Title word cross-reference

#2 [Cer85].

$862m$ [Nic17]. 64 [LK16]. * [LNS93]. + [Omi88, Omi89a]. MT [HRB13]. 2
c [SWQ$^+$14]. d [FPS17, PRM16]. f [LG78]. GL$_2(F_{p^n})$ [TNS20]. H^2 [DRS12]. $H_2.A$
[CBB05]. K [Yuv75, APV07, CL85, CC91, CLC92, DKRT15, Die96, EFRMK$^+$20,
FPS17, Gui78, HC14, LLG$^+$17, PT10a, PT16, PNPC20, RRS07, SS90b]. L [OOB12].
L_P [CJ19, HFF$^+$17]. SL$_2(F_{2^n})$ [SGGB00]. N
[BRM$^+$09, BS91b, BS91a, CM01, Gir87, Ven86, WS93, War14, Coh97, Coh98, LHC05,
QG89, QG90]. O(1) [FKS84]. O(log log n) [MN90]. O(log W) [LS07b]. O(N)
[HG77, MN90]. P^2 [VD21]. p^n [Ack74]. π
[FFGL10]. q [OWZ14]. SL$_2$ [MT16]. Z/p
[Mue04].

-approximate [SWQ$^+$14]. -ary
[CC91, CLC92, Gui78, RRS07]. -Bit
[QG89, QG90, LK16, LK11]. -Body
[WS93, War14]. -codes [Bie95]. -dimension
[LHC05]. -dimensional [Yuv75].
-Functions [OOB12]. -gram
[Coh98, Ven86]. -Grams [Coh97, BRM$^+$09].
-Hash [BS91b, BS91a]. -Independence
[PT16, PT10a]. -mer [HC14, PNPC20].
-min-wise [FPS17]. -Nearest [CL85].
-partitions [DKRT15]. -Pipeline [PRM16].
-probe [SS90b]. -Round [GLM$^+$10, SY11].
-SHARP [VD21]. -tree [Omi89a, Lyo83].
trees [CM01]. -verarbeitung [Nie75].
-wise [Die96].

0 [BCJ15, ITP14, NSS+06, WYY05d]. '07
[ACM07]. '08 [ACM08b].

1 [AMSM+09, AAE+14, BCJ15, Con17, DR06,
JRPK07, KKRJ07, KRJ09b, KJS17, Nat95,
SKP15, WYY05a, WYY05b, WYY05c]. '10
[Ano10]. 100 [BLC12]. 100-Gb [BLC12].
100-Gb/s [BLC12]. 1023 [ISO04].
10th [Ano93a, DSZ07a, DSZ07b, DJRZ06, IEE94a,
Fre90]. 11th [PF85, Shm00]. 128
[LP16, MNS12, WFLY04]. 128-bit [MIO89].
13th [BJNR09, Sti93, Sti94c, Vid90]. 14th
[AAC+01, Bir07]. 15th

2 [BH86, GT63, KMV10, LS15, ST86, SK05].
2000 [Shm00, ZC12]. 2001
[ACM01, AAc+01]. 2002 [ACM02]. 2003
[ACM03a, ACM03b, Debo3]. 2004 [ACM04].
2005 [ACM05, ANS05]. 2006 [ABM06].
2007 [ACM07]. 2008 [ACM08b, LL08].
2009 [Mat09]. 2010 [Ano10]. 2011
[Van10, LCK1]. 20th

3 [ABM+12, jCPB+12, NIS15, Sed93, Ruc15].
30-May [ACM84b]. 30th [IEE89].
31-November [ST83b]. 320 [MJ08].
320-bit [MJ08]. 32nd [CIM+05, IEE91b].
33rd [ACM01, IEE92b]. 34th [ACJ07].
35th [AGD+08, Gol94]. 360 [Dit76]. 36th
[AMSM+09]. 37th [AGK+10]. 39th

4 [ACM08b, IEE99]. 42-step [AKY13].
45 [Pro94]. 47th [IEE06]. 48th [IEE07].
4th [JW89, Bn92, Far93, HKNW07,
JB94, Lom93, PNS95, USE00a].
5 [PW94]. 5-Independent [TZ12]. 512 [GLM+10]. 51st [IEE10]. 52nd [IEE11b]. 54th [IEE13]. 5G [Cho21]. 5th [BRW93, Boy95a, Boy95b].

68110a [Sar80]. ’76 [Jen76]. ’79 [Ng79]. 7th [ARA94, Bar83, CHK06, USE00b, Win78].

80f [Sar80]. ’83 [Ano83, CRS83a]. ’84 [ACM84a]. ’85 [IEE85b]. ’86 [AA86]. ’87 [CP87, CP88]. ’88 [ACM88a]. ’89 [ACM89a, BV89, BF89, Bra90, QV89, QV90, CP91c].

9-13 [ACJT07]. ’90 [AFK90, A+90, Dam90a, Dam91, IEE90, MV91c, SP90]. ’91 [ACM91a, Dav91, Fei91, HL91, IEE91a, IRM93, ACM91c]. ’92 [Brit92, Bri93, BW92, FNY92, IEE92a, KLT92, Rue93, SZ93, Yua92]. ’93 [Ano93c, BB93, BJ93, He94, IEE93, Lom93, Sti93, Sti94c, vL94]. 93k [Pro94]. ’94 [ACM94b, De95, JB94, PSN95, SW94b, SW94a]. ’95 [Cop95b, GQ95, IEE95, Lev95, QG95]. 959 [ACZ16]. ’96 [Lak96]. ’99 [Wie99]. 9th [DJRZ06, ST83a, IEE88d].

A. [Pro94]. Aarhus [Dam90a, Dam91, NS82]. ability [DLM07]. abolishing [DSS10]. Abstract [DP08, EjKMP80, Lum73, MW95, SW87, THS97]. Abstraction [CL83, DL06, Hili88, LPSW03]. abstraction-safe [LPSW03]. Academic [Cer85]. ACCEL [HKL04]. ACCEL-RATE [HKL04]. accelerate [GK12b]. Accelerated [Kri89, MW09, MWC12]. Accelerating [HAK’16, TT82, BLY20]. Acceleration [FAFK21, JMH02]. Accelerator [FM91, TLL09]. Access [Ast80, BDPSNG97, BM76, CF89a, Cla77, Dun56, FNPS79, Fal85b, F+03, FP89b, FKS84, GG74, HB89a, HB92, KR86b, KR86a, KM88b, LK84, Lit84, LL86, LMR02, MY79, Mul72, Ols69, Pet57, SD85, SDKR87, SHRD09, Tra63, VB00, XHZ+19, YL04, And88, Bay73b, BC93, CS93a, FPSS05, HB89b, KFG15, Lar88b, Lin63, MBK00, Mi95, ML95, RT89, TKT+89, ZO13]. access-pattern-driven [ZOl3]. Accessed [Ols69]. Accesses [Pan05]. Accessing [Cha88, Ore83, FK89]. accommodation [HOT2]. Accountable [XHZ+19]. Accumulated [Ny96]. accumulating [ZHW01]. Accumulators [CHKO08, PTT16, CHKO12]. Accuracy [YWH09, HKL07]. Accurate [LCL+20, PC94, SL16, YGS+19, NTW09, TYSK10]. Achieve [LLL+16]. achieved [Con17]. Achieving [Lar88b, Lyo85]. ACM [ACM94d, ??69, ACM75c, ACM75b, ACM75a, ACM76, ACM77b, LFP82, ACM82, ACM83b, ACM84b, ACM85b, ACM85a, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, ACM91a, SDA91, ACM91e, ACM96, ACM97a, ACM97b, ACM98, ACM101, ACM02, ACM03a, ACM04, ACM05, ACM07, ACM08a, ACM08b, ACM11, ACM12, Ano92, BIP92, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, IEE02, Jen76, Kar98, LL08, Mat09, Nav85, Rio89, ACM77a, Shm00, SW94b, Sto92, YR87, ACM81, ACM91b, BV89, Lie81]. ACM-SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98]. ACM-SIGMOD [Nav85, Lie81, ACM81]. across [HWZP18, SF88]. Action [BFR87]. activation [SZO+20]. Active [GHJ+93, EVF06]. Actor [TCP+17]. Ad [DPH08, JLH08, Cha12]. Ad-Hoc [JLH08]. Ada [BCS89, ST86, Tr006, Wo84]. AdaBoost [LLZ10]. Adaptable [NHS84]. adaptation [DOP+14]. Adapted [RJK79]. Adaptive
Adaptive-Hash [OL91, OL92]. add [FJ13].
add-rotate-xor [FJ13].
Addendum [CV85].
addition [FJ13].
Additional [LY72].
Additive [MBBS12].
Address [HP63, Jai89, Jai92a, Jai92b, Jaixx, LYD71, Lum73, PK87, SR63, Tam85, TK85, Wil96, Ly72, MLP07, MPL09, RW07].
Addressable [Hin20, RSK17, Koh80, BB07].
Addressed [SVCC01].
Addressing [Bay74, Bra84a, Bra86, Buc63, Fab74, Fel87, Gon77, Gon80, JC88a, Joh61, Kno71, Kno88, KR79, KRJ +80, Lit80, Litxxa, LH03b, LH03a, Mot84, MC86, Pet57, RJK79, SS62, SD76, Som99, Tra63, CKW93, Lin63, NK16, TT81, Wan05, van73].
Adelaide [Bar83].
Adjusting [Pag85, Wog89].
Administration [Fis87].
Addressing [Bra85]. Advanced [Ano93d, CE95, HDCM11, Hsi83].
Advances [Buc82, AFK90, Bel00, Bra90, Bri92, Bri93, CRS83a, CP87, CP88, Cop95a, Cop95b, Dam90a, Dam91, Dav91, De 95, Fe91, Fra04, GQ95, He94, IRM93, JBJ94, LC06, MV91c, PS95, QV98, QV90, QG95, Rue93, SP90, SZ93, Sh05, Sti93, Sti94e, Va06, Wie99, Yun02].
Strategy [WSSO12].
Adversary [LN93]. Advisor [Cer85].
Aeronautics [KCF84]. Aeronautics [Fis87].
Aerospace [Fis87, IEE94b].
AES [ABO +17, BOY11, BOS11, Gk08, Rog91a, Sas11, JNPP14].
AES-like [JNPP14].
affects [HL05].
Again [DRS12]. Against [DL17, ASBdS16, JL14, JC95, MSP12, Sh00b]. Age [Cro98].
Agent [BEl12, DF01].
Aggregation [BjL16, PT10b].
Agreement [GB10, YLSZ19].
agrometeorological [WM93].
Ahead [Moh90, Moh93].
AID [Dos78b].
Airport [ICD88, ICD90].
Akron [Fis87]. al. [SPLHCB14].
Alaska [IEE01].
Albuquerque [ACM75c, ACM75a, IEE91a].
Algebra [Bra84b, KTMO83b, KTMO83c, EBD91, FP99a].
Algebraic [AM94b, EJMP80, Jen76, Lak96, Lev95, Mar71, Ng79, WX01, vdHvH12, BF08, GS89, LS06, Pon87, Coh94, AAG16]. Algebras [CT96].
Algol [FR69].
Algol-Based [FR69].
Algorithm [ANS97, ANS05, AKS78, ABH +73, AEMR09, BH90, BI87, Bou12, Boy98, CS83a, CPB +12, CdM89, CW90, CT12, Coh98, CHM92a, CHM92b, CM93, Dev93, DCM18, FL73, FFPVV84, FCH89, FCH92, Fr81, Got01, Ha90, HCKW90, HR96, HW08, HC13, Jen97, JRPK07, KMM +06, KRJ07, Le87, LLDZ18, LLL11, LW10, MXL +12, Man12, MH90, MV01, MH00, NP91, OGG94a, OOB17, OL91, Omi91, OL92, Pap94, PCY95, Pet97, PMV97, Reg82, S01, So93, Spe92, Sta99, TRN86, TTY93, Toy93, TSP +11, W90, WW20, WZJS10, WS93, WVT90, Wil97, Wil71, WDYT91, WYT93, WL12, ZG90a, ZJM94b, ZPS90, ZPS93a, AS98, AT18, AGJA06, ATAKS07, CLS95, CLW98, DHPK97, FH79, FHC89, FKI +21, Gai82, GBY90, HLL18b, HL94, ISO97, ISHY88, JW +18, Kim99, LEHNO2, MCM01, MKSi98, OT89].
algorithm [PCV94, PL21, Pri95, SBR95, SM94, SI92b, Ste18, WM93, War14, Wie86, YCJ12, ZJM94a, ZJM94c, ZPS93b, ACZ16, Sta94, TK199].
Algorithmen [Meh77, Meh86, Wir75, Wir83, Zel91].
Algorithmics [Mat93]. Algorithms [AM94d, ACM91c, ACM97a, ACM05, ACM08a, ANS97, AHH83, AOAAK20, A06, Ano95a, ia91, iA94, AT90, AT93, AT91, BS97, Bur76b, CFP19, CV86, CRR18, CT96, DG58a, DG85b, Dev86, DS97, FM96, FW09, FM85, GRBCC19, Ger86a, Ger86b, Gan84, GBY91, GI77, Gra88, Gra99, GC95, GKS81, GK82, Gui76a, Gui76b, GG80, GS89, Har88, HS78, HL91, KR81, LLLC17, LS89, Lom93,
LTS90, LH03b, Mac95, MF92, MLD94, MLxx, Mat09, MS88a, MQ92a, OG94b, OL89, PS93, Pip94, PV19, Pre97a, PB85, QG89, QG90, Reg85, Riv74b, RNR13, Sam76, SD89c, SD89a, Sed88b, Sed90, Sed92, Sed93, SD76, SG88, SK98, Shm00, TR02, TY91, Vit81b, VC85, Wal88, WFHC92, Wie87b, Wir86, XCCK09, Yen91, ZG90b, AI08, BMS17, BMQ98, Cra85, DG96.

algorithms [DJRZ06, DJNR09, DC94, EVF06, FJ13, GK05, Gui76c, HK95, HKNW07, JDW19, JMH02, Kan90, Kar98, KP92, Kha95, MPL09, Mol90a, Mol90b, MMSY94, NM02b, PBGV89, QM98, Rei88, RLM87, RG89, Riv74a, SD89d, Sch91a, Sed83a, SG72, Vit82a, Vit01, SDA90, SDA91, A+90, AlNOW11, CT10, DSZ07, DF09, FY92, HM08].

Algorithmus [BI87].

Alignment [BFMP11, BRM09, LPT12, EASR22].

Alignments [BDD10].

All-in-one [SV18].

All-or-Nothing [SRY99].

Alley [Boy98, Get01, Jen97, Pes96, Wil97].

Allocating [CC91, GP08, KW94].

Allowable [Bla07].

Almost [BKST18, BM99, CKBB93b, DW03, YSEL09, CKBB83a, Duc08, IIL17].

Almost-Minimum [BM99].

Almost-Universal [BKST18].

Alpha [WM19].

Alternative [EMM07, HBL+10, H95, SD89b, LS15].

Alternatives [GD87].

American [CHK06].

Among [CC91, GP08, KW94].

amortize [KM07].

amortized [ANS09].

Amplification [BBR88].

Amsterdam [AW89, CP87, CP88].

Analogue [Cai84, DSGK820].

Analyses [CS87].

Analysis [AP93, Ano95c, AD11, AM07, BYSP98, BRS02, BRSS10, BM89, BM90a, BF08, CF92, CL85, CC87, Cha88, CLNY06, CN08, CV87a, CV84, Che84a, Che84b, CV85, CK94, CS93b, CDW+19, DR11, FC87a, FPV98, FMM09, FMM11, GRBCC19, G12a, GL73, G90b, GK81, GK82, GLG+02, GS76, Gui76a, Gui76b, GS78, Gui78, Gur73, HNMB07, Hac93, Has72, Kut10, Lar80a, Lar80c, Lar82b, Lar83, Lar84, Lar85c, LCK11, Lev00, Lew82, LWWQ08, LP91, LP92, LM93c, Lum73, MK11, MCW78, MM09, MY80, Men82, MP12, Mol90a, Mol90b, NM02a, NC011, NAK+15, Omi91, Pit87, PV94, PV19, Pre93, PB85, RM88, Ram89a, Reg85, Reg88, Riv74b, SS62, Sch79b, SYW+20, S93, SA97, Vek85, VP96, VP98, Vit80b, Vit80c, Vit83, VC87, WB90, Yao08].

Analysis [de 69, Anti20, BKZ12, BZZ12, CK89, DSD99, DC03, DK12, GLC08, GM77, Gui76c, KL99, LL00, MJ08, MS13, MS87, MS08, Pro94, QM08, RAD15, S90a, SLC+07, Sed83a, SGK09, WL07, ZBB+06].

Analyti [Pro94].

Analytical [Bat81, DO+14, WT07].

Analytics [LMD+12, WZY+18].

analyze [FK13].

Analyzer [CRdPHF12].

Analyzing [Kue82b, PV97].

anchor [FK1+21, SZ0+20].

Anchorage [IEE01].

AnchorHash [MVB+21].

Anderen [DS84a].

Anfänger [Sch76].

Angels [AC82, BD88, ICD86, ICD87, ICD88, ICD90].

Ann [AC81, Bai81, Bor81, Lie81].

annotated [Pon87].

Announcement [DLH09, KS12, Nat92].

Announcing [SBK+17].

Annual [AC75c, AC75a, AC76, AC77b, AM84b, AM84a, AM85a, AM86b, AM88a, AM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM97a, ACM01, ACM02, ACM05, ACM07, ACM08a, ACM08b, AH03, Ano93d, Ano10, BV89, BIP92, Bri92, Bri93, Cop95a, Cop95b, DF12, Fra04, Gol94, IEE74, IEE76, IEE80b, IEE82, IEE88c, IEE89, CTC90, IEE91b, IEE92b, IEE99, IEE06].
ASIACRYPT [IRM93, LC06, PSN95].

ASIC [MKAA17]. ask [Gre95]. Aspects [AH03, SS89a]. Assembly [ASW07].

Assignment [THY +18, DMP09]. Assess [Gre95]. Aspects [AH03, SS89a]. Assembly [ASW07]. Assignment [LL92, Wil71]. Assigned [Wil96]. Associated [Sar10, FDL86, SB95]. Association [CL05, CT12, DT87, PCY95, TGGF10, HC02, HC07]. Assoziativer [GN80, Koe72]. Assumptions [Chr84, Dam93, Dam94, Sim98]. Astronomical [Gui89]. Asymmetric [CLP17, BR94, CFN18]. Asymptotic [CLS18, IK92, Ati20, Pro94, WL07]. Asynchronous [KFG15, PAKR93]. Atlanta [ACM83a, ACM83b, USE00a]. Atlantic [Fre90, GMJ90, IEE84]. ATM [SMS91]. Atom [LC12]. Atomic [LMR02]. Attack [CJP12, CMP07, JHL08, KK06, Pey15, PGV90a, Sho09b, WW09, WFW +12, ZF06, Ano98, BSU12, CJP15, JG95, PGV93a, PGV93b, SXL16]. Attacking [CP95b]. Attacks [AB17, AB +16, BDG +20, BPBBL12, Bih08, BKM09, CY06, DK07, DDS14, DL17, HKKK10, HRS16, JHL14, KN10, KL98, KV12, RK94, KKMS10, LJJ15, MRST10, MNS12, Saa12, SY11, Saa11, WY05d, ZWW +12, BSU12, ITP14, KL95, KH10, LS07a, MSP12, WYW05a, WS13]. Attribute [CS83b, CS87, GK94, GK95, HYH93, KG95, RSSD90, RL74, ZZM17, ASW87, HR93]. Attribute-Based [ZZM17]. attributes [HM03]. Auction [SKM01]. Audio [MV01, YTJ06]. Audit [SK99, Ano93a]. Auditing [WY +15, DMB19, GB17]. Aufteilungs [vM39]. Aufteilungs- [vM39]. Aug [BD88]. Augmented [ZLC +18]. August [ACM79, LFP82, ABB93, AW89, A +90, Bel00, Bri92, Bri93, BW92, CS83a, CGO86, Cop95a, Cop95b, DSS84, DSZ07a, DSZ07b, DJRZ06, DNR09, Fra04, GII77, GSW98, HB93, IEE95, Jen76, JY14, MK89, MSDS90, PV85, PK89, RK89, Ros74, Row90, Sho05, Sti93, Sti94c, WPHC90, W1999, WSS91, Yu92, Yun02]. AUSCRYPT [SP90, SZ93]. Austin [ACM87, ACM88a, ARA94, Nav85, USE00b]. Australia [Bar83, SP90, SZ93, DG96, MSDS90, PSN95]. Australian [Bar83]. Austria [Kui92, ICD93]. Auswahl [Pet83, Dos78a]. Authenticate [Yas07]. Authenticated [KV09, PTT16, Sar10, YLSZ91, BSNP96b, GL06]. Authentication [Abi12, Alb21, AS96, BCK96, BKS18, BAN89, CJP12, DCM18, EPR99, FIP02a, G12, GBL94, HMNB07, HCPB12, JRK07, KS01, KK10, MRW98, NR12, PGV93f, Q197, RWSN07, Rog95, Rog99, Sho96, TW07, Tsa92a, VD21, WC81, WDP +12, WS03, YY07, ACP10, CBB05, CJP15, GTL21, HLL2, Kra94, Kra95, KCL03, Ku04, KCO5, LLL02, LKY04, LW04, MS09, OCGD11, SPLHCB14, Sta99, Sti91, Sti94b, SV06, Tsa92b, EY04]. Authenticity [Sch01b, ADFA12]. Auto [EFMRK +20, Lit77a]. Auto-structuration [Lit77a]. Auto-tuned [EFMRK +20]. Automata [ACM82, IEE74, LP04, LK93, MMC01, AGK +10, ADG +08, AMSM +09, ACJT07, dBV80, CIM +05, Kui92, NS82, Pat90]. Automated [DMG89, ZS83, Cer85]. Automatic [GT80, Zam80, SB07]. Automation [IEE11a]. Automaton [DG93, LLL11, MZ18, TLL07, TLL09]. automaton-matching [TLL09]. Automorphism [PWY +13]. autonomous [SZ +20]. AutoPlacer [PRR15]. Auxiliary [DL12, FXW17]. Availability [Eng94, ADF12, DFMR15]. Average [Bra84a, Bra85, Bra86, Gon77, Kut10, Reg81, }
average-case [Mic02]. avoid [Pat94]. Aware [CJKK19, HNKO20, JLL+20, MZL+19, PG17, BB07, HFZ+15, HFF+17, NDMR08]. awareness [Li10]. Awesome [Knu19]. AWOC [Rei88].

Balance [IK92]. Balanced [AG10, ABK99, BB07, HFZ+15, HFF+17, NDMR08]. Balancing [HC13, KJC11, Nak21, Omi91, RRS12, RK91, Top92, TP95, ZJM94a, ZJM94b, ZJM94c, DS95, SX08, WL07, WTNO9, XCKC09].

