
matrix. The default value of t is 1.

A If A is not square, an error message is issued.

A This method uses the function numeric::expMatrix for a floating-
point approximation of the exponential of A if A is defined over the
domain Dom::Float and if t = 1.

A If some eigenvalues of A do not exist in R or cannot be computed,
then FAIL is returned.

118

A In the symbolic case the function linalg::jordanForm is called,
which may not be able to compute the Jordan form of A. In this case
FAIL is returned. Increasing the level of information (see setuserinfo)
can yield useful information.

A This method only exists if R is a domain of category Cat::Field .

A This method overloads the function exp for matrices, i.e., one may
use it in the form exp(A, ...) .

Method expand : expand matrix components

expand(dom A)

A This method applies the function expand to each component of the
matrix A.

A This method only exists if R implements the method "expand" , or
if R has the axiom Ax::systemRep (in this case, the system func-
tion expand is used).

A This method overloads the function expand for matrices, i.e., one
may use it in the form expand(A) .

Method factor : scalar-matrix factorization

factor(dom A)

A This method factorizes A into the form A = s · B, where s is a scalar
of the component ring R.
The result is a factored object, i.e., an element of the domain Factored .
It has the factorization type "unknown" .

A The factor s is the gcd of all components of the matrix A. Hence, this
method only exists if R is of category Cat::GcdDomain .

A This method overloads the function factor for matrices, i.e., one
may use it in the form factor(A) .

Method float : floating-point approximation of the matrix components

float(dom A)

A This method maps the function float to the matrix components
of A, i.e., it computes a floating-point approximation of the matrix
components.

A This method only exists if R implements the method "float" .

119

A Usually the floating-point approximations are not elements of
R! For example, Dom::Integer implements such a method,
but the floating-point approximation of an integer cannot be
re-converted into an integer.
This method checks whether the resulting matrix can be con-
verted into the domain type of A only if testargs returns
TRUE(e.g., if one calls this method from the interactive level
of MuPAD).
Otherwise, one has to take care that the matrix returned is
compatible to its component ring.

!

Method gaussElim : Gaussian elimination

gaussElim(dom A)

A This method performs the Gaussian elimination on A and reduces A
to an upper row echelon form T.
It returns a list containing the matrix T, the rank and determinant
of A, and the set of characteristic column indices of T (in this order).

A If the matrix is not square, i.e., the determinant of A is not defined,
then the third entry of the list returned is the value FAIL .

A This method only exists if the component ring R is an integral do-
main, i.e., a domain of category Cat::IntegralDomain .

A If Rhas the method "pivotSize" , then the pivot element of small-
est size is chosen at every pivoting step, whereby pivotSize must
return a positive integer representing the “size” of an element.
If no such method is defined, Gaussian elimination without a pivot
strategy is applied to A.

A If Rhas the axiom Ax::efficientOperation("_invert") and
is of category Cat::Field , then ordinary Gaussian elimination is
used. Otherwise, fraction-free elimination is performed on A.

A If R implements the method "normal" , it is used to simplify sub-
sequent computations of the Gaussian elimination process.
Note that if R does not implement the method "normal" , but the
elements of R are represented by kernel domains, i.e., R has the ax-
iom Ax::systemRep , the system function normal is used instead.

Method identity : identity matrix

identity(positive integer n)

A This method returns the n× n identity matrix.

A This method only exists if the component ring Ris of category Cat::Ring ,
i.e., a ring with unit.

120

Method iszero : test for zero matrices

iszero(dom A)

A This method checks whether A is a zero matrix.
A Note that there may exist more than one representation of the zero

matrix of a given dimension if Rdoes not have Ax::canonicalRep .
A If R implements the method "normal" , it is used to simplify the

components of A for the zero-test.
Note that if R does not implement such a method, but the elements
of Rare represented by kernel domains, i.e., Rhas the axiom Ax::systemRep ,
the system function normal is used instead.
A This method overloads the function iszero for matrices, i.e., one

may use it in the form iszero(A) .

Method matdim : matrix dimension

matdim(dom A)

A This method returns the number of rows and columns of the matrix
A as a list of two positive integers.

Method norm : norm of matrices and vectors

norm(dom A <, Infinity >)

A Computes the infinity norm of the matrix A, which is the maximum
row sum (the row sum is the sum of norms of each component in a
row).
If the domain Rdoes not implement the methods "max" and "norm" ,
FAIL is returned.

norm(dom v <, Infinity >)

A For a vector v the maximum norm of all elements is returned.
If the domain Rdoes not implement the methods "max" and "norm" ,
FAIL is returned.

norm(dom A, Frobenius)

A Computes the Frobenius norm of A, which is the square root of the
sum of the squares of the norms of each component.
If the result is no longer an element of the domain R, or if Rdoes not
implement the method "norm" , FAIL is returned.

norm(dom A, 1)

A Computes the 1-norm of the matrix A, which is the maximum sum
of the norms of the elements of each column. If R does not imple-
ment the methods "max" and "norm" , FAIL is returned.

121

norm(dom v, positive integer k)

A Computes the k-norm of the vector v , which is defined to be the kth
root of the sum of the norms of the elements of v raised to the kth
power.
FAIL is returned if the result is no longer an element of the domain
R. For k = 2, the function linalg::scalarProduct is used to
compute the 2-norm of v .
If Rdoes not implement the method "norm" , FAIL is returned.
A This method overloads the function norm for matrices, i.e., one may

use it in the form norm(A <, k >) , where k is either Infinity ,
Frobenius , or a positive integer. The default value of k is Infin-
ity .

Method normal : simplification of matrix components

normal(dom A)

A The method "normal" of R is applied to the components of A.
A If Rdoes not implement the method "normal" , but the elements of

Rare represented by kernel domains, i.e., Rhas the axiom Ax::systemRep ,
then the system function normal is applied to the components of
A. Otherwise normal(A) returns A without any changes.
A This method overloads the function normal for matrices, i.e., one

may use it in the form normal(A) .

Method nonZeros : number of non-zero components of a matrix

nonZeros(dom A)

A This method returns the number of components of A for which the
method "iszero" of the component ring R returns FALSE.

Method random : random matrix generation

random()

A This method returns a random matrix. It uses the method "random"
of the component ring R to randomly generate the components of
the matrix.
A This method only exists if R implements the method "random" .
A The dimension of the matrix is also chosen randomly, but it is lim-

ited by the values given in "randomDimen" (see “Entries” above).
A To change the value of the entry "randomDimen" for a domain

MatR created with Dom::Matrix , one must first unprotect the do-
main Dom(see unprotect for details).

122

Method tr : trace of a square matrix

tr(dom A)

A This method computes the trace of the square matrix A, which is
defined to be the sum of its diagonal entries.

A If A is not square, then an error message is issued.

Method transpose : transpose of a matrix

transpose(dom A)

A This method returns the transpose matrix At of A.

Access Methods

Method _concat : horizontal concatenation of matrices

_concat(dom A, dom B, ...)

A This method appends the matrices B, ... to the right side of the
matrix A.

A An error message is issued if the given matrices do not have the
same number of rows.

A This method overloads the function _concat for matrices, i.e., one
may use it in the form A . B , or in functional notation:
_concat(A, B, ...) .

Method _index : matrix indexing

_index(dom A, row index i, column index j)

A This method returns the (i, j)th entry of the matrix A.

_index(dom A, row-range r1..r2, column-range c1..c2)

A This method returns the submatrix of A created by the rows of A
with indices from r1 to r2 and the columns of A with indices from
c1 to c2 .

_index(dom v, index i)

A This method returns the ith entry of the vector v .

A An error message is issued if v is not a vector.

_index(dom v, index-range i1..i2)

A This method returns the subvector of v , formed by the entries with
index i1 to i2 . See also the method "op" .

123

A An error message is issued if v is not a vector.

A This method overloads the function _index for matrices, i.e., one
may use it in the form A[i, j] , A[r1..r2, c1..c2] , v[i] and
v[i1..i2] , respectively, or in functional notation: _index(A,
...) .

Method concatMatrix : horizontal concatenation of matrices

concatMatrix(dom A, dom B, ...)

A This method is identical to the method "_concat" .

Method col : extracting a column

col(dom A, column index c)

A This method extracts the column with index c of the matrix A and
returns it as a column vector, i.e., as an element of type Dom::Matrix(R) .

A An error message is issued if c is less than one or greater than the
number of columns of A.

Method delCol : deleting a column

delCol(dom A, column index c)

A This method returns the matrix obtained by deleting the column
with index c of the matrix A.

A NIL is returned if A consists of only one column.

A An error message is issued if c is less than one or greater than the
number of columns of A.

Method delRow : deleting a row

delRow(dom A, row index r)

A This method returns the matrix obtained by deleting the row with
index r of the matrix A.

A NIL is returned if A consists of only one row.

A An error message is issued if r is less than one or greater than the
number of rows of A.

124

Method evalp : evaluating matrices of polynomials at a certain point

evalp(dom A, equation x = a, ...)

A This method evaluates the polynomial components of A at the point
x = a . See the system function evalp for details.
The matrix returned is of the domain Dom::Matrix(R::coeffRing)
if the evaluation of all components leads to an element of the coeffi-
cient ring of the polynomial domain. Otherwise the matrix returned
is of the domain of A.

A This method is only defined if R is a polynomial ring of category
Cat::Polynomial .

A This method overloads the function evalp for matrices, i.e., one
may use it in the form evalp(A, x = a) .

Method length : length of a matrix

length(dom A)

A This method returns the length of the matrix A, which is the length
of the array holding the components of A. See the system function
length for details.

A This method overloads the function length for matrices, i.e., one
may use it in the form length(A) .

Method map: apply a function to matrix components

map(dom A, function func <, any expr, ... >)

A This method maps the function func to the components of the ma-
trix A, with the additional function parameters expr, ... passed
to func , if given.
See the system function map for details.

A Note that the function values are converted into elements of
the domain Ronly if testargs returns TRUE(e.g., if one calls
this method from the interactive level of MuPAD).
If testargs returns FALSE, then one must guarantee that
the function calls return elements of the domain type R,
otherwise the resulting matrix, which is of domain type
Dom::Matrix(R) , would have components which are not
elements of the domain R!

!

A This method overloads the function map for matrices, i.e., one may
use it in the form map(A, func, ...) .

125

Method nops : number of components of a matrix

nops(dom A)

A This method returns the number of components of a matrix, which
is m · n for an m× n matrix A.

A This method overloads the function nops for matrices, i.e., one may
use it in the form nops(A) .

Method op : components of a matrix

op(dom A, positive integer i)

A This method returns the ith component of the matrix A, where the
components are numbered starting at row one from left to right and
up to down.

op(dom A)

A This method returns an expression sequence of all components of
A.

A See also the method "_index" .

A This method overloads the function op for matrices, i.e., one may
use it in the form op(A, i) and op(A) , respectively.

Method row : extracting a row

row(dom A, row index r)

A This method extracts the row with index r of the matrix A and re-
turns it as a row vector, i.e., as an element of type Dom::Matrix(R) .

A An error message is issued if r is less than one or greater than the
number of rows of A.

Method setCol : replacing a column

setCol(dom A, column index c, dom v)

A This method replaces the column with index c of the matrix A by
the column vector v . The vector v must have nrows(A) elements.

A An error message is issued if c is less than one or greater than the
number of rows of A.

126

Method setRow : replacing a row

setRow(dom A, row index r, dom v)

A This method replaces the row with index r of the matrix A by the
row vector v . The vector v must have ncols(A) elements.

A An error message is issued if r is less than one or greater than the
number of rows of A.

Method stackMatrix : vertical concatenation of matrices

stackMatrix(dom A, dom B, ...)

A This method stacks the matrix A on the top of the matrix B. If further
arguments are given, then the result is stacked on the top of the
third matrix, and so on.

A An error message is issued if the given matrices do not have the
same number of columns.

Method subs : substitution of matrix components

subs(dom A, ...)

A This method maps the function subs with additionally given pa-
rameters to the components of the matrix A. See the system function
subs for details.

A Note that the function values are converted into elements of
the domain Ronly if testargs returns TRUE(e.g., if one calls
this method from the interactive level of MuPAD).
If testargs returns FALSE, then one must guarantee that
the function calls return elements of the domain type R,
otherwise the resulting matrix, which is of domain type
Dom::Matrix(R) , would have components which are not
elements of the domain R!

!

A This method overloads the function subs for matrices, i.e., one may
use it in the form subs(A, ...) .

Method subsex : extended substitution of matrix components

subsex(dom A, ...)

A This method maps the function subsex with additionally given pa-
rameters to the components of the matrix A. See the system function
subsex for details.

127

A Note that the results of the substitutions are converted into el-
ements of the domain Ronly if testargs returns TRUE(e.g.,
if one calls this method from the interactive level of MuPAD).
If testargs returns FALSE, then one must guarantee that
the results of the substitutions are of the domain type R,
otherwise the resulting matrix, which is of domain type
Dom::Matrix(R) , would have components which are not
elements of the domain R!

!

A This method overloads the function subsex for matrices, i.e., one
may use it in the form subsex(A, ...) .

Method subsop : operand substitution of matrix components

subsop(dom A, equation i = x, ...)

A This method replaces the ith component of the matrix A by x .

A Note that x is converted into the domain Ronly if testargs
returns TRUE(e.g., if one calls this method from the interac-
tive level of MuPAD).
If testargs returns FALSE, then x must be an element of
R, otherwise the resulting matrix, which is of domain type
Dom::Matrix(R) , would have components which are not
elements of the domain R!

!

A See also the method "set_index" .

A This method overloads the function subsop for matrices, i.e., one
may use it in the form subsop(A, ...) .

Method swapCol : swapping matrix columns

swapCol(dom A, column indices c1, c2)

A This method returns the matrix which results from swapping the
column with index c1 with the column with index c2 of the matrix
A.

A An error message is issued if one of the column indices is less than
one or greater than the number of columns of A.

swapCol(dom A, column indices c1, c2, row range r1..r2)

A This method swaps the column with index c1 and the column with
index c2 of A, but by taking only those column components which
lie in the rows with indices r1 to r2 .

A An error message is issued if one of the column indices is less than
one or greater than the number of columns of A, or if one of the row
indices is less than one or greater than the number of rows of A.

128

Method swapRow: swapping matrix rows

swapRow(dom A, row indices r1, r2)

A This method returns the matrix which results from swapping the
row with index r1 with row with index r2 of the matrix A.

A An error message is issued if one of the row indices is less than one
or greater than the number of rows of A.

swapRow(dom A, row indices r1, r2, column range c1..c2)

A This method swaps the row with index r1 and the row with index
r2 of A, but by taking only those row components which lie in the
columns with indices c1 to c2 .

A An error message is issued if one of the row indices is less than one
or greater than the number of rows of A, or if one of the column
indices is less than one or greater than the number of columns of A.

Method set_index : setting matrix components

set_index(dom A, row index i, column index j, any x)

A Replaces the (i, j)th component of the matrix A by x .

A Note that x is converted into an element of the domain Ronly
if testargs returns TRUE(e.g., if one calls this method from
the interactive level of MuPAD).
Otherwise one has to take care that x is of domain type R.

!

A See also the method "subsop" .

set_index(dom v, index i, any x)

A Replaces the ith entry of the vector v by x .

A This method overloads the function set_index for matrices, i.e.,
one may use it in the form A[i, j] := x and v[i] := x , re-
spectively, or in functional notation: A := set_index(A, i, j,
x) or v := set_index(v, i, x) .

Method zip : combine matrices component-wise

zip(dom A, B, function func <, any expr, ... >)

A This method combines the matrices Aand Bcomponent-wise, where
the function func(a, b <, expr, ... >) is applied to each pair
(Ai j, Bi j) (for all i and j).

A The row number of the matrix returned is the minimum of the row
numbers of A and B, and its column number is the minimum of the
column numbers of A and B.

129

A Note that the function values are converted into elements of
the domain Ronly if testargs returns TRUE(e.g., if one calls
this method from the interactive level of MuPAD).
If testargs returns FALSE, then one must guarantee that
the function calls return elements of the domain type R,
otherwise the resulting matrix, which is of domain type
Dom::Matrix(R) , would have components which are not
elements of the domain R!

!

A This method overloads the function zip for matrices, i.e., one may
use it in the form zip(A, B, ...) .

Conversion Methods

Method convert : conversion to a matrix

convert(any x)

A This method tries to convert x into a matrix of type Dom::Matrix(R) .

A FAIL is returned if the conversion fails.

A x may either be an array, a matrix, or a list (of sublists, see the pa-
rameter ListOfRows in “Creating Elements” above). Their entries
must then be convertible into elements of the domain R.

Method convert_to : matrix conversion

convert_to(dom A, any T)

A This method tries to convert the matrix A into an element of domain
type T. FAIL is returned if the conversion fails.

A T may either be DOM_ARRAY, DOM_LIST, or a domain constructed
by Dom::Matrix or Dom::SquareMatrix . The elements of A
must be convertible into elements of the domain R.

A Use the function expr to convert A into an object of a kernel domain
(see below).

Method create : defining matrices without component conversions

create(any x, ...)

A This method creates a new matrix assuming that the components
are of domain type R.
See “Creating Elements” above for a complete description of the pa-
rameters, with one exception: one cannot use this method to create
a matrix from a function or a functional expression.

130

A This method works more efficient than if one creates matrices by
calling the method "new" of the domain, because it avoids any con-
version of the components. One must guarantee that the compo-
nents have the correct domain type, otherwise run-time errors can
be caused.

Method expr : matrix conversion into an object of a kernel domain

expr(dom A)

A This method converts A into an array, i.e., an object of type DOM_ARRAY,
and applies the function expr to each component of A.

A The result is an array representing the matrix A where each entry is
an object of a kernel domain.

A This method overloads the function expr for matrices, i.e., one may
use it in the form expr(A) .

Method expr2text : matrix conversion to a string

expr2text(dom A)

A This method converts A into a string s such that the evaluation of
the function call text2expr(s) gives the matrix A.

A This method overloads the function expr2text for matrices, i.e.,
one may use it in the form expr2text(A) .

Method TeX: TeX formatting of a matrix

TeX(dom A)

A This method returns a TEX-formatted string for the matrix A in form
of a TEX array environment.

