
detools — library for differential equations

Table of contents

Preface . ii

detools::arbFuns — number of arbitrary functions in the general
solution of an involutive partial differential equation 1

detools::autoreduce — autoreduction of a system of differential
equations . 2

detools::cartan — Cartan characters of a differential equation . 3

detools::characteristics — characteristics of partial differential
equation . 4

detools::charODESystem — characteristic system of partial differ-
ential equation . 5

detools::charSolve — solves partial differential equation with the
method of characteristics . 7

detools::detSys — determining system for Lie point symmetries 8

detools::derList2Tree — minimal tree with a given list of deriva-
tives as leaves . 12

detools::euler — Euler operator of variational calculus 13

detools::hasHamiltonian — check for Hamiltonian vector field 14

detools::hasPotential — check for gradient vector field . . . 15

detools::hilbert — Hilbert polynomial of a differential equation 16

detools::modode — modified equation 17

detools::ncDetSys — determining system for non-classical Lie sym-
metries . 19

detools::pdesolve — solver for partial differential equations . 24

detools::transform — change of variables for differential equa-
tions . 25

i

Introduction

The detools library provides a number of functions for treating differential
equations, especially partial differential equations. This includes functions for
the generation, manipulation and analysis of differential equations, some func-
tions for the visualisation of (numerical) solutions and a solver for partial dif-
ferential equations. It should, however, be noted that the detools library is
still in a very early stage of its development and may functions are not yet very
powerful. The two main parts of the detools library are currently a rather
general Lie symmetry package and a completion package for over-determined
systems of differential equations.

The detools library is closely related to the MuPAD domains for differen-
tial equations; in fact, many functions are just interfaces to methods in these
domains, as one important task of the detools library is to provide easy
access to these methods for users not familiar with domains. This also im-
plies that most functions accept a simplified input for derivatives. Instead of
diff(u(x,y,z),x,y) one may simply enter u([x,y]) , i.e. the arguments
of the function u do not have to be specified; instead one passes as argument
a list with the variables with respect to which u is differentiated.

The library functions are called by the library name detools and the name
of the function. Thus with the input

>> detools::detSys(u([t]) - u([x, x]), [t, x], [u])

one computes the determining system for the generators of the Lie symmetry
algebra of the heat equation. This mechanism avoids naming conflicts with
other library functions. If this is found to be inconvenient, the routines of the
detools library may be exported via export . After entering

>> export(detools, detSys)

the function detools::detSys may be called directly:

>> detSys(u([t]) - u([x, x]), [t, x], [u])

All routines of the detools library are exported simultaneously by

>> export(detools)

The functions available in the detools library can be listed with

>> info(detools)

ii

detools::arbFuns – number of arbitrary functions in the general
solution of an involutive partial differential equation

detools::arbFuns(q,alpha) computes the number of arbitrary functions
in the general solution of an involutive partial differential equation of order q
and with Cartan characters alpha .

Call(s):

A detools::arbFuns(q, alpha)

Parameters:
q — the order of the equation: a positive integer.
alpha — the Cartan characters: a list of nonnegative integers.

Return Value: a list of integers of the same length as alpha . The i-th entry
gives the number of arbitrary functions with i arguments.

Related Functions: detools::cartan , detools::hilbert

Details:

A detools::arbFuns performs a purely combinatorial calculation try-
ing to express the Cartan characters of an involutive partial differential
equations as the number of arbitrary functions in the general solution.
For first order equations this make always sense; for higher order equa-
tions it is possible that negative values occur in the answer.

Example 1. How many arbitrary functions appear in the general solution of
Maxwell’s equations in electrodynamics? For three-dimensional space the four
Cartan characters are 6, 6, 4 and 0. So we enter

>> detools::arbFuns(1, [6, 6, 4, 0])

[0, 2, 4, 0]

and obtain that (at least formally) the solution space can be parametrised by
four functions of three variables and two functions of two variables.

Background:

A This combinatorial counting of arbitrary functions is based on the so-
called formal theory of differential equations and essentially analyses
formal power series solutions. More details can be found in the article:

1

• W.M. Seiler: On the arbitrariness of the general solution of an invo-
lutive partial differential equation, Journal of Mathematical Physics
35 (1994) 486–498

detools::autoreduce – autoreduction of a system of differential
equations

detools::autoreduce autoreduces a system of differential equations, i.e. it
tries to simplify the equations as much as possible by entering each equation
into all the other ones. The ultimate goal is to achieve a triangular form.

Call(s):

A detools::autoreduce(sys, indl, depl)

A detools::autoreduce(dfs)

Parameters:
sys — the differential equations: a list ofexpressions.
indl — the independent variables: a list of (indexed) identifiers.
depl — the dependent variables: a list of (indexed) identifiers.
dfs — the differential equations: a list of elements of a domain in

Cat::DifferentialFunction(DV) .

Return Value: an autoreduced list of differential equations; the equations are
represented either as expressions (first form of call) or as elements of a domain
in Cat::DifferentialFunction(DV) (second form of call).

Related Functions: simplify

Details:

A Autoreduction is a basic algorithm for the simplification of over-deter-
mined systems of differential equations. The appearing derivatives are
ordered according to some ranking. Then each equation is solved for its
leading derivative with respect to this ranking (if possible) and entered
into all other equations in order to eliminate this derivative from them.
This strategy is followed as long as substitutions can be performed.

A For linear equations the used algorithm will always succeed in trans-
forming the system to triangular form. In the case of non-linear equa-
tions, this depends on whether it is possible to solve for the leading
derivatives. In general, it cannot be guaranteed that dependent equa-
tions are always removed.