Barcelona [DJRZ06, CTC90, LSC91]. Barreto [FT12]. barrier [MPST16]. Base [BCH87, CRdPHF12, Chr84, EE86, FM85, Gho77, Gho80, ISK+93, McC79, YBQ17, Zam80, Mar75, Mar77, WLLG08]. Based [AK98, Abi12, Abi21, AP08, Aum09, AS16, Bal96, BG92, Ben98, BDM+12, BHH+15, BR502, BC509, BRSS10, BI12, Buec82, Bur83b, Bur83c, But17, CCF04, CFP19, CS83b, Cha84b, CS87, CW91, CdM89, CdM90, CW09, CTZD11, CZLC12a, CZLC12b, CZLC14, CT12, CW+19, CadHS00, DGV93, Da95, DK09, DG85b, DL17, DF01, DR11, DB12, EK93, Fab74, FL04, FR69, FRB11, FH69, FFGOG07, GGY+19, GRBCC19, GO07, GI12, GSC01, GRI98, GKO8, GKO7, HMNB07, Hal12, HPCM09, HHL10, HNKO20, HW08, HWZP18, HCPPS12, HLC10, Hui13, HRS16, HBG+17, HM19, JXY07, JTOT09, JK11, KSSS86, KM09, KV09, KSL7, KKRJ07, KJC11, KMOV10, KTM083b, KW12, KP96, KP97, KR79, KKRJ+80, KSK85, KYN90, KTK91, LM93a, LY+18, LX+19, LW88, LMC07, LMC07, LLDZ18, LLZ10, LLL09, LHC05]. Based [LLLC17, LRY+15, LXL+19, LG78, LTS90, LCM+20, MLD94, MKF+16, MCF17, MP12, Mil85, MKAA17, NIS15, NCFFK11, Nak21, NNA12, NXX13, OL89, ORS10, PFM+09, PTT16, PC9Y5, PHG12, PRZ99, PSZ18, Pre97a, RGNMPM12, RKT12, Rey14, RWSN07, RNR13, RL74, RK91, SD85, SDKR87, Sch01b, Sch79b, Sch81, SBS16, SYW+20, SC90b, SC90c, SC90c, SHO96, SKC07, SSS05, SVCC01, Sun15, TWWZ11, TGGF10, TZ12, TY91, TP15, TK07, US09, WWZ09, WSSO12, XBHO6, XHZ+19, YNW+09, YSW+11, WL12, YY07, YTJ06, YD86a, ZJ09, ZWH17, ZM17, ZQS12, ZLC+12, vMG12, Ad88, AY14, ASM17, ACP10, AAGG16, BSNP96b, BLC12, BLY20, BCR04, BC06, BSD09, Bur83a, Cha12, CML+13, CCHK08, CJ12, CJ15, CLW98, CJ86, DGS85a, DS09a, DHW08, EASR22, GB17, GL06, GLC08, GZ09, HLLH8b]. Based [HLL18a, HAK+16, HCJC06, HC11, HLWM93, HXMW94, HW88, HL03, JFD09, JL14, JWKB11, JG95, KF94, KRJ09a, KST99, Kor08, Kra94, KCL03, Ku04, KCC05, KSC11, KSC12, LM93b, LDM92, LWG11, LND08, LTN12, LACJ18, LLJ15, LK21+20, LMPW15, MSZ+20, MS09, Me19, MZ09, MS13, MHT+13, Mu92, MFES04, MJ14, NADY20, NS16a, OT89, PCK95, Par18, PPB16, PL21, PW06, PBV89, PGV91, PGV93e, PGV94, QZD+18, RP95, SPLLCB14, SN19, SV94b, SV95, SE21, SGK09, SX08, SRLR98, Sin98, SA17, SZO+20, TKH20, TWL+18, Tsa08,
TD93, UIY10, UHT95, VD05, VD21, Wil14, WY02, XLZC14, YCJ12, YSL05, YL97, YZ16, YD86b, ZYWM20, ZDI+15, FH96, TLLL18. basée [LG78]. Bases [ABB93, VLD82, AW89, AAC+01, BD88, BDS88, BJZ94, CGO86, CKN18, DSS84, GON83, Hil78b, Hil78a, Ker75, LT80, LSC91, MSDS90, PV85, ST83a, ST83b, Yua92, Yao78, LT80], Basics [Dre17a], Basis [BT12a, MW95, CHL07], Batch [Lyo79], Batched [Piw85, SG76b], Bay [Ano10], Bayesian [CSSP15, OGAB14, PKSB18, RH95, SP12], BC [ACM05, LL08], BDDs [MJT+02], Be [Yao81, CP91c, GMW90, Sch91a, Sim98], Beach [PDI91, RNT90], Beitrag [BI87], Belgium [BW92, QV89, QV90, Vid90, PGV93c], Bell [Lam70], belte [BDPV06], belt-and-mill [BDPV06], Bemerkung [Eck74a], Benchmarked [MKAA17], Benefits [Bur79], Bergen [Ytr90], Berkeley [ACM86b, DJNR09, IEE06, IEE13], Berlin [AH03, Yao78], beschränktes [Wen92], Besetzungswahrscheinlichkeiten [vM39], BESM [Ers58b], better [Mit17], Between [Bra84a, Bra86, KCF84, PNPC20, Bra85, CCL91, GHW07, LC13, Omi89a, Sar11], Bewertung [Hil78], beyond [BLC12, LJW+17], BF-Based [WL12], Bi [MZL+19], Bi-Index [MZL+19], bias [NN90], Biased [JCK+18, SY98]. bibliography [Pon87, Sab94], Bicliques [LLW10], Bid [SKM01], Bidirectional [Cle84], Big [ADOAH19, LRY+15, SSSC17, WZY+18, YGS+19, LL13, SA17], BigDecimal [Sun02], Bijective [Oka88, SS15], Billion [LLL+16, STS+13, ZBB+06], Billion-Requests-Per-Second [LLL+16], billion-vertex [ZBB+06], BiloKey [MZL+19], Bin [WLWZ19], Binaries [ASWD18], Binary [CLP17, DGGL16, DHT+19, Du86, Fro82, GRZ93, HSPZ08, LQH18, TYZO15, de 69, FP82, LMSF89, LMPW15], Binary-Relational [Fro82], Binning [PKSB18], Bins [CRSW11, CRSW13, DW05, DW07], biological [BW89], Biometric [FFGG07, MS12, SP21, YY07, SK20], biometrics [AGBR19], Biomolecular [ZLY+13], biomolecule [FDL86], Biomolecules [BRM+09], Bipartite [Kut06], birth [Ste18], birthday [MPST16, MSP12, SXL16], Bit [Bla95, Kii01, QG89, QG90, SP91, ASM17, BK07a, ISO97, KL16, KL11, MJ08, MIO89, TK199, MKL21, bit-level [TK199], bit-parallelism [ASM17], Bitcoin [Nic17], Bitmap [EVF06, FVS12], Bits [Kii01, NAe95], Bitstate [IJK13], BitVault [ZLL+17], Bitvectors [BMV02], Black [JLH08, Rja12, SV94b, SV95], Black-Box [BRN02, Rja12], Black-Hole [JLH08], BLAKE [AMPH14, VNP10], Blind [FL04], Block [BRN02, Chun90, CV08, KP96, KLP98, LM93a, LK94, Men12, Pre97a, QG89, QG90, SDMS12, SDMS15, YL220, Zhe90, GLC08, HLMW93, HXMW94, ISO97, KL95, Lai92, LM93b, Men17, PW06, PGV93e, PGV94, RP95, Roe95, YL97], Block-Cipher-Based [BRN02, GLC08], Blockchain [Dre17a, GMW90, SAR+18, ZBB+06], Blockchain-Based [HM19, LSZ+21], Blockcipher [AP08, BCS09, BRSS10, HKY12, LLJ15, PBGV89], Blockcipher-Based [AP08, BCS09, LLJ15], Blockciphers [RS08, PGV91], blocking [PPBO12], Bloom [DKT06, HHH07, HHLX12, HYW+18, MK11, PSS09, Ram89b, RKK14, RK15], BLS [BP18], BNCOD [Oxb86], Boas [Wei00], Boca [HB93], Body [WS93, JWM+18, Lia95, War14], Bonaventure [ICD86], bond [ZBB+06].
[GK08, LK16]. carry-truncated [FJ13].
Carter [Sar80]. Cartesian [Du86].
Cascade [KZ84, RTK12]. Cascaded [Jou04].
Cascading [Wan14].
Cascaded [Jou04].
Cascading [Wan14].
Case [ANS09, ANS10, AR17, DMV04, DS09c, Ell85b, F+03, FKS84, HBL+10, Kut10, Lar82a, YLB90, BGG94, FPSS05, Lar81, Mic02, MT16, SKD15]. case/average [Mic02].
Cash [Bac01].
Casino [IEE84].
Cassandra [EH17].
Catalonia [LSC91].
Catalunya [CTC90].
Categorization [MBBS12].
Categorized [LLG+17].
Cathedral [IEE88a].
Cauchy [TI12].
Causal [SDZ21].
Cau [GJM02].
Challenges [BVF12, GJM02].
Challenging [MSP12].
Changle [BBKN01, BBKN12, Fil02, KP96, LM93a, Pre97a, Roe94, SDMS12, SDMS15, Zhe90, DS09a, HLMW93, HXMW94, Lai92, LM93b, PGV93e, PGV94, RP95, Roe95].
Changer [BBKN01, BBKN12, Fil02, KP96, LM93a, Pre97a, Roe94, SDMS12, SDMS15, Zhe90, DS09a, HLMW93, HXMW94, Lai92, LM93b, PGV93e, PGV94, RP95, Roe95].
Chaff [BBKN01, BBKN12, Fil02, KP96, LM93a, Pre97a, Roe94, SDMS12, SDMS15, Zhe90, DS09a, HLMW93, HXMW94, Lai92, LM93b, PGV93e, PGV94, RP95, Roe95].
Chaj [BBKN01, BBKN12, Fil02, KP96, LM93a, Pre97a, Roe94, SDMS12, SDMS15, Zhe90, DS09a, HLMW93, HXMW94, Lai92, LM93b, PGV93e, PGV94, RP95, Roe95].
Char [BBKN01, BBKN12, Fil02, KP96, LM93a, Pre97a, Roe94, SDMS12, SDMS15, Zhe90, DS09a, HLMW93, HXMW94, Lai92, LM93b, PGV93e, PGV94, RP95, Roe95].
Character [HDCM09]. Character [Bay74, DR06, SDT75, DLH'+79, RP95].
Characterization [BR14, CPP08, Lyo83, van94].
Characterizing [MH03a, RTK12, VZ12].
Checker [Wie86].
Checking [CZLC14].
Checkpoints [FRB11].
checksums [GKKT10]. Chemical [WKO78, ZBB'+06].
Chicago [ACM88b, ABM06, BL88, IEE82, Lom93, IEE80a].
Chinese [ANS09, ANS10, AR17, DMV04, DS09c, Ell85b, F+03, FKS84, HBL+10, Kut10, Lar82a, YLB90, BGG94, FPSS05, Lar81, Mic02, MT16, SKD15].
Circuit [NRW90, Ste82].
Circuitry [Cai84].
Circuit [DP07, RWSM07, MS09].
Circuits [DLT98, MD05, GHK'+12, Mil98].
Centure [AN20].
Cirencester [Boy95b, Boy95a, Far93].
City [VDL82, Fre90, GMJ90, IEE84, IEE99, JBWK11].
Class [CMW83, DadH90, DS09c, MCW78, AAGG16, DM11, Eung90, SN19].
Classes [ACZ16, CW77a, CW77b, CW79, KW12].
 classifications [LZ06]. Classifier [GK95, KG95]. Clause [CJ86, Llo81]. Claw [BHT98, BHT97]. Claw-Free [HSPZ08, MCK89, PT11b, SY08, And93, CKKK09, IG94, LS07b, MCK89, XLZC14]. }

Clustering [AII89, Bel70, Bel72, Bel83, BBS90, CMd89, CMd90, Gui75, Gui78, KBB81, Mac95, MNY81, PPK81b, AOAI9, GDC6c, NH74, SX08]. Clustering/hashing [AII89]. Closed [SS98a, SS90a]. Closest [SMA95, VS97, TYS17]. Closing [PNP20]. Collection [AG93, LXL19, TR02, UIY10]. Collections [BBD82, BBD86, LRY78, LRY80, LRY80, DTM18, SV15b]. Collide [GNP05]. Codé [Lit77a]. Codes [BKST18, BGS96, Bie97, CLP17, FAL85b, Har97, Irbxx, JPO7, KP96, KP97, KGJO18, LQH81, SVCC01, TW07, BJKS93, BJKS94, BOU95, FAL86, FAL88, FAL89, GKH+12, GBS75, IG94, KRB89, MI80, STH91, ST74b, V17, Far93, Bie95]. Codification [FDL86]. Coding [BLO70, BOO74, BUR77, BUR78, BUR79, CJ86, DA12, DAV73, DOS78a, FH69, GON77, HP63, HJ75, HG77, KAM74, LI77b, MAR64, MAR71, PIP79, SDO5, SDR87, STA73, STH72, BOY95a, BOY95b, BUS76a, COH94, DVS+14, FAR93, LG78, RIV74a, SUB94, SDR83b, SCH79b, MGL21, YTR06, HJ75]. Coefficient [KRN12]. Coherency [FW18]. Coherent [GLHL11]. Coin [CLP13]. Coins [HR04, ROS12]. Collaboration [JXY07]. Collaborative [AODAH19, WY00]. Collecting [FW76, FW77]. Collection [AG93, LXL19, TR02, UIY10]. Collections [BBD82, BBD86, LRY78, LRY80, DTM18, SV15b]. College [JÁ90]. College [JÁ90]. Collese [JÁ90]. Collide [GNP05]. Codé [Lit77a]. Codes [BKST18, BGS96, Bie97, CLP17, FAL85b, Har97, Irbxx, JPO7, KP96, KP97, KGJO18, LQH81, SVCC01, TW07, BJKS93, BJKS94, BOU95, FAL86, FAL88, FAL89, GKH+12, GBS75, IG94, KRB89, MI80, STH91, ST74b, V17, Far93, Bie95]. Codification [FDL86]. Coding [BLO70, BOO74, BUR77, BUR78, BUR79, CJ86, DA12, DAV73, DOS78a, FH69, GON77, HP63, HJ75, HG77, KAM74, LI77b, MAR64, MAR71, PIP79, SDO5, SDR87, STA73, STH72, BOY95a, BOY95b, BUS76a, COH94, DVS+14, FAR93, LG78, RIV74a, SUB94, SDR83b, SCH79b, MGL21, YTR06, HJ75]. Coefficient [KRN12]. Coherency [FW18]. Coherent [GLHL11]. Coin [CLP13]. Coins [HR04, ROS12]. Collaboration [JXY07]. Collaborative [AODAH19, WY00]. Collecting [FW76, FW77]. Collection [AG93, LXL19, TR02, UIY10]. Collections [BBD82, BBD86, LRY78, LRY80, DTM18, SV15b]. College [JÁ90].
Chi94, DJRZ06, IEE11a, Jáj90, Jen76, Lak96, Lev95, Ng79, RK91, Tan85, ZO93, ZLC + 12, vdHVH12, Fis87, MYS12, Ano93d.

Computational [CCC89, Cer83, LYW + 18, MNT90, Sab94, Wil00, de 69, Dam94, GvR08, IKOS08, MNT93, Sch82b].

Computations [FHL + 19, Fis87, MYS12, Ano93d].

Compute [Bra84a, Bra85, Bra86, TRO92].

Computed [TT81, TT86].

Computer [IJW89, ACM91b, AFI63, AFI69, AH03, iA91, iA94, Bar83, BCH87, Bor81, DS97, Ell82, Gol94, GT63, HS78, IEE76, IEE80b, IEE80a, IEE84, IEE85a, IEE88c, IEE88a, IEE88b, IEE89, IEE91b, IEE92b, IEE95, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, Ja89, Ji92a, Ji92b, Jaixx, Jou85, KCF84, KO90, Knu89, Knu73, Knu74, Knu75, Kon10, Leb87, LC86b, LC95, LL83, Mar75, Mar77, MS05, RRR99, RJK97, Rie89, Rov90, Ruc15, SK90, Wil85b, Win78, ZZ83, ACM94c, Ano93e, Er86, FP89a, GKH94, IEE92a, IEE01, MLP07, Mo92b, OT89, RG89, TWW77, vL94, ACM94a, Ano93a, PGV93c].

Computer-Recognized [RJK79].

Computers [FHMU85, MK93, PSR90, Rad83, SB93, RFB97, Deb03].

Computing [ACM75c, ACM75a, ACM76, ACM77b, ACM84b, ACM85a, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM92b, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM04, ACM07, ACM08b, ACM11, ACM12, Bai81, DT87, IEE94c, KKRJ07, KL92, LCK11, Ram87, Re88, Tro95, AFR90, GKH12, GB17, GC90, LVD + 11, MN99, Pri95, Bai81, GT80, Rie89, ACM77a, WGM88].

Concatenated [CD84a, DC81, HS08].

Concatenation [BJKS93, BJKS94].

Concept [Kie85, Lum73, Ter87, Ano90b].

Concepts [KTM083b, vL94].

Conceptual [FZ87].

Concise [PT12b].

Concomitant [MWC12].

Concrete [GKP89, GKP94].

Concurrency [Ell85a, Ell87, Ell88, FK89, GG74, HSM95, Kum89b, Kum89a, LSV89, Moh90, Moh93, OA89, SDK91, GT61, MTB00].

Concurrent [AR16, CLP13, Cha88, CHS + 18, CHSC18, Ell83, HY89, HY93, HY86, HTY90, Kum90, MSD16, MSD19, MSSWP0, Omi88, Omi89a, PBBO12, SDW14, SG88, WCW + 22, CCL91, MML01, MRL + 19, Pro18, TMW10].

Condensation [CT96].

Condensers [ATS19].

Conditionally [ACP09].

Conditions [IK00, IH95, Ru92, Ru93, Ru95, BDPMV14].

Conference [ACM81, ACM85a, ACM91b, ACM94c, ACM04, AFI69, ABB93, AFI90, VLD82, Ano89, AW89, AAC + 01, AOV + 99, AA86, Bai81, BD88, Bar83, BDS88, BV89, BIP92, Bel00, BJZ94, BR93, BL88, Bor81, Boy95a, Bri92, Bri93, BHS, CG89, CGO86, CLM98, Cop95b, DSS84, Far93, FNY92, FMA02, Fra04, Fre90, GMJ90, Gol92, GSW98, HB93, IEE80a, IEE85b, ICD86, ICD87, IEE88a, IEE88d, IEE88b, IEE88c, IEE90, IEE91a, IEE93, IEE94c, IEE95, IEE02, IEE11a, IMR93, JB94, Jou85, JY14, Joy03, Ker75, Knu89, KLT92, LC06, Las87, LCK11, Lie81, LS89, LT80, LSC91, Lom93, MK89, MSD90, Mo92b, Nav85, Ox86, PV85, PK98, QG95, RRR99, Rie89, RK98, RNT90, Sch82a, ST83a, ST83b, SP90, Sho05, SW94b, SC77, Sti93, Sti94c, Sto92, SM08, SM12, USE91].

Conference [USE00a, USE00b, Vau06, Vid90, WP90, JWSS91, Yan10, Yao78, Yu92, Yun02, ACM94a, ARA94, Ano83, Ano93a, Ano93c, Boy95b, CE95, Cop95a, DG96, DT87, Deb03, HF13, IEE92a, IEE94a, IEE95b, IEE01, KI05, PSN95, SW94a, TW77, USE90, Wie99, L769, ACM75c, ACM76, ACM77b, LFP82, ACM91d, AFI63, YR87].

Confidence [DGD02].

Configurable [vdBGLGL + 16].

Configurations [CL09a].

Confinement [NS16b].

Confirmation [MOI90, MOI91].

Congress [Gil77, Ros74].

Conjecture [KPS92].

Conjunctive [Stu85].

Connected [OL89, TY91, OT89].
Connection
[And88, BM90b, Mic02, KK96, RH92].
Connections [LK07]. Conscious
[Ask05, ZHB06]. consed [BJM14]. consequences [Woe06a]. Consideration
[CJP12, CJP15]. Considerations
[SM02, Wri83, PW06]. consing [AG93]. consequences [Woe06a]. Consideration
[CJP12, CJP15]. Considerations
[SM02, Wri83, PW06]. consing [AG93]. Consistency
[LWZ+18, SDZ21]. Consistent
[KLL+97, MB99, F+03, LP15, Mul85, PP08, PPR09, Sie04, DW05, DW07, FPSS05, GMW90, IKOS08, MV91a, OP03, PPR07, Pro18].
Constant-Round
[LP15]. Constant-Time
[Sie04, Pro18]. constrained [RAL07]. Constraints [BHIMM12, NNA12, Ati20].
Construct
[CDMP05, Han17, SGY11]. Constructing
[CS85a, Cha86b, CFYT94, FFPV84, FCH92, HM12, Lis07, RS08, SS80, YD85, SL88, ZHX+21]. Construction
[ACM79, AN96, BCK96b, BBKN01, EFRMK+20, Eki84, IT93, KR01, Kut10, PV92, SP91, SSaS01, Sar10, Sch01a, BGKZ12, BDPV08, CML+13, CL09b, Woe06a].
Constructions
[AHV98, BBKN12, BRS02, Bla00, DA12, Jon04, SG16, WX01, GPV08, LS06, MV08, NN90, VZ12, WC07].
constructive
[CLS18]. Container
[Hej89]. Containers
[Ben98, LACJ18]. containment
[KZ19]. Content
[GH07, Hin20, Koh80, MHT+13, RSK17, WDP+12, YTJ06, MJ14, TLLL09, XCC09, ZO13, BB07]. Content-Addressable
[Hin20, RSK17, Koh80, BB07].
Content-Based
[YTJ06, MHT+13, MJ14]. Contention
[CadHS00, DG93, DG94]. Continuous
[Coh98, PAPV08, GGR04, NW07].
continuous-discrete
[NW07]. Control
[BDPSNG97, CBA94, CL83, HLC10, JXY07, Kum89a, Moh90, Moh93, SDK91, XHZ+19, Ano93a, Ano93c, FK89, GJR79, HO72, Kum89b, MTB00, YL04]. Controlled
[RLW89, RLH91, Mul81, WY02, CBA94]. Controlling
[LK07]. convened [ANO83]. Convention
[ACM91b, Rie89]. convergence
[LLT21]. Conversion
[Omi88, Omi89a, Sab94]. Converting
[MV91a]. Convolution
[EMM07]. cooperation
[JDF09]. Cooperative
[XBH06]. Copenhagen
[BI92]. Copies
[RSSD89b, RSSD90, RSSD92, WC07]. coprocessor
[TLLL07]. Copy
[LH20, MHT+13, YCJ12]. Coq
[BJM14]. Core
[Kil01, SvEB84, AKN12, BATÔ13, CZL12, KKL+09, Nae95]. cores
[BMS+17]. Corfu
[Rei88]. Corporation
[Fis87]. Corps
[RMB11]. Correct
[SS88b, CE95, CE95]. Correcting
[BGS96, Har97, FM89, GHK+12, Mil89, MF82]. Correction
[Bur84, KR79, RJK79, Ven84, Zam80]. correctness
[AR21, MMC01]. Correlation
[TGGF10]. Correlations
[Val15]. Correspondence
[PH73]. Corresponding
[AOAK20]. Corrigendum
[AA79b]. Corruption
[DD11, DJSN09]. Corruption-Localizing
[DJSN09]. cosmological
[War14]. Cost
[BM97, BS90, CJP12, FCHD88, FCHD89, GI12, HMNB07, Kut10, LYY+18, Lyo83, PF88, CZ14, CJP15, VBW94]. cost/performance
[VBW94]. Costs
[HR96]. could
[PES+12]. Counter
[GRBC19, LMP+08, MKAS18, NS16b, Bac02]. Counter-Terrorism
[GRBC19]. Countermeasure
[LAKW07, MMT09]. Counters
[WLWZ19]. Counting
[Fla83b, FM85, McK89a, WVT90, DLM07, EVF06, McK89b, RKK14]. coupled
[HLH13]. course
[PGV93c]. Couvrants
[Kar82]. Coverage
[JK13]. covering
[CLS18, Rad92]. Covering
[Page18]. CPHASH
[MZK12]. CPHR
[WBWV16]. CPU
[HLH13, QXL+20]. CPU-FPGA
CGLC20, CJC+09, Chr84, CGO86, CLM89, DA12, DSS84, DT87, DSZ07a, DSS84, DP08, Dre17b, EjKMP80, Ekh84, Ell83, Ell85b, Ell82, Fai88, FM85, Flo77, FB87, FBY92, FMA02, GMJ90, Gho77, Gho86, GCMG15, Gol92, Gon83, Gon84, GBY91, Gre21, Gri74, Har71b, Har73, HWZP18, He81, Hil75b, Hil78a, HZ86, Hil88, HS84, IEE85b, ICD86, ICD87, ICD88, ICD91, ICD93, IABV15, JL14, Ker75, KP81, Ker75, KHH89, LC20, Lie81, LT85, LRY78, LRY80, Lit89, Lit84, LL87, LS89, LRY15, LT80, LSC91, Lom93, LM80, MLHK17, Mar75, Mar77, McC79, MSDS90, MEK14, Nav85, NR12, PSSC17, PRRR15, PV85, PW94, RNR13, Rou09, RK91, Sar10, Sch01a, SDW14, ST83a, ST83b, SW86, SW87, ST82, Sto92, SM08, SM12, SW87, SWTX18, TKH20, Tan83, TC93, TY03, TA81, TA86, TGGF10, TS85, TGL97, Top92, Toy86, TS76, TS84, VL87, Wal88, WPKK94, WZY18, WCW22, WS76, WH83, Win90a, Win90b, Wuy85, YL90, Yu92, Zam80, ZL18, ZO93, AK09, BR75, BZZ12, BF12, BG12, BPT10, BM12, CG19, CMLK91, CL98, CR9, Co93, CH09, DMB19, FP98a, FVS12, GB17, GD14, GP08, HCN1, HF91, HSB91, HU13, IA05, IL90, JAW19, Kak83, Kan91, Kan93, KR09a, KoZ72, LNS96, MSK96, MV08, NT01, NM02b, OS88, PL21, SLC07.

data [SB07, SHE06, Shi17, SE89, SW94a, SA17, TKT89, VL97, Vit01, WM93, WTZ13, Will85a, Yao78, YLC07, Yu92, YG10, ZKR08, ZLL07, ACM75b, GMJ02, ICD87, IEE90, MO92a, Vit01].
data-base [Mar75, Mar77], data-centric [AK09], data-driven [TKT89], data-independent [BCGS16], data-intensive [SHi17]. Data-Parallel [LC20], Data-stream [Tan83].
Data-structures [Har73].

Data/Knowledge [BCH87], databanks [FDL86]. Database
[ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM89b, ACM89a, AA86, Bab79, BG92, DCW91, DKO+84b, DKO+84c, DKO84a, DGG+86, DGS+90b, DGS+90a, DN81, DT91b, GD87, GHJ+93, Van10, Han90, HCK90, He87, Hsi83, HF13, HJ83, KGJ12, Kie85, Kim80, KL87, KTM83a, KO90, Kue84b, Kus89a, LC86a, LL08, Loo81, Ouk83, SD89b, SD90b, SD90a, Sha86, She91, SD89, Sto88, Tan83, Toy86, Ull82, WVT90, Wie83, Wie87a, Yam85, YNM98, ZJM94b, AS89, AKN12, DKO84d, EH17, EBD91, FNY92, GC90, HF91, IS+91, JB94, MBK00, PS08, SW94, SR98, SE89, SP98, TL93, Vak85, WC94, ZJM94a, ZJM94c, ODB89, BF89, KKP92]. Databases
[AS82, AOV+99, Bal96, Bal95, BDPS97, BG80, Bat81, BG82, BSN94a, CCH09, Chu90, Chu91, DDF07, DT91a, DT91b, FM91, FH92a, GA91, Gra92, Gra93c, GC95, GSW98, He87, HCY97, Kaw15, KR91, LOY00, LON01, OX86, RZ90, RNT90, Sch88, SW90, SW91, TRN86, Toy93, ZWH21, AOD19, AP92, BW98, FH92b, HC07, IS97, KR88, MSZ20, MIGA18, SB95, SB97, SI09, ZLC+18]. Dataflow
[DG+86, Ger86a, Ger86b, Gra94].
Datalog [GST90]. Datasets
Datenbankmaschine [Pet83], Datenbanksystemen [Kue83, Kue84a]. Datenorganisationen [Oll89]. Datenstrukturen [DF77, LS85, Me86, No82b, Oll89, Wir75, Wir83, OK80, Koe72]. Datenverarbeitung [Lut88].
Dawning [Cro98]. Dayton [IEE94b]. DB2 [BFG+95].
Dod82, Dos78b, McK89a, Rad93, DHW08, McKe89b, Röu07, Sun91, Sun93b.

Diego [ACM03a, ACM07, Ano10, Sto92].

Differences [Gri98].

Differentiability [DRS12].

Differential [AS82, BS91b, BS91c, CH94, Dae95, KKMS10, MM90, AGJA06, IT14, RP95].

difficulty [SKD15, SL88].

Diffusion [SDMS12, SDMS15].

Digest [IEE88a].

Digital [ANS05, BDS09, Cai84, Cip93, Fox91, GK12a, LM95, MeK83, Oka88, Oto85a, PW93, PGV93f, Reg81, Röu09, Rul93, Ano09a, Ano13].

Digram [Wil79].

DIMACS [GJM02].

Dimension [CT96, LHC05].

Dimensional [AEP18, HYH89, KSS86, LB87, LOY00, MN81, NGU06, ML15, RAD15, SWQ14, TYSK10, XMCL11, Yuv75].

Dimensioning [BP07].

Dimensions [AI06, GIM99, YWH09, AI08].

Direct [DS84b, Kno84, RB09, VC85, Bay73b, KdLT89, Mad80, TT81].

Direct-access [Bay73b].

Direct-chaining [Kno84].

Directories [YY01].

Directory [Gri74, KS88b, KS88c, Oto84, Oto88a, PADHY93, AP93, Pro94, TSH97].

Dirty [MIZ18].

Disc [CC87, CLC92, CF89b].

Discovery [LK10, PKW09, ZO13].

discriminates [ANO09b].

Discriminatory [Gri98].

Discrimination [P95a]. Discriminative [OSR10, HXLX13]. Discs [CF89a, CF89b]. discussed [Gre95]. Discussion [BBR88].

Displace [BBD09a, Pag99]. Displacement [Pet13, FWG18].

Displacements [Ja08, Jan05, Vio05].

displaying [Sab94].

Dissembling [Koe72].

Dissemination [RHM09, RCF11].

Distance [Bra84a, Bra85, Bra86, LH20, NNX12, Zha19a, LP04, MYS12, ZDI+15]. Distances [Bal96].

Distinguisher [Sch11].

Distinguishers [LJF19, SY11, AP11].

Distinguishing [HSR+01].

Distortion [CKPT19].

Distributed [Die90].

Distribution [AT93, BBS90, CM01, DTS75, EAA+16, JCK+18, LMC07, PK87, RR92, Sch01b, SDT75, ZLY+18, AT90, GBL94, Vio05, XCC09].

Distribution-Dependent [DTS75, SDT75].

Distribution-Independent [DTS75].

Distributions [KS86, KS87a, KS87b, KS89b, RTK12].

Distribute [NP91]. Disturbance [WLNWZ19].

Dith [AP08].

DITTO [SB07].

Diverses [LG78].

Divisible [FL04].

Division [Eck74a, GL73, Gra88, Gra89].

DLIN [CK12].

DM [KL95].

Do [Bur06, HSR+01, HR04].

Document [ANT85, DGM89, LR96a, Wil79, KRM29].

Documentation [DM90].