A The method "TeX" of the component ring R is used to get the TEX-
representation of each component of A.

A This method is used by the function generate::TeX .

Technical Methods

Method assignElements : multiple assignment to matrices

assignElements(dom A, ...)

A This method performs multiple assignments to components of the
matrix A.
See the system function assignElements for details.

131

A The assigned components must have the domain type R, an implicit
conversion of the components into elements of domain type R is not
performed.

A This method overloads the function assignElements for matri-
ces, i.e., one may use it in the form assignElements(A, ...) .

Method mkDense: conversion of a matrix to an array

mkDense(array Array)

A This method converts each operand of Array into an element of the
component ring R. The result is either FAIL if one of these conver-
sions is not possible, or the list [r, c, Array] , where the positive
integers r and c give the dimension of Array .

mkDense(list List)

A This method tries to convert the list List into an array a. The result
is either FAIL if this is not possible, or the list [r, c, a] , where
the positive integers r and c give the dimension of a. See the pa-
rameters List and ListOfRows in “Creating Elements” above for
admissible formats of List .
The array a has dimension one if r or c is equal to one. The entries
of a have been converted into elements of the domain R.

mkDense(positive integers r, c, list List)

A This method tries to convert the list List into an array a of the
dimension r times c .
The result is either FAIL if this is not possible, or the list [r, c,
a] .
The array a has dimension one if r or c is equal to one. The entries
of a have been converted into elements of the domain R.

Method print : printing matrices

print(dom A)

A This method returns the array holding the components of A. Thus,
matrices are printed like arrays.

Method unapply : create a procedure from a matrix

unapply(dom A<, identifier x, ... >)

A This method interprets the components of Aas functions in x, ... ,
and returns a procedure representing this matrix function. See fp::unapply
for details.

132

A This method overloads the function fp::unapply for matrices,
i.e., one may use it in the form fp::unapply(A) .

Example 1. First we create the domain of matrices over the field of rational
numbers:

>> MatQ := Dom::Matrix(Dom::Rational)

Dom::Matrix(Dom::Rational)

We assigned this domain to the identifier MatQ. Next we define the 2× 2 ma-
trix (

1 5
2 3

)
by a list of two rows, where each row is a list of two elements:

>> A := MatQ([[1, 5], [2, 3]])

+- -+
| 1, 5 |
| |
| 2, 3 |
+- -+

In the same way we define the following 2× 3 matrix:

>> B := MatQ([[-1, 5/2, 3], [1/3, 0, 2/5]])

+- -+
| -1, 5/2, 3 |
| |
| 1/3, 0, 2/5 |
+- -+

and perform matrix arithmetic using the standard arithmetical operators of
MuPAD, e.g., the matrix product A · B, the 4th power of A as well as the scalar
multiplication of A times 1

3 :

>> A * B, A ^ 4, 1/3 * A

+- -+ +- -+ +- -+
2/3, 5/2, 5		281, 600		1/3, 5/3
	,		,	
-1, 5, 36/5		240, 521		2/3, 1
+- -+ +- -+ +- -+

The matrices A and B have different dimensions, and therefore the sum of A
and B is not defined. MuPAD issues an error message:

133

>> A + B

Error: dimensions don’t match [(Dom::Matrix(Dom::Rational))\
::_plus]

To compute the inverse of A, just enter:

>> 1/A

+- -+
| -3/7, 5/7 |
| |
| 2/7, -1/7 |
+- -+

If a matrix is not invertible, FAIL is the result of this operation. For example,
the matrix:

>> C := matrix(2, 2, [[2]])

+- -+
| 2, 0 |
| |
| 0, 0 |
+- -+

is not invertible, hence:

>> C^(-1)

FAIL

Example 2. We create the domain of matrices over the reals:

>> MatR := Dom::Matrix(Dom::Real)

Dom::Matrix(Dom::Real)

Beside standard matrix arithmetic, the library linalg offers a lot of functions
dealing with matrices. For example, if one wants to compute the rank of a
matrix, use linalg::rank :

>> A := MatR([[1, 2], [2, 4]])

+- -+
| 1, 2 |
| |
| 2, 4 |
+- -+

134

>> linalg::rank(A)

1

Use linalg::eigenvectors to compute eigenvalues and eigenvectors of
the matrix A:

>> linalg::eigenvectors(A)

-- -- -- +- -+ -- -- -- -- +- -+ -- -
- --

			-2						1/2			
	0, 1,					,	5, 1,					
			1						1			
-- -- -- +- -+ -- -- -- -- +- -+ -- -

- --

Try info(linalg) for a list of available functions, or enter help(linalg)
for details about the library linalg .

Some of the functions in the linalg package simply serve as “interface”
functions for methods of a matrix domain described above. For example,
linalg::transpose uses the method "transpose" to get the transposed
matrix. The function linalg::gaussElim applies Gaussian elimination to
a matrix, such as:

>> linalg::gaussElim(A)

+- -+
| 1, 2 |
| |
| 0, 0 |
+- -+

The computation is performed by the method "gaussElim" as described
above. Such functions of the linalg packages, in contrast to the correspond-
ing methods of the domain Dom::Matrix(R) , check their incoming parame-
ters, and some of them offer extended functionalities.

Example 3. In this example, we use the default matrix domain which is cre-
ated by Dom::Matrix() . This domain represents matrices whose compo-
nents can be arbitrary arithmetical expressions (i.e., the component ring is the
domain Dom::ExpressionField()).

This domain is already known to MuPAD by the name matrix :

>> A := matrix(
[[1, 2, 3, 4], [2, 0, 4, 1], [-1, 0, 5, 2]]

)

135

+- -+
| 1, 2, 3, 4 |
| |
| 2, 0, 4, 1 |
| |
| -1, 0, 5, 2 |
+- -+

>> domtype(A)

Dom::Matrix()

Matrix components can be extracted by the index operator [] :

>> A[2, 1] * A[1, 2] - A[3, 1] * A[1, 3]

7

If one of the indices is not in its valid range, an error message is issued. As-
signments to matrix components are performed similarly:

>> delete a:
A[1, 2] := a^2: A

+- -+
| 2 |
| 1, a , 3, 4 |
| |
| 2, 0, 4, 1 |
| |
| -1, 0, 5, 2 |
+- -+

Beside the usual indexing of matrix components, it is also possible to ex-
tract submatrices from a given matrix. The following call creates the submatrix
of A which consists of the rows 2 to 3 and columns 1 to 3 of A:

>> A[2..3, 1..3]

+- -+
| 2, 0, 4 |
| |
| -1, 0, 5 |
+- -+

The index operator does not allow to insert submatrices into a given matrix.
This is implemented by the function linalg::substitute .

136

Example 4. In the following examples, we demonstrate the different ways
of creating matrices. We work with matrices defined over the field Z19, i.e.,
the field of integers modulo 19. This component ring can be created with the
domain constructor Dom::IntegerMod .

We start by giving a list of rows, where each row is a list of row entries:

>> MatZ19 := Dom::Matrix(Dom::IntegerMod(19)):
MatZ19([[1, 2], [2]])

+- -+
| 1 mod 19, 2 mod 19 |
| |
| 2 mod 19, 0 mod 19 |
+- -+

The elements of the two inner lists, the row entries, were converted into ele-
ments of the domain Dom::IntegerMod(19) .

The number of rows is the number of sublists of the argument, i.e., m = 2.
The number of columns is determined by the length of the inner list with the
most entries, which is the first inner list with two entries. Missing entries in
the other inner lists are treated as zero components. The call:

>> MatZ19(4, 4, [[1, 2], [2]])

+- -+
| 1 mod 19, 2 mod 19, 0 mod 19, 0 mod 19 |
| |
| 2 mod 19, 0 mod 19, 0 mod 19, 0 mod 19 |
| |
| 0 mod 19, 0 mod 19, 0 mod 19, 0 mod 19 |
| |
| 0 mod 19, 0 mod 19, 0 mod 19, 0 mod 19 |
+- -+

fixes the dimension of the matrix. Missing entries and inner lists are treated as
zero components and zero rows, respectively.

An error message is issued if one of the given entries cannot be converted
into an element over Z19:

>> MatZ19([[2, 3], [-1, I]])

Error: unable to define matrix over Dom::IntegerMod(19) \
[(Dom::Matrix(Dom::IntegerMod(19)))::new]

Example 5. This example illustrates how to create a matrix with components
given as values of an index function. First we create the 2× 2 Hilbert matrix
(see also the functions linalg::hilbert and linalg::invhilbert):

137

>> matrix(2, 2, (i, j) -> 1/(i + j - 1))

+- -+
| 1, 1/2 |
| |
| 1/2, 1/3 |
+- -+

Note the difference when working with expressions and functions. If you
give an expression it is treated as a function in the row and column indices:

>> delete x:
matrix(2, 2, x), matrix(2, 2, (i, j) -> x)

+- -+ +- -+
x(1, 1), x(1, 2)		x, x
	,	
x(2, 1), x(2, 2)		x, x
+- -+ +- -+

Example 6. Diagonal matrices can be created with the option Diagonal and
a list of diagonal components:

>> MatC := Dom::Matrix(Dom::Complex):
MatC(3, 4, [1, 2, 3], Diagonal)

+- -+
| 1, 0, 0, 0 |
| |
| 0, 2, 0, 0 |
| |
| 0, 0, 3, 0 |
+- -+

Hence, to define the n× n identity matrix, you can enter:

>> MatC(3, 3, [1 $ 3], Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

or even call:

138

>> MatC(3, 3, x -> 1, Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

The easiest way to create the identity matrix, however, is to use the method
"identity" :

>> MatC::identity(3)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

Example 7. Toeplitz matrices can be defined with the option Banded . The
following call defines a three-banded matrix with the component 2 on the main
diagonal and the component −1 on the first subdiagonals:

>> matrix(4, 4, [-1, 2, -1], Banded)

+- -+
| 2, -1, 0, 0 |
| |
| -1, 2, -1, 0 |
| |
| 0, -1, 2, -1 |
| |
| 0, 0, -1, 2 |
+- -+

Example 8. Some system functions can be applied to matrices, such as norm ,
expand , diff , conjugate , or exp .

For example, to expand the components of the matrix:

>> delete a, b:
A := matrix(

[[(a - b)^2, a^2 + b^2], [a^2 + b^2, (a - b)*(a + b)]]
)

139

+- -+
| 2 2 2 |
| (a - b) , a + b |
| |
| 2 2 |
| a + b , (a + b) (a - b) |
+- -+

enter:

>> expand(A)

+- -+
| 2 2 2 2 |
| - 2 a b + a + b , a + b |
| |
| 2 2 2 2 |
| a + b , a - b |
+- -+

If you want to differentiate the matrix components, then call for example:

>> diff(A, a)

+- -+
| 2 a - 2 b, 2 a |
| |
| 2 a, 2 a |
+- -+

To substitute matrix components by some values, enter:

>> subs(A, a = 1, b = -1)

+- -+
| 4, 2 |
| |
| 2, 0 |
+- -+

The function zip can also be applied to matrices. The following call com-
bines two matrices A and B by dividing each component of A by the corre-
sponding component of B:

>> A := matrix([[4, 2], [9, 3]]):
B := matrix([[2, 1], [3,-1]]):
zip(A, B, ‘/‘)

140

+- -+
| 2, 2 |
| |
| 3, -3 |
+- -+

The quoted character ‘/‘ is another notation for the function _divide , the
functional form of the division operator / .

If one needs to apply a function to the components of a matrix, then use
the function map. For example, to simplify the components of the matrix:

>> C := matrix(
[[sin(x)^2 + cos(x)^2, exp(x) - exp(x/2)^2],
[(a^2 - b^2)/(a + b), 1]]

)

+- -+
| 2 2 / x \2 |
| cos(x) + sin(x) , exp(x) - exp| - | |
| \ 2 / |
| |
| 2 2 |
| a - b |
| -------, 1 |
| a + b |
+- -+

call:

>> map(C, simplify)

+- -+
| 1, 0 |
| |
| a - b, 1 |
+- -+

Example 9. A column vector is represented as a 2× 1 matrix:

>> MatR := Dom::Matrix(Dom::Real):
v := MatR(2, 1, [1, 2])

+- -+
| 1 |
| |
| 2 |
+- -+

141

The dimension of this vector is:

>> MatR::matdim(v)

[2, 1]

Use linalg::vecdim , or even call nops(v) to get the length of a vector:

>> linalg::vecdim(v)

2

The ith component of this vector can be extracted in two ways: either by
v[i,1] or by v[i] :

>> v[1], v[2]

1, 2

We get the 2-norm of v by the following call:

>> norm(v, 2)

1/2
5

Super-Domain: Dom::BaseDomain

Axioms

if Rhas Ax::canonicalRep
Ax::canonicalRep

Changes:

A The method "dimen" was renamed to "matdim" .

A The method "newThis" was renamed to "create" .

A "_invert" now uses the function numeric::inverse for certain com-
ponent rings R.

A New method "diff" which applies the function diff to the compo-
nents of a matrix.

A New method "evalp" for matrices over polynomial rings.

A exp now uses the function numeric::expMatrix for a floating-point
approximation of the exponential of a matrix, i.e., if the component ring
R is the domain Dom::Float .

142

A New method "expand" which applies the function expand to the com-
ponents of a matrix.

A New method "factor" for rewriting the matrix A in the form A = sB
with a scalar s.

A New method "float" for computing a floating-point approximation of
matrix components.

A New method "identity" to ease the construction of identity matrices.

A New method "normal" for simplification of matrix components.

A New method "unapply" for overloading the function fp::unapply .

Dom::MatrixGroup – the Abelian group of m× n matrices

Dom::MatrixGroup(m, n, R) creates the Abelian group of m× n matrices
over the component ring R.

Domain:

A Dom::MatrixGroup(m, n <, R>)

Parameters:
m, n — positive integers (matrix dimension)
R — a commutative ring, i.e., a domain of category

Cat::CommutativeRing ; default is
Dom::ExpressionField()

Details:

A Dom::MatrixGroup(m, n, R) creates a domain which represents the
Abelian group of m× n matrices over the component ring R, i.e., it is a
domain of category Cat::AbelianGroup .

A The domain Dom::ExpressionField() is used as the component ring
for the matrices if the optional parameter R is not given.

A For matrices of a domain created by Dom::MatrixGroup(m, n, R) ,
matrix arithmetic is implemented by overloading the standard arithmeti-
cal operators +, -, *, / and ^ . All functions of the linalg package
dealing with matrices can be applied.

A Dom::MatrixGroup(m, n, R) has the domain Dom::Matrix(R) as
its super domain, i.e., it inherits each method which is defined by Dom::Matrix(R)
and not re-implemented by Dom::MatrixGroup(m, n, R) .

Methods described below are implemented by Dom::MatrixGroup .

143

A The domain Dom::Matrix(R) represents matrices over R of arbitrary
size, and it therefore does not have any algebraic structure (except of
being a set of matrices).

The domain Dom::SquareMatrix(n, R) represents the ring of n× n
matrices over R.

Creating Elements:

A Dom::MatrixGroup(m, n, R)(Array)

A Dom::MatrixGroup(m, n, R)(Matrix)

A Dom::MatrixGroup(m, n, R)(<m, n>)

A Dom::MatrixGroup(m, n, R)(<m, n, >List)

A Dom::MatrixGroup(m, n, R)(<m, n, >ListOfRows)

A Dom::MatrixGroup(m, n, R)(<m, n, >f)

A Dom::MatrixGroup(m, n, R)(<m, n, >List, Diagonal)

A Dom::MatrixGroup(m, n, R)(<m, n, >g, Diagonal)

A Dom::MatrixGroup(m, n, R)(<m, n, >List, Banded)

Parameters:
Array — an m×n array
Matrix — an m×n matrix, i.e., an element of a domain of

category Cat::Matrix
List — a list of matrix components
ListOfRows — a list of at most mrows; each row is a list of at most n

matrix components
f — a function or a functional expression with two

parameters (the row and column index)
g — a function or a functional expression with one

parameter (the row index)

Options:

Diagonal — create a diagonal matrix
Banded — create a banded Toeplitz matrix

Categories:

Cat::Matrix(R) , Cat::AbelianGroup

if Rhas Cat::Field , then
Cat::VectorSpace(R)

Related Domains: Dom::Matrix , Dom::SquareMatrix

144

Details:

A Dom::MatrixGroup(m, n, R)(Array) and Dom::MatrixGroup(m,
n, R)(Matrix) create a new matrix formed by the entries of Array
and Matrix , respectively.

The components of Array and Matrix , respectively, are converted into
elements of the domain R. An error message is issued if one of these
conversions fails.

A The call Dom::MatrixGroup(m, n, R)(<m, n>) returns the m× n
zero matrix. Note that the m× n zero matrix can also be found in the
entry "zero" (see below).

A Dom::MatrixGroup(m, n, R)(<m, n, >List) creates an m × n
matrix with components taken from the list List .

This call is only allowed for m× 1 or 1× n matrices, i.e., if either mor n
is equal to one.

If the list has too few entries, the remaining components of the matrix
are set to zero.

The entries of the list are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

A Dom::MatrixGroup(m, n, R)(<m, n, >ListOfRows) creates an
m× n matrix with components taken from the nested list ListOfRows .
Each inner list corresponds to a row of the matrix.

If an inner list has less than n entries, the remaining components in the
corresponding row of the matrix are set to zero. If there are less than m
inner lists, the remaining lower rows of the matrix are filled with zeroes.

The entries of the inner lists are coerced into elements of the domain R.
An error message is issued if one of these conversions fails.

A Dom::MatrixGroup(m, n, R)(<m, n, >f) returns the matrix whose
(i, j)th component is the value of the function call f(i, j) . The row in-
dex i ranges from 1 to mand the column index j from 1 to n.

The function values are coerced into elements of the domain R. An error
message is issued if one of these conversions fails.

Option <Diagonal >:

A With the option Diagonal , diagonal matrices can be created with diag-
onal elements taken from a list, or computed by a function.

A Dom::MatrixGroup(m, n, R)(<m, n, >List, Diagonal) cre-
ates the m× n diagonal matrix whose diagonal elements are the entries
of List .

145

List must have at most min(m,n) entries. If it has fewer elements, then
the remaining diagonal elements are set to zero.

