
stringlib — library for string manipulation

Table of contents

stringlib::contains — test for substring 1

stringlib::format — Formatting a string 2

stringlib::formatf — Convert a floating point number to a string 3

stringlib::pos — Position of a substring 5

stringlib::remove — Delete substrings 6

stringlib::subs — Substitution in a string 7

stringlib::subsop — Substitution in a string 9

i

stringlib::contains – test for substring

With stringlib::contains a string can be tested whether it contains an-
other string.

Call(s):

A stringlib::contains(string1, string2 <, option >)

Parameters:

string1, string2 — non empty string

Options:

Index — causes the first index position at which string2
appears in string1 to be returned. The return value is
0 if string2 occurs nowhere in string1 .

IndexList — causes the list of all positions at which string2
appears in string1 to be returned. The returned list
may be empty.

Return Value: TRUE, if string1 contains string2 , otherwise FALSE. An
integer (or a list of integers) that determines the position, if an option is given.

Related Functions: contains , stringlib::pos

Details:

A An occurrence of string2 is not detected if overlapped by the tail of a
previously detected occurrence. See Example 2.

Example 1. If called without options, stringlib::contains simply re-
turns TRUEor FALSE.

>> stringlib::contains("abcdeabcdeabcde", "bc")

TRUE

>> stringlib::contains("abcdeabcdeabcde", "bc", Index)

1

>> stringlib::contains("abcdeabcdeabcde", "bc", IndexList)

[1, 6, 11]

1

Example 2. The following call does not return [0,1] because the first match-
ing substring has not ended when the second begins.

>> stringlib::contains("aaa", "aa", IndexList)

[0]

Changes:

A stringlib::contains used to be string::contains .

stringlib::format – Formatting a string

stringlib::format adjusts the length of a string.

Call(s):

A stringlib::format(string1, width, <, alignment > <,
fill_char >)

Parameters:
string1 — string
width — integer that determines the length of the returned

string
alignment — Left , Center , or Right
fill_char — one-character string to fill up the result string

Options:

Left — determines that the string will be aligned left
Center — determines that the string will be centered
Right — determines that the string will be aligned right

Return Value: a string of length width containing the given string

Related Functions: stringlib::formatf

Details:

A If width is less than the length of the given string string1 , the sub-
string consisting of the first width characters of string1 is returned.

2

A If width exceeds the length of string1 , the given string will be filled
with the necessary number of spaces or the optional fill_char . These
are inserted at the end in case of left alignment, or at the beginning in
case of right alignment. In case of centering, the same number of filling
characters is placed at the beginning and at the end, but one more is
placed at the end if their total number is odd.

A If alignment is not given, left alignment is used by default.

Example 1. By default, a string of length 5 is adjusted to length 10 by inserting
five space characters at the end.

>> stringlib::format("abcde", 10)

"abcde "

In the case of centering, three spaces are inserted at the end and two at the
beginning.

>> stringlib::format("abcde", 10, Center)

" abcde "

Instead of the space character, also any other character may be used as a filling
character.

>> stringlib::format("abcde", 10, Right, ".")

".....abcde"

>> stringlib::format("abcde", 10, ".")

"abcde....."

Changes:

A stringlib::format used to be string::format .

stringlib::formatf – Convert a floating point number to a string

stringlib::formatf(f, d) converts the floating point number f into a
string after rounding it to d digits after the decimal point.

Call(s):

A stringlib::formatf(f, digits <, strlength >)

3

Parameters:
f — floating point number
digits — integer which determines the precision of the number
strlength — integer which determines the length of the returned

string

Return Value: stringlib::formatf returns a string.

Related Functions: stringlib::format

Details:

A If d is a positive integer, a rounded fixed-point representation with d dig-
its after the decimal point is returned. If d is zero, then a rounded fixed-
point representation with one zero after the decimal point is returned.
If d is negative, then f is rounded to -d digits before the decimal point
and a fixed-point representation with one zero after the decimal point is
returned.

A The representation of a negative number starts with the sign and no ad-
ditional spaces. The representation of a nonnegative number starts with
a single space character.

A If a third argument is specified, then the string returned consists of ex-
actly strlength characters. If the converted number f requires less
room, then it is padded on the left with spaces. If the converted number
f requires more room, then the last characters are truncated.

Example 1. Convert the number 123.456 with two characters after the point
into a string:

>> stringlib::formatf(123.456, 2)

" 123.46"

The same for -123.456 :

>> stringlib::formatf(-123.456, 2)

"-123.46"

Convert the number 123.456 with two characters after the point into a string
of the length 10 :

>> stringlib::formatf(123.456, 2, 10)

" 123.46"

4

If the string should only have the length 3, the whole number does not fit into
the string:

>> stringlib::formatf(123.456, 2, 3)

" 12"

Rounding to no number after point:

>> stringlib::formatf(123.456, 0)

" 123.0"

Rounding to one number in front of point:

>> stringlib::formatf(123.456, -1)

" 120.0"

Changes:

A stringlib::formatf used to be string::formatf .

stringlib::pos – Position of a substring

stringlib::pos returns the position of a substring in a string.

