misc — miscellanea

Table of contents

Preface

misc::breakmap — stops the mapping currently done by maprec

misc::genassop — generates an n-ary associative operator from a
binaryone L

misc::maprec

misc::pslq

— map a function to subexpressions of an expression

— heuristic detection of relations between real numbers

ii

Introduction

The misc library contains some miscellaneous utility functions.
The package functions are called using the package name misc and the
name of the function. E.g., use

>> myplus := misc:.genassop(_plus, 0)

to create an own n-ary plus operator. (This is not really useful, since _plus
is an n-ary operator anyway.) This mechanism avoids naming conflicts with
other library functions. If this is found to be inconvenient, then the routines of
the misc package may be exported via export . E.g., after calling

>> export(misc, genassop)

the function combinat::bell may be called directly:

>> myplus := genassop(_plus, 0)

All routines of the misc package are exported simultaneously by
>> export(misc)

The functions available in the misc library can be listened with:
>> info(misc)

We would especially like to thank Raymond Manzoni for contributing the
function misc::pslq

ii

misc::breakmap - stops the mapping currently done by maprec

misc::breakmap () stops the recursive application of a function to all subex-
pressions of an expression that misc::maprec is just working on.

Call(s):

misc::breakmap()
Return Value: misc::breakmap always returns TRUE

Related Functions: misc::maprec

Details:

& misc::breakmap isuseful as a command inside the procedure mapped
by misc::maprec in case we know that we are finished with our work
and the remaining recursive mapping is not necessary.

Example 1. We want to know whether a given expression contains a particu-
lar type t . As soon as we have found the first occurence of t , we can terminate
our search.

>> myfound := FALSE:
misc::maprec(hold(((23+5.0)/3+4*1)*PI), {DOM_COMPLEX}=proc() be-
gin \
myfound := misc::breakmap(); args() end_proc) :
myfound; delete myfound :

TRUE

What did we do? We told misc::maprec just to go down the expression
tree and look for subexpressions of type DOM_COMPLE2nd, whenever such
subexpression should be found, to apply a certain procedure to it. That proce-
dure stops the recursive mapping, remembers that we have found the type we
had searched for, and returns exactly its argument such that the result returned
by misc::maprec equals the input. In the example below, we test whether
our given expression contains the type DOM_POLY

>> myfound := FALSE:
misc::maprec(hold(((23+5.0)/3+4*1)*PI), {DOM_POLY}=proc() be-
gin \
myfound := misc::breakmap() ; args() end_proc) :
myfound; delete myfound :

FALSE

Note that you do not need to use this method when searching for subexpres-
sions of a given type; calling hastype is certainly more convenient.

Changes:

misc::breakmap used to be breakmap .

misc::genassop — generates an n-ary associative operator from a
binary one
misc::genassop(binaryop, zeroelement) generates an n-ary associa-

tive operator from the binary operator binaryop , where zeroelement isa
neutral element for binaryop

Call(s):
misc::.genassop(binaryop, zeroelement)

Parameters:
binaryop — a function
zeroelement — an object

Return Value: misc::genassop returns a procedure f . That procedure ac-
cepts an arbitrary number of arguments of the same kind binaryop does; it
returns zeroelement if it is called without argument, and its only argument
if it is called with one argument; its value on n arguments is inductively de-
fined by f(x1, ..., xn)=f(binaryop(x1,x2), x3,...,xn)

Related Functions: operator

Details:

& binaryop must be a function taking two arguments (no matter of what
kind) and returning a valid argument to itself. It must satisfy the asso-
ciative law binaryop (binaryop (a, b), ¢) = binaryop (a, binaryop (b,

Q).

& zeroelement is an object such that binaryop(a, zeroelement) =
a holds for every a.

£ misc::igenassop returns a procedure which returns zeroelement if
it is called without arguments and the argument if it is called with one
argument.

£ misc::.genassop doesn’t check whether binaryop is really as- @
sociative and whether zeroelement is really a neutral element
for binaryop

Example 1. We know that _plus is an n-ary operator anyway, but let us as-
sume that _plus was only a binary operator. We can create an own n-ary
addition as follows:

>> myplus := misc::.genassop(_plus, 0)
proc genericAssop() ... end
Now we make myplus add some values.
>> myplus(3, 4, 8), myplus(-5), myplus()
15, -5, 0

As mentioned in the “Details” section, myplus returns the argument if is
called with exactly one argument, and it returns the zeroelement 0 if it is
called without arguments.

Changes:

& The number of arguments has decreased from three to two.

misc::maprec - map a function to subexpressions of an expression

misc::maprec(ex, selector=funci) maps the function funci to all subex-
pressions of the expression ex that satisfy a given criterion (defined by se-
lector) and replaces each selected subexpression s by funci(s)

Several different functions may be mapped to subexpressions satisfying dif-
ferent selection criteria.

Call(s):
misc::maprec(ex, selector=funci)
misc::maprec(ex, selector=funci, PreMap)
misc::maprec(ex, selector=funci, PostMap)
misc::maprec(ex, selector=funci, PreMap, PostMap)
misc::maprec(ex <, selector=funci, ... > <,
PreMap> <, PostMap >)

Parameters:
ex — any MuPAD object
selector ~— any MuPAD object
funci — any MuPAD object

Options:

PreMap — For each subexpressions s of ex, the selector is applied to
it after visiting all of its subexpressions; S may have
changed at that time due to substitutions in the
subexpressions.