Documents [WWZ09, WMB94, WMB99, ZWCL10].
Sch93c, SX08, Shi17, SV15a, UHT95, VL97, Wie86, WTN09, XLZC14, ZWT+14, ZHX+21, SV18. Efficiently [AP08, Kim99].
Effiziente [Meh77, Meh86].
eigenvalue [JWM+18].
Eight [Van10].
Eighteenth [ACM86b, ACM91d, ACM91a].
Eighth [ACM76, ACM89b, ACM97a, VL982, ACM96, Gol92].
Einfuehrung [Nol82b].
Einschrittcompilers [Dit76].
Elastic [Hac93].
Elections [EH12].
Electronic [Cip93].
electronics [IEE94b].
elements [IG94].
elephant [WLC20].
Eleventh [ACM87, IEE92a].
ELFs [Zha19b].
Eliminate [BT94a, BT94b].
Eliminating [Bel70, Bel72, Bel83, NH74].
elision [NM10].
Elliptic [BGH12, Gri98, MSTA17, OOB13, FSV09, TK17, ANS05].
Embedded [SVCC01, vMG12, Hui90, TLLL07, TLLL09, UIY10].
Embedding [CLP17].
Embeddings [AEP18].
EMD [BR06].
Emde [Wil00].
Emergence [Fox91].
Empirical [DMP09].
Employing [Per73].
Emulated [EK93].
Emulations [Keh93, Ke96].
en-route [YG10].
Enabled [Alb21, BZZ12].
Enabling [GYW+19, HDCM09, LCLX19, SMZ18, TT10, SLC+07].
Encapsulation [HM12].
Encipherment [BM76].
Encoding [Ano95c, KP94, Wil79, CVR14, RSS07].
Encodings [BHIMM12].
Encrypted [GYW+19, HWZP18, Kwai15].
Encryption [AG18, CS02, DC98a, KAL93, NTY12, PP21, PRZ99, Sar10, ZZM17, ZHZ+19, And94, BR94, Bir07, GGL96, GLB94, Sab94, ZCZQ19].
Energy [AS16, KYS05, HGH+12, YSW+11, CZ14].
Energy-Efficient [HGH+12].
Energy-Harvesting [AS16].
Engine [YNKM89, BC06, NM02b, PES+12, SSW94].
Engineer [Jac92].
Engineering [Gol92, Got83, IDE86, IDE87, IDE88, ICD90, ICD91, ICD93, Lew82, Wal88, ARA94, Ano93c, IEE94a, Yu92, Ano89].
England [ACM94b, Pat90].
English [CS82, Dit76, Wan05].
Enhance [Lit84, CZ14].
Enhanced [KAS+22, RS12, ZHW21, LG96].
Enhancement [HMNB07, SK20].
Enhancements [Gra93a, enhancing [AGBR19].
EnRUPT [IP11].
ensemble [ZNPM16].
Ensure [Scho1a].
Enterprise [Rei03, FES09].
Enterprises [KCR11].
etire [FDL86, Nic17].
etiny [ZLC+18].
Entropy [Ari94, ATS19, HHR+10, KHA98b, SD89b, SSW90, CKKK09, MV08].
Entry [YLB90].
Environment [DGM89, ML90, MLxx, MS88a, RS92, RL74, SD89c, SD89a, SSS05, ZG90b, Kha95, ZQD+18, SD89d, TMB02].
Environments [ZG90a, GDA10, RCF11].
EOS [BP94].
EPGAs [YTHC97].
Equality [TD93, WC81, AD08, GRF11, ZCZQ19].
equalization [PCK95, UHT95].
Equations [Aum09].
Equijoin [SW91].
equiprobable [PB80].
Equivalence [Mar71, de 69].
eraserTm [AAGG16].
erasure [IEE88d].
erase [TCP+17].
Error [BGS96, Har97, Kue84b, Mil98, MKASJ18, RJK79, WLVZ19, FM89, GHK+12, Ron07].
Error-Correcting [BGS96, GHK+12].
Error-Correction [RJK79].
Errors [Blo70, Zam80, MF82].
ErsatzPasswords [GAS+16].
ESA [EF12, FS09, HM08].
ESAT [*PGVC39c].
Essays [BC39].
Establishment [DL12].
estimate [Ron07].
estimated [Nic17].
Estimating [Lee08, MBKS07].
Estimation [GLLL17, IJK13, TGGF10, TZ12, HKL04, LNS11, LDK12, NTW09].
estimators [HYK08].
eTCR [HKK08, RWSN07].
Ethernet [KCR11].
Etude [Mek83, LG78].
Euclidean [SWQ+14].
euler [Cha48b].
EUROCRYPT [CP87, CP88, Daman0a, Dam91, Dav91, De 95, GQ95, Hel94, QV89, QV90, QG95, Rue93, Vau06].
Europe [BRW93].
European [EF12, FS09, HM08].
EUROSAM [Ng79]. Evaluating
[HAKM15, MPP14, RS92]. Evaluation
[Adi88, BGDW95, CRSW11, CRSW13, Chr84, Fla81, Fla83a, Gra93b, Gra93c, Gri77, HNS84, KTN92, LCLX19, LLL09, MXL+12, ML68, MLxx, MS88a, NMX19, Pag99, SD89c, SD89a, SC90b, SC90a, SC90c, Stu85, TNKT92, Web72, Woo89, YNKM89, CHS+18, GDA10, HCW+21, RLM87, SD89d, TM02]. Eve [AAE+14]. Even
[Bosxx, Tho00]. Event
[McK89a, McK89b, ZLY+13]. Every
[Kil01]. Everything
[KTN92, MLD94, TNKT92]. evolution [PGV93c]. Evolutionary
[DLT98]. Exact
[Cor00, Ram88a, Vio05, Lia95]. Examining
[Wil00]. Example
[FHMU85]. Examining
[Pal92]. Except
[OWZ14]. Exchange
[KV09, BSNP96b, GL06, LW04]. Exclusive
[DLN+18]. executable
[NADY20]. Execution
[CLYY92, CHY93, CHY97, Cra85, GHJ+93, GM98, Hea72, HCY94, HCY97, KL87, PAKR93, S88b, Wu85, GMF95]. exhaustive
[KJS17]. Exhibit
[Gui75, Gu78, Gui76c]. existence
[WC07, Woe06a]. Existing
[LYD71, LY72]. Expandable
[Kno71]. Expander
[CLG09]. Expanders
[BK07b, Tho13]. expanding
[FNY92]. Expansible
[CL95]. Expansion
[AVZ11, Gri77, Mai92]. Expansions
[Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Larxx, RSSD89a]. expansive
[LS96].
Expectation
[GM91]. Expected
[Gun91, Lar81, Lar82a]. Experimental
[ANS09, HCW+21, JHL+15]. Experiments
[KL96, Wil79]. expert
[ARA94]. Explicit
[ADW12, ADW14, Bla00, CL83, L506, MVt08, WX01, GJR79]. exploit
[AZ10]. exploitation
[MAK+12]. Exploiting
[Bre91, CWW00, GHW07, HL12, M596, MV08, NMQ22, HAK+16]. Exploration
[CH94, PSSC17]. Explore
[SP21]. Exploring
[LVD+11]. Exponent
[Ano95a]. Exponential
[DS84a, H96, Lom83, LTT21, LH04, SHA97]. Exponentiation
[Kak83]. Exposure
[CTZD11]. Expression
[BPP88, CKW09, Gri77, GGR04]. Expressions
[Hol87, Mar71]. Extendable
[NIS15]. Extendable-Output
[NIS15]. Extended
[DP08, HBG+17, Ter87, YNKM89, YD84, YTH97]. Extenders
[RS12]. Extendible
[BK84, Bry84, Chu91, Chu92, DT91a, DT91b, Ell83, Ell88, FNP879, Fla81, Fla83a, Hac93, HSM95, HUY98, HY86, KR86b, KR86a, KUM89, LON01, Men82, MH00, Oto84, Oto86, Oto88a, RLH91, RS77, Tam81, Tam82, Yao80, Hua85, KUM89b, MKSIA98, RLH90, RS75, Wee88].
Extending
[CMP07, JB94, SS01, WKB07]. Extensible
[BG92, Gra94c, Hel89, Kum90, Rem92, KR88, SS06, BP94]. Extension
[BR06, CDW+19, Lit77a, LLG12, PSZ18, SGY11, WH83, Bak09, SFA+19].
Extensions
[CSSP15, Heu87]. External
[AS89, AGMT11, GL82, GL88, Gra94a, GT63, JP08, LR55, LRY87, LR80, Vit01, Woe06b, RT89, RB91]. External-Memory
[AGMT11]. Extractable
[ACP09, CZLC12b, CZLC14, Wee11]. Extracting
[HZ86]. Extraction
[FC87b, KKN12, LLDZ18, LLY+16, ZLY+12]. Extremely
[Sie04].
FA
[CKW09]. Face
[KGJG12]. Fachgesprach
[Lut88]. Facility
[VL87, FF90, VL97]. Factor
[CFP19]. Factoring
[CTZD11]. Factorization
[FS82, ZWY21]. Failure
[Ano95a]. Fairfax
[ACM94a, WGM88]. Fake
[Ano96, LAKW07]. Fall
[AF169]. Fallen
[HCP12b]. Falls
[AKF90]. False
[PAG18, CVR14]. Families
[ADW12, ADW14, B98, Bla00, CRWS11, CRWS13, FK84, HHL10, SG16, WX01, AG10, BJ07].
BvT13, BJKS93, BJKS94, CRS83b, CL09a, CL09b, CLS18, CDH19, FH15, GW94, LS06, LC13, MtT08, WcT07, Woe06a, vT14.

Family [BDM+12, BKST18, FL+10, GK08, Ind01, IT93, MWCH92, MWHC96, SK05, ACP10, AMP12, BDPV12, FPS17, KRT07, Sar13, SRRL98]. Fast [AKS78, AP92, AB12, BH91, BRM+09, BS97, BS94b, BS94a, BG96, BT12b, CH12, CS85a, CCW+17, CWC10, CD84b, CRR18, CS82, CKN18, DC98a, Dit91, EFMRK+20, EPR99, FNPS79, FFGL09, FKI+21, GM91, GM94, GM08, GC95, GK94, GK95, GO15, Gui89, HK95, HKLS12, HW08, HXLX13, KG95, Kel96, KP97, KLP98, KR79, KR01, KRM09, LQZH14, LM95, LK14, LR99, LZ06, Lit91, LS06, LCL+20, Mad80, MSD19, NR12, Nyb96, OS14, PPS21, Pea90, Pea91, PQ98, PQ99, PKS18, PV95, Re14, Rey95, Rog99, Rog19a, Rog19b, SG76a, Sav90, Sav91, SMZ18, ST66, Sve78, SY08, Sho96, Tho13, Tho17, Ven84, WH83, Yan05, YBQZ17, YBQZ18, YKHL10, AB96, BS94c, CXLK18, CCA+12, DC94, FFGL10, HF91, KKL+09, KHIH99, MSD16, MPL09, Mer90a, MZI98, MPST16, Pov95, Sag85b, SP12]. Fast [Sie89, SV15b, TKH20, WWG+18, YTHC97, YZ16, ZO13, ZHC+13, And94, Bir07, Gol96]. Faster [ASM17, CRSW11, CRSW13, FCH92, LK16, McC79, Bosxx, HKL04, LS15, Sna87]. Fault [AAB+92, DSSW90a, DSSW90b, MKAA17, HGR07]. Fault-tolerant [DSSW90b, HGR07]. Faulty [JCK+18].

FCD [ISO97]. **FCSRs** [BDM+12]. Fe [Gol94]. Feal [BS91b, BS91a]. feasibility [CKM14]. Feature [LMM07, NS16a, Som99, TWZW11, Fly92, MHT+13]. Feature-Based [TWZW11]. Features [DHT+19, LLDZ18, MS12, MBBS12, PKW09, SSS01, TH+18, Tsa96, Tsa94, ZLY+13].

Feb [Bar83]. February [Ah03, Ano10, Gol96, Gol92, IEE84, ICD86, ICD87, IEE88a, ICD88, ICD90, IEE94a, KI94, Kil05, Rie89, USE00b, Wol93a, Wol93b, Yu92]. Federal [Dan13]. fehlerbehandlung [Kue84a]. fehlererkennung [Kue83]. Feistel [SY11]. Fencing [TYZO15]. few [CDH19]. FFT [BG93, BG93, DBGV93, Sch91b, Sch93a, Sch93b, Sch93c, SV94a, Van92, Vau92, Vau93]. FFT-Hash [DBGV93, Sch93b, Sch93c, Sch93a, Van92]. FFT-Hash-II [Vau93, Vau92]. FFT-Hashing [SV94a, Sch91b]. FGS [KM09]. Fichier [Lit77a]. Fields [AH03, Ano10, Gol92, IEE84, ICD86, ICD87, IEE88a, ICD88, ICD90, IEE94a, KI94, Kil05, Rie89, USE00b, Wol93a, Wol93b, Yu92].
DKT06, HKL07, HKLS12, HXLX13, ISO97, PSS09. Final [MO92a]. Financial [ANS05].
Find [Hol13, Lan06, Pat94]. Finding
[CBK83, Cer85, CBK85, Cer87, Cer88, Coh98, CHO9, CM93, DR06, FCHD88, FCHD89, HK86, HG77, HR04, KH84, SH94, SH94, Sin98, Val15, WYY05b, WYY05c, Yuv75, FHC89, MI84]. fine
[KLSV12, XZPG21]. fine-grained
[KLSV12]. fine-texture
[XZPG21].
Fingerprint
[JTOT09, LMC07, LMJC07, ZHW21, SK20]. Fingerprinting
[Rou09].
Finite
[Gri98, HJ96, Ram88a, WX01, FH15, KHK12, LS06, LK93]. FIPS
[Dan13, Ano93b, Ano95b, NIS93, Nat95].
Firewalls
[Kal01].
First
[ACM89c, SDA90, PDI91, BBD09b, FNY92, adHMR93, PM89, Con17, DLM07, Fis87, SBK+17]. first-order
[DLM07]. Fisher
[SY08]. FishStore
[CXLK19].
Fit
[Cip93]. Fitted
[ZWT+14].
Fixed
[GB10, RS08]. Fixed-Key
[RS08].
Fixed-Parameter
[GB10]. FL
[ACM91a, HB93]. flash
[BFCJ+12].
FlashTrie
[BLC12]. FLATS
[GSi+82].
Flexible
[QXL+20, SR89, SPB88, ZWY21, ZLC+20, ZHW19, BCCL10].
Flexible-resizing
[ZHW19]. Flight
[Fis87]. floor
[Sch82b]. Florence
[IEE92a, ST83a, ST83b]. Florida
[ACM91d, IE88b, RNT90, PD91, Kna89]. Flow
[NS16b, SL16, FWG18, HKL04, LDK12, LMP+08, YGS+19]. flow-level
[LDK12]. flows
[EVF06]. fly
[BK88]. FM
[KCF84]. FOCS
[IEE06, IEE07]. FODO
[LS89, Lom93]. function
[LG78].
Fontainebleau
[PD91].
Fontana
[KSSS86, HW88]. forbidden
[CL09a]. force
[CJP12, CJP15, LS07a]. Forensic
[BFP11, DR11, PS08]. Forensics
[DA12, JL14, Ruo09, SK99, ZHW21]. Forest
[LCM+20, KP92]. Forest-Based
[LCM+20].
Forgery
[CY06]. fork
[ALS10, CMP07]. FORK-256
[CMP07]. fork-join
[ALS10]. Form
[Aum09, HZ86]. Formalization
[MMC01]. Formats
[GIS05]. Formatted
[LYD71, LY72]. Formula
[GK76, Ram97]. Forrealization
[FM96]. Forth
[Gre95].
FORTRAN
[FDL86, JC88b]. Forward
[CPP08]. Forwarding
[YPQZ17, YPQZ18, BB07, HDMC11, TKH20]. FOSS
[ASW18]. FOSSIL
[ASW18].
foundation
[SXL08]. Foundations
[Ano85a, BCFW09, Gol94, IEE76, IEE80b, IEE82, IEE85a, IEE85b, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, LT85, Rov90, Win78, HKNW07, LS89, Lom93, RRR99]. Four
[Gra88, Gra89, SD89c, SD89a, HM03, SD89d].
Fourier
[Ind13, BH93].
Fourth
[ACM85b, ACM02, IEE80a, ICD88, KLT92, Las87, Yao78, GSW98].
FowlerNollVo
[VFN91]. Foxtrot
[MK12].
FP
[PHG12]. FPGA
[AOAAK20, DLT98, KM+06, MXL+12, MAK+12, QXL+20, TP15, TK07, WZJS10].
FPGA-Based
[TK07]. FGAs
[DD15, MMT09, SK05]. Fractal
[Ano95c, YSEL09]. fractals
[HCF95].
Fragmentation
[Sac86]. frameproof
[vT14]. Framework
[BJL16, BKM09, DGV93, FGFL09, GST90, KGB18, XHZ+19, EH17, FGFL10, GL06, PCK5, UHT95].
Framingham
[Ker75].
France
[AGK+10, BFG89, LS89, Ng79, QG95, GQ95, vDHvH12]. Francisco
[ACM75b, ACM08a, DT87, IEE88a, Joy03, Kar98, Shm00, USE90].
Frankfurt
[CE95].
Fredman
[KM86]. Fredman-Komlos
[KM86]. Free
[AR16, BM07, BB07, BHT98, CLNY06, CTZD11, Dam87, HM96, HZ86, KKT91, LFD17, MOI90, MO91, Ram89b, Rus92, Rus93, Rus95, SHRD09, ZLLD18, AR21, BGKZ12, BG93, BHT97, Gib91, Ho75, HCJC06, MJ14, NK16, PBGV89, Pr018, SS15, Van92, Van92, Van93, ZBB+06, ZL12, SS06]. Free-Form
[HZ86]. Free-text
[Ram89b, Gob75].
Freestart [SKP15]. French [Coh94]. French-Israeli [Coh94]. Frequency [Lyo78a, TS85, CJP12, CJP15]. Frequent [OTKH11, CH09, BMLLC^+19]. Frequently [She78]. fridge [WLC20]. Friendly [ZH18, BP18]. Frontends [Sag85b]. Frontiers [Jaj90, Fis87]. FSE [Bir07]. FSpH [ZWT^+14]. Fugue [AP11]. Fujiyoshida [IRM93]. Full [AC74, Bur75a, CMP07, Cor00, Day70, DOP05, KK12, LP16, LT12, LLL^+16, MZD^+18, Mue04, GLM^+10, San76, WYY05b, WYY05c, YSW^+11, ZKR08, NH74, RFC15, QXL^+20]. Full-Stack [LLL^+16]. Full-Text [YSW^+11, RCF11]. Function [Abi12, AVZ11, Aum09, AMPH14, BPSN97, BF83, BDM^+86, BDPV06, BDPV12, BOY11, BS94c, BW89, CK83a, CK89, Con17]. function [DK94, DF89, DMB19, FP82, GMP95, SV18, ZKR08, Jou85]. function-based [PL21]. Functional [LFP82, GMP95, SV18, ZKR08, Jou85].

Functions

[AVH98, AFK83, AFK84, AN96, ASWD18, ACZ16, AA79b, AA79a, And91, ABD^+16, Ano95a, AEMR09, AR17, AM07, AP08, BSNP96a, BDPSNG97, BCK90a, BCK96b, BR14, BBD^+82, BBD^+86, BSG96, Bib08, BCS09, BRSS10, BCFW09, BK12, Bol79, BPZ07, BHT98, BH06, Bur78, BMD19, Can97, CW77a, CW77b, CW79, CMW83, CBK83, CR65, CBK85, CBK85, CR7, CR8, CS83a, CS83b, CS85c, CS85b, CS85a, CS86, CS86, DL80, LFP82, GMP95, SV18, ZKR08, Jou85].

Full-Text

[YSW^+11, RCF11].

function [Abi12, AVZ11, Aum09, AMPH14, BPSN97, BF83, BDM^+86, BDPV06, BDPV12, BOY11, BS94c, BW89, CK83a, CK89, Con17].
functions [NY89a, OS14, OS10, PW08, PW06, Pob86, PGV93a, PGV91, PGV93b, PGV93e, PGV93g, Pre94b, PGV94, PvO95, RB91, RFB97, RZ97, RP95, Roe95, Sar80, SS16, Sie89, Sim98, ST85, TZ94a, Tsu92a, Tsu92b, VD05, XCC09, YL04, YRF05, Z´em94, ZW05, ZBB+06, ZDI+15, RRS06].

functions-based [HC11]. Fundamental [LYD71, LY72]. Fundamentals [HS78, HS84].

Fusion [Wil00].

Future [SP21]. Fuzzy [HWZP18, LMC07, LMC07, LII92, HC14].

G2 [BP18]. Gallery [BFR87]. Galois [HJ96]. game [Zob70a, Zob70b]. Gamma [DGS+90b, DGS+90a, GD87, DGG+86].

GCM [Saa12]. geeks [McN03]. Gen2 [LYDA19]. Gene [TGGF10].

General [Chi91, Chi94, DR06, ISO97, LW88, LQH18, LHC05, Lum73, MSD19, MSD16, Sch91a, Sim98]. general-purpose [Sch91a]. Generalised [CC87, KKW99, LPWW06]. Generalized [HB94, KVK12, LI80, SK88, Sev74, KhK10].

generalizing [AMP12]. Generate [HSR+01]. Generated [LMC07].

Generating [Bla95, CT96, CHM92a, CHM92b, Get01, Jae81, Sag84, Con17, FP82, GRF11, MFK+06]. Generation [GRZ93, LL92, MS12, She91, SSS05, Wan14, BK07a, BDK16, BK88, CCA+12, CT10, KKP92, Mo92b]. Generator [Ano86, BK12, Cal84, Gui89, Sag85a, Sch90a, ZF06, Aam03, CLS95, HC11, SS92, TS98, VZ12].

Generators [MWCH92, NAK+15, SP91, BK07a, CP13].

Generic [BDG+20, DL17, DOP05, MP12, Sar10].

Genetic [FFFGO07, HSI02, CV05].

Genomic [CCH09]. genus [CDS20].

Geo-Tagged [ZWH17]. Geographic [RRS12]. geohash [MKL21, BSH12].

Geometric [Bar97, BG92, Bie97, BM90b, CO82a, GPA97, HB89c, HB94, KGJG12, LW88, LMC07, LMJC07, LH20, MV02, PW94, RH92, RH95, RW97, SA97, Tsa94, Tsa96, WPKK94, War86, WR97, BJKS93, BJKS94, GG92, JWK11, LG96, MN99, MMG10, WC94].

generacies [FH15]. Geometry [CCC89, MPP14,Wil00].

Geometry [CCC89, MPP14, Wil00].

Germany [AH03, BRW93, HM08, adHM93, Yao78, CE95]. Gestion [Lit77b].

Gigabytes [WMB94, WMB99].

Girths [Zem91]. Give [AT93, AT90].

Global [CLP13, Chi95, DL79, LPWW03, MD97].

Globally [HSW88]. GLUON [BDM+12].

gMig [MZD+18]. GNU [Wil14]. Go
[Bur06]. Goddard [Fis87]. Goes [Cip93].
Goodyear [Fis87]. GORDION [EE86]. gossiping [GHW07]. GOST [LJF19, WYW14].
GP [Sch90a, SS92]. GPU [ASA+09, BRM93, LC20, LL15, MZD+18, TWL+18].
GPU-based [TWL+18]. GPUs [CZL12, vdbG16].
GRAB [Les88]. GRACE [KTM08a, KTM08c, KNT92].
Graduate [Ano93d]. Grained [PAK93, KLSV12].
Gram [Ven86, Coh98]. Grams [BRM+09, Coh97]. granular [CLS12].
Graph [Ari94, BMQ98, EFMRK+20, Gre21, Hal12, HMD93, JBWK11, KMB88b, MD97, MBBS12, NRW90, TF12, YkWY81, BPT10, CML+13, CLL+14, FHL+19, FKI+21, Kor08, Mol90a, Mol90b, SZO+20, WLLG07, vL94].
Graph-Based [Hal12, JBWK11].
Graph-Entropy [Ari94].
graphe-structured [BPT10, WLLG08].
Graph-theoretic [vL94]. Graphic [LLLC17].
Graphs [Leb87, RKL+11].
Graphschen [Lut88].
Graphs [CLG09, HMWC94, KPS92, KMD98, Zem91, AD08, AAB+02, AS07, DV03, FGFK10, HK83, Kut06, LL13, SN19, Zem94].
Gray [CLD82, Fa85a, DL80, Fa86, Fa88].
Greek [ACM01, AMSM+09, Rei88].
Greedy [WTZ+13, AGJA06].
Greenbelt [Fis87].
Grenoble [vdHVH12]. GREYC [AGBR19]. GREYC-Hashing [AGBR19].
Grid [Gri98, KSS88b, KSS88c, Leb87, NHS84, Reg85].
Grindahl [KRT70, Pey15].
grosser [DOS78a]. Grostl [ABO+17, TTP14, MRST10, WFW+12].
Grostl-0 [TTP14].
Group [ACM82, ALB21, DTS7, DD11, KKW99, LND08, Mue04, TZ94a, YLZ20, SE21, YLC+09].
Group-based [LND08].
Group-theoretic [TZ94a].
grouped [DLN+18].
grouping [BLY20].
Grow [HM12, LL10, PWy+13, Reg82, CFY+94].
growing [KW94, MSZ+20].
Growth [Oto88a, Rey14].
Guangdong [IEEE11a].
guaranteed [RT89].
Guaranteeing [LK84].
Guarantees [HC13].
Guess [ZF06].
Guess-and-Determine [ZF06].
guest [DLM07, Fox91, RW97].
Guide [AS82, SD76, She17].
guided [SSU+13].
h [Gra94b, SYW+20].
H-CNN [SYW+20].
Hachable [Lit79a, Mek83].
hackers [Nic17].
HAIFA [DL17].
Halifax [DSZ07a, DSZ07b].
Hamiltonicity [CKN18].
Hamming [Bal96, Bal05].
HANA [SFA+9].
Handbook [Gon84, GBY91].
handle [Eug90].
Handling [BI87, DNSS92, Lar85b, QCH86, Sch79a, Wil59, WB03, ZO93, TWL+18].
Handwriting [MS12].
Handwritten [FLF11].
Hans [Ste18].
Haphazard [CS87].
happened [Her07].
Hard [Hol13, Kli01, BDK16, BCGS16, GPV08, LSZ+21, Nae95].
Hardness [BHK13, BHK19].
Hardness-Preserving [BHK19].
Hardware [ABM06, ARH+18, Bab79, BBPBL12, Bur81, Bur84, CHSC18, DW83a, FAFK21, FW09, GD87, GLG+02, HDM09, IG77, MXL+12, RP01, TK85, dW83b, ABO+17, BOY11, Bis12, Bur82, CE95, DSO9a, FNP09, ISH+91, JMH02, KM07, KM10, MZ98, RFB97, RAL07].
Hardware-Based [HDM09].
 hardware-constrained [RAL07].
harmonious [HK83].
Harf [PT11b].
Harrison [Boo73].
Harvesting [AS16].
HAN [PHL01].
Hash [ANS97, Abi12, Ack74, Adi88, AHV98, AFK83, AFK84, APV07, AOAAK20, AN96, AVZ11, AK74, ABD+16, Ano93b, Ano95a, Ano95b, Ano95d, Ano02, Ano08, Ano12, AG93, AR16, Ar68, Ask05, AEMR09, AR17, AM07, AP08,
Aum09, AHMNP12, AHMNP13, AMPH14,
ADW12, ADW14, AS16, Bac01, BSNP96a,
BPSN07, BDG+20, BDPNS97, BM87,
BVF12, Bat75, BFMPI11, BLY20, BRM+09,
Bay73c, Bay73a, Bee99, BBD09a, BK70,
Bpsn97, BDPSNG97, BM87,
BVF12, Bat75, BFMP11, BLY20, BRM + 09,
Bay73c, Bay73a, Bee99, BBD09a, BK70,
Bpsn97, BDPSNG97, BM87,
BVF12, Bat75, BFMP11, BLY20, BRM + 09,
Bay73c, Bay73a, Bee99, BBD09a, BK70,
Bpsn97, BDPSNG97, BM87,
BVF12, Bat75, BFMP11, BLY20, BRM + 09,
Bay73c, Bay73a, Bee99, BBD09a, BK70,
Bpsn97, BDPSNG97, BM87,
BVF12, Bat75, BFMP11, BLY20, BRM + 09,
Bay73c, Bay73a, Bee99, BBD09a, BK70,
Bpsn97, BDPSNG97, BM87,
NY85, NAK+15, ORL91, Omi88, OL89, Omi91, OL92, Ore83, Oto86, Pag99, Pag85, PAVP08, PWY+13, PCL93a, PV92, PPS21, PF+09, PTT16, PCY95, PHL01, PLKS07, PV07, PHG12]. Hash [PBDD95, PG95, PRK98, PRZ99, PW93, Pip94, Pla98, PGV90a, PGV90b, PGV92, Pre93, PGV93d, PGV93e, PGV93f, Pre94a, PGV94, PV95, PBD97, Pre97a, Pre97b, Pre99, Pre94c, Pro89, QG89, QG90, Ram88a, RRS06, RO8, GLM+10, RRS12, RJK97, Rey14, RWSN07, RS12, RGS9, RB01, RHM09, Riv76, Riv78, Rj12, RNR13, Roe94, RS08, RMB11, Ros06, Ros77, Ros21, Rot89, RK91, Rue93, SP91, Sag85a, SDMS12, SDMS15, SD78, Sam81, SS01, Sch11, SSS08, Sch90a, Sch91a, Sch91b, Sch93a, SV94b, Sch79b, SBS16, SG16, SGY11, SW91, SX0, SRR99, SK98, Sho00a, Sho0b, Sie04, SM02, SK05, SVE84, Sol93, Som99, SPSP16, Spe92, Sta94, Sta06a, Sti06, SKM01, Szy82, Szy85, TT10, TR02, TY91, TNS20, Top92, TP95, Toy93, Tso15]. Hash [TNKT92, Tsuf92a, TSP+11, Van92, VD21, Vau92, Vau93, VB00, WX01, WFLY04, WLLG08, WW09, WZJS10, WSS012, WBWW16, Web72, Wee1, WC79, WC81, WKB07, Win83, Win84, WK078, Wow06b, WDTY91, WY93, Wol84, Wu05, WFW12, XNS+13, XH06, YNW+99, Yam85, YDS4, YDS5, Yon05, YSW+11, YT16, Yao95, YSL05, WL12, YLB90, Yen91, YZ00, YCYR93, YY07, YY01, YLZ20, YSEL09, YKLH10, ZG90a, ZG90b, Zel91, Zem91, Zem94, Zha07, ZLY+12, ZMM17, ZMJ94a, ZMJ94c, ZQSH12, Zhe90, ZFM91, ZO93, ZLC+12, ZWW+12, Zuk21, ZHZ+19, vW94, van94, vBGLGL+16, vV12, AY14, AAB+92, ATAKS07, AKY13, ACP10, ADM+99, AG10, And93, AB96, AMP12, AMP15, AAGG16, AN20, AR21, AZ10, ABO+17, Att02, AP11, BGKZ12, BSNP96b, BSNP96c, Bako9, BATÖ13, BLC12, BLP+14, BNN+10, BJ07, BD92, BvT13, BCR04]. Hash [BFCJ+12, BDPV06, BOY11, BJKS93, BJKS94, Bie95, BS94c, BSU12, BCDS16, Bra09, BHT97, BM01, BGG12, Bur76a, CMR98, CVR14, CNS18, CKB83a, CK89, CD84a, CAGM07, CS+18, CCHK08, CJP15, CM01, CLW98, CL09a, CL09b, CLS18, CDH19, Con17, DKA4, DF89, DS09a, DW03, DS09b, EASR22, ESRI14, FXWW17, FPS17, FJ13, FFGL10, FPSS05, FH69, FHC92b, Fro81, FH15, GIN12, GK15, GM18, GNS19, Gob75, GPGO06, Gon95, GLC08, GM79, GK12b, HK86, Han17, HLL18b, HLL18a, HAK+16, HL13, HLC14, HLMW93, HXMW94, HKK13, HSK88, HKW05, HYLT99, HL12, HL03, HCW+21, HX13, ISO97, ITUP14, JFDF09, JHL+15, JCC00, JG95, KKP+17, Kha95, KST99, KL95, KRT07, KTD20, KKH10, Kra95, Kri89, KCL03, Ku04, KCC05, LS1a, LLH02, LKY04, LW04, LL13]. Hash [LMS012, LPSW03, Li95, LVD+11, LWG11, LS06, LC13, LCRY93, LG78, LEHN02, LLJ15, MSZ+20, Mad80, MTB00, MMC01, MSD16, MtV08, MS09, MJ08, Man68, MCK9b, MRL+19, Mer90a, MZK12, Mic02, MZ98, MV08, Mit17, Mon19, MA15, MPST16, MF82, MS13, MMY94, MT16, MFES04, Na95, NADY20, NY89b, NY99a, NK16, NTW09, ORX90, OS14, Omi89a, OT89, OS10, PCL93b, PK95, Par18, Pat94, Pat95, PCV94, PPB16, PL21, PVCQ08, PW06, PG93a, PG91, PGV93b, PGV93g, Pre94b, PvO95, Pro18, PSS09, QP16, QJ97, Ram87, RP95, Riv74a, RS14, Roe95, RÖ07, SB95, SB97, SPPC14, SB14, Sar13, SN19, Sar80, SS90b, SS92, SV95, ST85, SH94, SE21, SS16, SRL08, Sie89, Sim98, SHA97, SP89, SV15a, SV15b, SV18, SD95, SXL16]. Hash [SV06, TKH20, TC04, TZ94a, TMW10, Tsa08, Tsuf92b, TM02, UHT95, VD05, VN10, VFN91, WAG00, WM93, WS13, WYW14, Wie86, Wil03, Wil14, Woe06a, Wog99, WY02, WTN07, WTN09, XCCK09, ...
XLZC14, YTHC97, YL04, YL97, YRY04, YZ16, Yu18, ZCQ19, ZGG05, ZBB*06, ZLY+13, ZHX+21, ZYW20, ZWH01, v’T14, HGI+12, BJMM94b, BJMM94a, DBGV93, FIP02a, JH, KK1*09, Sta73, TLLL18, WC07, WWZ09, ZW05, Sch93b, Sch93c.

