A Complete Bibliography of *Electronic Communications in Probability*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

24 September 2015
Version 1.03

Title word cross-reference

(1 + 1) [CB10]. (d, α, β) [Zho10]. (∇ + Δ) [CB10]. 0 [Sch12]. 1
[HL15b, Jac14, Li14, Sch12, SK15, Sim00]. 1/2 [KV15]. 2
[BDT11, Har12, Li14, Swa01, VZ11]. 2D [DXZ11]. 2M – X
[Bau02, HMO01, MY99]. 3 [AB14, SK15]. [0, t] [MLV15]. α [DXZ11, Pat07].
α ∈ (0, 1/2) [Sch12]. β [Ven13]. d [Hág02, Van07]. d = 2 [KO06]. d > 1 [Sal15].
d_{12} [Wan14]. d ≥ 2 [BR07]. f [DGG+13]. dμ = κ_{m} dμ_{m} [OD12]. G
[NY09, BCH+00, FGM11]. H [Woj12, WP14]. k
[AV12, BKR06, Gao08, GR03]. k(n) [dBJP13]. k^α [Sch12]. L^1
[CV07, MR01]. L^1((0, 1]) [FP11]. L^2 [HN09]. L^∞ [MHC13]. L^p [CGR10]. L_1
[EM14]. A [Fou13, Fou14, Lag07, Zho14]. Lu = u^α [Kuz00]. m(n) [dBJP13].
[Far98]. Z^d [BS96]. C^∞ [DCF06]. N × N × 2 [BF11]. p [Eva06, GL14, Man05].
p_{c} < p_{u} [NP12a]. φ [Kie97]. q [Bar14]. r [SC09]. S [RS07]. S_{2}(δ) [Ost14].
SU(3) [Ras10]. T [IR10, GG04, Gri02, MLV15]. T^2 [DS06]. U [Arc98, RW02].
\(\Box_\lambda [\text{Loe13}]. \ \Xi [\text{Fre12}]. \ Z [\text{DJ06, RS11a, Sin14}]. \ Z^d [\text{Pet08, Zer06}]. \ Z^2_+ [\text{LK08}]. \ \zeta(2) [\text{Wäs09}]. \ \zeta(2n) [\text{BFY07}] \).

- [Sch12]. -adic [\text{Eva06}]. -balayages [SC09]. -coalescents [Fre12, Lag07].
-Statistic [GG04, Gri02]. -Statistics [DS06, Arc98, RW02]. -step [GRS03].

10 [MZ05a].

2D [Kis14, vdBV07, vdB12, vdB13, GPL08]. 2d-random [GPL08].

a.k.a. [Jon13]. a.s [KSY06]. Above [Jan97]. Absolute [Arc98, SSS15, SV11b]. Absolutely [Mac02, Mik02]. absorption [HH07].
- Account [Ros02]. accuracy [MR13]. achieved [MLV15].
- Acknowledgment [MZ05a]. Activated [GGA10]. adaptive [AA07].
- additive [EM14, NX13]. -adic [Eva06]. adjacency [BS07a]. ageing [BP10].
- Aggregation [Hus08, DCLYY13]. Airy [BL13, CS14, TW03]. Aldous [BP10, War99]. algebraic [AF06]. Algebraically [BFT13]. Algorithm [Mac02].
- algorithms [AA07, RU13]. allocation [Kri07]. Almost [App02, Fre12, Lin09, Res01, Zho10, HR14]. along [Hil12, KT11, NS13].
- Application [DS10, Raf15b, BP01, CK12, JK13, Sai07].
- Applications [GG11, Jan97, L99, MU10, Pri09, TM15, dLP09]. Approach [DZ06, Lon04, BC15, DW09, HvdHS08, Lac10, LS13b].
- approaching [DC13]. Approximating [YLW15]. Approximation [BZ06, DL08, KS07, BRT10, BC15, BN08, CK12, Dal13, FT07, FM12b, KV13, LY13, MR13, Pri15, Siol14, VM13, WYY13].
- Approximations [Pec07, FM12a, Sab13]. Arbitrage [SV11a]. Arbitrage-free [SV11a].
- Arbitrary [JK04, KK15]. arc [ZY12a]. arc-sine [ZY12a]. arise [MAPS14].
- Arithmetic [BYZ07, BYZ12]. Arrays [BL10, CK12, MAPS14, Van07]. asset [Rok07]. assignment [Wäs09].
- Associated [BL10, Gao03, Mar10, Tan06, FF12, HRKU11, Haj15, HCS08, Lab13, MR15a].
- association [Dal13]. assumption [Ose11]. asymmetric [GRS03, MPP15].
Asymptotic [BB07, BDN10, CY13, DHI11, DC15, Kar08, Rio11, SB07, Spr07, Tuc11, BS07a]. asymptotically [GN06, Zha12]. Asymptotics [HM14, Jun11b, RW02, Rev03, Aid10, DW12, Fre12, Fuk09, Jac14, Jeg09, Mec09, RRZ11, Wat12, Yin15, de 06]. attachment [CJ13, MP14a, Tam07]. Attracted [PV05], average [BL13], averages [LPP15], averaging [Ruf15b, Wai13]. Avoid [ABV03]. Avoidance [AHM+13]. Axis [BM05]. Azéma [Çet12]. Azuma [Rio13a].

