
intlib — tools for integration

Table of contents

Preface . ii

1 Introduction . ii

2 First steps . ii

3 Integration by parts and by change of variables iii

intlib::byparts — performs integration by parts 1

intlib::changevar — change of variable 3

i

1 Introduction

This libary contains functions for manipulating and solving integrals. Cur-
rently there are only described interfaces for the well-known integration meth-
ods change of variables and integration by parts. In future versions more in-
terfaces will be added.

2 First steps

Integration is the opposite process to differentiation. Any function F in the
variable x with diff(F,x) = f is an integral of f .

>> f:=cos(x)*exp(sin(x))

cos(x) exp(sin(x))

>> F:=int(f,x)

exp(sin(x))

>> diff(F,x)

cos(x) exp(sin(x))

A constant is not added to the integral. With MuPAD it is possible to de-
termine integrals of elementary functions, of many special functions and re-
stricted of algebraic functions.

>> int(sin(x)^4*cos(x),x)

5
sin(x)

5

>> int(1/(2+cos(x)),x)

1/2 / sin(x) \
2 3 arctan| ----------------- |

1/2 | 1/2 |
x 3 \ cos(x) + 3 + 2 /
------ - ----------------------------------

3 3

>> int(exp(-a*x^2),x)

1/2 1/2
PI erf(a x)

1/2
2 a

ii

>> int(x^2/sqrt(1-5*x^3),x)

3
2 x
---- - 2/15

3

3 1/2
(1 - 5 x)

>> normal(simplify(diff(%,x)))

2
x

3 1/2

(1 - 5 x)

It is also possible to compute definite and multiple integrals:

>> int(exp(-x^2)*ln(x)^2,x=0..infinity);

5/2 1/2 2
PI PI (- EULER - 2 ln(2))
----- + --------------------------

16 8

>> int(sin(x)*dirac(x+2)-heaviside(x+3)/x,x=1..4)

-ln(4)

>> int(int(int(1, z=0..c*(1-x/a-y/b)), y=0..b*(1-x/a)), x=0..a)

a b c

6

3 Integration by parts and by change of variables

Typical applications for the rule of integration by parts∫
u′(x)v(x)dx = u(x)v(x)−

∫
u(x)v′(x)dx

are integrals of the form
∫

p(x) ∗ cos(x)dx where p(x) is polynomial. Thereby
one has to use the rule in the way that the polynomial is differentiated. Thus
one has to choose u′(x) = cos(x).
>> intlib::byparts(hold(int)((x-1)*cos(x),x),cos(x))

sin(x) (x - 1) - int(sin(x), x)

iii

In particular with the ansatz u′(x) = 1 it is possible to compute a lot of the
well-known standard integrals, like e.g.

∫
arcsin x dx.

>> intlib::byparts(hold(int)(arcsin(x),x),1)

/ x \
x arcsin(x) - int| -----------, x |

| 2 1/2 |
\ (1 - x) /

In order to determine the remaining integral one may use the method change
of variable ∫

f (g(x)) ∗ g′(x)dx = F(g(x)) + c

with g(x) = 1− x2.

>> F:=intlib::changevar(hold(int)(x/sqrt(1-x^2),x), t=1-x^2)

/ 1 \
int| - ------, t |

| 1/2 |
\ 2 t /

Via backsubstition into the solved integral F one gets the requested result.

>> hold(int)(arcsin(x),x) = x*arcsin(x)-subs(eval(F),t=1-x^2)

2 1/2
int(arcsin(x), x) = x arcsin(x) + (1 - x)

Applying change of variable with the integrator is problematic, since it may
occur that the integrator will never terminate. For that reason this rule is used
within the integrator only on certain secure places. On the other hand this may
also lead to the fact, that some integrals cannot be solved directly.

>> f:= sin(x)*sqrt(1+sin(x)):
int(f,x)

1/2
int(sin(x) (sin(x) + 1) , x)

>> subs(eval(intlib::changevar(hold(int)(f,x),t=sin(x))),t=sin(x))

1/2 / 2 sin(x) \
(sin(x) - 1) (sin(x) + 1) | -------- + 4/3 |

\ 3 /

2 1/2
(1 - sin(x))

iv

intlib::byparts – performs integration by parts

intlib::byparts(integral, du) performs on integral the integra-
tion by parts, where du is the part to be integrated.

Call(s):

A intlib::byparts(integral, du)

Parameters:
integral — integral: an expression of type "int" of the form

int(du*v, x)
du — the part to be integrated: an arithmetical expression

Return Value: an arithmetical expression containing the type "int" or the
unevaluated function call.

Related Functions: subs , intlib::changevar

Details:

A Mathematically, the rule of integration by parts is formally defined for
indefinite integrals as∫

u′(x)v(x) dx = u(x)v(x)−
∫

u(x)v′(x) dx

and for definite integrals as∫ b

a
u′(x)v(x) dx =

[
u(x)v(x)

]b
a −

∫ b

a
u(x)v′(x) dx

A intlib::byparts(integral, du) performs in integral the inte-
gration by parts where du is the part to be integrated and returns an
expression containing the unevaluated partial integral.

A intlib::byparts works for indefinite as well as for definite integrals.

A If MuPAD cannot solve the integral for du in case of definite integration,
the function call is returned unevaluated.

A The first argument must be an expression of type "int" . This can be
obtained with hold or freeze (cf. example 1).

A The second argument du should typically be a partial expression of the
integrand in integral .

1

Example 1. As a first example we apply the rule of integration by parts to
the integral

∫ b
a x exp(x) dx. By using the hold function we secure that the first

argument is of type "int" :

>> intlib::byparts(hold(int)(x*exp(x), x = a..b), exp(x))

b exp(b) - a exp(a) - int(exp(x), x = a..b)

In this case the ansatz is choosen as u′(x) = exp(x) and thus v(x) = x.

