
property — library for properties

Table of contents

Preface . ii

property::hasprop — does an object have properties? 1

property::implies — test whether one property implies another 2

property::Null — the empty property 3

property::simpex — simplify Boolean expressions 4

i

Properties of identifiers

MuPAD offers the possibility to compute symbolically with identifiers.

>> sqrt(x^2)

2 1/2
(x)

>> a^c*b^c

c c
a b

Such expressions can only be simplified if restrictions about the possible
values of variables involved are known.

To denote such restrictions, MuPAD offers properties that can be set for an
identifier with the function assume . Most system functions take properties
into account while computing and simplifying. Because this mechanism is
relatively new, not all functions take care of properties as much as they could
mathematically.

Some examples of properties are Type::Real , Type::Positive , and
Type::Integer . Identifiers with these properties will be treated as unknown
real, positive or integer numbers.

>> assume(x, Type::Real)

Type::Real

>> Re(x), Im(x), simplify(sqrt(x^2))

x, 0, x sign(x)

The assumption assume(x > 0) has the same meaning as assume(x, Type::Positive) .
It implies that x is a real number.

>> assume(x > 0):
sqrt(x^2)

x

>> assume(x < 0):
sqrt(x^2)

-x

As the last example shows, with a new assumption the current properties
of an identifier is overwritten. With an optional operation, the current prop-
erties can be kept and combined with other assumptions.

>> assume(x, Type::Integer)

Type::Integer

>> assume(x > 0, _and)

Type::PosInt

ii

Global property

It is possible to define a property of all identifiers. This property is called
global property.

The global property can be defined by the function assume and deleted
only by the function unassume (not with delete).

The protected identifier Global carries the global property.
All identifiers should be real:

>> assume(Type::Real)

Type::Real

Now all identifiers are real:

>> is(x, Type::Real), is(y, Type::Real), is(k + l + m, Type::Real)

TRUE, TRUE, TRUE

>> is(x^2 >= 0), Re(x), Im(x)

TRUE, x, 0

Individual properties of identifiers can be assumed:

>> assume(x, Type::Positive):
getprop(x)

Type::Positive

The individual properties are combined with the global property with _and .
To show this fact, a new global property will be defined:

>> assume(Type::Integer):
getprop(x)

Type::PosInt

>> assume(x, Type::Negative):
getprop(x)

Type::NegInt

The global property and the individual property can exclude one another, the
result is the “empty property”:

>> assume(Type::Positive):
getprop(x)

property::Null

The library property contains additionally the four functions assume ,
getprop , is and unassume . These functions are exported by the system and
can be used by their short name without the package name property . They
are described in the standard library.

iii

All Properties

There are four types of mathematical properties available in MuPAD:
• Basic number domains, such as the integers, the rational numbers, the

real numbers, the positive real numbers, or the prime numbers,

• intervals in basic number domains,

• residue classes of integers, and

• relations between an identifier and an arbitrary expression.

The following table contains all predefined classes of properties:

iv

Basic Number Domains
Type::Complex C

Type::Even 2Z
Type::Imaginary Ri
Type::Integer Z

Type::Negative R<0
Type::NegInt Z<0
Type::NegRat Q<0
Type::NonNegative R≥0
Type::NonNegInt N

Type::NonNegRat Q≥0
Type::NonZero C \ {0}
Type::Odd 2Z+ 1
Type::PosInt N>0
Type::Positive R>0
Type::PosRat Q>0
Type::Prime prime numbers
Type::Rational Q

Type::Real R

Type::Zero {0}

Intervals
Type::Interval(a, b, T) {x ∈ T : a < x < b}
Type::Interval([a], b, T) {x ∈ T : a ≤ x < b}
Type::Interval(a, [b], T) {x ∈ T : a < x ≤ b}
Type::Interval([a], [b], T) {x ∈ T : a ≤ x ≤ b}

a,b : expressions
T: basic number domain

Residue Classes
Type::Residue(a, b) or bZ+ a
b*Type::Integer + a a,b : integers

Relations
= b {b}
<> b C \ {b}
< b R<b
<= b R≤b
> b R>b
>= b R≥b

b: expression

If T is a type specifier for a basic number domain, an interval, or a residue
class from the middle column of this table, then assume(x, T) attaches the
mathematical property “is an element of S” to the identifier x , where S is the
corresponding set in the right column. Similarly, is(ex, T) checks whether
the expression ex belongs to the set S mathematically. The syntax for relations
is more intuitive: for example, assume(x < b) attaches the mathematical

v

property “is less than b” to the identifier x , and is(a < b) checks whether
the relation a < b holds true mathematically for the expressions a and b.

There are often several equivalent ways to specify a property: for ex-
ample, >= 0 , Type::NonNegative , and Type::Interval([0], infin-
ity) are equivalent properties. Similarly, Type::Odd is equivalent to
Type::Residue(1, 2) . There are also members of the Type library that
do not correspond to mathematical properties, e.g., Type::ListOf .

>> assume(x, Type::Interval([-1], [1])):
getprop(2*x); getprop(10*x^2)

]0, 2] of Type::Positive

]0, 10] of Type::Positive

>> assume(x > 0): assume(x <= 10, _and):
getprop(x)

]0, 10] of Type::Real

vi

property::hasprop – does an object have properties?

property::hasprop(object) tests, whether an object has properties.