2

A Obviously, the result of an autoreduction depends on the chosen rank-
ing. A specific ranking can only be prescribed by using an appropriate
domain in Cat::DifferentialFunction(DV) , i.e. by using the sec-
ond call of detools::autoreduce . Otherwise the default ranking is
used which sorts first by the order of the derivative and then reverse
lexicographically.

Example 1. We want to simplify the two differential equations 3uxy + uy = 0
and ux = 0. Obviously, the second order term in the first equation is a deriva-
tive of the second equation. Thus it is eliminated by detools::autoreduce .

>> detools::autoreduce([3*u([x, y]) + u([y]), u([x])], [x, y], [u])

[u([x]), u([y])]

detools::cartan – Cartan characters of a differential equation

detools::cartan determines the Cartan characters of a differential equa-
tion either from the indices of the symbol or from the Hilbert polynomial.

Call(s):

A detools::cartan(n, m, q, beta)

A detools::cartan(n, hp)

Parameters:
n — number of independent variables: a positive integer.
m — number of dependent variables: a positive integer.
q — order of the equation: a positive integer.
beta — indices of symbol: a list of nonnegative integer.
hp — Hilbert polynomial: a univariate polynomial (type

DOM_POLY) with rational coefficients.

Return Value: a list of nonnegative integers.

Related Functions: detools::arbFuns , detools::hilbert

Details:

A detools::cartan determines the Cartan characters of a differential
equation from either the indices of the symbol or the Hilbert polynomial.
In the first case, the number of independent and dependent variables,
respectively, of the equation and its order must be given.

3

A In the second form to call detools::cartan the number of indepen-
dent variables suffices, as detools::cartan assumes that the Hilbert
polynomial is given relative to the order of the differential equation, i.e.
as a function of q + r.

Example 1. The indices of the symbol of Maxwell’s equations of electrody-
namics (a first order system in four independent and six dependent variables)
are [0,0,2,6] . They can be converted into Cartan characters with the fol-
lowing command.

>> detools::cartan(4, 6, 1, [0, 0, 2, 6])

[6, 6, 4, 0]

Alternatively, we may start with the Hilbert polynomial of Maxwell’s equa-
tions: H(1 + r) = 2r2 + 12r + 16.

>> detools::cartan(4, poly(2*r^2 + 12*r + 16, [r], Dom::Rational))

[6, 6, 4, 0]

Background:

A Cartan characters are used to measure the size of the (formal) solution
space of a system of differential equations. They appear in the so-called
formal theory of differential equations and are based on an analysis of
power series solutions. More details can be found in the article:

• W.M. Seiler: On the arbitrariness of the general solution of an invo-
lutive partial differential equation, Journal of Mathematical Physics
35 (1994) 486–498

detools::characteristics – characteristics of partial differen-
tial equation

detools::characteristics(ldf,s) determines the characteristics of the
linear differential equation ldf . The identifier s is used as parameter for the
curves.

Call(s):

A detools::characteristics(ldf, s, <, init >)

4

Parameters:
ldf — the differential equation: an element of a domain generated

with the constructor
Dom::LinearDifferentialFunction .

s — the independent variable: an identifier.
init — the initial conditions: a list of equations.

Return Value: a list of expressions representing the characteristics in para-
metric form.

Related Functions: detools::charODESystem , detools::charSolve

Details:

A detools::characteristics tries to determine the characteristics of
a given differential equation. For this purpose, it first sets up the charac-
teristic system using the method detools::charODESystem and then
tries to solve it. As the characteristic system is an in general nonlinear
system of ordinary differential equations, this can be a very hard task.

A The implemented form of the method of characteristics works only for
(quasi-)linear first order equations in one dependent variable.

A With the optional third argument one can prescribe some initial condi-
tions for the characteristic system. There should be exactly one condition
for each independent and dependent variable of the original partial dif-
ferential equation.

Example 1. With the following input one can determine the characteristics of
the differential equation 2ux + uy + 3uz − 2u = 0.

>> LDF := Dom::LinearDifferentialFunction(
Vars = [[x, y, z], u], Rest = [Types = "Indep"]):

ldf := LDF(2*u([x]) + u([y]) + 3*u([z]) - 2*u):
detools::characteristics(ldf, tau)

{[z(tau) = C1 + 3 tau, x(tau) = C2 + 2 tau, y(tau) = C3 + tau,

u(tau) = C4 exp(2 tau)]}

The result gives the characteristic curve in parametric form. The constants C1,
C13, C14, C15 could be fixed by adding some initial condition. It is easy to see
that the basis characteristics, i.e. the projection on the space of the independent
variables x , y , z , is a straight line and that the solution grows exponentially on
it.

5

detools::charODESystem – characteristic system of partial differ-
ential equation

detools::charODESystem(ldf,s) determines the characteristic system
of the linear differential equation ldf . The identifier s is used as independent
variable of this system.

Call(s):

A detools::charODESystem(ldf, s, <, init >)

Parameters:
ldf — the differential equation: an element of a domain generated

with the constructor
Dom::LinearDifferentialFunction .

s — the independent variable: an identifier.
init — the initial conditions: a list of equations.

Return Value: an object of the type ode .

Related Functions: detools::characteristics ,
detools::charSolve

Details:

A detools::charODESystem only determines the characteristic system
of the given differential equation; it does not attempt to solve it, i.e. to
explicitly compute the characteristics. If this is the goal, call directly the
method detools::characteristics .

