
Cat — predefined categories

Table of contents

Preface . iii

1 Introduction . iii

2 Category Constructors . iii

Cat::BaseCategory — the base category 1

Cat::AbelianGroup — the category of abelian groups 4

Cat::AbelianMonoid — the category of abelian monoids 5

Cat::AbelianSemiGroup — the category of abelian semi-groups 6

Cat::Algebra — the category of associative algebras 7

Cat::CancellationAbelianMonoid — the category of abelian monoids
with cancellation . 8

Cat::CommutativeRing — the category of commutative rings . . 9

Cat::DifferentialRing — the category of ordinary differential
rings . 10

Cat::EntireRing — the category of entire rings 11

Cat::EuclideanDomain — the category of euclidean domains . . 12

Cat::FactorialDomain — the category of factorial domains . . 14

Cat::Field — the category of fields 15

Cat::FiniteCollection — the category of finite collections . . 18

Cat::GcdDomain — the category of integral domains with gcd . . 20

Cat::Group — the category of groups 21

Cat::HomogeneousFiniteCollection — the category of homoge-
neous finite collections . 22

Cat::HomogeneousFiniteProduct — the category of homogeneous
finite products . 23

Cat::IntegralDomain — the category of integral domains 25

Cat::LeftModule — the category of left R-modules 27

Cat::Matrix — the category of matrices 29

Cat::Module — the category of R-modules 33

Cat::Monoid — the category of monoids 34

i

Cat::OrderedSet — the category of ordered sets 35

Cat::PartialDifferentialRing — the category of partial differ-
ential rings . 37

Cat::Polynomial — the category of multivariate polynomials . . 38

Cat::PrincipalIdealDomain — the category of principal ideal do-
mains . 43

Cat::QuotientField — the category of quotient fields 44

Cat::RightModule — the category of right R-modules 46

Cat::Ring — the category of rings 47

Cat::Rng — the category of rings without unit 47

Cat::SemiGroup — the category of semi-groups 48

Cat::Set — the category of sets of complex numbers 49

Cat::SkewField — the category of skew fields 53

Cat::SquareMatrix — the category of square matrices 54

Cat::UnivariatePolynomial — the category of univariate polyno-
mials . 54

Cat::VectorSpace — the category of vector spaces 56

ii

1 Introduction

In MuPAD an algebraic structure may be represented by a domain. Parametrized
domains may be defined by domain constructors. Many domain constructors
are defined in the library package Dom.

Domains which have a similar mathematical structure may be members of
a category. A category adds a level of abstraction because it postulates condi-
tions which must hold for a domain in order to become a valid member of the
category. Operations may be defined for all members of a category based on
the assumptions and basic operations of that category, as long as they make
no assumptions about the representation of the elements of the domains that
belong to the category. Categories may also depend on parameters and are
created by category constructors.

Attributes of domains and categories are defined in terms of so-called ax-
ioms. Axioms state properties of domains or categories. They are defined by
axiom constructors.

This paper describes the category constructors which are part of the Cat
library package. The definition of new constructors is described in detail in
the paper “Axioms, Categories and Domains” [2].

The categories defined so far in general follow the conventions of algebra.
There are some properties of the categories which differ from the ‘classical’
non-constructive theory of algebra because these properties are not construc-
tive or can not be constructed efficiently.

The category hierarchy of the Cat package is quite similar to (part of) the
category hierarchy of AXIOM [3] (see [1] for a description of the basic cate-
gories of Scratchpad, the predecessor of AXIOM).

2 Category Constructors

For each category constructor only the entries defined directly by the construc-
tor are described. Entries which are inherited from super-categories are not
described.

Please note that most axioms of the categories are not stated explicitly.
Only axioms which are not implied by the definition of a category are stated
explicitly. The category of groups for example has no axiom stating that the
multiplication is invertible because that is implied by the definition of a group.

Changes since Version 1.4

The definition and implementation of category constructors has been changed
considerably:

• A new syntax has been introduced for category constructors.

• Constructor parameters and local variables are now bound lexically in-
stead of substituted into the methods.

• The former spezial name this has been renamed to dom.

iii

This changes are described in detail in the paper “Axioms, Categories and
Domains” [2].

The category Cat::SetCat has been renamed to Cat::BaseCategory .
Note that there is a new category Cat::Set which has nothing in common
with the former Cat::SetCat .

Several new categories related to differential algebra have been introduced.

Changes since Version 1.2.2

Since MuPAD version 1.2.2 the following changes where made:
Most notably, all the constructors have been inserted into three library do-

mains, in order to avoid global names and naming conflicts:

• All domain constructors and domains have been inserted into the new
library domain Dom.

• The category constructors and categories have been inserted into the li-
brary domain Cat .

• The axioms have been inserted into the library domain Ax.

Thus the domain constructor for matrices now is called Dom::Matrix instead
of simply Matrix , and the category of rings is called Cat::Ring instead of
Ring .

The former global names may be exported from these library domains,
with export(Dom) one gets all the former domain constructor and domain
names for example.

The method names of the category Cat::FactorialDomain (formerly
FactorialDomain) have been changed slightly, which involves the sub-categories
and domains of this category.

Acknowledgements

Frank Postel1 implemented the constructors related to matrices, i.e. Cat::Matrix ,
Cat::SquareMatrix and Cat::VectorSpace and wrote the documenta-
tion.

1Univ. of Paderborn, MuPAD group, e-mail: frankp@uni-paderborn.de

iv

References

[1] J.H. Davenport and B.M. Trager. Scratchpad’s View of Algebra I: Basic
Commutative Algebra. DISCO ‘90 (Springer LNCS 429, ed. A. Miola):40–
54, 1990.

[2] K. Drescher. Axioms, Categories and Domains. Automath Technical Report
No. 1, Univ. GH Paderborn 1995.

[3] R.D. Jenks and R.S. Sutor. AXIOM, The Scientific Computation System.
Springer, 1992.

v

Cat::BaseCategory – the base category

Cat::BaseCategory is the “universal” category, any domain in the Dom
package is of this category.

Generating the category:

A Cat::BaseCategory

Details:

A Cat::BaseCategory is the most general super-category of all cate-
gories defined by the Cat package. Any domain in the Dompackage
is of this category.

A The methods defined by Cat::BaseCategory are related to type con-
version and equality testing, they are not related to an algebraic struc-
ture.

Basic Methods

Method convert : convert into this domain

convert(x)

A Must convert x into an element of this domain or return FAIL if that
is not possible.

Method convert_to : convert to certain type

convert_to(dom x, type T)

A Must convert x into an element of type T or return FAIL if that is
not possible. T may be domain or a type expression.

Method equal : test for equality

equal(dom x, dom y)

A This method must return TRUEif it can decide that x is equal to y
in the mathematical sense imposed by this domain. It must return
FALSEif it can decide that x is not equal to y mathematically. If the
method can not decide the equality it must return UNKNOWN.

A Note that this method does not overload the function _equal , i.e.
the = operator. The function _equal may not be overloaded.

1

Method expr : convert into expression

expr(dom x)

A Must convert x into an expression consisting of elements of kernel
domains. The expression should canonically represent an element
of this domain, if possible.

Conversion Methods

Method coerce : coerce into this domain

coerce(x)

A Tries to coerce x into an element of this domain. Must return FAIL
if not successful.

A The implementation provided tries to convert x into an element of
this domain by first calling dom::convert(x) and then, if this
fails, x::dom::convert_to(x, dom) ; it retuns FAIL if both meth-
ods fail.

Method equiv : test for equivalence

equiv(x, y)

A Tries to decide if the arguments are equal when regarded as ele-
ments of this domain. Returns FAIL if no decision was possible.

A The implementation provided tries to convert x and y into elements
of this domain and then calls dom::equal with these elements.
It returns FAIL if the conversion fails or the equality test returns
UNKNOWN.

Method new: create element of this domain

new(x)

A Creates a new element of this domain.

