A Complete Bibliography of Publications in
Computer Physics Communications: 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

21 January 2016
Version 1.48

Title word cross-reference

(2 + 1)D [HP14]. $(MC)^3$ [KSW15]. 1
[CC14, Gio14a, HTT13, HTT14, MGL13, PM16, RKVL14, SBH+14]. 1 + 1
[SÖÖN11]. 2 [APC+14, BVP10, EW14a, FK12, GCVA14b, Gwi12, Isa10,
KO14b, KO16, RAV11, SW14a, SW14b, SA15b, SKK11, SW11, TMA+15,
TY10, TKL+12, VLM11]. 3 [AV13, AGMS15, BAR12b, CP15a, DGG13,
FRF10, GS15, GG15, HKJ+12, HDM+12, JEC+12, JKIS16, KAK12,
KL11, KO14b, KO16, LHJZ10, LHC+13, LX14, LKW11, LBP15, MGO13,
MCP+11, PR10, PCGM14, QSC14, RF15, RS12, RBH15a, RBH15b]. 3 + 1
[KHB14]. 4 [GGF+13, dSLF13]. 71 [JTH14]. 125M [RMS+12]. 2
[BG13b, BG14a, BLG14, Bone15, GBD10, HFSK12, RPB+15]. 3 [CDTV10].
[BKA+14, CJH11, CHW+15, DSM+11, KAR+15, LQZ+13]. 4 [LQZ+13]. 5
[LS11]. 6 [CJH11, CHW+15]. aMC@NLO [ADF+15]. $p_{F_{p-1}, F_1, F_2, F_3, F_4}$
\[\alpha^2 \] [GGGH14]. \textbf{Apart} [Fen12a]. \textit{Bc} [CWW15, YWW13]. \textit{Bc} [WW12]. \\
\textit{BR} (B^0_{\ell d} \to \ell \ell) [DNPS13]. \textit{C} [Nik12b]. \textit{C}_3 [Nik12b]. \textit{N} = 4 [SD15]. \textbf{COCOS} [SM13]. \textit{d} [Kap12b]. \textit{D} = 4 [Fis12]. \delta f [DF14]. e^+ e^- [YWW13]. \\
e^+ e^- \to e^+ e^- + \pi^+ \pi^- [CII11], e^+ e^- \to e^+ e^- \pi^0 [CII11], \\
e^+ e^- \to e^+ e^- R(J^{PC} = 0^{-+}) [DKT14]. \eta [AHK12]. \eta m(Z) [CEP110]. \\
N = 8 [Fis12]. N f = 2 + 1 + 1 [BBC+11], \nu [BHN+16]. \textit{O}_h [Nik12b], p [Wie13], p_{1/2+1/2}(x) [GST12]. \phi^4 [KVW11]. \pi [KS12]. q [FDWC12, KO13]. \textit{q} = 3 [dSLF13]. Q^2 [HK12]. R [AB10, AKH12, Bot12, Des16]. \textit{R}_2 [Deg15]. S [LB10a, LB11, LB12, LB13, SAS11]. S^4 [LF12]. \textit{SO}(8) [Fis12], \ast [Tos10]. \textit{SU}(2) [Alv12]. \textit{SU}(3) [BW12a]. \textit{SU}(N_c) [CB13a]. T [HCRD14, TU14]. \textit{T}_1 - \textit{T}_2 [GFW+16]. \textit{T}_d [CMJ+11]. \textit{T}_d [Nik12b]. \Theta [BJ11]. U(1) [BB13a]. W [QGLP13, Veb12]. \Xi b [CWW10]. \Xi e [CWW10]. \Xi c [CWW10]. \Xi y [KO14b]. Z [GLPQ11]. Z_2 [FWZ+12]. \\
\textit{-body} [CDS13a, MTM13, MBFD12, PH11, WSH+12]. \textit{-conjugated} [KS12]. \textit{-coupled} [QSC14]. \textbf{D} [FK12, Gio14a, GX15, LHJZ10, LHC+13, RKVL14]. \\
\textit{-diff} [TACA15]. \textit{-dimensional} [Kap12b, dIHW12]. \textit{-electron} [PM16]. \\
\textit{-gauged} [Fis12]. \textit{-helices} [HFSK12]. \textit{-matrix} [Bot12, Des16, HCRD14, SAS11]. \textit{-parity} [AB10, AKH12]. \textit{-point} [MDGC+12]. \textit{-polymers} [BJ11]. \textit{-product} [Tos10]. \textit{-qubit} [RF10]. \textit{-ray} [BHN+16, CMC12, LL15, MM11]. \textit{-scattering} [AFIS12]. \textit{-space} [OBH10]. \\
\textit{-stable} [SS13b]. \textit{-state} [FDWC12, KO13]. \textit{-states} [LB10a, LB11, LB12, LB13]. \textit{-type} [WL11b]. \textit{-values} [Wie13]. \\

/\textbf{Python} [SV14]. \\

2 [CKFB12, DES+11, Fen16, FP14, HM12c, JNN13, dIRL11, dIRAPL11, dIRJ14, PR12, RSBB14, TBB+14, ZE16]. \textbf{2.0} [AFIS12, ACD+14b, BCH13, BHS15, DDKM15, GLPQ11, GBR+14, HEWP13, HHS+10, Liu15a, LRR+15, LCRL10, OG14, PSMS14, SZY+12, SZY+13, Sha16]. \textbf{2.0-Hybrid} [GBR+14]. \textbf{2.0.0} [BBH+11a]. \textbf{2.1} [BH13, CNMC10a, PSMS15, QGLP13, SZY+13]. \textbf{2.2}

4 [Gri10, Sta14]. 4.0 [KUVV13, OO15b]. 4.1 [KRW13]. 4OEC [SK15].

5 [CFS13].

6 [Nik12b]. 6.4 [KRW13]. 6.5 [KRW13]. 64-bit [TC11a].

70th [Pat12].

8.2 [SAC+15].

9 [Nik12b]. 90 [GST12, KS12, SSG+10, SS10a]. 95 [vH10].

= [LQZ+13].

Alternating [Sok13, XZ12, BDK11, LST15, TT14, XYK12].
alternating-direction-implicit [TT14]. Alternating-order [Sok13].
alternative [Arb12, BKA+14, KAR+15]. altruistic [HLS12]. Am [MSNI11].
AMGA [Ano11a]. amorphous [HYM11]. amount [DO14a]. amphiphilic
[FFIH11]. amplified [ZLM12]. Amplitude [Raw15, MPSV15]. amplitudes
[BBU11, BvH15, KvO11, Per14, dALM+12]. AMR [GX15]. analog
[CO11, Fer15]. analyser [LW11, LW13]. analyses [Ham11, KSTR15, WLM14]. analysing
[BPMS16]. Analysis [BBB+15, Car10a, CAN11, GES13, IB11, vdSM16, ASEA14, AS11b, AMR15, Ano11o, ADDM+12b, ACDm14, APC+14, BHN+16, BHH+10, BHH+15, CSC11, Car10b, CMRVR+14, CZL+11, EBCB+14, EW14b, EW16, Faw10, FF11, FNPMB10, FBN+13, GMRHRM13, GMPFC+14, Gio14b, GA13, GBJ+10, GBJ+12, GBJ+13, GFJ+14, GA013b, HC16, HJL+14, JuIAM16, JCV+13, KKP11, KYY15a, KYY15b, LRR+15, MLW+10, MB12, ML14, MPSV15, Ost10, dRJL14, OVSI15, PCVZ11, PM14, Ram10, RRCSCJ10, RV10, Ruf13, RWKS15, SAA+10, sSYS12, Ser10, Sha13a, SLC11, Sin11, Sin12a, TRM+12, TBZ12, TS11, UW12, YVL+12, WLS13, XJS16, Yan09, GGF+13].
Analytic [BK13b, NS10, AC15, AC16, Kau13, LLL12, LLL13, PSB11, PSBT12, Pat15, Ser10, WAHL13]. Analytical
[BHH+10, BHH+15, CZD15, CSSB15, DG10a, Evs14, GZL14, GJHF14, HW12, IUM13, KPA13, Kom15a, Kra10, Lan13, LHJZ10, MKU+12, MS14, MK10, QA13b, STK10, SG11a, SG11b, SCG11, TKS10, YK10, BJBC+14, BMW14, BMNS14, Bru13, CTL15, Dua12, FKI5, Ker15, GBK+12, HCRD14, HBP14, JHL+15, KPPC13, PS11, RWKS15, SV14, Sva12, TFBW14, TC12, WZS+11, WX14, vRWS14, MF15]. application-driven [BJBC+14]. application-programming [SV14]. Applications [CM10a, HH11a, sL10, RBB15, VDF15, Asc10, BDPM15, BKA+14, CMSV14, Dim14, DBK+14, FUSH14, FOB+15, GMH11, GCHL15, KV10a, LM12, MCA14, MFG+13, Pan15, Ram10, Sai13, SKSK13, TK14a, Ve12, ZS13, MD11b]. applied
[AHK+12, ASS13, BUJ15, BAR12b, FBN+13, HJL+14, KL11, MCP+11,
Applying [KSH11, BS14a]. Applying [AV13, AGVP10, ADdM14, Aza13, BD12, Bot12, CSC11, CNMC10b, Cho11, CKCS13, Dan12, DF11a, EKO16, ERP+12, FM12, GLAC13, Gen10, GS14, GLX+14, GCA14a, HO13, HFSK12, HCC14, Jiw12, JHL+15, KK16a, KY14, Kan14, KLKR11, KV10a, KSYY13, Lan13, LHJ+15, MGRB11, MLR10, MBS+10, MC10, MCP10, NS10, ON14, ONS+15, OK14, PC11, PLD15, RS12, RM10a, RHC15, Sch14a, SKK11, SCM+16, SSBS15, TVGB15, TUY15, VBMP15, Wei99, WFV14, WAW14, YLK10, YG12, ZLL13, Zi´o14].

NPVR14, OT11, PM16, PLD15, SEW12, SEW14, WR16, ZKW+15.

atomistic-continuum [CL13, GC12, KK13]. atoms [BH14a, BH14b, Kob13, Lit13, WL11b, ZZ15]. Atomsk [Hir15].

atomistic-continuum [CL13, GC12, KK13]. atoms [BH14a, BH14b, Kob13, Lit13, WL11b, ZZ15]. Atomsk [Hir15].

autocorrelations [CDS+13b]. AutoDipole [HMu10]. automata [FBG10, PC11]. Automated [AC13, BSWC14, HBP+15, HMu10, JC13, JC14, KHKR14, KH10, Per14, SPMM11, HR11, HKVR10, UW12].

Ano10j, Ano10k, Ano10l, Ano10m, Ano11c, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11l, Ano11m, Ano11n, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano12n, Ano12o, Ano12p, Ano12q, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano13m, Ano13n, Ano13o, Ano13p, Ano13q, Ano13r, Ano13s, Ano13t, Ano13u, Ano13v, Ano13w, Ano13x, Ano13y, Ano13z, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano14f, Ano14g, Ano14h, Ano14i, Ano14j, Ano14k, Ano14l, Ano14m, Ano14n, Ano14o, Ano14p, Ano14q, Ano14r, Ano14s, Ano14t, Ano14u, Ano14v, Ano14w, Ano14x, Ano14y, Ano14z, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano15n, Ano15o, Ano15p, Ano15q, Ano15r, Ano15s, Ano15t, Ano15u, Ano15v, Ano15w, Ano15x, Ano15y, Ano15z, Ano16a, Ano16b, Ano16c, Ano16d]. bodies [MNV13].

Body [GBJ13b, GBJ15, BBC13b, BY13, CDS13a, CKS10, EKO11, GBJ10, GBJ12, GBFJ14, HEF12, HLZ13, JOK13, JDF12, KPA13, KPT15, LSDD14, LB13, MTM13, MBFD12, NPAG11, PMMW15, PIH11, RC11, VvAN11b, WSH12, ZC12]. Bogoliubov [SSK13].

Bonded [BL14, Faw10, GTPWL12]. Bonding [Sva12]. Boosting [dJBIM16].

Boson [BGM14, Brama15, Cas12, DDKM15, OK12, QwWL15].

Brackets [GKM10, MBGK11, MGK13, SMGK14]. braided [OVS15].

Burgers’ [BK16, Ji12, Ji15a, KP14].

[CKhN11, EFG+10, BCP13, CFS13, YWW13, BSW12]. **colliders**
[BDC+14, BHZ13, CM14b, DDKM15, Gao13a, GLS+13]. **colliding** [Lit13].
collision [BO12, CYD11, HDZ14, NNWS15, SD10a, WSH+14]. **collisional**
[HJ14]. **Collisions**
[BHC14a, BH14b, CKS10, Col14, DCC+10, Gin10, GFJ+14, GBJ+15, JH11,
KKK+15, KHB14, KHK+11, MEM+11, Nis11, OK12, SZY+12, SQS+16, VC10].
Collocation [LD10a, LX12, LCCC11, MM10, PDRG10, ZST11]. **colloidal**
[HCSW10, MDPTK15, Van15]. **COLONEMA** [Car16]. **colony** [vRWS14].
color [HKK11]. **Columbus** [Pit12]. **combinations** [KCT15].
Combining [Laz15, GWF+16, KPST15]. **Comm**
[KYKN15a, LR16, RBHB15a, SGM11a, Sco13, SIMGCP14, YQM14].
comment [Ram10]. **Comments** [San15, MR13]. **common** [Bar11b, Laz15].
Commun [ERS10c, Nat10, ZTG14]. **communication**
[DO14a, KP12b, RSSH+10, SCM13]. **Communications**
[Ano16a, Ram10, Wu10, Ano10a, Ano11b, Ano12a, Ano13a, Ano15a].
communities [IBKK11, Kra10]. **Compact**
[Dua12, MBGK11, BK16, Cap13, DT10, FFT+14, HZ11, LLXK16, ILsSZ14,
SR12, SA15b, SB11, TY10, Tia11, WZ13, XYK12, ZFH14, ZNT15].
Comparative [VEM12, JTN+11, LHSL14]. **comparing** [Gag12a].
Comparison [CM10b, CDBM16, Fuh15, LY.JY10, WLM14, BR13, CDS13a,
CHC+11, CS10, TBZ12, WG12]. **comparisons** [DGPW11]. **compatibility**
[BS13a]. **compensation** [AAJA14]. **competing** [BSWC14]. **Competition**
[MS11]. **competitive** [Dan11]. **compilation** [CW13]. **compile** [Vuk12].
compile-time [Vuk12]. **compiler** [LWC14]. **Complete**
[FBG10, ACD+14b, Boy15, sL10]. **complex**
[AQJ10, AC16, BGM+14, BH14b, BBF+13, BKM11, BH11, BDV11, Cai11,
CHDF10, CC10b, CC12, CGH+11, EKK14, FGC+11, FHH+14, GCHL15,
GYW+10, HLS12, JJ15, KS16, KCS+15, Lit13, LOV10, Mai12, NMCR15,
SA15b, Sol11, UY11, UO15b, UO15a, WZ13, WAHL13, ZMCT12, BD14].
complexation [HB13]. **complexes** [Faw10]. **complexity**
[BHVMH15, YKS11]. **complicated** [AKR15]. **component** [Eba13, WLM14].
components [KCA+15]. **composite** [CKLM10, KP14, Pna11, Vuk12].
Composition [HJ14]. **compositions** [RH11]. **compounds**
[BSWC14, DMC+15]. **comprehensive** [SAHP15, VBG+10]. **compressible**
[ACM12, TFBW14, TCP13]. **Compressive** [HJL+14]. **comprising** [PDC14].
compromise [LGW13]. **Comput** [ERS10c, KYKN15a, LR16, Nat10,
RBHB15a, SGM11a, Sco13, SIMGCP14, YQM14, ZTG14]. **Computation**
[AKH12, AD14, DKOS14, Ihn12, JH15, AB10, ACTP15, Cai11, CMN12,
CNMC10a, CRGRB14, CK12, DG10c, DADS11, Gao13a, GLS+13, GLAC13,
GBP13, GBD10, GST15, GA13, HR11, JCI13, JK14, KZ11, KP12b, KvdO11,
Kol14, LPBH11, LV13, LLL12, LLL13, MSS+14, NHSY15, PO14, RA13,
Sal13, Sch14b, USOA13, WWS10, WISA11, Wie13, YdDH+12].
Computational [ABB13, BBC+13b, MCRG11, NMS14, NFS15, RH11,
SWS^+12, BCP^+16, CL15a, Che11, CRC^+13, JOR^+12, LHJ^+15, LLX14a, MMC10, MCP10, Mü14c, NMCR15, PSMS14, PSMS15, RK11, RBB15, RCD^+10, Ros15, Sou14, WC15, ZTG13, ZTG14, dSVLP13].