A The implemented form of the method of characteristics works only for
(quasi-)linear first order equations in one dependent variable.

A With the optional third argument one can prescribe some initial condi-
tions for the characteristic system. There should be exactly one condition
for each independent and dependent variable of the original partial dif-
ferential equation.

Example 1. With the following input one can determine the characteristic sys-
tem of the differential equation 2ux + uy + 3uz− 2u = 0 using τ as independent
variable of the arising ordinary differential equations.

>> LDF := Dom::LinearDifferentialFunction(
Vars = [[x, y, z], u], Rest = [Types = "Indep"]):

ldf := LDF(2*u([x]) + u([y]) + 3*u([z]) - 2*u):
detools::charODESystem(ldf, tau)

6

ode({diff(x(tau), tau) - 2, diff(y(tau), tau) - 1,

diff(z(tau), tau) - 3, - 2 u(tau) + diff(u(tau), tau)},

{u(tau), x(tau), y(tau), z(tau)})

detools::charSolve – solves partial differential equation with the
method of characteristics

detools::charSolve(ldf,init,pars) solves the linear differential equa-
tion ldf by the method of characteristics. The initial conditions init should
depend on n− 1 parameters (listed in pars), if there are n independent vari-
ables.

Call(s):

A detools::charSolve(ldf, init, pars)

Parameters:
ldf — the differential equation: an element of a domain generated

with the constructor
Dom::LinearDifferentialFunction .

init — the initial conditions: a list of equations.
pars — the parameters: a list of identifiers.

Return Value: a list of expressions representing the parametric solution of the
differential equation for the given initial conditions.

Related Functions: detools::characteristics ,
detools::charODESystem , detools::pdesolve , solve

Details:

A detools::charSolve(ldf,init,pars) tries to solve the differen-
tial equation ldf subject to the parametric initial conditions init . The
list pars contains the names of the parameters. The solution will again
be in parametric form. It will be found only, if the characteristic system
can be solved.

A The implemented form of the method of characteristics works only for
(quasi-)linear first order equations in one dependent variable.

7

Example 1. With the following input one can solve the linear differential
equation 2ux + uy + 3uz − 2u = 0 for the following parametrized initial con-
dition x = 2σ, y = 3τ , z = σ+ τ ,u = σ− τ .

>> LDF := Dom::LinearDifferentialFunction(
Vars = [[x, y, z], u], Rest = [Types = "Indep"]):

ldf := LDF(2*u([x]) + u([y]) + 3*u([z]) - 2*u):
detools::charSolve(ldf,

{x = 2*sigma, y = 3*tau, z = sigma + tau, u = sigma -
tau},

{sigma, tau})

/ 7 x y 2 z \ / 6 z 2 y 3 x \
u = | --- - - - --- | exp| --- - --- - --- |

\ 10 5 5 / \ 5 5 5 /

detools::detSys – determining system for Lie point symmetries

detools::detSys sets up the determining system for the generators of Lie
point symmetries of a given system of differential equations. As for most
methods in the detools library there exist several possibilities for entering
the differential equations. The precise working of the method can be controlled
by a number of options; especially it is possible to prescribe a special ansatz
for the symmetry generators.

Call(s):

A detools::detSys(de, indl, depl <, Ansatz = ans,
Param = paraml > <, Expr = ebool > <,
Interactive = bool > <, Autoreduced =
bool >)

A detools::detSys(df <, Ansatz = ans, Param = paraml >
<, Expr = ebool > <, Interactive =
bool > <, Autoreduced = bool >)

Parameters:
de — the differential equation(s): either an expression or a list of

expressions.
indl — the independent variable(s): a list of (indexed) identifiers.
depl — the dependent variable(s): a list of (indexed) identifiers.
df — the differential equation(s): either an element of a domain DF

in Cat::DifferentialFunction or a list of such elements.

8

Options:

Ansatz — prescribes an ansatz for the generators.
Param — lists the names of the parameters (functions or

constants) contained in the ansatz.
Expr — determines the type of the output of

detools::detSys .
Interactive — controls the behaviour, if detools::detSys has

problems with solving the differential equations for
their leading derivatives.

Autoreduced — controls whether the equations of the determining
system are automatically simplified (autoreduced)
by detools::detSys . If bool=FALSE , no
simplifications are performed.

Return Value: The determining system is returned as a list. The type of the
list elements is controlled by the option Expr .

Side Effects: detools::detSys reads and writes some entries of the table
detools::data . This includes especially further information about the used
domains.

Related Functions: detools::ncDetSys

Details:

A detools::detSys sets up the determining system for the generators
of Lie point symmetries of the given differential equation(s). Thus it re-
turns again a (generally rather overdetermined) system of differential
equations whose solutions represent symmetry generators. The many
options allow for a rather tight control of the way the calculations pro-
ceed. Especially, it is possible to prescribe a special ansatz for the gener-
ators which leads often to a considerable speed up.

A Internally all calculations are performed within a suitably chosen do-
main of Cat::DifferentialFunction(DV) . If no specific domains
are prescribed, detools::detSys generates automatically for DV the
domain Dom::DifferentialVariable(indl,depl) . Thus for indl
and depl anything can be entered that is accepted by this constructor.

Which domain in Cat::DifferentialFunction(DV) detools::detSys
actually chooses, depends on the form of the entered differential equa-
tions. detools::detSys prefers to perform all calculations in polyno-
mial arithmetic, as this is considerably faster. Hence the first (and most
common) choice is a domain constructed with Dom::DifferentialPolynomial .
If the equations are of a more general form, Dom::DifferentialExpression
is used.