A Given a domain D, an expression of the form D(x,...) results in
a call of the form D::new(x,...) .

A The implementation provided here tries to convert x by calling dom::convert(x)
and returns the result. It raises an error if dom::convert returns
FAIL .

2

Method print : return expression to print an element

print(dom x)

A This method must return an expression which is printed instead of
the original element x . It may be used to configure the printing of
domain elements.

A Please do not print directly in this method by calling the function
print for example!

A The implementation provided here is dom::expr .

Method testtype : test type of object

testtype(x, T)

A This method is called by the function testtype . It is used to test if
x is of type T.

A This method must return TRUEif it can decide that x is of type T,
FALSE if it can decide that x is not of type T and FAIL if it can not
decide the test.

A This method is called in three different situations: Either if the argu-
ment x is of this domain, or if T is this domain, or if T is an element
of this domain. Thus the following three situations can arise:

testtype(dom x, type T)

A In this case it must be tested if x may be regarded as an element
of the type T, which may either be a domain or type expression.
dom::convert_to(x,T) is called, if this is successful TRUEis re-
turned and FAIL if not.

testtype(x, dom)

A In this case it must be tested if x may be regarded as an element
of this domain. dom::convert(x) is called, if this is successful
TRUEis returned and FAIL if not.

testtype(x, dom T)

A In this case T is regarded as a type expression. The implementation
provided assumes that T represents the type consisting of the sin-
gleton element T and returns the result of the call dom::equiv(x,T) .

Technical Methods

Method new_extelement : create element of kernel or facade domain

new_extelement(x, ...)

3

A This method is defined only for domains with axiom Ax::systemRep ,
i.e. for kernel or facade domains. (Facade domains are domains
which do not have elements of their own domain but operate on
elements of kernel domains like DOM_POLY.)

A When an expression new(D,x...) is evaluated and D is a domain
with method "new_extelement" , then D::new_extelement(D,x...)
is evaluated and returned as result.

A Kernel or facade domains must define this method because oth-
erwise the function new would return a “container” element of D
rather than a “raw” element as intended.

A The implementation provided here returns the result of D::new(x...) .
Thus a call of the form new(D,x...) yields the same result as a
call of the form D(x...) .

Changes:

A Has been renamed. Used to be Cat::SetCat .

A The method "printElem" has been removed.

Cat::AbelianGroup – the category of abelian groups

Cat::AbelianGroup represents the category of abelian groups.

Generating the category:

A Cat::AbelianGroup

Categories:

Cat::CancellationAbelianMonoid

Details:

A An Cat::AbelianGroup is an abelian monoid with cancellation law
where the operation + is invertible.

Basic Methods

Method _negate : returns opposite

_negate(dom x)

A Must return the opposite of x .

4

Mathematical Methods

Method equal : test for equality

equal(dom x, dom y)

A Returns TRUEiff x is equal to y . This implementation tests if x
minus y is zero, using the method "iszero" .

Method intmult : returns integer multiple

intmult(dom x, DOM_INT n)

A Returns the integer multiple n times x . This method is implemented
like “repeated squaring” using the domains method "_plus" .

Method _subtract : subtracts two elements

_subtract(dom x, dom y)

A Returns x minus y by adding x and the opposite of y .

Changes:

A No changes.

Cat::AbelianMonoid – the category of abelian monoids

Cat::AbelianMonoid represents an abelian monoid.

Generating the category:

A Cat::AbelianMonoid

Categories:

Cat::AbelianSemiGroup

Axioms

if domhas Ax::canonicalRep then
Ax::normalRep

5

Details:

A An Cat::AbelianMonoid is an abelian semi-group with a neutral ele-
ment dom::zero according to the operation + (_plus).

A Use the axiom Ax::normalRep to state that zero is always represented
in a unique way (i.e. canonically).

A If an abelian monoid has not the axion Ax::normalRep then dom::zero
is only one possible representation of the neutral element. An abelian
semi-group must at least have the method "iszero" to test for zero in
such a case.

Basic Entries:

zero Must hold the neutral Element according to the operation +.

Mathematical Methods

Method intmult : returns integer multiple

intmult(dom x, Type::NonNegInt n)

A Returns dom::zero if n is 0 and the n-fold sum of x if n is positive.
This method is implemented like “repeated squaring” using the
domains method "_plus" .

Method iszero : tests if element is zero

iszero(dom x)

A Returns TRUEif x is equal to zero. This implementation uses the
method "equal" to compare x with dom::zero .

Changes:

A No changes.

Cat::AbelianSemiGroup – the category of abelian semi-groups

Cat::AbelianSemiGroup represents the category of abelian semi-groups.

Generating the category:

A Cat::AbelianSemiGroup

6

Categories:

Cat::BaseCategory

Details:

A Cat::AbelianSemiGroup represents the category of abelian semi-groups
where the operation is written as addition. Hence an Cat::AbelianSemiGroup
is a set with an associative and commutative operation + (_plus).

A Note that non-abelian semi-groups with operation * have category Cat::SemiGroup .

Basic Methods

Method _plus : returns the sum of its arguments

_plus(dom x, ...)

A Must return the sum of its arguments.

Mathematical Methods

Method intmult : returns integer multiple

intmult(dom x, Type::PosInt n)

A Returns the n-fold sum of x . This method is implemented like “re-
peated squaring” using the domains method "_plus" .

Changes:

A No changes.

Cat::Algebra – the category of associative algebras

Cat::Algebra(R) represents the category of associative algebras over the
commutative ring R.

Generating the category:

A Cat::Algebra(R)

Parameters:
R — A domain which is a commutative ring. The algebra will be an

algebra over this ring.

7

Categories:

Cat::Ring , Cat::Module(R)

Details:

A An Cat::Algebra(R) is a module over a commutative ring R which
also is a ring.

Changes:

A No changes.

Cat::CancellationAbelianMonoid – the category of abelian monoids
with cancellation

Cat::CancellationAbelianMonoid represents the category of abelian monoids
with cancellation.

Generating the category:

A Cat::CancellationAbelianMonoid

Categories:

Cat::AbelianMonoid

Details:

A A Cat::CancellationAbelianMonoid is an abelian monoid where
the cancellation law holds according to the operation +, i.e. a + b = a + c
implies b = c.

Basic Methods

Method _subtract : subtracts two elements

_subtract(dom x, dom y)

A Must return z such that x = y + z or FAIL if z dosn’t exist. The
result is unique due to the cancellation law.

8

Mathematical Methods

Method equal : test for equality

equal(dom x, dom y)

A Returns TRUEif x - y exists and is equal to zero. Returns FAIL if x
- y returns FAIL .

A The method "iszero" is used to test for zero.

Method _negate : negate element

_negate(dom x)

A Returns the opposite of x by computing 0 - x or FAIL if the sub-
traction fails.

Method intmult : returns integer multiple

intmult(dom x, DOM_INT n)

A Returns the n-fold sum of x . The integer n may also be negative.
In this case the opposite of x is computed. If no opposite exists
then FAIL is returned, otherwise the -n-fold sum of the opposite is
returned.

Changes:

A No changes.

Cat::CommutativeRing – the category of commutative rings

Cat::CommutativeRing represents the category of commutative rings.

Generating the category:

A Cat::CommutativeRing

Categories:

Cat::Ring , Cat::RightModule(dom)

9

Details:

A A Cat::CommutativeRing is a ring with unit dom::one where the
multiplication * (_mult) is commutative. It is also a right module over
itself.

A This implementation additionally assumes that the elements are always
constant with respect to differentiation and derivates. One must re-implement
the methods "diff" and "D" if this assumption is false.

Mathematical Methods

Method diff : differentiates element

diff(dom x <, variable v, ... >)

A This implementation always returns 0.

Method D: returns derivative

D(Type::ListOf(Type::PosInt) l, dom x)

A This implementation always returns 0.

Changes:

A New methods: "diff" and "D" .