computationally [DMC10]. **Computations** [Dan10a, Dan10b, BKS15, Bre10, DS13c, GLW14, HKSW10, MKR^+12, Naz12, NOR15, Wei15, YRR13, dALM^+12]. **compute** [BH11, Boy15, HHP^+14, RW11, SSG^+10, Wei11a]. **computed** [SBvD13]. **Computer** [Ano15a, ARB12, JWJL12, MSNI11, Ram10, Wu10, AG14, BJBC^+14, BF16, CDSG11, CYD11, Cip11, DS14, DSS^+12, Dev12, GRTZ10, HNM^+15, JuIAM16, Lit13, LO14, MLW^+10, MSI^+10, MNV13, MFS10b, MZE13, MSS^+14, OYK^+14, REtiVH12, iSSMI11, TJJD11, WR16, WSO^+12, Zhe15, ZMPT13, Ano10a, Ano11b, Ano12a, Ano13a, Ano15a]. **computer-aided** [Zhe15]. **Computer-assisted** [BRB12].

computer-generated [MSS^+14], **computer-generated-hologram** [WSO^+12]. **computers** [BWPT11, BKPT12, BY13, IW15, LS12b, SOM^+13]. **Computing** [ADF^+15, BBC^+11, Gio14a, LSG^+12, TCP13, Wai12, YE14a, Ara14a, Ara14b, BHW^+12, CR13, CLC14, CKhN11, CSRV13, CL15b, ÇÖSÜ11, CNS^+14, Dan10a, Dan10b, Dan11, DMC^+15, FBN^+13, GXF^+15, GST12, GHDF10, GCVA14a, GCVA14b, JTP15, JVR12, KDP^+14, KO14b, KO16, NFS15, PNL13, PG10, Qia10, SDS15, Sha13a, TKP15, TACA15, WX14].

concentrated [BE14]. **concentrations** [DMC^+15]. **concept** [Vuk12].

concise [KKG^+15]. **concurrency** [Dan11]. **concurrent** [HTW10].

condensates [CCW10, GM14, Hoh14a, JWC13, JWL13, MT13, WX11, WX14].

condensation [LCCCI1]. **condensed** [MKB^+11, ONS^+15, SBH^+14].

condition [PN15, WLU11]. **Conditions** [KPPC13, CCHL11, DGG13, EY11, Jiw15b, LWZ14, LLL12, LS13, MD11a, MRVF13, PLCC12, QHC^+10, RC13, RHH12, RTA10, SN16, Uty14, vdS13].

conductance [SPMM11], **conductances** [TXZL15], **conducting** [JPK^+12, SKML11], **conduction** [CAN11, HWS16, MLS10, iSYS12, SN16], **conduction-radiation** [CAN11], **conductivity** [FHM13, KST^+14b].

Confidence [Zlo14, SC14], **configuration** [BSC^+13, KPST15, RE12].

configurations [CB13a, Gwi12, MCP^+11, SKK11], **confined** [MSRL10, RS12, RAV11, SNB11, SCM^+16, vdS10].

confined [Den10, HJL^+14, LHJ^+15, MJB^+10, RV11]. **conformations** [CS16].

conforming [YWX11]. **Confronting** [BBH^+10, BBH^+11a, DDK^+15].

congruential [SS13a, TC11a], **conical** [GST12], **conjugate** [AG12a, HbotRC15].

conjugated [KS12, SS10a], **conquer** [PA13].

conservation [AAD14, DJ11, HJK^+12, HHC^+10, MMT^+11, MWCY14].

conservative [EW14a, LMRC15, UNK12], **conserved** [Mar15], **conserving** [AK15, CC14, CC15, DCC^+10, MTO15, Sok13, YXT^+15]. **Consideration** [WTH15], **considerations** [WLU11, dSFDFF13], **considering** [GLAC13].

consist [Faw10], **consistency** [SHNM11, SIMGCP13, SIMGCP14].
Consistent [MNC15, CDTV10, CCGC13, DR12, NPVR14, Pit12, SEW12, SEW14].

constant [DT10, Moh14, SH12a]. constants [DT10, Moh14, SH12a].

contaminated [MW12]. contamination [PCEH15]. context [OLG+16].

continuous [GMRHRCME13, GMPFC+14, GWF+11, HWG14, BR13, Bis15, BVC13, CM10a, FGC+11, HWG13, HWM+15, IW15, SKFP16, WRFS15, WLG+13]. continuous-energy [WRFS15]. continuous-time [GWF+11, HWG13, HWM+15, IW15, SKFP16]. continuum [CL13, FM12, GC12, KK13, MBF+10, NFA+16, PG10, TKL+12, WSTP15].

contracted [AC13]. contraction [DE13]. Contribution [TW11, Pat12].

Coulomb [EUT+15, GH11, HK15, JH15, LB13, MSRL10, Nis11, PH11, SV13, XD13, XHD15, ZHPS10]. Coulomb-distorted [HK15].
Counterexamples [YE14a]. counterterms [SV12]. Counting [Liu15a, GES13, SBB13].
coupled [AV13, BSM13, BK16, CZS10, CZL+11, DT11a, DN13, DHJ13, Des16, DGMZ15, EGGW12, GCV14a, HWCH11, KP14, LWL12, MZE13, QSC14, WX14, ZMPT13].
coupled-channel [Des16, GCV14a]. coupled-wave [CZL+11]. Coupling [DRI+16, KST14a, BAK+15, CL14, FLSS13, KVW11, LSK+14, NGM+10, SCH14a, SS12, WISA11, WX11, Wei99].
couplings [AGH+16, AC16].
Coulomb-distorted [HK15].
Coulomb [EUT+15, GH11, HK15, JH15, LB13, MSRL10, Nis11, PH11, SV13, XD13, XHD15, ZHPS10].
Coulomb-distorted [HK15].
Coulomb [EUT+15, GH11, HK15, JH15, LB13, MSRL10, Nis11, PH11, SV13, XD13, XHD15, ZHPS10].
[CL15a, CD15, GHR+16, HAV+14, SF10, VKS16, YB13, vH10].
differentiator [LZZL10]. diffraction [FNPMB10, MSPD12, WS11a].
diffractive [FNPMB10]. difuse [Gri10, XD13, XHD15]. diffusion
[BMW14, BO12, CATK11, CB15b, CM14a, DJ12, GA10, GN14, HJ14, HZ11,
MBRV+13, MFM15, MS11, Pla16, RRD11, SCM14, SL14, Tau10, Tia11,
WXW14, WV14, YQM12, YQM14, BR11, KdMvO14].
diffusion-controlled [Pla16]. diffusion-convection [GA10].
diffusive [ACMM10, ACML11, ACM12, WJHW14]. digital [JTP15].
dimensions [DMC10, DKOS14, KA1dL11, LA13, dSdO12].
[HMU10, HR1c1, RE12, SGDS16, TU14, vWB10]. DIRAC
[MFS10b, BB15, BW12b, BFB+10, CPV13, FGLB12, HP14, KCT15, STK10,
Sta13, TKS10, dhHV10]. Direct
[SKH+10, Wei11a, CDS13a, GJ13, LSK+13, OP12, WAW14]. Direct-MPI
[WAW14]. direct-sum [GJ13]. directed [FLP10, QHC+10, dSLF13].
direction [LST15, LSK+13, NO14, TT14, XYK12, XZ12].
directive [BCG+15]. directive-based [BCG+15]. directly [Kon11, Sco13].
DIRHB [NPVR14]. Dirichlet [Jiw15b, RC13, RHH12]. disaggregation [Bis15]. disc
[Lan13]. discharge [CHC+11, LHH+12a, UBT10]. discharges
[FK12, HCHW11, KRB15, KSY13, SVG10]. disciplinary [WSH+12].
disconnected [ACD+14a, BCS10]. discontinuities [DR12]. discontinuous
[EW14a, HLLH16, HWS16, LLP15, Maz13, WP10b, YWX11]. discovery
[LCL10]. discrepancy [VLD+12]. Discrete
[CR12, EW16, AGMS15, ELD14, GMHRMCE13, GMPFC+14, GJHF14,
KV10b, LCH11, MD10a, NMS14, RT15, SLW+15, Sza13b, Sza13a, Sza16,
ZAH10, EW14b, EEGW12]. discrete-dopant [LCH11]. discrete-element
[RT15]. discrete-time [GJHF14]. discretization
[CDBM16, DJ12, MLS10]. discretized [HLLH16, LHC+13]. discrimination
[SL10]. disks [TACA15]. dislocation [DZ15]. disorder [ABC14, TKP12].
disordered [CL12, CRNK12, CZN14, Dan10a, Dan10b, LZZ11]. dispersion
[FMW10, JLL10, Kon11, MFH+13, PSB11, PSBT12, Sco13, SB11, sX14,
vMB14]. dispersive [GAO13b, Ram10, Ram12, Ram14, WWHW14].
displacement [UW12]. displacements [LS15b]. dissemination [LHC+12].
dissipation [PDJ10]. Dissipative [JBKM15, ASPW13, CCWL11, GAHP15,
GTS14, MNC15, TK14a, WXW13, WXW14, BJM15, LBM+14, MDPTK15].
dissolution [XHLM12]. distance [PDC14]. distances [Raw15].
dissipation [PDJ10]. Dissipative [JBKM15, ASPW13, CCWL11, GAHP15,
GTS14, MNC15, TK14a, WXW13, WXW14, BJM15, LBM+14, MDPTK15].
dissolution [XHLM12]. distance [PDC14]. distances [Raw15].
dissipation [PDJ10]. Dissipative [JBKM15, ASPW13, CCWL11, GAHP15,
GTS14, MNC15, TK14a, WXW13, WXW14, BJM15, LBM+14, MDPTK15].
dissolution [XHLM12]. distance [PDC14]. distances [Raw15].

dynamics-based [ZS13, Zhe15].

dyson [HB12, HM12b].

e-Science [LSJ13, CKhN11].
easy [Sou14].

easyFeynDiag [XW15].

EBT2 [ACdS13].
EC [MTM14].
EC [MTM14].
EC [MTM14].
EDCOM [LC15].
ECPPSSR [BFC12, Cip11].
ECR [MTM14].
eddy [TIMM13].
Editor [Sco13].
Editorial [Ano10b, Ano10c, Ano10d, Ano10e, Ano10f, Ano10g, Ano10h, Ano10i, Ano10j, Ano10k, Ano10l, Ano11d, Ano11e, Ano11f, Ano11g, Ano11h, Ano11i, Ano11j, Ano11k, Ano11m, Ano11n, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano12g, Ano12h, Ano12i, Ano12j, Ano12k, Ano12l, Ano12m, Ano13b, Ano13c, Ano13d, Ano13e, Ano13f, Ano13g, Ano13h, Ano13i, Ano13j, Ano13k, Ano13l, Ano14a, Ano14b, Ano14c, Ano14d, Ano15b, Ano15c, Ano15d, Ano15e, Ano15f, Ano15g, Ano15h, Ano15i, Ano15j, Ano15k, Ano15l, Ano15m, Ano16b, Ano16c, Ano16d].
Editors [Ano10a, Ano11b, Ano12a, Ano13a, Ano15a, Ano16a].
education [LPBH11, Müll14c, TN11].

Edwards [FFT+14].
EERAD3 [GGGH14].
ef [DIP11].
ef-based [DIP11].
Effect [CHH+11, KSH11, AG14, CFSK14, Kri12, OCL+13, QHZ+14, SWL11, SDJ+12, WBY11].
Effective [BCS10, VLD+12, CL14, CM15, CGG+14, Jab12, LSG+12, NRSVW12, ZTG13, ZTG14].
Effects [IT11, BDK11, DGMZ15, GSTL+13, GB14, KZ11, LHS14, Liu15a, MDPTK15, PBE14, VV16, WT12, dSVLP13].
Efficiency [LV15, WG11, ZPrR16, GLAC13, GSKM15, LCRL10, VKS16, WW12].
efficiently [SZC+13].

EFT [GBD10].
eHDECAY [CGG+14].
eigenfunctions [GCVA14b, MGL13].
eigenmodes [HSK+12].
eigenproblems [DBB12, RLM13].
eigensolver [GBP13, GAO13b].
eigensolvers
[JDG12, AQJ10, AK13b, CSPAD10, GS14, HWG13, HK15, HL13, IUM13, KZ14, Per14, Pit12, SKFP16]. expansions [Eks11, GB11, TKR13].

First-order [VDF15]. First-principles [EY11, FWZ12, PBMAD12, SQL+10, ADdM12a, ACDdM14, ADdM14, ACDdM15, BP12, Boy15, CSL+13, GPS+13, GCVA14b, JLA+14, LZL11, NS15, SS13b, SWL11, VDF15].

fit [Gag12b, SGDS16]. fitted [DS15]. fitting [GD14, BW16, Ber16, BPMM14, Bla15, DFM+15, Eme11, LFG14, Pat12, PBD+15].

fixed-memory [LP15]. fixed-phase [BMW14]. fixed-point [KK16a]. fixing [CSBO13, HbotRC15, SV13].

flame [WLM14]. FLAPW [MBFB13]. Flash [Dim14]. FLAVOR [Ros15, EFG+10, AM10, CDS+13b, CGV13, Mur14].

flavour [AM11, MNA+12, PS12, MNA+12]. Flexible [TCK+15, CSRV13, DLGP10, Hv+13, JK14, KPA13, ORI+10, PH13, SGM11a, SGM11b, KBT+14]. FlexibleSUSY [AhPSV15].

floor [PC11]. Flow [San11, Beu11, CLW11, CRA10, CL13, DMC10, FM15, HST+15, HCT11, KK13, LCC13, LH+12a, LT+12, MSI+10, MMC10, MBS+10, NAF+16, NHYS15, OP12, PC11, RF15, SS11c, SQA+15, SDJ+12, SJW10, TFBW14, TKL+12, VSO+13, Van15, ZNT15].

Flowgen [KL15]. flowing [Sza16]. FlowPy [FSC13]. flows [ACMM10, BBF+13, CPR12, JPK+12, Ki10, Koh15, KPPC13, LSK+13, MRV13, PBD+15, PE15, Sza13a, Sza13b, Szo13a, TIMM13, TCP13, WZ+11, ZOZ13, vds10].

fluorescence [CD11, MD11b, ZLM12, RMW13]. flux [AAD14, HO13, HHC+10, LH+15, QM10, TCP13, WFV14].

fluco [HO13]. flux-difference [TCP13]. flux-vector [QM10]. fluxes [BHN+16, ORS+14]. fly [Ray10]. Fock [BM14, SEW12, SEW14, SW14b, SDM+12, SSK+13, DG10c, Fis11, GBD10, KAK12, Koh15, KS12, OT11, ZYZ15].

Functionally [WT15]. Functionally-fitted [WT15]. functionals [GBR+14, LRW+15, MOB12, NPAD11]. functions [BDBV12, BM14, BKK13, BK15, CM10a, Cii11, CD15, CCWL11, CLJ12, CSW13, CEPI10, Cou13a, Cou13b, DRR15, EUT+15, Ert15, ERP+12, FP14, GDB10, GST15, GTS14, GS14, GYW+10, GCVA14a, HK12, HLI3, HM12e, JL12, KK16a, Kap12a, KH11, KCL11, Kir10, KAW+10, LD10b, LM12, Liu11, Liu13, MK10, MYP+14, NGM+10, OWS+14, PPY14, PDRG10, PG10, PVK+14a, PVK+14b, RA13, RE12, SSG+10, SPMM11, SD10b, WWS10, WAHL13, WPD+15, ZDWY10, ZMCT12, vH11].

fundamental [LZP12, MK10]. fusion [AGB+15, DDKM15, ECSH16, FK12, FR15, HLM13, HJL+14, LHJ+15, Maz13]. fuzzy [GES13].

gaulted [Fis12]. gauginos [Sta13]. Gauss [MSR10, MS15]. Gaussian [EK15G15, Er14, FM12, JB15M, Odr11, PPY14, Ray10, RVD16].