Hash- [PSS09]. Hash-and-Sign [CK12, GHR99, PV07]. Hash-array [SV15b]. Hash-based [WLLG08]. Hash-Based [AS16, BHH+15, But17, CD90, DG85b, DL17, DF01, FRB11, GI12, H¨ul13, HRS16, HBG+17, JK11, KM09, KJC11, KMV10, KX85, LLI09, LPS90, MLD94, MKF+16, MCF17, MKAA17, NXB13, OL89, PFH+09, PCY95, PRZ99, RNR13, RKF91, SBS16, TY91, JY+11, XYY07, Adi88, BDS09, CJP12, DG85a, HJCJ06, SX08, YLS05, BLC12, BLY20, CJP15, CLW98, EASR22, HAK+16, KCL03, KU04, KCC05, MSZ+20, Mul92, OT89, PCK95, PPB16, SPLHC14, SE21, TLLL18].

Hash-Bucket [CS82]. Hash-CBC [BBKN01, BBKN12]. Hash-chaining [CBB05]. Hash-code-techniken [Mer72]. Hash-Coded [Bay73c]. Hash-codering [LIT77a]. Hash-Coding [Bur77, DOS78a, HJ75, Lit77b, Mar64, Sch79, Bur76a, LG78, Riv74a, HJ75].

Hashing [GM91, GM94, GadHW96, GM98, GIM99, Gon80, GL82, GL88, GRZ93, GL82, GL88, GRZ93, GK76, GI77, GT80, Gra86, GPY94b, Gre95, Gri77, Gri79, GT93, GPA97, Gui75, GS76, Gui76a, Gui76b, GS78, Gui78, GS80, GH07, GZX14, Gur73, HB89a, HB92, Hac93, HSPF80, HT01, HR14, HM96, HK12a, Ham02, Har71a, HCF95, Hea82, Hea72, HB89c, HB94, adH90, adH93, Hel89, HST08, HNS84, HSM95, HKY12, HY89, HYH03, Hol87, HCT87, HY86, HTY90, HSW88, IK13, IOK05, IH95, Jac92, Jae81, Jag91, Jai89, Jai92a, Jai92b, Jaixx, Jan08, JV16, JF08, JTOT09, Jol97, JCK+18, Kab87, KGB18, KF88, KKKN12, KV09, KGJG12, Kaw85, Kaw15, Ke93, KR86b, KR86a, KV91, KMW08, KMW10, KZ84, Kn075, KP97, Knu19, KM86, Kon10, KM88a, KP94, Kri84, KS86, KS87a, KS87b, KS88b].

Hashing [KS89b, KR01, Kkm89a, Kum90, Kut10, LW88, Lar78, Lar80a, Lar80b, Lar80c, Lar82b, Lar82c, Lar82d, Lar83, LR85, Lar85b, Lar85c, Lar88b, Larxx, Leb87, LMC07, LL14, Lep98, LC20, LC88, cLmL07, Li15, LCLX9, LCMML94, Lia95, LLZ10, LLLL11, LLLL17, LRY78, LRY80, LN93, Lit91, Li80, Lit78, Lit79b, Lit80, Lit81, Lit85, LLS8, LSV89, LRLW89, LRLH91, Ltxtx, Ltxtb, LC12, LZ16, LWZ+18, LH20, Lom83, LPP91, LPP92, LM93c, LH03b, LSZ+21, Lyo78a, Lyo83, MLHK17, Mac95, MD97, MSW19, MWHC96, Man12, MK11, MN90, MB03, MBBS12, MV88, MV90, MV91b, MV09, MB90, MSSWP90, Men82, Men12, Mey93, MV01, MV02, Mit73, Mit09, MH00, Moh90, Moh93, MNP08, MVC12, Mul84a, Mul81, Mul84b, Mul85, MS88b, Nak21, NSF08, NRW90, NI83, Nyb96, OWZ14, OTKH11].

Hashing [OG94a, OG94b, OOB12, OOB17, OVY94b, Otk91, Oto84, Oto85a, Otto88b, Otto88a, OT91, OSR10, Ouk83, OS83a, OA89, OS83b, PR01, Pag06, PP08, PWYZ14, Pag18, Pal92, Pan05, PB80, Pap94, PV07, PT12a, PH73, Pea90, Pea91, Per73, Pes96, Pet13, PNPC20, PS93, PQ98, PQ99, PKW09, Pip79, Pit87, PM89, PVM94, PVM97, PV19, PT11b, PR16, PKSB18, PS12, PACT09, PF85, PADHY93, PW94, Qui83, RT87a, Ram88b, RL89, RP91, RR92, Ram92, RL82, RLT83, RSD84, RSD85, RSS89a, RSS99b, RSS90, RSS92, Ram97, RGNMPM12, RLH91, Reg81, Reg82, Reg88, RRS12, RH92, RH95, RW97, Rob86, Rog95, Rog99, Rog19a, Rog19b, RS75, RS77, Ros77, Rou09, RT87b, Rus92, Rus93, Rus95, SDR83a, SNBC98, Su05].

Hashing [Sag84, SY11, Sas11, SG76a, Sav90, Sav91, Sch79a, SD90b, SD90a, Sch91b, Sch93a, Sch81, SMZ18, SY91, SR89, SPW90, SYW+20, SB93, SSL+18, SHZ+20, SY08, Sho96, SR01, SSS05, SDT75, Spr77, SHRD09, SGG80, St194a, St194b, Sun15, SHF+17, SA97, Tam81, Tam82, TK88, TC93, TL95, TWZW11, TYZO15, THY+18, TCY+20, TI12, TW07, TK85, TZ12, TTY93, TZ94b, Tv83, Tor84, TK07, Tro92, Tro95, Tsa96, US09, Uli70, Uli72, VV86, VFHC92, WPKK94, War86, WFHC92, Wee07, Wee12, WPS+12, WSZ+16, WFT12, WP10, WDP+12, WS03, Wil96, Wil00, Wil79, Wil71, Win90b, Win90a, Woe01, WR97, WZ93, Wu84, YDTS8, YWH09, Yao80, Yao85a, Yao85b, Yao91, Yas07, YB95, YTJ6, YBQZ18, YGC+12].

Hashing [YD86a, ZWY21, ZLZ21, ZPS90, ZPS93a, ZWH21, ZLC+20, ZH18, ZHW19, dW83b, vDdW74a, vMG12, AT18, ASM17,
ASA+09, ADM+97, AI08, AI89, AT90, BGG93, BL89, BGH+13, BBPV11, BD82, BGG94, BDPV14, BDK16, BMQ98, BCGS16, Boo72, Bosxx, BT89, BCC10, Bur05, Bur82, BMLLC+19, CP91b, CP95a, CHKO12, CS93a, CW93, CJMS19, CP95b, CV83a, CCL91, CLL+14, CWC10, CKKK09, CZL12, CR89, CP13, CO82a, CHM97, Cze98, Dam94, DM03, DOP+14, DKK+88, DKK+91, DHW08, DS09b, DK12, DLN+18, Duc08, DM11, EH17, EBD91, Fal86, FWG18, FSV09, FFS+13, FNSS88, FKI+21, GLHL11, GG92, GDGK20, Gib90, GW94, GM77, GLJ11, GS89, GRF11, GPY94a, GZ99, Gui76c, Gup89, HB89b, HDCM11, HKL07, HR93, HM93, HMC94, HL05, HC02.

hashing [Hua85, HFZ+15, HFF+17, Hui90, IMRV97, Ind13, IIL17, Jan05, JWM+18, JBWK11, Kan90, KYS05, KLL97, KSB+99, KU66, KL96, KR88, KK96, Kin99, KM07, KM08, KM10, KR19, Kos14, KD92, Kou93, Kra94, KR06, Kuns89b, Kut06, KSC11, KSC12, LG96, Lar84, LNS11, LH06, LJY+13, LMLC14, LTL21, LLA15, LWXS18, LHWL20, LM88, LH04, LMPW15, LJW+17, ML15, MGA18, MI84, ML94, MNT93, ML07, MPL09, MV91a, MC89, MMG10, MP16, Men17, Mi95, Mi98, MYS12, MKSiA98, Mol90a, Mol90b, MSV87, NMQ22, Ni94, NMX19, OP03, OVV94a, OS88, Pag01, PR04, PWYZ10, PJM88, PJBM90, PCM15, PT11a, PT13, PY88, Pon87, Pro94, QM98, QZD+18, Ram89a, RT89, RB91, RF97, RZ97, RL90, RAD15, SK20].

hashing [Sab94, Sar11, SP12, SS89a, SS90a, Sch93b, Sch93c, ST93, SH92, SL88, SS16, SII02b, Sna87, Sta99, Ste18, Sti91, Sti94b, SZO+20, Sun91, STS+13, TLZL16, TB91, Th900, Tho17, TK17, TK99, Tsa94, TLL07, TD93, Vak85, Vio05, Vit80a, Vit82a, Wan05, WL07, Wee88, Woe05, WC94, WY00, WWG+18, XZPG21, XMLC11, YCI12, Zha19a, ZWCL10, ZL12, ZWT+14, ZHX+21, ZPS93b, ZZL18, ZHC+13, Zob70a, Zob70b, ZHB06, AGBR19, BJMM94a, JM02, KS88c, SV94a, SKC07, SA17, CV85].

Hashing-Based [Alb21, LMC07].

HashMap [Oak98]. Hashnet [Fab80].

Hashtablenn [Kue82a, Kue82b].

Hashverfahrens [Dos78a].

HashXor [Cho21].

Haskell [MRL+19].

HAVAL [WFLY04, ZPS90, ZPS93a, ZPS93b].

HAVAL-128 [WFLY04]. Hawaii [Deb03, SC77].

HCC [Har97]. HDDs [HGH+12].

Head [ACM91c]. Heap [FW76, FW77]. Heaps [CCA+12].

Heavy [TP15, Ind13]. Hebrew [Sch82a]. Hecke [CT96].

Hedge [Sho00b]. Height [Dev99, Reg81, TSH97]. Heights [Jen76].

Heinz [adHMR93]. Held [Ja90, Fis87].

Help [PVM97]. Helper [ALS10]. Herding [KK06, BSU12].

Here [Bur06].

Hershey [ACM76]. Hersonissos [ACM91].

hesitate [Gre95].

Hessian [Far14].

Heterogeneity [PG17, WB03].

Heterogeneity-Aware [PG17].

Heterogeneous [HNKO20, PG17, WSZ+16, GDA10, Kha95, SX08, SV18].

Heuristics [Omi89b]. Hidden [Leb78].

Hide [Can97].

Hierarchical [FWG18, PACT09, TK88, VL87, GP08, VL97].

Hierarchy [Wil71, YL04].

High [ACM04, AS09].

AEP18, AI06, ASBdS16, CT96, DGG+86, DadH92, DS97, Flo87, GIM99, HSM95, IEE94c, KMM+06, KVM10, LCK11, LPT12, MCK89a, McK89b, OT91, PSR90, RSSD90, RW07, Ron07, She91, TK88, Tho13, TP15, MKL21, WJZJ10, XLZC14, YNKM89, YWH09, ZHW19, AI08, BCCL10, EVF06, HKL07, Inc81, MV91a, MAK+12, MA15, RF97, SL+07, Shi17, Si89, SW+14, SXLL08, TYSK10, TLL07, XMLC11].
High-bandwidth [AS09].
High-Dimensional [AEP18, TYSK10].
High-error [Rön07]. High-Performance [DS97, Flo87, IEE94c, She91, MKL21, ZHW19, Shi17]. High-Speed [KMM+06, KMM+10, McK89a, YNKM89, McK89b, RW07, EVF06, SLC+07, SXLL08, TLL07, XMCL01]. High-Throughput [LPT12, XLZC14, MAK+12]. Higher [HKKK13, DH84]. Higher-order [DH84]. Highly [BCS09, KHW91a, Mat93, PAKR93, KHW91b, ZLL+07]. Highly-Associative [KHW91a, KHW91b]. Highly-Efficient [BCS09]. Hill [IEE88a]. Hilton [ACM91c, PDI91, ICD88, ICD90, IEE90, IEE01]. Histogram [Gra93b, MNY81, PCK95, UHT95]. Histogram-Driven [Gra93b]. History [BG07, MNS07, NSW08, Reg82, NT01]. History-Independent [BG07, MNS07, NSW08]. Hitter [TP15]. hitters [Ind13]. HMAC [FIP02a, BCK96b, CY06, DRS12, MA+12, RR08, Sta99]. Hmap [YTHC97]. Hoc [PH08, JHL08, Cha12]. Hole [JHL08]. Holistic [LCM+20]. Holographic [BGF88]. Homepage [GCMG15]. Homomorphic [CFN18, KKN12, CZLC12, MT16]. Honolulu [Deb03]. Hood [CLM85, Csl86, CM186, DMV04, PV19]. Hop [RHM09, MA15]. Hopscotch [HST08]. hostile [LC95]. hot [SSL+97]. Hotel [ACM75b, ACM82, ACM83a, ACM83b, ACM85a, ACM87, ICD86, ICD87, IEE88a, IEE88d, IEE01, Kna89, Nav85]. Hotspot [JLL+20]. Hotspot-Aware [JLL+20]. Hough [HB98c, HB94]. House [IEE80a]. Houston [IEE76, IEE94a]. Houthalen [QV89, QV90]. Hover [EH12]. HTM [CCW+17]. HTML [UCFL08]. HTTP [DB12]. Human [Bor81, TCW+13]. humanities [Bai81]. Hungary [Rue93]. Hwang [KCL03]. Hyatt [Kna89]. Hybrid [BM89, BM90a, CBB05, Gra93a, Gra93b, Gra94a, JLL+20, KNT89, GHG+12, LLL11, Sch79a, TYZO15, PCV94, TT81]. Hybrid-Hash [BM89, BM90a]. Hypercube [OL91, OL92]. hyperelliptic [FFS+13]. hypergraph [KKP+17]. Hypergraphs [FP10, HMWC94, Rad92]. hyperspace [DOP+14]. hypersphere [LWWK20].
Images
[FLF11, MNY81, PKW09, RT81, SSaS01, WMB94, WMB99, GG92, LMLC14].

Imaging
[FHMU85, Imai
[PGV93a, PGV90a, PGV93b]. immutable [SV15b].

Imbalance
[WZ12].

Impact
[GD87].

Imperfect
[Ven84].

Implement
[BCS89, BS94b, BGDW95, Dat88, DF89, DKO+84b, DKO+84c, DKO+84d, Dee82, Dev93, Dit76, DT75, EE86, EjkMP80, FW09, Gg86b, GT93, Gro86, Har71a, Hek89, ISK+93, JD12, Kah92, KMM+96, KU88, KM92, KR86b, KR86a, KRRJ07, KRRJ09b, KTN92, LK84, Llt79b, LPP92, NM02a, PRM16, SDR83a, She91, SK05, Sto82, TGL+97, TNKT92, VL87, BDP+12, BS94c, BW92, DS89a, DHW08, DM11, EDB91, GN80, GJM02, Inc81, IIL17, KU86, KKL+09, Md77, MZ19, McD77, MZI98, MFES04, Tai79, MKL21, Dit76]. Implementations
[GLG+02, Vit82b, WPKK94, WZJS10, DMP09, RAL07]. Implemented
[CMW83, MRL+19].

Implementierungs-techniken [Nee79].

Implementing
[Bab79, Bh95, BJ14, GHJ+93, Gra86, Jun87, KHv91a, KHW91b, Lin96, Llo81, LB07, VL97]. Implications
[Chr84, ChS+18, RAD15]. Implicit
[OS88, Kor08]. Impossibility
[BCS09, HM12]. Improve
[LBj02, BM01]. Improved
[Art94, BvT13, BMB68, Bli08, Bre91, CN08, DDS14, DL17, FB87, HSM95, HW88, JNPP+14, KMS6, Kut10, LW04, LJF19, KKS10, LH04, Mau83, Mic02, Mul72, Nss+06, Nak21, PS12, Rad92, RP95, SS80, SD95, TK17, UIY10, WM19, GM77, Mau68, War14, ZW05]. Improvement
[CH94, Fel87, LCM+20, RGNMP12]. Improvements
[CTZD11, Lev00, Nam86]. Improving
[ATAKS07, AVZ11, BSD88, CHY93, CHY97, CAGM07, Cla77, DB12, GCMG15, JHL+15, KZ19, MS12, RT87b, Sch82a, TCP+17, YHW09, ZGG05]. Impure
[Dee82]. In-Bucket
[TYZ015]. In-Memory
[CC+17, JLL+17, QXL+20, ZHW01, WLC20]. In-Network
[WBWV16]. Inaccessible
[HH+10]. Inadequacy
[GY91]. Includes
[FW76, FW77]. Including
[DGv93, KL95]. Incoming
[KL07]. Incomparabilities
[KCF84]. Incorporating
[CBA94]. Increased
[PRM16, MSP12]. Increment
[Ban77, Ltc72, RKK14]. Incremental
[BGG94, CT12, FRB11, GSC01, ISHY88, PW06, TWL+18, UIY10]. Incrementality
[BM97]. incrementalization
[SB07]. Indeed
[Yas07]. Indentify
[KCF84]. Independence
[KW12, PPR09, PT16, Tho13, DT14, PPR07, PT10a]. Independent
[BG07, CCG+91, DGD02, DTS75, Die96, Ind01, MNS07, NSW08, TZ12, BCGS16, FPS17, Han17, NT01]. Independently
[AU79]. Index
[BM89, BM90a, Buc82, Bur83b, Bur83c, DS84a, GPY94b, LC86a, Lom83, MZ1+19, OL89, Oto85b, Qu83, TY91, Wil79, ZHW19, Bur83a, Fro81, GPY94a, HM03, KZ19, LCH+14, Md77, SWQ+14]. Index-Based
[OL89, TY91]. indexable
[RS07]. Indexed
[Chu91, Chu92, KHT89, Mul72, GB17, SN19, Tay89, WM93, TK199]. indexed-hash
[WM93]. Indexed-Sequential
[Mul72]. Indexes
[Les88, Omi89b, Pip94, WCW+22, FVS12, HCW+21]. Indexing
[CJ86, Dum56, KJGJ12, Li15, Llo81, Per73, SE89, Tor84, Wil79, WMB94, WMB99, YHW09, CXLK19, CWC10, Fly92, LG96, MSZ+20, MIGA18, MMG10]. India
[RRR99]. Indiana
[Van10]. Indianapolis
[Van10]. Indicator
[YD84]. indicators
[Er86]. Indices
[LR99, Val87]. Indifferentiability
[CN08, LLG12, MTP16, BGKZ12, BDPV08, GLC08]. Indifferentiable

Indirect [Bal96, DGGL16, Joh61].

Indirectly [Ols69]. Individual [Jan05, Jan08, Vio05]. Induced [de 69].

Industrial [PGV93c, ARA94]. Industry [ANS05]. Infeasibility [FS08].

Infinite [GHK91a, GHK91b, LII92, Bra09]. infinity [Hil05]. Inflate [NMQ22].

Influence [RTK12]. INFOCOM [IEE01, IEE92a]. Inform [Pro94].

Informal [CK89]. Informatics [CHK06]. Informatik [Nol82a, Nol82b, OK80].

Information [PDI91, BV89, BIP92, Can97, Cha84a, Dan13, DSSW90a, Elb82, FC87b, FH69, FCDH90, FCDH91, GPy94b, ISO97, ISO04, KLT92, KM86, KM88a, LC06, LXL+19, MV01, MNS07, PGV93f, SKC07, SPSP16, SC77, Sta06b, Sun15, Vid90, WBWV16, XHZ+19, Yan10, YR87, YBQZ17, AFK90, DSSW90b, GPy94a, KSC11, KSC12, SG72, SXLL08, FNY92, FBY92, Gil77, Ros74].

Information-Based [SKC07, KSC11, KSC12]. Information-Centric [SPSP16, WBWV16]. Information-Theoretic [Sun15, SXLL08].

Informix [Ger95]. Infrastructure [MJ14, Nak21]. Infrastructure-free [MJ14].

Innovation [ACM03b]. Innovative [OG94b]. Input [AB12, Sab94]. Insecurity [DOP05]. insensitive [CyWM91]. inserting [Gup89]. Insertion [FPS13, PS12, CV83a, Jan05, Kon93, PY88].

inside-out [AP11]. Insight [CQW08, IEE02]. Installation [LAKW07].

instance [FS08]. instantaneously [DV07]. Instantiated [RR08]. Institute [Ano93d].

Instruction [BOS11, SS83]. instrumentation [Ano86]. Integer [Ano86, Die96, MV90, MV91b, Woe01, Woe05].

integers [BCS89, Han17]. Integral [LJF19, Rog19b]. Integrated [DGKK12, PG17, NM02b]. integrating [ATAKS07]. Integrative [LLDZ18].

Integrity [CLS12, Sch01b, Sch01a, Wil96]. Intel [JHL+15]. Intellectual [DGKK12, IEE88a]. Intelligence [Kak93, Luh58, ARA94, LLC89]. Intelligent [IEE11a, LJW+17]. intensify [HL12].

intensive [Shi17]. inter [Kos14]. inter-system [Kos14]. Interacting [LLW10]. Interaction [ZLY+12, Bor81].

Interactive [CBK83, Cer85, CBK85, Dam93, Dam94, Dos78b, GK94, GK95, HR14, KG95, MS09, OVY94a, OVY94b, Rad83, Wee07, RWSN07, RW73, TCW+13, TWL+18, MS09].

Interconnection [Fah80]. Interest [ACM82, DT87, OSR10]. interesting [VNC07]. Interface [Vit85, WGM88, Bor81].

Interfaces [DCW91]. interleaved [RH90].

Internal [GL82, GL88, ITP14, LC88, Wil59].

International [ACM81, IJW89, PDI91, ACM94b, ACM11, ACM12, AGK+10, ABB93, ABM06, AFK90, ARA94, VLD82, Ano89, Ano93c, AW89, AAC+01, A+90, Ain00W11, AOV+99, AAS6, Bai81, BD88, BDS88, BV99, BIP92, Be100, BBD09b, BJ94, BRW93, BL88, BF89, Bli92, Bri93, BW92, BD08, BI93, CG086, CLM89, Cop95b, DG96, DSS84, DSZ07a, DSZ07b, DJRZ06, DJNR09, FNY92, FMA02, Fra04, Fre90, GMJ90, Gol92, GSW98, HB93, HL91, IEE80a, IEE84, IEE85b, ICD87, IEE88a, IEE88d, ICD88, IEE88b, ICD90, ICD91, ICD93, IEE94a, IEE95, IRM93, JBJ94, JY14, Ker75, Kna89, KLT92, Kui92, LC06, Lak96, Las87, LCK11, Lev95, Lie81, LS89, LT80, LSC91, Lon93, MK89, MSDS90, Mo92b, Nav85, Ng79, Pat90, PSN95, PV85, PK89, QG95, RK89, RNT90, ST83a, ST83b, SP90, Sho05, SW94b].

