A Complete Bibliography of Publications in the Electronic Journal of Linear Algebra (ELA)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 February 2015
Version 1.01

Title word cross-reference

(0, 1) [BH04, DS10, HP12a, MNP03]. (β)
[102x614]Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 February 2015
Version 1.01

Title word cross-reference

(0, 1) [BH04, DS10, HP12a, MNP03]. (β)
[102x614]Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 February 2015
Version 1.01

Title word cross-reference

(0, 1) [BH04, DS10, HP12a, MNP03]. (β)
[102x614]Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

14 February 2015
Version 1.01

Title word cross-reference

(0, 1) [BH04, DS10, HP12a, MNP03]. (β)

distribution [Kir03, Kir04a, Kir14, ZLXX09, ZLHL10].
distributions [Sch12]. Disturbance [CM00], divided [Chu06], division [Cha12, KDTP12]. divisors [CS09, SC08].
domain [BLS05, CL09a, LA02]. dominant [BP12a, BPS06, Mor03, ZLXX09, yZLX09, ZLHL10, ZLLL12, ZH07]. double [Chu06].
doubly [LZ12, MMX00, PES09, ZH07].
Drazin [BZ10, CGMSR11, CvdD09, CvdD12, CIW09, CILW11, DW10, GKW02, KKP08, NX06, SK00, Son13, WW01].
Drazin-inverse [SK00].
dual [KL15]. duality [GS13].
Dunford [Mec12].
dynamic [ZJW11].
Edge [LLZ13, BBC09, BF05, HS10, MN01].
Edge-grafting [LLZ13]. edges [DZ11, LZZ13, Sne03].
Editor [Sha10, Sha13]. Editor-in-Chief [Sha10, Sha13]. Efficient [HD10, BP12a, DD11a].
eigen [Uhl98]. eigenproblems [MMD05, PES09].
eigenspace [BT12]. eigenstructure [Nof12].
eigensystem [vdAtMM07].
Eigenvalue [CH13, GHK14, Kar06, KV04, AT06, AKS12, BNPS08, BF04, BGK+11, BLM+13, BNSY14, BF11, CLW12, EG10, Fer09, HP12c, Hog05, Jan13, JS02, LS08, LLYL11, LL08b, LhLY09, LWYJ13, gLgWhX13, MS14, MKR13, MP09b, Oep03, Pat01, Rea02, SH10, TH10, Thu07, WSH12, YGX13, YFW14, ZLXX09, ZLHL10, ZJW11, Zhu12, vdAtMM07].
Eigenvalues [Dod08, Pot10, Knu06, AAS+13, BdPdP10, BHL09, CL09b, Cha12, DH13, HJS02, HZS06, Kir04b, Kir06, Kir07, Kir09, KM01, Lai04, LPW14, LLS14, LZZ10, LR98b, MVS09, MC13, MX08, Nik06, Sin14, Tam10, dF10].
eigenvector [Cio10, HL07, vdAtMM07].
eigenvectors [CG07, Knu06].
electron [NO03]. electronic [HZ10b]. elementary [CS09, Ero04, SC08, Sur00]. elements [Che12, MD09, MD11b]. eliminated [Bay11]. elimination [Dah07]. ellipsoids [See13]. elliptic [LA02]. elliptical [RSS13].
Embedding [AAFG12, LWZ04]. enclosures [HD10]. energies [LS08a].
energy [DS07, GLX14, SHZ12, Tri13, XD13].
entries [FJS00, FHR04, LZ12, MSS08, ZZ14].
etropies [KN14]. entry [AJN14, BMN+13, Kir04a].
EP [BL14a, Che12, MD09, MD11b]. equal [BBC+14]. equality [Tia12]. equals [MS14].
equation [AS06, Btt11, DD11a, GL11, HD10, KL13, LM10, LZZ10, LX14, Mar08, PL12, RR02, Roh09a, WZ08, WZY08, WJ10, XHZ09, fXyHZ09, YLD10, fYwW12, ZL10, ZL11, ZCL10, DD11b].
equations [DKS14, HM12a, HKT14, HSSM05, JvdB12, KM05, LR02, LD11, Loi12, RMZ14, Rod06, SW11b, WZ09]. equilibrium [MMW12].
equitable [AC10].
equivalence [Sze07, Coo08, CPF11, HP07a, HS03].
equivalences [Rod07]. equivalent [HP07b, ZX08].
ergodic [Sch12]. Erratum [LhLY09]. Error [Pul12, CMS12]. errors [TG06].
Essential [Meh06a]. Essentially [Dru06]. establish [TS01]. Estimates [Gil07a, Gil05, Gil11, YH05, ZL10].
Estimation [JS02, JPS12, PS11].
Estrella [DZ11, SWK14, Sha12].
Euclidean [Fie08, Fie05, JM13, LMT10, Tao11].
evaluations [MPSS07].
Even [DMS11, Wan08].

Eventually [Hog09, NM02, OTvdD09].
Exact [FFJM14, LX14, HD10]. exactly [Jar13, Kal12, SH10].
example [LS08].
existence [LMS04].
expansion [FN02, FS00].
expanions [NO03]. Explicit [Bru09, HPP09, Roh11, vdDW96, BZ10, Ero04, LM10]. exponent [BF08, KvdD00].
exponential [TMR06]. exponentially [BG99].
Exponents [KSH11, BF10, JW12b].
extended [LX14]. Extension
faceted [BOvdD04]. factorization [Aur13, BH13, CRU09, GP03, Ova04].
factorizations [HP07b, TS01, K090, Zho12].
families [Kol00, MMT11]. family [AC05, AV04].
Fast [FMMN11, KP08].
feedback [CM00].
Feichtinger [Gav13].
few [FJS00]. fewer [BJL10].
Fibonacci [MSS08, TMR06].
Fiedler [BF12]. field [BDL+09, CDH+07, DGH+09, OK09, Son13].
fields [BvdHL05, BZZ09, CVV11, DK06, DMS11, Gro10, VV09, XTC10, ZB10].
finite-dimensional [Go08]. finitely [DT01, Elz03]. first [Rod06].
Fisher [Bö06]. five [NWZ98]. fixed [HK14, SI10].
fixed-point [HK14]. Flanders [CRU09].
flat [JHH+03]. flexible [BvdB12].
Focal [HM05]. foci [LA02]. Forbidden [dFPN13].
forcing [BCH+14, BCF+13, BG15, CCH+12, EEG+12, Pet12].
forest [YV12].
form [FKS14, GN02, JFT04, MST11, Shu11, Sz05]. Formal [KM11]. formed [Dru09].
forms [El11]. forms [AV04, El11, GG04, JIN05, KKK11, KL13, LS09, MM11, Mx00, MX99, TT05, Tia05, YFW14].
formula [CL04, K06, Pul12]. Forty [Roh09c]. four [NWZ98, Tia12, YV12]. four-vertex [YV12].
Fourier [Dah07], fraction [BGC06]. frame [KL15]. frames [R02].
free [Bri07, YY12, YSH12].
French [Ben02, El11]. Frobenius [ES08, ERS09, Per02]. Full [CRU09, JdGM05, KOS+09, LMS04, XZ10].
fully [FN98]. function [BS12, DFS13, MS04]. functional [Bay11].
functions [Dav04, DRA11, ES10, G105, Gil07a, Gil10, Gil11, GP03, Moz10, PTZ14, RS05, RS04, SS08b].
fundamental [TMR06]. Further [Mar08, SS08c].
gap [Sta13]. gaps [BF10]. GCD [Ova04].
General [Cha12, DK08, ES08, FJS00, Mol11, TT07, WWY10, ZLLX09, ZLLX12, vdAtMM07].
generalization [BTO07, MC12, Mat03, NS12, OTvdD09].
generalizations [LL11, MST09].
Generalized [BZ03, Bay11, BLdP00, LH10, MP09a, Bop07, CILW11, CI12, DW10, DS13, ES10, HJS02, KKK11, KPK0, KP11, LX11, Nc13, PTZ14, PS13, RHC06, RM09, RS04, SM03, Tia05, TL07, Tia12, TCID11, Tya12, WZS09, XLJ13, XQ11, XZ11, ZLLX12, ZJW11].
genetically [YLLXJ09]. generated [Ero04, SM04]. Generating [KOS+09].
generation [BdPNdGPS08, LR98a].
generic [KKK11, Nof12]. genus [YY13].
Geometric [CFP11, CN09, Pol10, VU12].
geometry [Fie05, Hen10, MS04]. Gersgorin [JPS12].
Gersgorin-style [JPS12].
given [DMLT03, DZ11, ERS09, HP12a, K09, LL08a, hLSxS12, LH09, SH08, X13, YW12, Z14, Zhu11, Zhu12].
Graded [Mar14, PM12]. grafting [LLZ13].
graph [BS12, BFH05, BCF+14, Bru02, BGH15, CMRR13, Cio10, DS07, DN12, DGH+09, DH13, DKO12, EG10, FK08, GS03, Ho05, JS02, LZ12, MKR13, MK10, NO03, Nik06, RV09, Th10, Yu10, Zhu12, dF03].
Graphs [BvdHL04, BvdHL05, BEH+14, LL11, Sta13, AAC+13, AKS12, BNPS08, BFH05, BFMN11, BCF+09, BJ1+10, BGK+11, BLM+13, BNSY14, BF11, Bou09, BOvdD05, But07, CEG12, Car12, COvdD08, CCH+12, CL07, CG07, CL04, DKO13, DZ11, EFP12,
Elz03, FM13, Fie05, FN02, FS00, Fri12, GL10, GLX14, HP12c, HS10, JM13, JN09, KM14, Kir01, KS08b, LR13, hLSxS12, LLY13, LZZ13, LNP14, LL08b, LHC09, LHLEY09, LHY09, Liu12, LL2, LWWJ13, LZ14, MS14, Nik14, NY14, RM09, RRm11, Sci07, Sha12, SH12, SGL11, Siv05, SH08, Tri13, WSH12, XD13, YSH12, YGX13, YFW14, YWZ12, Zha14, Zhu11, dAN13, vdH09, vdH10.