[DNPS13, AM14b, BMU11, CL15a, CGRB14, Dan11, HEF12, Liu15a, PBMA12, PCGM14, ZYZ15, RSSH+10].
general-purpose [ASPDL+16, AABC+13, Fer15, GNA+15, TdAdSS11].
general-relativistic [KMA+12]. generalised [BBC+13a, Fuh15].
Generalized [JPH+14, BDV11, Brä15, BKK13, BKM14, BK15, DBB12, Ert15, Fen12a, Fen16, GV15, GS14, GTG+11, KMM13, LJE11, LS12a, LAsSZ14, MBFD12, ICD13, PH11, PA13, RLM13, TC11b, BD12, MCGR11].
generate [AM14a]. generated [BD10, MSH11, MSS+14, VKS16, WSO+12].
Generating [Bjö11, CB13a, MMT+11, Mis12, Mis13, RM14, Rom15, SGDS16, WW12].
Generation [CC10a, JTH14, BJBC+14, BS11, BS13a, BS14a, BJCV13, Bor14, BGL+14, DCM+12, Fer15, GBS16, HBP+15, HMU10, MV11, Re10, SG15, XWhZ13, ZS13].
generation [AM14a].
generated [BD10, MSH11, MSS+14, VKS16, WSO+12].
Generating [Bjö11, CB13a, MMT+11, Mis12, Mis13, RM14, Rom15, SGDS16, WW12].
Generation [CC10a, JTH14, BJBC+14, BS11, BS13a, BS14a, BJCV13, Bor14, BGL+14, DCM+12, Fer15, GBS16, HBP+15, HMU10, MV11, Re10, SG15, XWhZ13, ZS13].
generators [ASPW13, BS13a, CKS10, Dem11, MZ14, Mis13, SS13a, TC11a].
generic [Ano10n, JJ15].
genes [SCW+11]. Genetic [SKH+10, SKK11, Bru13].
GENXICC [WW13]. GENXICC2.0 [CWW10]. GENXICC2.1 [WW13].
geodesics [MG10a, Müll11a]. GeodesicViewer [MG10a, Müll11a].
geometric [Bot13, Gwi12, KU10, Mis13, SS13a, TC11a]. geometrical [BSC+13, HML11]. geometries [Bjö11, EKK14, MJ10+12, RHH12].
geometry [ASPDL+16, BMU11, DPK+15, GSB+14, KH12, SR12, WWVB11].
geophysical [VKS16]. GeoViS [Müll14a]. germanium [OPSR13, OPR14].
GLauber [RSBB14]. GLISSANDO [RSBB14]. Global [PPS10, WWM14, CdlM14, FKL13, KE+12, TKHR14, KTA12, KSY13, LYP14, SK10, TBZ12, VPP+12, VHP+15, WLH+12, WLS13].
GMXPBSA [PSMS14, PSMS15]. Godunov [KPPC13]. gold [ZDD+13].
Golem95C [CGH+11, GhvSF14]. good [MA11, TC11a].
goodness [Gag12b]. Gordon [HR11]. Gordon [DN13, KZC+10, AH13, DG10a, DG10b, Eba13, JPM12, LD10a, MD10a, Pál12, PTS12, RM10a, SW14c, dHLV12].
GPELab [AD14, AD15]. GPGPU [LYZ13, ÖN14]. GPScan.VI [Fer15].
GPU [BS14a, BKOZ16, BPP11, BFPP12, BBF+13, BBS14, BD10, BV10, Boe14, Cap13, CMVRB+14, CSSB15, CLB11, DS13a, DCVB+13, DCG13, DGG13, ELDS14, FFT+14, FGC+11, FDWC12, Fill13, FBN+13, FOB+15, GP13, GJ13, GLHG12, GHR+16, Ham11, HWX+13, HW12, Ihn12, Jk14, JPCG15, JCW+13, KKP11, KP12b, KO12, KO13, KO14b, Kom15a, Kom15b, KO16,

Implementing [BWPT11, BKPT12, BY13, BF16, BCPS11, SOPS12].

implicitly [WWS10]. importance [HLL13, LLX14a, SK10, dHGCS11].

impurity [FLSZ13, GWF+11, HWG13, HWM+15, SKFP16]. IMT [MN10].

in-core [AZM14]. in-situ [KY14]. InAs [BMNS14]. incidence [MPSV15, VDB14].

India [BPMM14]. India-based [BPMM14]. indices [KTA12, SK10].

Instrumentino [KSH14]. instruments [KSH14]. insulator [CJH11].

insulators [PSP16]. integer [HM12c]. integrability [ACDdM14]. Integral [SM15, ASEA14, Boy15, CMM14, Dat13, DG10a, GJ13, GHvSF14, KO14a, MNV13, ML14, M111, Qia10, Stu10, WFM14]. integral-equation [ML14].

integrals [AG12b, ACDdM14, BH13, BCH13, BJ+15, CGH+11, JH15, KAP12b, KCT15, KK14a, Pan15, Pat15, PB13, RMW13, TO10b, WISA11].

integrand [Per14]. Integrated [JGC+11, Ano10n, GGI+13, GC12].

integrating [Bot12, dHV10]. Integration [MAVA14, AK13a, BE14, End11, GDB10, Kan14, Kap12a, NPAD11].
[GCVA14a, Kra11, TRM12, ZW15]. LEVIS [PCGM14]. LHC
[DDK15, STR15, QGLP13]. libCreme [RLL12]. LIBERI [TO10b]. libraries [BV13, dALM12]. Library [TO10b, Asl14, BS11, BS13a, BS14a,
BCPS11, BCR14, BMS+16, BFD+11, ČOSÜ11, CGH+11, CKJR11, DRUE12,
GGI+13, GP13, Gr11, GHvSF14, GBS16, HAV+14, HMI2a, HvAS+13,
JCL10, KvdO11, MW12, MOB12, MD11b, MCAdF14, MV11, MG10b,
Mül11b, Mü14b, NGC+12, RLL12, Sai13, SWS+12, TM14, ZE11, ZE16].
Libxc [MOB12]. lidar [SSP16]. Lie [FK15, HR11, JC14, Naz12]. LieART
[FK15]. life [GMH11]. ligands [PDC14]. Light [SKML11, BF16, CKLM10,
EW14b, EW16, HHT14, KOT12, TMD11, WL11b, Zio14]. light-wave
[BF16]. lights [SJW10]. like [BP12, HH11a, LBA+14, MBFB13, NVW+13,
PLCC12, SQA+15, XLL15, ZRS12]. LIME [DRUE12]. limit [CM14a]. Limited
[AG12a, BU11, MW12, OOK+12, YÇÖ15, AS11b, BMC+11a, BMC+11b,
CFSK14, FUSH14, FR15, GBP13, GCHL15, HRC11, HHS+10, Jan10, Kan14,
Kap12a, Kap12b, MJB+10, MBGV15, PR14, RWKS15, SK12, SS10b, TC11a].
linear-scaling [FUSH14, RWKS15]. linearization [MBFB13]. linearized
[AM14b, CSPAD10, IH11, KAW+10, ILsZ14, PBMA12]. link [SK10].
linked [LYJY10, TKR13, WG11, MRZ10]. linked-cell [LYJY10].
linked-cluster [TKR13]. LINPRO [MW12]. Liouville
[LV10, MGRB11, TVGB15]. Liouvillian [ADM12a, ACDD14]. liquid
[BBP+14, MSH11, Sin12b, SA14, TW11]. List
[Ano10a, Ano11b, Ano12a, Ano13a, Ano15a, Ano16a, MRZ10, LYJY10]. lists
[ABRS12]. LiteRed [SS13c]. Liviu [Pat12]. LNL [MRZ10]. load
[BS15b, FRG12, OCF10, SKSK13]. load-balanced [OCF10].
load-balancing [BS15b]. loaded [Pra11]. Local
[CHDF10, LWZ14, PR12, DG10b, DKG+14, KL14, LJWK11, MS14, NKS15,
VP+12, Wiy14, YXT+15]. localised [MYP+14, SPPM11]. Localization
[KAW+10, NMG+10, PKV+14a, PKV+14b]. locally [CZD15, LLP15].
location [PP13]. Loewner [SW11]. logarithmic [PPY14]. LONE [CB16]. Long
[DV11, Boe14, DS11b, ERPDFLS15, Fil13, Fil14, Sza16, iT11, WWVB11].
long-range [Boe14, Fil14, iT11]. Long-time [DV11]. long-wave [DS11b].
longitudinal [KB15a]. look [JLA+14]. loop [ABB+14, Ano10a, BBU11,
BGM+14, BH13, BCI+13, BJ+15, CGH+11, DNPS13, Feni12b, FEH11,
HEF12, MCWJ15, Pat15, Per14, Sta11, YdDH+12, vH11]. loop-corrected
[BGM+14]. loops [AHK+12, ACD+14a, BCS10]. LOPT [Kra11]. Lorentz
[MFS+10a]. Lorenz [BDTG15]. loss [Hoh14b, Lit13, TVGB15]. losses
[Eme11]. lossless [TMD11]. lossy [WWHW14]. Low [BK12, KGS10,
LCY+11, AGH+16, BDBV12, HYM11, Kol15, LO14, MSPD12, MCP+11,
NRSVW12, PTMDPK14, RHC15, Weil12, Zlo14, vRWS14, BH14b, MPS13].
low-density [HYM11]. low-dimensional [vRWS14]. Low-energy

MadAnalysis [CFSi3]. made [YZY10]. MadGraph [ADF+15]. Madland [Rom15]. Magnetic [MHHL11, VCMS+13, BDK11, BUJ15, BMW14, CHW+15, CZL+11, Dua12, HEG+11, KB15a, KOT12, Ki10, LFG14, LR13, LR16, MJ+10, MEG12, PBE14, PCGM14, RS12, SEW12, SW14a, SEW14, SW14b, SZM+14, SHNM11, Tau10, TG11, VPM12, YJK11]. magnetically [Ram12, SCM+16]. magnetized [MCM+12, MMA15, Ram10, sX14, Yan09]. Magneto [LKWN11, CCL15, OCL+13]. Magneto-hydrodynamic [LKW11]. magnetohydrodynamics [SNB11, TYN+15, WAW14, WWM14, ZD15].
Ram14, Sol11, TKP12, WWHW14, WCL14, ZZD15. maternal [ZBMM11].

MATHEMATICA [BKM14, AC13, AC15, Aza13, BK13b, BKK13, BK15, Eks11, FK15, Fen12a, Fen16, GLMG12, HHP+14, MZ14, Mis12, Mis13, Naz12, Nut14, Pat15, SBQ14, TJD11, TM14, Tos10, WL11a, Wie15, Zit11].

MathLink [Hah12].

MathQCDSR [WL11a].

MATLAB [CR13, Dat13, RDP14, SZM+14, UW12, AD14, AD15, Asi10, Cap13, CATK11, HT12, Hohl14a, NSXZ14, OAKS11, RC13, TACA15, VPM16].

MATLAB-based [SZM+14, UW12, Cap13, OAKS11, RC13]. matrices [BH11, CDMCN11, GBRB11, GCVA14a, JK13, LW13, NCHN15, TC12, dlHV12]. Matrix

[BK11b, DBK+14, APV10, AC13, Bot12, CNMC10a, CLJ12, CK12, Des16, GZL14, HCRD14, IH11, KK16b, KH12, LJB+16, MiH12, MKG13, MSRL10, NBN+14, PO14, Ram12, RGH10, Sai13, SDS15, Sha13b, Sha16, SD10a, SAS11, TK14b, USOA13, VvAN+11b, VvAN+11a, WPV14, BD12, BR13].

Maxwell [BB13b, CCHK+13, Dem13, FE11, HLLH16, KO14a, LV15, LLP15, VvAN+11b, VvAN+11a, WPV14, BD12, BR13].

MC [JOR+12, DGPW11, LRC+11, WS11b]. MC-TESTER [DGPW11].

MCMB [BG13b, BLG14, Bon15]. MCNP [Car10a, Car10b]. MCNP5 [SMCB+15]. MCNPX [LL15]. mcsanc [BS13b]. mcsanc-v1.01 [BS13b].

MDMC [BG14a]. MEAM [DFM+15]. MEAMfit [DFM+15]. Mean [LS15b, BG11, DPB16, NPVR14, UW12, dB14]. mean-field [BG11, DPB16, NPVR14, dB14]. means [ACMM10].

measure [ABC14, LLX14a]. measured [Kon11, Sco13]. measurement [AK13b, BMJ15, CDSG11, PR13]. measurements [ERPDFLS15, RF10, SW12b, WLM14]. measures [HLL13, RLL12].

Mechanical

[Voy13, AMM11, AYDY11, DGMZ15, LV13, RC11, SZ15, Sin11, Sin12a]. Mechanics [LSJ13, KV10a, OML11, RK11, RU12, STT11, ZF15].

MEMPSODE [VPP+12, VHP+15]. Mercedes [HDM+12, SBPN15]. merge
43

[AGVP10, DT11b, EEGW12, Faw10, MZE13, TKL+12, Uty14, XD13, XHD15].
near-barrier [DT11b]. near-continuum [TKL+12]. near-rigid [Faw10].
near-wall [Uty14]. necessary [BSWC14]. neighbor [ABRS12, LYJY10].
Neighbour [MRZ10]. Nektar [CMC+15].
near-barrier [DT11b]. near-continuum [TKL+12]. near-rigid [Faw10].
near-wall [Uty14]. necessary [BSWC14]. neighbor [ABRS12, LYJY10].
Neighbour [MRZ10]. Nektar [CMC+15].
SZM$^{+14}$, SKH$^{+10}$, VvAN$^{+11a}$, VPP$^{+12}$, VHP$^{+15}$, XLCW14, ZBMM11, ZPvR16, Zlo14, vRWS14. **Optimizations** [iSYS12, WRFS15]. **optimize** [TVZ$^{+15}$]. **Optimized** [HLLLH16, LJB$^{+16}$, MAIAH14, BD10, CNMC10a, FDWC12, KAS12, LWC14, LBP15, SEW12, SEW14]. **Optimizing** [BCG$^{+15}$, De11, KdMvO14, RKVL14]. **Optimum** [PCVZ11]. **OptQC** [LWC14]. **OPUCEM** [ÇÖSÜ11]. **ORACLE** [WS11b]. **orbifolder** [NRSVW12]. **orbifolds** [NRSVW12]. **Orbit** [BDBV12, CL14, HSK$^{+12}$, Nis11, PCGM14, RE12, WX14, MPS13]. **Orbit-based** [BDBV12]. **orbit-following** [HSK$^{+12}$]. **orbital** [BDBV12]. **orbital-free** [NRSVW12]. **orbitals** [Ert15, KCA$^{+15}$]. **orbits** [BRB12, BDT15]. **orchestration** [CCdC$^{+11}$]. **order** [AAD13, AAD14, ABDa15, AGH$^{+16}$, AH13, ADdM12a, ADdM14, ADdM15, ADdM15, BBL$^{+13}$, BK16, BVC13, BIT12, CFMR10, Cap13, CD15, CD12, CR12, DJ11, DZ13, FG13, GLFQ11, GGGH14, GJ14, GAI10, GPS$^{+13}$, HZ11, KMS14, KO14a, Koh15, Kol14, LX12, LV15, LWZ14, LST15, LXXK16, ILszSI14, LW14b, MD10b, MO14, NS15, NO12, PKT15, PM13, Qia10, RL10, RHV$^{+12}$, Sch14b, SR12, SS$^{+13}$, SS13b, SA15b, SB11, Sok13, SS10b, TY10, Tia11, VDF15, VV16, WDR16, WC13, WP10b, WYSW10, WT15, XYK12, Zag14, ZDI15, ZFI14, ZNT15, vH10]. **ordering** [ZHSL13]. **Ordinary** [NO12, ADdM12a, ACdM15, ADdM15, MZE13, RBB12, WT15]. **ordinate** [ELDS14]. **organic** [HGCARM15]. **Organization** [SA15a]. **orientational** [WDR16]. **Oriented** [FCC15, Asl14, BFD$^{+11}$, CB15a, CDMCN11, CJ12, CFFR15, DM12, HHP$^{+16}$, OK12, WL$^{+13}$, WP10a, Zag14]. **orthogonal** [USOA13]. **orthogonalization** [BC10]. **oscillating** [PAS11, PS14, THDH14]. **oscillation** [BFM10, WW15]. **oscillations** [CC15, Dan11, TW11]. **oscillator** [GKM10, GYW$^{+10}$, MBGK11, MKG13, MAM14, SDM$^{+12}$, SMGK14, SSK$^{+13}$]. **oscillators** [Bla15, FMW10, Wu10, YWYF09, YZZ11]. **oscillatory** [AAD13, CYS12, DJ11, FLW10, FGR14, LWY11, LW14b, UNK12, WYSW10, WW10, YZWR14]. **other** [CS10, GH15, LP15]. **outline** [BH14a]. **Output** [Car10a, Car10b, CMSV14, FCC15, GW13, SAA$^{+10}$, SZM$^{+14}$, SMBC$^{+15}$, Sta13, DDF$^{+12}$]. **over-relaxation** [BSM13, BPP11]. **over-specified** [MD10b]. **overdamped** [LDW13]. **overlap** [BBF$^{+10}$, RVDS16]. **Overlapping** [KP12b, BHH$^{+10}$, BHH$^{+15}$, OOK$^{+12}$]. **oxide** [BCP$^{+16}$, NGCI$^{+12}$, Sol11]. **oxygen** [NS11b].