Cat::DifferentialRing – the category of ordinary differential rings

Cat::DifferentialRing represents the category of ordinary differential
rings.

Generating the category:

A Cat::DifferentialRing

Categories:

Cat::PartialDifferentialRing

10

Details:

A A Cat::DifferentialRing is a commutative ring with a single deriva-
tion operator D.

A A derivation is a linear operator with product rule, i.e. D(f g) = D(f)g +
f D(g) holds for all f and g.

Basic Methods

Method D: returns derivative

D(dom f)

A Must return the derivative of f .

Method diff : differentiation with respect to a variable

diff(dom f, variable x)

A Must differentiate f with respect to the variable x .

Changes:

A No changes.

Cat::EntireRing – the category of entire rings

Cat::EntireRing represents the category of entire rings.

Generating the category:

A Cat::EntireRing

Categories:

Cat::Ring , Cat::RightModule(dom)

Axioms

Ax::noZeroDivisors

11

Details:

A An Cat::EntireRing is a ring with unit "one" which has no zero
divisors: Given non-zero ring elements a and b the product a times b is
never zero.

Changes:

A No changes.

Cat::EuclideanDomain – the category of euclidean domains

Cat::EuclideanDomain represents the category of euclidean domains.

Generating the category:

A Cat::EuclideanDomain

Categories:

Cat::PrincipalIdealDomain

Details:

A An Cat::EuclideanDomain is a principal ideal domain with an “Eu-
clidean degree” function "euclideanDegree" and operations "quo"
and "rem" computing the Euclidean quotient and Euclidean reminder.

A The Euclidean degree returns nonnegative integers such that for each
non-zero x and y there exist s and r such that x = ys + r and either the
Euclidean degree of r is less than that of s or r is zero.

A In addition s is equal to quo(x,y) and r is equal to rem(x,y) .

Basic Methods

Method euclideanDegree : returns Euclidean degree

euclideanDegree(dom x)

A Must return the Euclidean degree of x .

12

Method divide : division with reminder

divide(dom x, dom y)

A Must return a list with two elements: first the Euclidean quotient
and second the Euclidean reminder of x and y .

Mathematical Methods

Method _divide : exact division

_divide(dom x, dom y)

A Implements the exact division _divide in terms of "divide" :
The division returns the Euclidean quotient of x and y provided
that the Euclidean reminder is zero. It returns FAIL if the Eu-
clidean reminder is not zero.

Method gcd : greatest common divisor

gcd(dom x, ...)

A Returns the greatest common divisor of its arguments computed
by the Euclidean algorithm.

Method gcdex : extended greatest common divisor

gcdex(dom x, dom y)

A Returns a list [g,s,t] where g is the gcd of x and y and g =
xs + yt holds. The result is computed by the extended Euclidean
algorithm.

Method idealGenerator : generator of finitely generated ideal

idealGenerator(dom x, ...)

A Returns the generator of the finitely generated ideal which is gen-
erated by the arguments. This is simply the gcd of the arguments.

Method quo : Euclidean quotient

quo(dom x, dom y)

A Returns the Euclidean quotient of x and y .

A The default implementation provided here uses the basic method
"divide" .

13

Method rem : Euclidean reminder

rem(dom x, dom y)

A Returns the Euclidean reminder of x and y .

A The default implementation provided here uses the basic method
"divide" .

Changes:

A No changes.

Cat::FactorialDomain – the category of factorial domains

Cat::FactorialDomain represents the category of factorial domains (i.e.
unique factorisation domains).

Generating the category:

A Cat::FactorialDomain

Categories:

Cat::GcdDomain

Details:

A A Cat::FactorialDomain is an integral domain with gcd where an
unique factorization can be computed.

A The factorization methods are named "factor" and "sqrfree" and
must return elements of the domain Factored over this domain.

Basic Methods

Method factor : unique factorization

factor(dom x)

A Must return the unique factorization of x as an element of the do-
main Factored over this domain, such that the factors have the
type "irreducible" .

A See Factored for details about the representation of the factoriza-
tion.

14

Mathematical Methods

Method irreducible : tests if element is irreducible

irreducible(dom x)

A Returns TRUEif x is an irreducible element. The default implemen-
tation provided uses the method "factor" and therefore may be
quite inefficient.

Method sqrfree : square-free factorization

sqrfree(dom x)

A Returns the square-free factorization of x as an element of the do-
main Factored over this domain, such that the factors have the
type "sqrfree" or "irreducible" .

A See Factored for details about the representation of the factoriza-
tion.

A The default implementation provided here uses the method "factor"
and therefore may be very inefficient.

Changes:

A The methods "factor" and "sqrfree" must return elements of the
domain Factored now.

A The method "Factor" was removed.

Cat::Field – the category of fields

Cat::Field represents the category of fields.

Generating the category:

A Cat::Field

Categories:

Cat::EuclideanDomain , Cat::FactorialDomain ,
Cat::SkewField

Axioms

Ax::canonicalUnitNormal , Ax::closedUnitNormals

15

Details:

A A Cat::Field is a factorial domain, an Euclidean domain and a skew
field. As Euclidean domain it has a commutative multiplication * (_mult)
and as skew field the multiplication is invertible.

A Many of the methods defined for factorial and Euclidean domains are
trivial for a field.

Mathematical Methods

Method associates : test for associate elements

associates(dom x, dom y)

A Returns TRUEiff x and y are associate elements. For a field this is
true iff both arguments are nonzero.

Method _divide : exact division

_divide(dom x, dom y)

A Returns x * yˆ(-1) .

Method divide : division with reminder

divide(dom x, dom y)

A Returns the list [_divide(x,y), dom::zero] .

Method divides : test if division is exact

divides(dom x, dom y)

A Always returns TRUE.

Method euclideanDegree : returns Euclidean degree

euclideanDegree(dom x)

A Returns 0 if x is zero and 1 otherwise.

16

Method factor : unique factorization

factor(dom x)

A Returns a trivial factorization, consisting of x to the power of 1 only.
The factorization is returned as an object of the domain Factored
and represents an irreducible factorization over this domain.

Method gcd : greatest common divisor

gcd(dom x, ...)

A Returns the gcd of the arguments: dom::one if at least one argu-
ment is nonzero and dom::zero otherwise.

Method irreducible : tests if element is irreducible

irreducible(dom x)

A Always returns FALSE.

Method isUnit : tests if element is an unit

isUnit(dom x)

A Returns TRUEiff x is nonzero.

Method quo : returns Euclidean quotient

quo(dom x, dom y)

A Returns _divide(x, y) .

Method rem : returns Euclidean reminder

rem(dom x, dom y)

A Always returns dom::zero .

Method sqrfree : square-free factorization

sqrfree(dom x)

A Returns a trivial factorization, consisting of x to the power of 1 only.
The factorization is returned as an object of the domain Factored
and represents an irreducible factorization over this domain.

17

Method unitNormal : unit normal form

unitNormal(dom x)

A Returns dom::zero if x is zero and dom::one otherwise.

Method unitNormalRep : unit normal representation

unitNormalRep(dom x)

A Returns the list [dom::one, xˆ(-1), x] if x is nonzero and
[dom::zero, dom::one, dom::one] if x is zero.

Changes:

A No changes.

Cat::FiniteCollection – the category of finite collections

Cat::FiniteCollection represents the category of finite collections, i.e.,
the category of “universal” bags.

Generating the category:

A Cat::FiniteCollection

Categories:

Cat::BaseCategory

Details:

A A finite collection is a data structure where each element represents a
finite bag of “things” of any type.

A The elements are numbered 1,...,nops(c) , where nops(c) is the num-
ber of elements in the bag.

Basic Methods

Method _index : returns element given its index

_index(dom x, Type::PosInt i)

A Must return the i -th element of x .

18

Method map: maps function on elements

map(dom x, function f <, a, ... >)

A Must replace each element e of x by f(e,a...) and return the
result.