Grassmann [KKP09].

Group [CL09a, COvdD08, Mor11, ZB10, BZZ09, BSZW12, DT01, Fay00, LT12, LWB11, NX05, Sze05, TL07].

growing [BG99].

growth [TT07].

GUT [AM12].

GUT-majorization [AM12].

gyroscopic [Lan99].

Hadamard [AAFG12, BNS14, CLW12, HK98, LZFR12, MX08, Rod08a, Rod14b, SW11a].

Handelman [GN02].

Hankel [FN06].

Harmonic [Mor13, VU12].

Hartwig [Bö06].

Hawkins [Bid07, FR04].

Herglotz [SS08b].

Hermite [KDT12, SMB03].

Hermitian [BDL09, DDK08, Dru06, Fot10, IT12, Lim12, Mat08, MX09, OK09, Rod08b, Rod14a, Tia10a, Tia10b, Tia12, WJ10].

Hermitian/skew- Hermitian [IT12].

Hessenberg [DT10].

hidden [Mor03].

Hilbert [Dra11, SW11b, Sur06].

Hom [PM12].

Hom-algebras [PM12].

homogeneity [GS13].

homomorphisms [JG14].

Hopf [BH13].

Horn [CL09b, Tam10].

Horner [TMR06].

Hua [Lin13a].

Hull [AMS09].

Hermite [Lin13a, Tya12].

Hyers [HM12b].

hyperbolic [BTM07].

hypercube [MT11].

hypergeneralized [TCD11].

hypergraphs [Ref14].

hyperplane [DS14].

hyper-nilpotent [BSZ10].

Hyponormal [MRR04].

Hypothesis [vdH10].

ideal [BSZ10].

ideals [CHMN15, JG14].

Idempotency [XT10].

Idempotence-preserving [XT10].

Idempotency [Fan11].

idempotents [AH10, JHH+03].

identical [ZB10].

identifying [CGK+13].

identity [TV12].

II [BNSY14, FN02].

Image [MDMK14].

Image-kernel [MDMK14].

imaginary [MX08].

immanant [CF14a].

implications [BFH05].

Improved [AG14, Dic10].

Incidence [WZ12].

inclusion [Oep03].

inconsistent [SK00].

Indefinite [Jar13, BD13, BL+02, FGVR14, LTU96, Mat08, MRR04, Meh06b, Meh06a, MX99, NBD14].

independence [GH10, DD10, EG10, MC12].

index [BGRV09, DN12, DZ11, GS03, Loi12, Nik14, NY14, SWK14, SHA12, SK00, WW01, dAN13, dFP13].

index-2 [Loi12].

indices [BCRS04, DDM09, SGL12].

inertial [Rak12].

Inequalities [KN14, PTZ14, Sin14, TH10, ZY02, DL12, Dra11, H10, SW03, LZW04, MT10, MP00, NX06, Nie10, Tia12].

inequality [AT06, BL+13, DS07, KM13, LM98, Lin13b, Lin14, MS04, MNS11, Nie13, YF11].

Inertia [BJL+10, BGK+11, BGH15, Tia10b].

Inertially [CV07, GS11, CGK+13, DOvdD10].

inertias [GOvdD13, Tia10a].

Infinite [BE97, BF05, Gil07b, Hol00, MN01].

inner [BLM*02, FGVR14, LTU96, MRR04, Meh06b, Meh06a, MX99, RD12].

Institute [MST09].

integer [FPF12, MMT11, Zho12].

integers [Dub08].

Integral [GKW02, RS04].

Interest [SA12].

Interior [DS08, Dic10, JR08].

Interlacing [But07, Lot07].

International [BBCP12, HZ10b].

Interpolation [Pm04, AB00, Ber03, KDP12].

Interval [RMZ14, SPS12a, CL04, ROH09c, ROH10].
Roh11, RF11, WZ12]. **Invariant** [XQ11].

Invariant [Rod14b, CM05, FGVR14, MRR04, XD13].

invariant [GG04, MM12]. **Inverse** [RF11, Aur13, BF04, BGK+11, BLM+13, BNSY14, BI02, Bri07, BSZW12, CEM12, CGMSR11, CG13, COvdD09, CvdD12, CLW12, CPU10, CIW09, CIWL11, DW10, Fer09, FR04, GKW02, Hog05, HM12b, KKP08, KP08, KP11, KS08a, LS08, LS13, LLYL11, LWB11, MD11a, Nab00, NX05, PES09, Rea02, Roh11, SK00, Son13, Stu98, Tia10b, TCID11, WW11, WW01, XCL11, ZB10, ZJW11, ZZL11]. **inverse-orthogonal** [LS13].

inverse-positive [FR04]. **inverse** [BZ03, Bap07, BPS05, BZZ09, BZ10, CL09a, COvdD08, CI12, LY11, MDKM14, NX06, Nie13, PS13, Tia05, TL07, Tia12, XQ11, XZ11, ZX08]. **inversion** [BOvdD04, NS12].

invertible [GLR03, LWB11, RS05]. **involution** [Che12, LD11, MD09].

involutary [DSZ03]. **involving** [MP00, Sin14, XQ11].

irreducibility [GS13, yLXJ09]. **Irreducible** [FN06, Oep03]. **irregular** [CG07].

Isometric [RW02]. **isometries** [Che12, MN10, MD09].

isoperimetric [Siv05]. **Isotropic** [Rod08b]. **issue** [BBCP12].

iterates [Mat08]. **Iterations** [Per02].

Iterative [PL12, Pul12, SK00].

Jacobi [CEG12, CEM12, Gus13, Mat08].

Jensen [KM13, Nie13]. **Johnson** [KS08b, LM98].

joint [NBdP14, PT00, Xu10]. **Jordan** [AH10, Fan11, JTU98, KLL+11, LS09, MX99, Tao10, XZ10]. **journal** [HZ10b].

Kantorovich [Nie10]. **Kemeny** [Kir14]. **kernel** [MDKM14].

Khatri [CZY02]. **kinds** [YwW12]. **known** [MRT11].

