
The leporello class
A simple LaTeX document class to create folded leaflets using columns
and boxes

Jasper Habicht *

Version 0.9.0, released on 15 August 2025

1 Introduction

The leporello class is a simple LaTeX document class to create folded leaflets with the following
key features:

• The document layout consists of a specific number of pages that can have varying widths and
are placed next to each other. Each page contains one frame to contain typeset material.

• Material is typeset in boxes and boxes are positioned in columnswhich in turn are placed into
the frames on the pages of the document.

• Columns are predefined and thenplaced into the frameof a page in thedocument layout. This
way, columns can be used on pages with varying widths.

• Boxes can have padding (including bleed) and a background and are positioned inside a col-
umn.

A folded leaflet is sometimes called leporello in reference to the servant of DonGiovanni (known
from the opera by Mozart) who, at one point, unfolds a lengthy zig-zag folded list of his master’s
love affairs.

There are some requirements for the creation of print data for high-quality folded leaflets: Es-
pecially if the leaflet is folded inward, the inner pages should be a bit less wide, so in general the
pages of a leaflet are not of the exact same width (although the widths only differ slightly). Also,
borderless printing requires that the print data adds a so-called bleed area added to the layout if the
final document intowhich the typesetmaterial extends. This area is trimmed off eventually to avoid
unprinted edges due to natural movement of the paper during guillotining. Cropmarks need to be
added to the print data showing the layout of the final document. This packages takes into account
all these requirements while providing a lot of customization.

2 Loading the document class

Use \documentclass{leporello} to load the document class. The document class loads the
geometry , the graphicx and the l3draw package.

\leporelloset{‹options›}

Use \leporelloset oruse theoptional argumentof the \documentclass command toglobally
set the document layout. The following options are available:

* E-mail: mail@jasperhabicht.de.

1

mailto:mail@jasperhabicht.de


columns={‹list of dimensions›}
two columns
three columns
four columns
four columns wrap
five columns
six columns

Expects a comma-separated list of dimensions that describe thewidths of the columns in the layout.
If columns is not specified, the class assumes the default value of 97mm, 100mm, 100mm . The
width of the document layout is automatically calculated from the dimensions set via columns .

A few column layouts are predefined. These do not expect a value. The layouts will set the fol-
lowing list of dimensions:

Key List of dimensions

two columns 99mm, 99mm
three columns 97mm, 100mm, 100mm
four columns 99mm, 99mm, 99mm, 100mm
four columns wrap 97mm, 99mm, 100mm, 101mm
five columns 97mm, 97mm, 97mm, 99mm, 100mm
six columns 99mm, 99mm, 96mm, 96mm, 100mm, 100mm

layout height={‹dimension›}

Expects a dimension that sets the height of the final layout. If layout height is not specified,
the class assumes the default value of 210mm (the height of A4 landscape).

auto typeset

If set, the columns are automatically typeset according to the order of the definition.

continuous pagination

If set, columns are numbered continuously from left to right. Otherwise, the pagination starts on
the last column of every odd shipout page, continues from left to right over the columns on the
following shipout page and eventually from left ro right over the remaining columns on the first
page. For example, in a document with three columns per shipout page the pagination would be 5,
6, 1 and 2, 3, 4 and then on the next two shipout pages 11, 12, 7 and 8, 9, 10.

show frames

If set, frames around the single pages (columns) are shown. Does not expect a value.

show ids

If set, the IDs of the boxes are shown. Does not expect a value. The IDs of the boxes are integers
starting from 1 and increasing in the order of typesetting of the boxes.

prepress

2



If set, the paper size is increased at all four pages by the width of the info area and crop marks are
shown. Does not expect a value.

info area={‹dimension›}

Expects a dimension for thewidth of the info area that is shown if prepress is set. If info area
is not specified, the class assumes the default value of 10mm .

bleed={‹dimension›}

Expects a dimension for the width of the bleed that is added to boxes with background and other
material reaching to the edges of the document layout. If bleed is not specified, the class assumes
the default value of 3mm .

\leporellobleed

Retrieves the width of the bleed in pt.

\leporelloboxwidth

Retrieves the width of the current box including padding, but without bleed, in pt.