Method nops : returns number of elements

nops(dom x)

A Must return the number of elements of x .

Method op : returns certain elements

op(dom x)

A Must return a sequence of all elements of x .

op(dom x, Type::PosInt i)

A Must return the i -th element of x or FAIL if an element with the
given index does not exist.

A Operand ranges or pathes need not be handled by this method be-
cause they are handled directly by op .

Method set_index : changes element with given index

set_index(dom x, Type::PosInt i, v)

A Must replace the i -th element of x by v .

A Overloads the function _assign . The result is assigned to x .

Method subs : substitute in elements

subs(dom x, e = f)

A In each element of x the expression e must be substituted by f .

Method subsop : substitute operands

subsop(dom x, Type::PosInt i = v)

A Must replace the i -th element of x by v .

19

Technical Methods

Method mapCanFail : maps function on elements

mapCanFail(dom x, function f <, a, ... >)

A Replaces each element e of x by f(e,a...) . If one of the results
of the calls is FAIL , then FAIL is returned.

Method testEach : test each element with a predicate

testEach(dom x, function f <, a, ... >)

A For each element e of x the call f(e,a...) is evaluated. The calls
must return boolean values. If one of the results is not TRUEthen
FALSEis returned, TRUEotherwise.

Method testOne : tests if element exists fulfilling a predicate

testOne(dom x, function f <, a, ... >)

A For each element e of x the call f(e,a...) is evaluated. The calls
must return boolean values. If one of the results is TRUEthen TRUE
is returned, FALSEotherwise.

Changes:

A Has been renamed. Used to be Cat::FiniteCollectionCat .

Cat::GcdDomain – the category of integral domains with gcd

Cat::GcdDomain represents the category of integral domains with a gcd.

Generating the category:

A Cat::GcdDomain

Categories:

Cat::IntegralDomain

Details:

A A Cat::GcdDomain is an integral domain where the greatest common
divisor of two elements can be computed by the method "gcd" .

20

Basic Methods

Method gcd : greatest common divisor

gcd(dom x, ...)

A Must return the greatest common divisor of its arguments.

A The method must satisfy the following conditions:

1. x and y must divide dom::gcd(x,y) ,
2. if z divides both x and y , then z must divide dom::gcd(x,y) ,
3. if a domain has the axiom Ax::canonicalUnitNormal then

dom::gcd(x,y) must be equal to dom::unitNormal(dom::gcd(x,y)) .

Remember that x divides y if _divide(x,y) does not return FAIL .

Mathematical Methods

Method lcm : least common multiple

lcm(dom x, ...)

A Returns the least common multiple of its arguments. The imple-
mentation provided here uses the method "gcd" to compute the
result.

Changes:

A No changes.

Cat::Group – the category of groups

Cat::Group represents the category of groups.

Generating the category:

A Cat::Group

Categories:

Cat::Monoid

Details:

A A Cat::Group is a non-abelian monoid where the group operation *
(_mult) is invertible.

21

Mathematical Methods

Method _divide : returns quotient

_divide(dom x, dom y)

A Returns the quotient x/y by computing x*yˆ(-1) .

Changes:

A No changes.

Cat::HomogeneousFiniteCollection – the category of homoge-
neous finite collections

Cat::HomogeneousFiniteCollection(T) represents the category of ho-
mogeneous finite collections (i.e. bags) of elements of the domain T.

Generating the category:

A Cat::HomogeneousFiniteCollection(T)

Parameters:
T — A domain which must be from the category

Cat::BaseCategory . Only elements of this domain may be
contained in the collection.

Categories:

Cat::FiniteCollection ,

if T has Cat::OrderedSet then
Cat::OrderedSet

Details:

A A Cat::HomogeneousFiniteCollection is a finite collection where
each element of the collection must be from the same domain T.

Entries:

elemDom The parameter domain T.

22

Mathematical Methods

Method _less : test if element is less

_less(dom x, dom y)

A This method is defined only if T is an ordered set.

A Returns TRUEif x is less than y .

A The collections x and y are ordered by the lexical ordering of their
elements.

Changes:

A Has been renamed. Used to be Cat::HomogeneousFiniteCollectionCat .

Cat::HomogeneousFiniteProduct – the category of homogeneous
finite products

Cat::HomogeneousFiniteProduct(T) represents the category of homo-
geneous finite products of elements of the domain T.

Generating the category:

A Cat::HomogeneousFiniteProduct(T)

Parameters:
T — A domain which must be from the category

Cat::BaseCategory . This defines the domain of the products
elements.

Categories:

if T is a Cat::DifferentialRing then
Cat::DifferentialRing

if T is a Cat::PartialDifferentialRing then
Cat::PartialDifferentialRing

if T is a Cat::CommutativeRing then
Cat::CommutativeRing

if T is a Cat::SkewField then
Cat::SkewField

if T is a Cat::Ring then
Cat::Ring

23

if T is a Cat::Rng then
Cat::Rng

if T is a Cat::AbelianGroup then
Cat::AbelianGroup

if T is a Cat::CancellationAbelianMonoid then
Cat::CancellationAbelianMonoid

if T is a Cat::AbelianMonoid then
Cat::AbelianMonoid

if T is a Cat::AbelianSemiGroup then
Cat::AbelianSemiGroup

if T is a Cat::Group then
Cat::Group

if T is a Cat::Monoid then
Cat::Monoid

if T is a Cat::SemiGroup then
Cat::SemiGroup

if T is a Cat::CommutativeRing then
Cat::Algebra(T)

if T is a Cat::Ring then
Cat::LeftModule(T)

if T is a Cat::Ring then
Cat::RightModule(T)

Cat::HomogeneousFiniteCollection(T)

Details:

A A Cat::HomogeneousFiniteProduct(T) is a homogeneous finite
collection where each collection has the same number of elements of the
domain T.

A The number of elements must be given by the entry "card" , which must
be defined by domains of this category. It is not given as a category pa-
rameter simply because it is not needed. Thus no unnecessary instances
of the category are created.

A One could principally implement all the algebraic operations here, but
they will be slow if the methods "_index" and "set_index" are slow,
which most often will be the case. So we avoid the work and let the
domain implementors do it.

Basic Entries:

card Must hold the number of elements of a collection.

24

Entries:

characteristic Defined if T is a ring: In this case the characteristic of the
product domain is the same as that of T.

Basic Methods

Method zip : combine elements

zip(dom x, dom y, function f)

A Must call f(x_i, y_i) for each pair x_i , y_i of elements from
x and y and builds a new element of this domain from the results.

Method zipCanFail : combine elements, may fail

zipCanFail(dom x, dom y, function f)

A Must return the same as zip(x, y, f) with one difference: Must
return FAIL if one of the results of f is FAIL .

Access Methods

Method nops : returns number of elements

nops(dom x)

A Returns the number of elements of x , which is simply the constant
defined by the entry "card" .

Changes:

A Has been renamed. Used to be Cat::HomogeneousFiniteProductCat .

Cat::IntegralDomain – the category of integral domains

Cat::IntegralDomain represents the category of integral domains.

Generating the category:

A Cat::IntegralDomain

25

Categories:

Cat::EntireRing , Cat::CommutativeRing ,
Cat::Algebra(dom)

Details:

A An Cat::IntegralDomain is a commutative and entire ring which
has a “partial” division method "_divide" : If b divides a then dom::_divide(a,b)
must return the quotient, otherwise FAIL . The result of the method
"_divide" must be unique.

A Use the axiom Ax::canonicalUnitNormal to state in addition that
there exists a canonical unit normal form for each element of the ring. If a
ring has the axiom Ax::canonicalUnitNormal the method "unitNormal"
must return the unique unit normal for a ring element. If the axiom is not
valid the method may return any associate.

A Use the axiom Ax::closedUnitNormals in addition to state that the
unit normals which are computed by the method "unitNormal" are
closed under multiplication, i.e. that the product of two unit normals
returns a unit normal.