P [DSM$^{+11}$, SKB10, AMI14b, CRA10, VHP$^{+15}$]. **p-MEMPSODE** [VHP$^{+15}$], **p53** [HH11b]. **PACIAE** [SZY$^{+12}$, SZY$^{+13}$, ZYL$^{+15}$]. **Package** [EFG$^{+10}$, ADD$^{+11}$, AKZ$^{+13}$, ASPDL$^{+16}$, AG14, AD12b, AD12b, ADdM14, AC15, Aza13, BBU11, BGM$^{+14}$, BK13b, BB13a, BSGG10, BHH$^{+10}$, BHW$^{+12}$, BBH$^{+15}$, CDD14, CFSK14, CCK$^{+13}$, Des16, DSS$^{+12}$, DF11b, Eks11, FF11, FEH11, GST15, GLMG12, HBL$^{+13}$, HEF12, HR11, HHP$^{+14}$, HLZ$^{+13}$, HM10, JGB$^{+13}$, KST$^{+14b}$, KPS15, LRR$^{+15}$, LL15, LSK$^{+14}$,
MB12, MWCY14, MZE13, Müll14c, Naz12, NS10, NS11a, NSXZ14, Nut14, ORI+10, Pat15, PCEH15, RRCSCJ10, SS12, SNG+11, SM14, SQS+16, SSH16, Sit14a, Sit14b, SAHP15, SLR16, TS10, VJC12, WW14, WL11a, WCL14, Wle15, YE14a, YE14b, ZZ15, Zit11, vH10, BH14a, Pat15.

parameters
[ÇÖSÜ11, HM12c, MPS13, OO15b, PG10, RKVL14, SZM+14, WDR16]. **Parametric** [Lin13, WX13, BCMS10, GCVA14b, Zhe15]. **parentage** [Dev12]. **Pariser** [KS12, SS10a]. **parity** [AB10, AKH12, SHZ13]. **parity-dependent** [SHZ13]. **Parker** [DSP15, LKW11]. **PARPLE** [Str15]. **Par** [KS12, SS10a]. **Parrinello** [VCMS+13]. **Parsek2D** [IBP+15]. **Parsek2D-MLMD** [IBP+15]. **Part** [Dan10a, Dan10b]. **partial** [DHJ13, GCVA14b, HK15, Jiw15b, JK13, MJB+10, SGDS16]. **participating** [CAN11]. **ParticLE** [KDP+14, BJ15, BKP12, CBAM12, CDR+15, DS11a, GLH12, HPKF15, JBKM15, KS16, LB+14, MDPTK15, NHSS15, QL10, VGM+15, AM14a, ASPW13, AGMS15, ABCM14, AGB+15, ABR12, BCI11, BS15b, BE14, CATK11, CC14, CC15, CL11, CSSB15, DCM+12, DET12, DG11, DF14, Dev12, DCVB+13, DCGG13, ENEO15, EKO16, EK14, EW14b, Evs14, GW+16, GKM10, GAHP15, GD14, GH15, HBE10, HKJ+12,
[PAS11, PS14, SD10b, SA15b, TYH+15]. predictor-corrector
[PAS11, PS14, SD10b, SA15b, TYH+15]. Preferences [HS11, Hsu11a].
pregnancy [ZBMM11]. presence
DCC+10, JPK+12, Nis11, RS12, SD14. Present [Pat12, GFJ+14, TIMM13].
preference [MD11a]. preserving
[BIT12, CM14a, Miy15, San15, WXL13, WM13, NO14]. PRESHOWER
[HEPW13]. Pressure [HYM11, CHH+11, GAHP15, LHH+12a, NLS15].
primal [VvAN+11b]. primal-dual [VvAN+11b]. primitive [Ray10]. principal
[MLGE14, WLM14]. principle [Deg15, Evs14, SQL+10]. principles
[CL+13, EY11, FWZ+12, GPS+13, JEC+12, LZZ11, PBMD12, SWL11].
Probabilistic [Er14]. probabilities [PDC14, WW15]. Probability
[PM13, SI11, AQJ10, Asc10, KCL11]. probe [AAJA14, TCK+15, XLX+15].
probes [BMC+15]. problem
[BBC+13b, CDMCN11, CD12, Cho11, DPB16, Dua10, EKO16, GLX+14,
Ixa10, Jal10, KK16a, KPA13, KL11, LX12, LZP12, LWL10, MW12, MFM15,
MK10, MD10b, PS11, RM10b, RC13, SCS12, Wan10b, WP10b]. problems
[AABC+13, AG12a, CAN11, CCHL11, CS10, Des16, DB13, DS15, FGR14,
GVdL11, GN14, GCHL15, HKS10, Jan10, JOR+12, KV10a, KBSP12,
KAS12, KL14, LMRC15, LV10, LHJZ10, LWL12, LHC+13, LW14b, LR13,
LR16, MCDJ15, ÖY13, PS14, PS11, SKF16, SS13b, SK14, SMCB+15,
SS10b, TFBW14, TACA15, VSO+13, WFP14, ZHS13, ZX10, ZLL13,
ZNT15, vRWS14, vWB10]. procedure
[BW16, BSWC14, KMD12, KSW12, TIMM13]. procedures [Dua10, FG13].
processes [BDVGS11, CPHL14, CRC+13, CI11, GTW12, MBK+11,
OK12, RCD+10, Ros15, TC11b]. Processing [Dem11, Mau16, MSL10,
YLO13, BK11a, BJCH13, CDS13a, CSSB15, Col14, DBDP12, DS11a, DF13,
FSH13, FUS11, Fil14, Fri14b, FZY13, LAA+10, MED11, MEM+11,
NPA11, PLD+13, SH12b, TD11, Tle10, WDL11, WFT11, ZLO13].
processor [APRG11, NBN+14, Rap11, TB14]. processor-based [TB14].
processors [LBS+12]. produced [AG14]. product
[DBK+14, Eks11, GDB10, HR11, Tos10]. production
[BDVU13, BGI4b, CWW10, CWW15, Cip13, DDKM15, GLPQ11, Gin10,
HL13, KKL+15, Les16, OK12, WW13, YYW13]. PROFESS
[CXH+15, HHS+10, KST14a]. profile [Gio14a]. profiles
[AANAJ12, MSNI11, Wai12]. Program
[BS11, BS13a, BB13a, CGV13, DHR14, GBS16, LSD14, NS10, VPM16,
AC13, AM10, AM11, Arb12, As10, BGM+14, BF16, BBPS14, BH4b,
BF4+11, CKLM10, CDT10, CH1a, CATK11, CXH+15, Cip11, Cip13,
CWC13, CRNK12, CM14b, CO11, Dan11, Dat13, DDKM15, Dev12,
DKG+14, Fer15, Fis11, FEH11, Fri12, Gao13a, GLS+13, GCA14a,
GCA14b, HLM13, HEF12, HHS+10, JPSS10, KOB13, Kol14, KS12, Kra11,
LHC+12, LZZ11, MPS13, MLW+10, MNV13, MBGK11, MSNI11, NGG+13,
radiobiological [KEH12]. radioisotope [WT12]. radiowave [OAKS11].
radius [KB15a, SH12a]. raft [MD11b]. Raman [CLY11]. ramp [Hon10].
ramp-up [Hon10]. Random
[DVB11, AM14a, ASPW13, BS11, BS13a, BS14a, BJCW13, BCJW13,
CSRV13, Dem11, FLP10, GP13, GAHP15, GBS16, KC14, KD16, LS15a,
LSG+12, MKMK10, MH11, Mis12, Misi13, PPS10, Rom15, Sav15, SS13a,
SW11, TC11a, UO15b, WRvdL15, XZF12, YLO13]. random-bond [XZF12].
random-field [SW11]. range [ADD+11, Boe14, BWPT11, BSWC14, Cor14,
Fil13, Fil14, KK16b, KMD12, PG10, iT11]. rank [Ara14a, Ara14b, BK12,
KK14b, LO14]. rank-structured [KK14b]. Ramp [MJB+10, Ray10, SKH+
10, HvAS+13, Ruf13]. Rare [KBT+14, CGV13, KI11]. Rashba [XJS16].
ratchet [HCT11], rate [CGRB14, GJLB12, ZBMM11, WS11b]. rates [ADF+
15, GGGH14, SAG13]. rational [ACDdM15, ADdM15, Tia11, TK14b]. Ratip
[Fri12]. Ray [MTM14, OTC14, BHN+16, CCM12, KMA+12, LHC+12, LP15,
LL15, MMC10, MCAdF14, MM11, Mi14a, Tic10, TVGB15, TS10, VDJ+11,
YvOSM15, Bru13, CDGK+11, Cli13, GSB+14, LS12b, MD11b, PBMD12,
Tic10]. Ray-tracing [MTM14, LHC+12]. Rayleigh [WG12].
real-field [SW11]. Real [AAB+10b, BD10, CDF+12, MSH11, SBH+12,
BW12b, BR14, BG11, CDMCN11, ECD+10, KK16b, MBF+10, MSS+16,
OOK+12, dRJL14]. Real-space
[MSH11, SBH+12, BG11, MBF+10, MSS+16, OOK+12, dRJL14]. Real-time
[BD10, CDF+12, BR14]. Realistic [Sol11]. realization [BS11, GBS16].
receptors [DC14], reciprocity [DG10a], recognition [UIY11].
recombination [Fri12, SVG10]. recommendation [QHZ+14].
reconfiguration [KC14]. reconnection [PBE14, YJK11]. reconstructing
[PR10]. Reconstruction
[MD11b, GMH11, LSK+13, SAS11, WFV14, YvOSM15]. record [BS14b].
recording [MP11], recoupling [We99]. rectangular [SK15]. recurrence
[BBF+10, TO10a, WSO+12]. Recursive [PO14, Fen12b, KvdO11].
recycling [YRR13]. Red [BGL+14]. reduced [Kom15b]. Reducing
[BHVMH15]. Reduction [BK14, ASGLK10, BCS10, BKK13, BK15,
EPS15, GSB+14, MZE13, MNC15, Per14, Stu10, BKK13, BK15, Smi15].
Redundant [QHZ+14]. Reduce [Stu10]. reference
[DKG+14, DFM+15, JP10, SS11b]. reference-free [DFM+15]. refinement
[FXZ+14, GX15, JFC12, UBRT10, YRR13, ZD15]. reflection
[GCVA14a, Ram10, WS11a, Yan09]. Reformulation [LZP12]. regarding
Regge [ASEA14]. regime [REtVH12, TKL+12, dSFdFF13, vMB14].
Region [OK10, SZM+14]. Region-of-interest [OK10]. regional [BB12].
regions [Sni14]. regression [AG12a]. regular [MKV11, NO12, SSG+10].
RNGAVXLIB [GBS16]. RNGSSELIB [BS11, BS13a]. Robin
[RTA10, SN16]. Robust [GN14, ACdS13, CPV13, Den10, dRL11]. Roe
[TCP13]. role [BNAB11, GAHP15, Has11, HH11b, PDJ10]. roof [RLL12].
roofline [KKP11]. Root [Ano11o, Car10a, Car10b, ZHL11]. Rootaan
[BMW14, SEW12, SEW14, SW14b]. rotating [JWC13, LCCC11]. rotation
[BSM13]. Rotational [AS11a, KSW12, CATK11]. rotationally [QwL+15].
rotations [OML11, PUO14]. rough [EBCB+14, KC14, SKML11].
roughened [CLY11]. round [JCL10]. round-off [JCL10]. roundabout
[wH15]. route [mZXL15]. routine [RM10b, WPD+15]. rovibrational
[CNM10a, CNM10b]. RPA [CCGC13, DSW+15a]. RPIM [DG10b].
RPMDRate [SAG13]. Rubik [CD12]. rules [WL11a]. run [GHdF10].
runaway [LSF14]. rung [BSM13]. Runge
[BM13, CFMR10, DIP11, FG13, Ixa12, KMS14, MIW+12, MKS10, NS15, WXL13, WW10, YZWR14]. running [CDS13a, SS12]. RWG
[ZDWY10]. Rys [AG12b, Sch14b].