Krein [BDPDG08, LR98a, NBdP11]. **Kreǐn** [RS04]. **Kronecker** [Har14].

labeled [JN09]. **Langer** [RS04]. **Laplacian** [AKS12, BF11, BHL09, Bout09, BSZW12, But07, DH13, HP12c, KM14, Kir06, Kir07, LLZ13, LLW11, Liu12, LWWY13, Lot07, MC13, MK10, OV10, Pat01, SH12, Thu07, XD13, YL11, Yu10, YGX13, YFW14, ZZ11, Zhu11]. **Laplacian-energy-like** [XD13].

large [KvD00]. **Largest** [BHL09, AKS12, BF11, LL08b, LhL09, MS14, MKR13].

law [BLZ10, MD11a, ZX08]. **laws** [BL14b, CI12, LY11, TL07, XZ11]. **LCM** [Ova04, WHT14].

Least [ZCL10, CJ11, HL07, LLS14, LWWY13, PL12, WSH12, YGX13, YFW14, YFW21, Zhu12].

least-squares [CJ11, HL07]. **Lebesgue** [Mo10].

Leonard [AC10, Bro13, NT07].

Lewis [Kar06, Tam99].

Limit [Kir06]. **line** [Tu07].

Linear [CLN14, Dub08, Fan11, KRT08, Nik06, AM12, AG12, BE12, BP07, BCRS04, Bri09, CJ11, Dahl03, DD10, FG14, FFP12, FS98, HM12a, HR06, HSSM05, HZ10b, JvdB12, KKP08, KS09, Ko00, KM05, KM11, KLR11, LS08, LMT10, LWB11, Loo12, MR12, MNS11, NBd11, NS12, Nie06, Nie10, Nie13, RR02, Roh09b, Sch11b, SK00, TCID11, WW01].

Linearization [Lan08]. **Linearizations** [AV06, DDM09, BF12, DD08].

Liu [Wan08].

local [Qi13].

Loewner [PS11].

Loewy [LM98].

log [KM14].

log-concavity [KM14].

London [LM98].

long [NY14].

look [SS08c].

loop [YY12].

loop-free [YY12].

Loops [BEH+14, SGL12].

loss [GT05].

low [FMMN11, GR09].

Lower [Sha12, BK97, BF11, LLYL11, ZHS08, ZZ11, dF10, DD08].

Lyapunov
magnitude [FFP12]. main [DH13].
Majorization [MC13, AM12, AG12, BE12, DL12, DS13, KRT08, KS09]. majorizations [HR06]. many [DT01, Elz03, Kir01]. map [MR12]. Maps [LPR07, Mol09, Mol11, AH10, CJ08, Fan11, GLR03, LX11, MNS11, OK09, Per02, RR10, XTC10, XY14].
Markov [BL14b, GKMS13, Kir03, Kir04a, Kir14, Xu08]. marriage [Bru02]. matching [XD13].
Mathematics [MST09]. Matrices [Fie05, Han09, JCT09, SPS12a, AT06, AG14, AJN14, AB00, ÁAFG12, AV04, AV06, AM14, Ari02, BT13, BB07, BNS14, BZ03, Bap07, BO00, BF04, BFT09, BP12a, BMN+13, BLM07, Bea99, Ben10, BL14a, BF07, BE97, BLR01, BMN+02, Bos10, BG99, Böt06, Böt11, Bou11, BCR13, BOvdD05, BPS05, BPS06, BH04, BZ09, BZ10, BSZW12, BF08, BF10, BS05, CVV11, CRU10, CZY02, CL09a, CL09b, CEG12, CEM12, CG13, COvdD08, CvdD12, CS09, CN98, CN10, tCN12, CKLN14, CM05, CP99, DGH+09, DS10, Dod08, DM11, DK08, DMLT03, Dru06, Dru09, EPM13, ES08, ERS09, ES10, Ero04, FvdD00, FT02, FW10, FMS12, FN06, Fot10, FGV14, FHR04, FV08, FMN11, FK508, FR04, FS98, FKS14, GSF09, Gi05, Gi07b, Gi10, Gi11, Gi14, GR09, GSN14]. matrices [GK99, GJOvdD07, GHK14, GLR03, HP12a, Han05, HP12b, HR06, HM98, HS03, HK05, HP07b, Hog09, HW12, HPP09, HZ10a, JM13, Jar13, JR08, JTV98, KKP08, KV04, KV14, KS11, Kir04b, Kir09, KM01, Kon06, KL13, LM07, Laf04, LS13, LMS04, LMT10, LZ12, LLZ13, LHL14, Lin12, Lin14, LvD14, LH10, LB11, LZR12, LR98b, MPVS09, MMT03, MM13, MN03, Mat08, MW12, MX00, MRR04, Meh06b, Meh06a, MX99, MX08, VV09, MT11, MSS08, MP09a, MMT11, MP00, MT04, Mor03, Nab00, NM02, NX06, Oep03, OTvdD09, OK09, Ova04, dSP14, Per07, PES09, PES11, Pin04, Pin08, RD12, RSS13, Rea02, RHC06, RMZ14, Rod08a, Rod08b, RS11, Rod14a, Rod14b, Roh09c, Roh10, Sem06, SW11a, Sch12, SM04, SH10, SC08, Stu98, SPS12b, Sze07, Tan10, Tia05]. matrices [Tia10a, TH10, Tia12, Tya12, WHT14, XLJ13, XY14, YF11, ZH06, ZLXX09, yZLXJ09, ZLHL10, ZLX12, ZLLL12, Zho12, ZH07, ZLLL11, dF10, vdDW96, BL04]. Matricial [SS08a, GLR03]. Matrix [BBCP12, BOvdD04, ES10, FFB12, Gre14, LWZ04, MST09, SS04, AVR13, BL09, BS12, Bay11, BLZ10, BH13, Bri07, BCG96, Bru02, BF12, BT12, BSS14, CW13, CT04, CEM12, COvdD09, CLW12, CJLP99, CDH+02, CDH+03, Cofo8, Dav04, DHHW03, DSH09, DDM09, DKS14, DS03, ERS09, EC10, FJS00, FN02, FHJT96, Gi07a, GP03, Gus13, HD10, HKT14, Ho00, HK98, HSM05, HZS06, IT12, JW01, JK96, JS02, KKK11, KK08, KP08, KP11, KRT08, KS09, KR07, KL13, Lan08, LT12, LR02, LM10, LX11, LLYL11, LLI11, LLM12, LY11, LMR11, LX14, MMM11, MS14, MH96, MR12, Maz10, NS12, No12, PTZ14, PL12, PP08, Pat01, PS11, PM12, Pol10, PT00, Psa02, RV09, RR02, RMZ14, RS05, Rod07, Roh11, RF11, Roh13, SMB03, SA12, Shu11, SSTA04].
matrix [TM06, TS01, TL07, Tia10b, Uh98, WZ08, WZY08, WJ10, Wóz01, WZ12, XHZ09, fXyHZ09, XZ11, XTC10, XZ10, YH05, YLD10, fYwW12, ZL10, ZZ14, ZB10, ZCL10, ZX08, ZCB03, dF05, DOD8, HZ10b, KSvdD05]. matroid [vdH09]. MatTriad [BBCP12]. Max [GKMS13, BS05, BS14]. max-algebraic [BS14]. Maxima [DN12, Nik14, NY14, dAN13, dFN13].
Maximal [Bru02, BSZ10, DKO12, GSM14, Gon12, Sze04, Tia05].
maximum [BBC+14, BCH+13, CCH+12, EEH+12, HP12a, Hog11, JZ02, MNP03, OV10, Pet12, SI10, YY12, ZH12, vdH09]. mean [SS08b].
means [LWZ04, Mol11, Pol10, Sin14].
measurement [CM00]. Mercer [KM13].
Merris [GS03]. metabelian [BDL+09].
Metcalf [MNS11]. method
[BH13, CPU10, Jin05, LA02, PL12, SK00].
methds [LZFR12, Mat08, Pul12]. metric
[BdP13, GR09, KKP09]. midpoint [Roh11].
Minimal
[BLR01, SM01, BvdHL04, BvdHL05,
CKSV05, DDM09, GLX14, KL15,
LL08a, LZ12, RR10, Tia10a, fXyHZ09].
minimization [LX14]. minimizing
[YFW14]. Minimum [AAC+13, BFMN11,
BBC+09, BCH+13, BEH+14, CDH+07,
DGK+12, GHH+14, LNP14, BFH05,
BFH+09, BGK+11, BMN+13, CW13, CJ11,
DGH+09, DMS11, Gro10, Hog11, LLYL11,
hLsxS12, MR10, SGL11, SH08, TH10].
minimum-norm [CJ11]. minor [YSH12].
minors [BP12b, FvdD00, GJOvdD07,
MNT11, Pin08]. minus [Rak12]. Mirsky
[CL09b]. mixed [TL07, XZ11]. mixed-type
[TL07, XZ11]. model [TT07, Xu08, ZJW11].
modèles [Ben02]. models [Ben02, CMS12].
modified [CG13]. modularity [MS14].
modules [SW11b]. moment [LZZ13].
monotone [CP99]. monotonically [JN09].
Mononicity [SPS12a, SPS12b]. Moore
[BI02, Bri07, HM12b, KP08, Mat03, MD11a,
Tia10b, TCID11, WW11, XCL11]. Motzkin
[Dah07]. moving [GT05]. MR2390359
[LhLY09]. Multi [SST04, Pul12].
Multi-agent [ST04]. multi-level [Pul12].
multidiagonal [FS12]. multigraphs
[MNR10]. multiple [LY11, XZ11, ZX08].
Multiplicative [GLR03, LMR11, BP07].
multiplicities [KV04]. multiplicity
[JS02, Thu07]. multiplier [NR11].
multipoint [Loi12]. multivariate
[gLgWhX13]. Mumford [Sur00].