A These two axioms are not implizitly valid for an Cat::IntegralDomain
because there are integral domains for which one can’t compute a canon-
ical unit normal for each element.

Basic Methods

Method _divide : returns quotient

_divide(dom x, dom y)

A Must return the quotient d such that x = d * y or FAIL if such a
quotient does not exist. The quotient is unique if it exists.

A The result must be unique:

1. the product y * dom::_divide(x,y) must be equal to x
provided that y is not zero and y divides x ,

2. if x is equal to y * z then y must divide x .

A It is an error if y is zero.

Method isUnit : tests if element is a unit

isUnit(dom x)

A Must return TRUEif x is an unit of the ring.

26

Method unitNormal : returns an associate

unitNormal(dom x)

A Must return an associate of x .

A If the ring has the axiom Ax::canonicalUnitNormal the method
must return the unique unit normal of x .

A An implementation is provided if the ring has not the axiom Ax::canonicalUnitNormal :
In this case simply x is returned.

Mathematical Methods

Method associates : tests if elements are associates

associates(dom x, dom y)

A Returns TRUEif x and y are associates. The implementation pro-
vided here uses the method "divides" to test if each argument
divides the other.

Method divides : tests if elements divides another

divides(dom x, dom y)

A Returns TRUEif x divides y . The implementation uses the method
"_divide" to test if x divides y .

Method unitNormalRep : returns the unit normal representation

unitNormalRep(dom x)

A Returns a list [n, u, v] where n is a unit normal form of x , u is
a unit such that n = u * x and v is the inverse of u.

A If the ring has the axiom Ax::canonicalUnitNormal the method
must return the unique unit normal of x . The default implementa-
tion uses the method "unitNormal" to compute the unit normal
n in this case.

A If the ring dos not have the axiom Ax::canonicalUnitNormal
the method simply returns [x, dom::one, dom::one] .

27

Changes:

A No changes.

Cat::LeftModule – the category of left R-modules

Cat::LeftModule(R) represents the category of left R-modules.

Generating the category:

A Cat::LeftModule(R)

Parameters:

R — A domain which must be from the category Cat::Rng .

Categories:

Cat::AbelianGroup

Details:

A A Cat::LeftModule(R) is an abelian group together with a rng R (a
ring without unit) and a left multiplication * (_mult).

A The left multiplication is an operation taking an element of rng R and a
module element and returning a module element.

A Given ring elements a, b and module elements x, y the following 3 dis-
tibutive laws must hold:

1. (ab)x = a(bx),

2. (a + b)x = ax + bx,

3. a(x + y) = ax + ay.

A Beware: The operation of a non-abelian semi-group is also written as *
(_mult). The method "_mult" must handle the situation if a left mod-
ule is also a non-abelian semi-group. In such a case it must both imple-
ment the group operation and the left multiplication by elements of the
rng.

28

Basic Methods

Method _mult : left multiplication by a rng element

_mult(R r, dom x)

A Must return the left multiplication of x by the rng element r .

Changes:

A No changes.

Cat::Matrix – the category of matrices

Cat::Matrix(R) represents the category of matrices over the rng R.

Generating the category:

A Cat::Matrix(R)

Parameters:
R — A domain which must be from the category Cat::Rng (a ring

without unit).

Categories:

Cat::BaseCategory

Details:

A A Cat::Matrix(R) is a matrix of arbitrary dimension over a compo-
nent ring R.

A In the following description of the methods, we use the following nota-
tions for a matrix A from a domain of category Cat::Matrix(R) :

nrows(A) denotes the number of rows and ncols(A) the number of columns
of A.

Further on, a row index is an integer ranges from 1 to nrows(A), and a
column index is an integer ranges from 1 to ncols(A).

Entries:

coeffRing is set to R.

29

Basic Methods

Method _index : matrix indexing

_index(dom A, row index i, column index j)

A Must return the (i, j)-th component of the matrix A.

Method matdim : matrix dimension

matdim(dom A)

A Must return the number of rows and columns of the matrix A in
form of a list of two positive integers.

Method new: matrix definition

new(positive integers m, n)

A Must return the m× n zero matrix.

A Of course, this method may implement further possibilites to cre-
ate matrices (for example, see the method "new" of the domain
constructor Dom::Matrix).

Method set_index : setting matrix components

set_index(dom A, row index i, column index j, R x)

A Must replace the (i, j)-th component of the matrix A by x .

Mathematical Methods

Method _negate : negates a matrix

_negate(dom A)

A Computes −A.

30

Method _plus : adds matrices

_plus(dom A1, dom A2, ..., dom An)

A Returns the sum A1 + A2 + . . .+ An of the n matrices A1,A2, . . . ,An.

An error message is issued if the given matrices do not have the
same dimension.

A The matrices must be of the same domain type, otherwise FAIL is
returned.

Method _subtract : subtract two matrices

_subtract(dom A, dom B)

A The matrix A− B is returned.

Method equal : test on equality of matrices

equal(dom A, dom B)

A This method tests if the two matrices A and B are equal and returns
TRUE, FALSEor UNKNOWN, respectively.

Method identity : identity matrix

identity(positive integer n)

A This method returns the n× n identity matrix.

A It only exists if R is of category Cat::Ring , i.e., a ring with unit.

Method iszero : test on zero matrices

iszero(dom A)

A This method checks whether A is a zero matrix and returns TRUE
or FALSE, respectively.

A Note that there may be more than one representation of the zero
matrix of a given dimension if Rdoes not have the axiom Ax::canonicalRep .

Method transpose : transpose of a matrix

transpose(dom A)

A This method returns the tranposed matrix At of A.

31

Access Methods

Method col : extracting columns

col(dom A, column index c)

A This method extracts the column with index c of the matrix A and
returns it as a column vector, i.e., a nrows(A)× 1 matrix.

Method concatMatrix : appending of matrices horizontally

concatMatrix(dom A, dom B)

A This method appends the matrix B to the right side of the matrix A.

A An error message is issued if the two matrices do not have the same
number of rows.

Method delCol : deleting columns

delCol(dom A, column index c)

A This method returns the matrix obtained by deleting the column
with index c of the matrix A.

A If A only consists of one column then NIL is returned.

Method delRow : deleting rows

delRow(dom A, row index r)

A This method returns the matrix obtained by deleting the row with
index r of the matrix A.

A If A only consists of one row then NIL is returned.

Method row : extracting rows

row(dom A, row index r)

A This method extracts the row with index r of the matrix A and re-
turns it as a row vector, i.e., a 1× ncols(A) matrix.

32

Method setCol : replacing columns

setCol(dom A, column index c, dom v)

A This method replaces the column with index c of the matrix A by
the column vector v . The vector v must be a nrows(A)× 1 matrix.

Method setRow : replacing rows

setRow(dom A, row index r, dom v)

A This method replaces the row with index r of the matrix A by the
row vector v . The vector v must be a 1× ncols(A) matrix.

Method stackMatrix : appending of matrices vertically

stackMatrix(dom A, dom B)

A This method appends the matrix B to the lower end of the matrix
A.

A An error message is issued if the two matrices do not have the same
number of columns.

Method swapCol : swapping matrix columns

swapCol(dom A, column indices c1, c2)

A Returns the matrix which results from swapping the column with
index c1 with the column with index c2 of A.

Method swapRow: swapping matrix rows

swapRow(dom A, row indices r1, r2)

A Returns the matrix which results from swapping the row with in-
dex r1 with the row with index r2 of A.

Changes:

A Cat::Matrix used to be Cat::MatrixCat .

A The method "dimen" was renamed to "matdim" .

A The method "create" was removed (in Cat::Matrix the default im-
plementation was set to the method "new"). You may implement this
method in the corresponding domain if necessary.

33

Cat::Module – the category of R-modules

Cat::Module(R) represents the category of R-modules.

Generating the category:

A Cat::Module(R)

Parameters:
R — A domain which must be from the category

Cat::CommutativeRing .