9

A For non-classical symmetries, the determining system can be set up with
the method detools::ncDetSys

Option <Ansatz =ans >:

A With this option one can prescribe a special ansatz for the symmetry gen-
erators. ans is either an element of the domain Dom::JetVectorField(DF)
where DF is the domain in which internally the calculations are per-
formed or any expression which can be converted into such an element.
If no ansatz is prescribed, a generic one is employed. If this option is
used, the option Param must be used, too.

A A very simple use of this option is to choose one’s own names for the co-
efficients of the generic ansatz. Assume we are given a differential equa-
tion for the unknown function u(x, t). Then a symmetry generator is a
vector field on a three dimensional manifold with the coordinates x, t,u.
In order to call the corresponding coefficients ξ, τ , η, one can use this op-
tion with the value Ansatz=[[xi(x,t,u),x], [tau(x,t,u),t],
[eta(x,t,u),u]] .

Option <Param=paraml >:

A This option makes sense only in connection with the option Ansatz .
paraml is a list of identifiers; the determining system consists of equa-
tions for these parameters. In the example above paraml would take the
value [xi,tau,eta] .

Option <Expr =ebool >:

A This option controls the type of the output. If ebool=TRUE , the out-
put will consists of expressions. The same holds for ebool=NoDiff ;
however, in this case for derivatives the condensed notation of the do-
mains in Cat::DifferentialVariable is used. For ebool=FALSE ,
the output will consist of elements of a domain generated by a call of the
constructor Dom::LinearDifferentialFunction with appropriate
arguments.

The default behaviour is determined by the way detools::detSys is
called. If the differential equations are entered as expressions, the de-
fault corresponds to ebool=NoDiff . If domain elements are used, it
corresponds to ebool=FALSE .

10

Option <Interactive =bool >:

A detools::detSys might encounter problems in solving each differen-
tial equations for a different derivative. If bool=TRUE , detools::detSys
will ask interactively the user for help. If bool=FALSE , the computation
will be aborted in case of troubles.

Example 1. We compute the determining system for the heat equation ut −
uxx = 0.

>> detools::detSys(u([t])-u([x,x]),[t,x],[u])

[2 XI1([u]), 2 XI1([x]), XI2([u, u]), XI1([u, u]),

2 XI2([x, u]) - PHI1([u, u]), 2 XI2([u]) + 2 XI1([x, u]),

XI2([x, x]) - XI2([t]) - 2 PHI1([x, u]),

2 XI2([x]) - XI1([t]) + XI1([x, x]),

PHI1([t]) - PHI1([x, x])]

The output is a linear system of nine differential equations. The unknown
functions XI1 , XI2 and PHI1 represent the coefficients of the t -, x - and u-
component of the symmetry generator, resp.

Background:

A Lie symmetry analysis is one of the most important techniques for study-
ing differential equations. More information about it and especially about
its mathematical background and its many application can be found in
the following text books:

• P.J. Olver: Applications of Lie groups to Differential Equations, Grad-
uate Texts in Mathematics 107, Springer, New York 1986
• G.W. Bluman, S. Kumei: Symmetries and Differential Equations,

Applied Mathematical Sciences 81, Springer, New York 1989

�
�
�

A
A
A

!

A It is not so easy to give a completely fool proof implementation of setting
up the determining system. detools::detSys should work correctly
for any system of differential equations satisfying the following condi-
tions: (i) the system is formally integrable (this is always true for single
equations and for systems in Cauchy-Kowalevsky form); (ii) nonlineari-
ties in the derivatives are only of polynomial type and (iii) all equations
can be solved for a different derivative. If one of these conditions is vio-
lated, the user should careful check the results (note: these are not arti-
ficial restrictions of detools::detSys but fundamental mathematical
problems!).

11

�
�
�

A
A
A

!

A If the system is not formally integrable, the infinitesimal approach which
underlies most of Lie symmetry analysis is no longer sufficient; it may
not find all existing symmetries. In cases of doubt, a completion with the
method detools::complete can be used to check for integrability

�
�
�

A
A
A

!

A If transcendent terms are present in the equations, the determining sys-
tem may be set up incorrectly, as detools::detSys is not able to de-
cide whether there exist any algebraic dependencies between these terms.
The determining system is set up under the assumption that no such re-
lations exist.

�
�
�

A
A
A

!

Essentially for the same reason, the current implementation also requires
that all equations can be solved for different derivatives. If this is the
case, it is trivial to take into account the relations introduced by the dif-
ferential equations themselves.

detools::derList2Tree – minimal tree with a given list of deriva-
tives as leaves

detools::derList2Tree(derl) takes a list of derivatives (more precisely,
their multi indices) and determines a minimal tree of derivatives such that the
given derivatives are the leaves.

Call(s):

A detools::derList2Tree(derl)

Parameters:

derl — list of multi indices: a list of lists of nonnegative integer.

Return Value: a list structure representing the spanning tree. Each leaf is rep-
resented by an integer denoting its position in the list derl . A node consists
of a multi index saying by what derivative the node can be reached and of a
subtree with the same structure.

Details:

A detools::derList2Tree is an auxiliary procedure that is used, for
example, by some methods in domains in Cat::DifferentialFunction .
It is useful, if several derivatives of the same function must be computed.
The determined tree describes a way to compute all required derivatives
with a minimal number of differentiations.

A The used algorithm is heuristic. It is not known whether it always pro-
duces an optimal result.