The entries of List are coerced into elements of the domain R. An error
message is issued if one of these conversions fails.

A Dom::MatrixGroup(m, n, R)(<m, n, >g, Diagonal) returns the
matrix whose ith diagonal element is g(i) , where the index i runs from
1 to min(m,n).

The function values are coerced into elements of the domain R. An error
message is issued if one of these conversions fails.

Option <Banded >:

A With the option Banded , banded matrices can be created.

A banded matrix has all entries zero outside the main diagonal and some
of the adjacent sub- and superdiagonals.

A Dom::MatrixGroup(m, n, R)(<m, n, >List, Banded) creates
an m× n banded Toeplitz matrix with the elements of List as entries.
The number of entries of List must be odd, say 2h + 1, and must not
exceed n. The resulting matrix has bandwidth at most 2h + 1.

All elements of the main diagonal of the created matrix are initialized
with the middle element of List . All elements of the ith subdiagonal
are initialized with the (h + 1− i)th element of List . All elements of the
ith superdiagonal are initialized with the (h + 1 + i)th element of List .
All entries on the remaining sub- and superdiagonals are set to zero.

The entries of List are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Entries:

one is only defined if m is equal to n; in that case it defines the n× n
identity matrix.

randomDimen is set to [m, n] .

zero is the m× n zero matrix.

Mathematical Methods

Method evalp : evaluating matrices of polynomials at a certain point

evalp(dom A, equation x = a, ...)

146

A This method evaluates the polynomial components of A at the point
x = a . See the system function evalp for details.
The matrix returned is of the domain Dom::MatrixGroup(m, n,
R::coeffRing) , if the evaluation of each component leads to an
element of the coefficient ring of the polynomial domain. Otherwise
the matrix returned is of the domain of A.

A This method is only defined if R is a polynomial ring of category
Cat::Polynomial .

A This method overloads the function evalp for matrices, i.e., one
may use it in the form evalp(A, x = a) .

Method identity : identity matrix

identity(positive integer k)

A This method returns the k× k identity matrix.

A The matrix returned is of the domain Dom::Matrix(R) , if
m6=n or if k 6=n. !

Method matdim : matrix dimension

matdim(dom A)

A This method returns the list [m, n] , i.e., the matrix dimension of
A.

Method random : random matrix generation

random()

A This method returns a random m× n matrix.

A The components of the random matrix are randomly generated with
the method "random" of the component ring R.

Access Methods

Method _concat : horizontally concatenation of matrices

_concat(dom A, dom B, ...)

A This method appends the matrices B, ... to the right side of the
matrix A.

A An error message is issued if the given matrices do not have the
same number of rows.

A The returned matrix is of the domain Dom::Matrix(R) .
!

147

A This method overloads the function _concat for matrices, i.e., one
may use it in the form A . B , or in functional notation:
_concat(A, B, ...) .

Method _index : matrix indexing

_index(dom A, row index i, column index j)

A Returns the (i, j)-th entry of the matrix A.
A This method overloads the function _index for matrices, i.e., one

may use it in the form A[i, j] or in functional notation: _in-
dex(A, i, j) .

_index(dom A, row-range r1..r2, column-range c1..c2)

A Returns the submatrix of A, created by the rows of A with indices
from r1 to r2 and the columns of A with indices from c1 to c2 .
A The submatrix is of the domain Dom::Matrix(R) .

!
_index(dom A, index i)

A This method returns the ith entry of A.
A This call is only allowed for 1× n or m× 1 matrices, i.e., either mor

n must be equal to one. Otherwise an error message is issued.

_index(dom A, index-range i1..i2)

A This method returns the subvector of A, formed by the entries with
index i1 to i2 (see also the method "op").
A This call is only allowed for 1× n or m× 1 matrices, i.e., either mor

n must be equal to one. Otherwise an error message is issued.
A This method overloads the function _index for matrices, i.e., one

may use it in the form A[i,j] , A[r1..r2,c1..c2] , A[i] or A[i1..i2] ,
respectively, or in functional notation: _index(A, ...) .

Method concatMatrix : horizontally concatenation of matrices

concatMatrix(dom A, dom B, ...)

A This method is identical to the method "_concat" .

Method col : extracting a column

col(dom A, column index c)

A This method extracts the column with index c of the matrix A and
returns it as a column vector, i.e., as an element of the domain Dom::Matrix(R) .
A An error message is issued if c is less than one or greater than n.

148

Method delCol : deleting a column

delCol(dom A, column index c)

A This method returns the matrix obtained by deleting the column
with index c of the matrix A.

A NIL is returned if A only consists of one column.

A The returned matrix is of the domain Dom::Matrix(R) .
!

A An error message is issued if c is less than one or greater than n.

Method delRow : deleting a row

delRow(dom A, row index r)

A This method returns the matrix obtained by deleting the row with
index r of the matrix A.

A NIL is returned if A only consists of one row.

A The returned matrix is of the domain Dom::Matrix(R) .
!

A An error message is issued if r is less than one or greater than m.

Method row : extracting a row

row(dom A, row index r)

A This method extracts the row with index r of the matrix A and re-
turns it as a row vector, i.e., as an element of domain Dom::Matrix(R) .

A An error message is issued if r is less than one or greater than m.

Method stackMatrix : concatenating of matrices vertically

stackMatrix(dom A, dom B, ...)

A This method stacks the matrix A on the top of the matrix B. If further
arguments are given, then the result is stacked on the top of the
third matrix, and so on.

A An error message is issued if the given matrices do not have the
same number of columns.

A The matrix returned is of the domain Dom::Matrix(R) .
!

149

Conversion Methods

Method convert : conversion into a matrix

convert(any x)

A This method tries to convert x into a matrix of type Dom::MatrixGroup(m,
n, R) .

A FAIL is returned if the conversion fails.

A x may either be an m×n array, or an m×n matrix of category Cat::Matrix .
x can also be a list. See the parameter List and ListOfRows in
“Creating Elements” above for admissible values of x .
The entries of x must be convertable into elements of the domain R,
otherwise FAIL is returned.

Example 1. A lot of examples can be found on the help page of the domain
constructor Dom::Matrix , and most of them are also examples for work-
ing with domains created by Dom::MatrixGroup . This example only high-
lights some differences with respect to working with matrices of the domain
Dom::Matrix(R) .

The following command defines the abelian group of 3× 4 matrices over
the rationals:

>> MatGQ := Dom::MatrixGroup(3, 4, Dom::Rational)

Dom::MatrixGroup(3, 4, Dom::Rational)

>> MatGQ::hasProp(Cat::AbelianGroup), MatGQ::hasProp(Cat::Ring)

TRUE, FALSE

MatGQis a commutative group with respect to the addition of matrices. The
unit of this group is the 3× 4 zero matrix:

>> MatGQ::zero

+- -+
| 0, 0, 0, 0 |
| |
| 0, 0, 0, 0 |
| |
| 0, 0, 0, 0 |
+- -+

Note that some operations defined by the domain MatGQreturn matrices
which are no longer elements of the matrix group. They return matrices of the
domain Dom::Matrix(Dom::Rational) , the super-domain of MatGQ.

For example, if we define the matrix:

150

>> A := MatGQ([[1, 2, 1, 2], [-5, 3], [2, 1/3, 0, 1]])

+- -+
| 1, 2, 1, 2 |
| |
| -5, 3, 0, 0 |
| |
| 2, 1/3, 0, 1 |
+- -+

and delete its third column, we get the matrix:

>> MatGQ::delCol(A, 3)

+- -+
| 1, 2, 2 |
| |
| -5, 3, 0 |
| |
| 2, 1/3, 1 |
+- -+

which is of the domain type:

>> domtype(%)

Dom::Matrix(Dom::Rational)

As another example we create the 3 × 3 identity matrix using the method
"identity" of our domain:

>> E3 := MatGQ::identity(3)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

This is also a matrix of the domain Dom::Matrix(Dom::Rational) :

>> domtype(E3)

Dom::Matrix(Dom::Rational)

If we concatenate E3 to the right of the matrix A defined above, we get the 3× 7
matrix:

>> B := A . E3

151

+- -+
| 1, 2, 1, 2, 1, 0, 0 |
| |
| -5, 3, 0, 0, 0, 1, 0 |
| |
| 2, 1/3, 0, 1, 0, 0, 1 |
+- -+

which is of the domain type Dom::Matrix(Dom::Rational) :

>> domtype(B)

Dom::Matrix(Dom::Rational)

Example 2. We can convert a matrix from a domain created with Dom::MatrixGroup
into or from another matrix domain, as shown next:

>> MatGR := Dom::MatrixGroup(2, 3, Dom::Real):
MatC := Dom::Matrix(Dom::Complex):

>> A := MatGR((i, j) -> i*j)

+- -+
| 1, 2, 3 |
| |
| 2, 4, 6 |
+- -+

To convert A into a matrix of the domain MatC, enter:

>> coerce(A, MatC)

+- -+
| 1, 2, 3 |
| |
| 2, 4, 6 |
+- -+

>> domtype(%)

Dom::Matrix(Dom::Complex)

The conversion is done component-wise. For example, we define the following
matrix:

>> B := MatC([[0, 1, 0], [exp(I), 0, 1]])

152

+- -+
| 0, 1, 0 |
| |
| exp(I), 0, 1 |
+- -+

The matrix B has one complex component and therefore cannot be converted
into the domain MatGR:

>> coerce(B, MatGR)

FAIL

Note: The system function coerce uses the methods "convert" and "convert_to"
implemented by any domain created with Dom::MatrixGroup and Dom::Matrix .

Super-Domain: Dom::Matrix

Axioms

if Rhas Ax::canonicalRep , then
Ax::canonicalRep

Changes:

A The method "dimen" was renamed to "matdim" .

A The method "newThis" was renamed to "create" .

A Some new methods were implemented or extended for the domain Dom::Matrix .
See the corresponding help page for details. Note that Dom::MatrixGroup(m,
n, R) inherits every method which is defined for Dom::Matrix(R)
and not re-implemented by Dom::MatrixGroup(m, n, R) .

Dom::MonomOrdering – monomial orderings

Dom::MonomOrdering represents the set of all possible monomial orderings.
A monomial ordering is a well-ordering of the set of all k-tuples of nonnegative
integers for some k.

Domain:

A Dom::MonomOrdering

153

Details:

A In MuPAD, a monomial ordering is implemented as a function that, when
applied to two lists of nonnegative integers, returns -1 , 0, or 1 if the
first list is respectively smaller than, equal to, or greater than the second
list. Each ordering can only compare lists of one fixed length, called
its its order length. Since the lists under consideration will be exponent
vectors in most cases, their length is also referred to as the number of
indeterminates.

A Monomial orderings are used in algebraic geometry for comparing terms
∏n

i=1 Xαi
i and ∏n

i=1 Xβi
i in a polynomial ring. Since Dom::MonomOrdering

works on the exponent vectors [α1, . . . , αn] and [β1, . . . , βn], degreevec
must be applied to the terms to be compared before applying Dom::MonomOrdering .

A Elements of Dom::MonomOrdering can be used as arguments for lcoeff ,
lmonomial , lterm , and tcoeff as well as for the functions of the
groebner package in order to specify the monomial ordering to be con-
sidered.

Monomial orderings are created by calling Dom::MonomOrdering(someIdentifier(parameters)) ,
where someIdentifier is one of a certain set of predefined identifiers, as
stated below. Converting someIdentifier into a string gives the order type
of the monomial ordering.

Creating Elements:

A Dom::MonomOrdering(Lex(n))

A Dom::MonomOrdering(RevLex(n))

A Dom::MonomOrdering(DegLex(n))

A Dom::MonomOrdering(DegRevLex(n))

A Dom::MonomOrdering(DegInvLex(n))

A Dom::MonomOrdering(WeightedLex(w1, ...,wn))

A Dom::MonomOrdering(WeightedRevLex(w1, ...,wn))

A Dom::MonomOrdering(WeightedDegLex(w1, ..,wn))

A Dom::MonomOrdering(WeightedDegRevLex(w1, ..,wn))

A Dom::MonomOrdering(Block(o1, ...))

A Dom::MonomOrdering(Matrix(params))

154

Parameters:
n — positive integer
w1, ... — numerical expressions
o1,.. — valid arguments to Dom::MonomOrdering
params — a sequence valid as the sequence of arguments to

Dom::Matrix() .

Categories:

Cat::BaseCategory

Details:

A Dom::MonomOrdering(Lex(n)) creates the lexicographical order on
n indeterminates.

A Dom::MonomOrdering(RevLex(n)) creates the reverse lexicographi-
cal order on n indeterminates, i.e., Dom::MonomOrdering(RevLex(n))([a1,...,an])
= Dom::MonomOrdering(Lex(n))([an,...,a1]) .

A Dom::MonomOrdering(DegLex(n)) creates the degree order on n in-
determinates with the lexicographical order used for tie-break.

A Dom::MonomOrdering(DegRevLex(n)) creates the degree order on
n indeterminates with the reverse lexicographical order used for tie-break
.

A Dom::MonomOrdering(DegInvLex(n)) creates the degree order on
n indeterminates, with the tie break being the opposite to the lexico-
graphical order.

A Dom::MonomOrdering(Weighted...(w1,...,wn)) returns a weighted
degree order with weights w1 through wn. The word following the word
Weighted specifies the tie-break used. Note that MuPAD uses the ordi-
nary degree order as the first tie-break.

A Dom::MonomOrdering(Matrix(params)) creates a matrix order, with
the order matrix defined by Dom::Matrix()(params) .

A Dom::MonomOrdering(Block(o1, ..., on)) or, equivalently, Dom::MonomOrdering
([o1, ..., on]) , creates a block order such that Dom::MonomOrdering(o1)
is used on the first indeterminates, then Dom::MonomOrdering(o2) is
used as a tie-break on the following indeterminates etc.

Block orders may be nested, i.e., the blocks may be block orders, too.

A Weight vectors with negative entries and order matrices do not define
well-orderings in general. You may enter such orderings, but it may
cause trouble, e.g., to use them with the groebner package.

155

Mathematical Methods

Method func_call : compare two lists of integers

func_call(dom o, list l1, list l2)

A This method is called by entering o(l1, l2) . It returns -1 if l1 <
l2, 1 if l1 > l2, and 0 if l1 = l2.

A The lengths of l1 and l2 must not exceed the order length of o. If
l1 or l2 is too short, the necessary number of zeroes is appended.

Access Methods

Method ordertype : return the type of an order

ordertype(dom o)

A This method returns the order type of o.

A If o equals Dom::MonomOrdering(someIdentifier(params)) ,
then converting someIdentifier into a string gives the order type
of o.

Method orderlength : return the length of an order

orderlength(dom o)

A This method returns length of o; this is the largest integer k for
which o works on lists of length k.

Method nops : number of blocks

nops(dom o)

A A block order Dom::MonomOrdering(Block(o1,...,on)) is
said to have n blocks. An order of any other type is said to have
one block.

Method block : get a particular block

block(dom o, positive integer i)

A This method returns the i-th block of o, or FAIL if the order o does
not have that many blocks.

156

Method blocktype : get the order type of a particular block

blocktype(dom o, positive integer i)

A This method returns the order type of the i-th block of o.

Method blocklength : get the order length of a particular block

blocklength(dom o, positive integer i)

A This method returns the order length of the i-th block of o.

Conversion Methods

Method expr : return an expression from which the order can be restored

expr(dom o)

A This method returns an expression someIdentifier(parameters)
such that applying Dom::MonomOrdering to it would give back o.

Example 1. We define ORDby prescribing that lists [a, b, c] are ordered ac-
cording to their weighted degrees 5a + 2b + πc. For lists with equal weighted
degree, the non-weighted degree a + b + c is used as a tie-break. Finally, the
lexicographical order decides (in fact, this last step is not necessary because π
is irrational).

>> ORD:=Dom::MonomOrdering(WeightedDegLex(5, 2, PI))

WeightedDegLex(5, 2, PI)

With respect to ORD, [1, 6, 1] is smaller than [2, 1, 3] :

>> ORD([1,6,1], [2,1,3])

-1

Super-Domain: Dom::BaseDomain

Changes:

A Dom::MonomOrdering is a new domain.

Dom::Multiset – multisets

Dom::Multiset is the domain of multisets, i.e., sets with possibly multiple
identical elements.

157

Details:

A A multiset is represented by a set of lists of the form [s,m], where s is an
element of the multiset and m its multiplicity.

A Multisets can be returned by the system solver solve . For example,
the input solve(x^3 - 4*x^2 + 5*x - 2, x, Multiple) gives
all roots of the polynomial x3− 4x2 + 5x− 2 in form of the multiset {[1,
2], [2, 1]} .

A The standard set operations such as union, intersection and subtraction
of sets have been extended to deal with multisets.

These operations can handle different types of sets, such as sets of type
DOM_SETand multisets. One may, for example, compute the union of
the multiset {[a, 2], [b, 1]} and the set {c} , which results in the
multiset {[a, 2], [b, 1], [c, 1]} .

A The elements of the multiset are sorted at the time where the multiset
is created. The system function sort is used in order to guarantee that
exactly one representation exists for a multiset, independent of the se-
quence in which the arguments appear.

Creating Elements:

A Dom::Multiset(<s1, s2, ... >)

Parameters:

s1, s2, ... — objects of any type

Categories:

Cat::Set

Related Domains: DOM_SET, Dom::ImageSet

Details:

A Dom::Multiset(s1, s2, ...) creates the multiset consisting of the
elements s1, s2, ...

A Multiple identical elements in s1, s2, ... are collected. For example,
the call Dom::Multiset(a, b, a, c) creates a multiset with the el-
ements a, b, c . The element a has multiplicity two, the other two
elements b and c both have multiplicity one.

158

Entries:

isFinite is TRUEbecause Dom::Multiset represents finite sets.

inhomog_intersect a table of the form T = Proc(multiset, setoftypeT) .
This entry is used internally by the implementation, and thus should
not be touched.

inhomog_union a table of the form T = Proc(multiset, setoftypeT) .
This entry is used internally by the implementation, and thus should
not be touched.

Mathematical Methods

Method normal : normalization of multisets

normal(dom set)

A This method normalizes every element of set using the system
function normal .