Categories:

Cat::LeftModule(R) , Cat::RightModule(R)

Details:

A A Cat::Module(R) is a left and right R-module over a commutative
ring R.

A Right and left multiplications must be both implemented by the method
"_mult" .

Changes:

A No changes.

Cat::Monoid – the category of monoids

Cat::Monoid represents the category of monoids.

Generating the category:

A Cat::Monoid

Categories:

Cat::SemiGroup

34

Details:

A A Cat::Monoid is a non-abelian semi-group with a neutral element one
(dom::one) according to the group operation * (_mult).

Basic Entries:

one Must hold the neutral element according to the operation * .

Basic Methods

Method _invert : returns inverse

_invert(dom x)

A Must return an inverse of x according to the operation * or FAIL if
no inverse exists.

Mathematical Methods

Method isone : tests if element is one

isone(dom x)

A Tests if x is equal to one. Uses the method "equal" if this domain
has not the axiom Ax::normalRep .

Method _power : tests if element is one

_power(dom x, DOM_INT n)

A Returns dom::one if n is 0 and the n-fold product of x if n is posi-
tive. If n is negative then x is inverted. If no inverse exists FAIL is
returned, otherwise the -n-fold product of the inverse.

A This implementation does “repeated squaring”.

Changes:

A No changes.

Cat::OrderedSet – the category of ordered sets

Cat::OrderedSet represents the category of ordered sets.

35

Generating the category:

A Cat::OrderedSet

Categories:

Cat::BaseCategory

Details:

A An Cat::OrderedSet is a set with a (complete) order relation < (_less).

A Use the axiom Ax::canonicalOrder to state that elements of a do-
main are canonically ordered as MuPAD expressions (i.e. ordered with
respect to the kernel function _less).

Basic Methods

Method _less : compares if element is less

_less(dom x, dom y)

A Must return TRUEif x is less than y .

A An implementation is provided if this domain has axiom Ax::canonicalOrder .

Mathematical Methods

Method _leequal : compares if element is less or equal

_leequal(dom x, dom y)

A Returns TRUEif x is less than or equal to y .

A The implementation provided uses the methods "_less" and "equal" .

Method max: returns maximum

max(dom x, ...)

A Returns the maximum of its arguments.

Method min : returns minimum

min(dom x, ...)

A Returns the minimum of its arguments.

36

Method sort : sort list of elements

sort(Type::ListOf(dom) l)

A Sorts the elements of list l in ascending order.

Changes:

A No changes.

Cat::PartialDifferentialRing – the category of partial differ-
ential rings

Cat::PartialDifferentialRing represents the category of partial differ-
ential rings.

Generating the category:

A Cat::PartialDifferentialRing

Categories:

Cat::CommutativeRing

Details:

A A Cat::PartialDifferentialRing is a commutative ring with a fi-
nite set of derivation operators D_i .

A A derivation is a linear operator with product rule, i.e. D_i(f * g)
equals D_i(f) * g + f * D_i(g) for all f and g.

A For many partial differential rings the derivations are differentiations
with respect to some indeterminates. Thus in order to support a nat-
ural notion it is also supposed that a method "diff" exists, such that
diff(f, x) returns the partial derivation of f with respect to the inde-
terminate x .

Basic Methods

Method D: returns derivative

D(Type::ListOf(Type::PosInt) l, dom x)

A Must return the derivative of x which is given by the indices in l :

1. If l is empty then x must be returned.

37

2. If l contains one integer i then the i -th derivative D_i(x)
must be returned. If the i -th derivativation does not exist
dom::zero must be returned.

3. If l contains more than one integer i1 ,...,in than the deriva-
tive D_i1(...D_in(x)...) must be returned.

Method diff : returns partial derivative

diff(dom x <, variable v, ... >)

A Must return the derivative of x with respect to the variables v :

1. diff(x) must return x .

2. diff(x, v) must return the partial derivative of x with re-
spect to v .

3. diff(x, v1,..., vn) must return diff(...diff(x, v1),...vn) .

Changes:

A No changes.

Cat::Polynomial – the category of multivariate polynomials

Cat::Polynomial(R) represents the category of multivariate polynomials
over R.

Generating the category:

A Cat::Polynomial(R)

Parameters:
R — A domain which must be from the category

Cat::CommutativeRing .

Categories:

if R is a Cat::FactorialDomain then
Cat::FactorialDomain

if R is a Cat::GcdDomain then
Cat::GcdDomain

if R is a Cat::IntegralDomain then
Cat::IntegralDomain

Cat::PartialDifferentialRing , Cat::Algebra(R)

38

Axioms

if Rhas Ax::canonicalUnitNormal then
Ax::canonicalUnitNormal

if Rhas Ax::closedUnitNormals then
Ax::closedUnitNormals

Details:

A A Cat::Polynomial(R) is a multivariate polynomial over a commu-
tative coefficient ring R.

Entries:

coeffRing The coefficient ring R.

characteristic The characteristic of this domain, which is is the same as
that of the ring R.

Basic Methods

Method coeff : returns coefficients

coeff(dom p)

A Must return an expression sequence with the coefficients of p.

coeff(dom p, indeterminate x, Type::NonNegInt n)

A Must return the coefficient of xˆn of p, which is a polynomial in
the remaining indeterminates.

coeff(dom p, Type::NonNegInt n)

A Must return the coefficient of xˆn of p, where x is the main variable
of p.

Method degree : returns total degree

degree(dom p)

A Must return the total degree of p.

degree(dom p, indeterminate x)

A Must return the degree of p with respect to the indeterminate x .

39

Method degreevec : returns degree vector

degreevec(dom p)

A Must return a list with the exponents of the leading term of p. The
order of the exponents corresponds to the order of the indetermi-
nates as given by the method "indets" .

Method evalp : evaluates at a point

evalp(dom p, indeterminate x = R v, ...)

A Must evaluate p at the point x = v where x is an indeterminate and
v an element of R.

A More than one evaluation point may be given. The result must be
a polynomial in the remaining indeterminates or an element of R.

Method indets : returns indeterminates

indets(dom p)

A Must return a list with the indeterminates of p.

Method lcoeff : returns leading coefficient

lcoeff(dom p)

A Must return the leading coefficient of p.

Method lmonomial : returns leading monomial

lmonomial(dom p)

A Must return the leading monomial of p.

Method lterm : returns leading term

lterm(dom p)

A Must return the leading term of p.

40

Method mainvar : returns main variable

mainvar(dom p)

A Must return the main variable of p, which is the first of the indeter-
minates as given by the method "indets" .

Method mapcoeffs : map coefficients

mapcoeffs(dom p, function f <, a, ... >)

A Must replace the coefficients c_i of p by the results of the function
calls f(c_i, a, ...) .

Method multcoeffs : multiply coefficients

multcoeffs(dom p, R c)

A Must multiply all coefficients of p by c .

Method nterms : return number of terms

nterms(dom p)

A Must return the number of non-zero terms of p.

Method nthcoeff : return n-th coefficient

nthcoeff(dom p, Type::PosInt n)

A Must return the n-th coefficient of p.

Method nthmonomial : return n-th monomial

nthmonomial(dom p, Type::PosInt n)

A Must return the n-th monomial of p.

Method nthterm : return n-th term

nthterm(dom p, Type::PosInt n)

A Must return the n-th term of p.

41

Method tcoeff : return trailing coefficient

tcoeff(dom p)

A Must return the trailing (i.e. last) coefficient of p.

Method unitNormal : returns unit normal

unitNormal(dom p)

A Must return the unit normal representation of p.

A An implementation is provided if Rhas the axiom Ax::canonicalUnitNormal :
In this case p is multiplied by an unit of Rsuch that the leading co-
efficient has unit normal representation in R.

Method unitNormalRep : returns unit normal representation

unitNormalRep(dom p)

A Must return the unit normal representation of p and the factors
needed to bring p into unit normal form (see Cat::IntegralDomain
for the return value expected).