Body [LW05]. Bolthausen [MP14b]. Boolean [VM13]. bootstrap [GP14, dBP13]. Bouchaud [Mui15]. Bound [Han98, JK04, RŽ98, CG15, Fan15, Han99, KO06, KM09, PS08, R10]. boundaries [ES08]. Boundary [CKS99, Has05, BA14, BFP+09, IR10]. Bounded [Dem96, ESvRS09, RR14, Ose08], boundedness [Lat08]. Bounding [Roc05]. Bounds [BCG12b, CG05, DL08, GM09, Mar98, PR11, SV04, Wer96, BCHK08, BN08, CM13, Doh13, FM12a, FM12b, GP14, KM09, Kis14, L15, RS06, Y15]. box [Cer14, Mor08]. Branching [FZ10, HN11, Ks09, Mor05, Wan02, Aid10, BK11, Cra13, CP11, FF12, GM13, HH07, HR14, Hut11, Jl08, Mai13, Miil08, PW11, SK15]. Brascamp [H14]. Bridge [Gao03], Bridges [Ali01, CLMR15, BCP03]. Brownian [MW12, AG15, A1d98, Ali01, Aur11, Bar05, BBBBB00, BBK01, BO06, BA14, BPR99, BDE13, BGT07, BFP+09, Bor10, BO03, BM08, BC98, CM12a, CC98, CK08, CSS99, De07, DM09, Far98, Gao03, Gao08, GL14, GT11, HH07, Hs05, HT05, Hoo99, Hn09, Hn10, HL13, HS15, Ist05, Jan13, JV09, KT03, KT13, Ken09, KLS05, Law96, LM06, Mai13, Mar11, MY09, ML15, MW09, NP13, NX15, NS13, Oka14, Owo05, PW11, QR11, SV04, SW02, Spi13, Tan06, Tuf09, Unt10, VA06, VY12b, VY12a, WYY13, ZN03]. BSDEs [Bah02, BCH+00, BDP01, CEK11]. BV [Tre13a]. BV-regularity [Tre13a].