3 Defining columns

Columns are groupedmaterial to be typeset onto a specific page of the folded leaflet. A column can
contain anything that can be placed in a TeX box in general, but the typical use of a column is to only
serve as a frame to which boxes are attached. While the package provides a flowmechanism across
boxes, no such mechanism is provided for columns. Thus, if a column contains more than fits into
it, the relevant parts just spill over the frame edges.

\begin{leporellocolumn}{‹string›}
‹body›

\end{leporellocolumn}

Acolumn isdefinedby the leporellocolumn environmentwhich takes onemandatory argument
taking the name (ID) of the column. A single dot ( . ) is reserved as name for an empty column.

4 Positioning boxes

\begin{leporellobox}[‹options›]
‹body›

\end{leporellobox}

Boxes can be positioned inside of columns. They can contain anything that can be placed in a TeX
box in general. A box is defined by the leporellobox environment which takes one optional ar-
gument to set box-specific options. These are the following:

name={‹string›}

3



Expects a (unique) string denoting the name of the box which can be used for attaching boxes to
each other or assigning boxes for the flowmechanism.

parent={‹string›}

Expects a string denoting the name of the box to which the current box is aligned. If not specified,
the current column box is assumed as parent box. The parent box needs to be in the same column
as the box that should be aligned to it.

align parent={‹tuple of poles›}

Expects a comma-separated list of two items (a tuple)whichdenotes the horizontal and vertical pole
of which the intersection defines the coordinate of the parent box (per default this is the current
column box) that serves as anchor to align the current box. If not specified, the default value l, t
is assumed, denoting the top left corner. Available poles are:

Key Meaning

l left edge of the box
hc horizontal center of the box
r right edge of the box
t top edge of the box
vc vertical center of the box
B baseline of the box
b bottom edge of the box

align self={‹tuple of poles›}

Expects a comma-separated list of two items (a tuple) which denotes the horizontal and vertical
pole of which the intersection defines the coordinate of the current box that serves as anchor to
align the current box to parent box (per default this is the current column box). If not specified, the
default value l, t is assumed, denoting the top left corner. Available poles are the same as for
align parent .

offset={‹tuple of dimensions›}

Expects a comma-separated list of two dimensions (a tuple) which defines the offset of the anchor
set via align parent and align self . Thefirst dimension is the offset to the right, the second
dimension the offset downwards. If not specified, the default value 0mm, 0mm is assumed.

width={‹dimension›}

Expects a dimension to explicitly set thewidth of the current box. If not specified, the box is aswide
as the parent column.

height={‹dimension›}

Expects a dimension to explicitly set the height of the current box. If not specified, the box takes its
natural height which means that it is as high as necessary to fit the contents.

stretch height

4



If set, the box is stretched until its relevant edge (the bottom edge if aligned at the top, the top edge
if aligned at the bottom) meets the edge of the parent column. Does not expect a value.

padding left={‹dimension›}
padding right={‹dimension›}
padding top={‹dimension›}
padding bottom={‹dimension›}
padding={‹key-value list›}
no padding

padding left , padding right , padding top and padding bottom eachexpect adimen-
sion to describe the padding of the contents from the relevant edge of the box. If not specified, the
default value of 7.5mm is assumed.

All four padding settings can also be stated using the padding key and the subkeys left ,
right , top , bottom . Using this syntax, the default value of the padding setting would be ex-
pressed as padding={left=7.5mm, right=7.5mm, top=7.5mm, bottom=7.5mm} .

The key no padding sets all paddings to zero. This key does not expect a value.

pre={‹code›}

Expects a token list that is placed before the actual contents of the box. Should not contain typeset
material. This key should be used if boxes are manually split using the \leporelloboxbreak
command.

background color={‹color name›}
background color={none}

Expects a color name as defined via l3color or none which will not fill the background. If not
specified, the default value of none is assumed.

background code={‹code›}

Expects typeset material that will be placed into the background of the box aligned at the upper left
corner of the box. THe typeset material is clipped to the size of the box.

bleed={‹list of values›}

Expects a comma-separated list consisting of up to four items with the values l and r , t and b
that describe the edges (left, right, top and bottom) where bleed should be added to the box. Note
that bleed is never added to the inner edges where the columnsmeet.

store width={‹control sequence›}

Expects a single control sequence (macro) to store the width of the current box.

store height={‹control sequence›}

Expects a single control sequence (macro) to store the height of the current box.

flow into={‹string›}

5



Expects a string denoting the name of the box into which typeset material will flow into if it does
not fit into the current box. The box to flow into can be in a following column or on a following page.
See section 6 below.