A This method overloads the function normal for multisets, i.e., one
may use it in the form normal(set) .

Method powerset : the power set of a multiset

powerset(dom set)

A This method computes the power set of the multiset set , i.e., all
sub-multisets of set .

A The power set of set is returned as a set of multisets.

Method random : random multiset generation

random()

A This method returns a randomly generated multiset. It uses the
function random to create the elements of the random multiset.
Therefore, the elements of the returned multiset will be integers.

A The number of elements created, including their multiplicities, is
restricted to 20.

159

Access Methods

Method _index : multiset indexing

_index(dom set, index i)

A Returns the i-th element s of the multiset set and its multiplicity m
in form of the list [s,m].
Note that the elements of the multiset are sorted with the use of the
system function sort , and thus the order of a multiset depends on
the sorting criteria specified by this function.

A See the method "op" .

A This method overloads the function _index for multisets, i.e., one
may use it in the form set[i] , or in functional notation: _in-
dex(set, i) .

Method contains : check on existence of set elements

contains(dom set, any s)

A This method returns TRUEif set does contain s (i.e., if s is an ele-
ment of set), otherwise FALSE is returned. For the comparison of
two elements, the system function _equal is used, which only tests
for syntactical equivalence.

A This method overloads the function contains for multisets, i.e.,
one may use it in the form contains(set, s) .

Method equal : test on equality of multisets

equal(dom set1, dom set2)

A This method tests if the two multisets set1 and set2 are equal and
returns TRUE, FALSEor UNKNOWN, respectively.

A The system function _equal is used for the test.

Method expand : expand a multiset to a sequence of its elements

expand(dom set)

A This method returns an expression sequence (i.e., an expression of
type "_exprseq") of all elements in set , appearing in correspon-
dence to their multiplicity. For example, for the multiset {[1,1], [2,2], [3,1]}.
the expression sequence 3,2,2,1 is returned.

A This method overloads the function expand for multisets, i.e., one
may use it in the form expand(set) .

160

Method getElement : extracts one element from a multiset

getElement(dom set)

A This method returns the first element of set .

A Note that the elements of the multiset are sorted with the use of the
system function sort , and thus the order of a multiset depends on
the sorting criteria specified by this function.

A This method overloads the function solvelib::getElement , i.e.,
one may use it in the form solvelib::getElement(set) .

Method has : check on existence of (sub-)expressions

has(dom set, any expr)

A This method returns TRUEif the multiset set has a subexpression
equal to expr , and FALSEotherwise.

A To check whether expr is contained as an element of set and not
as a subexpression of the elements of set , the function contains
must be used.

A This method overloads the function has for multisets, i.e., one may
use it in the form has(set, expr) .

Method map: apply a function to multiset elements

map(dom set, function func <, any expr, ... >)

A This method maps the function func onto the elements (not onto
their multiplicities) of the multiset set , with the additional function
parameters expr, ... passed to func , if given.
See the system function map for details.

A It overloads the function map for multisets, i.e., one may use it in
the form map(set, func, ...) .

Method multiplicity : multiplicity of an element

multiplicity(dom set, any s)

A This method returns the multiplicity of the element s in the multiset
set .

A Elements which are not contained in set have multiplicity zero.

161

Method nops : number of different elements in a multiset

nops(dom set)

A This method returns the number of different elements in set .

A This method overloads the function nops for multisets, i.e., one
may use it in the form nops(set) .

Method op : elements of a multiset

op(dom set, positive integer i)

A Returns the i-th element s of the multiset set and its multiplicity m
in form of the list [s,m].

A See also the method "_index" .

A Note that the elements of the multiset are sorted with the use of the
system function sort , and thus the order of a multiset depends on
the sorting criteria specified by this function.

A This method overloads the function op for multisets, i.e., one may
use it in the form op(s, i) .

Method select : selecting of multiset elements

select(dom set, function func <, any expr, ... >)

A This method maps the function func onto the elements (not onto
their multiplicities) of the multiset set , with the additional function
parameters expr, ... passed on to func , if given, and returns a
multiset with those elements for which the function call returned
TRUE.

A This method overloads the function select for multisets, i.e., one
may use it in the form select(set, func, ...) . See select
for details.

Method split : splitting a multiset

split(dom set, function func <, any expr, ... >)

A This method maps the function func onto the elements (not onto
their multiplicities) of the multiset set , with the additional function
parameters, if given, expr, ... passed to func and returns a list
of three multisets with those elements for which the function call
returned TRUE, FALSE, and UNKNOWNrespectively.

A This method overloads the function split for multisets, i.e., one
may use it in the form split(set, func, ...) . See split for
details.

162

Method subs : substitution of elements in multisets

subs(dom set, ...)

A This method applies the function subs with additionally given pa-
rameters to the elements (not onto their multiplicities) of the multi-
set set .
See the system function subs for details.

A This method overloads the function subs for multisets, i.e., one
may use it in the form subs(set, ...) .

Conversion Methods

Method convert : conversion into a multiset

convert(any x)

A This method tries to convert x into a multiset of domain type Dom::Multiset .

A FAIL is returned if the conversion fails.

A Currently only sets of type DOM_SETcan be converted into multi-
sets.

Method convert_to : multiset conversion

convert_to(dom set, any T)

A This method tries to convert the multiset set into an element of
domain type T.

A FAIL is returned if the conversion fails.

A Currently T may either be DOM_SETto convert the multiset set
into a set (loosing the multiplicities and the order of the elements of
set), or DOM_EXPRor "_exprseq" to convert set into an expres-
sion sequence (see the method "expand" for details).

A See also the method "expr" .

Method expr : multiset conversion into an object of a kernel domain

expr(dom set)

A This method converts set into a set of type DOM_SETconsisting
of lists of the form [s,m], where s is an element of set and m its
multiplicity.

A This method overloads the function expr for multisets, i.e., one
may use it in the form expr(set) .

163

Technical Methods

Method bin_intersect : intersection of two multisets

bin_intersect(dom set1, dom set2)

A Computes the intersection of set1 and set2 .
A This method is called from routines defined in the category Cat::Set ,

which implements among others the overloading of the function
_intersect for multisets. One may intersect two multisets di-
rectly by set1 intersect set2 , or in functional notation by _in-
tersect(set1, set2) .

Method bin_minus : subtraction of two multisets

bin_minus(dom set1, dom set2)

A Computes set1 minus set2 .
A This method is called from routines defined in the category Cat::Set ,

which implements among others the overloading of the function
_minus for multisets. One may subtract two multisets directly by
set1 minus set2 , or in functional notation by _minus(set1,
set2) .

Method homog_union : union of multisets

homog_union(dom set, ...)

A Computes the union of the given multisets.
A This method is called from routines defined in the category Cat::Set ,

which implements among others the overloading of the function
_union for multisets. One may compute the union of two mul-
tisets directly by set1 union set2 , or in functional notation by
_union(set1, set2) .

Method nested_union : union of nested sets

nested_union(set setofsets)

A This method computes the union of the sets in setofsets . The
contained sets may be multisets or sets of type DOM_SET.
A This method is called from routines defined in the category Cat::Set ,

which implements among others the overloading of the function
_union for multisets and sets. One may compute the union of mul-
tisets and sets directly by set1 union set2 , or in functional no-
tation by _union(set1, set2) .

164

Example 1. The multiset {a, a, b} consists of the two different elements a and
b, where a has multiplicity two and b has multiplicity one:

>> delete a, b, c:
set1 := Dom::Multiset(a, a, b)

{[a, 2], [b, 1]}

We create another multiset:

>> set2 := Dom::Multiset(a, c, c)

{[a, 1], [c, 2]}

Standard set operations such as union, intersection or subtraction are imple-
mented for multisets and can be performed using the standard set operators
of MuPAD:

>> set1 union set2

{[b, 1], [a, 3], [c, 2]}

>> set1 intersect set2

{[a, 1]}

>> contains(set1, a), contains(set1, d)

TRUE, FALSE

Example 2. Some system functions were overloaded for multisets, such as
expand , normal or split .

If we apply expand to a multiset, for example, we get an expression se-
quence of all elements of the multiset (appearing in correspondence to their
multiplicity):

>> delete a, b, c, d, e:
set := Dom::Multiset(a, b, c, a, c, d, c, e, c)

{[a, 2], [b, 1], [d, 1], [e, 1], [c, 4]}

>> expand(set)

e, d, c, c, c, c, b, a, a

If you want to convert a multiset into an ordinary set of the domain type
DOM_SET, use coerce :

>> coerce(set, DOM_SET)

165

{a, b, c, d, e}

Note: The system function coerce uses the methods "convert" and "convert_to"
of the domain Dom::Multiset .

Compare the last result with the return value of the function expr , when
it is applied for multisets:

>> expr(set)

{[a, 2], [b, 1], [d, 1], [e, 1], [c, 4]}

The result is a set of the domain type DOM_SET, consisting of lists of the do-
main type DOM_LIST with two entries, an element of the multiset and the
corresponding multiplicity of that element.

Super-Domain: Dom::BaseDomain

Changes:

A Method contains now returns either TRUEor FALSE instead of an in-
teger.

A Method convert expects exactly one argument only and was extended
to deal with sets of type DOM_SET.

A New entries and methods: "isFinite" , "convert_to" , "equal" ,
"getElement" , "powerset" , "random" .

A The methods "_intersect" , "_subtract" and "_union" were re-
moved and replaced by the following new entries and methods: "bin_intersect" ,
"bin_minus" , "inhomog_intersect" , "inhomog_union" , "homog_union"
and "nested_union" .

A The methods "has" , "map" , "select" , and "subs" now work on the
elements only, but not on the multiplicities.

A Dom::Multiset is of the new category Cat::Set , and therefore offers
the new features provided by this category.

Dom::MultivariatePolynomial – the domains of multivariate poly-
nomials

Dom::MultivariatePolynomial(Vars, R, ..) creates the domain of
multivariate polynomials in the variable list Vars over the commutative ring
R in distributed representation.

166

Domain:

A Dom::MultivariatePolynomial(<Vars <, R <, Order >>>)

Parameters:
Vars — a list of indeterminates. Default: [x,y,z] .
R — a commutative ring, i.e., a domain of category

Cat::CommutativeRing . Default:
Dom::ExpressionField(normal) .

Order — a monomial ordering, i.e., one of the predefined orderings
LexOrder , DegreeOrder , or DegInvLexOrder or any
object of type Dom::MonomOrdering . Default: LexOrder .

Details:

A Dom::MultivariatePolynomial represents multivariate polynomi-
als over arbitrary commutative rings.

All usual algebraic and arithmetical polynomial operations are imple-
mented, including Gröbner basis computation and some classical con-
struction tools used in invariant theory.

A It is highly recommend to use only coefficient rings with unique
zero representation. Otherwise it may happen that, e.g., a poly-
nomial division will not terminate or a wrong degree will be re-
turned.

!

A Dom::MultivariatePolynomial(Vars, R, Order) creates a do-
main of multivariate polynomials in the variable list Vars over a domain
R of category Cat::CommutativeRing in sparse distributed represen-
tation with respect to the monomial ordering Order .

A Dom::MultivariatePolynomial() creates a polynomial domain in
the variable list [x,y,z] over the domain Dom::ExpressionField(normal)
with respect to the lexicographic monomial ordering.

A Dom::MultivariatePolynomial(Vars) generates the polynomial do-
main in the variable list Vars over the domain Dom::ExpressionField(normal)
with respect to the lexicographic monomial ordering is created.

A Only commutative coefficient rings of type DOM_DOMAINwhich
inherit from Dom::BaseDomain are allowed. If R is of type
DOM_DOMAINbut does not inherit from Dom::BaseDomain , the
domain Dom::ExpressionField(normal) will be used in-
stead.

!

A In contrast to the domain Dom::DistributedPolynomial , Dom::MultivariatePolynomial
accepts only identifiers (DOM_IDENT) as indeterminates. This restriction
enables some further methods described below.

167

A Please note: For reasons of efficiency not all methods check their argu-
ments, not even at the interactive level. In particular this is true for many
access methods, converting methods and technical methods. This may
cause strange error messages.

Creating Elements:

A Dom::MultivariatePolynomial(Vars, R, Order)(p)

A Dom::MultivariatePolynomial(Vars, R, Order)(lm)

Parameters:
p — a polynomial or a polynomial expression.
lm — list of monomials, which are represented as lists containing the

coefficients together with the exponents or exponent vectors.

Categories:

if Vars has a single variable, then
Cat::UnivariatePolynomial(R)

else
Cat::Polynomial(R)

Related Domains: Dom::DistributedPolynomial , Dom::Polynomial ,
Dom::UnivariatePolynomial

Entries:

characteristic The characteristic of this domain.

coeffRing The coefficient ring of this domain as defined by the parameter
R.

key The name of the domain created.

one The neutral element w.r.t. "_mult" .

ordering The monomial ordering defined by the parameter Order .

variables The list of variables defined by the parameter Vars .

zero The neutral element w.r.t. "_plus" .

168

Mathematical Methods

Method borderedHessianDet : bordered Hessian determinant of a poly-
nomial

borderedHessianDet(dom a, dom b <, list of indetermi-
nates v>)

A Returns the determinant of the Hessian matrix of a bordered by b
with respect to v , which is

borderedHessianDet(a,b,v) = det

∂2a

∂v1∂v1
· · · ∂2a

∂v1∂vn

∂b
∂v1

...
...

...
∂2a

∂vn∂v1
· · · ∂2a

∂vn∂vn

∂b
∂vn

∂b
∂v1

· · · ∂b
∂vn

0

as an element of this domain. If v is not given, Vars will be used
instead.

Method borderedHessianMat : bordered Hessian matrix of a polynomial

borderedHessianMat(dom a, dom b <, list of indetermi-
nates v>)

A Returns the Hessian matrix of a bordered by b with respect to v
as an element of Dom::Matrix(dom) . For the definition of that
matrix see method "borderedHessianDet" . If v is not given,
Vars will be used instead.

Method degLex : compares two polynomials w.r.t. the graded lexicographi-
cal order

degLex(dom a, dom b)

A Returns -1 if a < b, 0 if a = b, 1 if a > b with respect to the graded
lexicographical order, which first uses the degree order and then the
lexicographical order for tie-break.

Method degRevLex : compares two polynomials w.r.t. the graded reverse
lexicographical order

degRevLex(dom a, dom b)

A Returns -1 if a < b, 0 if a = b, 1 if a > b with respect to the graded
reverse lexicographical order, which first uses the degree order and
then the reverse lexicographical order for tie-break.

169

Method hessianDet : Hessian determinant of a polynomial

hessianDet(dom a <, list of indeterminates v>)

A Returns the determinant of the Hessian matrix of a with respect to
v , which is

hessianDet(a,v) = det
(

∂2a
∂vi∂v j

)
as an element of this domain. If v is not given, Vars will be used
instead.

Method hessianMat : Hessian matrix of a polynomial

hessianMat(dom a <, list of indeterminates v>)

A Returns the Hessian matrix of a with respect to v , which is

hessianMat(a,v) =
(

∂2a
∂vi∂v j

)
as an element of Dom::Matrix(dom) . If v is not given, Vars will
be used instead.

Method homogeneousComponents : list of homogeneous components of a
polynomial

homogeneousComponents(dom a)

A Returns an ordered list of the homogeneous components of a, i.e.,
a list of sums of monomials with the same total degree. The list is
sorted in descending total degree order.

Method isHomogeneous : tests if a polynomial is homogeneous

isHomogeneous(dom a)

A Returns TRUEif a is a homogeneous polynomial and FALSEother-
wise.

Method jacobianDet : Jacobian determinant of a polynomial

jacobianDet(list of dom ais <, list of indeterminates
v>)

A Returns the determinant of the Jacobian matrix of ais , with respect
to v which is

jacobianDet(ais,v) = det
(
∂aisi

∂v j

)
as an element of this domain. If v is not given, Vars will be used
instead.

170

Method jacobianMat : Jacobian matrix of a polynomial

jacobianMat(list of dom ais <, list of indeterminates
v>)

A Returns the Jacobian matrix of ais , with respect to v which is

jacobianMat(ais,v) =
(
∂aisi

∂v j

)
as an element of Dom::Matrix(dom) . If v is not given, Vars will
be used instead.

Method rewriteHomPoly : rewrites a polynomial in terms of other polyno-
mials

rewriteHomPoly(dom a, list of dom ais, list of indeter-
minates v)

A Computes a polynomial g over the ring R in the variable list v , such
that g(op(ais)) = a , i.e., it returns the homogeneous polyno-
mial a expressed in terms of the new variable list v , which repre-
sents the list of homogeneous polynomials ais respectively. For
this, the sequence (order) of ais is used in the algorithm.

A All the polynomials a and ais must be homogeneous.

A The variables of v should be new variables.

Method rewritePoly : rewrites a polynomial in terms of other polynomials

rewritePoly(dom a, list of equations [ai=vi] <, Unsorted >)

A computes a polynomial g over the ring R in the variables vi such
that g(...,ai,...)=a , where the ai ’s are homogeneous poly-
nomials of this domain, and returns the polynomial a expressed in
terms of the new variables vi , or FAIL if this is not possible.

A This method can be used for representing a polynomial with respect
to a given polynomial basis.

A When option Unsorted is given, the list [ai=vi] is not sorted.
Otherwise, in a precomputation step this list will be sorted in the
ai ’s w.r.t. the graded lexicographical order ("degLex").

A Please note: the algorithm depends on the order of Vars and ais .

A All the polynomials ai must be homogeneous.

A The variables of vi should be new variables.

171

Access Methods

Method order : compares two polynomials w.r.t. a given order

order(dom a, dom b, Dom::MonomOrdering o)

A Compares a and b with respect to the monomial order o: If a > b
then 1 is returned, if a = b then 0 is returned and if a < b then -1 is
returned.

Method sortList : sorts a list of polynomials w.r.t. a given order

sortList(list of dom ais, Dom::MonomOrdering o)

A Sorts the polynomials ais with respect to the monomial order o in
descending order.

A This sorting method may be not stable if o is not a total order.

Method stableSort : sorts a list of polynomials w.r.t. a given order

stableSort(list of dom ais, Dom::MonomOrdering o)

A Sorts the polynomials ais with respect to the monomial order o in
descending order.