12

Example 1. Assume we are given a function F(x, y, z) and we need the follow-
ing three derivatives of it: Fxyyzzz, Fxxyyzzzz, Fxyzzzz. What is the most efficient
way to compute them?

>> detools::derList2Tree([[1, 2, 3], [2, 2, 4], [1, 1, 4]])

[[1, 1, 3], [[[0, 1, 0], 1], [[0, 0, 1], 3, [1, 1, 0], 2]]]

This result can be interpreted as follows. First compute G = Fxyzzz. Then the
first required derivative is given by Gy, the third one by H = Gz and the second
one by Hxy.

detools::euler – Euler operator of variational calculus

detools::euler(L,t,z) applies the Euler operator to the Lagrangian L
and returns the left hand side of the corresponding Euler-Lagrange equations.
The Lagrangian can be of any order and there can be any number of indepen-
dent variables t and of dependent variables z.

Call(s):

A detools::euler(L, t, z)

A detools::euler(L, DV)

Parameters:
L — the Lagrangian: an expression or an element of a domain of

Cat::DifferentialFunction(DV) .
t — the independent variable(s): either a single (indexed) identifier

or a list of (indexed) identifiers.
z — the dependent variable(s): either a single identifier or a list of

identifiers.
DV — the domain of the differential variables: DVmust belong to

Cat::DifferentialVariable .

Return Value: either a single expression or a list ofexpressions; if for L an ele-
ment of a domain of Cat::DifferentialFunction was given, the output
will also consist of elements of this domain.

Details:

A Let z be some functions of the variable(s) t. Let furthermore L be a func-
tion depending on t, z and the derivatives of z with respect to t up to a
fixed order q. Then the Euler operator yields differential equations for z
which are necessary conditions for the function z to be a minimum of the
action integral, i.e. the integral over L with respect to all variables t.

13

A Internally all calculations are performed within suitably chosen domains
of Cat::DifferentialFunction . If an object of type DOM_EXPRis
passed as Lagrangian L, conversions are needed which may cost some
time.

A If no specific domains are prescribed, detools::euler generates au-
tomatically for DV the domain Dom::DifferentialVariable(t,z)
and the calculations are performed in the domain Dom::DifferentialExpression(DV) .
Thus for t and z anything can be entered that is accepted by the con-
structor Dom::DifferentialVariable .

Example 1. This is a finite dimensional example computing the equations of
motion of a particle moving in the plane under the influence of a potential V.

>> L := 1/2*(diff(x(t), t)^2 + diff(y(t), t)^2) - V(x(t), y(t)):
detools::euler(L, t, [x, y])

[x([t, t]) + D([1], V)(x, y), y([t, t]) + D([2], V)(x, y)]

Example 2. This is a simple example for the generation of field equations. The
field u depends here on two variables t, x.

>> L := 1/2*(diff(u(t, x), t)^2 + diff(u(t, x), x)^2) - u(t, x)^2:
detools::euler(L, [x, t], u)

u([t, t]) + u([x, x]) + 2 u

detools::hasHamiltonian – check for Hamiltonian vector field

detools::hasHamiltonian(vf,q,p) checks whether the vector field vf
in the variables q and p is Hamiltonian.

Call(s):

A detools::hasHamiltonian(vf, p, q)

Parameters:
vf — the vector field: a list of expressions; its length must be twice the

length of the list q.
q — the position variables: a list of (indexed) identifiers.
p — the momentum variables: a list of (indexed) identifiers; must

have the same length as the list q.

14

Return Value: a list of expressions; each component represents an integrabil-
ity condition which must be satisfied for the vector field vf to be Hamiltonian.
If the list is empty, vf is unconditionally Hamiltonian.

Related Functions: detools::hasPotential

Details:

A A vector field v with 2n components is called Hamiltonian, if there ex-
ists a function H(q, p) where q and p are vectors of the length n such that
the first n components of v are given by ∂H/∂p and the last n compo-
nents by −∂H/∂q. detools::hasHamiltonian computes necessary
and sufficient conditions for the existence of such a function H; it does
not try to determine H.

A detools::hasHamiltonian assumes that q and p represent canonical
variables; i.e. it tests only whether vf is Hamiltonian with respect to the
standard symplectic structure of IR2n for some integer n.

Example 1. In the following example it is checked whether the vector field
describing the motion of a one-dimensional particle under the influence of a
force F is Hamiltonian.

>> detools::hasHamiltonian([p, -F(q)], [q], [p])

[]

As one can see, in one dimension the motion is Hamiltonian for any force F. In
higher dimensions this is no longer true, cf. Ex. 2.

Example 2. This is basically the same example as Ex. 1 but now in two dimen-
sions.

>> detools::hasHamiltonian([px, py, - F(x, y), - G(x, y)],
[x, y], [px, py])

[diff(G(x, y), x) - diff(F(x, y), y)]

Now we obtain an integrability condition which must be satisfied by the force
components F and G.

detools::hasPotential – check for gradient vector field

detools::hasPotential(vf,x) checks whether the vector field vf in the
coordinates x is the gradient of some potential.

15

Call(s):

A detools::hasPotential(vf, x)

Parameters:
vf — the vector field: a list of expressions; its length must be the same

as that of the list x .
x — the coordinates: a list of (indexed) identifiers.

Return Value: a list of expressions; each component represents an integra-
bility condition which must be satisfied for the vector field vf to possess a
potential. If the list is empty, vf is unconditionally a gradient.

Related Functions: detools::hasHamiltonian

Details:

A A vector field v is a gradient field, if there exists a function V(x) depend-
ing on a vector x such that the components of v are given by ∂V/∂x.
detools::hasPotential computes necessary and sufficient condi-
tions for the existence of such a potential V; it does not try to determine
V.