Call(s):

A stringlib::pos(string1, string2 <, pos >)

Parameters:
string1, string2 — non empty string
pos — integer that determines the first position to

search

Return Value: An integer that determines the position or FAIL .

Related Functions: stringlib::contains , length

Details:

A The third optional argument must be less than the length of string1 .

A If string1 does not contain string2 , then FAIL will be returned.

5

Example 1. In case of several occurrences of the substring, the position of the
first is returned.

>> stringlib::pos("abcdeabcdeabcde", "bc")

1

Example 2. If a starting point for the search is given, stringlib::pos re-
turns the first position at which the substring occurs after that starting point.

>> stringlib::pos("abcdeabcdeabcde", "bc", 5)

6

Example 3. The result is FAIL if the substring does not occur at all or after
the given starting point.

>> stringlib::pos("abcdeabcdeabcde", "bc", 12)

FAIL

Changes:

A stringlib::pos used to be string::pos .

stringlib::remove – Delete substrings

With stringlib::remove a substring can be deleted from another string.

Call(s):

A stringlib::remove(string1, string2 <, option >)

Parameters:

string1, string2 — non empty string

Options:

First — determines that only the first appearance of string2 in
string1 will be deleted

Return Value: the given string without the deleted parts

6

Related Functions: delete , stringlib::subs , stringlib::subsop

Details:

A After a string2 has been found, the search for further occurrences of it
continues after its last letter; hence only the first of several overlapping
occurrences is detected. See Example 3.

Example 1. By default, out of several occurrences of the given substring all
are removed.

>> stringlib::remove("abcdeabcdeabcde", "bc")

"adeadeade"

Example 2. Using the option First causes stringlib::remove to remove
only the first occurrence of the given substring.

>> stringlib::remove("abcdeabcdeabcde", "bc", First)

"adeabcdeabcde"

Example 3. In the following example, the given substring occurs twice, where
both instances of it do overlap. Only the first occurrence is removed.

>> stringlib::remove("aaa", "aa")

"a"

Changes:

A stringlib::remove used to be string::delete .

stringlib::subs – Substitution in a string

stringlib::subs substitutes a substring by another string.

Call(s):

A stringlib::subs(string, substring = replacement,
<First >)

7

Parameters:
string — non empty string
substring — non empty string that should be replaced
replacement — any string that replaced substring

Options:

First — determines, that only the first appearance of substring in
string will be replaced

Return Value: the given string with substring replaced by replacement

Related Functions: subs , stringlib::subsop , stringlib::pos ,
stringlib::remove

Details:

A By default, every occurrence of the string substring in string is re-
placed by replacement . The option First causes only the first ap-
pearance of substring to be replaced.

A The result is not searched again for instances of substring . See Exam-
ple 3.

A Among several overlapping occurrences of substring , the leftmost one
is replaced.

Example 1. The string replacement may be empty.

>> stringlib::subs("abcdeabcdeabcde", "bc" = "")

"adeadeade"

Example 2. Every substring is replaced unless the option First is given.

>> stringlib::subs("abcdeabcdeabcde", "bc" = "xxx")

"axxxdeaxxxdeaxxxde"

>> stringlib::subs("abcdeabcdeabcde", "bc" = "xxx", First)

"axxxdeabcdeabcde"

8

Example 3. The substitution may produce a new instance of substring , but
this one is not replaced.

>> stringlib::subs("aab", "ab"="b")

"ab"

Changes:

A stringlib::subs used to be string::subs .

stringlib::subsop – Substitution in a string

stringlib::subsop removes one or more characters at a given position and
inserts another substring at that position instead.

Call(s):

A stringlib::subsop(string, index = replacement)

Parameters:
string — non empty string
index — integer or range of integers that determines the

chars to be replaced
replacement — any string to replace the given char or range

Return Value: the given string with the replacement

Related Functions: subsop , stringlib::pos , stringlib::remove ,
stringlib::subs

Details:

A The char with index index in string (if index is an integer) or the
range of chars (if index is a range of integers) is removed. Instead re-
placement is inserted at that position. The inserted string need not
have the same length.

9

Example 1. Delete the first character:

>> stringlib::subsop("abcdeabcdeabcde", 0 = "")

"bcdeabcdeabcde"

The 2nd to 3rd character will be replaced by "xxx" :

>> stringlib::subsop("abcdeabcdeabcde", 1..2 = "xxx")

"axxxdeabcdeabcde"

Delete the characters 2 to 11:

>> stringlib::subsop("abcdeabcdeabcde", 1..10 = "")

"abcde"

Changes:

A stringlib::subsop used to be string::subsop .

10