Natural [DT01]. necessarily [BFH+09].
necessary [Cio10, Roh09c]. negative
[CRU10, FvdD00, Jar13]. Nested
[AKS12, CL04, FRM12, GJOvdD07, WZ12].
nests [Br02]. networks [GT05]. Neutral
[RS11, Rod14b]. Nevanlinna [Ber03, RS04].
Newton [BH13, NX06]. Newton-like
[NX06]. Nilpotent
[Per07, BSZ10, BK97, BS07, BKNO07,
CVV11, KOS+09, VV09, NR11, SZ09].
Nodal [BL05, Thu07]. Non
[LR13, LR02, LMS04, BdPdP10, Gil11,
GS13, Lao04, LL08b, LhLY09, LH09,
LWYJ13, MR12, MMW12, MT10, Pul12].
non-autonomous [MR12]. non-bipartite
[LWYJ13]. non-commuting [Gil11, MT10].
non-equilibrium [MMW12].
Non-existence [LMS04]. non-Hermitian
[BdPdP10]. non-homogeneity [GS13].
non-real [Lao04]. non-regular
[LL08b, LhLY09, LH09]. Non-singular
[LR13]. non-symmetric [Pul12].
Non-trivial [LR02]. nonincreasing
[OK09]. Nonnegative [SC08, SSM10, AG14,
BK97, BSS14, CDH+03, CP99, DMLT03,
ES10, FN98, FV08, HS03, HP07b, HZ10a,
KS08a, KM01, LM98, Lao04, LS08, LHL14,
NM02, Oep03, OTvdD09, SRMB07, SRM11,
WZ08, YH05, YF11, Zho12, BL04, MST09].
Nonnegativity
[FV08, CEH+12, EHT09, Hog09].
nonpositive [CRU10]. nonsingular
[BPS05, Kal12, LMS04, PP08, WHT14].
nonsingularity [BO00, FF1M14].
nonstrictly [ZLXX09, ZZL12].
nonsymmetric [SK00]. nonzero
[CV07, DOvdD10, VV09, ZZ14]. Norm
[Gil05, Gil11, KLL+11, CF14b, CJ11, LPR07].
Normal [PP08, Ari02, Che12, KS11,
Meh06b, Meh06a]. normalized
[But07, Kir06, Kir07]. norms
[BGJ13, Böt06, Dru09]. Note
[EEH+12, Lot07, Sha13, BCR13, BSZW12,
CW13, Car12, Dah03, HP12b, Hog11, KV14,
Kir07, KM01, LS13, LL08b, LHLY09, LY11,
MS14, NBdP14, NX06, Pek14, RHC06,
SM04, YH05, Zhu12]. Notes
nullstellensatz [CHMN15], number [AAC+13, BFMN11, BBC+14, BCH+13, CCH+12, CL07, EHH+12, Hog11, LHC09, Pet12, vdH09].

nullity [BBC+14, BCH+13, CCH+12, CL07, EHH+12, Hog11, LHC09, Pet12, vdH09].

numbers [AAC+13, BFMN11, BBC+14, BCH+13, CCH+12, CL07, EEH+12, Hog11, LHC09, Pet12, vdH09].

Numerical [AAC+13, BFMN11, BBC+14, BCH+13, CCH+12, DZ11, EEH+12, EG10, LR98b, MNP03, Pet12, Siv05, SH08, XD13, dF10, dAN13].

numbers [BG99, CJLP99, Gil14, Kar06, MC12, TG06, XLJ13, ZZ14].

Numerical [BdP13, LTU96, AMS09, AM14, BFMN11, BBC+14, BCH+13, CCH+12, DZ11, EEH+12, EG10, LR98b, MNP03, Pet12, Siv05, SH08, XD13, dF10, dAN13].

numbers [BG99, CJLP99, Gil14, Kar06, MC12, TG06, XLJ13, ZZ14].

nullity [BBC+14, BCH+13, CCH+12, CL07, EHH+12, Hog11, LHC09, Pet12, vdH09].

nullstellensatz [CHMN15], number [AAC+13, BFMN11, BBC+14, BCH+13, CCH+12, CL07, EHH+12, Hog11, LHC09, Pet12, vdH09].
[DW10, DX12, MX08, CGMSR11, CS09, FFJM14, HP12c, LA02, XCL11].

Perturbations [Gil10, CMS00, FKS14, GR09, MX08].

Perturbing [Laf04]. physics [MMW12].

Pick [Ber03]. placed [JK11], placement [CH13]. plane [De 13]. point [Fie98, HKT14].

Perturbations [Gil10, CMS00, FKS14, GR09, MX08].

Perturbing [Laf04]. physics [MMW12].

Pick [Ber03]. placed [JK11], placement [CH13]. plane [De 13]. point [Fie98, HKT14].

Polar [CMS00, HPP09, XLJ13, vdDW96]. polyhedral [Tlu07]. Polynomial [AMS09, MT10, AV04, AV06, Kir06]. points [tCN12, DS08, Kir06].

Positive [CN98, FHR04, HJS02, LvdD14, Pet12, SW11b, YLD10, BRW09, Ball11, BCRS04, CW13, CS09, Dic10, Dra09, DS08, EEEH12, El 11, FJS00, FGVR14, FR04, Gow12, GS13, Han09, HZ10a, Jar13, JCST09, JN09, JK11, KS08a, Lin14, MM13, Mol09, MN10, Mol11, Mor03, MNS11, Pin08, Sch11a, SH10, vdH09].

positive-definite [Drui09]. positives [El 11]. positivity [BCH9+09, CHOvdD09, EHT09, FT02, FFJM14]. Possible [ZZ14, CJLP99].

PostLie [PLBG12].

potent [BT13, IT12, LT12]. potentially [KOS9+09]. pour [Ben02]. power [BL14b, CF14a, CF14b, CHOvdD09, Gol08, GL11, HM05, HP12b, WHT14].

power-associative [Gol08].

power-positivity [CHOvdD09]. powers [BGJ13, DGK+12, Dub08, Sli11, Uhl98].

Preliminary [BFH9+09]. prescribe [LPW14]. prescribed [Dod08, FS98, RRCM11, SC08, Tam10].

preserve [GLR03]. preservers [AM12, AG12, BE12, CKNL14, DK08, KRT08, KS09, KLL+n+11, LMT10, Lim12].

preserving [BK97, CT04, ES10, Fan11, HR06, LPR07, LZFR12, MMD05, MR12, Mol09, Mol11, Sze09, XTC10].