C [KS10]. Calculus [GKH03, TM15]. cancellative [Swa13]. Cannibal
caring [BK11]. Carlo [BA01]. cascades [DW15]. case
[BI15, Def12, RS07, SW10]. catalytic [SS06]. Cauchy
[Ber00, BFY07, GN06, MZ14a]. Cayley [NP12a]. cells [BDM07]. cellular
[BP10]. censoring [DM14]. Center [JC04]. Central [HN10, NX13, GV14,
GPPdS14, GN09, Rio11, BLL08, BR07, Cha10, DV11, DBGP03, Kar07].
Chain [BA01, Gui99, HR07, Yad09, Lac15, LW09]. Chains [BLL08, Ros02, Tel00,
ADOS11, CP14, DG15, Die15, KF09, Mü08, RR97, SB07]. chambers [KS10].
Chance [DeB07]. Chandra [KT03]. change [BY13, GG14]. changed
[HRKU11]. Changes [MY99]. chaos [NP12b, NP12c]. Chaoticity [Rey15].
Characterisation [Die15, JR11]. Characteristic [Kös08, BCG12b, Har04].
Characterization [FJ00, LG09, Arg07, BMV07, DN07, Ejs13, Neh14].
Cheeger [Mon07]. Chervonenkis [Pan02]. chi [Jou12]. choice [MP14a].
Choquet [Men14, Men13]. chordal [AK08, Doh13]. Chung [Hil06]. CIR
[MN08]. Class [DCF06, Mor05, NY10, Wan02, BBCG08, Kli12a, Kub11,
KZ13, LST15, OR12, San13, Swa13, Woi12, WP14]. classes
[CLMR15, GP11, LMK03, MN09]. Classification [Wan02]. Close
[BM05, Mar05]. Closure [Mar10]. CLT [Fan15]. CLTs [HR07]. clumpy
[JM15]. cluster [GJ09b, Kli14, Li14, Pet08, PR12b, Sap11, vB15, vdB12].
clustering [vdBHH10]. Clusters [KS03, PV05, vdBKN12, vdB13].
coagulation [Ber10]. coalescence [Nic06]. Coalescent
[Möh11, Sch99, DPS15, MP14b]. coalescents [Fre12, Lag07]. Coalescing
[HT05, TYZ12]. coefficient [Bah02]. coefficients [AF06, Böt11, Owo15].
Collide [KP04]. Colliding [KO01, OY01, BFP +09]. Collisions [HP15].
 colored [Fan15, Gri11]. colorings [HL15b]. coloured [BP09].
combinatorics [WP14]. Combine [BA01]. combined [MP14a]. Come
[Sch99]. Comm [MZ05a]. Comment [AB14, Töd13]. common [LW15].
Commutative [Kar07, FdM07]. compact [BMV07, MP13].
compactification [Ras10]. Comparison [BCH +00]. competition [LK08].
complementary [MR15b]. complete [Wäs08]. completely [McV08].
Complex [KT13]. Compositions [MU10]. Compound
[CK12, Dal13, KM06, Möh11]. Computation [GKH03]. Conavity [Hil12].
Concentration
[BT12, Del10, DZ96, FV14, FM12a, FM12b, GZ00, GL09, KM06, Mar05, NX15,
Pan01, PR12b, TM15, Wan14, BK13, CM12b, DG15, GG11, Rio13b, RV13].
Concerning [War99]. Condition
[Bir04, CLS05, Sch09, CPS12, GV14, Hoe09, KV13, Liu15, San13, Yas15].
Conditional [GLY14]. Conditioned
[Ald98, PR12a, War99, DJ12, FF12, JL08, KS10, Mü08]. conditioning
[ALW14]. Conditions [BL10, BDT11, HR07, Lou04, MR15a]. conductance
[Buc13]. conductances [Ave12, KSW12]. cone [VY12b]. cones [Dur14].
confining [Har12]. Conjecture [KPS96, Duq09]. Conjectures [PW96].
Connected [Kri07, AB14, Mar11]. connection [Har14, MW09, MW12].
connections [DJ06]. Connectivity [BDL15]. Consistent [Cra13, FZ10].
Constant [Kes96, AF06, Pim06, PR12b]. constants [LR15, MS11, Rio11].
Constrained [CG05, BC14, CM13, Yin15]. Constrains [Lon04].
constraints [Fra13, Rok14]. Construction [CEG11, Böt11, HL15a, Nut12].
Constructions [BPR99]. Containing [DCLYY13]. context [Ruf15a].
continuity [MR15a, MP13, SSS15, SV11b]. continuous [Vid14]. Continuous
[KS05b, Mac02, Mik02, PR12b, RR14, Vov08, vZ02, FF12, FG13, JR11, KK15, KO06, Owo15]. continuous-state [FF12]. Continuous-Time [RR14, Vov08].
Continuum [Stu13, AG15, HL15a, MWW11]. contour [HL13]. contractive
[BI15]. Control [Mik02, Wee06, GS12, Rok14, Sir14]. Controlled
[Ale13, GGPZ14]. Controller [Wee06]. Converge [MZ05a, MZ05b].
Convergence [AJ14, BL10, BC98, GG04, KM08, MU12, NP12b, Pec04, Ros02, ALW14, CGR10, CL14, GL08, Kri14, MV14, NX15, NS13, NP12c]. convergent [HK11]. Converse [BCH+00]. Convex
[APRB11, ABV03, Ber00, Dur14, FV14, LMK03, Rei13, Tko11]. Convexity
[Kes96, Lal03, Ken09]. convolution [D'O10, NY09]. Convolutions
[AS08, Kar08, Hi12, VZ11]. cookie [RS11a]. Coordinate [GS09].
Coordinates [Spr07]. core [Hág02]. Corners [Gne08]. Correction [Bas11].
Correlated [Tuc11, dHP14]. Correlation
[Har98, Köö08, LP99, LI99, MR11, Han99, Wei03]. Cosiness [ST99]. cost
[AGS14, Goz06]. Costs [SV11a]. Coulomb [Har12]. Countable
[RW09, Owo15]. counter [GV14]. counterexample [GJ12, KS07].
Counting [DV11, CLMR15, Fan15, MP14b]. Coupling
[AHM+13, BA14, FGM10, KS07, Pos09]. couplings [GG11, Ken09].
Covariance [SP00, Sep03, HCS08, McV08, Yos14]. Covariation
[DMPARA13]. Cover [JS00]. covers [HS12, SHH14]. Crânmer [BT11].
Cranston [KS07]. Credit [Lon04]. criteria [Goz06, Sot13, Zhou14].
criterion [Non11]. Critical [Ham05, Kah03, Aid06, Due06, GM13, Kir14, Pim06, Sub12, Yao14, vdcBC12, vdcBC13, vdcHKM09]. criticality [DC13].
crossing [AV12, BBO1]. Crossings [CKS09, HS05, Gan14]. Crumbs
cuts [IM07]. Cycles [Mar99, Bjö15, MNZ12].