Example 1. With the following input one can determine the condition on the
components of a two-dimensional vector field so that the field is a gradient.

>> detools::hasPotential([F(x, y), G(x, y)], [x, y])

[diff(F(x, y), y) - diff(G(x, y), x)]

detools::hilbert – Hilbert polynomial of a differential equation

detools::hilbert(alpha,r) computes the Hilbert polynomial of a dif-
ferential equation with Cartan characters alpha . The identifier r is used as
variable of the polynomial.

Call(s):

A detools::hilbert(alpha, r)

Parameters:
alpha — the Cartan characters: a list of nonnegative integers.
r — variable for the polynomial: an identifier.

16

Return Value: a univariate polynomial (of type DOM_POLY) in the variable r
with rational coefficients.

Related Functions: detools::cartan

Details:

A detools::hilbert(alpha,r) determines the Hilbert polynomial of
a differential equation with Cartan characters alpha . The result is a uni-
variate polynomial in the variable r . The Hilbert polynomial should al-
ways be interpreted relative to the order of the differential equation. If
the Cartan characters have been computed at order q, the arising poly-
nomial is H(q + r).

Example 1. The Cartan characters of Maxwell’s equations of electrodynamics
are [6,6,4,0] . The corresponding Hilbert polynomial is

>> detools::hilbert([6, 6, 4, 0], r)

2
poly(2 r + 12 r + 16, [r], Dom::Rational)

detools::modode – modified equation

detools::modode implements the method of the modified equation for the
analysis of numerical integration methods applied to ordinary differential equa-
tions.

Call(s):

A detools::modode(Psi, depvars, indvar, step, order)

A detools::modode(F, method, depvars, indvar, step,
order)

17

Parameters:
Psi — the step function for the numerical method applied to the

given differential equation: a list of expressions
depvars — the names of the unknown functions: a list of (indexed)

identifiers.
indvar — the name of the independent variable: an (indexed)

identifier.
step — the name of the step size: an (indexed) identifier.
depvars — the order (in step) to which the modified equation

should be computed: a positive integer.
F — the right hand side of the differential equation: a

procedure of the same form as required by
numeric::odesolve .

method — the name of the chosen numerical method: a string.

Return Value: a list of expressions representing the right hand side of the
modified equation.

Related Functions: numeric::odesolve

Details:

A The method of the modified equation is based on the following observa-
tion. Given a differential equation a numerical integration scheme will
produce a sequence of points approximating a solution of the equation.
There exist differential equations such that these points lie very close
to their solutions (closer than to the approximated solution of the origi-
nal equation). Such equations are called modified equations and can be
computed as truncated power series in the step size step . Their analysis
allows statements about the properties of the chosen numerical method
applied to the given equation.

A The application of the method of the modified equation is straightfor-
ward for explicit one-step methods.

A For numerical methods implemented in numeric::odesolve it is not
necessary to give explicitly the step function Psi . Instead one can give
to detools::modode the right hand side F of the differential equation
in the form used by numeric::odesolve and the name method of
the integrator one is interested in. detools::modode will then call
numeric::odesolve with the option Symbolic and thus automati-
cally derive the step function Psi .

Example 1. The following input determines the modified equation of order 3
for the (forward) Euler method applied to the differential equation ẏ = z and
ż = −y.

18

>> detools::modode([z, - y], [y, z], t, h, 3)

-- 2 3 2 3 --
| h y h z h y h z h y h z |
| z + --- - ---- - ----, --- - y + ---- - ---- |
-- 2 3 4 2 3 4 --

The same result is obtained with the following sequence of commands.

>> F := proc(t,y) begin [y[2], - y[1]] end_proc:
detools::modode(F, EULER1, [y, z], t, h, 3)

-- 2 3 2 3 --
| h y h z h y h z h y h z |
| z + --- - ---- - ----, --- - y + ---- - ---- |
-- 2 3 4 2 3 4 --

detools::ncDetSys – determining system for non-classical Lie sym-
metries

detools::ncDetSys sets up the determining system for the generators of
non-classical Lie point symmetries of a given system of differential equations.
As for most methods in the detools library there exist several possibilities
for entering the differential equations. The precise working of the method can
be controlled by a number of options; especially it is possible to prescribe a
special ansatz for the symmetry generators.

Call(s):

A detools::ncDetSys(de, indl, depl <, Ansatz = ans,
Param = paraml > <, Expr = ebool >
<, Interactive = bool > <, Autore-
duced = bool > <, Steps = n>)

A detools::ncDetSys(df <, Ansatz = ans, Param =
paraml > <, Expr = ebool > <, In-
teractive = bool > <, Autoreduced =
bool > <, Steps = n>)

Parameters:
de — the differential equation(s): either a single expression or a list

of expressions.
indl — the independent variable(s): a list of (indexed) identifiers.
depl — the dependent variable(s): a list of (indexed) identifiers.
df — the differential equation(s): either an element of a domain DF

in Cat::DifferentialFunction or a list of such elements.

19

Options:

Ansatz — prescribes an ansatz for the generators.
Param — lists the names of the parameters (functions or

constants) contained in the ansatz.
Expr — determines the type of the output of

detools::ncDetSys .
Interactive — controls the behaviour, if detools::ncDetSys has

problems with solving the differential equations for
their leading derivatives.

Autoreduced — controls whether the equations of the determining
system are automatically simplified (autoreduce) by
detools::ncDetSys . If bool=FALSE , no
simplifications are performed.