Principal [CG07, GJOvdD07, MMT11, Rol03]. principle [FR04]. probabilities [Xu08].

problem [BF04, BNSY14, CEM12, CDH+02, CDH+03, CPU10, DHS09, FJS00, Gro10, Hog05, JKH06, LS08, gLgWhX13, LX14, MS04, MP09b, PL12, RR10, Rea02, Roh09b, ZJW11].

Problems [BDL9+09, BP07, BK07+11, BLM+13, BRL01, CEG12, CF12, DHHW03, Fer09, Fri12, Loli12, Pu012]. product [BS12, BLM+02, CZY02, CLW12, CMS00, FGVR14, HK98, HZ10a, KV14, LTU96, LLYL11, Lim12, Meh06b, Meh06a, MP00, RD12, TL07, TG06, XQ11, YF11, ZZL11].

Products [BKNO07, Gre14, GJOvdD07, BE97, DT01, Fan11, Hol00, KKK11, KV04, KSH11, KL13, KLL+n+11, LY11, MRR04, MX09, PTZ14, Sch11a, XZ11, XZ08].

projection [KL15]. projections [Cof08, Sch12, Spi06]. projective [De 10].

projectors [TCID11]. Proof [Dok02, Ari02, Ero04, Sur00]. proofs [CL09b].

propagation [Pul12]. propeller [LZ14].

properties [SPT12b].

Properties [LT12, ZCB03, BE12, CF12, DHL07, DN12, DS13, EFP12, GLR03, HK05, HW12, JW01, Kir03, KL14, LLMZ12, MH96, Ref14, Tao11, TTT07, XQ11].

Property [Ball11, BP07, BNP08, ES08, ERS09, FG14, MPT00, Mec12, SMT04].

pseudo [Fot10, HP07a]. pseudo-Hermitian [Fot10].

Pseudomonotonicity [Tao11].

pseudospectral [KL14]. pseudospectrum [AVG11].

purely [MX08].

Quadratic [Mat08, YFW14, BdP13, HD10, Jin05, VY12].

quadratic [El 11]. quantum
quartics [DK08, GL10], quasi-commutativity [DK08], quasi-tree [GL10], quasi-unicyclic [GL10].

Quasihyponormal [RD12], quaternion [Son13, WZ08, WZY08, WJ10, fYwW12].

quasi-commutativity [DK08], quasi-tree [GL10], quasi-unicyclic [GL10].

Quasihyponormal [RD12], quaternion [Son13, WZ08, WZY08, WJ10, fYwW12].

quaternion [Son13, WZ08, WZY08, WJ10, fYwW12].

Quasihyponormal [RD12], quaternion [Son13, WZ08, WZY08, WJ10, fYwW12].

quaternionic [CD00, DDL06, Rod07, Rod08a].

queueing [GT05].

quotient [SZ09].

Quotients [Har14].

radii [GL10, Liu12, LL12, YSH12, YWZ12].

radius [CN09, HZ10a, KV14, KL14, LPR07, HLL14, Rum02, Sch11a, Sme03, SH08, SI10, Xu10, YH05, Yu10, ZH06, ZH11, Zha14, Zhu11].

Radon [Liu13a].

random [FG14].

range [AM14, CN98, CN10, CPU10, DLRM+13, Hen10, NBDP11, NBDP14, PT00, RSS13].

Ranges [RR10, BldP00, BdPnGPs08, Bdp13, KLR11, Ltu96, LR98a, Rod14a, VU12].

Rank [BEH+14, Tia10b, AM14, BFH05, BFH+09, BFmN11, BvdHL04, BvdHL05, BBc+09, Bgk+11, BMN+13, Bea99, BCH+13, Bos10, Cw13, CRU09, CJ11, CDH+07, CKLN14, DGH+09, DGK+12, Dko6, DMS11, FMNN11, GR09, GHH+14, Gro10, HPV12a, HOG11, HLSx12, LNP14, Lim12, Lx14, MRN10, O909, RR10, SV04, SM01, SM04, fXyzH09, XY14, ZZ14].

rank- [AM14, XY14, Bea99].

rank-one [CJ11, OK09].

rank-two [CKLN14].

Ranks [LPW14, Tia10a, WJ10, Zhou12].

Rao [Czy02].

rate [LA02].

Rational [DSS09, MM12, GP03, Nof12].

Ray [LMS04].

Real [CHMN15, Cof08, Fgvr14, BdPdP10, Dt01, DSS09, Lafo4, LZFR12, Mel06a, Pesi11, Rod07, RSh11, Rum02, XLJ13, dF10].

realizable [KM01],

realization [GP03, Pesi11, SRMB07, SSM10, SRM11].

Realizations [SZ09, JW12a], reciprocal [BNPS08], Recognition [Mor03], reconstruction [Mor11, Mor13], recovery [DDM09], rectangular [KKP08], recurrence [Liu13a, MR12],

reductive [MSS08, PS13], reduced [HP12a, Lpw14].

Reducing [Fhjt96, Mt04], Refined [Dovd10, Govd13], refinement [LM98].

Refine [S13, WZ08, dF05].

Regions [Hos06], regular [Bri09, BF08, CEG12, Car12, De 10, Elz03, Fri12, Lan08, LL08b, LhL09, LH09, Maz10, Si05].

regularity [Roh09c, Roh10], related [AS06, AC05, De 10, FKS08, MSS08, Tao11].

relation [Liu13a, PT00, Tu07], relations [GG04].

Relationship [Hm12b], relative [Jct09, Kn14], relaxation [Lx14],

remark [De 13], repetition [BF12].

representation [Gkw02, Lmlz12, Rs04].

Representations [CvdD12, Cjw09, Bz10, Bszw12, CbvdD09, Ww11].

representative [Kcp09], require [Chovd09, Eht09, Ks08a].

respect [Gon12, Mx99, WwY10].

restricted [Kp11], restriction [Rn11], restrictions [Bmn+13].

result [Tam99, Tam10].

Results [Fri12, Bns14, BLZ10, Bzz09, Cll11, Ffjm14, LLs14, LL12, Mar08, Wht14, Ww01].

RETRACTED [Gus13].

Reverse [Md11a, BLZ10, CI12, LY11, TL07, XZ11, ZX08], reverse-order [TL07], revisited [Dsl10, Dru06, Rss13].

Riccati [Bbt11, Lzl10, Zl11].

Riemann [Yy13].

Ring [Cg13, Rak12].

Rings [Ah10, Che12, HP07a, MD09, Mdkm14, SS08a, Xz10].

Rodman [Jtu98], role [Km11].

rooted [Cmrr13, Rcm11], roots [Lzfr12, Psa02, RS05, Rod08a].

rotations [Btm07, Sin12].

Roth [HP07a], row [Bho4, Dml03, Mor03, Tia05].

rule [JvdB12].
Sakamoto [Mar08]. sandwich [HS03].
scalar [CMS00, HM98, TG06]. scaled [Mat08]. Scaling [EFP12, BS05]. Schatten [Böt06]. Schur [BOvdD05, FV08, JG14, LH10, LZF12, NR11, TT05, YF11, ZLXX09, yZLXJ09, ZZL12]. Schwarz [Tya12]. second

Shadowing [FG14]. Shalom [JTU98]. shape [LHL11]. Shapes [LR98a]. Sharp [DD08]. Shells [BLM+02]. shift [CN09, VU12]. shifted [Aur13]. Short [CL09b]. shorted [Pek14]. sided [AB00, HS03]. Sign [BCD+09, ChOvdD09, CEH+12, EHT09, KS08a, LS98, Tya12, AHL+10, CW13, DHHW03, GSF09, GS11, GOvdD13, HK05, HP07b, Hog11, KOS+09, Per07, Rum02, Uh98]. sign-complex [Rum02]. Sign-consistency [LS08].

sign-real [Rum02]. signed [YF12]. signless [AKS12, DH13, HP12c, LLW11, Liu12, LWYJ13, MC13, MK10, OV10, YL11, YGX13, YFW14, Zhu11]. similar [HP07b]. similarities [Ver08]. similarity [HS03].