A This sorting method is stable, even if o is not a total order.

Example 1. To create the ring of multivariate polynomials in x , y and z over
the rationals one may define

>> MP := Dom::MultivariatePolynomial([x, y, z], Dom::Rational)

Dom::MultivariatePolynomial([x, y, z], Dom::Rational, LexOrder)

The elementary symmetric polynomials of this domain are

>> s1 := MP(x + y + z)

x + y + z

>> s2 := MP(x*y + x*z + y*z)

x y + x z + y z

>> s3:=MP(x*y*z)

x y z

A polynomial is called symmetric if it remains unchanged under every possi-
ble permutation of variables as, e.g.:

172

>> s3=s3(MP(y), MP(z), MP(x))

x y z = x y z

These polynomials arise naturally in studying the roots of a polynomial. To
show this, we first have to create an univariate polynomial, e.g., in U over MP,
and generate a polynomial in Uwith roots in x , y and z .

>> UP:=Dom::UnivariatePolynomial(U, MP)

Dom::UnivariatePolynomial(U, Dom::MultivariatePolynomial(

[x, y, z], Dom::Rational, LexOrder), LexOrder)

>> f := UP((U - x)*(U - y)*(U - z))

3 2
U + (- x - y - z) U + (x y + x z + y z) U - x y z

>> UP(U^3)-s1*UP(U^2)+s2*UP(U)+(-1)^3*s3

3 2
U + (- x - y - z) U + (x y + x z + y z) U - x y z

This exemplifies that the coefficients of f are (elementary) symmetric polyno-
mials in its roots.

From the fundamental theorem of symmetric polynomials we know that
every symmetric polynomial can be written uniquely as a polynomial in the
elementary symmetric polynomials. Thus we can rewrite the following sym-
metric polynomial s in the elementary symmetric polynomials s1 , s2 and s3 ,

>> s:=MP(x^3*y+x^3*z+x*y^3+x*z^3+y^3*z+y*z^3)

3 3 3 3 3 3
x y + x z + x y + x z + y z + y z

>> S:=MP::rewritePoly(s,[s1=S1,s2=S2,s3=S3])

2 2
S1 S2 - S1 S3 - 2 S2

where these polynomials are represented by the three new variables S1, S2
and S3 respectively. To see that this new polynomial S in the new variables
indeed represents the old original polynomial s , we simply have to plug in the
three elementary symmetric polynomials into S:

>> S(s1,s2,s3,Expr)

3 3 3 3 3 3
x y + x z + x y + x z + y z + y z

173

When one has a given list of polynomials, e.g., like:

>> l:=[3*s1,2*s1,s1,s3]

[3 x + 3 y + 3 z, 2 x + 2 y + 2 z, x + y + z, x y z]

and one wants to sort them in an appropriate order, one may use one of the
following two methods.

>> MP::sortList(l,Dom::MonomOrdering(DegLex(3)))

[x y z, 2 x + 2 y + 2 z, x + y + z, 3 x + 3 y + 3 z]

>> MP::stableSort(l,Dom::MonomOrdering(DegLex(3)))

[x y z, 3 x + 3 y + 3 z, 2 x + 2 y + 2 z, x + y + z]

In the first sorted list the order of the three polynomials of the same degree has
changed, while with the second method this order remains stable.

Example 2. Let G⊆GL(n, k) be a finite (matrix) subgroup of the general linear
group. Then a polynomial f ∈ k[x1, . . . , xn] is called invariant under G, if for all
A ∈ G

f (x) = f (A · x)

where x = (x1, . . . , xn).
The symmetric polynomials s1 , s2 and s3 from the previous example are
invariants under the symmetric group S3. In fact, these three fundamental
invariants yet generate the whole ring of invariants of S3.

Now let us examine the invariants of the famous icosahedral group. One
may find a representation of this group in H. F. Blichfeldt: Finite collineation
groups, University of Chicago Press, 1917. on page 73.

S′=
(
ε3 0
0 ε2

)
, U′=

(
0 1
−1 0

)
, T′=

(
α β
β −α

)
, ε5 = 1, α=

ε4− ε√
5
, β =

ε2− ε3
√

5

The group is generated from these three matrices, has 120 elements and is thus
a finite subgroup, even of the special linear group SL(2,Q (ε)). It is also well
known that

I1 = x1x2
11− 11x1

6x2
6− x1

11x2

is a fundamental invariant of degree 12 of this group. To declare I1 in MuPAD
one has first to define the polynomial domain.

>> MP:=Dom::MultivariatePolynomial([x1,x2],Dom::Rational)

Dom::MultivariatePolynomial([x1, x2], Dom::Rational, LexOrder)

>> i1:=MP(x1*x2^(11)-11*x1^6*x2^6-x1^(11)*x2)

174

11 6 6 11
- x1 x2 - 11 x1 x2 + x1 x2

From the invariant I1 one can compute a further fundamental invariant I2 with

>> i2:=MP::hessianDet(i1)

20 15 5 10 10
- 121 x1 + 27588 x1 x2 - 59774 x1 x2 -

5 15 20
27588 x1 x2 - 121 x2

But to get more simple coefficients we choose I2 as

>> i2:=-1/121*MP::hessianDet(i1)

20 15 5 10 10 5 15 20
x1 - 228 x1 x2 + 494 x1 x2 + 228 x1 x2 + x2

instead. Similar we obtain a third fundamental invariant I3 with

>> i3:=1/20*MP::jacobianDet([i1,i2])

30 25 5 20 10 10 20
x1 + 522 x1 x2 - 10005 x1 x2 - 10005 x1 x2 -

5 25 30
522 x1 x2 + x2

In contrast to the symmetric groups, where all invariants can be uniquely rep-
resented by the fundamental invariants, the fundamental invariants of this
group have an algebraic relation, a so-called syzygy between them. It is possi-
ble to represent I3

2 in two ways:

>> MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3])

5 3
- 1728 I1 + I2

>> MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3],Unsorted)

2
I3

And hence we get the syzygy:

>> MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3],Unsorted)-
MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3]) = 0

5 3 2
1728 I1 - I2 + I3 = 0

175

Super-Domain: Dom::DistributedPolynomial

Axioms

if Rhas Ax::normalRep , then
Ax::normalRep

if Rhas Ax::canonicalRep , then
Ax::canonicalRep

Background:

A The algorithms used for rewriting polynomials, i.e., for expressing poly-
nomials in terms of some other homogeneous polynomials stem from

• Winfried Fakler. Algorithmen zur symbolischen Lösung homogener
linearer Differentialgleichungen. Diplomarbeit, Universität Karl-
sruhe (1994).

Changes:

A Dom::MultivariatePolynomial is a new domain.

Dom::Numerical – the field of numbers

Dom::Numerical is the field of numbers.

Details:

A Dom::Numerical is the domain of numbers represented by one of the
kernel domains DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_COMPLEX.

A Dom::Numerical is of category Cat::Field due to pragmatism. This
domain actually is not a field because bool(1.0 = float(3) / float(3))
returns FALSE, for example.

A Elements of Dom::Numerical are usually not created explicitly. How-
ever, if one creates elements using the usual syntax, it is checked whether
the input expression can be converted into a number (see below).

This means that Dom::Numerical is a façade domain which creates ele-
ments of domain type DOM_INT, DOM_RAT, DOM_FLOATor DOM_COMPLEX.
Every system function dealing with numbers can be applied, and com-
putations in this domain are performed efficiently.

A Dom::Numerical has no normal representation, because 0 and 0.0
both represent zero.

176

A Viewed as a differential ring, Dom::Numerical is trivial. It only con-
tains constants.

Creating Elements:

A Dom::Numerical(x)

Parameters:

x — an arithmetical expression

Categories:

Cat::DifferentialRing , Cat::Field

Related Domains: Dom::Complex , Dom::Float , Dom::Integer ,
Dom::Rational , Dom::Real

Details:

A If x is a constant arithmetical expression such as sin(2) or PI + 2 ,
the system function float is applied to convert x into a floating point
approximation.

An error message is issued if the result of this conversion is not of do-
main type DOM_FLOATor DOM_COMPLEX.

Entries:

characteristic is zero.

Mathematical Methods

Method D: the differential operator for numbers

D(dom a)

A This method returns the derivative of a, which is zero.

A See the function D for details and further calling sequences.

Method diff : differentiation of numbers

diff(dom a, variable x)

A This method differentiates a with respect to x , which results in zero.

A See the function diff for details and further calling sequences.

177

Method norm : the absolute value of numbers

norm(dom a)

A This method returns |a|.

Method random : random number generation

random()

A This methods returns a randomly generated number. The real and
imaginary part of this number are generated as tan(r), where r is
uniformly distributed in the interval]− π/2, π/2[.

Conversion Methods

Method convert : conversion of objects into numbers

convert(any x)

A This method tries to convert x into a number of type Dom::Numerical
and returns FAIL if this is not possible.

A If x is of the domain type DOM_INT, DOM_RAT, DOM_FLOATor DOM_COMPLEX,
x is returned.
Otherwise float(x) is computed and the result is returned, if it is
of the domain type DOM_FLOATor DOM_COMPLEX. If it is not, FAIL
is returned.

Method convert_to : conversion into other domains

convert_to(dom a, any T)

A This method tries to convert the number a into an element of the
domain T.

A If the conversion fails, FAIL is returned.

A It currently handles the following domains for T: DOM_INT, Dom::Integer ,
DOM_RAT, Dom::Rational , DOM_FLOAT, Dom::Float and DOM_COMPLEX.

Method testtype : type checking

testtype(any a, dom T)

A This method checks whether it can convert a into the domain Dom::Numerical .
The method returns TRUE if it can perform the conversion, and
FAIL otherwise.

A This method is called from the function testtype .

178

Example 1. Dom::Numerical contains numbers of the domains DOM_INT,
DOM_RAT, DOM_FLOATand DOM_COMPLEX:

>> Dom::Numerical(2), Dom::Numerical(2/3),
Dom::Numerical(3.141), Dom::Numerical(2 + 3*I)

2, 2/3, 3.141, 2 + 3 I

Constant arithmetical expressions are converted into a real and complex float-
ing point number, respectively, i.e., into an element of the domain DOM_FLOAT
or DOM_COMPLEX(see the function float for details):

>> Dom::Numerical(exp(5)), Dom::Numerical(sin(2/3*I) + 3)

148.4131591, 3.0 + 0.717158461 I

Note that the elements of this domain are elements of kernel domains, there
are no elements of the domain type Dom::Numerical !

An error message is issued for non-constant arithmetical expressions:

>> Dom::Numerical(sin(x))

Error: illegal arguments [Dom::Numerical::new]

Example 2. Dom::Numerical is regarded as a field, and it therefore can be
used as a coefficient ring of polynomials or as a component ring of matrices,
for example.

We create the domain of matrices of arbitrary size (see Dom::Matrix) with
numerical components:

>> MatN := Dom::Matrix(Dom::Numerical)

Dom::Matrix(Dom::Numerical)

Next we create a banded matrix, such as:

>> A := MatN(4, 4, [-PI, 0, PI], Banded)

+- -
+

| 0, 3.141592654, 0, 0 |
| |
| -3.141592654, 0, 3.141592654, 0 |
| |
| 0, -3.141592654, 0, 3.141592654 |
| |
| 0, 0, -3.141592654, 0 |
+- -

+

179

and a row vector with four components as a 1× 4 matrix:

>> v := MatN([[2, 3, -1, 0]])

+- -+
| 2, 3, -1, 0 |
+- -+

Vector-matrix multiplication can be performed with the standard operator *
for multiplication:

>> v * A

+- -
+

| -9.424777961, 9.424777961, 9.424777961, -3.141592654 |
+- -

+

Finally we compute the determinant of the matrix A, using the function linalg::det
of the linalg package:

>> linalg::det(A)

97.40909104

Super-Domain: Dom::ArithmeticalExpression

Axioms

Ax::canonicalRep , Ax::systemRep ,
Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult") ,
Ax::efficientOperation("_invert")

Changes:

A No changes.

Dom::PermutationGroup – permutation groups

Dom::PermutationGroup(n) creates the domain of all permutations of n
elements.

Domain:

A Dom::PermutationGroup(n)

180

Parameters:

n — positive integer

Details:

A A permutation of n elements is a bijective mapping of the set {1, . . . ,n}
onto itself.

The domain element Dom::PermutationGroup(n)(l) represents the bijec-
tive mapping of the first n positive integers that maps the integer i to l[i] ,
for 1 ≤ i ≤ n.

Creating Elements:

A Dom::PermutationGroup(n)(l)

Parameters:

l — list or array consisting of the first n integers in some order.

Categories:

Cat::Group

Related Domains: Dom::DihedralGroup

Entries:

one the identical mapping of the set {1, . . . ,n} to itself.

Mathematical Methods

Method _mult : product of permutations

_mult(dom a1, ...)

A The product a1*a2* . . . *ak of permutations is defined to be the
mapping that assigns, to every integer i between 1 and n, the inte-
ger a1(a2(. . . ak(i) . . .)) .

A This method overloads the function _mult .

181

Method _invert : inverse of a permutation

_invert(dom a)

A This method computes a permutation b such that a*b is the identity
mapping.

A This method overloads the function _invert .

Method func_call : function value of a permutation at a point

func_call(dom a, integer i)

A This method overloads the round brackets (. . .) , i.e. it may be
called in the form a(i) .

A It computes the function value of a at i , i.e., the integer that i is
mapped to by the permutation a; i must be an integer between 1
and n.

Method cycles : cycle representation of a permutation

cycles(dom a)

A This method computes a cycle representation of a. A cycle repre-
sentation is a list [orbit1, . . . , orbitk] ; each of the orbits is
a list of integers of the form [i, a(i), a(a(i)), . . .] with
just as many elements such that i does not occur in it for a second
time; and each integer between 1 and n appears in exactly one of
the orbits.

Method order : order of a permutation

order(dom a)

A The order of a is defined to be the least positive integer k for which
ak is the identity.

Method inversions : number of inversions

inversions(dom a)

A This method computes the number of all pairs i, j of integers for
which i < j but a(i) > a(j).

Method random : random permutation

random()

A This method returns a random element of the permutation group.

182

Conversion Methods

Method convert : conversion of an object into a permutation

convert(any x)

A This method tries to convert x into a permutation. This is only pos-
sible if x is a list or an array in which each of the integers 1 through
n occurs exactly once.

Method convert_to : conversion of a permutation into another type

convert_to(dom a, any T)

A Tries to convert a into type T. Currently, only a conversion into a
list of type DOM_LISTis possible.

Method expr : convert a permutation into a list

expr(dom a)

A This method returns a list such that generating a permutation from
that list would result in a.

Example 1. Consider the group of permutations of the first seven positive
integers:

>> G:=Dom::PermutationGroup(7)

Dom::PermutationGroup(7)

We enter an element by providing the image of 1, 2, etc. under the permuta-
tion.

>> a:=G([2,4,6,1,3,5,7])

[2, 4, 6, 1, 3, 5, 7]

>> a(3)

6

Super-Domain: Dom::BaseDomain

Axioms

Ax::canonicalRep

183

Changes:

A No changes.

Dom::Polynomial – the domains of polynomials in arbitrarily many
indeterminates

Dom::Polynomial(R, ..) creates the domain of polynomials in arbitrarily
many indeterminates over the commutative ring R in distributed representa-
tion.

Domain:

A Dom::Polynomial(<R <, Order >>)

Parameters:
R — a commutative ring, i.e., a domain of category

Cat::CommutativeRing . Default:
Dom::ExpressionField(normal) .

Order — a monomial ordering, i.e., one of the predefined orderings
LexOrder , DegreeOrder , or DegInvLexOrder or an
element of the domain Dom::MonomOrdering . Default:
LexOrder .

Details:

A Dom::Polynomial represents polynomials in arbitrarily many indeter-
minates over arbitrary commutative rings.

It is simply a frontend to the domain Dom::DistributedPolynomial([],R,Order)
and thus all usual algebraic and arithmetical polynomial operations are
implemented. Please see the documentation for Dom::DistributedPolynomial
for a list of methods.

A Dom::Polynomial(R, Order) creates a domain of polynomials in ar-
bitrarily many indeterminates over a domain of category Cat::CommutativeRing
in sparse distributed representation with respect to the monomial order-
ing Order .

A If Dom::Polynomial is called without any argument, a polynomial
domain over the domain Dom::ExpressionField(normal) with re-
spect to the lexicographic monomial ordering is created.

A Only commutative coefficient rings of type DOM_DOMAINwhich
inherit from Dom::BaseDomain are allowed. If R is of type
DOM_DOMAINbut does not inherit from Dom::BaseDomain , the
domain Dom::ExpressionField(normal) will be used in-
stead.

!

184

A Only identifiers should be used as polynomial indeterminates, since when
creating a new element from a polynomial or a polynomial expression
the function indets is first called to get the identifiers and then the poly-
nomial is created with respect to these identifiers.

A It is highly recommend to use only coefficient rings with unique
zero representation. Otherwise it may happen that, e.g., a poly-
nomial division will not terminate or a wrong degree will be re-
turned.

!

A Please note that for reasons of efficiency not all methods check their ar-
guments, not even at the interactive level. In particular, this is true for
many access methods, converting methods and technical methods. Thus,
improper use of these methods may result in confusing error messages.

Creating Elements:

A Dom::Polynomial(R <, Order >)(p)

A Dom::Polynomial(R <, Order >)(lm,v)

Parameters:
p — a polynomial or a polynomial expression.
lm — list of monomials, which are represented as lists containing the

coefficients together with the exponents or exponent vectors.
v — list of indeterminates.

Categories:

Cat::Polynomial(R)

Related Domains: Dom::DistributedPolynomial ,
Dom::MultivariatePolynomial , Dom::UnivariatePolynomial

Entries:

characteristic The characteristic of this domain, which is the character-
istic of R.

coeffRing The coefficient ring of this domain as defined by the parameter
R.

key The name of the domain created.

one The neutral element w.r.t. "_mult" , which is R::one .

ordering The monomial order as defined by the parameter Order .

zero The neutral element w.r.t. "_plus" , which is R::zero .

185

Example 1. The following call creates the polynomial domain over the ratio-
nals.