A An implementation is provided if Rhas the axiom Ax::canonicalUnitNormal .

Mathematical Methods

Method content : return content

content(dom p)

A Returns the content of p if R is a Cat::GcdDomain .

Method isUnit : tests if element is a unit

isUnit(dom p)

A Returns TRUEiff p is a unit.

Method primpart : returns primitive part

primpart(dom p)

A Returns the primitive part of p if R is a Cat::GcdDomain : The
content of p is removed and the unit normal of the result is re-
turned.

42

Method solve : solves polynomial equation

solve(dom p, indeterminate x <, opt, ... >)

A Solves the polynomial equation p = 0 with respect to x over the
domain R. See the function solve for details about the optional
arguments opt,

solve(dom p, indeterminate x = DOM_DOMAINT <, opt, ... >)

A Solves the polynomial equation p = 0 with respect to x over the
domain T. See the function solve for details about the optional
arguments opt,

solve(dom p)

A The polynomial p must be univariate. Solves the polynomial equa-
tion p = 0 with respect to the indeterminate of p over the domain
R.

Changes:

A Has been renamed. Used to be Cat::PolynomialCat .

Cat::PrincipalIdealDomain – the category of principal ideal do-
mains

Cat::PrincipalIdealDomain represents the category of principal ideal
domains.

Generating the category:

A Cat::PrincipalIdealDomain

Categories:

Cat::GcdDomain

Details:

A A Cat::PrincipalIdealDomain is an integral domain with gcd where
each ideal is principal. Note that the method "idealGenerator" has
to find generators for finitely generated ideals only.

43

Basic Methods

Method idealGenerator : return generator of ideal

idealGenerator(dom x, ...)

A Must return the generator of the ideal generated by its arguments.

Changes:

A No changes.

Cat::QuotientField – the category of quotient fields

Cat::QuotientField(R) represents the category of quotient fields over R.

Generating the category:

A Cat::QuotientField(R)

Parameters:
R — A domain which must be from the category

Cat::IntegralDomain .

Categories:

Cat::Field , Cat::Algebra(R) ,

if Rhas Cat::OrderedSet then
Cat::OrderedSet

Details:

A A Cat::QuotientField is the field of fractions over the integral do-
main R.

Entries:

characteristic The characteristic of this domain, which is is the same as
that of R.

44

Basic Methods

Method denom: return denominator

denom(dom x)

A Must return the denominator of x , which is an element of R.

Method numer : return numerator

numer(dom x)

A Must return the numerator of x , which is an element of R.

Mathematical Methods

Method equal : test for equality

equal(dom x, dom y)

A Implements an equality test by testing if the cross-product of nu-
merators and denominators are equal in R.

Method iszero : test for zero

iszero(dom x)

A Implements a test for zero by testing if the numerator is zero in R.

Method _less : test if element is less

_less(dom x, dom y)

A Implements an ordering if the domain Rhas the axiom Cat::OrderedSet :
If R is ordered then this method implements an ordering which is
given by the ordering of the cross-product of numerators and de-
nominators in R.

Method retract : returns retracted element

retract(dom x)

A If x may be “retracted” to an element of R (i.e. if the factor x may
be regarded as an element of R) this element is returned, otherwise
FAIL is returned.

A The default implementation uses the method "_divide" to divide
numerator and denominator.

45

Changes:

A No changes.

Cat::RightModule – the category of right R-modules

Cat::RightModule(R) represents the caregory of right R-modules.

Generating the category:

A Cat::RightModule(R)

Parameters:

R — A domain which must be from the category Cat::Ring .

Categories:

Cat::AbelianGroup

Details:

A A Cat::RightModule is an abelian group together with a ring Rand a
right multiplication * (_mult).

A The right multiplication is an operation taking an element of ring R and
a module element and returning a module element.

A Given ring elements a, b and module elements x, y the following 3 dis-
tibutive laws must hold:

1. x(ab) = (xa)b,

2. x(a + b) = xa + xb,

3. (x + y)a = xa + ya.

A Beware: The operation of a non-abelian semi-group is also written as
* (_mult). The method "_mult" must handle the situation if a right
module is also a non-abelian semi-group. In such a case it must both
implement the group operation and the right multiplication by elements
of the ring.

46

Basic Methods

Method _mult : right multiplication by a ring element

_mult(dom x, R r)

A Must return the right multiplication of x by the ring element r .

Changes:

A No changes.

Cat::Ring – the category of rings

Cat::Ring represents the category of rings.

Generating the category:

A Cat::Ring

Categories:

Cat::Rng , Cat::Monoid , Cat::LeftModule(dom)

Details:

A A Cat::Ring is a ring with a unit dom::one , i.e. an abelian group ac-
cording to the operation + (_plus) and a non-abelian monoid according
to the operation * (_mult) where in addition the two distributive laws
a(b + c) = ab + ac and (a + b)c = ac + bc hold.

A A Cat::Ring is also a left module over itself. The left multiplication of
the module is also writen as * (_mult).

A Note that a ring without unit is a Cat::Rng .

Basic Entries:

characteristic Must hold the characteristic of this ring.

47

Changes:

A No changes.

Cat::Rng – the category of rings without unit

Cat::Rng represents the category of rings without unit.

Generating the category:

A Cat::Rng

Categories:

Cat::AbelianGroup , Cat::SemiGroup

Details:

A A Cat::Rng is a ring without a unit, i.e. an abelian group according to
the operation + (_plus) and a non-abelian semi-group according to the
operation * (_mult) where in addition the two distributive laws a(b +
c) = ab + ac and (a + b)c = ac + bc hold.

A Use the axiom Ax::noZeroDivisors to state that there are no zero
divisors according to * , i.e. that the product of non-zero elements never
is zero.

Changes:

A No changes.

Cat::SemiGroup – the category of semi-groups

Cat::SemiGroup represents the category of semi-groups.

Generating the category:

A Cat::SemiGroup

Categories:

Cat::BaseCategory

48

Details:

A A Cat::SemiGroup represents the category of non-abelian semi-groups,
where the group operation is written as multiplication. Hence a Cat::SemiGroup
is a set with an associative operation * (_mult).

A Note that abelian semi-groups with operation + have category Cat::AbelianSemiGroup .

Basic Methods

Method _mult : returns product

_mult(dom x, ...)

A Must return the product of its arguments.

Mathematical Methods

Method _power : returns power

_power(dom x, Type::PosInt n)

A Returns the n-fold product of x . The implementation provided
does “repeated squaring”.

Changes:

A No changes.

Cat::Set – the category of sets of complex numbers

Cat::Set represents the category of subsets of the complex numbers.

Sets of this category allow set–theoretic operations as well as pointwise arith-
metical operations.

Generating the category:

A Cat::Set

Categories:

Cat::BaseCategory

49

Details:

A The main feature of Cat::Set is a particular overloading mechanism.
It provides n-ary operators that can handle operands from different do-
mains of category Cat::Set , as well as mixed input where some operands
are of types not belonging to Cat::Set . Hence, in the methods of Cat::Set ,
operands of arbitrary type are allowed.

A There are three kinds of operators: n-ary (associative and commutative),
binary (not assumed to be commutative), and unary (mapping a func-
tion). Cat::Set provides generic methods for generating these kinds
of operators, and uses them to define default methods overloading the
common set–theoretic and arithmetical functions.

A By default, any operation of sets is defined, but returns unevaluated
since the arithmetical or set–theoretic expression cannot be simplified.
Each domain of type Cat::Set must provide particular slots and tables
in order to achieve simplifications in certain special cases.

A Arithmetical operations are defined pointwise. It is not an error if some
operation is not defined for all elements of a set.

A Cat::Set is mainly used by domains of sets returned by solve .

Mathematical Methods

Method commassop: returns an n-ary commutative and associative operator
for sets

commassop(string operatorname)

A This method returns a procedure that applies the law of compo-
sition specified by operatorname , by searching applicable meth-
ods in the domains the operands belong to.

