
matchlib — library for pattern matching

Table of contents

matchlib::analyze — structure of an expression 1

i

matchlib::analyze – structure of an expression

matchlib::analyze analyses the structure of any expression.

Call(s):

A matchlib::analyze(ex <option, ... >)

Parameters:

ex — any MuPAD expression

Options:

Const = set — a set or list of expressions that will be taken as
constants

Cond = list — a list of functions that will be taken to analyze the
given expression

Ident = ident — an ident or the option Any

Return Value: an object of the type adt::Tree

Related Functions: match , adt::Tree , prog::exprtree

Details:

A With matchlib::analyze expressions will be patitioned and returned
in tree structure as adt::Tree .

A The returned tree has the following structure. The root is an expression
of the same type as the given expression, but the arguments are new
generated pattern variables that stands for the arguments. The nodes of
this tree are the operands. If one operand should be also partitioned the
operand is a subtree of the same structure.

A Every operand of this tree is either a single expression the will be taken
as constant, or (generally) a sequence of tree operands X, S, L . The
first operand X is the above describes expression with the pattern vari-
ables as operands, the second operand S is a set of equations of the form
ident = expression , whereby ident is a generated pattern variable
and expression the corresponding subexpression of the original ex-
pression. The third operand L is a list of all operands of the partitioned
expression, that was replaced by a pattern variable.

A The given tree can be shown with the function expose . The operands
can be taken with the methods of the tree, which is an object of the type
adt::Tree .

1

Option <Const = C>:

A C is a set or list of expressions that will be taken as constants and not
further examined.

Option <Cond = C>:

A C is a list of functions that will be taken to analyze the given expression.
Every function will be called with the given expression (or a subexpres-
sion) and must be return TRUEor FALSE (or an expression that will be
evaluated to this with bool). The order of the functions in the list C
determines the precedence to analyze the expression.

A By default the given expression will be partitioned, if the operation is an
elementary function.

Option <Ident = x>:

A x is an identifier or the option Any (default). If an identifier will be given
only expressions with this identifier will be analyzed, all others will be
taken as constants.

Example 1.

>> X:= a^2 + x^2:
expose(matchlib::analyze(sin(X)/cos(X)))

1/X1*X2, {X1 = cos(a^2 + x^2), X2 = sin(a^2 + x^2)}, [cos(a^2 \
+ x^2), sin(a^2 + x^2)]
|
+-- cos(X3), {X3 = a^2 + x^2}, [a^2 + x^2]
| |
| ‘-- X4^2 + X5^2, {X4 = a, X5 = x}, [a, x]
| |
| +-- a
| |
| ‘-- x
|
‘-- sin(X6), {X6 = a^2 + x^2}, [a^2 + x^2]

|
‘-- X7^2 + X8^2, {X7 = a, X8 = x}, [a, x]

|

2

+-- a
|
‘-- x

Subexpression of the form a^2 + x^2 are constant.

>> expose(matchlib::analyze(sin(X)/cos(X), Const = [X]))

1/X9*X10, {X9 = cos(a^2 + x^2), X10 = sin(a^2 + x^2)}, [cos(a^\
2 + x^2), sin(a^2 + x^2)]
|
+-- cos(X12), {X12 = a^2 + x^2}, [a^2 + x^2]
|
‘-- sin(X13), {X13 = a^2 + x^2}, [a^2 + x^2]

Only expressions of the type "_mult" and "_plus" will be examined.

>> F:= X -> type(X) = "_mult" or type(X) = "_plus":
T:= matchlib::analyze(sin(X)/cos(X), Cond = [F])

Tree3

>> expose(%)

X14*X15, {X15 = sin(a^2 + x^2), X14 = 1/cos(a^2 + x^2)}, [1/co\
s(a^2 + x^2), sin(a^2 + x^2)]
|
+-- 1/cos(a^2 + x^2)
|
‘-- sin(a^2 + x^2)

Changes:

A matchlib::analyze is a new function.

3

