
output — library for formatted output

Table of contents

output::ordinal — ordinal numbers 1

output::tableForm — printing objects in table form 1

output::tree — display of trees 4

i

output::ordinal – ordinal numbers

output::ordinal converts an integer to the corresponding english ordinal
number.

Call(s):

A output::ordinal(integer)

Parameters:

integer — integer

Return Value: a string with the english ordinal number

Related Functions: info , userinfo , print

Details:

A output::ordinal converts an integer to the corresponding english or-
dinal number. The return value is a string and can be used in messages.

Example 1. Convert some numbers to the corresponding english ordinal string:

>> map([0, 1, 2, 3, 4, 22, 134, 2001], output::ordinal)

["0th", "1st", "2nd", "3rd", "4th", "22nd", "134th", "2001st"]

Changes:

A output::ordinal is a new function.

output::tableForm – printing objects in table form

output::tableForm(obj) prints the object obj in table form.

Call(s):

A output::tableForm(object <, seperator > <, options >)

1

Parameters:
object — list or set of any MuPAD objects
seperator — string between columns
options — one single option or a set of options

Options:

Unquoted — strings will be printed without quotes
Unique — all columns are of the same width
Left , Center , Right — the entries will be aligned left, center or

right
Sort = procedure — the entries will be sorted
Output = file — Output into a file.

Return Value: no return value

Related Functions: output::tree , print , fopen , fprint , fclose

Details:

A output::tableForm prints the elements of the given object in table
form. The width of the table depends on the size of TEXTWIDTH. The
width of a column depends on the widest entry in this column.

A If seperator is given then it is appended to each object. Appending
spaces to the separator results additionally space between columns. By
default the separator is one space.

A Without the option Sort the objects will be converted to strings an then
sorted alphabetically.

Option <Unquoted >:

A The output function fprint will be calles with the option Unquoted .
E. g. strings will be printed without quotes.

Option <Unique >:

A All columns will be printed with the same width, the widest column
determines the width.

Option <Left , Center , Right >:

A The entries of each column will be aligned left, center or right.

2

Option <Sort = procedure >:

A The entries will be sorted with the given procedure. Without a procedure
the entries will be printed unsorted.

Option <Output = file >:

A Output into a file. If file is a string, a file named file will be opened
and overwritten and closed after writing. If file is a file descriptor the
table will be appended to file without closing file .

Example 1.

>> output::tableForm(anames(DOM_DOMAIN))

ClientObject DOM_ARRAY DOM_BOOL DOM_COMPLEX
DOM_DOMAIN DOM_EXEC DOM_EXPR DOM_FAIL
DOM_FLOAT DOM_FUNC_ENV DOM_IDENT DOM_INT
DOM_LIST DOM_NIL DOM_NULL DOM_POINT
DOM_POLY DOM_POLYGON DOM_PROC DOM_PROC_ENV
DOM_RAT DOM_SET DOM_STRING DOM_TABLE
DOM_VAR Plot Pref misc
output plot polylib specfunc
stdlib

>> output::tableForm(map(anames(DOM_DOMAIN), expr2text), " ", {Unique, Center})

"ClientObject" "DOM_ARRAY" "DOM_BOOL"
"DOM_COMPLEX" "DOM_DOMAIN" "DOM_EXEC"

"DOM_EXPR" "DOM_FAIL" "DOM_FLOAT"
"DOM_FUNC_ENV" "DOM_IDENT" "DOM_INT"

"DOM_LIST" "DOM_NIL" "DOM_NULL"
"DOM_POINT" "DOM_POLY" "DOM_POLYGON"

"DOM_PROC" "DOM_PROC_ENV" "DOM_RAT"
"DOM_SET" "DOM_STRING" "DOM_TABLE"
"DOM_VAR" "Plot" "Pref"

"misc" "output" "plot"
"polylib" "specfunc" "stdlib"

>> output::tableForm(anames(DOM_DOMAIN), ", ", {Sort = FALSE, Right})

3

ClientObject, DOM_ARRAY, DOM_BOOL, DOM_COMPLEX,
DOM_DOMAIN, DOM_EXEC, DOM_EXPR, DOM_FAIL,

DOM_FLOAT, DOM_FUNC_ENV, DOM_IDENT, DOM_INT,
DOM_LIST, DOM_NIL, DOM_NULL, DOM_POINT,
DOM_POLY, DOM_POLYGON, DOM_PROC, DOM_PROC_ENV,

DOM_RAT, DOM_SET, DOM_STRING, DOM_TABLE,
DOM_VAR, Plot, Pref, misc,

output, plot, polylib, specfunc,
stdlib

Changes:

A output::tableForm used to be misc::tableForm .

A output of elements of sets or lists, only one string as separator

A new options Unique , Left , Center , Right , Sort and Output

A enhanced alignment, column formatting, output to files

output::tree – display of trees

output::tree formats internally represented trees to display graphically.

Call(s):

A output::tree(Tree <, indentdepth <, charlist > <,
options >>)

Parameters:
Tree — the tree, given as a special list
indentdepth — indent depth for each subtree
charlist — the chars that illustrate the tree structure
options — option Small

Options:

Small — suppresses the display of a space line between every tree
entry

Return Value: an string object to display

Related Functions: adt::Tree , prog::exprtree

4

Details:

A output::tree displays trees given as specially MuPAD lists.

A The first object of the list is the root of the tree. All further objects are
nodes or subtrees of the tree. A subtree is again a special list (as de-
scribed), and any other MuPAD object will be interpreted as node of the
tree.

A The elements of the tree will be printed by MuPAD, when the tree will be
displayed, so it’s recommended to use strings as objects or objects with
a well defined display.

A The return value is a string that contains all chars to display the tree.
With functions print and fprint and the option Unquoted the tree
can be displayed.

A The parameter charlist is a list with five characters. The default value
is ["|", "+", "-", "‘", " "] . The characters have the following
meaning (described in the order of the list).

A The vertical lines of the tree, the connection between vertical and hori-
zontal line (i.e., an arm, but not the last arm), an arm (vertical line), the
last connection to an arm in a subtree, a char between an arm and the
description of the arm.

Option <Small >:

A suppresses the display of a space line between every tree entry to reduce
the height of the tree

Example 1. output::tree displayes special nested lists as trees:

>> TREE := ["a1", "a2", ["b1", "b2", ["c1", "c2"], "b3"],
["d1", "d2", "d3"]]:

print(Unquoted, output::tree(TREE))

a1
|
+-- a2
|
+-- b1
| |
| +-- b2
| |
| +-- c1

5

| | |
| | ‘-- c2
| |
| ‘-- b3
|
‘-- d1

|
+-- d2
|
‘-- d3

>> print(Unquoted, output::tree(TREE, 3, Small)):

a1
+- a2
+- b1
| +- b2
| +- c1
| | ‘- c2
| ‘- b3
‘- d1

+- d2
‘- d3

The chars can be defined by the user:

>> print(Unquoted, output::tree(TREE, 6, ["|", "|", ".", "\\", " "])):

a1
|
|.... a2
|
|.... b1
| |
| |.... b2
| |
| |.... c1
| | |
| | \.... c2
| |
| \.... b3
|
\.... d1

|
|.... d2
|
\.... d3

6

Changes:

A output::tree is a new function.

7