Example 2. In the following we give a more advanced example using the
method of integration by parts for solving the integral

∫
exp(ax) sin(bx) dx.

For this we have to prevent that the integrator already evaluates the integrals.
Thus we first inactivate the requested integral with the function freeze

>> F := freeze(int)(exp(a*x)*sin(b*x), x)

int(sin(b x) exp(a x), x)

and apply afterwards partial integration with u′(x) = exp(ax):

>> F1 := intlib::byparts(F, exp(a*x))

sin(b x) exp(a x) / b cos(b x) exp(a x) \
----------------- - int| -------------------, x |

a \ a /

To this result again we can apply integration by parts. But to avoid evaluating
that integral we have to be very carefully. In order to get it we must use the
function level :

>> F2 := -op(level(F1, 1), 2)

/ b cos(b x) exp(a x) \
int| -------------------, x |

\ a /

With that we can now calculate the requested integral:

>> F3 := expand(simplify(op(F1, 1) -
intlib::byparts(level(F2, 1), exp(a*x))))

sin(b x) exp(a x) b cos(b x) exp(a x)
----------------- - ------------------- -

a 2
a

2
b int(sin(b x) exp(a x), x)

2
a

2

As we can see the both integration by parts steps lead to same integral but
with a different factor. Therefore we can solve it for the requested integral and
we finally get:

>> F = normal(1/(1 + b^2/a^2)*
_plus(op(level(F3, 1), [1..2])))

int(sin(b x) exp(a x), x) =

a sin(b x) exp(a x) - b cos(b x) exp(a x)

2 2
a + b

Example 3. Here we demonstrate the difference between indefinite and def-
inite integration by parts. If in the indefinite case the partial part cannot be
solved, simply the unevaluated integral is plugged into the integration rule:

>> intlib::byparts(hold(int)(x*f(x), x),f(x))

x int(f(x), x) - int(int(f(x), x), x)

This is no longer true for the definite case:

>> intlib::byparts(hold(int)(x*f(x), x=a..b),f(x))

Warning: found no closed form for int(f(x), x) [intlib::bypart\
s]

intlib::byparts(int(x f(x), x = a..b), f(x))

Changes:

A intlib::byparts is a new function.

intlib::changevar – change of variable

intlib::changevar(integral, eq, ..) performs a change of variable
for indefinite and definite integrals.

Call(s):

A intlib::changevar(integral, eq <, var >)

3

Parameters:
integral — integral: an expression of type "int"
eq — equation defining the new integration variable in terms

of the old one: an equation
var — new integration variable: an identifier

Return Value: an expression of type "int" .

Related Functions: subs , intlib::byparts

Details:

A Mathematically, the substitution rule is formally defined for indefinite
integrals as ∫

f (g(x))g′(x) dx =
∫

f (t) dt, [t = g(x)]

and for definite integrals as∫ b

a
f (g(x))g′(x) dx =

∫ g(b)

g(a)
f (t) dt, [t = g(x)]

A intlib::changevar(integral, eq <, var>) performs in inte-
gral the change of variable defined by eq and returns the unevaluated
new integral.

A intlib::changevar works for indefinite as well as for definite inte-
grals.

A The first argument must be an expression of type "int" . This can be
obtained with hold or freeze (cf. example 1).

A If more than two variables occur in eq , the new variable must be given
as third argument.

A If MuPAD cannot solve the given equation eq an error will occur.

Example 1. As a first example we perform a change of variable for the integral∫ b
a f (x + c) dx. By using the hold function we secure that the first argument is

of type "int" :

>> intlib::changevar(hold(int)(f(x + c), x = a..b),
t = x + c, t)

int(f(t), t = a + c..b + c)

Note, that in this case the substitution equation has among x two further vari-
ables. Thus it is necessary to specify the new integration variable as third
argument.

4

Example 2. In the following we give a more advanced example using the
change of variable method for solving the integral

∫ √
tan(x) dx. First we per-

form the transformation t = tan(x):

>> f1:=intlib::changevar(hold(int)(sqrt(tan(x)), x),
t = tan(x), t)

/ 1/2 \
| t |

int| ------, t |
| 2 |
\ t + 1 /

We apply the further substitution t = u2 to that result. In order to keep this
transformation invertible we have to restrict the domain of u:

>> assume(u > 0): f2:=intlib::changevar(f1, t = u^2, u)

/ 2 \
| 2 u |

int| ------, u |
| 4 |
\ u + 1 /

The result of the last transformation is a rational function integral which we
can now solve with MuPAD’s integrator. Finally we only have to perform the
two back substitutions to get the requested integral.

>> F:=simplify(subs(subs(eval(f2), u = sqrt(t)),
t = tan(x)))

/ / 1/2 \2 \
1/2 | | 1/2 2 | |

2 ln| | tan(x) - ---- | + 1/2 |
\ \ 2 / /

-------------------------------------- -
4

/ / 1/2 \2 \
1/2 | | 1/2 2 | |

2 ln| | tan(x) + ---- | + 1/2 |
\ \ 2 / /

-------------------------------------- +
4

/ / 1/2 \ \
1/2 | 1/2 | 1/2 2 | |

2 arctan| 2 | tan(x) - ---- | |
\ \ 2 / /

5

-- +
2

/ / 1/2 \ \
1/2 | 1/2 | 1/2 2 | |

2 arctan| 2 | tan(x) + ---- | |
\ \ 2 / /

--
2

Verifying solutions of integrals is almost always a hard task. In this case we
may do it with the following function sequence:

>> factor(normal(expand(diff(F, x))))

/ sin(x) \1/2
| ------ |
\ cos(x) /

Changes:

A intlib::changevar used to be changevar .

6