decay [dBM15]. decaying [DZ13]. decomposition [KK15, MP14b, MR15b].
Decompositions [Ali01]. decreasing [GRS03]. defined [Fra13]. deflated
Degree [Tam07]. degrees [Bac11, DJ06, Deic11]. Delay [AK04, CR05].
delays [CY13]. Densities [BBB97, BC14, DM09, Jev09, Sim11]. Density
[GJ09b, Fun07, GL08, HK13, HK11, LS13b]. Deny [Men14, Men13]. depend
[HKZ12a]. dependencies [Wei03]. Dependent
[Lin09, Wan02, Gla08, GL09, HCS08, HL15b, O’R12, Oli10b]. Deposition
Derivative [Rin98, Tan06, Tre13a]. derived [Müh11, RW09].
Derrida [SK15]. destructive [AST14]. detection [FY15]. Determinantal [Pet10]. determinants [Har04]. deterministic [Ste08]. Deviation [GJO9a, Oli10b, DJ12, Dzir13, FGL12, Gan14, Kis14, Rei13, Wy08, dHP14].
Deviations [Big04, Dem96, DS06, FX02, KS03, BP09, Con08, DPS15, ES09, GRR14, GJO9a, Har12, KSW12, LW09, MPY14, Tsi13, Yin15, Zhu14].
Diaconis [Hii06]. diagonal [FG13]. Dichotomy [Fun07]. dies [GM13].
diffeomorphisms [Att10]. Difference [CP05, CV07]. different [BDE13, NS13]. differentiability [AP14, Pan08]. differentiable [Luo14].
Differential [AK04, Bar05, CR05, FW00, TW03, AF06, Beg14, CD13, CY13, DO10, DC15, FT07, Fra13, Hoe09, Ose08, Ose10, Ose11, Owo15, Ruf15a, Tap13, Tap15, Unt10, YE13]. differential-algebraic [AF06]. Diffusion [Hus08, Jan96, Rin98, Wan09, CSC13, Cla14, DCLYY13, Eth14, GG14, HLWZ15, LST15, PW11, RBS15, Sai07]. Diffusion-Limited [Hus08].
Diffusions [Sam10, BC14, CK14, DN07, Hut11, KSY06, Kli12a, MU12, Rey15, Ruf15b, RW09]. Diffusive [NY10, dBM15]. dilations [Gri11, Tko11].
Dimension [BR07, Sim00, Bor13, Far98, Hol15, HKZ12a, Jou12, Law96, Le08, Sai15, Yan06, vB15]. Dimensional [Spr07, Swa01, Abe15, AS11, Att10, BFRH15, BDZ11, BS07b, CB10, CEG11, Dvo06, EKO8, GPHS13, Häg02, HM09, Har04, Jac14, Kli12b, MU12, Roi05, RW09, San13, TYZ12, TYZ15, Van07, Wan09, Wat12, Yuk08]. Dimensions [Law98, MS11, Sap11]. Directed [Bir04, HS09, HS12, SHH14, Wat12]. direction [Cou11]. Dirichlet [Arg07, JK08, RW09, Uem07].
Disaggregation [DCF06]. disconnectedness [Zho14]. Disconnection [PW96, Wer96]. Discontinuity [Jan97]. discontinuous [AP14, Att10, GS12, Lej11, LST15]. Discrete [SBS15, Van08, BDZ11, cra13, Do14, KZ13, Mak08, Rok07, SB07, Win08].
distance [EM14, Liu15, Rei13, Roi11]. distant [Uch15]. Distributed [EZ99, vdBH10]. Distribution [CK08, DFN00, Jan97, JK04, JK08, MZ05a, MZ05b, Ost14, Spr07, Bac11, Bar14, BD13, Bas15, Bor10, BW08, DR12, Kli12a, MZ14a, Mic13, MP15, Rey15, SV11b, Sub12, Tam07].

Expectations [HLWZ15].

Explicit [BL10, D’O10, DL08, Mic13].

Exploding [KT11], explosive [Lab13], exponent [KV15, Ven13].

Exponential [Bau02, BGHK08, BY01, DS10, GM12, IM10, Jun11b, KS14, PR11, RS06, TM06, dIPp09, AI12, CSC13, DM09, FGL12, GRR14, KM09, KMiS06, Pet08, Sch09, SC09, Yin15].

Explosively [KT11].

Explosive [Lab13], exponent [KV15, Ven13].

Exponent [Bau02, BGHK08, BY01, DS10, GM12, IM10, Jun11b, KS14, PR11, RS06, TM06, dIPp09, AI12, CSC13, DM09, FGL12, GRR14, KM09, KMiS06, Pet08, Sch09, SC09, Yin15].

Expontially [Bau02, BGHK08, BY01, DS10, GM12, IM10, Jun11b, KS14, PR11, RS06, TM06, dIPp09, AI12, CSC13, DM09, FGL12, GRR14, KM09, KMiS06, Pet08, Sch09, SC09, Yin15].

Extension [MR15b, Hoc09, HvdHS08, Pos09, Uem07].

Extensions [BG107, Fit06, Pan02, Rio13a].

Extinct [FF12], extinction [BK11, JL08].

Extremal [Dzi13].

Extreme [KLS05].

Extreme-Value [KLS05].

Factorizations [BA01, Wai13].

Factors [Bal05, Tim04].

Family [Bac11, Neu11].

Fast [BA01, Wai13].

Fastest [Roc05].

Feller [Bot11, PW11].

Ferguson [JK08].

Few [BS96].

Field [BDE13, BDZ11, CD13, LW15, NP12a].

Fields [CGXM96, Ist06, BMV07, CGXM97, Kli12b, KZ13, MHC13].

Fill [Mac02].

Filtered [Cet12].

Filtering [Mak08, CL06].

Filters [Van08].

filtrations [KK15, Lau13].

Finding [MU10].

Fine [Fit00].

Finite [Fit00].

Finite [Sam10].

Finite [DU10].

Finiteness [AS08, HMO01, Kar08, AV12, ALW14, BDZ11, Dem11, DMPARA13, Ejs12, Ejs13, HK14, KZ13, MR13, RS07, SV11a, Wat12].

Freedman [Tro11].

Fringe [DJ14].

Frog [DP14].