International [SW94a, SC77, Sti93, Sti94c, ...]
36

Sto92, Vau06, Vid90, WPY90, IWSS91, Yan10, Yao78, Ytr06, YR87, Yu92, Yua92, Yun92, vL94, vdHV92, ADG+08, AMSM+09, ACJT07, Bir07, CIM+05, Cop95a, Deb00, Goi96, HKNW07, HF13, Wie99, ICD86, IEE11a, Sch82a.

Internet [ATAKS07, Ano95d, HLC10, MCF17, McNo3, She96, SXLLO8, ZNPM16].

Internet-Draft [MCF17].

Internet-scale [ZNPM16].

Interpolation [Buc82, Bur83a, Bur83b, Bur83c, Wu94, FWG18].

Interpolation-Based [Buc82, Bur83b, Bur83c, Bur83a].

interpretation [Fly92, GvR08].

Interpreter [CBA94, Gai82].

Interprocessor [KK96].

Interrogating [HLC10].

Interrogating-Call [HLC10].

Intersection [PSZ18].

Interval [GY91, Lip02, BL89].

Intractable [IT93, IH95].

Intrinsics [Rog19a].

Introduction [AG18, Cob94, DK02, DK15, Fel50, Fox91, Har85, Hua82, KL15, RW97, TS76, TS84].

Invariance [SvEB84].

Invariant [HSPZ08, LH20, NS16a, Fly92, SB07].

Inverse [CPP08, HCF95].

Inversion [DK07].

Inversions [Pat95].

Inverted [Les88, HC02, McD77].

IoT [Alb21, Cho21, HLL18b, KAS+22, NADY20].

IoT-Enabled [Alb21].

IoVs [VD21].

IP [BLC12, BM01, HDCM09, IGA05, JLT99, MLL09, RW07, SXLLO8].

IPSec [KMM+06].

IPv4 [PT12b].

IPv6 [PT12b].

Ireland [ABB93], iris [MMG10].

Irreversible [ANS97].

ISA [HL91].

ISAAC [AINOW11].

ISCA [Deb03].

Island [Ri88, IEE07].

ISO/IEC [ISO04].

isogenies [CDS20].

Isolated [MMMT09].

Israel [Sch82a, BCS88].

Israeli [Coh94].

ISSAC [ACM94b, Lak96, Lev95, vdHV92].

Issue [LG78].

Issues [MP90, LMSF89, LG78, Yu92].

Italian [AAC+01, AA86, ST83a, ST83b, Ano94, De95, IEE88d, IEE92a].

Item [WYD+18].

items [Bay73b, CH90].

Itemsets [BMLLC+19].

Iterated [Jou04, KVK12, HLMW93, HXMW94, KHK10].

iterations [OS10].

Iterative [MV02, NPNC20, SXL16].

IV [Far93, Si102a].

IWDM [BF89].

J [Sar80].

January [ACM91d, ACM91a, ACM97a, ACM05, ACM08a, Kar98, Mat09, SP90, Shm90, USE91].

Japan [IJJW99, A+90, AIK96, CGR96, Got83, IEE85b, IRM93, Mo92b, IEE85b, KCD91, LT85].

Java [Sun02, CHL07, LBJ02, NM10, OOK+10, SB07, SSS05, Tym96].

JEqualityGen [GRF11].

JERIM [MJ08].

JERIM-320 [MJ08].

Jersey [Fret90, IEE84].

Jersey-sponsored [IEE84].

Jerusalem [BDS88, Sch82a].

Johnson [SG16].

Johnson-type [SG16].

Join [Adi88, AT91, BM89, BM00a, CS83a, CHY97, DG85a, DG85b, FP89b, Gra93a, Gra93b, Gra94a, Gra99, HR96, KR91, KKK99, KLS7, KNT89, KHT89, KO90, KNT92, LR99, LDM92, LTS90, MLD94, MLxx, MS88a, NKT98, NNA12, NP91, OL91, OL89, Omi88b, OL92, PAPV08, PG95, Pip94, RK91, SD89c, SD89a, SD90b, SD90a, Sha86, SM87, Sol93, Spe92, TR02, TY91, Top92, TP95, Toy93, TNKT92, Val87, WYT93, YNW+09, Yam85, ZG90a, ZG90b, Zel91, ZJM94a, ZJM94b, ZJM94c, ZO93, ALS10, BMS+17, CAGM07, CyWM91, GK05, ISO97, Kha95, KKL+09, LNS11, LEHN02, MMSY94, Mul92, OT98, PCK95, PCV94, RLM87, RG89, SD89d, SM94, SA17, SP98, TL93, UHT95, WL07, NNA12].

Joining [NP91].

Joins [CLYY92, CLYY95, DG93, DG94, DNSS92, GBC98, Gra86, HCY94, HCY97, LR99, LHH99, NNA12, PCL93a, SC90b, SC90a, SC90c, WTYT91, YCRY93, AKN12, BATO13, BLP+14, HLMH13, HLM+15, LCRY93, ML95, PCL93b].

Joint [IJJW99, AF163, AFI69, MO92a, IEE92a, IEE01, ZC12].

Jose [ACM11].
JPEG [ZC12]. JPEG-2000 [ZC12]. Jpoin [Omi91]. Juan [IEE91b]. Judy [Sil02a]. July [IJW89, ACM91c, ACM94b, ACM01, AGK+10, ADG+08, AMS+09, Ano95c, ACJT07, dVBL80, CIM+05, Coh94, DG96, CTC90, Kui92, Lak96, Lev95, NS82, Oxb86, Pat90, Rei88, vdhH12]. June [ACM84a, ACM03a, ACM07, ACM11, ABM06, BDS88, BV89, BIP92, BRW93, BL88, BF89, FMA02, Fre90, Van10, HF13, IEE05, LL08, LS89, MS05, Ng79, Rei88, Sch82a, St09, Vau06, vL94]. Just [Yas07]. JVM [SV15b].

k-ary [Gui76c]. Karlsruhe [HM08]. Karp [GBY90]. Karp-Rabin [GBY90]. Katapayadi [Ram97]. Katholieke [BBD09b]. KD [KHT89]. KD-Tree [KHT89]. KDL [PSR90]. KDL-RAM [PSR90]. Keccak [BDPV09, BDPV12, DDS14, L LA15, LS13, BDP+12]. KEM [CLZC14]. Kent [Oxb86]. Kerkyra [Rei88]. Kernel [CSSP15, Lev00, ZLY+12]. Key [ANS97, ANS05, IA91, BD82, Bol79, Boo74, CS88b, CC87, CS87, CC91, CLC92, CTZD11, CY06, CG79, CS02, Dam87, DL12, Dos78a, EAA+16, GG86a, Gri79, GG80, GYW+19, HB89b, HB89a, HM12, IG77, JLL+20, Joh97, KM09, KV09, KR86b, KR86a, LYX+19, LAKW07, LLL+16, LCM94, Lin63, LCM+20, LYD71, Lum73, MZL+19, Men12, MW95, NTY12, PRRR15, QXL+20, RSSD88b, RSSD92, Rob86, RS08, SY11, SR63, SSS05, SDZ21, Sta99, YLSZ19, Yaa95, Yub82, QZSH12, And88, BSNP96b, CCL91, GL06, GBL94, LW04, LND08, LY72, ML94, Men17, NM02b, Oka88, SD85, Sar11, SN19, Shi17, WLC20, ZCZQ19].

Key-Exposure [CTZD11]. key-node [SN19]. Key-Recovery [CY06]. Key-Sequential [HB89a, HB89b]. Key-to-Address [LYD71, Lum73, SR63, LY72]. Key-Value [PRRR15, Shi17]. Keyed [Ano95a, BSNP96a, KKRJ07, Gon95, Li95, SV06, FIP02a]. Keyed-Hash [KKRJ07, FIP02a]. Keying [BCK96a]. keypoints [MMG10]. Keys [Gon80, Gur73, JC88a, Joh61, KR01, LJC97, LL87, Oto85a, PB80, Riv76, Riv78, SD78, Sch78, Yao85a, CFW18, FP82, GMW90, Wan05].

L [Sar80]. Label [LQH18, ZWY21]. labeling [TCW+13, YSL05]. labels [LLT21]. Lam [Wag00]. LaMansion [Nav85]. lamp [MC03]. Landau [SV06]. Landmark [NNA12]. Landmark-Join [NNA12]. Landsat [MNY81]. langage [LG78]. Language [Cer81, CKB83b, DI86, FR96, GHJ+93, GT63, GG86b, Har85, ISK+93, KCB81, LG87, Wi59, BW92, CP95a, CK83a, Lev89, YIAS89, YMI89]. Languages [ACM91d, dVBL80, BRW93, CL83, Cra85, IEE84, Jou85, Kui92, NS82, Pat90, ACM91a, AGK+10, ADG+08, AMS+09, ACJT07, CIM+05, DTM+18, DLH+79, DL06, GMP95, GJR79, Inc81].

LAPI [MS02]. Laplacian [ZWCL10]. Large [ABB93, VLD82, AW89, AAC+01, AOY+99, BD88, BH85, BCH87, BJZ94, BI12, CKB85, CML+13, CGO86, Chu90, Coh98, DSS84, DS09c, Dos78a, DT91a, DT91b, FM91, Fe87,
RS92, RLH91, Reg82, Rob86, RT87b, SDR83a, SPW90, TW91, TZ12, Toy93, VP96, VP98, WVT90, YD86a, Ald87, ADM+97, BJ07, Bou95, HB89b, HCF95, Jan05, LNS93, MTB00, MMC01, ML94, Omi89a, OP03, OSS88, PT10a, RLH90, Sar13, SS16.

Linked [Fel87, Pal92, ZLLD18, ZKR08]. Linking [Bob75]. Linkless [CJC+09]. links [EVF06]. Linux [USE00a, Lev00, LACJ18]. Lisbon [CIM+05]. Lisp [LPF82, Hek89, Nam86, FH96, GSI+82]. Lisp-Based [FH96]. List [McI82, Ter87]. Lists [BH86, HK87, LLC89, Lyo79, MY79, Kno84, ST85, SS06]. literate [Sab94]. little [DMPP06, PES+12]. Live [MZD+18].

Ljubljana [EF12]. LLE [TLZL16]. Load [HC13, IK92, KJC11, LRLW93, LRLH91, Omi91, RRS12, RK91, Top92, TP95, WL07, KL08, SX08, TLLL18, WZ12, WTN09, XCKK09]. load-balanced [TLLL18]. Load-balancing [WL07, XCKK09].

Loading [vdP72]. Local [MD97, MNY81, MTT+02, PKW09, RT81, SY08, BGG12, EASR22]. Locality [BT12b, CSSP15, CKPT19, Chi91, Chi93, Chin93, FEMRK+90, HNK20, IMRV97, KGB18, Kau15, MZL+19, MNP08, OWZ14, OTKH11, Peg18, ZHW21, AT18, GDGK20, HAK+16, HFZ+15, HFF+17, LNS11, LWXS18, LJW+17, QZD+18, SP12, STS+13, ZHX+21, SA17]. Locality-Aware [HNLK020, MZL+19]. Locality-Preserving [Ch19, Chin93, Chi94, IMRV97].

Logging [Moi90, Moi93]. Logic [AR16, BM87, BAN89, Cra85, IEE84, Las87, dKC94, BW92, DLM07, YIAS89]. Logical [CPP08]. Logs [SK99]. LOKI [BS91c, Knu92]. London [Ano93a]. Long [Mit12]. Longest [DKT06, Gon81, PT12b]. Look [CP91b, Sna87, AY14, CP91a].

look-up [AY14]. Lookup [CN07, HDMC09, Jai89, Jai92a, Jai92b, Jaixx, Pri71, She78, SWTX18, Tro06, YBQZ18, BLC12, HXLM13, Mad80, MSK06, MLI07, MPL09, MA15, PT12b, WZT+13, WTN07, ZGG05]. Lookups [Pan05, BM01, IGA05]. Loss [ATS19, FC87b]. Lossy [PW08, Wec12].

Louisiana [ACM91e, ACM97a]. Louisville [Rie89]. Low [MI12, HMNB07, HGR07, Les88, LYY+18, PSSC17, QXL+20, TBC+05, ABO+17, BOY11, CZ14, HM03, MA15]. low-area [ABO+17, BOY11]. Low-Cost [GI12, HMNB07]. Low-overhead [HGR07].

Lower [DKM+94, GadHW96, Gom77, MNP08, OWZ14, Yoo83, DKM+88, DKN+91, Sun91, Sun93]. lowering [SSU+13]. LR [HC87]. LSH [AT18, AOD19, CKM14, CK15, LCH+14, LJW+17, ZNP16]. LSH-Preserving [CK15]. Lucifer [BS91c]. Luhn [Ste18].

Luxembourg [Bir07]. LXCloud [LACJ18]. LXCloud-CR [LACJ18].

Lyra2 [ASBdS16].

M [Sar80]. MA [ACM84a, Ker75, Kil05, CP91a, ACM86a, CP91a]. MAC [HLL18a, PV95, PVo95, Pre97a, SRRL98, SR099, Eng90]. Machine [And89, CCJ91, DGS+90a, DGS+90b, DGS+90a, GD87, GSI+82, Hsi83, KLADH93,
KLM96, KTMO83a, KTMO83b, KTMO83c, Tan83, EBD91, Vak85, BM90b, KK96, RH92.

Machine-Independent [CCJ91].

Machinery [DT87]. Machines [BF89, adH93, Mey93, SD89b, Sch90b, SD90b, SD90a, TR02, CHS+18]. MACs [DL17, GO07, PV95, PvO95, Pre97b, Saa12].

Made [Cic80b, PV07]. Madison [FMA02].

Magic [Hin20, Zha19b]. Magnetic [Wri83].

MAHT [CRdPHF12]. Main [AP93, CE95, CRdPHF12, DKO+84b, DKO+84c, DKO84a, KR91, KL87, KK85, Kum89a, LC86a, SPW90, Sha86, TP95, ZHZ+19, AKN12, AP92, BATÔ13, DKO+84d, JHL+15, Pro94].

Main-Memory [KR91, BATÔ13].

Maintaining [Woe06b]. Maintenance [Buc82, Bur83b, Bur83c, Oto85b, Bur83a].

Making [BR97, Cob94, Hel91, LT09, CCA+12].

Malicious [AAE+14]. malleable [BCFW09]. Malo [GQ95, QG95]. Malware [ASWD18, LLDZ18, NADY20].

Many [BGF88, CZL12, JWM+18, Lia95, SV18].

maps [HC14, JBWK11, SV18]. March [AC82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM91b, AO30, Ano10, Bir07, CHK06, Deb03, IEE88a, IEE11a, JB94, RNT90, SM08, TWW77, Ytr06]. Marching [ZRL+08]. Marina [AC82]. markerless [JBWK11]. Markets [Mir17]. Markov [HL94]. Marseille [Ng79]. marshalling [LPSW03]. Maryland [AC90, FNV92, J´aj90]. Mass [Col93]. Massachusetts [BV89, IE05, MS05]. Massive [SMZ18, HAKM15, LRU14, Vit01, XCCK09]. Massively [AKN12, J´aj90, MK93, RH92, YLB90, Yen91, CZL12, Fis87].

Massively-Parallel [MK93]. Master [LYX+19]. Match [AU79, Bur75b, Bur76b, Bur76c, Bur78, Bur79, CLD82, Ch90, Jag91, Mor83a, RLT83, RSSD85, RSSD90, RSSD92, YD86a, AT18, CC88a, Fa88, Hua85, RSSD90a, RSSD90b, Rv74a, SDR83b, YD86b].

Matches [Dav73, PRK98]. Matching [iA94, BHS5, CFP19, CCH09, CG79, Gri79, Han90, HCKW90, HW08, KSSS86, KR81, KPS92, LLIC17, RH92, RH95, TK07, ASM17, CLS95, CWC10, DKT06, DC94, GBY90, HC14, HW88, ISHY88, KP92, KS89a, Kim99, MHT+13, PT12b, Sch91a, TKT+89, TLL07, TLL09, XMLC11].

Matchings [CKN18]. Materialized [BM89, BM90a]. materials [SE89]. math [McN03]. Mathematica [Jac92].

Mathematical [BC39, LG78, LI92, NAK+15, Sed83a, Hili05, GT80, Rov90, Win78]. Mathematics [FH96, GKP89, GKP94, GK81, GK82, Knu74]. mathématique [LG78]. Matrices [ASW07]. Matrix [AN96, Atk75, BH90, vDSW74b, ZYW21, vSDW74a, BT90, CFY94, JCC00].

Matsumoto [PGV93a, PGV90a, PGV93b]. Max-Poly [DSS17]. maxima [MI84].
Maximizing [KHK15]. Maximum [AHS92, GB10, KV91, MV88, Pet13, CKKK09].
Maximums [MNY81, maxmin [AII89].
Maximums [MNY81]. maxmin [AII89].
May [ACM75c, ACM75a, ACM76, ACM77b, ACM81, ACM84b, ACM86b, ACM88b, ACM89c, ACM90, ACM91e, ACM94c, ACM96, ACM97b, ACM98, ACM02, ACM08b, ACM12, AFK90, ARA94, Bai81, Bor81, BJ93, Dam90a, Dam91, DT87, De 95, FIP93, GMJ90, QG95, Hel94, IEE85b, IEE94b, IEE94c, KLT92, Lie81, LT85, Nav85, PGV93c, QG95, Rue93, SW94b, SW94a, Van06]. McGill [CCC89]. MD [Fis87, IEE02, PvO95]. MD-x [PvO95]. MD4 [Ano95a, WFLY04]. MD5 [Ano09b, For09, WFLY04, WZJS10]. MD6 [BKMP09]. MDC [LS15]. MDC-2 [LS15]. MDS [TW07]. MDx-family [PV95, SRR98]. MDx-MAC [PV95]. Me [Lan06]. Mean [Bra84a, Bra85, Bra86]. Means [Bab79].
measure [Bac02]. Measurement [NS16b, SL16, YGS+19, LMP+08, RW07, ACM94c]. measurements [KLSV12]. Measures [MY79]. Mechanism [DGD02, Kuma89a, Cha12, HKL04, JFDF09, SF88]. Mechanisms [DF01, Sev74]. Media [LWZ+18, CBB05, ZO13]. mediaserial [CBB05]. Median [HSP08, She78]. Medical [FHMU85, GPA97]. Meet [Sas11]. Meet-in-the-Middle [Sas11]. Meeting [ACM84a]. Mega [TKT+89]. Mega-access [TKT+89]. Mehdos [Du86]. Mehrfachattribut [Stu82]. Mehrfachattribut-zugriffsverfahren [Stu82]. Mehrschlusselzugriff [Fri86]. Membership [BM99, DP08, HKLS12, Pag01]. MemGuard [CZ14]. memo [Hug85]. memo-functions [Hug85]. Mémoires [Lit77b, Lit79a]. Memories [DD15, KHW91a, MNS07, Sha86, vdBGLGL+16, CCHK08, CCA+12, Hui90, KHW91b, Koh80, Liu63, RH90]. Memory [AP93, ASBdS16, AGMT11, BLPS+14, BC90, CRdPHF12, CCW+17, CadHS00, DG93, DG94, DKO+84b, DKO+84c, DKO84a, DHH+15, DadH92, Dam56, EK93, adH93, HNS84, JP08, JLL+20, JCK+18, KHK15, KU88, KLM96, KR91, KL87, KK85, Kum89a, LC86a, LTS90, LHWL21, LSZ+21, MZL+19, MLxx, Mey93, Omi91, PSSC17, Pan05, PG95, PS12, PGV90b, QXL+20, RSK17, T92, RL74, SPW90, SSS88b, TR02, TP95, Vit81a, Vit71, Woe06b, Wri83, YBQZ18, ZH18, ZHZ+19, AS09, AKN12, AP92, BAT013, BDK16, Bor84, CJMS19, CZ14, DKO+84d, Don91, GLJ11, HDMC11, HKL04, HCW+21, JHL+15, KU86, KFG15, LHWL20, MSZ+20, MBK00, MSS96, PGV93g, Pro94, Shi17, SG72, SV15a, TKT+89, Vit01, WLC20, XLZC14, YIAS89, ZHW01]. Memory-Contention [DG93, DG94]. Memory-Efficient [YBQZ18, BLPS+14, Shi17, XLZC14]. Memory-hard [LSZ+21, BDK16]. mer [HC14, FNPC20]. Merge [Gra94b, Gra99, AKN12]. Merge-Join [Gra99]. merging [SSU+13]. Merkle [Bako9, CDMP05, GB17, LR+15, Mir01, MFES04]. Merklet-Damgård [Mir01]. Mesh [CRR18]. Mesh-to-Mesh [CRR18]. Message [ˇAVZ11, BCK96a, BCK96b, EPR99, FIP02a, HK12a, KKRJ07, MRW89, NCFK11, RWSN07, Rog95, Rog99, Sho96, TC83, Tsn92a, Tsn92b, W803, Yas07, G12b, Kraf9, MS09, St09, SV06]. Metabase [KP81]. Metadata [GYY+19, SWTX18, DAC+13]. MetaFlow [SWTX18]. Metagenomic [PKSB18, KZ19]. Method [AA79b, AA79a, Ari68, Bat75, Bel70, Bel72, Bel83, CS91, CC87, CCL92, CPP08, CLS12, Cic80a, Dos78a, DT75, FNP79, HD72, JOS0, Jao81, Jol61, KR86b, KR86a, KNT89, KO90, KR79, KRJ+80, Lam70, LK84, LPT12, LL86, LL87, Mal77, MVYS81, McI63,
Moh90, Moh93, Mul72, NKT88, NI83, PG95, Per73, Ram92, RJK79, RT87b, SD85, Sag84, SG76a, SS62, SR63, SSS05, Spr77, SHRD09, Ven84, WKBA07, Wu85, Zou85, BGG12, EASR22, HW88, Kan91, Kan93, LP04, MI84, MF82, MFK +06, NH74, Vit80a, WLLG08, Woe06a, Zob70a, Zob70b.

Methode [Kar82]. Méthodes [Lit77b]. Methodologie [Lit77a]. methodologies [CE95]. Methodology [Hea82, GJM02]. Methods [AS16, Bay74, Bla00, Bra84b, CSSP15, CF89a, Eck74b, Fal85b, FC87a, Gri98, HB89a, HB92, Kab87, Lit84, Lum73, MWHC96, ML75, MV02, Pip94, QCH +81, SDKR87, SM87, TK88, CE95, CLS18, GRF11, HB89b, Lev89, Mul92, RAD15].

[HPC02, KGJG12, Kaw85, KJS17]. Modula
[Fel88, SW86, SW87, BH86, ST86, Sed93]. Modula-2
[Fel88, SW86, SW87, BH86, ST86]. Modula-3 [Sed93]. Modular
[GSC01, LT09, ISO97, Mei95, Mon19]. Module
[KRJ09b]. Modulo
[CC87, CLC92, Gir87, Kak83]. Modulo-
[Gir87]. Modulus
[PV92]. molecular
[IG94]. Moment
[TZ12]. Monitoring
[SS83, SLC+07]. monotone
[BBPV11]. Monte
[BF83, Rey14]. Monterey
[Col93]. Montgomery
[ACM02, CCC89, JY14, Lev95]. Morphological
[CRdPHF12]. Moscow
[Ers58b]. Most
[AT93, AT90, ERS94]. Motion
[CBA94, CL95]. Motivating
[She06]. move
[Lep98, SR01]. MPEG4
[KM99]. MPHF
[Zou85]. MR
[Pro94, Sar80]. MRD
[SNBC98, SnC05]. MS
[JC88b]. MS-DOS
[JC88b]. MTAC
[GT80]. Muenster
[Dit76]. Multi
[AP93, BATÖ13, BSH12, BR06,
CS83b, CC87, CS87, Cha88, CHY97, CLS12,
CJC+09, Coh84, FL08, FLP08, FLP14,
GPY94a, GPY94b, HYH89, HYH93, HRS16,
KR86b, KR86a, KL87, LöÖN01, LRY+15,
LCM+20, MMB00, MN81, Ngu06,
PADHY93, RSSD90, SD85, SMZ18, VB00,
WSZ+16, YNW+09, YLB90, ZI09, ZHW21,
ZLC+20, AKN12, Ano83, CLI+14, HR93,
HL94, KKL+09, LJW+17, Pro94, Sar13,
SV18, TL93, Tsa08, XZPG21, XMLC11].
Multi-Agent
[BSH12]. Multi-Attribute
[CS83b, CC87, HYH93, RSSD90, HR93].
Multi-core
[BATÖ13, AKN12, KKL+09].
Multi-Dimensional
[HYH89, MN81, Ngu06, XMLC11].
Multi-Directory
[PDHY93, AP93, Pro94].
Multi-Disc
[CC87]. Multi-Disk
[Cha88]. Multi-Entry
[YLB90]. Multi-granular
[CLS12]. multi-graph
[CLL+14]. Multi-Index
[GPY94b, GPY94a]. Multi-Join
[CHY97, TL93]. Multi-Key
[KR86b, KR86a, SD85]. Multi-Level
[CJC+09, MTB00, HL94]. multi-linear
[Sar13]. multi-maps
[SV95]. Multi-Modal
[WSZ+16, ZLC+20]. multi-national
[ANO83]. Multi-Precision
[LÖÖN01]. multi-probe
[LJW+17]. Multi-Processor
[KL87, YNW+09]. Multi-Property
[FLP14, FL08, FLP08]. Multi-Property-Preserving
[BR06]. Multi-Proxy
[ZJ09]. Multi-Replica
[LRY+15]. Multi-Sensor
[ZHW21]. multi-server
[Tsa08]. Multi-Stage
[LCM+20]. Multi-target
[HRS16]. Multi-Threading
[VB00]. Multi-Threading
[SMZ18]. Multi-View
[Coh84]. multi-view
[XZPG21]. multi-attribute
[CLD82, Fal85a, Fal86, Rot89]. Multicast
[DPH08, TW07, ATAKS07, CBB05]. Multicollision
[KHK10, KV12]. Multicollisions
[Hal12, Jou04]. Multicomputer
[BGF88, OL91, OL92]. Multicomputers
[OL89, TY91, HSMB91]. Multi-core
[WCW+22, CHS+18]. multidatabase
[DS895]. Multidimensional
[CC88a]. multidisk
[GZ99]. multihop
[ADF12]. Multikey
[DL80, KR88, NHS84, SDR87, VV84]. multiflange
[CML+13, LMLC14]. Multilevel
[DK90, DT91a, DT91b, Gri98, LZL88]. Multimaps
[AGMT11]. multimatch
[XLC2014]. Multimedia
[CJN20, Fox91, HLC10, ISK+93, LQH18,
LZ16, RZ90, SSL+18, ZLC+20, ZHC+13].
multimodal
[HMT+13]. Multipermutations
[SV94b, SV95]. Multiple
[Abi12, AS96, BP97, Bol79,
CS83b, CC87, CS87, CC91, CLC92, CLY95,
FB87, FP10, GK94, GK95, HDCM09]
Multiple-Attribute [GK95, KG95].

Multiple-Collision [HHL10].

Multiple-Key [Bol79, RSSD89b, RSSD92].

multiple-set [HKLS12].

multiple-valued [DH84].

Multiplication [AN96, GK08, Woe01, Bis12, Woe05].

multiplications [LK16].

Multiprocessor [DG85a, DG85b, Ger86a, Ger86b, KTN92, MLxx, Omi91, RS92, SD89b, SD89c, SD89a, Sch90b, SD90b, SD90a, TNKT92, ZJM94b, SD94d, ZJM94a, ZJM94c].