Simon [Bd07, FR04]. simple [Ari02, BCh+13, Shu11]. Simplifications

[BL14a, BCR13, HS03]. single [CFP11, Kir04a]. single/combined [CFP11]. Singular
[CN12, DS07, GKH99, CEM12, DDM09, JPS12, KM05, LR13, Lio12, MP09b, PS11, Sci07, SK00, Tam10, Tri13, WW01, ZHS08].
singularities [Böt06]. six [BJL+10]. skew [BZZ90, FKS08, GLX14, KL13, LZF12, MX99, Rod08a, SHZ12, Son13, WJ10, ZB10].
skew- [KL13, WJ10]. skew-Hamiltonian [LZF12]. skew-self-adjoint [FKS08]. small
[BLM+13, BNSV14, Sta13, SZ09, Xu08]. small-world [Xu08]. smallest [BP12c, Fat01, PS11, ZHS08]. Smith [MMMM11]. Solution [HSSM05, CJ11, DD11a, DKS14, Fen01, SK00, WZ08, fXyHZ09, YLD10, ZL10, ZL11, ZLLX12].
solutions [Br10, FFP12, LR02, LM10, Roh09b, SW11b, TM06, WZY08, WJ10, WW01, XHZ09, fYW12, ZCL10].
solvability [LS08, LD11]. Solvable
[BSZ10, WZS09]. solvents [HD10]. solving [Roh09a]. Some [BE12, BLZ10, BZ09, CRU10, CZY02, CLW11, De 10, DL12, LLYL11, LLS14, LL12, MH96, Mar06, TT07, Bal11, De 13, GR09, JW01, KL14, LM98, MMT11, RRM11, SW11b, YGX13, dF10].

Soules [SM04]. space [CI09, De 10, EPM13, FGVR14, LTU96, LR98a, MM12, NBdP11]. Spaces
[Bea99, Bos10, DX12, BdPNtG08a, BdP13, BLM+02, CT04, CLN14, DT01, Dra11, Fie98, GR09, LR98b, Meh06b, Meh06a, Nie10, RD12, Schw11, TGo06, XTC10].

spanning [YY12]. Special [Tia05, BGRV09, BBPC12, De 13, Dok02, fYW12, HZ10b].

Spectra [FS00, RM09, RRM11, CS09, FN02, Gut13, KS08b, LLW11, OV10, PES11, SVP11, SRM10, SSM10, SRM11].

Spectral [Ber03, HK05, Hg05, LLMZ12, LHL11, LZ14, Ref14, AS06, BH13, CF12, GL10, GO03, HZ10a, KV14, LPR07, LZZ13].
LHL14, Liu12, LL12, Rum02, Sch11a, Sne03, Sta13, SI08, Stu98, Xu10, YH05, Yu10, YSH12, YWZ12, ZH10, Zha14, Zhu11.

Spectrally [AHL+10, GSF09, CKSV05, DOvdD10, Per07]. Spectrum [BK97, Gil07b, Maz10, AT06, BOvdD10, Per07].

Strongly [Elz03, Lan09, Car12, HR06, RD12, Siv05]. structural [ZWJ11]. Structure [CVV11, KS09, LZR12, MM05, Sze05, CMS12, CFP11, HR06, NM02].

Structure-preserving [LZR12].

substantial [Thu07]. sufficient [Cio10, Roh09c]. sum [BH04]. sums [BPS05, BNP08, DML03, Dub08, Fo10, Kir09, ZH07]. sun [MK10]. superstars [Per09]. surfaces [Thu07, YL13]. survey [Roh09c, RF11]. SVEP [Mec12]. Sylvester [DD11a, HKT14, RR10, WZ09].

Symmetric [DKS14, SRMB07, ZJW11, EF04, BFH+09, CT04, CES12, CF14a, CF14b, CJ11, CLK14, DHHW03, HK05, JK96, JW12a, KMK13, PES09, PES11, Pul12, RR02, Rea02, RS11, RMD10, SW11a, SGL12, SH10, XHZ09, fXyHZ09, YY12, ZCL10, dF10]. symmetric/skewsymmetric [RS11]. symmetrically [JK11]. symmetries [AV06, Rod07]. symmetry [DLRM+13]. symplectic [Lin13a, MVS09]. system [CJ11, RMZ14, TRM06]. systems [BGR09, BL00, BCRS04, FH09, CM00, Fen01, FP12, FKS08, FS98, JvB12, KKM10, La10, LS98, Mat03, Mor11, Mor13, NS12, SS08a, Sch11b, SK00, SW11b, WW01].

Szego [MR12].

Taylor [Lin13b]. Techniques [CGK+13].

tensor [BGJ13, DTP01, Lim12, PTZ14].
tensors [DD10, FMMN11]. term [ZZ14].
terms [JS02]. ternary [CN12].
test [Hog09, Stu98]. tests [AG14].
th [CF14a, CF14b, Psa02].

their [AV06, BdP10].
s [BGS08, BGJ13, Bou09, Bou11, BPS05, KM11, LZ12, LZZ13, LWW11, OV10, SH12].

Theorem [CRU09, Bru02, GKS13, L11, Oep03, SS08b, Thu07].

theorems [BLS05, CL09]. CP09, HS03, LH12, WW01].

theorems [BLS05, CL09]. CP09, HS03, LH12, WW01].
Toeplitz [Ari02, BG99, Böt06, Böt11, FN06, LS13, MP09a]. tools [MMT03]. topological [BE12]. total [FJM14]. Totally [Bro13, JN09, CRU10, FJS00, JCT09, JK11, MM13, Pin08, YF11].

tournament [DMS13, GK99]. Trace [DLM+13, Rea02, Xu10]. Traces [Gre14].

Topological [BE12]. Total [FFJM14]. Totally [Bro13, JN09, AG14, CRU10, FJS00, JCST09, JK11, MM13, Pin08, YF11].

tournament [DMS11, GK99]. Trace [DLRM+13, Rea02, Xu10]. Traces [Gre14].

Tracial [KLR11]. trajectories [BL14b].

Transfer [God12]. transform [FT02]. transformation [BP07, DSZ03, Nof12].

Transformations [Bal11, CT04, Gow12, NT07]. transition [Xu08].

transpose [DSZ03]. trapezoidal [Dra11].

Triangular [AB00, AH10, BK97, CJ08, CKLN14, Gil07b, JTU98, Mar14, Qi13, Shu11, Zx10].

Tridiagonal [AC05, AG12, BO00, CN98, CN10, Kou06, MMW12, PL12, PES11].

Triple [TL07]. triples [Bro13, Han05].

Trivial [LR02]. Two [FR04, GT05, HP14, HK98, PES09, fywW12, AB00, BF04, BvdHl04, BvdHl05, Bbgk+11, Bdl+09, BL14a, Ber03, CKLN14, DDL00, Dok02, Gil05, Gil11, GUS13, HJS02, HS10, LW11, MM12, MN01, MP09b, RMZ14, Roh13, Spi06, YY13, ZB10, Ben02].

twodimensional [MM12]. two-letter [HJS02]. two-matrix [Roh13].

two-parameter [MP09b]. two-sided [AB00]. Two-station [GT05]. type [AS06, Bro13, Dra11, HKT14, KS11, Lin13b, MNS11, Nie10, SK00, TL07, XZ11]. types [Dok02].

Ulam [HM12b]. Ultrametric [Fie98].

Unicyclic [BNPS08, GL10, LL12, LWYJ13, SH12, SGL11, Zha14]. unilateral [DDL06].

Unions [Bou09]. unit [BF07, Roh11].

Unitary [BLR01, MX99]. units [HP14].

Universal [TS01]. Universally [DG+09].

Upper [FFP12, MKR13, Nie06, Ab00, BGRV09, JTu98, Kir01, LHL14, LZL10, XZ10, Yu10].

Using [BGH15, HL07, But07, Kir07, SST04].

Value [CEG12, DS07, JPS12, Loi12, PS11, Roh09a, SS08b, ZHS08].

Vandermonde [BF07, MH96, MM13].

Variables [Bay11]. variable [BFH05].

Variants [BGH15]. Variational [Rum02].

Varieties [Co08]. Vector [Dra11, BH04, DT01, GG04, Kir14, LNP14, MM12, MNR10]. vector-valued [GG04].

evectors [Gon12]. Verdière [FM13, BFH05].