Salpeter [GVS+15]. sample [MP11]. samples [MPSV15]. Sampling
[KBT+14, RPB+15, BFM10, CND11, GM14, KI11, KSW15, KS15, LWL12,
PPS10, RLBC+14, SSBS15, TBZ12, WLH+12, Wil15, XLL15, YK10, YL12,
ZF15]. SANC [AAB+10a]. sandpile [AS11a]. Sar [TU14]. SARAH
[DNPS13, Sta13, Sta14]. Sassen [LS12b]. SASSIE [CRNK12]. saturated
[JHJ14]. saw [BBC+13a]. SAWdoubler [BBB13]. Saxon [MAM14]. Sb
[AM14b]. SbNCa [BKA+14]. scalability [APC+14, SCM13]. scalable
[BVC13, DHJ13, DG10c, GGI+13, GP13, JPH+14, MTM13, VBG+10].
scalar [AHK+12, BMS+16, LZZL10, SAHP15, vH11]. scale
[BMC+11a, BC10, Bis15, BHJ+15, CB15a, DSW+15a, DADS11, DO14b,
GS15, GHvdL11, GZL14, Ghdp10, GAO13b, HLS12, HKK11, JEF14,
JOK13, LR13, LR16, MBS+10, ORS+14, OP12, PLD+13, RLM13, Sch14a,
Sha13a, Tau10, TMM13, UB13, VBG+10, WSI13, WDL11, WSH+12].
Scalina [ZMJ13, AS11a, BH14b, CCWL11, FUSH14, GNA+15, GYW+10,
HHS+10, LD10b, OOK+12, RWKS15, dSVLP13, vMB14]. scanning
Scattering [BD12, AV13, AKR15, AFIS12, Bab14, CKLM10, CAN11,
CBGR14, CRNK12, EW14b, EW16, GLAC13, HC16, HHT14, IB11, KCM14,
KCB15b, KLI1, KvdO11, LHHJ10, LS12b, MLR10, OK14, PNL13, PR10,
SN+11, Ser10, SKML11, SAS11, TACA15, TVGB15, ZHSL13]. SCh[GC
[GHCL15]. scene [CFBC12]. scene-dependent [CFBC12]. SCF [WPD+15].
Scheifele [YZZ11]. scheme [AAD13, AAD14, ACM11, ACTP15, BM13,
BBC+13a, BE14, BB12, CWS14, CZD15, DJ11, EW14a, EW14b, EEW12,
FOB+15, GN14, HP14, HZ11, Jiw15a, JP10, KC14, KHK+11, KZC+10,
KP14, LJE11, Les16, LS12a, LXXK16, LB10b, MKU+12, MS14, MIA15,
MS15, MD10b, ICD13, NO14, iNSK+15, OKMI2, PA13, QSC14, RHW+12,
SKH$^{+10}$, UIY$^{+11}$, XLX$^{+15}$, AFIS$^{+12}$, ASPDL$^{+16}$, ALSW$^{+14}$, AABC$^{+13}$, AAJA$^{+14}$, BF$^{+16}$, Bar$^{+11a}$, BK$^{+16}$, Be$^{+14}$, Bgc$^{+14}$, BOI$^{+12}$, CHC$^{+11}$, CHH$^{+11}$, CvW$^{+12a}$, CvW$^{+12b}$, DSW$^{+15a}$, DHJ$^{+13}$, DES$^{+11}$, DDM$^{+14}$, FFT$^{+14}$, FGC$^{+11}$, FFIH$^{+11}$, FM$^{+15}$, GC$^{+12}$, GM$^{+11}$, GRR$^{+14}$, GRZ$^{+10}$, GS$^{+14}$, GB$^{+14}$, Gia$^{+11}$, GRTZ$^{+10}$, HBE$^{+10}$, HBL$^{+13}$, HKJ$^{+12}$, HT$^{+12}$, Hv$^{+13}$, HK$^{+11}$, HS$^{+11b}$, HB$^{+13}$, HT$^{+14}$, HC$^{+10}$, Ji$^{+12}$, JPM$^{+12}$, KOT$^{+12}$, KO$^{+12}$, KRO$^{+16}$, KSYY$^{+13}$, LCC$^{+13}$, LJE$^{+11}$, LJSW$^{+11}$, LCH$^{+11}$, LX$^{+14}$, LSK$^{+13}$, LYZ$^{+13}$, M$^{+10a}$, MT$^{+13}$, MGR$^{+11}$, MTSI$^{+11}$, MKU$^{+12}$, MMC$^{+10}$, MSNI$^{+11}$, MFG$^{+13}$, Mü$^{+14}$, MSH$^{+11}$, NZ$^{+14}$, NM$^{+14}$, NFS$^{+15}$, OK$^{+12}$, OYK$^{+14}$, PKT$^{+15}$, PCEH$^{+15}$, PA$^{+13}$, QL$^{+10}$, RD$^{+10}$. **Simulation** [RLBC$^{+14}$, Sal$^{+12}$, SBH$^{+14}$, SCC$^{+12}$, SS$^{+11b}$, SVG$^{+10}$, SKM$^{+15}$, SMCB$^{+15}$, TJD$^{+11}$, Tau$^{+10}$, Tic$^{+10}$, TVGB$^{+15}$, TIMM$^{+13}$, TMD$^{+11}$, TB$^{+14}$, VDB$^{+14}$, VRV$^{+15}$, VEM$^{+12}$, WP$^{+11}$, WS$^{+11a}$, WS$^{+13}$, WBY$^{+11}$, WT$^{+12}$, WL$^{+11b}$, YBN$^{+13}$, YG$^{+12}$, ZFH$^{+14}$, ZPv$^{+16}$, ZLFM$^{+11}$, dlHV$^{+12}$]. Simulations [APRG$^{+11}$, Bab$^{+14}$, LDW$^{+13}$, TKL$^{+12}$, AM$^{+14a}$, ASGLK$^{+10}$, AK$^{+15}$, AD$^{+15}$, AGB$^{+15}$, ABR$^{+12}$, BJBC$^{+14}$, BB$^{+13a}$, BS$^{+15b}$, BSC$^{+13}$, BFPP$^{+12}$, BB$^{+13a}$, BPSL$^{+12}$, BBW$^{+12}$, BVP$^{+10}$, BG$^{+11}$, BCD$^{+12}$, BBl$^{+13}$, CDS$^{+13a}$, CB$^{+15a}$, CMM$^{+14}$, CHA$^{+11}$, CXH$^{+15}$, CL$^{+11}$, CPHL$^{+14}$, CH$^{+11b}$, DZ$^{+15}$, De$^{+11}$, DS$^{+13a}$, DPK$^{+15}$, DF$^{+13}$, Dem$^{+11}$, DF$^{+14}$, EBC$^{+14}$, EV$^{+14}$, Eps$^{+14}$, FW$^{+11}$, FRF$^{+10}$, FKH$^{+15}$, Ghd$^{+10}$, Gio$^{+14a}$, GNA$^{+15}$, GSK$^{+14}$, GM$^{+14}$, GJ$^{+14}$, GJ$^{+15}$, GJ$^{+15}$, HO$^{+13}$, HS$^{+11a}$, Hin$^{+11}$, HPK$^{+15}$, HYM$^{+11}$, HLZ$^{+13}$, HHM$^{+15}$, HJK$^{+11}$, HHP$^{+16}$, JBK$^{+15}$, JBG$^{+16}$, JPH$^{+14}$, JJ$^{+15}$, JHL$^{+15}$, JVR$^{+12}$, JKIS$^{+16}$, KN$^{+16}$, KC$^{+14}$, KHK$^{+11}$, Kon$^{+11}$, KRB$^{+15}$, LYP$^{+14}$, LPC$^{+15}$, LGW$^{+13}$, LS$^{+14}$, LS$^{+15a}$, LS$^{+15b}$, Les$^{+16}$, LWL$^{+11}$, LHZ$^{+11}$, LKW$^{+11}$, LSK$^{+14}$, LBP$^{+15}$, MSSF$^{+15}$, MIW$^{+12}$, MIW$^{+13}$, MAC$^{+12}$, MP$^{+11}$, MFS$^{+10a}$, MS$^{+14}$, MRZ$^{+10}$, Maz$^{+13}$, MNV$^{+13}$]. **Simulations** [MMA$^{+15}$, MTO$^{+15}$, MKB$^{+11}$, MSM$^{+11}$, NBM$^{+15}$, NNWS$^{+15}$, NFA$^{+16}$, iNSK$^{+15}$, NVW$^{+13}$, ÖKr$^{+11}$, ORF$^{+10}$, Oti$^{+13}$, PCGM$^{+14}$, PLD$^{+13}$, PE$^{+15}$, PLC$^{+12}$, PD$^{+10}$, RKV$^{+14}$, RV$^{+11}$, RRHF$^{+12}$, SH$^{+12a}$, SFP$^{+11}$, SISW$^{+10}$, Sco$^{+13}$, SOM$^{+13}$, SJ$^{+11}$, SS$^{+11c}$, So$^{+13}$, SC$^{+16}$, SC$^{+13}$, TK$^{+14a}$, TSTT$^{+13}$, THDH$^{+14}$, Trö$^{+11}$, TYH$^{+15}$, UBRT$^{+10}$, UO$^{+15b}$, UO$^{+15a}$, VB$^{+10}$, VK$^{+14}$, WM$^{+14}$, WW$^{+14}$, WTH$^{+15}$, WDL$^{+11}$, W$^{+14}$, WWVB$^{+11}$, W$^{+12}$, WWFT$^{+11}$, WAW$^{+14}$, WWM$^{+14}$, X$^{+13}$, ZW$^{+15}$, ZMe$^{+13}$, dHGS$^{+11}$]. Simulator [CP$^{+15b}$, IW$^{+15}$, MB$^{+13}$, PR$^{+14}$, KDP$^{+14}$]. simultaneous [SGDS$^{+16}$]. sinc [MM$^{+10}$]. sinc-collocation [MM$^{+10}$]. Sine [SW$^{+14c}$, AH$^{+13}$, DG$^{+10b}$, JPM$^{+12}$, MD$^{+10a}$, Pål$^{+12}$, PTS$^{+12}$, dH$^{+12}$]. Sine-Gordon [SW$^{+14c}$, AH$^{+13}$]. Single [MAM$^{+14}$, Aza$^{+13}$, CATK$^{+11}$, CSL$^{+13}$, DKT$^{+14}$, Ey$^{+11}$, KKK$^{+15}$, LHS$^{+14}$, LBP$^{+15}$, RV$^{+10}$, RV$^{+11}$, SD$^{+14}$, UW$^{+12}$, WBY$^{+11}$, YZ$^{+10}$, ZLFM$^{+11}$]. single [LBP$^{+15}$]. single-crystal [WBY$^{+11}$, YZ$^{+10}$]. single-tag [DKT$^{+14}$]. single-walled [CS$^{+13}$, LHS$^{+14}$]. singular [GWF$^{+16}$, HK$^{+10}$, NO$^{+12}$, SK$^{+14}$, Z$^{+10}$]. singularities [BAK$^{+15}$]. singularity [PPY$^{+14}$]. singularly [GN$^{+14}$]. Sinusoidal [R$^{+12}$]. SIP [FX$^{+14}$]. SISCone [Wei$^{+12}$]. site [DMC$^{+15}$, SFP$^{+11}$, YHC$^{+11}$]. site-diluted
MFM15, MVS15, ORS+14, PBD+15, RVDS16, RC13, SKFP16, SSX14, VV16, WC13, Wit14, sX14, YXT+15, Zag14, ZPH+15, ZPvR16, HB13. solvers
[BB13b, CBB+10, DZ13, FR15, GWF+11, LV15, VLPMM14]. Solving
[BAK+15, CD12, CBB+10, Dem13, DPB16, DSP15, ENEO15, Fil13, FGG11, HAK+14, HAH13, HS14b, IH11, Jan10, LV10, RHH12, SmdONF14, VSO+13, BK11b, CS10, CKK+13, DT10, FGR14, GX15, HLLH16, HM12b, JPSS10, Jal10, Jw15b, LBB+16, MLS10, MM12, ICD13, PS11, QYM11, QA13b, QA13a, RL10, SSB+16, SSH+13, TY10, UNK12, VVB+12, WFV14, XZ12, YZWR14, ZHSL13]. Some
[CEPI10, FG13, MR13, ZHSL13, Er14, KD16]. soot
[ZLFM11].

to sound
[KL11]. sound-soft
[KL11].

to source
[BCP+16, CMC+15, CHC+11, CDR+15, Dan11, FLA+16, HSF+15, HWM+15, JNN12, KSH14, LCP+15, LZ11a, LZ11b, LZ12, MK10, MZE13, MSNI11, MVS15, MCFRG12, NMS14, NGCI+12, ORS+14, SAHP15, TACA15, VBG+10, WFV14, WPAV14, XAPK14, Zag14]. Sources
[EW14b, EW16, EGG12, KM10, ML14]. space
[BG11, BAK+15, CDBM16, EUT+15, Eqs14, FGLB12, GTS14, KSW15, KS15, MBF+10, MJB+10, MSSH+16, MSSH+11, MSSH11, OBH10, ÖCK11, OOK+12, diRLJ14, PSB11, PSBT12, QYM11, QA13a, SA15a, SB1+12, ZD15]. space-time

to space
[CB16, GP13, Kra10]. Spatial [RLBC+14, ABCM14, BNAB11, FCC15, LST15, LJVB+16, MLS10, MSRL10, TZG12, VV16, FCC15]. spatially
[MD10a]. spatio
[KEH12]. spatio-temporal
[KEH12]. Special
[MSI+10, iSSMI11, QA13a, RL10, ZD15]. Special-purpose [iSSMI11]. specialist [OTC14]. species
[HAK+14, NNWS15, SM14, SCM14]. specific
[LCP+15, XZF12]. specific-heat
[XZF12]. specific-purpose
[LCP+15]. specified
[MD10b]. specifying
[DS15]. spectra
[Aza13, BW16, BPM16, Bru13, CM15, CCL15, CGV13, EC16, EW11, GBR11, MSPD12, MNPY14, PBMA12, Rufe13, TKP12, TVG16, Zlo13]. Spectral
[MLS10, AH13, CDBM16, CMC+15, CvW12a, CvW12b, Col14, HS14b, Kap12a, KZC+10, LSSD14, LIW14a, LV15, LCCCI1, Liu11, Liu13, Raw15, SI11, SNB11, SmdONF14, TD14, Wan10a, YXD+15, PSP16, SmdONF14]. spectral/ [CMC+15]. spectrometry [SMCB+15]. spectroscopic
[MM11]. spectroscopies
[CMJ+11]. SPECTROSCOPIE
[GS+14]. Hoh14b, HHTT13, HHTT14, LCL+11, MGA+13, RM13].

Spectrum
[FCC15, Rufe13, AB10, AhPSV15, Bru13, CC10a, GWF+16, JK13, KZ11, MZ14, OCL+13, Rom15, SCS12, ZUT13]. Speed
[LGW13, JTP15, WLM14, YvOSM15]. Speeding
[MD11, KC14]. speeds
[SSX14]. SPFF
[LGW13]. SPH
[CDR+15, ACM110, ACM11, ACM12, BE14, CP15a, CPR12, CBAM12, JOR+12, KPPC13, Lan13, MRVF13, MRSD15, OLG+16, VSO+13, VKP14, XLX13]. SPHeno
[DNPS13, PS12].

stock [KCL11]. Stokes [BKOZ16, EW14a, FM15, MVS15, SK15, VSO+13].

systematic [BW16, GA13]. systems [AKR15, ASPDL + 16, AGH + 16, ADdM + 12b, ACDdM14, BMC + 11b, BFPP12, BBS14, BKS15, Bis15, BVC13, BM14, BC11, CR13, CLJ12, CYSL12, CL15b, CB15d, CB16, CR12, CBB + 10, CFRFR15, Dan14, DBJ11, Er14, Ert15, FLW10, Fil14, FE11, GH11, GBJ + 10, GBJ + 12, GBJ + 13, GCHL15, HBL + 13, IUM13, JLA + 14, JLW13, JNN12, JNN13, JGC + 11, Kau13, KPA13, KI11, KO12, KS12, KGS10, LCY + 11, Leô12, LRW + 15, LWYW11, LB10a, LB13, LCHM10, LL12, LCHM13, LBP15, MPM14, MFMM15, Men11, MGS13, Miy15, PFA + 15, PTMDPK14, PLCC12, RF10, RAV11, RHC15, RLMGM + 11, SW14b, SEGP15, SLR16, SS10a, TM14, TDL + 14, UO15b, UO15a, Voy13, VBMP15, Vuk12, WXL13, WRB11, WAW14, WYSW10, WW10, YZWR14, ZAHA10, dB14].
T [PC11], T3PS [Mau16], table [JTH14, LYJY10, Wei11a], tackle [CKS10], tag [DKT14, HLS12], tag-mediated [HLS12], tailored [VvAN+11b], tangents [PR10, PR12], target [GC13, HHT14], targets [HC16, LJH+15], tasks [HWT10], tau [SW14c, Wan10a, HTT13, HTT14], TAULA [DNP+12], Taylor [WG12], TaylUR [vH10], TDDFT [PUO14], TDF [SGDS16], TDHF [MRSU14], TDSE [ON14], TE [LSSW14], tearing [HSK+12], Technical [DNP+12, DPW16, LS15a], technique [CS10, DG10a, DG10b, Eba13, EKDGG15, GHvdL11, GTS14, Hon10, KN13, Koh15, LLX14b, NPAD11, Ram10, SK14, VDB14, WLS13, WDR16, MAIYAH14], techniques [BCS10, BD12, BJM15, BSW12, GSB+14, KHKR14, MIW+13, MC12, OBH10, RGH10, RWKS15], technological [RRdB11], technology [DM12, MSI+10], telegraph [PKT15, XYK12], telescope [ECD+10], tell [KSL+11], Temperature [HST+11, HEF+11, CM10a, GB14, Hin11, KST14a, KCT15, KGNS10, Liu13, LIK15, Liu15a, SLC11, SC15, VdLF14], Temperature-controlled [HST+11], temperature-dependent [SLC11], temperatures [Wai12], tempering [Boe14, FFT+14, JJ15, VdLF14, VDF15], Template [LHL11, BJ14], TemplateTagger [BJ14], Temporal [MDF11, YHCS11, IBP+15, KEH12], Tension [RM10a], tensor [BK12, Bre10, DKOS14, HR11, KAK12, KK14b, KK14a, KCA+15, Lya15, NKS15], tensors [Ara14a, Ara14b], term [Pla16], terms [ACMM10, ACML11, ACM12, Deg15, HMU10, MSR10], ternary [Sza16], terrain [OAKS11], TERS [Nat10, Nat09], Tesla [Lya15], tessellations [SOJ14], Test [LNSD15, PBE14, SISW10, TdAdSS11, VEM12], test-kinetic [VEM12], TESTER [DGPW11], Testing [ES11, Pit10, Liu11, MGFRG12, Zlo14], tests [Gag12b, Gag12a], tetrahedron [Kap12a], Tevatron [BBH+10, BBH+11a], Th [CHW+15, GJ14], th-order [GJ14], their [GCVA14b, KAR+15], theoretic [SSBS15], Theoretical [HCC14, LQZ+13, NS11b, NVW+13], theories [ADF+15, CJ12, Cip11, Fri14a, LSSW14, SA14], Theory [VCMS+13, BPC12, BB13a, BW12a, BG11, BO12, CXH+15, CKhN11, DF13, FK15, GBR+14, HAH13, Hsu11b, HHS+10, JCW+13, KVW11, KPST15, LA13, LSDD14, LSX+14, MGRB11, MBF+10, MOB12, OSS+16, MG10a, Müll11a, Naz12, NRSVW12, Nut14, OOK+12, OT11, RWKS15, San15, SD15, SSH16, SBH+12, TVGB15, Wan10b, WM13, YZWR14, ZAHA10, BK13b, BC10, DDB12, LT15], thermal [CCXC15, DS13b, FSH13, FM15, GM14, TKP12, CKFB12], thermally [CZN14], THERMINATOR [CKFB12], thermo [DGMZ15], thermo-mechanical [DGZM15], thermodynamic [BSWC14, Cou13a, Cou13b, DES+11, GRR+14, MJJB11, TDL+14], thermodynamics [AGVP10, KH10, MWL+10, dRARPL11], Thermostatic [GJHF14, JBKM15], Thermostatistical [GM11], thermostats [AMR15], thickness [CDGS11], thin [BL14], Third [MAM14, NS15], threads [sLqSqL+13], Three [BY13, dADfSVM12, HWS16, LJSW11, LB13, SC15, YWX11, BC11, BKM14, CS16, DS13c, DMC10, DO14b, EKO16,
FFT14, GTPWL12, GBD10, HCSW10, KKP11, KP12b, KH12, KRB15, LA13, LLXK16, PBE14, RWKS15, SFP11, WL11b, XZF12, ZFH14.