Multiprocessors [Bor84, LTS90].

multiqueue [Has72].

Multiset [MSTA17, CP95a].

multisets [B¨ut86, NTW09, RRS07].

multisignature [Oka88].

Multispectral [DCM18].

Multiterm [Bur84, Bur82].

multithreaded [GK05].

Multithreading [Cro98, MIGA18].

Multiuser [ZG90a, ZG90b].

Multivariates [DY08].

Multiuser [ZG90a, ZG90b].

Multivariates [DY08].

Multiview [LWZ+18, SSL+18].

Munich [BRW93].

Münster [Dit76].

MuR [LRY+15].

MuR-DPA [LRY+15].

Mutual [CJP12, GH12, CJP15, FF90, SPLHCB14].

N [Sar80, FHC89, ISO97].

n-bit [ISO97].

Nachrig [FT12].

name [WZT+13].

named [WZT+13].

Names [ABC716, Dos78a].

Nancy [Jou85].

Nanowire [Rey14].

NASA [Fis87].

NATO [Ana95c].

Natural [Cer81, CKB83b, Har85, KCB81, LG78, YMI89, CKB83a, naturel [LG78].

NC [IEE89].

NDN [TKH20].

NDSS [Ana10].

Near [AI06, AI08, BT89, DD15, LQZH14, GJM02, SB97, Yuv75].

Near-Associative [DD15].

Near-Duplicate [LQZH14].

Near-Optimal [AI06, AI08].

Near-perfect [BT89, SB97].

Nearest [AEP18, AI06, CL85, KGB18, MW09, PACT09, SY08, AI08, CW93, FH79, HFZ+15, JDW+19, LCH+14, LWWK20, SWQ+14, TYSK10, MKL21].

nearest-neighbor [FH79].

Nearly [HT01, FP82, MV91a].

nearly-constant [MV91a].

Negative [DDF+07, SB95].

Negatives [Pag18].

Neighbor [AEP18, AI06, CL85, KGB18, MW09, PACT15, SY08, AI08, CW93, FH79, GJM02, HFZ+15, JDW+19, LCH+14, LWWK20, SWQ+14, TYSK10, MKL21].

Neighbor-sensitive [PCM15].

Neighborhood [DHL+94, DHL+02, D+92, SG72, ZLY13].

neighbours [Yuv75].

Neither [CP91a, CP91b].

Neophytes [Gre95].

Nested [HBL+94, FSK90, MCC01, TMB02].

netflow [LDK12].

Netherlands [dBvL80, CP87, CP88, vL94, AW89].

Network [Ana10, HCJC06, HLC10, JL14, KHK15, MK11, PLKS07, Ven86, WBWV16, YBQZ18, AS09, CCR14, Che21, DFM15, Die90, FVS12, KL08, RAL07, TLL07].

Networking [ACM04, LCK11, LZ16, WBWV16, WZT+13].

Networks [CGLC20, DK09, DPH08, Jai89, Jai92a, Jai92b, Jiaxx, JLH08, Kak93, KU84, LDY+16, MJBB11, PLKS07, SV94b, SPSP16, SMS91, TGGF10, XVZ+19, ZQS12, AK09, ADF12, BCCL10, Cha12, GDGK20, GBL94, LG13, LND08, MLP07, NMIQ12, PES+12, SV95, SX08, TBC+15, WSH+07, WNG+18, YG10, ZBB+06, BB07, CT10].

neuer [BI87].

Neural [Kak93, NQ12, WNG+18].

Nevada [IEE10, AFI90].

Next [DCW91, She91, CCA+12, CT10, KKP92].

Next-Generation [She91, CCA+12, KKP92].

Niagara [AFK90].

NiceHash [Nicol17].

NIDS [KJC11, TK07].

NIDS/NIPS [TK07].
Nineteenth [ACM08a, IEE95]. Ninth [ACM77b, NS82, ACM77a, ACM97b, Kar98, ICD93, ST83b]. NIPS [TK07]. NIST [Bou12, RRS06]. Nixdorf [adHMR93]. NJ [GMJ90]. NL [DSS17]. NMAC [CY06, RR08]. NMAC/HMAC [RR08]. NMF [TCY +20]. NN [EFMRK +20]. No [AKS78, CP91a, KR01, CF91b, GBL94, Pro94, Sar80]. Node [YL20, LG13, SN19, THS97, WL07]. Nodes [BGF88, RAL07]. Non [BCFW09, Boo74, FNSS88, KS86, KS87b, LT12, LS96, RWSN07, SD78, SA97, TSY98, ZH18, AV14, Ald87, At20, CCA +12, ESRI14, FP82, MSZ +20, MLP07, MP16, PBB012, Sar15, SXL16, Lut88]. non-asymptotic [At20]. non-uniformly [MLP07]. non-volatile [ZH18, CCA +12, MSZ +20]. nonchalantly [Gre95]. Nonclustered [Omi89b]. Noncontinuous [ZO13]. nondestructive [AD80]. Nonlinear [MLHK17, LC13]. Nonmalleable [LP15]. nonnumeric [JMH02]. Nonoblivious [FNSS92]. Nonstationary [WB90]. NonStop [Eng94]. Nonuniform [Ald88, KS87a, KS89b, PK87]. nuniformly [MPL09]. Nonvolatile [ZH19]. Nonchalancer [dBvL80]. NOrec [DSS10]. Norm [Aum09, HFF +17]. Normalization [RGNMPM12]. Norway [Hel94, Ytr06, Ano95c]. NoSQL [EH17]. Nostradamus [KK06]. Notary [Cip93]. Notation [FGK10]. Note [Bob75, CC91, Dit91, GIS05, Gei95, Gei96, Gur73, Lit91, Pea91, Sav91, SVCC01, Ull72, Yao80, Bay73b, FH79, Sar80]. Notes [Dev86]. Nothing [SD89c, SD89a, SRY99, SD89d]. Nouvelle [Lit79a]. Novel [DCM18, DR11, LYY +18, LYX +19, cLmL07, LCM +20, LSZ +21, NW07, PHG12, YSW +11, YLS19, ZMM17, ZYWM20, AR21, HLL18b, LMP +08, ZHX +21]. November [ACM87, ACM94a, ACM03b, ACM04, AFI69, FNY92, Go94, adHMR93, IEE82, IEE88d, IEE89, IEE90, IEE91a, IEE93, IE02, IRM93, LCK11, PSN95, ST83a, ST83b]. NP [FS08]. Nroof [Hol87]. NTRUSign [ZJ09]. NTRUSign-Based [ZJ09]. Number [A086, BJ75, Dos78a, Gui89, WL12, Aam03, ASW87, BK07a, CP13, HC11, Hua82, KW94, TSY98]. numbering [Ci95, DM11, VNC07]. Numbers [BJMM94b, BJMM94a, Cob98, HSR +01, OG94a, MFK +06, OS10]. Numerals [Hol87]. NV [CCA +12]. NV-Heaps [CCA +12]. NY [ACM12, GSW98, Mat09, IEE80b, IEE88c].
OCR [Wan84]. Oct [IEE80b, WS93, War14]. Oct-Tree [WS93, War14]. October [ACM85a, Ano93a, Ano93c, BD08, CE95, IEE74, IEE76, IEE80a, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, JÁJ90, Lom93, Mo92b, ST83a, ST83b, USE00a]. Octree [CJC09]. ODBF [ODB89]. Odyssey [IEE01]. Off [CJMS19, GW94, Sar11]. Off-line [HHL10]. Office [DGM89, FC87a]. Offline [GAS16]. Offs [ASBdS16, Blo70]. Offset [HLL18b]. OFL [GMP95]. OH [BD08, IEE94b]. Ohio [Fis87]. OHLCAP [HMNB07]. Old [FLF11]. Omnibus [GDGK20]. On-Chip [MJBID11]. On-Line [AS82, FFGOG07, SS83, BBKN12, HHL10, KRHH84, RW73]. On-line/Off-line [HHL10]. Once [MNS07]. One [BCFW09, DGV93, Dit76, Gk08, HHR+10, HYLT99, JHL08, HG+12, LK84, Lar88b, LAKW07, LOZ12, LMD+12, LHC05, LP15, Loyo55, Mer90b, Moh11, OGAB14, PWY+13, Par18, RHM09, Roe94, Ru93, SP91, Sch91a, Sho00a, Tsu92a, Wee07, Win83, Win84, Yas07, YZ00, ZPS90, Zhe90, ZMI91, ZPS93a, CMR98, Gb91, HR07, HL03, IEE92a, KST99, KM10, LW04, Mer90a, MZI98, NY98b, NY98a, Roe95, Sim98, SV18, STS+13, Tsas08, Tsu92b, YLO4, ZW05, ZPS93b, HMNB07]. One-access [Lar88b]. One-Hop [HMNB07]. One-Pass [LMD+12]. One-Step [Dit76]. One-Time [LAKW07, Moh11, PWY+13, Par18]. One-Way [BCFW09, DGV93, Gk08, HHR+10, JHL08, LP15, Roe94, Ru93, Sch91a, Sho00a, Tsu92a, Wee07, Win83, Win84, YZ00, Zhe90, HYLT99, LHC05, ZPS90, ZMI91, ZPS93a, CMR98, HR07, HL03, KST99, LW04, Mer90a, MZI98, NY98b, NY98a, Sim98, Tsas08, Tsu92b, YLO4, ZW05, ZPS93b, HMNB07]. Online [BBKN01, Dos78b, FXWW17, Ger95, Kue83, Kue84a, Mir17, SI09, TP15, PES+12]. Online-fehlerbehandlung [Kue84a]. Online-fehlererkennung [Kue83]. Only [EH12, MT11, NM10]. Ontario [KLT92]. Open [AMP15, Bra84a, Bra85, Bra86, Fel87, Gon77, Gon80, Kno71, Kno88, LH03b, LH03a, Mit90, MC86, SS80, NK16, NMX19, TT81, van73]. Open-Addressing [Gon77, Gon80]. Operating [ACM87]. Operation [CLS12, KL87, PHG12, AS89]. Operationen [Nee79]. Operations [ANS10, Bra84b, Ell83, Ers58a, FAFK21, Gir87, He87, HY989, HY993, HY86, HTY90, Knu90, Kut10, MSSP90, SG76a, Wu85, JHM02, Pro18]. Opportunistic [LDK12]. OPS5 [KS89a]. Optical [CF89a, Vit85, CF89b, FWG18]. OPTIK [GT16]. Optimal [AU79, AI06, Bat80, Bat82, BR94, BBP88, BW98, BMRV02, CC88a, Cha84a, CHM92a, CHM92b, DA93, FC87b, FP89b, HR93, HRRB13, Jag91, KK12, KK92, Kri84, LL92, LCML94, Lip02, MLP07, Men12, Men17, Mor83a, OWZ14, PP08, RR92, Riv76, Riv78, Tro06, Yao85a, Yao85b, Yao95, YCRR93, YSEL09, AI08, GSS01, LCRY93]. Optimality [Bo79, CLC92, JP08]. optimally [Woe06a]. Optimierungsfragen [Wal74]. Optimistic [GT16, SDZ21]. Optimistically [GLB21, ZK21]. Optimization [AOAK20, ODB89, AR17, BG92, Kie85, Kim80, MXL+12, Mir17, MWC12, TV83, XNS+13, YNW+09, Yub82, DJRZ06, DJNR09, Loh89, MP90]. Optimized [ARH+18, CVR14, EPR99, MZD+18, ZH18]. Optimizer [ML86]. Optimizing [DGGL16, DOP+14, LOY00, MBK00, PF88, SW91, SV15b, WL12, TCW+13, WLC20, WTN07]. Optimum [VC85, vdP72, vdP73, van73, Vit80a]. OR-parallel [Cra85]. Oracle [GHR99, LT12]. Oracles [Can97]. Order
[FCDH90, FCDH91, GG86a, HB92, HM12, HSW88, Oto88a, Ouk83, Rob86, Tam81, AKY13, BMLLC+19, DH84, DLM07, HKKK13, Pri95]. **Order-Preserving** [GG86a, Ouk83]. **Ordered** [AK74, CS83a, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SSU+13].

Ordering [Lyo78a, GM79, Sab94]. **Ordinal** [ZZLZ21]. **Ordinal-Preserving** [ZZLZ21].

Oregon [IEE93, ACM85b, CLM89]. **Organisation** [Lit77a, Wie87a]. **Organization** [ACM75b, Ano85a, ANT85, Cha84b, Cha84c, CS86, Cha86b, CC88b, MY79, MN90, SH92, SS06, JMH02, CC88b, MY79, MN90, SH92, SS06, JMH02].

Organizations [CF89a, Sch79b, Sch81, Toy86, YD86a]. **Organized** [FLF11]. **Organizing** [HH85, Som99, TY03]. **Orientability** [FP10]. **Orientation** [BH93]. **Oriented** [BDPSNG97, Bry84, CS85c, CS85b, Cha85, Cha84a, CO82b, DCW91, ISK+93, JC88a, Kie85, LDM92, PV92, TL95, TR02, Tro95, CL86, CW91, CW93, CKW93, DMP09, DM11, Wan05].

Orlando [ACM91d, ACM91a, Kna89]. **Orleans** [ACM91e, ACM97a, IEE74]. **Orthogonal** [BG596, LCML94, CCL91, WiI87, WiI85a]. **Oscar** [GDA10]. **OT** [PSZ18]. **Othello** [YBQZ18]. **Other** [PV19, Sa1a12, Bee83, BDK16]. **OTS** [Hüll13].

outbreak [FNP09, outfit] [Nic17]. **outlier** [GDGK20]. **Output** [Mit12, NIS15, NR12, PHL01, ZPS90, ZPS93a, Sab94, ZPS93b].

outsourced [YLCP+09]. **Overflow** [Bra84a, Bra85, Bra86, Hop66b, Lar85b, Mul72, Mul81, NY85, Sam76, Sch79a, Tam82, Tor84, Bay73b, CS93a, KD92, Kou93, Ram87, YD86b].

Overflow-Handling [Lar85b]. **Overhead** [Les88, HGR07, IKOS08, MA15]. **overheads** [SSU+13]. **Overlapping** [MJT+02].

Overlay [PFM+09, GDA10, TBC+05].

overlays [GHWW07]. **Overview** [PGV92, Ros12, WR97, BFG+95, BDP+12]. **ownership** [DSS10, LWG11]. **Oxford** [ACM94b].

P [Lev89]. **P-ary** [Lev89]. **P2P** [HNKO20, NW07]. **PA** [ACM04, ACM89b, ACM89a, KI94].

Pache [CGLC20]. **Pacific** [ACM75b]. **Pacifica** [ICD87]. **Package** [SY91]. **Packed** [Lyo78b, DW05, DW07].

Packet [CGLC20, KMMV10, MJBD11, PT11b, CKKK09, HDCM11, LS07b, XLZC14].

Packetization [SMS91]. **packing** [BT90]. **Padded** [HK87]. **Padding** [CLNY06].

Paderborn [adHMR93]. **Page** [GRZ93, MZD+18, Y16, BCR10, Wee88].

Paged [BC90, RL74]. **Pages** [DMR11].

Paging [Bry84, HBL+10]. **Pair** [GSC01, Val15, DHKP97, PW06, TYSK10].

pairing [BP18]. **pairing-friendly** [BP18].

Pairwise [DL12, ZLY+12]. **Palace** [ACM75b, IEE88d]. **Palm** [IEE11b].

Palmer [IEE80a]. **PANAMA** [DC98a, DV07, RVPV02, BDPV09, DC98b].

Paper [Cer85, Pro94, SV15a, ZL12]. **Papers** [ACM75c, ACM76, ACM76b, LFP82, LC86b, SC77, ACM79, ACM91d, Bai81, Bor81, GM02, IEE88a, Ytr06, Bir07, FNY92, JY14].

Paradiseos [JWM+18]. **Paradigm** [BM97, CS02]. **paradox** [RK15]. **Parallel** [ACM91c, PDI91, And88, Ano93d, AEMR09, AR17, AT91, BFG+95, BBH1, Bis12, BRW93, Bor84, Bur81, CDM89, CD90, Chi91, Chi94, CT96, DNSS92, DA93, DS97, GST90, GM94, GM98, GI77, Gra94c, GZ99, GC90, HB93, HNS84, HC07, HCY94, HCY97, IG77, Jp90, KU86, KU98, KR91, KJ11, KR19, KO90, KTN92, LC20, LLLC17, LPP91, LPP92, MD97, MLD94, MV90, MV91b, Mat93, MK89, Mi88, MK93, N02a, PAK93, Pap94, PK89, PRM16, PSR90, PW94, BCR10, Wee88].

[ACM04, ACM89b, ACM91a, KI94]. **Pache** [CGLC20]. **Pacific** [ACM75b]. **Pacifica** [ICD87]. **Package** [SY91]. **Packed** [Lyo78b, DW05, DW07]. **Packet** [CGLC20, KMMV10, MJBD11, PT11b, CKKK09, HDCM11, LS07b, XLZC14].

Packetization [SMS91]. **packing** [BT90]. **Padded** [HK87]. **Padding** [CLNY06].

Paderborn [adHMR93]. **Page** [GRZ93, MZD+18, Y16, BCR10, Wee88].

Paged [BC90, RL74]. **Pages** [DMR11].

Paging [Bry84, HBL+10]. **Pair** [GSC01, Val15, DHKP97, PW06, TYSK10].

pairing [BP18]. **pairing-friendly** [BP18].

Pairwise [DL12, ZLY+12]. **Palace** [ACM75b, IEE88d]. **Palm** [IEE11b].

Palmer [IEE80a]. **PANAMA** [DC98a, DV07, RVPV02, BDPV09, DC98b].

Paper [Cer85, Pro94, SV15a, ZL12]. **Papers** [ACM75c, ACM76, ACM76b, LFP82, LC86b, SC77, ACM79, ACM91d, Bai81, Bor81, GM02, IEE88a, Ytr06, Bir07, FNY92, JY14].

Paradiseos [JWM+18]. **Paradigm** [BM97, CS02]. **paradox** [RK15]. **Parallel** [ACM91c, PDI91, And88, Ano93d, AEMR09, AR17, AT91, BFG+95, BBH1, Bis12, BRW93, Bor84, Bur81, CDM89, CD90, Chi91, Chi94, CT96, DNSS92, DA93, DS97, GST90, GM94, GM98, GI77, Gra94c, GZ99, GC90, HB93, HNS84, HC07, HCY94, HCY97, IG77, Jp90, KU86, KU98, KR91, KJ11, KR19, KO90, KTN92, LC20, LLLC17, LPP91, LPP92, MD97, MLD94, MV90, MV91b, Mat93, MK89, Mi88, MK93, N02a, PAK93, Pap94, PK89, PRM16, PSR90, PW94, BCR10, Wee88].
parallel [AKN12, ASA+09, Ati20, CZL12, CyWM91, Cra85, Don91, EASR22, FHL+19, Fis87, GLHL11, HK95, KP92, MV91a, MP90, Mol90a, Mol90b, OT89, PCK95, RLM87, SK88, SD89d, STS+13, TL93, UHT95, War14, adHMR93, KL95].

BHIM12, BBD+82, BBD+86, BS94b, BS94a, BW98, Bla00, Bla95, BPZ07, BT90, BT94a, BT94b, BH86, Bur92, BC90, Cer81, CK883b, CBK83, Cer85, CBK85, CBK85, Cer87, Cer88, CLD82, CS83a, Cha84c, CS85c, CS85b, Cha85, CS86, CL86, Cha86b, CC88b, CCJ91, CW91, CL05, CLC06, CTC+12, CJC+09, CRS83b, Cic80b, Cic80b, CO82b, CHK85, CKN18, CHM92a, CHM92b, CM93, CHM97, Dat88, DK84, DH01, Die07, DJSS0, DHJS80, Dunc08, DM11, FM96, FCDH88, FCDH89, FCDH90, FCDH91, FCHD92a, FK84, FH15, Get01, GHK91a, GHK91b, HTO1, JO80, Jae81, JD12, KH84, KM86, KM88a, KCB81, Kra82, KP94, LR85, LH06, LLLC17, Mai92, MWHC92, MWHC96, Meh82, NRW90, Nil94, OG94a, OG94b, Pag99, PG95, PG95, Perfect [Pes96, RP91, Ram92, Rog19b, SB95, Sag84, Sag85a, Sch90a, SvEB84, Spr77, Tro92, Tro95, WX01, Win08b, Win80a, Wol84, YDT83, YD85, YD85, AAB+92, AG10, BJ07, BBPV11, BS94c, BT89, CK881, CK883a, CK89, CL09b, CRS83a, Cze98, DF89, DKM+88, DKM+91, DHWO8, FHC89, FHCD92b, GS89, HK86, Han17, HM93, JWM+18, Lia95, LC13, MT08, Mi95, Mi98, Pag01, RB91, SB97, SS92, ST85, SH92, SH94, SL88, Sill02b, TKI99, XMLC11, WC07].

Perfectly [CMR98].

Performance [ACM04, AP93, ANS09, BM89, BM90a, Bre91, Bur83c, CL85, CS87, Chr84, CH94, DGG+86, DR92, DH92, DS97, Don91, ESR14, FC87a, Fla81, Fla83a, Flo87, GD87, Gra88, Gra93a, Gra93b, Gri74, Hac93, HSM91, HC13, IEEO94c, IG77, KS89a, Kha95, KK96, KTN92, Kue82b, Kun90, Lar80c, Lar81, Lar82a, Lar82b, Lar85c, LCK11, LCLX19, LLL09, LMSF89, Lit84, Lit85, Lom88, LCM+20, LYD71, Lum73, Lyo83, MXL+12, Mac95, ML86, ML94, MY79, Mil85, Mil85, NM02a, NP09, Omi91, Pal92, PB80, Pro94, Ram89b, RZ97, RSSD90, RLH90, RLH91, Roe94, Roe95, RT87b, SD85, SD89c, SD89a, Sch79b, SC90b, SC90a, SC90c, Sch01, TNK92, TM02, Tym96, VIt83, Yen91, YB95, BMQ98, BW89, CAGM07, CF89b, HM03, KOn93, LLA15].

Performance [LY72, MRL+19, MA15, RF897, SK20, SS89a, SD89d, Shil17, Sie89, MKL21, VB894, VIt80a, WL07, WTK87, XCC09, Yu18, ZHW19]. Performances [Mek83]. Performance [Wil71]. Performing [FP89b]. Period [AC74, Eck74b]. Periodicity [HG77]. Permutation [DLH09, HSR+01, NIS15, PGH12, Sch01a, CFYT94, DLH13, HK95, KST99, LOZ12, LMPW15].

Permutation-Based [NIS15, PGH12, KST99]. Permutations [ARH+18, JNPP14, MP12, Wec07, BK88]. persistence [NT01]. Persistent [HCW+21, KM92, LHWL21, Ros21, ZHW19, CCA+12, LHVL20]. Person [WWG+18].

Pipelining [CLHY95]. Pittsburgh [LFP82, ACM04, IEE92b]. PKC'98 [HPC02, HKKK10]. PKC98-Hash [HKKK10]. PKE [HLL18a, Zha07]. PKI [YY01]. Place [Dos78a, IEE84]. Placement
Plagiarism [CH12]. Plains [IEE88c]. plane [AI189].
Platform
[ADOAH19, LMD+12, LLL+16, Sun02, TCP+17, FNP09, MN99, QZD+18, ZLL+07].
Platforms [AS16, NMX19]. Play [But17].
plaging [Zob70a, Zob70b]. PLILP [BW92].
PLOP [KS88b, KS88c]. PLOP-Hashing
[KS88c, KS88b]. PLS
[TGGF10]. PODS
[HF13, ACM88a, ACM89a]. PODS’08
[LL08]. PODS’10 [Van10]. PODS’13
[HF13]. Point [BL89, TK17]. Pointer
[LD92, SC90b, SC90a, SC90c, SVCC01].
Point-Based
[SC90b, SC90a, SC90c, LDM92]. Points
[AT93, Bat80, Bat82, AI89, AT90]. Poison
[Pob86, PVM94]. Poland [ACJT07, Win78].
policies [Jan05]. Policy [GGY+19, DG96].
Polithecina [CTC90]. Polling [LXL+19].
Polling-Based [LXL+19]. Poly
[DS17]. polylolg [DLM07]. Polynomial
[DGMP92, FS82, Saa12, Sag85a, San76, WSSO12, Win90b, Bis12, GPGO16, Kak83].
Polynomial-Advantage [WSSO12].
Polynomials [DY08, OS10, Sar11]. PolyR
[KR01]. Pools [Woo89]. POPL [ACM91a].
Popular [CLNY06, RR08]. Portable
[Hek89, NADY20]. Portland
[ACM85b, CLM89, IEE85a, IEE93].
Portugal [CIM+05]. positives [CVR14].
Post
[BBD09b, MKAA17, SE21, BBD09b, BD08].
Post-Quantum
[BBD09b, MKAA17, SE21, BD08, BBD09b].
Postal [Dos78a]. poster [ZL12].
Postortsnamen [Dos78a]. Postprocessing
[RJK79]. Pour [Kar82]. Power
[Dun89a, FP10, HD72, MK11, MMMT09, PT12a, PGV90b, ACP10, Ano93c, DKRT16, GP08, KM10, PT11a, PGV93g, Sch82b].
powerful [Tho17]. PQCrypto
[BD08]. Pracniques [Dod82]. Practical
[AS82, AB17, AG18, BR97, BHH+15, CHK85, DNSS92, DDS14, EMM07, FHCD92b, GIS05, GLLL17, HM96, IP11, LT09, Ram89b, ZZ83, Con17, JG95, LWXS18, SI02b, SXLL08].
Practicality [TT82]. Practice
[KGJO18, Mir17, Ram88b, BBPV11, RZ97, Sta06b, Tso15, KKP92]. Practitioner
[SD76]. PRAM [GM91, KLadH93, KLM96, Kel93, Kel96, Lep98]. Pramanik [Pro94].
Pre [Mit12]. Pre-image [Mit12]. PRECI
[BD82, DNV81]. precise [Ati20, DK12].
Precision [LOON01]. Precomputation
[AS16]. Predecessor [KS12]. Predicate
[Han90, HCKW90, VV84]. Predicates
[RS92]. Predictability [LB02].
Prediction [TW07, DFMR15]. Predictive
[DCW91, RT87a]. Predictors
[DGD02, NI83, TT86]. predistribution
[LND08, SN19]. Preemptible
[PCL93a, PCL93b]. Preferential [VNC07].
prefetch [TKH20]. prefetching [CAGM07].
Prefix [CLNY06, BGKZ12, BLC12, DKT06, PT10b, PT12b, RRS07, RW07].
prefix-compressed [BLC12]. Prefix-Free
[CLNY06]. prefix-preserving [RW07].
Prefixes [PT11b]. Preimage
[ABD+16, HKKK10, Li10, Saa11, WW09, WS13, WFW+12, ZW+12, MS13].
prescription [CMR98]. preparing
[ACM91b]. Preprocessing [KR01].
Presence [RK91, WDYT91]. Presented
[ACM95c, ACM76, ACM77b, LFP82, DBGV93, ACM79, ACM91d]. preservation
[DL06]. Preserve
[Knu77, RS12, Vit81b, Vit82a]. Preserving
[ADOAH19, BR06, BJL16, BHKN13, BHKN19, CK12, CK15, Chi91, Chi93, Chi94, DHL+94, DHL+02, FL08, FCDH90, FCDH91, GG86a, GZX14, HB92, HSW88, LQH18, Oto88a, Rob86, SHZ+20, Tam81, VT12, ZZL21, Z+92, IRV97, Ouk83, QZD+18, RW07, SG72, Zha19a].
pretty [Tho00]. Prevention [JLH08]. PRF
[AB12]. primary [ML94]. Prime
[Bat75, HM12, Mue04, OG94a, WS03, Lar84].
Primes [Die96, ACP10]. Primitive
Primitives [LYDA19, Mue04]. Principal [Cha88, MW09, SA97, US09]. Principles [Dam90b, FDL86, Gib90].