Call(s):

A property::hasprop(object)

A property::hasprop()

Parameters:

object — any MuPAD object

Return Value: TRUEor FALSE

Related Functions: assume , getprop , is , indets , unassume

Details:

A property::hasprop(object) tests, whether the object has proper-
ties and returns TRUEif the object or any subexpression has a property,
otherwise FALSE.

A property::hasprop always returns TRUEif the global property is de-
fined.

A Compared with getprop , property::hasprop is a fast function and
can be used to determine, whether an object has properties without using
the slower functions getprop or is .

A In some cases, the function is can derive some aspects without
any defined property (see example 3)! !

Example 1. Does the expression 2*(x+1) have any properties?

>> property::hasprop(2*(x + 1))

FALSE

>> assume(x > 0):
property::hasprop(2*(x + 1))

TRUE

>> getprop(2*(x + 1))

> 2

>> delete x:

1

Example 2. Is the global property defined?

>> property::hasprop()

FALSE

If the global property is defined, property::hasprop returns always TRUE:

>> assume(Type::Real):
property::hasprop(2*(x + 1)), property::hasprop()

TRUE, TRUE

>> property::hasprop(sin(2*x^sqrt(2)) + cos(2*x)^sqrt(2))

TRUE

>> unassume():

Example 3. property::hasprop returns FALSE, but is can determine an
answer unequal to UNKNOWN:

>> property::hasprop(a + 1 > a)

FALSE

>> is(a + 1 > a)

TRUE

Changes:

A property::hasprop is a new function.

property::implies – test whether one property implies another

property::implies(prop_1, prop_2) tries to decide whether prop_1
implies prop_2 or its converse.

Call(s):

A property::implies(prop_1, prop_2)

Parameters:

prop_1, prop_2 — any properties

2

Return Value: TRUE, FALSE, or UNKNOWN

Related Functions: is , assume , property::simpex , bool

Details:

A Both arguments must be properties; see property for an overview of
all properties.

A The return value is TRUEif prop_2 can be inferred from prop_1 , and
FALSEif not prop_2 can be inferred from prop_1 . The result is UNKNOWN
if neither implication could be proved; this may be because neither holds,
or because the property mechanism is too weak to find a proof.

Example 1. Every positive integer is positive:

>> property::implies(Type::PosInt, Type::Positive)

TRUE

Some positive numbers are positive integers, and some are not:

>> property::implies(Type::Positive, Type::PosInt)

UNKNOWN

No positive number is a negative integer:

>> property::implies(Type::Positive, Type::NegInt)

FALSE

Changes:

A property::implies is a new function.

property::Null – the empty property

If the combination of two properties is not possible, the “empty property”
property::Null is returned as result.

Call(s):

A property::Null

3

Related Functions: assume , getprop , is

Details:

A The logical combination of two properties results in the “empty” or “im-
possible” property if the properties contradict each other.

Example 1. The property positive contradicts the property negative:

>> Type::Positive and Type::Negative

property::Null

The intersection of two intervals can be empty. The corresponding properties
are derived to the empty property:

>> Type::Interval(-1, 0) and Type::Interval(0, 1)

property::Null

Changes:

A property::Null is a new function.

property::simpex – simplify Boolean expressions

property::simpex(ex) simplifies the Boolean expression ex .

Call(s):

A property::simpex(ex)

Parameters:
ex — Relation of type "_less" , "_ leequal" , "_unequal" ,

"_equal" , or "_in" ; or Boolean expression whose atoms are
Boolean constants or relations

Return Value: an expression that is equivalent to the given expression

Related Functions: is , assume , piecewise

4

Details:

A The properties of the identifiers are used to replace the atoms of the
Boolean expression ex by TRUEor FALSEif possible.

A property::simpex tries to collect relations involving the same identi-
fier into a single Boolean atom.

Example 1. A relation that is true:

>> property::simpex(1 > 0)

TRUE

An expression that is false:

>> property::simpex(x > 1 and x < -1)

FALSE

Find out the strongest border:

>> property::simpex(x > 3 and x > PI and x > ln(23))

PI < x

Example 2. Simplification of relations with the same variable:

>> property::simpex(x >= 2 and x <= 2)

x = 2

expand expands nested expressions (property::simpex does not call expand):

>> property::simpex(expand(0 < x and x < 2 and
(-1 < x and x <= 0 or 3 < x and x <= 4)))

FALSE

Expressions that contains identifiers with properties can often be simplified:

>> assume(x > 0):
property::simpex(x <> 0), property::simpex(x > 1)

TRUE, 1 < x

Also relations between identifiers are considered:

>> assume(x < y, _and):
property::simpex(x < y and (x > y or x > 0) and y <> 0)

TRUE

5

Example 3. Expressions of type _in can be simplified:

>> delete x:
property::simpex(x in R_ and x >= 0)

x in [0, infinity[

>> property::simpex(not x in R_ and not x in Z_)

not x in R_

Background:

A property::simpex uses the property mechanism to simplify expres-
sions.

Changes:

A property::simpex is a new function.

6