Three-body [BY13, LB13, EKO16]. Three-dimensional [dAFdSVM12, LJSW11, BC11, DS13c, DO14b, FFT14, GTPWL12, HCSW10, KKP11, KP12b, KH12, KRB15, LLXK16, RWKS15, SFP11, XZF12].

Three-level [WL11b]. three-nucleon [GBD10].

Three-temperature [SC15]. threshold [Has11, HST+11, dSDo12]. throughput [EC10]. TIERRAS [TS10]. TIGER2 [BW15, MPB10].

tight [SHNM11, LSK+14]. TIM [LHC+12, OTC14]. Time [GTG+11, HKF+12, LB10b, TD14, TC11b, TT11, AH13, BS15a, BR14, BD10, BB12, CC10a, CDL+12, CO11, DS13a, DS10, DV11, DSW+15a, DHR14, DJ14, DM12, ECD+10, FGBL12, FNMB10, Fri10, GS15, GMPC+14, GML15, GBR+14, GJHF14, GWF+11, HE13, HWG13, Has11, HC16, HLLH16, Hus11b, HHC+10, HWM+15, IW15, JHJG14, KK16b, KYSV15, LLHC11, LV14, LS15b, LLP15, LBB+16, LR13, LR16, MGRB11, MC10, MBFD12, ICD13, ON12, PSB11, PSBT12, PM16, PTMFK14, QYM11, QA13a, Ram14, RVDS16, SSB+16, SKFP16, SSL+13, SBH+12, SW12b, TTG11, TT14, TVGB15, UW12, US16, VDB14, VVB+12, Vuk12, WL11b, ZD15, ZYZ15, dHGC11]. time-delay [DS10].

time-evolving [US16]. time-harmonic [HLLH16, LLP15].

tomographic [YvOSM15]. tomography [AGMS15, CM10b, DADS11, LM12, MD11b, PR10, PR12, YvOSM15]. Tool [Mau16, Rulf13, SF10, BJ14, Br10, BHW+12, CKS10, CRC+13, CZN14, DGPWL11, DES+11, DRR15, FCC15, Gio14a, GRR+14, GPS+13, GFB+10, GGF+13, HD11, Hir15, SB13, KFS+13, Kol15, LCE+13, LHL11, MLGVE14, MNPY14, MYP+14, MG10a, Mi11a, Mur14, NRSV12, OG14, O105b, O105a, OVS15, OAK11, PMS14, SPS14, SPR15, RF15, RCD+10, Ros15, SGDS16, SZC+13, SY11, SOP12, Sta14, WS11b, YB13, BB15].

toolbox [ACD+14b, AD14, AD15, HT12, Hoh14a, Hoh14b, HSS+15, Mem11, PFA+15, TACA15, WTH15]. toolkit [HWM+15, LIU15b, SBH+14]. Tools [GHD10, GHVS14, ABB+14, ANO10O, BIS12, Fri14b, MFS10b, SS13C, VKS16]. Top [ALL+11, CFSK14, CM14b, KKK+15, CM14b]. top-pair [CM14b].

Universal [CCWL11, DNP+12, DGPW11, EGPS10, GGI+13, SJ11, DDF+12].
Universal [Fri10, PM13], unknown [PR13], unknowns [YBK+11].
unparticles [AAB+10b]. unsaturated [GTSL+13]. unsteady [SL14, TY10, TCP13, Uty14].
unstructured [ASGLK10, AK15, GLHG12, LYP14, LJWK11, MTO15, PBD+15, SC15, ZS13].
unstructured-grids [SC15]. unweighted [Gag12b, Gag12a, WW12].
Uquantchem [Sou14]. use [ERPDFLS15, KAR+15, Kom15a, LCJ10, MNV13, Sou14]. Useful [Bar11b].
user [BBG+13, CFS13]. user-friendly [CFS13]. uses [CEPI10]. Using [BS14a, CSRV13, AM14b, APRG11, ACD+14a, AGMS15, Asc10, AH13, APC+14, AAA14, BMC+11a, BSM13, BdVGS11, BH14b, BD10, BKM11, BSW12, CKLM10, CL15a, Cap13, CB13b, CAN11, CMSV14, CDS+13b, CCK+13, Cip11, CBB+10, CH11b, CBB14, CL13, CLB11, CRNK12, Dem13, DRUE12, DOKS14, DM12, EKDG15, FDWC12, FNPM10, FZY13, GBP13, GA10, GSB+14, GMH11, GYW+10, GRTZ10, HCC14, HKK11, Ihn12, JK13, KK16a, KH11, KN13, Koh15, KS12, KST+14b, KHKR14, KCS+15, LLHC11, LD10b, LA13, LBM+14, LWZ14, LHH+12b, LS12b, LNSD15, MED11, MGRB11, MP11, MSI+10, MRVF13, MC12, Mis12, MM10, MSML10, MSS+14, NGM+10, OBH10, OKM12, OYK+14, PSBT12, PPV+11, PDRG10, PR10, PR12, PCEH15, PA13, RDP14, RMS+12, RLMGM+11, SEW12, SEW14, SÓÓN11, SW14c, SWL+15, SPM11, SD10b].
using [SA15b, SLR+11, SFF+14, SC15, SN16, SPS10, SKH+10, SHL+11, SBH+12, SS10a, SSK+13, TOB+14, TVGB15, TW15, TCP13, UBRT10, VSO+13, VA11a, MJ01, WISA11, WW15, WLG+13, WAHL13, WFV14, WAW14, XLX+15, YK10, Yi11, YBK+11, YBN13, YE14a, YB13, YXT+15, YG12, ZDY10, ZMe+13, dJBIM16]. USPEX [LOSZ13]. utilitarian [CB15a]. utilization [sLqSqL+13, SMCB+15]. UV [Deg15, Fen12b]. UV-divergent [Fen12b].

Vanka-type \cite{BKOZ16}. Variability \cite{PPS10}. Variable \cite{QDZ+13, BDV11, DT10, LZZL10, Moh14, OAKS11, PKT15, TK14b}. Variables \cite{BKM14, BK15, CM10a, KTA12, Mar15, SK10}. Variance \cite{EPS15, SAA+10, GSB+14, HLL13, WLS13}. Variance-based \cite{WLS13}. Variate \cite{MN10}. Variates \cite{Ron15}. Variation \cite{MKU+12}. Variational \cite{VVAN+11a, ZX10, Miu11, VV+11b, ZOZ13}. Variations \cite{PR12, VV16}. Variant \cite{CMSV14}. Various \cite{AC16}. VASP \cite{HW12, MDGC+12}. vdW \cite{LAA+10}. Vector \cite{BW11, DDKM15, KYKN15a, KYKN15b, LK12, LHJZ10, QM10, SAHP15, SBQ14}. Vector-boson \cite{DDKM15}. Vector-valued \cite{LK12}. Vectorized \cite{RMW13}. Vectors \cite{ERPDFLS15, FBG10, YE14a}. Velocimetry \cite{AGMS15, iSSMI11}. Velocities \cite{MSHLS15}. Velocity \cite{CDBM16, HST+11, JH11, Sza13b, Sza13a, Sza16}. Velocity-dependent \cite{HST+11}. VENUS \cite{LSK+14, PCGM14}. VENUS/NWChem \cite{LSK+14}. Ver \cite{RSBB14}. Verification \cite{YG12}. Verlet \cite{LY10}. Versatile \cite{Sou14}. Version \cite{AC13, BPC13, BB13a, BLG14, Bon15, BHW+12, BBH+15, CWW10, CWW15, Cip11, FLA+16, Gin10, GRR+14, GFB+10, GBJ+13, GCVA14a, HAV+14, JCL10, GMB+13, Kol14, KDM11, KUV13, LCJ10, LZZ11b, LRR+15, MFS10b, MAM14, MYP+14, MG10b, Nat09, Nat10, NS11a, OKP10, Org15, dRL11, dRAPL11, PR12, Pit12, PVK+14b, RHBH15a, RHBH15b, SDM+12, SK+13, TV10, WKK11, WW13, XW15, ZMPT13, FP14, ZE16}. Versions \cite{Cip13, KRW13, dSD12}. Versus \cite{FBN+13, RD10}. Vertex \cite{Eks11}. Vertexing \cite{Dim14}. Vertical \cite{TL1+12}. Very \cite{BC10, MNO011, LOV10}. Very-high-precision \cite{MNO011}. VEST \cite{SBQ14}. Vh \cite{BH13}. Via \cite{AC13, AG14, AD14, BK11a, Boc14, BHW+12, BMB+15, DGI10b, DS10, DN13, GB11, GH15, GTG+11, JTT11, LPB11, Maz13, Per14, SGDS16, T010a, XLL15, YJK11, dHIV12}. Vibrational \cite{CHW+15, HW11}. Vibrations \cite{AYDY11, LQQ+13}. Vibroacoustic \cite{FOB+15}. View \cite{HS16}. Viewer \cite{HS16}. Viewing \cite{KY14}. VII \cite{SDM+12}. Violating \cite{AKH12, CFG13, CRC+13, Mur14, RCD+10, Ros15}. Violation \cite{AB10, LCE+13}. Violent \cite{MRSD15}. Virtual \cite{AB10, BBU13, GHDF10, NOR15, TCK+15}. Viscoelastic \cite{MAIVA14, RT15}. Viscosity \cite{BJM15}. Viscous \cite{KHB14}. VISHNU \cite{SQS+16}. Visited \cite{BVC13}. Visual \cite{Dan12, GGF+13, GFB+10}. Visualisation \cite{BBW11}. Visualization \cite{GCP+15, SC14, AZS+11, ANO11o, dAFdSVM12, JEC+12, KY14, MSI+10, NBM+15, OK10, WLG+13}. Visualizing \cite{ERPDFLS15}. Vlasov \cite{CDBM16, CC14, CC15, Fil13, MIW+12, MIW+13, MAA15, PDJ10, SSI1b, UNK12, dB14}. VLBI \cite{TRM+12}. VLBI-resolution \cite{TRM+12}. VMD \cite{BPML12, GIO14a}. Vmf90 \cite{dB14}. Vofi \cite{BMS+16}. Voltage \cite{Fer15}. Volume \cite{HKF+12, BMS+16, BHW+12, CAN11, FBN+13, LHH+12b, LK15, ML14, MAA15, QLN14, SNB11, SC15, SHL+11, YLK10, ZAG14, LYP14}. Volume-temperature \cite{LK15}. Volumetric \cite{JKI16}. Voronoi
vortex [JWC13, LRC+11, PN15, TKL+12].
vortex-shedding [TKL+12]. voxel [Ham11]. VR [OK10]. vs [BBS14].
VSHEC [ZUT13].

Waals [BBH11b, ERP+12, LS11, NPAD11]. waiting [VKLM11, dHGCS11].
walk [MFS+10a]. walk [IW15, UO15a]. walks [BBW11, SBB13].
wall [EKK14, MRVF13, Uty14]. walled [CSL+13, LHSL14].
Wang [San15, BR13, CND11, KO12, KO13, KO14b, Kom15a, Kom15b, Kom15c,
KO16, Sin12b, WSTP15, YK10,YL12]. Wannier [ERP+12, KAW+10,
MYP+14, NGM+10, PMMW15, PVK+14a, PVK+14b, SPMM11].

wannier90 [MYP+14]. warm [MCP+11]. water [HDM+12, JTN+11, MA11,
ORS+14, QM10, SGM11a, SGM11b, SBPN15, SA14]. watershed [ORS+14].

wavefunctions [CLJ12]. wave-packet [DHR14].
Wave [SS14, AV13, AM14b, Bad11, BF16, CLJ12,
CZL+11, DS11b, DN13, DZ13, DHR14, EUT+15, FM12, GB14, GCVA14a,
HK15, HZ11, HHC+10, JCW+13, JGAL+13, KH11, KM10, Kir10, LT15,
LZZL10, sL10, MED11, MFB+10, MA11, MSH11, OWS+14, PG10, PYW+14,
PM5+15, Raw15, RE12, SWS+12, SKH+10, THJ+10, YLO13, JTH14].

wave-functions [CLJ12]. wave-particle-interaction [SS14]. waveforms
wavefunctions [AC13, CFSK14, FP14, LV13]. waveguides
[HWCH11, XJS16].

waves [AS11b, ACML11, CCW10, IP14, KAW+10, MCP+11, MSHLS15].
weak-boson [OK12]. weakly [ACM12, DT11b, Faw10]. weakly-bonded
[Faw10]. weakly-bound [DT11b]. weakly-compressible [ACM12]. Wealth
weight [LJE11]. weight-based [LJE11]. weighted
[AAD13, AAD14, CDL+12, Gag12b, Gag12a]. weights
[Odr11, Sch14b, VDF15]. well [LLP15]. well-posed [LLP15]. Wenhao
[San15]. WENO [AAD13, GSKM14]. wet [MFG+13]. wetting
[WLUS11, vsS13]. wFMM [CC12]. Wheeler [SMdONF14]. wherever
[TIMM13]. whispering [ALS14]. white [Er14]. wide [HC16, PG10].
wide-band [HC16]. Wideband [CC10b, CC12]. widths [BG+14].