5 Typesetting boxes into columns

\leporellotypesetcolumns[‹options›]{‹list of strings›}

Using the command \leporellotypesetcolumns which takes one mandatory argument, pre-
viously defined columns can be placed onto a page of the document. The command expects as argu-
ment a comma-separated list of names of previously defined columns. These are then placed onto
a document page from left to right while the width is taken from the setting via the columns key
and the height is taken from the setting via the layout height key. With a . , an empty column
can be added to the list.

The command takes one optional argument that accepts one of the following keys:

reverse layout

If set, the widths of the columns are reversed, but the placement of the columns is still from left to
right. This option does not take a value. The option should be used to typeset the verso of a folded
leaflet that naturally has the widths of the columns reversed.

reverse order

If set, the order of the columns is reversed, whichmeans that the columns are typeset from right to
left. Pagination is not affected.

6 Flowmechanism

Typeset material can flow from one box to another box. To this end, the key flow into can be set
to the relevant box and assigned the name of the box to flow into as value. The name of the relevant
box can be set via the name key.

\leporelloboxbreak

The flowmechanismworks acrossmultiple boxes. But due to theway the typesettingmechanism of
TeXworks, it needs somemanual adjustment if the typeset material flows across boxes of different
width. In this case, the command \leporelloboxbreak should be inserted at the point where
the break should take place.

Typeset material can only flow into boxes in the following column or page. If typeset material
should flow backwards on the same page, this can be achieved using the key reverse order on
the relevant page.

6.1 Right-to-left and vertical typesetting

The document class natively supports right-to-left and vertical typesetting using the mechanisms
provided by LuaLaTeX. The babel package also makes use of the mechanisms for bidirectional
typesettingprovidedbyLuaLaTeX,whichmeans that this packagewillworkbestwith a combination
of LuaLaTeX and babel for right-to-left or vertical typesetting.

If the bidi package is used (which is used by the polyglossia package), the following addi-
tion to the preamble is needed to enable right-to-left typesetting:

6



\AddToHook{leporello/typeset/before}{\setLTR}
\AddToHook{leporello/box/begin}{\setRTL}

In general, it has to be made sure that only the inner boxes are affected by the right-to-left or
vertical typesetting mechanism and not the overall layout.

Vertical typesetting will typically affect the measurements of the boxes. The package sets to
true theboolean \l_leporello_layout_vertical_ltr_bool for vertical typesetting from left
to right (for example used to write traditional Mongolian). The package sets to true the boolean
\l_leporello_layout_vertical_rtl_bool for vertical typesetting from right to left (for ex-
ample used to write Chinese, Japanese or Korean).

7 Other settings

7.1 Inserting images

One way to insert images is via the \includegraphics command provided by the graphicx
package. Using the background code key, images can be added to the background of a box.

\leporelloimage[‹options›]{‹file name›}

With the command \leporelloimage images that cover full boxes can be inserted. This com-
mand can be placed in a leporellobox with zero padding and it should only be used inside a
leporellobox environment. The command has one mandatory argument that takes a relative
path and file name to select the image to be inserted. It also has one optional argument to take the
following options:

clip width={‹dimension›}
clip height={‹dimension›}

Expect a dimension depicting the width and the height of the boxed image.

scale={‹floating point number›}

Expects a floating point number depicting the scaling factor of the image. This factor will not affect
the size of the box.

width={‹dimension›}
height={‹dimension›}

Expect a dimension to explicitly set the width and the height of the image. Setting width will
override a scale value. Setting height will override a width or scale value. The aspect ratio
of the original image will always be kept.

offset={‹tuple of dimensions›}

Expects a comma-separated list consisting of two values (tuple) that describe the offset of the image
thatwill be positionedper default so that the upper left corner sits at the upper left corner of the box.
A positive offset will shift the image in upper left direction.

ignore padding={‹list of values›}

7



Expects a comma-separated list consisting of up to four items with the values l and r , t and b
that describe the edges (left, right, top and bottom) where the image should ignore the padding of
the current box.

fill bleed

If set, the image will spread into the bleed. This will result in a shift of the image by the size of the
bleed which may need to be accounted for using offset . Does not expect a value.

7.2 Defining colors

Thepackage uses the colormodel of the l3color module. The xcolor package is not supported.
To provide a user interface to define and select colors, the commands \leporellocolordefine
and \leporellocolorselect are defined.