Principal [Cha88, MW09, SA97, US09]. Principles [Dam90b, FDL86, Gib90].

Principles [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM89a, ACM91d, ACM91a, DM90, DK02, DK15, Van10, HL08, Pre94a, Ul82, Wal88, Zhe90, KKS92, Sta06b].

Privacy [ADOAH19, Ano95d, BJL16, BBR88, GZX14, KAS+22, VD21, ZXL19, Cho21, QZD+18]. Privacy-Preserving [ADOAH19, BJL16, GZX14, QZD+18].

Privacy [ADOAH19, Ano95d, BJL16, BBR88, GZX14, KAS+22, VD21, ZXL19, Cho21, QZD+18].

Privacy [ADOAH19, Ano95d, BJL16, BBR88, GZX14, KAS+22, VD21, ZXL19, Cho21, QZD+18].

Privacy-Preserving [ADOAH19, BJL16, GZX14, QZD+18].

Privacy-Preserving [ADOAH19, BJL16, GZX14, QZD+18].

Privacy [ADOAH19, Ano95d, BJL16, BBR88, GZX14, KAS+22, VD21, ZXL19, Cho21, QZD+18].

Privacy-Preserving [ADOAH19, BJL16, GZX14, QZD+18].

Privacy [ADOAH19, Ano95d, BJL16, BBR88, GZX14, KAS+22, VD21, ZXL19, Cho21, QZD+18]. Privacy-Preserving [ADOAH19, BJL16, GZX14, QZD+18].
MK89, MS88a, Omi89b, PAPV08, Pip94, PK89, RK89, Sac86, Sch90b, SD90b, SD90a, Sha86, Sol93, SPB88, Spe92, Tha88, Toy86, WPY90, IWS99, YkWY83, BZZ12, Bra88, CP95a, CKKW00, Ged14, GC90, HLH13, Kan91, Kan93, LLC89, RAD15, Ros74, Sab84, SK88, SP89, WLLG08, YMI89, Yu92. Processor [Adi88, KL87, SM87, YCRY93, ISH+91, LCRY93, TLLL07, YNW+09].
Processors [Pap94, Ros06, Ros07, Wil59, JHL+15, KL08, KW94, TLLL09, YIAS89].
Producing [DV07, RVPV02, Win83].
Product [Du86, YGC+12, OS14].
Productive [Bor81].
Profile [SSU+13].
Profile-guided [SSU+13]. profiling [VNC07].
Program [Hil88, Kru84, Mai83, Mai92, Meh82, SS80, BZZ12].
Programmable [HM12, HK12b, CFN18, LT12].
Programmer [Cro98].
Programmiersprache [Dit76].
Programming [LFP82, ACM91d, dBvL80, BM87, BGS96, Dit76, Dum89a, Ers58a, Ers58b, GG86b, Har71b, Hat73, IEE84, Jou85, Knu73, Knu75, Kru92, LfI92, Mau68, NS82, Pat90, Ruc15, SSS05, dKC94, ACM91a, AGK+10, ADG+08, ALS10, AMSM+09, ACJT07, BW89, CIN+05, DLH+79, Er86, Sab94, TMW10, IYAS98, BW92, Las87]. Programs [AR16, Hea72, PAKR93, SS88b, Ers58b, FDL86, MP90, NMS+08]. Progress [WoI93b, WoI93a]. progressive [XMLC11].
Progressively [DVS+14]. Project [DGS+90b, DGS+90a, Tro92, NM02b].
Projecting [AT93, AT90]. Projection [Bur78, SPW90, AS89]. Projective [ACP09, HK12a, KV09, Wee12, FH15].
PROLOG [CJ86, Bor84, Coh84]. Proof [Ano09b, CZLC12a, CZLC14, Cor02, LYY+18, LXY+19, LT12, SDW14, ZM17, DLM07, HLL18a, ZCZQ19, ZYWM20].
proofing [CHL07].
proof [CZLC12b, CS02, KK12, KK18, NTY12, WG00, Wee11, Li10]. Propagation [DSS90a, CML+13, DSSW90b]. Properties [Bal05, Bol79, CS83b, CL92, Lit85, RS12, TS85, WS76, ZMI91, GW94]. Property [BR06, DGK12, FLP14, Rja12, SRY99, Ter87, FL08, FLP08]. proposal [LL15]. Proposed [CP91c, HPC02]. protected [AGBR19]. Protecting [LMJC07]. Protection [DF01, DGK12, SP21]. Protein [LLW10, ZLY+12]. Protein-Protein [ZLY+12]. Protocol [Ano95a, BT12a, Dam93, GII12, HCPLSB12, HLC10, JRPK07, KJ11, OLVY94b, TO03, VD21, YLSZ19, CJP15, Dam94, GB17, LW04, OLVY94a, SPAC14, CJP12, JL14]. Protocols [LLL09, SDK91, KLI+04].
Provable [ANS09]. Provably [BCGS16, DY90, DY91, GHL12, HM96, JP07, LM95, SH96, IN89, SXL16].
Provably-Secure [DY90, DY91, HM96]. Provide [SCh01b]. Providence [IEE07].
Proving [Kil01, WS76]. proxies [TC04]. Proximity [MPP14, SX08]. Proxy [ZJ09].
Pruning [CT12, MD97, HC02]. Pseudo [DWS83a, FLFI11, WFW+12, dW83b, MKF+06, PVTQ08, TSY98, WS13].
Pseudo-cloning [HP78]. pseudoentropy [VZ12]. Pseudorandom [BK12, NAK+15, OS10, SP91, Aam03, CP13, VZ12].
Publication [Nat95, FIP93, NIS93]. Public [AN97, ANS05, BBR88, CLP13, CIP93, CS02, Dam87, HR04, LYX+19, LRY+15, NTY12, ZCZQ19, CFN18, LW17, Oka88].
Public-Key [CLP13].
Puerto [IEE91b]. purely [SV18]. Purpose [Ch91, Chi94, Sch93]. Put [WLC20].
putting [Col93], pyramid [MHT+]13.

QC [JY14]. Quadratic
[Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74, Pri95]. quadratischen
[BI87]. Quality [THY+18, YWH09, GW94].

QC [JY14]. Quadratic
[Ack74, AC74, Bat75, Bel70, Bel72, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74, Pri95]. quadratischen
[BI87]. Quality [THY+18, YWH09, GW94].

quantity-size [GW94]. Quantification
[GC95]. Quantile [BI87]. Quality
[THY+18, YWH09, GW94].

quality-size [GW94]. Quantification
[GC95]. Quantile [BI87]. Quality
[THY+18, YWH09, GW94].

Quantification
[GC95]. Quantile [BI87]. Quality
[THY+18, YWH09, GW94].

Quantitative
[Ack74, AC74, Bat75, Bel70, Bel83, BI87, Bur75a, Day70, Eck74b, HD72, Lam70, Rad70, NH74, Pri95]. quadratischen
[BI87]. Quality [THY+18, YWH09, GW94].

quantity-size [GW94]. Quantification
[GC95]. Quantile [BI87]. Quality
[THY+18, YWH09, GW94].

Quantitative
[BI87]. Quality
[THY+18, YWH09, GW94].

Quantitative
[BI87]. Quality
[THY+18, YWH09, GW94].

r-th [KKT91]. Rabin [FH79, GBY90]. race
[Hil05]. radio [CJP12, CJP15].

radio-frequency [CJP12, CJP15].

RadioGatún [BDP06, BDP09, BF87].

Radisson [ACM85a]. Radix
[FB87, Lin63, SKD15].

Radon
[GH07, RGNMPM12].

Ragged [Ros77].

Ramanujan [SV06]. RANDOM
[DJRZ06, DJNR09, AD85, Ano86, BH90, BM76,
BBS90, Can97, Cha84a, Cla77, Dev99, Die96,
Dum56, EAA+16, FP10, FMM09, FMM11,
GHR99, Gui89, HSR+01, JTOT09, KLSY07,
KMS88b, LT12, MY79, M195, MEK+14,
ORB90, OB91, OE83, Ow97, PV19, Sio04,
Tra63, Y69, B75, BK07a, BK88, CM01,
DW03, FW94, HC11, JCC00, KLL+97,
Kuts06, Lin63, MYS12, MFK+06,
Ram89a, TS19, W07, ZG05].

Random-Access
[MY79, Pet57, Tra63].

Random-Walk
[FM09, FMM11].

Randomization
[GSB94, DJRZ06, DJNR09].

Randomize
[GK12a]. Randomize-Hash-then-Sign
[GK12a]. Randomized
[AEP18, KR81, LQZ14, Mat93, YWH09,
DHKP97, MS96]. randomly
[HR90].

Randomness
[AY14, Knu77, Vit81b, WF1+90].

Range
[ACM85a, LCML94, LB07, CCL91, Fal88,
HR93, Wil85a].

Rank
[TC93].

Ranking
[LR96a].

Rate
[CB99, HM95, HKL04].

Raton
[HB93]. raw
[CX19]. Rat
[ACM80, SS89b, ZRL+08].

RBIBDs
[Wo06a].

RC4
[IP08].

RC4-like
[RS14].

RC4A
[Sar15]. Rdbm
[Pei82, Pet83].

Rdbm-verwaltungsdaten
[Pei82]. RDF
[AOD19, HAKM15, LL13].

RDMA
[CCW+17]. re
[Par18, WWG+18].

re-identification
[WWG+18].
re-registration [Par18]. Reactive [BT12a].
Read [MT11, NM10]. Read-Only [MT11, NM10]. Reading [LYDA19].
Repeated [Lar80a]. Repetitions [YGC+12]. Replacement [Jak85, JCK+18].

replica [BRM10]. Replica [CCF04, LRY+15]. Replicated [SD21].

Replication [HNKO20, LMSM09, LMSM12, UIY10, WY02]. replication-based [UIY10].

Report [JCPB+12, MO92a, TSP+11]. reporting [YG10].

Repository [XNS+13]. Represent [Rém92]. Representation [ANS10, CD84b, DCW91, BL89, BT93, JCC00, MHT+13, TK17]. Representations [DHT+19, KKC12, SD89b, CRS83b, CFYT94]. representing [LK93]. reprinted [LT80].

Requests [LLL+16]. Required [PT16, PT10a]. Requirements [BD92, NSW09]. Rescue [YY01]. Research

BV89, BIP92, IE89, cLmL07. Researcher [GCMG15]. Researchers [Con17].

Reserved [ST86, Tro06, Wolk84, Zou85, ST85]. Residue [Ari68, KKT91, Muc04, Rad70].

Resilience [NTY12]. Resilient [ASWD18, BGS96, LMSM09, WTN09, ZMZ17, LMSM12]. Resistance

[Mit12, BF08, MSP12]. Resistant [BR97, BK12, CHKO08, IK05, PGV90b, CHKO12, HK12, PGV91, PGV93g, MS09].

resisting [SXL16]. Resizable [Boy98].

resizing [ZHW19]. Resolution [Ask05, CadiH500, MC6, YB95, KdT89].

Responsible [HH83]. Responsive [DG93, DG94]. Responsiveness

[BD88, Sch82a]. Restart [LACJ18].

Restklassenhash [Eck74a]. Results

[ANSO9, Bur83c, DR06, DRS12, Jv86, RR08, CV05, TY72]. RETCON [BRM10].

Retention [CJJK99, ZLL+07]. Retrieval [AU79, ANT85, BV89, BIP92, BI12, Bre73, Bur76b, Bur76c, Bur77, Cha84a, CJDN20, CJP12, CF89b, Chau90, DS84b, DP08, DHT+19, DSSW09a, DGM89, FH69, FCDH90, FCDH91, FY92, GPY94b, Irbxx, Kab87, Kno71, LK84, Lar88b, LQH18, Mal77, MH00, Mor83a, NIB83, OT91, RLT83, RSD85, RSDS09a, RSDS09b, RSD00, RSSD92, Riv74b, RT87b, SHZ+20, TS85, Vid90, WH83, Wil79, WK078, YDT83, YWH09, YR87, YTJ06, YD86a, ZWH17, ZY21, ZZLZ21, ZLC+20, Bur76a, CCL91, CJP15, DSSW90b, Gob75, GPY94a, LYT+13, ML94, RT89, Riv74a, SDR83b, WQ94, XZPG21, YD86b, Zhal9a, ZZLZ18]. retrieve [SG72]. Retrieving

[AA79b, AA79a, Spr77]. Return [Wil96].

Reusing [ZHS94]. Revelation [VD21]. Reversible [DR11, SL+07]. Revised

[SZ0+20, Ytro06, BK07a, Bir07, JY14].

Revisited

[AHS92, BYSP98, CMDP05, FL08, GLS91, GLS94, HR96, HK87, KK12, KK18, KVK12, AN20, BAT013, Ham02, KKL+09, LP04].

Revisiting

[DHK+15, HLH13, Yu18]. Revocation

[Wee11, MFES04]. Reykjavik

[ADG+08]. RFID [CJP15, CJP12, FW09, GI12, GLLL17, HCP18, JRPK07, LLL09, LLL+17, LXL+19, LCL+20, SPL18].

RFIDs [LYDA19]. Rhode

Richelet [CDS20]. Rico [IE91b]. riding

[BB07]. riding-aware [BB07]. Right

[CLYY92, CLYY95]. Right-Deep

[CLYY92, CLYY95]. rigid [SA97]. Rigorous [GLLL17]. RIMS [Got83].

Rinda [ISH+91]. Ring

[DSGK09, GGY+19, OL89, TY91]. Ring-Based

[GGY+19]. Rings [HJ96].

RIPEMD [BDP97, LP16, MNS12, PBD07, WFLY04, WW09]. RIPEMD-128

[LP16, MNS12]. RIPEMD-160

[BDP97, PBD07]. ripple [LEHN02]. risks

[DS09b]. RITS [GB17]. RKA [HLL18a]. RNA [BDD+10]. Road [BDPV09, HR04].

Robin
Robust [BFMP11, CIN20, FLP08, FLP14, KMW08, KMW10, K090, L15, LDY+16, MGG10, MV01, MV02, OCG11, TLZL16, WDP+12, CWC10, EAA+16, YCJ12].

Rockefeller [IEE90]. Roma [AAC+01].

Rotated [US09]. Rotation [Bla95, PQ98, PQ99].

Rotation-Symmetric [PQ98, PQ99].

Rotational [KNR10]. Rotationally [HSPZ08].

runners [ATAK07, PT12b, TKH20].

Routine [Hea82]. Routing [ABC+16, BT12a, WBWV16, Cha12, HLL18b, PT10b, SPSP16, TC04, TBC+05, WY02]. routing-based [WY02]. rows [CDH19, FH15].

Rule [Joy03, Ano95a, Jun87].

rules [BG92, Han90, HCKW90]. Rule-Based [BG92].

rulebase [CKKK09]. Rules [CL05, CT12, PCY95, HC02, HC07].

runtime [OOK+10]. Russia [Vau06]. Ryu [KCC05].

s [PES+12, BLC12]. S. [Pro94]. S81 [KTN92]. SAC [JY14, HSR+01]. safe [CCA+12, LPSW03, Lin96]. SAGA [HKNW07]. Saint [GQ95, QG95].

Saint-Malo [GQ95, QG95].

saliency [FXWW17]. same [Con17]. SAMOSA [PHG12]. Sampler [Mil87]. Samplers [CJ19]. samples [HYKS08]. Sampling [AD85, Jak85, WM19, BZZ12, CyWM91, ORX90, RKLC+11, ZGG05]. San [ACM75b, ACM91b, ACM03a, ACM07, ACM08a, ACM11, Ano10, DT87, IEE88a, IEE91b, Joy03, Kar98, Shm00, Sto92, USE90].

Sandwich [Yas07]. Santa [Bel00, Bri92, Bri93, CRS83a, Cop95a, Cop95b, Fra04, Gol94, Sho05, Shi93, Shi94c, Wie99, Yum02].

Santiago [BJZ94]. SAP [SFA+19]. sat [DK07, MS13]. SAT-based [MS13].

Satzuebergreifende [Nec79]. says [Nic17].

SC’11 [LCK11]. SC2002 [IEE02]. SC2003 [ACM03b].

Scaability [DR92, Eng94, TCP+17, ATAK07].

Scalable [CKKK09, DPH08, GLJ11, Gre21, IEE94c, LMD+12, MZL+19, MD97, MVB+21, MEK+14, PRR15, PSZ18, PW94, SSL+18, SKC07, SWTX18, TMW10, WPPK94, WSZ+16, YLZ20, ZLC+20, CLL+14, KKP+17, KYS05, KSC11, KSC12, LNS96, LHLW20, LEH02, NMQ22, NK16, PT12b, SB14, SE21, TLLL09, VBW94, KCR11, NT09].

Scale [BI12, GGY+19, GLL17, Li15, MEK+14, MWC12, NS16a, SHF+17, YGC+12, ZZZ21, CML+13, FES09, Kos14, Shi17, SXLL08, Zha19a, ZNP16].

Scale-Invariant [NS16a].

Scaling [AK09, LL13, LHL21, Ros21, TCP+17, FHL+19, PES+12, YSL05]. SCALLA [LMD+12]. scanner [ISHY88].

Scanning [Bur81, LLL1].

Scatter [Ban77, BMB86, Bre73, Day70, FL73, FW76, FW77, Luc72, Lyn02b, Mal77, Mau83, Mor68, Mor83b, Mau88].

Scenes [War86].

Schanuel [KPS92]. schedules [GK12b].

Scheduling [Lyo79, TL93].

Scheme [AK98, Alb21, BP97, Bur84, CLD82, Cha84b, Cha84c, Cha85, CL86, Cha86a, Cha86b, CC88b, CC91, CW91, CGL20, Dat88, DJS80, DHJS83, Fah80, Hul13, JHL08, KJC11, LW88, Lar88b, LHC05, LSZ+21, NXB13, Oto85a, Oto85b, PPS21, PVM94, PACT09, SGGB00, SHF+17, TC93, VV84, Vit81a, YSW+11, YY07, ZJ09].
ZQSH12, ZH18, Bur82, CBB05, CW93, CKW93, CP95b, Cho21, DF89, EAA +16, GTL21, HL12, HL03, HFF +17, KCL03, Ku04, KC05, LLH02, LKY04, LWG11, MSZ +20, MMG10, Oka88, SDR83b, Tsa08, WZ12, YRY04, YG10, ZW05, ZC12, FF90).

Schemes [BDS09, CL05, CLC06, Cor02, Dam87, DSS17, ED88, HM96, HDCM09, HHL10, Jai89, Jai92a, Jai92b, Jaixx, Kal01, KM09, LM95, LRY78, LRY80, MY80, MKAS18, Ngu06, PWY +13, PF88, RL82, RS77, SDR83a, TL95, CJS19, CQW08, DH84, GS94, HDCM11, IN89, KK96, KM10, ML94, NMX19, OS88, RS75, SNW06, ZHS94].

Schluesselwörter [Dos78a].

Schnellen [Kue84a].

Schnorr [DBGV93, NSW09].

Sci [Sar80].

Science [ACM91b, AH03, Bar83, Gol94, Got83, IEE76, IEE80b, IEE82, IEE85a, IEE88c, IEE89, IEE90, IEE92b, IEE99, IEE06, IEE07, IEE10, IEE11b, IEE13, Knu74, Kon10, LC86b, LL83, RRR99, Rie89, Ron90, Wal88, WGM88, Wil85b, Win78, TW77, vL94, AT18].

Science/3rd [TW77].

scientific [Fis87].

scoped [FF90].

Scopus [AT18].

scoring [NADY20].

Scotland [AV+99].

Scratcphad [vdBGLGL +16].

SDC [KO90].

SE [Sun02, HLL18a].

Sealed [SKM01].

Sealed-Bid [SKM01].

Search [Akc74, iA91, Ban77, BM76, Boo74, Bra84a, Bra85, Bra86, Cer81, CK88b, CK885, Cha91, CLP17, CS82, Eck74b, GM99, HWP18, HHS5, KCB81, Kra82, Kut10, LL85, Luc72, MD97, MW90, Mue04, NSS +06, Pa92, PACT09, Reg81, RSK17, SD78, San76, Sev74, SGS8, SSL +18, Tam85, TYZO15, TK99, Ven86, Vit83, WYY05d, WWZ09, WSZ +16, XNS +13, YSW +11, ZLC +12, vW94, AP92, BC06, CK88a, CK89, CLL +14, FP82, GP08, HFZ +15, KJS17, Kor08, KW94, Lin96, LCH +14, LWK20, MKSIA98, MT16, NM02b, NH74, PY88, Rön07, SP12, STS +13, TYSK10, MKL21, WYY05a, WZ93, ZWT +14, ZLC +18, ZHC +13, ZNPM16, WWZ09].

Searches [LL87, Lyo85, GJM02, KHH89].

Searching [Bay74, BS97, Bur75a, CLS5, CS82, Dav73, Day70, Dos78b, Flo87, Gon81, Gon83, Knu73, Knu75, Lam70, Mai83, Mc163, Meh84, Ouk83, Piw85, Rts81, Rca94, SG76b, TLT82, Wie87b, WBB8, YTJ06, Yub82, CW93, CLW98, ISH +91, Mol90a, Mol90b, Ph73].

Seattle [ACM89c, LCK11, KCR11].

Seaweed [NDR08].

Second [ACM83b, ACM90, SDA91, AKY13, ABD +16, Ano93d, BD08, Kil05, LLL +16, Mit12, TZ12, ABM +12, IEE88b, TSP +11].

Second-Preimage [ABD +16].

Secondary [Bel70, Bel72, Bel83, Fel87, Fph89b, Gui75, Joh61, NH74, YMB89].

Secret [HR04, LMJ07, LPW06, SNW06, AGB19, Par18, ZHS94].

sections [NM10].

Secure [AHV98, AOAAD20, Alb21, Ano93b, Ano95b, BT12a, CZLC14, CS02, Dan13, DK07, D90, D91, DR11, FIP93, FG09, GHR99, GZX14, HM96, HR04, JTOT09, JK11, KMM +06, KAS +22, KP97, LM95, LRY +15, MKAA17, NIS93, Nat95, NR12, PLK07, PV07, PGV92, Rei03, RSK17, SK99, Shia6a, Sta06a, VD21, Win84, XHZ +19, Yos07, YY07, Zho90, ZHZ +19, Arm03, FG09, GTO11, GM18, GBL94, HLL18a, IN98, JDF09, Sim98, SSL16, YRX04, ZC12, ANS97, Ano02, Ano08, Ano12, Bou12, FIP02b, Nat92, Sta94].

Security [AK98, A83b, And94, ASBdS16, CLNY06, CN08, Cor00, Cor02, FW09, G12a, HMN19, HLMW93, HXMW94, ISO97, ISO04, KK12, KK18, Kl01, LC06, LT12, LLL09, MP12, Men12, NAK +15, PW06, RS12, SK20, SM02, WG00, WPS +12, Yan10, ZXL19, ACM94a, ACP10, ABM +12, AMP15, Ano93a, AGB19, BGKZ12, Kak83, La92, LC95, Men17, MPST16, PGV93c, SF88, Sta06b, UPV11].

Seed [PNPC20].
Segmented [CLYY92, CLYY95]. Segments
[Bor84]. Sekundaerspeichers [Pet83].
select [FNY92]. selectable
[BSNP96c, Gon95, Li95]. Selected
[SC77, Ytr06, Bir07, Bor81, JY14, JY14].
Selecting [MBH90, Sou92]. Selection
[DC81, FFGO07, Hea82, MS12, OGAB14,
TYZ015, CD84a, HYKS08, Dos78a].
Selective [DHT+19, LYDA19], selectivity
[HYKS08, MBK97]. Selects [Bou12]. Self
[HH85, Pag85, PRRR15, SS83, Som99,
TY03, Wil95, Wog89, ZF06, AOD19, TKI99].
Self-Adjusting [Pag85, Wog89].
Self-checking [Wi96]. self-clustering
[AOD19]. Self-Indexed [TKI99].
Self-Monitoring [SS83]. Self-Organizing
[HH85, Som99, TY03]. Self-Shrinking
[ZF06]. Self-Tuning [PRRR15]. Semantic
[CDW+19, Li15, LWZ+18, ZZL21, LL13,
MTB00]. Semantics [HH83]. Semi
[CBK93, CLL+14]. Semi-Interactive
[CBK93]. Semi-supervised [CLL+14].
seminjoin [CCY91]. Semite [LI92].
Semitic-Infinite [LI92]. sensing [Ind13].
Sensitive [BT12b, CSSP15, CKPT19,
KBG18, Kaw15, MNP08, OWZ14, OTKH11,
Pag18, ZHW21, AT18, EFMK+20, FWG18,
GDGK20, HFZ+15, HFF+17, LNS11,
LWXS18, LW+17, PCM15, QZD+18, SP12,
STS+13, WY00, ZHX+21, SA17]. Sensor
[DK09, LDY+16, PLKS07, ZQS12, ZHW21,
AK09, ADF12, GDGK20, LG13, LND08,
RAL07, YG10]. Sensors [DL12, DVS+14].
Sentence [CH12]. Sentences [Ven86].
sentiment [ZLZ18]. Separate
[Kue82b, Mul81, Kue82a]. Separating
[FK84, SG16, BvT13, LSO6, VT14].
Separators [Lar88b, Moh90, Moh93, CS93a].
Sept [BD88, Jou85]. September
[VLD82, AAC+01, AOV+99, AA86, BJZ94,
EF12, FS09, Fis87, HM08, HKNW07, Ker75,
Kna89, LSC91, Vld90, Win78, Yao78].
Sequence
[BC08, FP89b, Gon81, HG77, LPT12, LL85,
MS88b, BJ07, CLW98, EASR22, Wog89].
Sequences [Som99, KS88a, QJ97].
sequencing [KRML09]. Sequential
[AD85, BCC10, CT96, GS94, HB89a,
KCC12, Lit89, Mul72, Ore83, Piv85, SK98,
SG76b, BDVP14, HB89b, IL90]. Series
[BJL16]. Serious [AG81]. Served [PM89].
Server [DR92, GSL17, GBC98, Gra99,
LL+16, VB00, Tsa08]. Server-Side
[GSL17]. Servers
[HWZP18, SKC07, KSC11, KSC12]. Serves
[An05]. Service [CCF04, SWTX18,
Bac02, BPT10, QZD+18, TLL18].
Services [ANS05, An085b, HLC10]. Session
[HLC10]. Set [BOS11, Kie85, PSZ18, SG76a,
WC11, YD85, BGG12, GGR04, HYKS08,
HDCM11, HKLS12, HM03, MB4, SA17].
set-expression [GGR04]. Set-Oriented
[Kie85]. set-valued [HM03]. Setl [BFR87].
Sets [AA79b, AA79a, GHK91a, GHK91b,
GT93, Lit89, PBD95, Ram92, Spr77,
Win90a, BT89, BT93, FPD2, IL90]. seven
[RAD15]. seven-dimensional [RAD15].
Seventeenth [LC86b, LSC91, Rie89].
Seventh [ACM75c, ACM75a, ACM88a,
dBvL80, LL08, AAC+01, ICD91]. several
[DLH+79, Kan90]. SHA [ANS97, Bou12,
TSP+11, AAE+14, ABM+12, BCJ15,
JCPB+12, Con17, DR06, GLG+02, JRPK07,
KRKR07, KR09b, KS17, MAK+12, NIS15,
NSS+06, PPS21, SK05, Sta94, SKP15,
WYY05a, WYY05d, WYY05b, WYY05c].
SHA-0 [BCJ15, NSS+06, WYY05d]. SHA-1
[ANS97, AAE+14, BCJ15, Con17, DR06,
JRPK07, KRKR07, KR09b, KS17, SKP15,
WYY05a, WYY055, WYY05c, GLG+02].
SHA-2 [SK05]. SHA-256
[MAK+12, PPS21]. SHA-3 [Bou12,
TSP+11, ABM+12, JCPB+12, NIS15].
SHA-512 [GLG+02]. SHA1
[Con17, SBK+17]. Shading [ZDI+15].
Shading-based [ZDI+15]. Shanghai
[An083, LC06]. Shape [SR89, SYW+20].
Share [SS88b]. Shared
[Bor84, CadHS00, DadH92, EK93, adH93, KBG18, KU88, KTN92, LTS90, MLD94, MLxx, Mey93, Omi91, PG17, SD89c, SD89a, TR02, TNKT92, VB00, Vit81a, WB03, YNW+09, Don91, GLJ11, Kan91, Kan93, KU86, MSS96, Par18, SD89d].