Versus [Ber03, DSS09]. vertex [JS02, Lot07, VY12].

Values [CEG12, DS07, JPS12, Loi12, PS11, Roh09a, SS08b, ZHS08].

Volume [HZ10b].

Waring [De 13]. Weak [SPS12a, SPS12b, Bid07, CP99, Lot07, Woz01].

Weaker [Woz01]. weakly [DHHW03]. weighing [NWZ98].

Weigh [BF05, MN01, Zz11].

Weighted [EG10, MD11b, BF11, But07, CMRR13, CN09, KP11, RM09, RRCM11, Son13, VU12, XCL11, Zz11].

Weights [CN09, VU12]. well [Mmt11].

Well-known [Mmt11]. which [Bou11, Elz03, FGVR14, hLSxS12].

Whose [BvdHl04, BvdHl05, MS14, MMT11].

Wiener [BH13]. wild [BDL+09]. without [NY14, SGL12, YWZ12]. WlSe [TT07].

Words [Dru09, HJS02]. Workshop [BL04, HZ10b, KSvdD05].

Words [Dru09, HJS02]. Workshop [BL04, HZ10b, KSvdD05].

Words [Dru09, HJS02]. Workshop [BL04, HZ10b, KSvdD05].

Words [Dru09, HJS02]. Workshop [BL04, HZ10b, KSvdD05].
cycle [dFNP13].

References

Wayne Barrett, Steve Butler, Minerva Catral, Shaun M. Fallat, H. Tracy Hall, Leslie Hogben, and Michael Young. The maximum nullity of a complete subdivision graph

Baksalary:2012:PSI

Berman:2009:SPA

Bras:2013:NSB

Bru:1996:PCM

Berliner:2013:MRM

Berman:2009:SPA

BCG96

BCH13

BCR13

BCRS04

BCRP12

Belitskii:2009:PCA

Bebiano:2013:NRQ

Bebiano:2010:CNH

Bebiano:2008:KSN

Beyn:1997:IPP

Bahrami:2012:STP

Beasley:1999:SRM

Bozeman:2014:MRG

Bendoukha:2002:DMP

Benitez:2010:NDS

Bercovici:2003:SVC

Barioli:2004:TCR

Berman:2005:ACT

REFERENCES

[BFH+09] Francesco Barioli, Shaun M.
REFERENCES

Bailo, Esteban Bailo, Josep Gelonch. [BGRV09]

Brualdi:2004:BOC

Bottcher:2013:NMC

Biyikoglu:2009:LED

Ben-Israel:2002:MMP

Bidard:2007:WHS

Barrett:2010:ISG

[BLdP00] Bebiano:2000:GNR

[BL04] Berman:2004:PWN

[BLM+] Bolotnikov:2002:SMI

Vladimir Bolotnikov, Chi-Kwong Li, Patrick R. Meade,

BARIK:2008:UGS

BANICA:2014:SHM

BARRET:2014:CIE

BAR-ON:2000:CENT

BOSTON:2010:SCR

BOTTCHER:2006:SNT

BOTTCHER:2011:ARE

REFERENCES

Boulet:2009:DUC

Bourgeois:2011:PMO

Britz:2004:MID

Britz:2005:SCM

Balaji:2007:PMT

Barreras:2012:AED

Barreras:2012:BDM

2012. CODEN ????. ISSN 1081-3810 (print), 1537-9582 (electronic). URL http://repository.uwyo.edu/ela/vol25/iss1/6.

REFERENCES

REFERENCES

REFERENCES

Chenette:2007:MRT

Carmona:2012:JMB

Catral:2012:SPA

Carmona:2012:MIP

Cavers:2012:APC

Carvalho:2014:DIS

Carvalho:2014:NDS

[CF14b] Sónia Carvalho and Pedro J. Freitas. The norm of the k-th derivative of the χ-symmetric power of an operator. *Electronic Jour-

Adam Chapman. General polynomials over division al-

Chen:2012:EEN

Cimpric:2015:RNI

Cvetkovic-Ilic:2012:NCR

Cvetkovic-Ilic:2011:SAR

Cioaba:2010:NSE

Cvetkovic-Ilic:2009:RDI

Cheng:2008:AMT

Chen:2011:MNL

Cheon:1999:PNZ

Chooi:2014:LSP

Cavers:2005:DMS

REFERENCES

Catral:2008:GIM

Catral:2009:BRD

Climent:1999:CTW

Chorianopoulos:2010:MIN

Canto:2009:FRF

Canto:2010:SCT

REFERENCES

REFERENCES

Dahl:2003:NLD

Dahl:2007:CPF

Dias:2010:LIS

DeTeran:2011:CES
REFERENCES

REFERENCES

DeSterck:2012:SMI

Deaett:2013:TCS

Drury:2003:NMG

Doering:2011:EOT

DeAbreu:2012:MIA

Dodig:2007:CSC

Dodig:2008:EPP
Marija Dodig. Eigenvalues of partially prescribed matrices.
Deaett:2010:RIS

Dragomir:2011:VOT

Drury:2004:EVC

Drury:2006:EHM

Drury:2009:ONW

Day:2007:SVI

Dür:2008:IPC

REFERENCES

CODEN ???? ISSN 1081-3810 (print), 1537-9582 (electronic). URL http://repository.uwyo.edu/ela/vol17/iss1/5.

[DS10]

[DS13]

[dSP14]

[DW10]

[DX12]

[Du:2011:EIG]

[Dub:2008:LAS]

[Dub:2010:PHM]

[Dub:2012:PAB]

[Dub:2013:PGM]

[Dub:2014:CHM]

REFERENCES

Erovenko:2004:BGE

[ERS09]

Elhashash:2008:GMH

Elhashash:2010:MFP

Fang:2011:LMP

Fayziev:2000:G

Feng:2001:ACS

Zhaosheng Feng. Algebraic curve solution for second-order polynomial autonomous systems. Elec-
REFERENCES

Frick:1996:RAM

Friedland:2004:PES

Fiedler:1998:USE

Fiedler:2005:MGE

Fallat:2000:GTP

Fallat:1998:EAC

Fritzsche:2008:NCS

REFERENCES

CODEN ????? ISSN 1081-3810 (print), 1537-9582 (electronic). URL http://repository.uwyo.edu/ela/vol15/iss1/23.

Foth:2010:ESP

Fujimoto:2004:TCI

Furtado:1998:CPM

Friedland:2000:SEG

Friedland:2012:ROP

Fernandes:2012:CBS

Fallat:2002:CTP

Friedland:2008:NSC

Fallat:2000:MAM

Ferrante:2010:RMC

Xiao:2009:SMR

Yuan:2012:TSK

Gavruta:2013:FC

Garrit:2004:RIV

Thomas Garrity and Zachary Grossman. On relations of invariants for vector-valued

Grood:2014:MRZ

Gumus:2014:ELC

Gil:2005:NEF

Gil:2007:EAV

Gil:2007:SIB

Gil:2010:PFD

Gil:2011:NEF

REFERENCES

CODEN ???. ISSN 1081-3810 (print), 1537-9582 (electronic). URL http://repository.uwyo.edu/ela/vol22/iss1/31.

Gil:2014:BCN

Grundy:2007:PMN

Geng:2010:SR

Goldberg:2011:PE
Moshe Goldberg and Eliahu Levy. The power equation. Electronic Journal of Linear Algebra, 22(1):810–821,

Gursoy:2013:MCT

Gonzalez:2002:IRD
Liu:2013:SAM

Guralnick:2003:MMI

Gong:2014:OGM

Goldberger:2002:SFC

Godsil:2012:WCP

Goldberg:2008:SSF

Gong:2012:CSR

REFERENCES

REFERENCES

Handelman:2009:MPP

Hardy:2014:KQ

Hershkowitz:1998:P

Hillar:2002:PET

Horn:1998:TAB

REFERENCES

Hershkowitz:2005:SPS

Hashemi:2014:FPT

Hecker:2007:ULS

Li:2012:BGW

Hershkowitz:1998:MLS

Hartwig:2005:FP

Ha:2012:ARL

Phi Ha and Volker Mehrmann. Analysis and reformulation

Huang:2012:RBH

Hogben:2005:SGT

Hogben:2009:ECM

Hogben:2011:NMR

Holtz:2000:CIM

Hartwig:2007:RPE

Hershkowitz:2007:NSE

Daniel Hershkowitz and Allan Pinkus. On nonnegative sign equivalent and sign similar factorizations of matrices.
Haemers:2012:MOR

Hartwig:2012:NPB

He:2012:SSL

Hartwig:2014:TTU

Horn:2009:EPD

Hasani:2006:SLO

Hershkowitz:2003:OSS

Daniel Hershkowitz and Hans Schneider. One-sided simultaneous inequalities and sandwich theorems for diagonal similarity and diagonal equivalence of nonnegative matrices. *Electronic
REFERENCES

Ilisevic:2012:WHS

Jargalsaikhan:2013:ICM

Johnson:2009:MTP

Johnson:2005:PCC

Joshi:2014:SIH

Johnson:2003:AFI

Jin:2005:MCQ

REFERENCES

(electronic). URL http://repository.uwyo.edu/ela/vol9/iss1/3.