PostMap — For each subexpressions s of ex, the selector is applied to
it before visiting its subexpressions. If S is selected by
selector , itis replaced by funci(s) ,and
misc::maprec is not recursively applied to the operands
of funci(s) ; otherwise, misc::maprec is recursively
applied to the operands of s.

Return Value: misc::maprec may return any MuPAD object.

Related Functions: map, mapcoeffs , misc::breakmap

Details:

misc::maprec(ex, selector_1=funci_1, ..., selector_n=funci_n)
does two steps: it tests whether ex meets a selection criterion defined by
some selector selector_k (and, if yes, replaces ex by funci_k(ex)),
and it applies itself recursively to all operands of ex. The order of these
steps is determined by the options PreMap and PostMap .

& Selectors are applied from left to right; if the expression meets some se-
lection criterion, no further selectors are tried.

& selector can have two forms. It can be a set {f1, ... ,t,}. Here a subex-
pression s of ex is selected if type(sl) is one of the types ti,... ,t,. If it
is not a set, a subexpression s of ex is selected if p(s) returns TRUE As
every MUPAD object may be applied as a function to s, p may be of any
type in the latter case.

& Inorder not to select a subexpression, the selector need not return FALSE
it suffices that it does not return TRUE

£ The options PreMap and PostMap can also be given together; in this
case, operands of not selected expressions are visited for a second time.

&0 If neither the option PreMap nor the option PostMap is given, then
PreMap is used.

t¢ Use a misc::breakmap command inside funci in order to stop the
recursive mapping. See the help page of misc::breakmap for an ex-
ample.

£ Only subexpressions of domain type DOM_ARRAYDOM_EXPR
DOM_LIST, DOM_SETand DOM_TABLEare mapped recursively.
To subexpressions of other types, selector is applied, but
misc::maprec is not mapped to their operands. (This is to avoid
unwanted substitutions.) If you want to recurse on them, use a
selector that selects such subexpressions, and make funci ini-
tiate another recursive mapping.

NOTE

& misc::maprec is overloadable. If the domain of a subexpression has
the method "maprec” , then this method is called with the subexpres-
sion and the other arguments of the call.

The subexpression is replaced by the result, but misc::maprec is @
not mapped to its operands; such recursive mapping must be done
by the domain method if desired.

£ The operators of expressions (op(expression, 0)) are also @
mapped recursively like all the other operands.

Overloadable by: ex

Example 1. In the following example every integer of the given expression
a+3+4 is substituted by the value 10. Since 10(n) returns 10 for every integer
n, it suffices to write 10 instead of n -> 10 here.

>> misc::maprec(hold(a+3+4), {DOM_INT} = 10)
a+ 20

In the example above, we used hold to suppress the evaluation of the expres-
sion because otherwise a+3+4 is evaluated to a+7 and we get the result:

>> misc::maprec(a+3+4, {DOM_INT} = 10)
a + 10

Example 2. Now we demonstrate the usage of the options PreMap and PostMap .
>> misc::maprec(hold(3+4), {DOM_INT} = 10)
10

Here misc::maprec was used without an option, this means the default op-
tion PreMap was used. So why did we get a result of 10 instead of the (possibly
expected) 20? Because pre-mapping is used by default, misc::maprec first
applies itself to the integers 3 and 4. They are replaced by the value 10 each
such that we get an intermediate result of 20. After that, misc::maprec tests
the selection criterion for the expression as a whole. This one equals the inte-
ger 20 by now, hence it is replaced by 10. Instead, when using the PostMap
option we get:

>> misc::maprec(hold(3+4), {DOM_INT} = 10, PostMap)
20

Here, the expression 3+4 was tested at first — it is not an integer. Then,
misc::maprec was applied to the operands, and both were replaced by 10.

Example 3. Now we give an example where the selector is a function. We
want to eleminate all the prime numbers from an expression.

>> misc::maprec(hold(_plus)(i $ i=1..20), isprime= null(), PostMap)
133

Here isprime returns TRUEfor every prime number between 1 and 20. Every

prime number between 1 and 20 is replaced by null() (since null()(p) gives
20

null)) which means the call above computes 5 .
i=1
icomposite

Changes:

£ misc:maprec used to be maprec .

misc::pslq - heuristic detection of relations between real numbers
misc::pslq(numberlist, precision) returns a list of integers [K1, ...,
kn] such that — denoting the elements of numberlist by al, ..., an —

the absolute value of S/ ;a;k; is less than 107P"¢" or FAIL if such integers
could not be detected.

Call(s):

misc::pslg(numberlist, precision)

Parameters:
numberlist ~ — list of real numbers or objects that can be converted to
real numbers by the function float
precision — positive integer

Return Value: list of integers, or FAIL

Side Effects: misc::pslq is not affected by the current value of DIGITS .
Numerical computations are carried out with more significant digits such that
the output meets the specification given above.

Details:

¢ This method can be used to get an idea about linear dependencies, before
proving them.

Example 1. Does 7 satisfy a polynomial equation of degree at most 2 ?
>> misc:pslq([1, PI, PI*2], 20)

FAIL

Example 2. Having forgotten the relation between sine and cosine, we can try
the heuristic way.

>> misc::pslq([1, sin(0.32), sin(0.32)"2, co0s(0.32), cos(0.32)72], 10)

+- -+
| 1, 0, -1, O, -1 |
+- -+

Background:

¢ This function has been written by Raymond Manzoni.

& The algorithm has been taken from Bailey and Plouffe, Recognizing nu-
merical constants. See also Helaman R.P. Ferguson and David Bailey, A
Polynomial Time, Numerically Stable Integer Relation Algorithm, RNR Tech-
nical Report RNR-92-032.