Steps — determines the level at which non-classical
symmetries are sought.

Return Value: The determining system is returned as a list. The type of the
list element is controlled by the option Expr .

Side Effects: detools::ncDetSys reads and writes some entries of the ta-
ble detools::data . This includes especially further information about the
used data types.

Related Functions: detools::detSys

Details:

A detools::ncDetSys sets up the determining system for the genera-
tors of non-classical Lie symmetries of the given differential equation(s).
Thus it returns again a (generally rather overdetermined) system of dif-
ferential equations whose solutions represent symmetry generators. The
many options allow for a rather tight control of the way the calculations
proceed. Especially, it is possible to prescribe a special ansatz for the
generators which leads often to a considerable speed up.

A Internally all calculations are performed within a suitably chosen do-
main of Cat::DifferentialFunction(DV) . If no specific domains
are prescribed, detools::ncDetSys generates automatically for DV
the domain Dom::DifferentialVariable(indl,depl) . Thus for
indl and depl anything can be entered that is accepted by this con-
structor.

Which domain in Cat::DifferentialFunction(DV) detools::ncDetSys
actually chooses, depends on the form of the entered differential equa-
tions. detools::ncDetSys prefers to perform all calculations in poly-
nomial arithmetic, as this is considerably faster. Hence the first (and most
common) choice is a domain constructed with Dom::DifferentialPolynomial .

20

If the equations are of a more general form, Dom::DifferentialExpression
is used.

A For classical symmetries, the determining system can be set up with the
method detools::detSys

Option <Ansatz =ans >:

A With this option one can prescribe a special ansatz for the symmetry gen-
erators. ans is either an element of the domain Dom::JetVectorField(DF)
where DF is the domain in which internally the calculations are per-
formed or any expression which can be converted into such an element.
If no ansatz is prescribed, a generic one is employed. If this option is
used, the option Param must be used, too.

A A very simple use of this option is to choose one’s own names for the co-
efficients of the generic ansatz. Assume we are given a differential equa-
tion for the unknown function u(x, t). Then a symmetry generator is a
vector field on a three dimensional manifold with the coordinates x, t,u.
In order to call the corresponding coefficients ξ, τ , η, one can use this op-
tion with the value Ansatz=[[xi(x,t,u),x], [tau(x,t,u),t],
[eta(x,t,u),u]] .

Option <Param=paraml >:

A This option makes sense only in connection with the option Ansatz .
paraml is a list of identifiers; the determining system consists of equa-
tions for these parameters. In the example above paraml would take the
value [xi,tau,eta] .

Option <Expr =ebool >:

A This option controls the format of the output. If ebool=TRUE , the output
will consists of expressions. The same holds for ebool=NoDiff ; how-
ever, in this case for derivatives the condensed notation of the domains in
Cat::DifferentialVariable is used. For ebool=FALSE , the out-
put will consist of elements of a domain generated by the constructor
Dom::LinearDifferentialFunction with appropriate arguments.

The default behaviour is determined by the way detools::ncDetSys
is called. If the differential equations are entered as expressions, the de-
fault corresponds to ebool=NoDiff . If domain elements are used, it
corresponds to ebool=FALSE .

21

Option <Interactive =bool >:

A detools::ncDetSys might encounter problems in solving each differ-
ential equations for a different derivative. If bool=TRUE , detools::ncDetSys
will ask interactively the user for help. If bool=FALSE , the computation
will be aborted in case of troubles.

Option <Steps =n>:

A This option controls at which level the non-classical symmetries are sought.
This means that the parameter n controls after how many steps con-
sistency between the original system and the invariant surface condi-
tion has been achieved. The value n=1 corresponds to the well-known
Bluman-Cole approach but higher values are possible, too.

Example 1. The first example for a non-classical symmetry was found for the
heat equation ut − uxx = 0. With the following command one sets up the de-
termining equations for the first level of non-classical symmetries.

>> detools::ncDetSys(u([t]) - u([x, x]), [t, x], [u], Steps=1)

[(-2) (XI1([u]) XI1), 2 (XI1([u]) PHI1) + 2 (XI1([x]) XI2),

2 3
XI1([u, u]) XI2 XI1 - XI2([u, u]) XI1 ,

2
3 (XI2([u, u]) PHI1 XI1) - 2 (XI1([u, u]) PHI1 XI2 XI1) -

2 2
PHI1([u, u]) XI2 XI1 - 2 (XI1([x, u]) XI2 XI1) +

2 2
2 (XI2([x, u]) XI2 XI1) - 2 (XI2([u]) XI2 XI1),

2 2
XI1([u, u]) PHI1 XI2 - 3 (XI2([u, u]) PHI1 XI1) +

2
2 (PHI1([u, u]) PHI1 XI2 XI1) + 2 (XI1([x, u]) PHI1 XI2) -

2

22

4 (XI2([x, u]) PHI1 XI2 XI1) + 2 (PHI1([x, u]) XI2 XI1) +

3 2
XI1([x, x]) XI2 - XI2([x, x]) XI2 XI1 +

2 3
2 (XI2([u]) PHI1 XI2) + 2 (XI2([x]) XI2) -

3 2 3
XI1([t]) XI2 + XI2([t]) XI2 XI1, XI2([u, u]) PHI1 -

2 2
PHI1([u, u]) PHI1 XI2 + 2 (XI2([x, u]) PHI1 XI2) -

2 2
2 (PHI1([x, u]) PHI1 XI2) + XI2([x, x]) PHI1 XI2 -

3 2 3
PHI1([x, x]) XI2 - XI2([t]) PHI1 XI2 + PHI1([t]) XI2]

If one compares with the determining system for the classical symmetries, one
sees that the equations obtained here are not only considerably more involved,
they are also non-linear. This is typical for non-classical symmetries and makes
it much harder to solve the determining system. The problem becomes even
more severe for higher values of Steps .