Front [Bjo09].

Frontier [Law96].

Frozen [vdBKN12].

Function [DV11, Kös08, Ost14, Gri11, Kin08, LR15, LW09, Liu15, NY09].

Functional [BI15, EsvRS09, Pan05, Tan06, DC15, GPL08, GPPdS14, JK08, Kri14, NX13].
functions [CSC13, GG14, Har04, KSY06, MU12, SB07]. Functions [Gao08, SV04, Tha98, BCG12b, Dur14, Dzi13, Har04, HL13, Jan09, Pat07, PSY13, Ras10, SBS15]. fundamental [OD12, SSS15]. Further [Bau02].

Oscillation [AK04]. Oscillator [BW04]. overlapping [AHM06].

same [Cou11]. Sample [SP00, Sep03, Tan06, HCS08, Yas14, de 06]. Sampled [DBGP03]. samplers [RBS15]. Sampling
[BA01, Gne10, Han05, JV09, Jon13, Ste08, Wan14]. Sanov
[MZ14b]. Sausage [ABP00]. Scale [ALW14, Ber10, Roi05].
Scale-free [ALW14]. Scaling
[BFV10, DK12, NY10, Fun07, HL13, Hol09, LG09, Mie08, VY12a].
scenery [GPPdS14], scenery [CGPPS13, GPHS13]. scheme
[FT07, GL08, LY13]. Schreier [OW13]. Schrödinger [Jac14]. SDE
[AP14, Att10, BO03, FF12, Haj15, Swa01]. SDEs
[BRT10, ESvRS09, LST15]. Second [Kös08, NP12b, NP12c].
Second-Order [Kös08]. secretaries [FW10]. seen [GN14, Kli12b].
Selection [Han05, Fou13, Fou14, JK13, Rok07]. Self [BY01, Fit06,
MZ05a, MZ05b, AST14, BGHK08, Due06, Jos07, Neu11, diPP09],
self-destructive [AST14]. Self-normalized
[MZ05a, MZ05b, BGHK08, diPP09], self-organized [Due06].
Self-Similar [BY01, Fit06, Jos07, Neu11]. selfadjoint [WP14].
selfadjoint [Woj12]. semi [CGR10], semi-groups [CGR10]. semicircle
[AEK14, AK08]. semigroup [GN06]. Semigroups [Rin98].
Seminartingale [Kle02], semimartingales [GL14, KK15, KS09].
s’enfuir [AB14]. senile [Hol09]. sensitive [AGS14]. Sensitivity
[DP13, Aly13]. separability [BPR13]. Sequences
[BZ06, EP98, EZ99, Lin09, CV07, Kie97, McV08, RS06, dHP14].
series [ESY08, HK13, HK11, Oli10b, Zhu14]. Set
[FJ00, BH12, Cla14, Kin08, Rát15]. set-indexed [BH12]. Sets
[GP01, JK04, Glo14, Lat08, Tko11]. setting [BRT10]. sewing
[FdM07]. shadow [LX15]. Shape [Lal03]. Shaped [DeB07]. Sharp
[GL08, Mon07, Ose08, Ose09, Ose10, SV04, Wat12, Yas15].
Sharpness [OW13]. sheet [WYY13]. Shields [BP10]. Shiryaev
[KS05b]. shock [GRS03]. short
[Bar14, CEG11, Rát15, Sim11, Yan06]. Shuffle [Wil03]. shuffles
[Bjo09, JM15]. shy [Ken09]. shy-ness [Ken09]. sided
[Aur11, CGPPS13, KSS11, Pat07]. signatures [NX15]. signed
[NS13]. Similar [BY01, Fit06, Jos07, Neu11]. Simple [CHL97,
Ros02, BBCG08, Fre12, FG13, HL15a, KO06, MW09, MW12].
simply [Mar11]. Simulation [DFN00, Ken04, Lej11, DZ13].
Simulations [PW96]. sine [VY12a]. single [Gri11]. singular
[LST15, Luo14, Yas15]. site [Ale13, DC13, Mui15]. sites
[CM12a, Uch15]. size [GG11, Sap10, vdBJV07, vdB12]. sizes
[vdB13]. skew [EHW15]. skewed-products [EHW15]. Skewed
[BBKM00]. Skip [HMO01]. Skip-Free [HMO01]. Skorohod
[BPR13, BPR15, Pri09, Pri15]. Skorokhod [Har14, YY13]. SLE
[AK08, Dub03, LR15]. sliding [AF14]. Slow [BA01, Wai13].
slow-fast [Wai13]. slowly [Mui15]. Small
[Gao08, Jeg09, Li99, Mar09, RŽ98, BBMT09, BC14, DHI11, GL08].
smallest [Yas14]. Smooth [Sam10, VZ11]. smoothing [CdH13]. Smoothness [ZN03, GG14]. snake [BC12]. Sobolev [CHL97, HLN13, MZ14a, WY08]. Soccer [Bar97, Bar98]. Soft [Geo10]. Solution [Kuz00, AG15, QR11, SSS15]. Solutions [AK04, FW00, Swa01, Bah02, CEK11, D’O10, Kur14, LST15, LP12, OD12, Tap13, Unt10]. solving [YY13]. Some [BY01, BGT07, Car05, CV07, CP14, DZ96, DPS15, HM09, KMiS06, LL07, MY99, Pan02, SS06, Tha98, YY12b, YE13, BLMZ12, DJ14, Ejs12, HLN13, HA07, MU10, Mar09, Men11, Möh11, Ose11].