>> PR:=Dom::Polynomial(Dom::Rational)

Dom::Polynomial(Dom::Rational, LexOrder)

Since the monomial ordering was not specified, this domain is created with
the default value for this parameter.

It is rather easy to create elements of this domain, as, e.g.,

>> a := PR(x*(2*x + y^3) - 7/2)

2 3
2 x + x y - 7/2

>> b := PR(x*(2*t + z^3) - 6)

3
2 t x + x z - 6

>> c := a^2-b/3+3

4 3 3 2 6 2 3
- 2/3 t x + 4 x + 4 x y + x y - 14 x - 7 x y -

3
1/3 x z + 69/4

Super-Domain: Dom::DistributedPolynomial

Axioms

if Rhas Ax::normalRep , then
Ax::normalRep

if Rhas Ax::canonicalRep , then
Ax::canonicalRep

Background:

A To create polynomials from expressions with no suitable indeterminates
the dummy variable _dummyis introduced. With this variable it is pos-
sible to create elements from constants which otherwise would fail. The
drawback of this approach is that two mathematically equal polynomials
may have variable lists which differ by this dummy variable.

186

Changes:

A Dom::Polynomial used to be Dom::PolynomialExplicit([],R,Order) .

A The former implementation of this domain does no longer exist and has
been completely reimplemented.

A It is now allowed to call this domain with no, one or two arguments.
With the second argument one can now choose an appropriate monomial
ordering.

A The method "indets" now returns a set of indeterminates.

A The methods "Rep" , "decompose" , "int" , "makeIntegral" , "monic" ,
"orderedVariableList" , "ordering" , "reductum" , "resultant"
were added.

Dom::Product – homogeneous direct products

Dom::Product(Set, n) is an n-fold direct product of the domain Set.

Domain:

A Dom::Product(Set <, n >)

Parameters:
Set — an arbitrary domain of elements, i.e., a domain of category

Cat::BaseCategory
n — the dimension of the product (a positive integer); default is 1

Creating Elements:

A Dom::Product(Set <, n >)(e1, e2, ..., en)

A Dom::Product(Set <, n >)(List)

Parameters:
e1, e2, ..., en — elements of Set or objects convertible into

such
List — a list of n elements of Set or objects

convertible into such

Categories:

Cat::HomogeneousFiniteProduct(Set)

187

Details:

A Dom::Product(Set, n)(e1, e2, ..., en) creates the n-tuple (e1, e2, . . . , en).

The objects e1 , e2, ... , en must be convertible into elements of the
domain Set , otherwise an error message is issued.

A Dom::Product(Set, n)(List) creates the n-tuple (l1, l2, . . . , ln).

The n elements li of List must be convertible into elements of the do-
main Set , otherwise an error message is issued.

The list must consist of exactly n elements, otherwise an error message
is issued.

A Following to the definition of a direct product many of the methods such
as "D" and "_negate" just map the operation to all the components of
the tuple.

Most n-ary methods like "_plus" and "_mult" apply the operation
component-wise to the tuples.

Entries:

card is the cardinal number of Dom::Product(Set, n) , which is equal
to n.

coeffRing is the domain S.

one is the n-tuple (Set::one, Set::one, ..., Set::one) . This
entry only exists if Set is a monoid, i.e., a domain of category
Cat::Monoid .

zero is the n-tuple (Set::zero, Set::zero, ..., Set::zero) .
This entry only exists if Set is an Abelian group, i.e., a domain of
category Cat::AbelianGroup .

Mathematical Methods

Method _divide : divide tuples

_divide(dom x, dom y)

A This method divides the tuple x by y , i.e., it divides the ith compo-
nent of x by the ith component of y (i ranges from 1 to n).
A This method only exists if Set is a (multiplicative) group, i.e., a

domain of category Cat::Group .
A This method overloads the function _divide for n-tuples, i.e., one

may use it in the form x / y , or in functional notation: _divide(x,
y) .

188

Method _invert : computes the inverse of a tuple

_invert(dom x)

A The inverse of a tuple is the inverse of each component of x .
A This method only exists if Set is a (multiplicative) group, i.e., a

domain of category Cat::Group .
A This method overloads the function _invert for n-tuples, i.e., one

may use it in the form 1/x or x^(-1) , or in functional notation:
_inverse(x) .

Method _less : less-than relation

_less(dom x, dom y)

A returns TRUEif x is lexically smaller than y .
A An implementation is provided only if Set is an ordered set, i.e., a

domain of category Cat::OrderedSet .
A This method overloads the function _less for n-tuples, i.e., one

may use it in the form x < y , or in functional notation: _less(x,
y) .

Method _mult : multiplies tuples by tuples and scalars

_mult(any x, any y, ...)

A If x and y both are n-tuples defined over Set the n-tuple with the
ith component defined by xi · yi (i ranges from 1 to n) is returned.
A If x is not of the type Dom::Product(Set,n) , it is considered as a

scalar which is multiplied to each component of the n-tuple y (and
vice versa).
A This method only exists if Set is a semigroup, i.e., a domain of cat-

egory Cat::SemiGroup .
A This method also handles more than two arguments. In this case,

the argument list is split into two parts of the same length which
both are multiplied with the function _mult . These two result are
multiplied again with _mult whose result then is returned.
A This method overloads the function _mult for n-tuples, i.e., one

may use it in the form x * y , or in functional notation: _mult(x,
y) .

Method _negate : negates an n-tuple

_negate(dom x)

A The negative of an n-tuple is the negative of each of its components.
A This method overloads the function _negate for n-tuples, i.e., one

may use it in the form -x , or in functional notation: _negate(x) .

189

Method _power : the ith power of a tuple

_power(dom x, integer i)

A This method raises each component of x to the ith power.

A An implementation is provided only if Set is a semigroup, i.e., a
domain of category Cat::SemiGroup .

A This method overloads the function _power for n-tuples, i.e., one
may use it in the form x^i , or in functional notation: _power(x,
i) .

Method _plus : adds tuples

_plus(dom x, dom y, ...)

A Returns the sum x + y + · · · .
A The sum of two n-tuples x and y is defined component-wise as (x1 +

y1, . . . , xn + yn).

A This method overloads the function _plus for n-tuples, i.e., one
may use it in the form x + y , or in functional notation: _plus(x,
y) .

Method D: the differential operator

D(dom x)

A This method returns the n-tuple which results from taking the deriva-
tive of each component of x using the method "D" of the domain
S.

A An implementation is provided only if Set is a partial differential
ring, i.e., a domain of category Cat::PartialDifferentialRing .

A This method overloads the operator Dfor n-tuples, i.e., one may use
it in the form D(x) .

Method diff : differentiation of n-tuples

diff(dom a, variable x)

A This method returns the n-tuples which results from differentiating
each component of a using the method "diff" of the domain S.

A This method overloads the function diff for n-tuples, i.e., one may
use it in the form diff(a, x) .

A An implementation is provided only if Set is a partial differential
ring, i.e., a domain of category Cat::PartialDifferentialRing .

190

Method equal : test on equality of n-tuples

equal(dom x, dom y)

A This method tests if the tuple x is equal to y , and returns TRUE,
FALSE or UNKNOWN, respectively. x and y are equal if and only if
for each index i from 1 to n the ith components of x and y are equal.

Method intmult : multiple of a tuple

intmult(dom x, integer k)

A The k-multiple of an n-tuple is the tuple consisting of the k-multiples
of its components (which are calculated by the method "intmult"
of Set).
A An implementation is provided only if Set is an Abelian semi-

group, i.e., a domain of category Cat::AbelianSemiGroup .

Method iszero : test on zero

iszero(dom x)

A This method checks whether the tuple x consists of zero compo-
nents only and returns TRUE, FALSEand UNKNOWN, respectively.
A Note that there may be more than one representation of the zero

n-tuple if Rdoes not have Ax::canonicalRep .
A This method overloads the function iszero for n-tuples, i.e., one

may use it in the form iszero(x) .

Method random : random tuple generation

random()

A This method returns a random n-tuple. It uses the method "random"
of the domain Set to randomly generate the components of the tu-
ple.

Access Methods

Method _index : tuple indexing

_index(dom x, index i)

A Returns the ith component of the tuple x (an error message is issued
if i is less than one or greater than the number of components of x).
A See also the method "op" .
A This method overloads the function _index for n-tuples, i.e., one

may use it in the form x[i] , or in functional notation: _index(x,
i) .

191

Method map: apply a function to tuple components

map(dom x, function func <, any expr, ... >)

A This method maps the function func onto the components of the n-
tuple x , with the additional function parameters expr, ... passed
to func , if given.
See the system function map for details.

A Note that the function values will not be implicitly converted
into elements of the domain Set . One has to take care that
the function calls return elements of the domain type Set .

!

A This method overloads the function map for n-tuples, i.e., one may
use it in the form map(x, func, ...) .

Method mapCanFail : apply a function to tuple components

mapCanFail(dom x, function func <, any expr, ... >)

A This method works like the method "map" but returns FAIL if one
of the function calls returned FAIL .

Method op : components of a tuple

op(dom x, positive integer i)

A Returns the ith component of the tuple x , or FAIL if i is greater
than the number of components of x .

A See also the method "_index" .

A This method overloads the function op for n-tuples, i.e., one may
use it in the form op(x, i) .

op(dom x)

A Returns a sequence of all components of x .

Method set_index : assigning tuple components

set_index(dom x, index i, Set e)

A Replaces the ith component of the tuple x by e.

A See also the method "subsop" .

A This method does not check whether e has the correct type.
!

A This method overloads the indexed assignment _assign for n-tuples,
i.e., one may use it in the form x[i] := e , or in functional nota-
tion: _assign(x[i], e) .

192

Method subs : substitution of tuple components

subs(dom x, ...)

A This method applies the function subs with additionally given pa-
rameters to the entries of the tuple x .

A The objects obtained by the substitutions will not be implic-
itly converted into elements of the domain Set . One has to
take care that the substitutions return elements of the domain
Set .

!

A This method overloads the function subs for n-tuples, i.e., one may
use it in the form subs(x, ...) . See subs for details and calling
sequences.

Method testEach : check every component for a certain condition

testEach(dom x, function func <, any expr, ... >)

A This method maps the function func onto the components of the
tuple x , with the additional function parameters expr, ... passed
to func , if given.
It returns TRUE if all of these function calls returned TRUE, and
FALSEotherwise.

A func must return either TRUEor FALSE, otherwise a runtime error
is raised.

Method testOne : check an component for a certain condition

testOne(dom x, function func <, any expr, ... >)

A This method maps the function func onto the components of the
tuple x , with the additional function parameters expr, ... passed
to func , if given.
It returns TRUEif one of these function calls returned TRUE, and
FALSEotherwise.

A func must return either TRUEor FALSE, otherwise a runtime error
is raised.

Method zip : combine tuples component-wise

zip(dom x, y, function func <, any expr, ... >)

A This method combines the tuples x and y component-wise, where
the function call func(a, b <, expr, ... >) is executed for each
pair (xi, yi) of tuple components xi of x and yi of y .
See the system function zip for details.

193

A The function values will not be implicitly converted into ele-
ments of the domain Set . One has to take care that the func-
tion calls return elements of the domain Set .

!

A This method overloads the function zip for n-tuples, i.e., one may
use it in the form zip(x, y, func, ...) .

Method zipCanFail : combine tuples component-wise

zipCanFail(dom x, y, function func <, any expr, ... >)

A This method works like the method "zip" but returns FAIL if one
of the function calls return FAIL .

Conversion Methods

Method convert : conversion into an n-tuple

convert(list List)

A Tries to convert List into an element of the domain Dom::Product(Set,
n) . This can be done if List is a list of n elements where each ele-
ment can be converted into an element of the domain Set .

A FAIL is returned if this conversion fails.

convert(any e1<, any e2, ... >)

A Tries to convert the arguments into an element of the domain Dom::Product(Set,
n) . This can be done if exactly n arguments are given where each
argument can be converted into an element of the domain Set .

A FAIL is returned if this conversion fails.

Method expr : conversion into an object of a kernel domain

expr(dom x)

A This method maps the method "expr" of Set to each element of
x and returns a list of the converted elements, i.e., an object of type
DOM_LIST.

A This method overloads the function expr for n-tuples, i.e., one may
use it in the form expr(x) .

194

Example 1. Define the 3-fold direct product of the rational numbers:

>> P3 := Dom::Product(Dom::Rational, 3)

Dom::Product(Dom::Rational, 3)

and create elements:

>> a := P3([1, 2/3, 0])

[1, 2/3, 0]

>> b := P3(2/3, 4, 1/2)

[2/3, 4, 1/2]

We use the standard arithmetical operators to calculate with such tuples:

>> a + b, a*b, 2*a

[5/3, 14/3, 1/2], [2/3, 8/3, 0], [2, 4/3, 0]

Some system functions were overloaded for such elements, such as diff ,
mapor zip (see the description of the corresponding methods "diff" , "map"
and "zip" above).

For example, to divide each component of a by 2 we enter:

>> map(a, ‘/‘, 2)

[1/2, 1/3, 0]

The quoted character ‘/‘ is another notation for the function _divide , the
functional form of the division operator / .

Be careful that the mapping function returns elements of the domain the
product is defined over. This is not checked by the function map(for efficiency
reasons) and may lead to “invalid” tuples. For example:

>> b := map(a, sin); domtype(b)

[sin(1), sin(2/3), 0]

Dom::Product(Dom::Rational, 3)

But the components of b are no longer rational numbers!

Super-Domain: Dom::BaseDomain

Axioms

if Set has Ax::canonicalRep , then
Ax::canonicalRep

if Set has Cat::AbelianMonoid and Set has Ax::normalRep ,
then

Ax::normalRep

195

Changes:

A New entry coeffRing .

Dom::Quaternion – the skew field of quaternions

The domain Dom::Quaternion represents the skew field of quaternions.

Creating Elements:

A Dom::Quaternion(listi)

A Dom::Quaternion(ex)

A Dom::Quaternion(M)

Parameters:
listi — a list containing four elements of type Type::Real
ex — arithmetical expression
M — A matrix of type Dom::Matrix(Dom::Complex) . It has to

be of a special form described in the Details section.

Categories:

Cat::SkewField

Related Domains: Dom::Complex

Details:

A Quaternions are usually defined to be complex 2× 2–matrices of the spe-
cial form

(
a + bI −c− dI
c− dI a− bI

)
,

where a, b, c, d are real numbers. Another usual notation is a + bi + c j +
dk; the subfield of those quaternions for which c = d = 0 is isomorphic to
the field of complex numbers.

A The domain Dom::Quaternion regards these fields as being identical,
and it allows both notations that have been mentioned, as well as simply
[a,b,c,d] .

196

A If you enter a quaternion as an arithmetical expression ex , the identifiers
i , j , and k are understood in the way mentioned above; I , J , and K may
be used alternatively, and you may also mix small and capital letters.
Every subexpression of ex not containing one of these must be real and
constant.

Be sure that you have not assigned a value to one of the identifiers
mentioned. !

A Dom::Quaternion has the domain Dom::BaseDomain as its super do-
main, i.e., it inherits each method which is defined by Dom::BaseDomain
and not re-implemented by Dom::Quaternion . Methods described be-
low are re-implemented by Dom::Quaternion .

Entries:

characteristic the characteristic of this domain is 0

one the unit element; it equals Dom::Quaternion([1,0,0,0]) .

size the number of quaternions is infinity .

zero The zero element; it equals Dom::Quaternion([0,0,0,0]) .

Mathematical Methods

Method _mult : multiplies quaternions

_mult(dom x , dom y, ...)

A This method overloads _mult .

A Returns the product xy · · · of quaternions.

Method _plus : adds quaternions

_plus(dom x , dom y, ...)

A This method overloads _plus .

A Returns the sum x + y + · · · of quaternions.

Method _power : the n-th power of a quaternion

_power(dom x, rational n)

A This method overloads _power .

A This method computes xn for rational numbers n.

197

Method Im : returns the imaginary (vectorial) part of a quaternion.

Im(dom x)

A This method overloads Im .

A Returns the imaginary (vectorial) part of x := a + bi + c j + dk, this is
bi + c j + dk.

A The result is still a quaternion.

Method Re: returns the real part of a quaternion.

Re(dom x)

A This method overloads Re.

A Returns the real part of x := a + bi + c j + dk, this is a.

A The result is of type Type::Real .

Method abs : absolute value of a quaternion

abs(dom x)

A This method overloads abs .

A Returns the absolute value of x := a + bi + c j + dk, this is
√

a2 + b2 + c2 + d2.

A The result is of type Type::Real .

Method conjugate : conjugate element

conjugate(dom x)

A This method overloads conjugate .

A Returns the conjugate of x := a + bI + cJ + dK, which is defined to
be a− bI − cJ− dK.

Method intpower : multiplies quaternions

intpower(dom x, DOM_INT)

A This method computes xn for integers n.

A The implementation uses “repeated squaring”.

A Dom::Quaternion is used by "_power" .

198

Method nthroot : n-th root of a quaternion

nthroot(dom x, DOM_INT n)

A This method computes the n-th root of x .

A The implementation uses “repeated squaring”.

A Dom::Quaternion is used by "_power" .

Method norm : norm of a quaternion

norm(dom x)

A This method overloads norm .

A Returns the norm of x := a + bi + c j + dk, this is a2 + b2 + c2 + d2.

A The result is of type Type::Real .

Method random : random number generation

random()

A This methods returns a randomly generated quaternion x := a +
bi + c j + dk with a, b, c and d being nonnegative numbers with
at most 12 digits generated by random .

Method scalarmult : scalar multiplication

scalarmult(Type::Real s, dom x)

A Returns the product sx.

Method scalarprod : inner product

scalarprod(dom x, dom y)

A Returns the inner product of x := a + bi + c j + dk and y := e + f i +
g j + hk, this is: ae + b f + cg + dh.

Method sign : sign of a quaternion

sign(dom x)

A This method overloads sign .

A Returns the sign of x := a + bi + c j + dk, this is 1
abs(x) x.

A The result is of type Type::Real .