WIEN2k [AKZ+13, CSPAD10, PBMA12]. Wien2wannier [KAW+10].
Wigner [CM14a, RA13, SD14]. Wilson
[BW12b, CDS+13b, STK10, TKS10, Trö11]. wind [FXZ+14]. window
[LP15]. windows [CND11]. wires [ACTP15, GZL14]. wise [LFG14]. within
[BCP13, BG11, CM15, DT11b, FWZ+12, GBR+14, KSTR15, MBBF13,
PBMAD12]. without
[AMR15, BW12a, BAK+15, FGLB12, GD14, Kom15a, LGW13, UO15b].
wobbling [OKP10]. Woods [MAM14]. work [LHSL14]. Workflow
[LYZ13, CCdC+11, DRI+16, HKVR10, Kro16, MV11, RK11]. works
References

Andonov:2010:SSM

Ask:2010:REV

Arbona:2013:SGP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Avellar:2015:FHO

Alves:2013:GED

Antuono:2012:NDT

Antuono:2011:PGW

Antuono:2010:FSF

REFERENCES

Avellar:2012:PMI

Avellar:2012:NPN

Avellar:2014:MPF

Avellar:2015:IFD

REFERENCES

REFERENCES

Ahmed:2013:BSS

Aldegunde:2015:ECS

Allanach:2012:CNM

Aksenova:2015:SMS

Ahmed:2013:BSS

Anonymous:2010:CPC

Anonymous:2010:EBa

Anonymous:2010:EBb

Anonymous:2010:EBc

Anonymous:2010:EBd

Anonymous:2010:EBe

Anonymous:2012:CPC

Anonymous:2012:EBa

Anonymous:2012:EBb

Anonymous:2012:EBc

Anonymous:2012:EBd

Anonymous:2012:EBe

Anonymous:2012:EB1

Anonymous:2013:CPC

Anonymous:2013:EBa

Anonymous:2013:EBb

Anonymous:2013:EBc

Anonymous:2013:EBd

REFERENCES

REFERENCES

Anonymous:2015:EBa

Anonymous:2015:EBb

Anonymous:2015:EBc

Anonymous:2015:EBd

Anonymous:2015:EBe

Anonymous:2015:EBe

REFERENCES

REFERENCES

S. Safaei Arshi, A. Zolfaghari, and S. M. Mirvakili. A multi-objective shuffled frog leaping algorithm for in-core

Adler:2011:SVN

Babaev:2014:PCN

Badnell:2011:BPD

Bray:2015:SCC

Barletta:2011:CCD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[BBH+11a] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams. HiggsBounds 2.0:0: Confronting neutral and charged Higgs sector predictions with exclusion bounds

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Beliakov:] 2013: EIBb

[Bertone:2014:APE]

[Bali:2010:ENR]

[Bianchi:2010:RTO]

[Barka:2012:ASH]

[Buehler:2014:CCH]

[BDPM15] Robert A. Bell, Simon M.-M. Dubois, Michael C. Payne, and Arash A. Mostofi. Electronic transport calculations in the ONETEP code: Implementation and applications. *Computer Physics Communications*, 193(??):78–88, August 2015. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-
REFERENCES

REFERENCES

REFERENCES

Bonhommeau:2014:MMD

Bueno:2014:CIH

Bowman:2014:STF

Baglio:2014:NPP

Bloch:2011:NKS

[BH11] Jacques C. R. Bloch and Simon Heybrock. A nested Krylov subspace method to compute the sign function of

REFERENCES

Borowka:2015:SNE

Bonnivard:2016:CJA

Bothmann:2015:IMP

Binder:2015:RCI

Busa:2012:ACO

[BHW+12] Ján Busa, Jr., Shura Hayryan, Ming-Chya Wu, Ján Busa, and Chin-Kun Hu. ARVO-CL: the OpenCL version of the ARVO package — an efficient tool for computing the accessible surface area and the excluded volume of proteins via analytical equations. *Computer Physics Com-
REFERENCES

REFERENCES

Björkman:2011:CGG

Bauke:2011:AFS

Blank:2011:MAS

Bertoglio:2012:LRQ

Bahmann:2013:EEA

REFERENCES

[Bytev:2015:HHF

REFERENCES

REFERENCES

Matthias Bach, Volker Lindenstruth, Owe Philipson, and Christopher Pinke. Lattice QCD based on OpenCL. *Com-
REFERENCES

REFERENCES

Bresolin:2012:ABC

Boer:2014:GBS

Bonhommeau:2015:MVM

Borinsky:2014:FGG

Botje:2011:QFQ

Botha:2012:GMA

Botto:2013:GMP

Boyd:2015:FWC

Babaev:2012:RCE

Batic:2012:ICC

Batic:2013:CIC

Biarnes:2012:MVI

Bhattacharya:2014:EPT

Brazzano:2016:BMA

Bernaschi:2011:BGC

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Barash:2013:RPL

Bondarenko:2013:NEQ

Barash:2014:PGA

Barettin:2014:ORD

Barker:2015:DDT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

References

REFERENCES

Chen:2015:CPP

Chen:2012:SEH

Charpentier:2015:HOA

Camporeale:2016:VSD

Carli:2014:MPI

REFERENCES

REFERENCES

REFERENCES

Carter:2011:SGP

Colberg:2011:HAS

Chen:2011:MSP

Cheng:2011:ODS

Cheng:2010:LAM

Jie Cheng, Yanqing Hu, Zengru Di, and Ying Fan. Local adaptive mechanism and hierarchic social entropy in opinion

Chetty:2011:NMS

Chiu:2011:EPC

Chou:2011:KBE

Cheng:2015:PSM

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cardenas-Montes:2014:PPH

Chekanov:2014:PIO

Cardenas-Montes:2014:GBS

Cunha-Netto:2011:CBH
REFERENCES

Robert:2014:OMM

Cobanoglu:2011:OLE

Coufal:2013:MASa

Coufal:2013:MASb

Cercos-Pita:2015:ANF

REFERENCES

Chernatynskiy:2015:PTS

Ciappina:2014:CCS

Cherfils:2012:JPS

Certik:2013:DRG

Cieslinski:2012:DGA

[CSBO13] Cardoso:2013:LGF

Monodeep Chakraborty, Jürgen Spitaler, Peter Puschnig, and Claudia Ambrosch-Draxl. ATAT@WIEN2k: An in-

REFERENCES

REFERENCES

Daniluk:2010:MDDa

Daniluk:2010:MDDb

Daniluk:2011:CCC

Daniluk:2012:VMS

Daniluk:2014:RIT
REFERENCES

[Dattani:2013:FMP]

[DiNapoli:2013:BIE]

[deBuyl:2014:VPN]

[DiNapoli:2012:CSG]

[deBuyl:2014:HSE]
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Demchik:2011:PRN

Demeter:2013:SMB

Deng:2010:RNM

Deublein:2011:MMS

Descouvemont:2016:MPC

[Des16]
REFERENCES

Das:2012:NFC

Deveikis:2012:CPT

Delzanno:2011:FDA

Duhr:2011:SMF

Delaney:2013:PFT

REFERENCES

Deng:2014:OMR

Duff:2015:MRF

Dehghan:2010:ADR

Dehghan:2010:NST

Duchemin:2010:SAA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Otero-de-la-Roza:2014:CPR

Otero-de-la-Roza:2011:GNVa

Dziubak:2012:OOI

Doctors:2010:CEM

REFERENCES

[DO14a]
REFERENCES

REFERENCES

[DR12] N. Dubray and D. Regnier. Numerical search of discontinu-

ities in self-consistent potential energy surfaces. Computer

CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (elec-

article/pii/S0010465512001671.

B. Saoutic, G. Aiello, P. Bernardi, G. Ciraolo, J. Bucalossi,

J.-L. Duchateau, C. Fauser, D. Galassi, P. Hertout, J.-C.

Jaboulay, A. Li-Puma, and L. Zani. Coupling between a

multi-physics workflow engine and an optimization frame-

work. Computer Physics Communications, 200(??):76–86,

March 2016. CODEN CPHCBZ. ISSN 0010-4655 (print),

com/science/article/pii/S0010465515004130.

[DRR15] Christos Dimitroulis, Theophanes Raptis, and Vasilios Rap-

tis. POLYANA — a tool for the calculation of molecular

radial distribution functions based on molecular dy-

namics trajectories. Computer Physics Communications,

197(?):220–226, December 2015. CODEN CPHCBZ.

S0010465515002970.

[DRUE12] Albert Deuzeman, Siebren Reker, Carsten Urbach, and

ETM Collaboration. Lemon: An MPI parallel I/O li-

brary for data encapsulation using LIME. Computer Physics

Communications, 183(6):1321–1335, June 2012. CODEN

CPHCBZ. ISSN 0010-4655 (print), 1879-2944 (electronic).

URL http://www.sciencedirect.com/science/article/
piii/S0010465512000318.

time-delay model in biology via semi-analytical approaches.

Computer Physics Communications, 181(7):1255–1265, July
REFERENCES

[DS13c] Pawel Dlotko and Ruben Specogna. Physics inspired algorithms for (co)homology computations of three-dimensional combinatorial manifolds with boundary. Computer Physics

...
REFERENCES

REFERENCES

Dixit:2011:APD

Dhaka:2011:EMD

Dunzlaff:2015:SPT

Dupuy:2010:FDS

Dehghan:2011:CPM

Diaz-Torres:2011:PCR

Duarte:2010:CHI

Duarte:2012:CEM

Deinega:2011:LTB

Degroote:2011:FRP

Deng:2013:FNF

Dai:2015:ASM

Ebadi:2013:BSC

REFERENCES

REFERENCES

Efremenko:2014:MCC

Emeliyanov:2011:NAF

Endrodi:2011:MSI

Edvardsson:2015:SET

Elking:2012:HHP

Endress:2015:VRP

Er:2014:PSS

Espejo:2012:WFA

Estevez-Rams:2015:VLV

Eriksson:2010:THDa

Egami:2011:FPS

Fawzy:2010:CAF

Foucar:2012:CCA

Freire:2010:CSI

REFERENCES

Fleischhaker:2011:MSS

Frisch:2011:HPP

Feng:2012:AGM

Feng:2012:RMC

Feng:2016:AGM

REFERENCES

REFERENCES

Fritzsche:2014:IRC

Filho:2013:SVE

Filho:2014:MDL

Fischer:2011:BSH

Fischbacher:2012:NTV
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Xiaochuan Ge, Simon J. Binnie, Dario Rocca, Ralph Gebauer, and Stefano Baroni. turboTDDFT 2.0-Hybrid

Gonzalez-Ballestero:2011:NSE

Guskova:2016:RPL

Gontchar:2010:CCD

Gan:2012:HMI

A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky, and A. G. Abrashkevich. POTHEA: a program for computing eigen-

Gonzalez:2014:FIP

Gebremariam:2010:SIP

Geneste:2010:FEF

Grossu:2013:HFAb

Galonska:2013:PUA

Ghoshal:2011:DER

Green:2015:SSP

Giorgino:2010:DCV

REFERENCES

Gherardi:2012:HDS

Gawronski:2011:CDB

Germanas:2010:CFP

Garcia:2013:SEP

Gerhard:2013:RHG
Gong:2012:PTU

Gomez-Lobo:2012:SMP

Gavin:2011:FCH

Gao:2013:MPC

Guo:2014:CFE

REFERENCES

Golesorkhtabar:2013:ETC

Grichine:2010:GHE

Grigera:2011:GGL

Gutierrez:2010:QCS

Eladio Gutiérrez, Sergio Romero, María A. Trenas, and Emilio L. Zapata. Quantum computer simulation us-

REFERENCES

Godfrey:2015:INC

Gilmore:2015:EIC

Gull:2011:CTQ

Ge:2016:JII

[GFV+16] Xinmin Ge, Hua Wang, Yiren Fan, Yingchang Cao, Hua Chen, and Rui Huang. Joint inversion of $T_1 - T_2$ spectrum combining the iterative truncated singular value decomposition and the parallel particle swarm optimization algorithms. *Computer Physics Communications*, 198(?):59–70, January 2016. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
REFERENCES

Shoji Hamada. GPU-accelerated indirect boundary element method for voxel model analyses with fast multipole method.
Hasegawa:2011:PRG

Hadjidoukas:2014:NVN

Huber:2012:ADF

Huang:2013:ISN

Hadjidoukas:2010:PMC

REFERENCES

Hadi:2013:CFA

Hirayama:2011:TDN

Hlucha:2012:SPP

Heinasmaki:2012:IAA

Homola:2013:SUH
REFERENCES

Harvey:2015:PIL

Hischenhuber:2012:MCM

Hoefling:2013:SFS

Hernandez-Garcia:2015:CAS

Hsiao:2011:ARE
REFERENCES

Hung:2010:IPP

Huang:2014:OTE

Hinde:2011:QMD

Hirel:2015:ATM

Hook:2014:CSS

REFERENCES

Huang:2014:CAA

Hirai:2012:NSE

Hornyak:2015:ACP

Hamiaz:2012:FVT

Heikkinen:2012:IMC

REFERENCES

REFERENCES

Hohenester:2014:SEE

Honda:2010:STF

Hsu:2011:FMC

Hammer:2014:SGL

Hinz:2015:PBS

Horst:2011:CPA

[HR11] Christoph Horst and Jürgen Reuter. CleGo: a package for automated computation of Clebsch–Gordan coefficients
REFERENCES

in tensor product representations for Lie algebras A–G.

[HS16] Petr Hosek and Vojtech Spiwok. Metadyn View: Fast web-based viewer of free energy surfaces calculated by metadynamics. *Computer Physics Communications*, 198(??):
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[HXW+13] Chaofeng Hou, Ji Xu, Peng Wang, Wenlai Huang, and Xiaowei Wang. Efficient GPU-accelerated molecular dynam-

Hoshino:2011:PIS

Hu:2011:CFD

Ilyushin:2011:APF

Iniguez:2011:MOF

Innocenti:2015:ITS

M. E. Innocenti, A. Beck, T. Ponweiser, S. Markidis, and G. Lapenta. Introduction of temporal sub-stepping

Moxley:2013:GFD

Ibanez:2011:SDM

Ihnatsenka:2012:CEQ

Nomura:2015:ELS

REFERENCES

REFERENCES

Safa Jamali, Arman Boromand, Shaghayegh Khani, and Joao Maia. Gaussian-inspired auxiliary non-equilibrium thermostat (GIANT) for dissipative particle dynamics simulations. *Computer Physics Communications*, 197(?):27–34, December 2015. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-

Jefferson:2013:AAS

Jefferson:2014:FAS

Jezequel:2010:NVC

Jia:2013:APW

Julia-Diaz:2012:SEA

[Jara:2012:NVJ]

[Jelinek:2014:LSP]

[Jiang:2012:NMC]

[Jiang:2013:FGC]

REFERENCES

REFERENCES

Johansson:2013:QPF

Johnson:2013:FLS

Jiang:2012:MCS

Junghans:2010:RIA

Jenkins:2011:AAE

REFERENCES

Jollet:2014:GPA

Jenista:2011:CNS

Jiao:2015:RDA

Jin:2011:IHM

Khoromskaia:2012:FAT

Kant:2014:FLD

Kaprzyk:2012:AFI

Kaprzyk:2012:AFS

Khan:2015:STP

Kosti:2012:OER

Kaspar:2014:EEE

Kaushik:2013:IAA

Knap:2011:PPJ

Kunes:2010:WLA

Kabin:2015:MCP

Kittelmann:2015:PNS

Kopp:2012:SDE

Kratzer:2014:FRE

Khankhoje:2014:MRS

Marian Kupczynski and Hans De Raedt. Breakdown of statistical inference from some random experiments. *Computer
REFERENCES

Koehne:2013:PTP

Kunze:2010:LTM

Kroger:2010:ASC

Kar:2011:RSP

Kleiber:2012:PMF

REFERENCES

Karpenko:2014:IDV

Kleiber:2011:ICV

Kramer:2014:API

Ki:2010:LSM

Kitajima:2011:MSR

Kirby:2010:CRP

Kamali:2013:IMF

Khoromskaia:2014:MPM

Khoromskaia:2014:GBL

Kafri:2016:BPN

REFERENCES

Kuo:2014:TLO

Kao:2011:DAB

Kosower:2015:FFB

Khanna:2010:NMG

Kuchelmeister:2012:GBF
REFERENCES

Haruhiko Kohno and Jean-Christophe Nave. A new method for the level set equation using a hierarchical-gradient truncation and remapping technique. *Computer Physics*

[Kom15a] Yukihiro Komura. GPU-based cluster-labeling algorithm without the use of conventional iteration: Application to

Komura:2015:MGB

Komura:2015:OPS

Kong:2011:PDM

Kachelriess:2012:EMC

Kamleh:2012:PFH

REFERENCES

Kozlov:2015:CMP

Kuipers:2013:IMH

Kumar:2014:NAM

Krawczyk:2010:ADE

Kramida:2011:PLL

Kourtzanidis:2015:AFM

Krivec:2012:NRK

Krogel:2016:NMW

Kersevan:2013:MCE

Kondayya:2012:FHF

REFERENCES

Kroonblawd:2015:SNU

Khorasanizade:2016:TDS

Kesselheim:2011:AID

Koenka:2014:IOS

Kirchner:2011:WCC
Karasiev:2014:FTO

Koyama:2014:IDL

Kim:2015:FCC

Kuo:2012:RQP

Kroninger:2015:IMC

Kevin Kröninger, Steffen Schumann, and Benjamin Wollenberg. $(MC)^3$ — a multi-channel Markov chain Monte

REFERENCES

Kumar:2015:FPT

Keren-Zur:2011:HIE

Kristensen:2014:BUQ

Kong:2010:SES

Lapelosa:2013:TPT

Lazic:2010:JJN

Lanzafame:2013:IIS

Lazic:2015:CCT

Liverts:2010:TEA

REFERENCES

[LBM+14] James P. Larentzos, John K. Brennan, Joshua D. Moore, Martin Lísal, and William D. Mattson. Parallel implement-

REFERENCES

Li:2014:SSB

Lin:2011:HBS

Lundberg:2010:LDC

Lee:2011:LEE

Lakestani:2010:CFD

Lakestani:2010:NSR

[LD10b]

Lerner:2013:SDO

[LDW13]

Leon:2012:EMS

[Leó12]

Lesur:2016:MSI

[Les16]

Liu:2012:FES

Liang Li, Ting-Zhu Huang, Guang-Hui Cheng, Yan-Fei Jing, Zhi-Gang Ren, and Hou-Biao Li. Solution to 3-D electromagnetic problems discretized by a hybrid FEM/MOM method.