Kecriniotis:2012:NPP

Kirkland:2001:UBA

Kirkland:2003:CPS

Kirkland:2004:CAC

Kirkland:2004:GSE

Kirkland:2006:LPN

Kirkland:2007:NDB
Stephen J. Kirkland. A note on a distance bound using

Peter Kunkel and Volker Mehrmann. Formal adjoints...
of linear DAE operators and their role in optimal control.

Kian:2013:ROJ

Kiani:2014:LCL

Kluza:2014:IRO

Kolman:2000:ADF

Kim:2009:GPN

Kouachi:2006:EET

Kirkland:2000:DLE

Stephen J. Kirkland, Dale D. Olesky, and Pauline van den
REFERENCES

REFERENCES

[LL08b]

[LHY09]

[Lim12]

[Lin13b]

[Lin14]

[Liu12]

[LhLY09] See erratum [LhLY09].
REFERENCES

Li:2011:SNL

Li:2013:EGT

Laey:1998:RIJ

Li:2010:CES

Livshits:2011:MDM

Li:2010:ECE
Chi-Kwong Li, Thomas Milligan, and Michael W. Trosset. Euclidean and circum-Euclidean distance matrices.

REFERENCES

Luo:2014:ERS

Liu:2011:NRO

Li:2012:OTM

Liu:2014:SCP

Liu:2012:SPS

Liu:2010:NUB

Li:2013:SMG

MarquesdeSa:2006:SSB

Maroulas:2008:FRC

Martin:2014:GTA

Matsuura:2003:GMP

Matejas:2008:QCB

Mazko:2010:SLR

Maden:2012:GCI

REFERENCES

Maden:2013:MBS

Mosic:2009:PIE

Mosic:2011:ROL

Mosic:2011:WEE

Mosic:2014:IKI

Mecheri:2012:BPS

Mehl:2006:EDP

REFERENCES

REFERENCES

Mackey:2011:SFP

Mackey:2003:STS

Moghaddamfar:2011:NFI

Mazilu:2012:ATM

Mehl:2000:CFD

Molitierno:2001:ACT

Molnar:2010:TIP

Lajos Molnár and Gergő Nagy. Thompson isometries
REFERENCES

on positive operators: The 2-

[Mor03] Walter D. Morris, Jr. Recognition of hidden positive

Morillas:2011:GRS

Morillas:2013:HRS

McDonald:1998:P

Mond:2000:IH

Moghaddamfar:2009:GPT

Muhic:2009:STP

Moghaddamfar:2007:MCD

Maroulas:2000:SCP

Marrero:2012:SMR

Majstorovic:2014:NGW

Moghaddamfar:2008:CMR

Miklavic:2011:LMH

Macias-Virgos:2009:LES

Mehrmann:1999:SJC

Mehrmann:2008:PPI
Volker Mehrmann and Hongguo Xu. Perturbation of
purely imaginary eigenvalues of Hamiltonian matrices under structured perturbations.

[Vladimir Nikiforov. Linear combinations of graph
REFERENCES

REFERENCES

Orel:2009:ARO

Olesky:2009:MGM

Ovall:2004:AGL

Pati:2001:TSE

Peretz:2002:ICM

REFERENCES

Pan:2012:PAS

Perinan:2012:GMH

Poloni:2010:CMG

Psarrakos:2002:RCM

Psarrakos:2008:NMP

Pena:2011:LMO

Petkovic:2013:BRC

Psarrakos:2000:RBN

Paksoy:2014:IGM

Pultaro:2012:EPF

Qi:2013:CLL

Rakic:2012:DRI

Radojevic:2012:QSQ

Reams:2002:CTZ

REFERENCES

1081-3810 (print), 1537-9582 (electronic). URL http://repository.uwyo.edu/ela/vol19/iss1/22.

Ref:2014:SPO

Rohn:2011:IIM

Ren:2006:NGP

RMZ14

Rojo:2009:SWC

Rivaz:2014:ISM

Rodman:2006:BSB

REFERENCES

2006. CODEN ???. ISSN 1081-3810 (print), 1537-9582 (electronic). URL http://repository.uwyo.edu/ela/vol15/iss1/4.

Rodman:2007:CCS

Rodman:2014:INS

Rohn:2009:ASA

Rohn:2009:DAS

Rohn:2009:FNS

Rohn:2010:CSR

Rohn:2011:EII

Rohn:2013:TMA

Rolle:2003:OSC

Ran:2002:SLM

Ran:2010:RSM

Rojo:2011:SWR

[RRCM11] Oscar Rojo, Maria Robbiano, Domingos M. Cardoso, and

Alberto Seeger. Aperture angle analysis for ellipsoids.
REFERENCES

Shao:2012:CIS

Stevanovic:2008:MSR

Shen:2010:SME

REFERENCES

REFERENCES

(electronic). URL http://repository.uwyo.edu/ela/vol10/iss1/14.

[Sol02] Michael Soltys. Berkowitz’s algorithm and cloow se-
54, 2002. CODEN ????. ISSN 1081-3810 (print), 1537-9582 (electronic). URL http://repository.uwyo.edu/ela/vol9/iss1/5.

[Son13] Guang Jing Song. Characterization of the W-weighted
Drazin inverse over the quaternion skew field with
applications. Electronic Journal of Linear Algebra,

[Spi06] Ilya M. Spitkovsky. On polyno-
mials in two projections. Electronic Journal of Linear Algebra,

[SPS12b] Agarwal N. Sushama, K. Premakumari, and K. C. Sivakumar. Weak monotonicity of
interval matrices. Electronic Journal of Linear Algebra, 24

[Soto2007:SNR] Ricardo L. Soto, Oscar Rojo, Julio Moro, and Alberto
(electronic). URL http://repository.uwyo.edu/ela/vol16/iss1/1.

REFERENCES

Stanic:2013:GSS

Stuart:1998:PTS

Sury:2000:EPH

Seeger:2011:CPS

Salam:2011:SAH

Song:2011:PRP

Shan:2014:EIC

REFERENCES

http://repository.uwyo.edu/ela/vol21/iss1/4. [TG06]

Tao:2011:PRP

Tao:2011:PRP

[Tosic:2011:MPI]

Tosic:2011:MPI

[Chien:2012:SPT]

Chien:2012:SPT

[Tisseur:2006:SCN]

Tisseur:2006:SCN

[Tian:2010:IME]

Tian:2010:IME

[Editors:1998:D]

Editors:1998:D

[Tian:2005:SF]

Tian:2005:SF
http://repository.uwyo.edu/ela/vol13/iss1/18.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Yang:2011:SCI

Yu:2014:QFG

Yu:2013:LSL

REFERENCES

Yang:2013:DGA

Zhang:2009:SCG

Zhao:2010:LSO

Zh:2007:SSD

Zhang:2014:DSR

REFERENCES

Zhong:2012:BRB

Zhao:2011:SIG

Zhu:2010:NES

Zhu:2011:SLS

Zhu:2012:NLE

ZHS08

Zhang:2008:PLB

Juan Zhang and Jianzhou Liu. New lower solution

Zhang:2006:BSR

Zhu:2011:PPI

Zhang:2012:GSC