199

Conversion Methods

Method convert : conversion of objects

convert(any x)

A This method tries to convert x into an element of Dom::Quaternion .
If x is a list, it must consist of four real numbers (type Type::Real).
Constant real expressions and the identifiersi , J , j , K, and k can
also be converted to domain elements, as well as sums and products
of them. A matrix of the type Dom::Matrix(Dom::Complex) can
be converted if and only if it is of the special form:

(
a + bI −c− dI
c− dI a− bI

)
If the conversion fails, FAIL is returned.

Method convert_to : conversion to other domains

convert_to(dom x, any T)

A This method tries to convert the number x to an element of type T,
or, if T is not a domain, to the domain type of T. If the conversion
fails, FAIL is returned.
A It currently handles the following domains for T: DOM_EXPR, DOM_LIST,

Dom::Matrix(Dom::Complex) .

Method expr : converts a quaternion to an object of a kernel domain

expr(dom x)

A This method overloads expr .
A This method converts x into an expression of the form a+bI+cJ+dK .
A The result is an object of the kernel domain DOM_EXPR.
A This method overloads the function expr for quaternions, i.e., you

may use it in the form expr(x) .

Method matrixform : converts a quaternion to a 2 x 2 matrix with complex
entries.

matrixform(dom x)

A This method converts x := a + bI + cJ + dK to the 2× 2-matrix:(
a + bI −c− dI
c− dI a− bI

)
,

A The result is an object of the domain Dom::Matrix(Dom::Complex) .

200

Technical Methods

Method TeX: generate TeX-formatted string

TeX(dom x)

A This method overloads generate::TeX .
A Dom::Quaternion(x) returns a TeX-formatted string represent-

ing x .

Method map: apply a function to all components of a quaternion

map(dom x, function f, any arg, ...)

A This method overloads map.
A Dom::Quaternion(x, f) returns a copy of x where each com-

ponent co of x has been replaced by f(co) . So for the quater-
nion x := a + bi + c j + dk, Dom::Quaternion(x, f) returns the
quaternion f (a) + f (b)i + f (c) j + f (d)k.
A If optional arguments are present, then each component co of x is

replaced by f(co, arg...). So for the quaternion x := a + bi + c j + dk,
Dom::Quaternion(x, f, arg, ...) returns the quaternion
f (a, arg, ...) + f (b, arg, ...)i + f (c, arg, ...) j + f (d, arg, ...)k.

Method simplify : simplification of a quaternion

simplify(dom x)

A This method overloads simplify .
A Tries to simplify the quaternion x := a + bi + c j + dk by trying to

simplify every component a, b, c, d of x .

Example 1. Creating some quaternions.

>> Dom::Quaternion([1,2,3,4]),
Dom::Quaternion(11+12*i+13*j+14*k);
M := Dom::Matrix(Dom::Complex)([[3+4*I,-6-2*I],[6-2*I,3-

4*I]]):
M, Dom::Quaternion(M)

3 J + 4 K + (1 + 2 I), 13 J + 14 K + (11 + 12 I)

+- -+
| 3 + 4 I, - 6 - 2 I |
| |, 6 J + 2 K + (3 + 4 I)
| 6 - 2 I, 3 - 4 I |
+- -+

201

Example 2. Doing some standard arithmetic.

>> a:=Dom::Quaternion([1,2,3,4]):
b:=Dom::Quaternion([11,2,33.3,2/3]):
a*b, a+b, a^2/3, b^3;

72.96666667 J + 105.2666667 K - (95.56666667 + 107.2 I),

14 K 8 K
36.3 J + ---- + (12 + 4 I), 2 J + --- - (28/3 - 4/3 I),

3 3

- 24986.137 J - 500.222963 K - (35409.03666 + 1500.668889 I)

Example 3. More mathematical operations:

>> a:=Dom::Quaternion([1,2,3,4]):
b:=Dom::Quaternion([11,2,33.3,2/3]):
Dom::Quaternion::nthroot(b,3);
abs(a), sign(b)

1.325212827 J + 0.02653078732 K +

(2.993953193 + 0.07959236197 I)

1/2
30 , 0.9478242358 J + 0.01897546018 K +

(0.3130950929 + 0.05692638053 I)

Example 4. Some miscellaneous operations.

>> a:=Dom::Quaternion([1,2,3,4]):
Dom::Quaternion::matrixform(a);
map(a, sqrt), map(a, _plus, 1);

+- -+
| 1 + 2 I, - 3 - 4 I |
| |
| 3 - 4 I, 1 - 2 I |
+- -+

1/2 1/2
2 K + I 2 + J 3 + 1, 4 J + 5 K + (2 + 3 I)

202

Super-Domain: Dom::BaseDomain

Axioms

Ax::canonicalRep

Changes:

A No changes.

Dom::Rational – the field of rational numbers

Dom::Rational is the field of rational numbers represented by elements of
the domains DOM_INTor DOM_RAT.

Creating Elements:

A Dom::Rational(x)

Parameters:

x — an integer or a rational number

Categories:

Cat::QuotientField(Dom::Integer) ,
Cat::DifferentialRing , Cat::OrderedSet

Related Domains: Dom::Complex , Dom::Float , Dom::Numerical ,
Dom::Rational , Dom::Real

Details:

A Dom::Rational is the domain of rational numbers represented by ex-
pressions of type DOM_INTor DOM_RAT.

A Elements of Dom::Rational are usually not created explicitly. How-
ever, if one creates elements using the usual syntax, it is checked wether
the input is of type DOM_INTor DOM_RAT. This means Dom::Rational
is a façade domain which creates elements of domain type DOM_INTor
DOM_RAT.

A Viewed as a differential ring Dom::Rational is trivial, it contains con-
stants only.

203

A Dom::Rational has the domain Dom::Numerical as its super do-
main, i.e., it inherits each method which is defined by Dom::Numerical
and not re-implemented by Dom::Rational . Methods described below
are re-implemented by Dom::Rational .

Mathematical Methods

Method denom: denominator of a rational number

denom(dom x)

A This method returns the denominator of the rational number x .

A This method overloads denom.

Method diff : differentiates

diff(dom z, <, any x, ... >)

A This method returns z if it is called with only one argument. Other-
wise it returns 0.

A This method overloads diff .

Method numer : numerator of the rational number

numer(dom x)

A This method returns the numerator of the rational number x .

A This method overloads numer .

Method random : random number generation

random()

A This methods returns a rational number a/b where a and b are in-
tegers between -999 and 999.

Method retract : retract to an integer element

retract(dom x)

A This method returns x if it is an integer and FAIL otherwise.

204

Conversion Methods

Method convert : conversion of objects

convert(any x)

A This method tries to convert x to a number of type Dom::Rational .
This is only possible if x is of type DOM_INTor DOM_RAT. If the con-
version fails, FAIL is returned.

Method convert_to : conversion to other domains

convert_to(dom x, any T)

A This method tries to convert the number x to an element of type T,
or, if T is not a domain, to the domain type of T. If the conversion
fails, FAIL is returned.

A The following domains are allowed for T: DOM_INT, Dom::Integer ,
Dom::Rational , DOM_RAT, DOM_FLOAT, Dom::Float and Dom::Numerical .

Method testtype : type checking

testtype(any x, dom T)

A This method checks whether it can convert x to the domain Dom::Rational .
This is the case if x is of type DOM_INTor DOM_RAT. It returns TRUE
if it can perform the conversion. Otherwise FAIL is returned.

A In general this method is called from the function testtype and
not directly by the user. Example 2 demonstrates this behaviour.

Example 1. Creating some rational numbers using Dom::Rational . This
example also shows that Dom::Rational is a façade domain.

>> Dom::Rational(2/3) ; domtype(%)

2/3

DOM_RAT

>> Dom::Rational(2.0)

Error: illegal arguments [Dom::Rational::new]

205

Example 2. By tracing the method Dom::Rational::testtype we can see
the interaction between testtype and Dom::Rational::testtype .

>> prog::trace(Dom::Rational::testtype):
delete x:
testtype(x, Dom::Rational);
testtype(3/4, Dom::Rational);
prog::untrace(Dom::Rational::testtype):

enter ’Dom::Rational::testtype’ with args : x, Dom::Rational
leave ’Dom::Rational::testtype’ with result : FAIL

FALSE
enter ’Dom::Rational::testtype’ with args : 3/4, Dom::Rational
leave ’Dom::Rational::testtype’ with result : TRUE

TRUE

Super-Domain: Dom::Numerical

Axioms

Ax::canonicalRep , Ax::systemRep , Ax::canonicalOrder ,
Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult") ,
Ax::efficientOperation("_invert")

Changes:

A No changes.

Dom::Real – the field of real numbers

Dom::Real is the field of real numbers represented by elements of the kernel
domains DOM_INT, DOM_RAT, DOM_FLOATand DOM_EXPR.

Creating Elements:

A Dom::Real(x)

206

Parameters:
x — An expression of type DOM_INT, DOM_RATor DOM_FLOAT. An

expression of type DOM_EXPRis also allowed if it is of type
Type::Arithmetical and if it contains no indeterminates
which are not of type Type::ConstantIdents and if it contains
no imaginary part.

Categories:

Cat::DifferentialRing , Cat::Field , Cat::OrderedSet

Related Domains: Dom::Complex , Dom::Float , Dom::Integer ,
Dom::Numerical , Dom::Rational

Details:

A Dom::Real is the domain of real numbers represented by expressions of
type DOM_INT, DOM_RATor DOM_FLOAT. An expression of type DOM_EXPR
is considered as a real number if it is of type Type::Arithmetical and
if it contains no indeterminates which are not of type Type::ConstantIdents
and if it contains no imaginary part, cf. Example 2.

A Dom::Real has category Cat::Field because of pragmatism. This do-
main actually is not a field because bool(1.0 = float(3) / float(3))
returns FALSEfor example.

A Elements may not have an unique representation, for example bool(0
= sin(2)^2 + cos(2)^2 - 1) returns FALSE.

A Elements of Dom::Real are usually not created explicitly. However, if
one creates elements using the usual syntax, it is checked whether the
input expression can be converted to a number. This means Dom::Real
is a façade domain which creates elements of domain type DOM_INT,
DOM_RAT, DOM_FLOATor DOM_EXPR.

A Dom::Real has no normal representation, because 0 and 0.0 both rep-
resent zero.

A Viewed as a differential ring, Dom::Real is trivial, it contains constants
only.

A Dom::Real has the domain Dom::Numerical as its super domain, i.e.,
it inherits each method which is defined by Dom::Numerical and not
re-implemented by Dom::Real . Methods described below are re-implemented
by Dom::Real .

207

Mathematical Methods

Method _less : Boolean operator “less”

_less(dom x, dom y)

A Behaves like the Boolean operator _less .

Method _leequal : Boolean operator “less or equal”

_leequal(dom x, dom y)

A Behaves like the Boolean operator _leequal .

Method _power : power operator

_power(dom z, any n)

A This method returns zn if n is an integer, a floating point or a rational
number or if n can be converted to a Dom::Real . Otherwise, an
error message is issued.

Method conjugate : complex conjugate

conjugate(dom x)

A This method returns x .

Method Im : imaginary part of a real number

Im(dom x)

A This method returns 0.

Method random : random number generation

random()

A This methods returns a randomly generated positive integer be-
tween 0 and 1012− 1.

random(integer n)

A This method returns a random number generator which creates pos-
itive integer between 0 and n− 1.

random(integer m.. integer n)

A This method returns a random number generator which creates pos-
itive integer between m and n.

208

Method Re: real part of a real number

Re(dom x)

A This method returns x .

Conversion Methods

Method convert : conversion of objects

convert(any x)

A This method tries to convert x to a number of type Dom::Real . If
the conversion fails, then FAIL is returned.

Method convert_to : conversion to other domains

convert_to(dom x, any T)

A This method tries to convert the number x to an element of type T,
or, if T is not a domain, to the domain type of T. If the conversion
fails, then FAIL is returned.
A The following domains are allowed for T: DOM_INT, Dom::Integer ,

DOM_RAT, Dom::Rational , DOM_FLOAT, Dom::Float , Dom::Numerical ,
Dom::ArithmeticalExpression , Dom::Complex .

Example 1.

>> Dom::Real(2/3)

2/3

>> Dom::Real(0.5666)

0.5666

Example 2.

>> Dom::Real(PI)

PI

>> Dom::Real(sin(2))

sin(2)

>> Dom::Real(sin(2/3 * I) + 3)

Error: illegal arguments [Dom::Real::new]

>> Dom::Real(sin(x))

Error: illegal arguments [Dom::Real::new]

209

Super-Domain: Dom::Complex

Axioms

Ax::systemRep , Ax::canonicalOrder ,
Ax::efficientOperation("_divide") ,
Ax::efficientOperation("_mult") ,
Ax::efficientOperation("_invert")

Changes:

A No changes.

Dom::SparseMatrixF2 – the domain of sparse matrices over the
field with two elements

Dom::SparseMatrixF2 represents the set of all matrices over the finite field
with two elements.

Domain:

A Dom::SparseMatrixF2

Details:

A Dom::SparseMatrixF2 is mathematically equivalent to Dom::Matrix(Dom::IntegerMod(2)) .
However, the internal representation guarantees that both storage and
computing time required for the arithmetical operations depend on the
number of nonzero entries. Therefore, Dom::SparseMatrixF2 should
be used for matrices with few nonzero entries.

Dom::SparseMatrixF2(m, n, [s1, ..., sm]) creates the m times n
matrix (ai j) such that, for each i, the set of all j with ai j = 1 equals the set
(or list) si.

Creating Elements:

A Dom::SparseMatrixF2(m, n, [s1, ...])

A Dom::SparseMatrixF2(m, n, f)

210

Parameters:
m, n — positive integers
s1, ... — sets or lists of integers between 1 and n
f — a procedure or another object that, when called with an

integer between 1 and m and another integer between 1
and n, returns an element of Dom::IntegerMod(2) .

Categories:

Cat::Matrix(Dom::IntegerMod(2))

Related Domains: Dom::Matrix

Entries:

coeffRing The coefficient ring always equals Dom::IntegerMod(2) .

isSparse This entry is always set to TRUE.

Mathematical Methods

Method zeroMatrix : matrix of a given dimension, consisting of zeros

zeroMatrix(integer m, integer n)

A This method returns the m times n matrix whose entries are all zero.

Method _plus : add matrices

_plus(dom A, ...)

A This method returns the sum of the given matrices. All matrices
must have the same dimensions.

A This method overloads the function _plus .

Method _negate : negate a matrix

_negate(dom A)

A Because the coefficient field has characteristic two, the negative of A
is just A itself.

A This method overloads _negate .

211

Method matrixvectorproduct : multiply a matrix and a vector

matrixvectorproduct(dom A, dom b)

A This method returns the product of the matrix A and the column
vector b; the number of columns of A must be the same as the num-
ber of rows of b.

Method _mult : multiply a matrix and a vector

_mult(dom A, dom b)

A This method does the same as "matrixvectorproduct" .

A It overloads the function _mult .

A The product of arbitrary sparse matrices (where b is not a vec-
tor) has not been implemented. !

Method randmatrix : generate random matrix

randmatrix(integer m, integer n <integer s>)

A This method generates an m times n random matrix by defining in
each row s entries to be equal to 1; these are drawn with repetition
such that the actual number of ones may be less. If s is not given, it
defaults to 6.

Access Methods

Method nrows : number of rows

nrows(dom A)

A This method returns the number of rows of A.

Method ncols : number of rows

ncols(dom A)

A This method returns the number of columns of A.

Method dimen : number of rows and columns

dimen(dom A)

A This method returns a list of two elements, the first being the num-
ber of rows, the second being the number of columns of A.

212

Method body : body of the matrix

body(dom A)

A This method returns a list of sets, where the i-th set is the set of the
index positions of all ones in the i-th row.

Method row : row of a matrix

row(dom A, integer i)

A This method returns the i-th row of the m times n matrix A as a 1
times n matrix of type Dom::SparseMatrixF2 .

Method col : column of a matrix

col(dom A, integer i)

A This method returns the i-th column of the m times n matrix A as a
row vector, i.e. as a 1 times m matrix of type Dom::SparseMatrixF2 .

Method _index : row or single entry of a matrix

_index(dom A, integer i)

A returns the i-th row of A.
A This method overloads the _index operator; A[i] may be entered

equivalently.

_index(dom A, integer i, integer j)

A returns the entry of A in the i-th row, j-th column.
A Equivalently, A[i,j] may be entered.

Method set_index : assignment to a matrix entry

set_index(dom A, integer i, integer j, value v)

A This method returns a copy of A, with the result of converting v into
an element of Dom::IntegerMod(2) entered in the i-th row, j-th
column. Dom::IntegerMod(2) must be able to convert v into a
field element.
A This method can be used for indexed assignments using the syntax

A[i,j]:=v . In this case, the value of the identifier or local variable
A is changed as a side effect; v (but not the result of converting it to
a field element!) is returned.
If the assignment stops with an error, the domain element
stored in A is destroyed, and the new value of A is FAIL . !
A See _assign for more information about indexed assignments.

213

Conversion Methods

Method convert_to : conversion of a sparse matrix into another type

convert_to(dom A, any T)

A This method tries to convert A into type T. Currently only a conver-
sion into a Dom::Matrix(Dom::IntegerMod(2)) is possible.

Example 1. We create a sparse matrix with three nonzero entries:

>> A:=Dom::SparseMatrixF2(3, 3, [{2}, {1}, {3}])

[{2}, {1}, {3}]

Conversion to a Dom::Matrix yields a nicer output, but now nine entries
have to be stored:

>> A::dom::convert_to(A, Dom::Matrix(Dom::IntegerMod(2)))

+- -+
| 0 mod 2, 1 mod 2, 0 mod 2 |
| |
| 1 mod 2, 0 mod 2, 0 mod 2 |
| |
| 0 mod 2, 0 mod 2, 1 mod 2 |
+- -+

Super-Domain: Dom::BaseDomain

Axioms

Ax::canonicalRep

Changes:

A Dom::SparseMatrixF2 is a new domain.

Dom::SquareMatrix – the rings of square matrices

Dom::SquareMatrix(n, R) creates the ring of n×n matrices over the com-
ponent ring R.

214

Domain:

A Dom::SquareMatrix(n <, R>)

Parameters:
n — a positive integer
R — a ring, i.e., a domain of category Cat::Rng ; default is

Dom::ExpressionField()

Details:

A Dom::SquareMatrix(n, R) creates a domain which represents the
ring of n× n matrices over a component domain R. The domain R must
be of category Cat::Rng (a ring, possibly without unit).