REFERENCES

Lorca:2011:GJT

Lin:2014:SEB

Liu:2011:EPI

Lin:2013:PCS

Litsarev:2013:DCC
Liu:2011:GMT

Liu:2013:LSB

Liu:2014:MMA

Liu:2015:PCF

Liu:2015:PTA

Luo:2014:FCM

Luo:2014:RKT

Li:2016:CFO

Li:2012:MBF

Lu:2016:KCC

Hongliang Lü, Anthony Marchix, Yasuhisa Abe, and David Boilley. KEWPIE2: a cascade code for the study of dynamical decay of excited nuclei. *Computer Physics Communications*

[LOV10] Andriy O. Lyakhov, Artem R. Oganov, and Mario Valle. How to predict very large and complex crystal structures. Com
REFERENCES

REFERENCES

Landreman:2014:NCR

Leidi:2012:CEP

Lopez:2013:ISP

Lin:2013:TDR

Liu:2012:AEP

Lutsyshyn:2015:FQM

Ledoux:2010:SSL

Ledoux:2013:ACQ

Ledoux:2014:ANS

REFERENCES

Li:2011:MCS

Li:2012:HDM

Ling:2010:HTS

Li:2011:TSE

Li:2014:LAB

[LWZ14] Hongwei Li, Xiaonan Wu, and Jiwei Zhang. Local artificial boundary conditions for Schrödinger and heat equations

Lang:2012:QBS

Li:2014:SCC

Lyakh:2015:ETT

Li:2010:CRN

Lani:2014:GEF

[LZL11] Zi Li, Xu Zhang, and Gang Lu. A Fortran program for calculating electron or hole mobility in disordered semi-

REFERENCES

REFERENCES

REFERENCES

Mickeyvicius:2011:FPH

Motta:2015:ILM

Martin-Bragado:2013:MOK

Melchionna:2010:HAL

Mohankumar:2010:NAD

Mei:2012:NSR

Miqueles:2014:ART

Mitnik:2011:CMG

Melazzi:2012:SFD

REFERENCES

REFERENCES

[Maintz:2011:SPW]

[MEG12]

[Mertmann:2011:FSO]

[Mendl:2011:FTF]

REFERENCES

Montoliu:2013:IEL

Muller:2013:PLA

Mena:2015:GAS

Martins:2010:NSL

McConnell:2010:DNV

[MFS10b] Sean McConnell, Stephan Fritzsche, and Andrey Surzhykov. DIRAC: a new version of computer algebra tools for studying the properties and behavior of hydrogen-like ions. Computer

REFERENCES

Mickevicius:2013:RCF

Marojevic:2013:EEG

Masala:2013:IMC

Malcioglu:2011:TCS

Mercado:2013:SWA

REFERENCES

[Miszczak:2012:GUT]

[Miszczak:2013:EOQ]

[Miura:2011:VPI]

[MIW+12]

[MIW+13]
S. Maeyama, A. Ishizawa, T.-H. Watanabe, N. Nakajima, S. Tsuji-Iio, and H. Tsutsui. Numerical techniques for parallel dynamics in electromagnetic gyroki-

[Miyatake:2015:DEP]

[McMillan:2010:RFS]

[Moddel:2011:AFP]

[Mierzwiczak:2010:AMF]

REnferences

REFERENCES

Miguel A. L. Marques, Micael J. T. Oliveira, and Tobias Burns. Libxc: a library of exchange and correlation function-

Mackay:2013:HFI

Mohammadi:2014:ESS

Mao:2011:ERM

Menz:2010:TIT

McClure:2014:NHA

[J. E. McClure, J. F. Prins, and C. T. Miller. A novel heterogeneous algorithm to simulate multiphase flow in porous...

Marchand:2013:LPC

Miqueles:2015:GIX

Mohankumar:2013:SCE

Mawson:2014:MTO

Mokos:2015:MPS

Maruhn:2014:TCS

Mayrhofer:2013:IWB

Mazzeo:2010:LNL

Menshutin:2011:MDD

Matsuoka:2014:AIC

Mohankumar:2015:SRR

Munejiri:2011:RSI

Munoz-Santiburcio:2015:ACC

Masuda:2010:SPC

Nobuyuki Masuda, Takashige Sugie, Tomoyoshi Ito, Shinjiro Tanaka, Yu Hamada, Shin'ichi Satake, Tomoaki Kunugi, and Kazuho Sato. Special purpose computer system with highly parallel pipelines for flow visualization us-
REFERENCES

Muller:2011:KFA

Mohankumar:2010:ECT

Mondragon-Shem:2010:ECC

Murano:2014:FCC

Mi:2016:ARS

Meyer:2011:SFD

REFERENCES

Muller:2011:GTE

Muller:2011:MLE

Müll11b

Muller:2014:GRR

Müll14a

Muller:2014:MMP

Müll14b

Muller:2014:MMP

Müll14c

REFERENCES

Zhao:2015:ASE

Nath:2009:TVI

Nath:2010:ETV

Nazarov:2012:AMM

Nakano:2015:FSS
C. Masato Nakano, Hye Suk Byun, Heng Ma, Tao Wei, and Mohamed Y. El-Naggar. A framework for stochastic simulations and visualization of biological electron-transfer dy-

REFERENCES

REFERENCES

REFERENCES

[OK10] Nobuaki Ohno and Akira Kageyama. Region-of-interest visualization by CAVE VR system with automatic con-
REFERENCES

REFERENCES

Ohba:2012:LSA

Ovaysi:2012:MGA

Opletal:2011:HHR

Opletal:2014:HHR

Opletal:2013:HHR

REFERENCES

REFERENCES

REFERENCES

Panzer:2015:ASI

Panopoulos:2011:SES

Paternoster:2012:PSA

Patel:2015:PXM

Pavlyukh:2013:ERI

REFERENCES

Pepe:2015:USF

Perona:2014:TEM

Pardini:2012:FPC

Peng:2011:SPF

Piotrowski:2015:SLH

Pfefferle:2014:VLS

Pavlov:2011:OFS

Plante:2014:CDD

Pueschel:2010:RND

REFERENCES
Parand:2010:AAS

Popov:2015:SME

Peraro:2014:NAI

Parcollet:2015:TTR

Peng:2010:AFC

Paul:2011:SGE

Pall:2013:FAC

Pruett:2011:PIA

Pittau:2010:TIN

Peralta:2015:GEA

Petran:2014:SC

Plascak:2013:PDF

Petrila:2014:MMC

Patchkovskii:2016:SAE

Pfeiffer:2015:TSP

Parra-Murillo:2015:ENM

Poghosyan:2015:AIP

Penttinen:2015:FST

Pacifici:2013:QRS

Pinto:2014:RCM

Park:2013:MFB

Patelli:2010:GSS

Pankin:2011:SAT

Pachucki:2014:EGQ

Petersen:2010:ETA

Petersen:2012:LET

Parand:2013:KMS

Pang:2014:GAO

Pradhan:2011:CWP
REFERENCES

Pletzer:2011:EMS

Porod:2012:SEI

Panopoulos:2014:NPF

Pandey:2011:AAS

Pandey:2012:ASS
Ram K. Pandey, Om P. Singh, Vipul K. Baranwal, and Manoj P. Tripathi. An analytic solution for the space-

Tian Qiu, Tarik Hadzibeganovic, Guang Chen, Li-Xin Zhong, and Xiao-Run Wu. Cooperation in the snowdrift game on directed small-world networks under self-

Qiu:2014:RCE

Qiang:2010:HOF

Qiang:2010:PFD

Quinlan:2014:DMF

Qamar:2010:KFV

[QM10] Shamsul Qamar and Sidrah Mudasser. A kinetic flux-vector splitting method for the shallow water magnetohydrodynam-

Qian:2014:SEM

Quan:2015:NOA

Qamar:2011:STC

Raffah:2013:ECW

Ramadan:2010:AFA

Omar Ramadan. Addendum to: “A FDTD analysis on magnetized plasma of Epstein distribution and reflection calculation” [Computer Physics Communications...

Ramadan:2012:UME

Ramadan:2014:USS

Rapaport:2011:EMD

Rancova:2011:NMS

Rawitscher:2015:SPA

Rayson:2010:RFA

Rodriguez:2015:OPI

Roudnev:2011:AGC

Reimer:2013:MBF

REFERENCES

REFERENCES

REFERENCES

J. Rosiek. SUSY FLAVOR v2.5: a computational tool for FCNC and CP-violating processes in the MSSM. Computer
REFERENCES

Roehm:2015:DDK

Rodrigues:2014:AAC

Ramos:2010:PIM

Ribeiro:2011:DTK
REFERENCES

[**Ramirez:2012:TIE**]

[**Rybczynski:2014:GGI**]

[**Riede:2010:CSD**]

[**Ryan:2010:NMM**]

[**Riikila:2015:DEM**]

Ramos:2014:TFM

Regnier:2016:FFE

Rubow:2011:FAC

Russell:2015:OTD

Sundararaman:2014:ECD

Sharma:2015:OHS

Shokri:2015:HOC

Saltelli:2010:VBS

Sjostrand:2015:IP

REFERENCES

Schram:2013:SPC

Soba:2012:RSD

Schick:2014:UDS

Scukins:2015:MDI

Squire:2014:VAV

REFERENCES

Schiller:2014:UOS

Schwenke:2014:CHO

Straatsma:2013:ESC

Stella:2014:EEC

Stegmeir:2016:FLM

REFERENCES

[SD10b] Ali Shokri and Mehdi Dehghan. A Not-a-Knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved...

Shao:2016:HOU

Smith:2011:DSI

Soin:2011:ESC

Senkov:2013:HPF

Saito:2011:PGL

REFERENCES

Satake:2010:BTD

Sitnik:2014:DFMa

Sitnik:2014:DFMb

Slawinska:2011:MUF

Sun:2010:TTL

REFERENCES

REFERENCES

[S Seth:2016:TCC

Feng shun Lu, Jun qiang Song, Wang qun Lin, Yu fei Pang, Kai jun Ren, and Pei chang Shi. Efficient utilization of launched threads on GPUs: the spherical har-

[Shumlak:2011:APC]

[Solanpaa:2016:BSP]

[Silva:2011:STM]

[Sauter:2013:TCC]

[Sen:2014:MCP]

Soubhadra Sen and N. Mohankumar. Migpore, a code package for the estimation of migration of radioactive

Stankovic:2015:TUM

Silva:2014:SSS

Stepsys:2014:HHP

Smirnov:2014:FCP

REFERENCES

Souvatzis:2014:UVE

Shelley:2011:AQC

Singh:2010:SAH

Singh:2011:AZT

Soulaine:2015:PLA

Su:2010:FPC

Shen:2016:IVC

Sekhar:2012:EHO

Sony:2010:GPF

Stavroyiannis:2010:NET

REFERENCES

REFERENCES

Shokri:2013:NCI

Smirnov:2013:FLA

Schreiner:2014:WPI

Sataric:2016:HOM

Streib:2015:SSI
REFERENCES

Staub:2010:SMF

Staub:2011:ACS

Staub:2013:SDG

Staub:2014:STO

Sakurai:2010:ABK

Strater:2015:PDA

Sakamoto:2011:SME

Studerus:2010:RFI

Shabaev:2015:QFP

Stockinger:2012:FMF

Schrock:2013:CLM

Stanislavsky:2012:NSC

Scharoch:2013:EMD

Shi:2013:NSS

Schimeczek:2014:AFE

Schimeczek:2014:MES

REFERENCES

REFERENCES

Taleei:2014:TSP

Torres:2011:AOF

Tuttafesta:2014:GMC

Tchuen:2014:HNM

Tung:2011:ISM

J. C. Tung and G. Y. Guo. An ab initio study of the magnetic and electronic properties of Fe, Co, and Ni nanowires on Cu(001) surface. *Computer Physics

REFERENCES

Tang:2011:MTM

Tomiya:2011:QFD

Toll:2014:DMM

Turemen:2015:GAR

Tentyukov:2010:MVF

Bin Tu, Yan Xie, Linbo Zhang, and Benzhuo Lu. Stabilized finite element methods to simulate the conductances of ion channels. *Computer Physics Communications*, 188(??):131–139, March 2015. CODEN CPHCBZ.

[UIY11] Naohito Urakami, Junko Imada, and Takashi Yamamoto. Simulation of chain length recognition observed in formation of inclusion complex. *Computer Physics Communications*

[Utsuno:2013:ECH] Yutaka Utsuno, Noritaka Shimizu, Takaharu Otsuka, and Takashi Abe. Efficient computation of Hamiltonian ma-

Utyuzhnikov:2014:TDU

Umansky:2012:NAM

Vanni:2015:AMF

Vogel:2011:APN

Velasco:2012:IIS

REFERENCES

Voitcu:2012:CSF
REFERENCES

Villalobos:2011:SDW

Vanaverbeke:2014:GPM

Vlasenko:2016:EGA

Varet:2012:EDN

Villalobos:2011:SMF

[VPM16] Sandra Vergara-Perez and Marcelo Marucho. MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.
REFERENCES

REFERENCES

vonWinckel:2010:QFK

Windisch:2013:EAS

Wainwright:2012:CCC

Walters:2011:EWP

Wang:2010:ECT

REFERENCES

REFERENCES

Wittek:2015:ECK

Wang:2014:YPC

Wu:2011:SMM

Wendt:2011:TLS

Winczewski:2016:HET

Szymon Winczewski, Jacek Dziedzc, and Jaroslaw Rybicki. A highly-efficient technique for evaluating bond-orientational order parameters. *Computer Physics Communications*.

REFERENCES

Wiebusch:2013:NCV

Wiebusch:2015:HMP

Wilson:2015:EIF

Wallerberger:2011:FCC

Witzens:2014:ICD

[Wang:2011:MMP]

[Wu:2011:NPT]

[Wang:2013:UVM]

[Wei:2012:ESM]
REFERENCES

REFERENCES

REFERENCES

Wong:2011:EPR

Wong:2014:GMS

Wagner:2010:ECH

Wilms:2011:MCS

Wang:2011:ENM

Qingang Xiong, Bo Li, and Ji Xu. GPU-accelerated adaptive particle splitting and merging in SPH. *Computer Physics

Yang:2011:EIB

Yu:2013:DST

Yokota:2011:BEU

Yokota:2013:PTS

Yakar:2015:LNA

Yuasa:2012:NCT

Youssef:2014:CNK

Youssef:2014:NFP

Yuan:2012:DAV

Yang:2015:OPS

REFERENCES

REFERENCES

Yi:2012:FCM

Young:2011:CQA

Yin:2012:MPW

Yang:2010:PFA

Yan:2013:GPU

REFERENCES

REFERENCES

Yang:2013:BEG

Yu:2011:TDD

Yang:2009:ERT

Yu:2015:ENC

Yu:2015:MNC

Yang:2014:SNT

Yu:2010:CSC

You:2011:TFS

Zaghi:2014:OSF

S. Zaghi. OFF, Open source Finite volume Fluid dynamics code: a free, high-order solver based on parallel, modular, object-oriented Fortran API. *Computer Physics*
Zacares:2010:GTM

Zakynthinaki:2011:SOD

Zhen:2012:DFH

Zanotti:2015:HOS

REFERENCES

REFERENCES

REFERENCES

Zheng:2012:MPC

Zierenberg:2013:SPP

Zheng:2013:MVN

Zwart:2013:MP8

Zhou:2015:EHO

Zhang:2013:VME

Zhang:2015:PAS

Zheng:2016:EOF

Zhang:2012:SSS

REFERENCES

Zheleznyakova:2013:MDB

Zhu:2011:MSW

Zhong:2013:MCD

Zhong:2014:CSC

Zlokazov:2013:VPA

Zhao:2015:NMN

Zhao:2010:VIM

Zhou:2015:UIP

Zhang:2015:DFD