Yan07, vdHKM09, BLL08, BR07, Cha10, DV11, Kar07. Theorems [DS10, AED13, BI15, Com08, HCS08, Tud09, Yuk08, DBGP03]. Theory [Ost13, Yan07]. thin [Lat08]. Thinning [Bal05, ALW14].

third [HN10]. Threshold [Ros08, CK12]. Tightness [Gri02, SS08, BDZ11]. Time [Ald98, Han98, Hoo99, Jan97, JK04, JS00, Kes96, KS05b, RR14, Wil03, BL13, Ber10, BGT10, BB01, Cer14, CM13, Cla14, Dol14, EM14, GL08, HRKU11, Han99, HN09, HN10, Jeg09, Kli12a, Lau13, LX15, Mar09, Mar11, MR15b, Oka14, Oli10b, PW11, Pin06, Rok07, SB07, VY12b, Van08, Vov08, Zho10].
time-changed [HRKU11]. time-homogeneous [EM14]. Times [DS10, IM10, KS05a, Pes08, Abe15, ADOS11, Bas10, Bas11, BBMT09, DHI11, DP13, HM14, HPS14, KSW12, Kov10, KT11, Tre13b, Vid14]. Toeplitz [BB10, BS07b, Kar09, Mec07, SV11b].

two-parameter [RW09]. two-point [LR15]. Two-sided [Pat07].

Two-site [Mui15]. two-time-scale [Ber10]. Type [Bal09, BDT11, BDM01, BHS10, Com08, Def12, KS10, LP12, LL07, Mon07, Ose14, Oto09, Pri15, Sok13, Uem07, Woj12, dBJP13]. Types [Gne10, Fre12]. typically [PSY13].

Wald [HPS14]. Walk [BFV10, BW03, BR07, DBGP03, JK04, KS97, MR11, PV05, RA05, Abe15, Aid10, Ale13, BK11, CJ13, DHS14, DL09a, ER09, GM13, GPL08, GPHS13, Hol09, KSW12, LS13a, Law14, Le 08, MV14, Uch15, Win08]. Walks [ABV03, BD02, FZ10, GP01, GGA10, HMO01, HN11, IM10, KP04, Law98, Mar99, OY01, Roi05, Zer02, APRB11, BKR06, BFT13, DW12, DK12, DJ12, Dur14, GLY14, GPPdS14, GGPZ14, Hol15, HS12, HP15, IR10, KS10, RS11a, Ras10, SHH14, Sch12, SK15, Sin14, Ste13, Vid14, WYY13, Zer06, Zer07]. wall [Def11]. Walsh [VY12a]. Watanabe [Hoe09, Tap13]. Watson [Duq09, GP14, HL13, HMSH15, KF09, Tas10]. way [Bor10, CK08]. Weak [BRT10, Bir04, BC98, Kur14, MV14, Pec04, SP00, WYY13, vZ02, IM07, Kri14, Ose14, Sin14]. weak-type [Ose14]. Weakly [LT11, Har12, Luo14, Oli10b]. wedge [DM09, QR11]. Weierstrass [Com08]. weight [Sch12]. Weighted [MZ05a, MZ05b, BB07, GRR14]. weights [Def12, Sch09]. Wetting [CG05]. Weyl [KS10]. where [KP04, vdBK12]. Which [KV11, And06]. White [Gri11]. Whose [Swa01, Luo14]. Widom
REFERENCES

[Häg02, width, Sch09, width-two, Sch09]. Wiener [NP12c, ABP00, Bar97, Bar98, CKS99, Fun07, Har04, JC04, MY12, NP12b, Oto09, Pri09, Tan06, Tre13a, YLW15]. Wiener/Wigner [NP12c, NP12b]. Wigner [DV11, HCS08, Köso8, Sos04]. winding [Oka14], window [AF14]. wise [BKR06]. Wishart [GL09]. without [BPR13, Lac15, Yas15]. Woodroofe [KV13, Tót13]. words [ES09, dHP14]. works [Haj15]. Wright [Fou13, Fou14, HT05, Pat07, RV13]. Wronskian [Kli12a]. Wulff [DC13].

Xi [Ost14].

Yamada [Hoe09, Tap13]. Yor [Bas15, KV11]. Yule [de 06].

Zero [RA05, Tre13b, Bor10, CK08, GJ09b, Kin08, MR08, MV14, MLV15, Oka14, Zer07]. zero-one [Zer07]. zero-range [GJ09b]. zero-set [Kin08]. zeros [Eva06]. Zhang [DDT07]. Zhao [KV13].