\leporellocolordefine{‹string›}{‹color model›}{‹list of values›}

The command \leporellocolordefine takes three arguments, the first being the name of the
color to be defined. The second argument takes the color model (for example rgb or cmyk ) and
the third argument takes the color values. Formore information about which colormodels are sup-
ported, please refer to the documentation of the l3color module.

\leporellocolorselect{‹string›}

The command \leporellocolorselect takes the name of the previously defined color as argu-
ment. All following objects are affected by this color setting. To colorize only a few letters, use curly
braces for grouping.

7.3 Defining styles

\leporellosetstyle{‹string›}{‹key-value list›}

In order to simplify the setting of recurring options to the leporellobox environment, it is possi-
ble to group several of these options as style via the \leporellosetstyle commandwhich takes
as first argument the name of the newly defined style and as second argument the releevant options
(key-value pairs). The style can then be used like an option to any leporellobox environment.

7.4 Restoring justified typesetting

\leporellojustified

In order to restore the default justified typesetting style of TeX after having set \raggedright ,
\raggedleft or \centering , the packages defines the command \leporellojustified .

7.5 Hooks

Thepackage offers two pairs of hooks that are positioned at the start and end of columns and boxes
allowing for inserting code.

The package uses the hook begindocument/before to insert layout-related settings among
other things via the geometry package as well as the hook shipout/foreground to insert code
to draw cropmarks.

8



In the context of RTL typesetting, the package uses the hooks leporello/typeset/before
and leporello/box/begin to unset and reset RTLmode.

Hook Position

leporello/column/begin before the code block stored via the leporellocolumn en-
vironment is typeset to the column box, preceded by a line of
code that sets \l_leporello_current_column_str to the
name of the current column

leporello/column/end after the code block stored via the leporellocolumn envi-
ronment is typeset to the column box

leporello/box/begin before the code block stored via the leporellobox environ-
ment is typeset to the relevant boxwhich is precededbya lineof
code that sets \l_leporello_current_box_int to the ID
of the current column and immediately followed by the code
defined via the pre key

leporello/box/end after the code block stored via the leporellobox environ-
ment is typeset to the relevant box

leporello/typeset/before immediately after the start of the group that contains the type-
set column

leporello/typeset/after immediately before the endof thegroup that contains the type-
set column

8 Example

The following example shows some of the basic ideas of the package by providing a code example
and showing its output.

foo 1

bar 2

baz 3

9



\documentclass[
prepress,
show frames,
show ids

]{leporello}

\leporellosetstyle{align bottom}{
align parent={l,b},
align self={l,b}

}

\begin{leporellocolumn}{example-a}
\begin{leporellobox}[

background color=black!10,
height=50mm,
bleed={l,t}

]
foo
\end{leporellobox}
\end{leporellocolumn}

\begin{leporellocolumn}{example-b}
\begin{leporellobox}[

background color=black!10,
offset={0mm,50mm},
stretch height,
bleed={b}

]
bar
\end{leporellobox}
\end{leporellocolumn}

\begin{leporellocolumn}{example-c}
\begin{leporellobox}[

background color=black!10,
align bottom,
bleed={r,b}

]
baz
\end{leporellobox}
\end{leporellocolumn}

\begin{document}

\leporellotypesetcolumns{
example-a,
example-b,
example-c

}

\end{document}

The example shows the use of the prepress key that adds cropmarks to the layout. It also
shows how the show frames key adds frames around the columns. Finally, the show box key
adds the box IDs to the boxes.

The default layout has three pages which are shown here. Three columns named example-a ,

10



example-b and example-c are defined and contain one box each. A custom style is defined to
combine the two keys needed to bottom-align the third box. A fixed height is set to for the first box
and the second box has and offset and its height stretched to the bottom of the column. Bleed is
added to the relevant edges of the three columns.

9 Changes

v0.7.0 (2025/08/08) First public beta release.

v0.8.0 (2025/08/12) Added box attachment mechanism and option to place arbitrary code to box
background.

v0.9.0 (2025/08/15) Box attachment mechanism and flow mechanism use box name instead of ID.
Enhanced pagination settings. Support for RTL and vertical typesetting.

11


	Introduction
	Loading the document class
	Defining columns
	Positioning boxes
	Typesetting boxes into columns
	Flow mechanism
	Right-to-left and vertical typesetting

	Other settings
	Inserting images
	Defining colors
	Defining styles
	Restoring justified typesetting
	Hooks

	Example
	Changes