A If the optional parameter Ris not given, the domain Dom::ExpressionField()
is used as the component ring for the square matrices.

A For matrices of a domain created by Dom::SquareMatrix(n, R) , stan-
dard matrix arithmetic is implemented by overloading the standard arith-
metical operators +, -, *, / and ^ . All functions of the linalg pack-
age dealing with matrices can also be applied.

A Dom::SquareMatrix(n, R) has the domain Dom::Matrix(R) as its
super domain, i.e., it inherits each method which is defined by Dom::Matrix(R)
and not re-implemented by Dom::SquareMatrix(n, R) .

Methods described below are re-implemented by Dom::SquareMatrix .

A The domain Dom::Matrix(R) represents matrices over R of arbitrary
size, and it therefore does not have any algebraic structure (except of
being a set of matrices).

The domain Dom::MatrixGroup(m, n, R) represents the Abelian group
of m× n matrices over R.

Creating Elements:

A Dom::SquareMatrix(n, R)(Array)

A Dom::SquareMatrix(n, R)(Matrix)

A Dom::SquareMatrix(n, R)(<n, n >)

A Dom::SquareMatrix(n, R)(<n, n, >ListOfRows)

A Dom::SquareMatrix(n, R)(<n, n, >f)

A Dom::SquareMatrix(n, R)(<n, n, >List, Diagonal)

A Dom::SquareMatrix(n, R)(<n, n, >g, Diagonal)

A Dom::SquareMatrix(n, R)(<n, n, >List, Banded)

215

Parameters:
Array — an n×n array
Matrix — an n×n matrix, i.e., an element of a domain of

category Cat::Matrix
List — a list of matrix components
ListOfRows — a list of at most n rows; each row is a list of at most n

matrix components
f — a function or a functional expression with two

parameters (the row and column index)
g — a function or a functional expression with one

parameter (the row index)

Options:

Diagonal — create a diagonal matrix
Banded — create a banded Toeplitz matrix

Categories:

Cat::SquareMatrix(R)

Related Domains: Dom::Matrix , Dom::MatrixGroup

Details:

A Dom::SquareMatrix(n, R)(Array) and Dom::SquareMatrix(n,
R)(Matrix) create a new matrix formed by the entries of Array and
Matrix , respectively.

The components of Array and Matrix , respectively, are converted into
elements of the domain R. An error message is issued if one of these
conversions fails.

A The call Dom::SquareMatrix(n, R)(<n, n >) returns the n×n zero
matrix. Note that the n × n zero matrix is also defined by the entry
"zero" (see below).

A Dom::SquareMatrix(n, R)(<n, n, >ListOfRows) creates an n×
n matrix with components taken from the nested list ListOfRows . Each
inner list corresponds to a row of the matrix.

If an inner list has less than n entries, the remaining components in the
corresponding row of the matrix are set to zero. If there are less than n
inner lists, the remaining lower rows of the matrix are filled with zeroes.

The entries of the inner lists are converted into elements of the domain
R. An error message is issued if one of these conversions fails.

A Dom::SquareMatrix(n, R)(<n, n, >f) returns the matrix whose
(i, j)th component is the value of the function call f(i, j) . The row and
column indices i and j range from 1 to n.

216

The function values are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Option <Diagonal >:

A With the option Diagonal , diagonal matrices can be created with diag-
onal elements taken from a list, or computed by a function.

A Dom::SquareMatrix(n, R)(<n, n, >List, Diagonal) creates
the n × n diagonal matrix whose diagonal elements are the entries of
List .

List must have at most n entries. If it has fewer elements, the remaining
diagonal elements are set to zero.

The entries of List are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

A Dom::SquareMatrix(n, R)(<n, n, >g, Diagonal) returns the
matrix whose ith diagonal element is g(i) , where the index i runs from
1 to n.

The function values are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Option <Banded >:

A Dom::SquareMatrix(n, R)(<n, n, >List, Banded) creates an
n× n banded Toeplitz matrix with the elements of List as entries. The
number of entries of List must be odd, say 2h + 1, and must not exceed
n. The resulting matrix has bandwidth at most 2h + 1.

All elements of the main diagonal of the created matrix are initialized
with the middle element of List . All elements of the ith subdiagonal
are initialized with the (h + 1− i)th element of List . All elements of the
ith superdiagonal are initialized with the (h + 1 + i)th element of List .
All entries on the remaining sub- and superdiagonals are set to zero.

The entries of List are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Entries:

one is the n× n identity matrix. This entry exists if the component ring
R is a domain of category Cat::Ring , i.e., a ring with unit.

randomDimen is set to [n, n] .

zero is the n× n zero matrix.

217

Mathematical Methods

Method evalp : evaluating matrices of polynomials at a certain point

evalp(dom A, equation x = a, ...)

A This method evaluates the polynomial components of A at the point
x = a . See the system function evalp for details.
The matrix returned is of the domain Dom::SquareMatrix(n,
R::coeffRing) , if the evaluation of each component leads to an
element of the coefficient ring of the polynomial domain. Otherwise
the matrix returned is of the domain of A.

A This method is only defined if R is a polynomial ring of category
Cat::Polynomial .

A This method overloads the function evalp for matrices, i.e., one
may use it in the form evalp(A, x = a) .

Method identity : identity matrix

identity(positive integer k)

A This method returns the k× k identity matrix.

A The matrix returned is of the domain Dom::Matrix(R) if
k 6=n. !
A This method only exists if the component ring Ris of category Cat::Ring ,

i.e., a ring with unit.

Method matdim : matrix dimension

matdim(dom A)

A This method returns the list [n, n] , i.e., the matrix dimension of
A.

Method random : random matrix generation

random()

A This method returns an n× n random matrix.

A The components of the random matrix are generated with the method
"random" of the component ring R.

218

Access Methods

Method _concat : horizontal concatenation of matrices

_concat(dom A, dom B, ...)

A This method appends the matrices B, ... to the right side of the
matrix A.

A An error message is issued if the given matrices do not have the
same number of rows.

A The matrix returned is of the domain Dom::Matrix(R) !
!

A This method overloads the function _concat for matrices, i.e., one
may use it in the form A . B , or in functional notation:
_concat(A, B, ...) .

Method _index : matrix indexing

_index(dom A, row index i, column index j)

A Returns the (i, j)th entry of the matrix A.

_index(dom A, row-range r1..r2, column-range c1..c2)

A Returns the submatrix of A, created by the rows of A with indices
from r1 to r2 and the columns of A with indices from c1 to c2 .

A The submatrix returned is of the domain Dom::Matrix(R) !
!

A This method overloads the function _index for matrices, i.e., one
may use it in the form A[i, j] and A[r1..r2, c1..c2] , re-
spectively or in functional notation: _index(A, ...) .

Method concatMatrix : horizontal concatenation of matrices

concatMatrix(dom A, dom B, ...)

A This method is identical to the method "_concat" .

Method col : extracting a column

col(dom A, column index c)

A This method extracts the column with index c of the matrix A and
returns it as a column vector, i.e., as an element of the domain type
Dom::Matrix(R) .

A An error message is issued if c is less than one or greater than n.

219

Method delCol : deleting a column

delCol(dom A, column index c)

A This method returns the matrix obtained by deleting the column
with index c of the matrix A.

A NIL is returned if A only consists of one column.

A The matrix returned is of the domain Dom::Matrix(R) .
!

A An error message is issued if c is less than one or greater than n.

Method delRow : deleting a row

delRow(dom A, row index r)

A This method returns the matrix obtained by deleting the row with
index r of the matrix A.

A NIL is returned if A only consists of one row.

A The matrix returned is of the domain Dom::Matrix(R) .
!

A An error message is issued if r is less than one or greater than n.

Method row : extracting a row

row(dom A, row index r)

A This method extracts the row with index r of the matrix A and re-
turns it as a row vector, i.e., as an element of the domain Dom::Matrix(R) .

A An error message is issued if r is less than one or greater than n.

Method stackMatrix : vertical concatenation of matrices

stackMatrix(dom A, dom B, ...)

A This method stacks the matrix A on top of the matrix B. If further
arguments are given, the result is stacked on the top of the third
matrix, and so on.

A An error message is issued if the given matrices do not have the
same number of columns.

A The matrix returned is of the domain Dom::Matrix(R) !
!

220

Conversion Methods

Method create : defining matrices without component conversions

create(any x, ...)

A This method creates a new matrix assuming that the components
are of domain type R.
See “Creating Elements” above for a complete description of the pa-
rameters, with one exception: one cannot use this method to create
a matrix from a function or a functional expression.

A This method should be used if the elements of the parameters x,
... are elements of the domain type R. This is often the case if
a matrix is to be created whose components come from preceding
matrix and scalar operations.

Example 1. A lot of examples can be found on the help page of the domain
constructor Dom::Matrix , and most of them are also examples for working
with domains created by Dom::SquareMatrix .

These examples only concentrate on some differences with respect to work-
ing with matrices of the domain Dom::Matrix(R) .

The following command defines the ring of two-dimensional matrices over
the rationals:

>> SqMatQ := Dom::SquareMatrix(2, Dom::Rational)

Dom::SquareMatrix(2, Dom::Rational)

>> SqMatQ::hasProp(Cat::Ring)

TRUE

The unit is defined by the entry "one" , which is the 2× 2 identity matrix:

>> SqMatQ::one

+- -+
| 1, 0 |
| |
| 0, 1 |
+- -+

Note that some operations defined by the domain SqMatQ return matri-
ces which are no longer square. They return therefore matrices of the domain
Dom::Matrix(Dom::Rational) , the super-domain of SqMatQ. For exam-
ple, if we delete the first row of the matrix:

>> A := SqMatQ([[1, 2], [-5, 3]])

221

+- -+
| 1, 2 |
| |
| -5, 3 |
+- -+

we get the matrix:

>> SqMatQ::delRow(A, 1)

+- -+
| -5, 3 |
+- -+

which is of the domain type:

>> domtype(%)

Dom::Matrix(Dom::Rational)

Example 2. We can convert a square matrix into or from another matrix do-
main, as shown next:

>> SqMatR := Dom::SquareMatrix(3, Dom::Real):
MatC := Dom::Matrix(Dom::Complex):

>> A := SqMatR((i, j) -> sin(i*j))

+- -+
| sin(1), sin(2), sin(3) |
| |
| sin(2), sin(4), sin(6) |
| |
| sin(3), sin(6), sin(9) |
+- -+

To convert A into a matrix of the domain MatC, enter:

>> coerce(A, MatC)

+- -+
| sin(1), sin(2), sin(3) |
| |
| sin(2), sin(4), sin(6) |
| |
| sin(3), sin(6), sin(9) |
+- -+

222

>> domtype(%)

Dom::Matrix(Dom::Complex)

The conversion is done component-wise, as the following examples shows:

>> B := MatC([[0, 1], [exp(I), 0]])

+- -+
| 0, 1 |
| |
| exp(I), 0 |
+- -+

The matrix B is square but has one complex component and therefore cannot
be converted into the domain SqMatR:

>> coerce(B, SqMatR)

FAIL

Super-Domain: Dom::Matrix

Axioms

if Rhas Ax::canonicalRep , then
Ax::canonicalRep

Changes:

A The method "dimen" was renamed to "matdim" .

A The method "newThis" was renamed to "create" .

A Some new methods were implemented or extended for the domain Dom::Matrix .
See the corresponding help page for details (note that Dom::SquareMatrix(n,
R) inherits every method which is defined for Dom::Matrix(R) and
not re-implemented by Dom::SquareMatrix(n, R) .

Dom::UnivariatePolynomial – the domains of univariate polyno-
mials

Dom::UnivariatePolynomial(Var, R, ..) creates the domain of uni-
variate polynomials in the variable Var over the commutative ring R.

223

Domain:

A Dom::UnivariatePolynomial(<Var <, R <, Order >>>)

Parameters:
Var — an indeterminate given by an identifier; default is x .
R — a commutative ring, i.e. a domain of category

Cat::CommutativeRing ; default is
Dom::ExpressionField(normal) .

Order — a monomial ordering, i.e. one of the predefined orderings
LexOrder , DegreeOrder or DegInvLexOrder or an
element of domain Dom::MonomOrdering ; default is
LexOrder .

Details:

A Dom::UnivariatePolynomial represents univariate polynomials over
arbitrary commutative rings.

All usual algebraic and arithmetical polynomial operations are imple-
mented, including Gröbner basis computations.

A Dom::UnivariatePolynomial(Var, R, Order) creates a domain
of univariate polynomials in the variable Var over a domain of category
Cat::CommutativeRing in sparse representation with respect to the
monomial ordering Order .

A Dom::UnivariatePolynomial() creates the univariate polynomial
domain in the variable x over the domain Dom::ExpressionField(normal)
with respect to the lexicographic monomial ordering.

A Dom::UnivariatePolynomial(Var) creates the univariate polyno-
mial domain in the variable Var over the domain Dom::ExpressionField(normal)
with respect to the lexicographic monomial ordering.

A Only commutative coefficient rings of type DOM_DOMAINwhich
inherit from Dom::BaseDomain are allowed. If R is of type
DOM_DOMAINbut inherits not from Dom::BaseDomain , the do-
main Dom::ExpressionField(normal) will be used instead.

!

A For this domain only identifiers are valid variables.

A It is highly recommend to use only coefficient rings with unique
zero representation. Otherwise it may happen that, e.g., a poly-
nomial division will not terminate or a wrong degree will be re-
turned.

!

A Please note that for reasons of efficiency not all methods check their argu-
ments, not even at the interactive level. In particular this is true for many
access methods, converting methods and technical methods. Therefore,

224

using these methods inappropriately may result in strange error mes-
sages.

Creating Elements:

A Dom::UnivariatePolynomial(Var, R, Order)(p)

A Dom::UnivariatePolynomial(Var, R, Order)(lm)

Parameters:
p — a polynomial or a polynomial expression.
lm — list of monomials, which are represented as lists containing the

coefficients together with the exponents or exponent vectors.

Categories:

Cat::UnivariatePolynomial(R)

Related Domains: Dom::Polynomial , Dom::DistributedPolynomial ,
Dom::MultivariatePolynomial

Entries:

characteristic The characteristic of this domain.

coeffRing The coefficient ring of this domain as defined by the parameter
R.

key The name of the domain created.

one The neutral element w.r.t. "_mult" .

ordering The monomial order as defined by the parameter Order .

variables The list of the variable as defined by the parameter Var .

zero The neutral element w.r.t. "_plus" .

Access Methods

Method coeff : coefficients of a polynomial

coeff(dom a)

coeff(dom a, Var, NonNegativeInteger n)

coeff(dom a, NonNegativeInteger n)

A coeff(a) returns a sequence with all coefficients of a as elements
of R. The coefficients are ordered according to the monomial order-
ing Order .

225

A coeff(a, Var, n) returns the coefficient of the term Var^n as
an element of R.

A coeff(a, n) returns the coefficient of the term Var^n as an ele-
ment of R.

A This method overloads the function coeff for polynomials.

Method vectorize : vectorized form of a polynomial

vectorize(dom a <, PositiveInteger n>)

A Returns a in its vectorized form, i.e. a list of all (zero and nonzero)
coefficients of a as elements of R in increasing order. If n is explic-
itly given, whereby n must be greater than degree(a) , a list of n
coefficient entries maybe filled up with zeros is returned.

Example 1. To create the ring of univariate polynomials in x over the integers
one may define

>> UP:=Dom::UnivariatePolynomial(x,Dom::Integer)

Dom::UnivariatePolynomial(x, Dom::Integer, LexOrder)

Now, let us create two univariate polynomials.

>> a:=UP((2*x-1)^2*(3*x+1))

3 2
12 x - 8 x - x + 1

>> b:=UP(((2*x-1)*(3*x+1))^2)

4 3 2
36 x - 12 x - 11 x + 2 x + 1

The usual arithmetical operations for polynomials are available:

>> a^2+a*b

7 6 5 4 3 2
432 x - 288 x - 264 x + 200 x + 35 x - 36 x - x + 2

The leading coefficient, leading term, leading monomial and reductum of a
are

>> lcoeff(a),lterm(a),lmonomial(a),UP::reductum(a)

3 3 2
12, x , 12 x , - 8 x - x + 1

226

and a is of degree

>> degree(a)

3

The method gcd computes the greatest common divisor of two polynomials

>> gcd(a,b)

3 2
12 x - 8 x - x + 1

and lcm the least common multiple:

>> lcm(a,b)

4 3 2
36 x - 12 x - 11 x + 2 x + 1

Computing the definite and indefinite integral of a polynomial is also possible,

>> int(a)

4 3 2
3 x - 8/3 x - 1/2 x + x

which is in the case of indefinite integration simply the antiderivative of the
polynomial.

>> D(int(a)), domtype(D(int(a)))

3 2
12 x - 8 x - x + 1, Dom::UnivariatePolynomial(x,

Dom::Fraction(Dom::Integer), LexOrder)

But, since for representing the indefinite integral of a the coefficient ring cho-
sen as the integers is not appropriate, the polynomial ring over its quotient
field is used instead.

Furthermore, interpreting the polynomials as polynomial functions is also
allowed in applying coefficient ring elements, polynomials of this domain or
arbitrary expressions with option Expr to them:

>> a(5)

1296

>> a(b)

227

12 11 10 9 8
559872 x - 559872 x - 326592 x + 414720 x + 73872 x -

7 6 5 4 3
123120 x - 9924 x + 18408 x + 1144 x - 1364 x -

2
97 x + 38 x + 4

>> a(sin(x),Expr)

3 2
12 sin(x) - 8 sin(x) - sin(x) + 1

To get a vector of coefficients of a polynomial, which gives the dense represen-
tation of it, one may use the method vectorize .

>> UP::vectorize(a), UP::vectorize(a,6)

[1, -1, -8, 12], [1, -1, -8, 12, 0, 0]

Super-Domain: Dom::MultivariatePolynomial

Axioms

if Rhas Ax::normalRep , then
Ax::normalRep

if Rhas Ax::canonicalRep , then
Ax::canonicalRep

Changes:

A Dom::UnivariatePolynomial is a new domain.

228