Background:

A Lie symmetry analysis is one of the most important techniques for study-
ing differential equations. More information about it and especially about
its mathematical background and its many application can be found in
the following text books:

• P.J. Olver: Applications of Lie groups to Differential Equations, Grad-
uate Texts in Mathematics 107, Springer, New York 1986

• G.W. Bluman, S. Kumei: Symmetries and Differential Equations,
Applied Mathematical Sciences 81, Springer, New York 1989

Non-classical symmetries have been introduced by Bluman and Cole al-
ready in the late 60s. But only in recent years a better understanding and
a more complete theory has been developed.

�
�
�

A
A
A

!

A It is not so easy to give a completely fool proof implementation of set-
ting up the determining system. detools::ncDetSys should work
correctly for any system of differential equations satisfying the follow-
ing conditions: (i) the system is formally integrable (this is always true
for single equations and for systems in Cauchy-Kowalevsky form); (ii)

23

nonlinearities in the derivatives are only of polynomial type and (iii) all
equations can be solved for a different derivative. If one of these con-
ditions is violated, the user should careful check the results (note: these
are not artificial restrictions of detools::ncDetSys but fundamental
mathematical problems!).

�
�
�

A
A
A

!

A If the system is not formally integrable, the infinitesimal approach which
underlies most of Lie symmetry analysis is no longer sufficient; it may
not find all existent symmetries. In cases of doubt, a completion with the
method detools::complete can be used to check for integrability.

�
�
�

A
A
A

!

A If transcendent terms are present in the equations, the determining sys-
tem may be set up incorrectly, as detools::ncDetSys is not able to
decide whether there exist any algebraic dependencies between these
terms. The determining system is set up under the assumption that no
such relations exist.

�
�
�

A
A
A

!
Essentially for the same reason, the current implementation also requires
that all equations can be solved for different derivatives. If this is the
case, it is trivial to take into account the relations introduced by the dif-
ferential equations themselves.

detools::pdesolve – solver for partial differential equations

detools::pdesolve solves partial differential equations.

Call(s):

A detools::pdesolve(pde, indl, depl)

A detools::pdesolve(df, DV)

Parameters:
pde — the differential equation(s): either a single expression or a list

of expressions.
indl — the independent variables: a list of (indexed) identifiers.
depl — the dependent variables: a list of (indexed) identifiers.
df — the differential equation(s): either a single element of a

domain in Cat::DifferentialFunction(DV) or a list of
such elements.

DV — the differential variables: a domain in
Cat::DifferentialVariable .

Return Value: a single expression or a list of expressions; each entry repre-
sents a component of the solution. If detools::pdesolve is not able to
solve the equation, it is returned unchanged.

24

Related Functions: detools::charSolve , detools::detSys , solve

Details:

A Solving partial differential equations is a very difficult task and one should
not expect miracles from detools::pdesolve . Currently, the main
technique used is the method of characteristics. Thus detools::pdesolve
can basically only solve some quasi-linear first order equations. Further
solution techniques will be added in the future.

Example 1. The following call solves the quasi-linear equation ut − u(ux +
uy) = 0 with the initial condition u(t = 0) = x + y. For the input of the differen-
tial equation a condensed notation is used (u([t]) instead of diff(u(x,y,t),t)
etc.); the initial condition is given in parametrized form.

>> detools::pdesolve(u([t]) - u*(u([x]) + u([y])), [t, x, y], [u],
{t = 0, x = sigma, y = tau, u = sigma + tau},
{sigma, tau})

2 (t x - x - t y)
u = y - x + -----------------

2 t - 1

One can easily check by entering this expression into the differential equations
that it is indeed a solution (don’t forget to use normal !) and that for t = 0 we
have u = x + y as required by the initial condition.

detools::transform – change of variables for differential equa-
tions

detools::transform performs variable transformations in differential equa-
tions.

Call(s):

A detools::transform(de, indl, depl, mode, <, NewVars
= varl > <ChangeOfVars = cl >)

Parameters:
de — the differential equation: an expression.
indl — the independent variable(s): a list of (indexed) identifiers.
depl — the dependent variable(s): a list of (indexed) identifiers.
mode — transformation mode: either the string "Indep" or "Dep" .

25

Options:

NewVars — lists the names of the new variables.
ChangeOfVars — defines the new variables.

Return Value: an expression.

Details:

A detools::transform performs variable transformations in differen-
tial equations. It represents only an interface to methods implemented
in domains in Cat::DifferentialFunction . So the allowed trans-
formations depend on the type of the differential equation. For example,
for linear equations only linear transformations of either the dependent
or the independent variables are permitted.

Example 1. We transform the independent variables in a simple linear differ-
ential expression. Note that the new variables are given as linear functions of
the old ones.

>> detools::transform(u([x]) + u([y]), [x, y], [u], NewVars = [X, Y],
ChangeOfVars = [X = x + y, Y = x - y], "Indep")

2 u([X])

Example 2. Now we transform the dependent variable. Here the old variable
must be given as a linear function of the new one.

>> detools::transform(u([x]) + u([y]), [x, y], [u], NewVars = [U],
ChangeOfVars = [u=3*U], "Dep")

3 U([x]) + 3 U([y])

26