References

REFERENCES

Ajanki:2014:LSL

Alabert:2006:LSD

Alon:2014:NGS

Albenque:2015:BCR

Atar:2014:RSC

Angel:2005:JPB

Andersson:2006:VFN

Angel:2013:AC

Ano:2012:PUM

Aidekon:2010:TAT

Arizmendi:2014:CFM

Appleby:2004:ONO

Albers:2008:IPC

Aldous:1998:BEC

Alexander:2013:CRW

Alili:2001:CDC

Arratia:2014:SFP

Aly:2013:PSC

Andrew:2006:PFP

[And06] Peter Andrew. A proof from ‘first principles’ of Kesten’s result for the probabilities with which a subordinator hits points. Electronic Communications in Probability, 11:6:58–6:63, 2006. CO-
Aryasova:2014:DSF

Appleby:2002:ASS

Abramson:2011:CMR

Arcones:1998:LLN

Arguin:2007:DCP

Abreu:2008:FGG

REFERENCES

REFERENCES

[BDE13] Hermine Biermé, Yann Demichel, and Anne Estrade. Fractional Poisson field and fractional Brownian field: why are they resem-

Broutin:2015:CSB

Briand:2001:DTT

Bose:2007:MCE

Bianchi:2010:AIS

Barbu:2011:RTP

Bolthausen:2011:RTM

Erwin Bolthausen, Jean-Dominique Deuschel, and Ofer Zeitouni. Recursions and tightness for the maximum of the discrete, two dimensional Gaussian free field. Electronic Communications in
REFERENCES

Benjamini:2013:ARR

Beffara:2010:SLP

Bourgade:2007:EFP

Bertail:2008:EBM

Benaych-Georges:2014:LEE

Bojdecki:2007:SEF

REFERENCES

REFERENCES

REFERENCES

Best:2010:ASM

Bertoin:1999:CBP

Berti:2013:SRT

Berti:2015:GLS

Berard:2007:CLT

Bardina:2010:WAF

REFERENCES

Benjamini:1996:PBM

Bose:2007:APR

Bose:2007:SNR

Bourguin:2011:CTG

Boucheron:2012:CIO

Buckley:2013:AHK

Benjamini:2003:ERW

REFERENCES

[BZ06] Raluca Balan and Ingrid-Mona Zamfirescu. Strong approximation for mixing sequences with infinite variance. *Elec-
REFERENCES

Carmona:1996:SSO

Carmona:1997:SSO

Csaki:2004:IPR

Chakrabarty:2010:CLT

Capitaine:1997:MRS

Cannings:2013:RWA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Cr13]

[CS14]

[Ch13]

[CSS99]

[CV07]

[CY13]
REFERENCES

REFERENCES

Defosseux:2012:IPM

Deijfen:2009:SRG

Delyon:2010:CIS

Dembo:1996:MDM

Demni:2011:KRV

Devroye:2000:PSQ

Dedecker:2015:SCI

REFERENCES

Devillers:2013:MVR

Depperschmidt:2011:MMM

Debussche:2011:AFE

denHollander:2014:LDP

Dembo:2014:MIW

Dietert:2015:CGF

Dolgopyat:2009:NPA

Duquesne:2009:RRI

delaPena:2009:EIS

Dieker:2009:RBM

Ding:2014:MUM

Dominguez-Molina:2013:CRH

Darses:2007:DPC

DOvidio:2010:ESF

Dohmen:2013:LBP

Dolinsky:2014:HGO

Ding:2013:SMT

Dobler:2014:RFM

Depperschmidt:2015:SLD

Dzindzalieta:2013:ELF

Evans:2015:WDS

Ejsmont:2012:LLP

Ejsmont:2013:NCF

Eisenbaum:2008:PGG

Etore:2014:DAP

Evans:1998:EIS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gurel-Gurevich:2014:LCR

Gao:2009:DIM

Goncalves:2009:DFZ

Goldberg:2012:CRM

Gobet:2003:CGB

Gobet:2008:SEC

Gaans:2006:IMS

Gantert:2014:RES

Gnedin:2008:CRP

Gnedin:2010:SSM

Gozlan:2006:ICT

Giacomin:2001:RTS

REFERENCES

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Hammond:2005:CEP

Handa:1998:LBT

Handa:1999:LBT

Handa:2005:SFS

Hara:2004:FDD

Hardy:2012:NLD

Hariya:2014:CBL

REFERENCES

[HK11] Friedrich Hubalek and Alexey Kuznetsov. A convergent series representation for the density of the supremum of a stable pro-

REFERENCES

Holmes:2015:SMS

Hooghiemstra:1999:OTB

Hough:2009:TTR

Holroyd:2003:TMP

Hutchcroft:2015:CRW

Holroyd:2014:WNS

Haggstrom:2007:VCM

[HT05] Tim Hobson and Rodge Tribe. On the duality between coalescing Brownian particles and the heat equation driven by Fisher–