A The returned procedure first sorts its operands (which it may do
because of commutativity). Those operands not belonging to a do-
main of category Cat::Set are handled by the usual overload-
ing mechanism, i.e. by the slot operatorname of one of their do-
mains. Out of the others, several operands belonging to the same
domain are handled by the slot "homog".operatorname of that
domain. Finally, the returned method tries to combine each possi-
ble pair of operands. If they are from the same domain, "bin".operatorname
is called for them. The following is done if the operands are from
different domains: let T1 and T2 be their types; then their "in-
homog".operatorname slots are used. If such a slot exists in the
domain T1, it must contain a table indexed by possible types T2,
and the entry at that index must be a procedure that carries out the

50

operation for exactly two arguments, the first being a T1, the sec-
ond being a T2. Conversely, if such a slot exists in the domain T2,
it must contain a table indexed by possible types T1, and the entry
at that index must be a procedure that carries out the operation for
exactly two arguments, the first being a T2, the second being a T1.

A The slot "homog ".operatorname , or a table entry in the slot
"inhomog".operatorname , may return FAIL in order to indi-
cate that it could not simplify its input; if they are missing, this
indicates that a simplification is generally not possible for input of
this type. In these cases, the returned procedure proceeds by trying
to combine another two of the given arguments.

A A slot "bin".operatorname usually won’t exist, except for the
case that there is no "homog".operatorname ; usually the latter
can also take care for the case of exactly two operands.

A The whole process is repeated over and over until no new simplifi-
cations occur or only one operand is left. If no more simplifications
occur, an unevaluated call to the operator is returned, the argu-
ments being all remaining operands that could not be combined
further.

Method binop : returns a binary operator for sets

binop(string operatorname)

A This method returns a procedure that applies the law of compo-
sition specified by operatorname , by searching applicable meth-
ods in the domains the operands belong to.

A The returned procedure uses the slot "bin".operatorname of its
first argument if both arguments are of the same type. Otherwise
it uses the slot "inhomogleft".operatorname of its first argu-
ment; if that fails, it uses the slot "inhomogright".operatorname
of its second argument; each of these slots, if it exists, must con-
tain tables, indexed by the type of the other argument, such that
slot(T1, "inhomogleft".operatorname)[T2] and slot(T2,
"inhomogright".operatorname)[T1] carry out the operation
for objects of type T1 and T2, in this order.

A No commutativity of the operation is assumed.

A If the slots or table entries do not exist or return FAIL , an unevalu-
ated call to the operator is returned.

Method homogassop : returns a n-ary operator for sets belonging to the
same domain

homogassop(string operatorname)

51

A This method returns a procedure which simply splits its argument
sequence into two parts and calls itself recursively for both halves,
thereby reducing the n-ary operation to several binary operations.
These binary operations are carried out by the slot "bin".operatorname
of the domain all operands stem from.

Method _union : union of sets

_union(any S1, ...)

A The union of sets is computed by the commutative-associative op-
erator generated by "commassop" , using the slots "homog_union"
and "inhomog_union" of the domains of its operands.

Method _intersect : intersection of sets

_intersect(any S1, ...)

A The intersection of sets is computed by the commutative-associative
operator generated by "commassop" , using the slots "homog_intersect"
and "inhomog_intersect" of the domains of its operands.

Method _plus : set of sums of set elements

_plus(any S1, ...)

A The sum S1 + . . .+ Sk is defined to be the set of all sums s1 + . . .+
sk, with si ∈ Si.

A The sum of sets is computed by the commutative-associative oper-
ator generated by "commassop" , using the slots "homog_plus"
and "inhomog_plus" of the domains of its operands.

Method _mult : set of product of set elements

_mult(any S1, ...)

A The product S1 ∗ · · · ∗ Sk is defined to be the set of all products s1 ∗
· · · ∗ sk, with si ∈ Si.

A The product of sets is computed by the commutative-associative
operator generated by "commassop" , using the slots "homog_mult"
and "inhomog_mult of the domains of its operands.

52

Method _minus : difference set

_minus(any S1, any S2)

A The difference of sets is computed by the binary operator generated
by "binop" , using the slots "homog_minus" , "inhomogleft_minus" ,
and "inhomogright_minus" of its operands.

Method _power : pointwise power

_power(any S1, any S2)

A The power SS2
1 is defined to be the set of all powers ss2

1 , where si ∈
Si.

A The power of sets is computed by the binary operator generated by
"binop" , using the slots "homog_power" , "inhomogleft_power" ,
and "inhomogright_power" of its operands.

Method map: map an operation to a set

map(any S, any f)

A This method returns the set { f (x); x∈ S}, which is of type Dom::ImageSet .

A By overloading this method in a particular domain, the behaviour
of sets changes whenever a special function is applied to them.

Changes:

A Cat::Set is a new function.

Cat::SkewField – the category of skew fields

Cat::SkewField represents the category of skew fields (division rings).

Generating the category:

A Cat::SkewField

Categories:

Cat::Ring

53

Details:

A A Cat::SkewField represents a ring with unit where each nonzero
element is invertible. This structure is also called division ring in the
literature.

Changes:

A No changes.

Cat::SquareMatrix – the category of square matrices

Cat::SquareMatrix(R) represents the category of square matrices over the
rng R.

Generating the category:

A Cat::SquareMatrix(R)

Parameters:

R — A domain which must be from the category Cat::Rng .

Categories:

if Rhas Cat::Ring then
Cat::Ring

Cat::Rng , Cat::Matrix(R)

Details:

A A Cat::SquareMatrix(R) represents the rng (ring without unit) of
square matrices over the coefficient domain R.

Entries:

characteristic Defined if R is a ring: In this case the characteristic of the
matrix domain is the same as that of R.

54

Changes:

A Cat::SquareMatrix used to be Cat::SquareMatrixCat .

Cat::UnivariatePolynomial – the category of univariate polyno-
mials

Cat::UnivariatePolynomial(R) represents the category of univariate poly-
nomials over R.

Generating the category:

A Cat::UnivariatePolynomial(R)

Parameters:
R — A domain which must be from the category

Cat::CommutativeRing .

Categories:

if Rhas Cat::Field then
Cat::EuclideanDomain

Cat::Polynomial(R) , Cat::DifferentialRing

Details:

A A Cat::UnivariatePolynomial(R) is a univariate polynomial over
the commutative ring R.

Basic Methods

Method pdivide : pseudo-divide polynomials

pdivide(dom p, dom q)

A Must compute the pseudo-division of p and q.

A Must return a sequence (b, s, r) of a ring element b and poly-
nomials s and r such that multcoeffs(p, b) = s * q + r
holds with b = lcoeff(q)ˆ(degree(p) - degree(q) + 1) .

55

Method pquo : returns pseudo-quotient

pquo(dom p, dom q)

A Must return the pseudo-quotient of p and q, i.e. the second element
s of the sequence returned by the method "pdivide" .

Method prem : returns pseudo-reminder

prem(dom p, dom q)

A Must return the pseudo-reminder of p and q, i.e. the third element
r of the sequence returned by the method "pdivide" .

Changes:

A Has been renamed. Used to be Cat::UnivariatePolynomialCat .

Cat::VectorSpace – the category of vector spaces

Cat::VectorSpace(F) represents the category of vector spaces over the
field F.

Generating the category:

A Cat::VectorSpace(F)

Parameters:

F — A domain which must be from the category Cat::Field .

Categories:

Cat::Module(F)

Details:

A A Cat::VectorSpace(F) represents the category of vector spaces over
the field F. A vector space is a abelian group with an operation + (_plus).

A The scalar product has to be implemented via the method "_mult" .
Other kinds of multiplication are not defined.

56

Basic Methods

Method _mult : returns scalar product

_mult(F c, dom x)

A Must return the scalar product of c and x .

_mult(dom x, F c)

A Must return the scalar product of x and c .

Changes:

A No changes.

57