REFERENCES

REFERENCES

Jonasson:2015:RMD

Jonasson:2004:OSR

Jonasson:2013:BIP

Jost:2007:NET

Jourdain:2012:EPI

Jones:2011:CHT

REFERENCES

Kargin:2009:SRT

Khan:2005:LLR

Kendall:2004:GEP

Kendall:2009:BCC

Kesten:1996:NCT

Kulske:2009:SEB

Kiesel:1997:SLS

REFERENCES

Khoshnevisan:2005:EVA

Kontoyiannis:2006:MCC

Kabluchko:2008:ECR

Khorunzhyy:2009:UBE

Kondo:2006:SPE

Konig:2001:ELP

REFERENCES

REFERENCES

Krikun:2007:CAP

Krizmanic:2014:FWC

Kaj:1997:SAS

Kessler:2002:IER

Kovchegov:2003:LSL

Kozlova:2005:NOT

Kyprianou:2005:NSO

REFERENCES

Khoshnevisan:2006:NFP

Katori:2003:NBM

Kuhn:2011:OPN

Katori:2013:CBM

Kuba:2011:ACC

Kurtz:2014:WSS

Kuznetsov:2000:USG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Li:2012:SSJ

Lechner:2015:UEA

Lawler:2015:CBT

Lampert:2013:MSR

Ley:2013:SDA

Leobacher:2015:ESC

[LX15] Fang Li and Lihu Xu. Finite time blowup of the stochastic shadow Gierer–Meinhardt system. *Electronic Com-
Liu:2013:ASS

Machida:2002:FAA

Maillard:2013:NSP

Major:2006:MVH

Makhnin:2008:FPE

Manstavicius:2005:NMP

REFERENCES

REFERENCES

REFERENCES

Meckes:2013:SMP

Maas:2008:COF

Maejima:2009:NNC

Maples:2012:NCR

Mohle:2011:CPD

Montenegro:2007:SEV

Morandin:2005:RBP

REFERENCES

in Probability, 10:1:1–1:6, 2005. CODEN ????

[Mor08] Ben Morris. Spectral gap for the interchange process in a box.

[MP13] Domenico Marinucci and Giovanni Peccati. Mean-square continuity on homogeneous

[MP14a] Yury Malyshkin and Elliot Paquette. The power of choice combined with preferential

[MP14b] Martin Möhle and Helmut Pitters. A spectral decomposition for the block counting
process of the Bolthausen–Sznitman coalescent. Electronic Communications in Probability, 19:47:1–47:11,
2014. CODEN ????

[MPP15] Zbigniew Michna, Zbigniew Palmowski, and Martijn Pistorius. The distribution of the
supremum for spectrally asymmetric Lévy processes. Electronic Communications in Probability, 20
(??):24:1–24:10, ???? 2015. CODEN ????

REFERENCES

References

Miranda:2011:GCL

Maejima:2010:CMI

Mijatovic:2012:CIF

Muirhead:2015:TSL

Muller:2008:RBM

Marynych:2014:WCN

REFERENCES

Mueller:2009:CBS

Mueller:2012:ECB

Ma:2011:TII

Matsumoto:1999:SCP

Madan:2012:MWI

Masuda:2013:EEI

REFERENCES

REFERENCES

REFERENCES

[Nualart:2013:JCA]

[Nutz:2012:PCS]

[Nualart:2013:CLT]

[Ni:2015:CEC]

[Nikeghbali:2009:BFR]

[Nagahata:2010:NDS]

[Orsingher:2012:PRF]
REFERENCES

REFERENCES

Panchenko:2005:QAP

Panchenko:2007:NTP

Panchenko:2008:DPF

Panchenko:2010:DSR

Patie:2007:TSE

Peccati:2004:WCO

Peccati:2007:GAM

REFERENCES

 REFERENCES

[PSY13] Ron Peled, Wojciech Samotij, and Amir Yehudayoff. Grounded Lipschitz functions on trees are typically flat. *Electronic Com-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sabanis:2013:NTE

Saintier:2007:GST

Salez:2015:MPE

Samee:2010:PSF

Sandric:2013:TCC

Sapozhnikov:2010:UBE

REFERENCES

REFERENCES

REFERENCES

[SP00] Steven Sepanski and Zhidong Pan. A weak law of large numbers for the sample covariance matrix. *Electronic Communications in
REFERENCES

Spinu:2013:PLB

Spruill:2007:ADC

Steif:2006:SRP

Sturm:2008:TVM

Sanz-Sole:2015:ACS

Schramm:1999:TCH

Stenflo:2008:PSL

[Ste08] Örjan Stenflo. Perfect sampling from the limit of deterministic products of stochastic matrices. Electronic Communications in
Stenlund:2013:LLT

Subramanian:2012:DCP

Sayit:2011:AFM
REFERENCES

REFERENCES

Trevisan:2013:ZNL

Tropp:2011:FIM

Tsirelson:2013:URT

Tucci:2011:API

Tudor:2009:HRS

Tracy:2003:SDE

REFERENCES

[Van07] Thanh Le Van. On the strong law of large numbers for d-dimensional arrays of random variables. *Electronic Communication...
REFERENCES

VanHandel:2008:DTN

vanBatenburg:2015:DII

vandenBerg:2012:SLC

vandenBerg:2013:GBS

vandenBerg:2010:ERD

vandenBerg:2007:SPI

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author</th>
<th>Title</th>
<th>Source</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

 References

Yen:2013:IVM

Zerner:2002:NBL

Zerner:2006:RTE

Zerner:2007:ZOL

Zhao:2012:UAE

Zhou:2010:ASF

Zhou:2014:CDF