Shared-Disk [WB03].

Shared-Everything [KTN92, MLD94, TNKT92].

Shared-Memory [MLxx, TR02, Vit81a, Bor84].

Shared-Nothing [SD89c, SD89a, SD89d].

shares [ZHS94].

Sharing [LPWW06, KL08, KD92, SNW06, YD86b, ZHS94].

SHARP [VD21].

SHAvite [GLM+10].

SHAvite-3-512 [GLM+10].

Shell [Rei03].

Shenzhen [IEE11a].

Sheraton [ACM75b].

Sheraton-Palace [ACM75b].

Short [AB12, CW09, CDW+19, DK09, Lyo79, NR12, MT16, SV15a].

Short-Input [AB12].

Short-Output [NR12].

Short-Time [CW09].

Shorter [H¨ul13, PPB16].

Should [Yao81].

Showcase [USE00a].

Shrinking [ZF06].

SHS [Ano08, Ano12, NIS93, Nat92].

SIAM [ACM94d, SDA90, SDA91, ACM97a, ACM05, ACM08a, Kar98, Mat09, Smh00].

Sichere [BN85].

Side [GO07, GSL17, TC04].

SIFT [MMG10].

SIGACT [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, Van10, LL08].

SIGACT-SIGMOD [ACM83a, ACM83b, ACM85b, ACM86a].

SIGACT-SIGMOD-SIGART [ACM88a, ACM89b, ACM89a].

SIGAL [A+90].

SIGART [ACM88a, ACM89b, ACM89a, Van10, LL08].

SIGCSE [LC86b].

SIGIR [BIP92, YR87, BV89].

SIGMOD [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM88a, ACM89b, ACM89a, BJ93, CLM89, FMA02, GMJ90, Van10, HF13, LL08, Nav85, SW94b, Sto92, ACM81, ACM84a, BL88, HF13, Lie81, SW94a].

SIGMOD-SIGACT-SIGART

[Van10, LL08].

SIGMOD/PODS [HF13].

SIGMOD/PODS’13 [HF13].

Sign [CK12, GHR99, PV07, GK12a].

Signature [ANS05, Ano09a, Ano13, BDS09, CS91, Cor02, Dam87, FC87a, FC87b, HHL10, Hui13, Kal01, LR96a, LM95, LL92, NXB13, PWY+13, RZ90, RR92, ZRT91, ZJ09, CR89, Con17, SE21, ZW05].

Signatured [SS83].

Signatures [AS16, BHH+15, But17, CK12, DK09, FL04, FFGG07, GK12a, GHR99, Hui13, HRS16, HBG+17, MKF+16, MCF17, Moh11, MKAA17, PW93, PGV03f, RR92, Ru193, TT82, CFN18, NS09, PPB16, ST93].

Signed [Sch01b, ZDI+15, SN19].

Significance [SP21].

significant [BCCL10].

signing [BGG94].
Men12, MJBD11, OT91, Spr77, YDT83,
YSEL09, Men17, MA15, RT89).

Single-Cycle [MJBD11]. **Single-File**
[Lar82c, Lar82d, Lar85c]. **single-hop**
[MA15]. **Single-Layer** [YSEL09].

Single-Pass [YDT83]. **Single-Probe**
[OT91]. **Singular** [NS16a]. **Sinkhole** [JL14].

Sinnentsprechende [BN85]. **Sintering**
[Rey14]. **SipHash** [AB12]. **sites** [OOK +10].

Sixteenth [ACM84b, ACM05]. **Sixth**
[BF89, ICD90, GJM02, LT80]. **Size**
[Ack74, AHS92, Bat75, CKW09, Dev99,
FK84, HD72, Joh97, Kab87, KV91,
KNT89, MV88, Meh82, Sam76, Sam79,
Woe01, Bee83, CM01, DW05, DW07, GW94,
Han17, LNS11, Sar11, Woe05]. **SK**
[LCH +14]. **Skein**
[ARH +18]. **Skeleton** [Ind13].

sketches [NTW09, SLC +07]. **Sketching**
[Ind13]. **Skew**
[Bre91, CyWM91, DNS92, KO90, RK91,
Top92, WDTY91, WYT93, ZO93]. **Skip**
[AS07, Coh98, BCR10]. **SL2**
[CP95b, TZ94b]. **Slack** [AEP18]. **SLCA**
[WWZ09, ZLC +12]. **SLCA-Based**
[WWZ09]. **Slicing** [Kon10, MEK +14].

SLISCP [ARH +18]. **SLISCP-light**
[ARH +18]. **sloth** [LW17]. **Slovenia** [EF12].

SM3 [MXL +12, WS13, ZWW +12]. **Small**
[FHMU85, Ind01, Joh97, KR01, NN90,
NY85, YLC +09, YBQZ17, MP16, Sag85b].

Small-bias [NN90]. **Smaller**
[CRSW11, CRSW13]. **Smalltalk** [SUH86].

Smart [Ku04]. **Smartcards** [JK11]. **smoke**
[ZRL +08]. **Smooth**
[ACP09, HK12a, KV09, LYY +18].

snapshots [PBB012]. **Snefru**
[BS91c, Bih08]. **Snowbird** [SM08, SM12].

SOAR [SUH86]. **Social**
[KKP +17, ZWH17, PES +12, ZZLZ18].

Societies [IEE92a, IEE01]. **Society**
[IEE80a, IEE84, IEE88a]. **Soft** [DGKK12].

Software [Ano85b, DT75, Eld84, FHMU85, GN80,
GD87, Got83, IEE80a, IEE95, Kna89,
Lew82, MZD +18, Mil87, MW95, NP99,
RRR99, Sch01b, SBS16, Wal88, And94,
Bir07, Goj96, Mer90a, SGK09, TKB20].

Software-implementation [GN80].

Solution [DM90, Hop68b, Mit73, WSZ +16,
HCF95, HL94]. **Solvability** [BF83]. **solve**
[CP95a, WZ12]. **solved** [Loh89]. **solver**
[GZ99]. **Solvers** [DK07]. **solving** [SWQ +14].

Some [Bay73a, CV85, Gib90, Gri74, Lar85a,
Mit09, MOI90, MOI91, Nam86, Sti06, Wri83,
BSU12, GLC08, Inc81]. **Sonographic**
[SSS01]. **Sophisticated** [BPBB12].

Sort [GLS91, Gra94b, GLS94, KKL +09,
KTMO83b, OOB17, TR02, AKN12,
BAT´O13]. **Sort-Hash** [TR02]. **sort-merge**
[AKN12]. **Sort-Merge-Join** [Gra94b].

Sorted [BS97, DS97, Gra94a, GLS94, KKL +09,
KTMO83b, OOB17, TR02, AKN12,
BAT´O13]. **Sort-Hash** [TR02]. **sort-merge**
[AKN12]. **Sort-Merge-Join** [Gra94b].

Source [KP94, CBB05, Cha12, HC11, NMX19].

source-based [Cha12]. **Sources** [CV08].

South [ACM91c]. **SPAC** [ACM91c].

Space [Bal05, Blo70, BPZ07, BM99, CH94, DH01,
Fis87, F +03, FPSS05, HTO1, JD12, MSW19,
PP08, SVB84, TW91, YYY +1, BD82,
BCGS16, CF89b, DMPP06, GZ99, Kon93,
MN90, OP03, PSS09, Sie89, SWQ +14,
TYSK10, WRS +07, YUV75].

Space-Efficient [BP07, JD12, PSS09].

space-filling [GZ99]. **space-hard**
[BCGS16]. **Space/Time** [Blo70].

Spaced [BN90]. **space/Time** [BN90].

Spaced [BN90]. **space/Time** [BN90].

Spain [DJRZ06, LSC91, CTC90].

Spam [ADOAH19, LZ06, UCFL08].

Spamdoop [ADOAH19]. **SPARQL**
[HAKM15, HAK +16]. **Sparse**
[AL86, ASW07, vDSDW74b, FKS84, Gre21,
Jon98, Grj77, KKN12, RT81, TY79,
ZHC +13, vDSDW74a, Bis12, BT90, BT93,
CML +13, JCC00, CW91, Ind13]. **Spatial**
storage-efficiency [PT10b].

Storage-efficient [HCJC06, MSK96]. Store
[DW83a, LLL+16, LCM+20, MZL+19, QXL+20, dW83b, SFA+19, Shi17, BP94].

Stores [Bry84, GWY+19, JLL+20, PRRR15, SDZ21, WLC20]. Storing
[AL86, FKS84, MNS07, Ros77, TY79].

Strategies
[iA91, iA94, BI87, Dae95, Die07, adH90, adH93, KL87, KHT89, MD97, Mey93, MD97, Ros77, TY79].

Strategy
[CdM90, LMSM09, LC96, NKT88, RS92, GC90, LMSM12].

Stream
[DC98a, cLmL07, MNS12, NCFK11, TS85, DS09a, Ged14, MV08, OCGD11, RS14, Tan83]. Streaming
[CN07, STS+13, YSW+11, YGS+19, CBB05, FVS12, ZC12]. streamlining [DSS10].

Streams
[Coh98, SS83, YGC+12, BMLLC+19, CH09, GGR04, SLC+07, YLC+09].

street [Sim98]. Strength
[HS08, FH15, Ken73].

Stretching
[BVF12]. String
[iA94, Ask05, BRM+09, BH85, Bur84, CFP19, CCH09, Cha91, Dav73, KL14, LLLC17, NNA12, TK88, Tay89, TT82, ASM17, AZ10, Bur82, DC94, GBY90, Kim99, MBKS07, RZ97, XMLC11].

String-indexed
[Tay89]. string-pattern [Kim99]. Strings
[BS07, Dit91, FM96, GLB21, Lit91, Pea90, Pea91, RC94, Sav90, Sav91, Zuk21, Eug90].

Strong
[CHKO08, CHKO12, JRPK07, HLL18a, Ku04]. strong-password [Ku04].

Strongly
[BG07, LK14, Tho00]. Structural
[BRM+09, TWZW11, Wi96, ZMI91, FLF11, MK12, ZBB+06]. structuration [Lit77a].

Structure
[AHS92, CK12, CJC+09]. DGM89, DT91a, DT91b, FLF11, Fl077, FB87, GHK91a, GHK91b, Grec21, CTC90, KS12, NHS84, Omi88, SG88, WH83, Wri83, ZHW19, BR75, BGG12, IG94, KRJ09a, KHH89, LNS96, LCH+14, MMC01, MSK96, SB07, TMBO2, YD86b].

Structure-Preserving
[CK12].

Structured
[CS93b, GDA10, Nak21, Piw85, SG76b, SM87, WWG+18, BPT10, GHW07, WHS+07, WLLG08]. Structures
[AHU83, BDD+10, BFR78, Boy98, BJM14, CE70, Coh84, DSZ07a, DSZ07b, DP08, Ell85b, Ell82, Fei88, FZ87, FBY92, Fro82, Gon84, GBY91, Gri74, Har88, Har71b, HS84, Kru84, LC86a, LRY78, LRY80, Lit84, MO92a, RW73, Sa188, SDW14, SW86, Sne92, Ste82, SW87, TA81, TA86, TGL+97, TS76, TS84, VL87, WS76, WK97, Wir86, YLB90, ZLLD18, BY89, CRS83b, FP89a, GJM02, Har73, HM03, Inc81, IGA05, Koe72, Lin96, MTB00, NT01, NM02b, OS88, She06, VL97, Vit01, Wil78, Wil85a, ZKRO8]. Structuring
[Bay73a].

Studies
[Ano93d, GT80, GG80, Yub82]. Study
[AR17, BF83, BK07b, Cha84c, Cha85, Cra85, DTS75, DJS80, DHJS83, Ell85b, Gri74, Hil78b, Hil78a, LC86a, LG78, LYD71, TL95, YLB90, HM03, LY72, Wee88, WTN07].

style [UCFL08]. Sub
[WZY+18, Pri95]. Sub-Datasets
[WZY+18]. sub-quadratic
[Pri95]. Subgraph
[ZLY+12, WLLG08].

sublinear
[CFN18]. Subquadratic
[Val15]. subscribe
[MJ14]. Subscripts
[Atk75, vdSDW74b, vdSdW74a]. subset
[IN89, Mon19, Pri95]. Subspace
[KRJ+80, Sch11]. Substring
[Boo73, Har71a, MKSiA98]. Subsystem
[HLC10]. subtype
[Due08]. subtyping
[DL06]. Succinct
[ANS10, DP08, RRS07, FS08, SH92, SH94].

Suchen
[Meh86]. Suffix
[ADW12, ADW14]. Sufficiency
[NY85].

Sufficient
[BDPV14, IK005, IH95, Rus92, Rus93, Rus95]. suffix
[BGKZ12, Kos14]. suffix-free-prefix-free
[BGKZ12].

Suitable
[PPS21, MZI98]. sum
[IN89, Mon19]. summaries
[KM08].

Summary
[DLH+79]. Sums
[HJ96, RRS07].

Super
[Ane95d, HLL18a, KO90]. Super-strong
[HLL18a]. supercomputers
[GLJ11]. Supercomputing
Superimposed [ACM04, IEE90, IEE91a, IEE93, Kha95].
Superior [PT10b].
Superjoined [TRN86].
Superfluous [CJ86, FH69, SD85, SDKR87, SDR83b].
Superior [PT10b].
Superjoin [TRN86].
Superspecial [CDS20].
Supertree [GB10].
Supervised [CLL14].
Supplement [SC77, Ruc15].
Supplementary [PLKS07].
Support [CN07, Eng94, GSL17, KJC11, SK99, YCRY93, JMHO2, KLSV12, LCRY93].
Supporting [CLS12].
SURF [YCJ12].
Surface [Leb87, LDY16].
Surprising [SKD15].
Surrogate [BCH87].
Surrogates [Dee82].
Surveillance [PPS21].
Survey [CZ17, CJ19, Kal03, Sev74, Mil09, RAL07, UPV11].
Symmetric [FW09, Fil02, HC13, NHS84, Oto85b, PQ98, PQ99, QG89, QG90, Roe94, SK20].
Symmetry [KT92].
Symposium [ACM94d, ACM75c, ACM75a, ACM76, ACM77b, ACM79, LFP82, ACM82, ACM83a, ACM83b, ACM84b, ACM85b, ACM86b, ACM86a, ACM87, ACM88a, ACM88b, ACM89b, ACM89a, ACM89c, SDA90, ACM90, ACM91c, ACM91d, SDA91, ACM91e, ACM94b, ACM96, ACM97a, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM05, ACM08a, ACM08b, ACM11, ACM12, AH03, Ano10, A+90, AlNOW11, BW92, Col93, CHK06, EF12, Gol94, Van10, adHMR93, HL91, HF13, IEE74, IEE76, IEE80b, IEE82, IEE84, IEE85a, IEE88c, IEE89, IEE91b, IEE92b, IEE99, IEE05, IEE06, IEE07, IEE10, IEE11b, IEE13, J´aj90, Jen76, Lak96, LL08, Lev95, LC86b, Mat09, MS05, Ng79, ACM77a, Shm00, WGM88, Win78, Wol93a, Wol93b, vdHVH12, ACM91a, FS09, Fis87, HM08, HKNW07, Kar98, IEE82].
Symbsac [Jen76].
Synchronization [Oak98].
synchronizing [DTM+18, ML95].
Syndicate [HM19].
Syndrome [vMG12].
Syndrome-Based [vMG12], synergy [GH07].
Synonym [QCH81].
synopses [YL90].
Syntactic [Ven86].
synthesis [Sab94].
synthetic [GL08, PGV93e, PGV94].
Syracuse [IEE80b].
System [ASWD18, Ano10, BGF88, BG92, CBK83, Cer85, CBK85, CZLC12a, CZLC14, CBA94, CJ86, DNV81, EE86, FH69, GRZ93, Gra94c, He87, ISK+93, JXY07, KL87, Roe72, KRJ+80, LGH+12, LHY+19, Luh58, Mil85, MK93, MFK+06, PRZ99, PSR90, QXL+20, Sar80, SBS16, SPB88, SC77, TC93, YkWY83, ZZM17, ZZ83, AS09, CZ14, Gob75, HLL18a, KJS17, Kos14, MFES04, WM93, YMI89, ZCZQ19, ZYWM20].
Systematic [SSaS01].
Systems [ACM82, ACM83a, ACM83b, ACM85b, ACM86a, ACM87, ACM88a, ACM89b, ACM89a, PDI91, And91, ANT85, BˇSH12, Bor81, Cer81, CS83b, CC87, Col93, DKO+84b, DKO+84c, DKO84a, Dum56, DGKK12, Ell82, Fox91, FK84, GGY+19, GI12, GL17, Gro86, Van10, Han90, HCKW90, Har88, HNK020, HBL+10, HF13, Kim80, KS12, KCB81, Kue84b, Kum89a, LYY+18, LC86a, LL08, LLY+17, LXL+19, LCL+20, Lio81, LSY+21, Man12, MEK+14, Mor83a, Ouk83, PFM+09, PG17, Sha86, She91, SHF+17, SWTX18, Toy86, Ull82, Web72, WB03, Yam85, YLB90, ZJM94b, ZH18, dKC94, ACM94c, AKN12, ARA94, DKO+84d, DAC+13, FP89a, FES09, GPGO16, KKP92, Lia95, Mo92b, RW07, SK88, SGK09, SP89, TL93, UIY10, WZ12, WTN07, ZGG05, ZJM94a, ZJM94c, SC77, Sto88].
systolic [EBD91, PJM88, PJBM90].

T3D [DS97].
Tabellen [BI87].
Table [AL86, Bat75, BRM+09, Bee99, Bur75a,
Table-Based [HLC10, TKH20].

Tabled [Ram87]. Tables [AR16].

Tabulation [KW12, PT12a, TZ12, Tho13, DT14, DKRT16, PT11a, PT13, Tho17]. Tabulation-Based [KW12, TZ12].

Tabulative [GT80]. Tag [JRPK07, ZWH17, CJP15, HLL18a, SPLHCB14, CJP12]. tag-based [HLL18a]. Tagged [ZWH17]. tagging [TCW +13]. Tags [LCL +20].

Taipei [HL91]. Tamed [NXB13]. Tampa [IEE88b]. Tamper [CHL07].

Tcl [USE00b]. TcI/2k [USE00b]. Tcl/Tk [USE00b]. TEA [CV05, HSR +01, HSR102].

Teams [GBC98, KKW99]. Technical [IEE84, LC86b, Ros21, YC921, Sac86, Sag85b, MKL21].

Techniques [AOAAK20, Bay73a, Bih08, Bre73, CP87, CP88, CZ17, Dam90a, Dam91, Dav91, DKO +84b, DKO +84c, DKO84a, DL79, Dun89a, Dun89b, FeI87, Gra92, Gra93c, Gui75, Gui78, Hel94, KMY10, Kue84b, LC20, LDM92, LYD71, Mal77, Mor68, Mor83b, MC86, Pri71, QV99, QV90, QG95, RHL91, Rue93, SD85, SDKR87, SZ93, She91, SPSP16, Sta73, Sti94a, Vau06, YTJ06, BF08, De 95, DKO +84d, DJRZ06, DJNR09, GQ95, ISO97, ISO04, LY72, PH73, RLH90, SXLL08, UPV11, YSL05]. Technology [IEE11a, RRR99, ISO97, ISO04, JBJ94].

Teil [Pei82]. Teletraffic [CS93b]. Tempe [Go92, Yu92]. Template [LMC07, SP21, SK20]. Templates [JTOT09, AGBR19]. Temporal [GY91, SHZ +20, WYD +18, CWC10, FXWW17, MHT +13]. temporaries [Ken73].

TENCON [Ano93c]. Tennessee [IEE94c].

Tenth [DSS84, SC77, YR87]. Terabytes [IEE02]. term [KP92, LTT21]. termination [Er86]. Terms [Wil79, ZWCL10, vT14].

ternary [Bou95, KTDB20]. Terrorism [GRBCC19]. Tertiary [Gui75]. Test [Har71a, RT87a, Sav90, Duc08, ZCZQ19].

CCF04, CW91, CHSC18, CL83, Day70, DHK+15, DAC+13, FKS84, FW76, FW77, G94, G95, Hop68b, HD72, HLC10, IABV15, JL14, JXY07, JMHO2, JD12, KG95, Kno71, LMJC07, Lev00, Lit80, Litxxa, LACJ18, Lyo85, Mai83, Mai92, MT11, ML75, Mue04, MJT+02, Pri71, Pro89, Rey14, Riv76, Riv78, San76, San81, San76, Sze92, Szy82, Szy85, TY79, Tro06, VB00, YD84, YT16, YLB90, YLZ20, vdVL12, Ay14, AZ10, BCR10, Bay73b, BG12, Fro81, GSS01, HXLX13, KdlT89, MZK12, MA15, NK16, NH74, PH73, Ram87, SB95, SB07, TKH20, Tso08, WT07, Yu18, ZGG05].
Testbed [SDK91]. Testing
[Boo73, DD11, Fil02, Sam76, WM19, AY14, HKLS12, TD93]. Tetris [GSS01].
Tetris-Hashing [GSS01]. Text [ACM91b].
Texas [ACM91b, ACM97b, ACM98, IEE76, USE00b, ACM88a, IEE95, Nav85].
Tex [ACM91b].
Tetris [GSS01].
Texture [ACM91b, ACM97b, ACM98, IEE76, USE00b, ACM88a, IEE95, Nav85].

Theorem
[Cha84b, CG92, HR14, Kno88, Sie89].

Theoretic
[BH85, MLHK17].

Theoretical
[ACM75c, ACM75a, ACM76, ACM77b, ACM82, ACM84b, ACM86b, ACM88b, ACM90, ACM91e, ACM96, ACM97b, ACM98, ACM01, ACM02, ACM03a, ACM07, ACM08b, ACM11, ACM12, AA86, BBPV11, CP87, CP88, CS93b, Dam90a, Dam91, Fel50, Gra88, Gra89, Heu87, HK12b, NR12, RNT90, SAV84, WC81, AG10, adHMR93, NY89b, NY98a, PW08, Pob86, Sie89].

Their
[CZLC12b, CK15, CJ19, Deb03, Gra88, Gra89, Heu87, HK12b, NR12, RNT90, SAV84, WC81, AG10, adHMR93, NY89b, NY98a, PW08, Pob86, Sie89].

There
[AKS78].

Thesaurus
[RW73].

Third
[ACM91e, jCPB+12, ICD87, IEE88a, BD888, G0l96, A0n89].

Third-Round
[jCPB+12].

Thirteenth
[Kna89].

thirtieth
[ACM98].

Thirty
[ACM03a, IEE88a].

Thirty-Fifth
[ACM03a].

Thirty-Third
[IEE88a].

Thirty
[ACM02].

Thirty-Fourth
[ACM02].

Thousand
[KRJ+80].

Thousand-Word
[KRJ+80].

Thousands
[BMS+17, Nic17].

thrash
[BFCJ+12].

Threaded
[VB00].

Threading
[SMZ18].

Threads
[Lep98].

Three
[Ano95a, MLxx, MP12, SP89, Tro95, FH15].

Three-way
[SP89].

Threshold
[Wee11].

Throughput
[KHK15, LPT12, LLL+16, PRM16, TP15, WZJS10, MAK+12, XLZC14].

Thyroiditis
[SSS01].

Tiger
[AB96, MR07].

Tight
[Cha94, CV08, GKH+12, vT14].

Tightly
[Mul81, DW05, DW07].

Tillich
[Gei95, Gei96, GIMS11, PVCQ08, TNS20].

Time
[ASBdS16, BJL16, Blo70, Bre73, BM99, CW09, CJKK19, Cip03, Cla77, CM93, DADH90, F03, FPS13, FKS84, G76, Gra94b, Jak85, Kab87, LAKW07, Lip02, Lyo83, Moh11, NI83, NS16b, PP08, PSSC17, PWY+13, PS12, Sag85a, SL16, Sie04, TW91, Val15, WVT90, Win90b, AY14, ASA+09, CJMS19, CCY91, DSD95, FPSS05, FVS12, GB17, GMW90, Han17, Kor08, Man12, MV91a, MN90, MP90, OP03, Par18, Pro18, Sie89, ZRL+08].

Time-Memory
[ASBdS16, CJMS19].

Time-Series
[BJL16].

Time-space
[Sie89].

Time-Stamping
[Cip93, Lip02].

Times
[VL87, VL97].

Timestamps
[GY91].

Timing
[VL87, VL97].

Tiny
[GW94, OWZ14, SWQ+14].

Title
[Hit76].

Tk
[USe00b].

TMIS
[GTLL21].

To many
[SV18].

to one
[SV18].

Tokyo
[IW89, A+90, Mo92b].

Tolerant
[DSSW90a, AAB+92, DSSW90b, HGR07].

Too
[CHSC18].

Tool
[Lit79b, Lit80, Litxxa, MV01].

Toolbox
[Jac92].

Toolkit
[FZ87].

Tools
[MII87, JC88b].

Top
[APV07, LRY+15, LLG+17, ZLC+12].

Top-Down
[APV07, LLG+17].

TopIC
[RTK12, Gre95].

Topic-Specific
[RTK12].

Topics
[Joy03].

Topology
[RHM09, Ati20].

Toronto
[Gil77, KLT92].

Torrent
[Bak09].

Towers
Yan05]. TX
USE91, ACM87, ARA94, IEE94a. Type
KPS92, KRJ09a, TNS20, SF88, SG16, SV18.
Type-based [KRJ09a]. Type-Graphs
KPS92. type-heterogeneous [SV18].
Types [EjKMP80, Hej89, Rog19b, SW87,
Wal88, LPSW03, NMS+08]. TYPHOON
HKW05. typing [DMP09].

Überlegungen [Kue84a]. Uebersicht
Mer72. UK
AOV+99, Boy95b, Dav91, Gol96]. UL
DSS17. Ultra
QXL+20, WZJS10, YBQZ18). Ultra-Fast
[YBQZ18]. Ultra-Low-Latency [QXL+20].
uncertain [BZZ12]. Undergraduate
Tro92. Undergraduates [Pag06].
Understanding [Dun89a, Dun89b].
Unequal [Gon80]. Unequal-Probability
Gon80. unicorn [LPSW03, NMS+08].
Uniform [JV16, Mul84a, Mul84b, ABO+17, BOY11].
Uniform [ABH+73, AT93, Gui89, Kie85, KS86, KS87b,
Lar83, Leb87, LQZH14, LPP91, LPP92,
Mal77, OP03, PP08, PCK95, Ruž08, UHT95,
Yao85b, Ald87, AT90, MC89, Rad92].
Uniform-Grid [Leb87]. uniformly
[MLP07]. Unifying [BG80, BG82]. Unique
Boo74, DHL09, DLH13, SD78, ASW87.
Uniqueness [Kah92]. Unit [BC90, H072].
Unified [ACM94b, JB94]. Units
[LLLC17, WB87, SF88]. Universal
[Abi12, AS96, BKST18, Bie97, Bra09, CW77a,
CW77b, CW79, CJKK19, CS02, DadH90,
DadH92, Die96, DS09c, EPR99, Für88, GC95,
HHR+10, HJ96, JCK+18, Kii01, KR01, KL14,
MNT90, MCW78, Meh82, Mul91, Nae95,
NY89b, NY89a, NP99, NR12, Ram88b, Sar80,
Sho96, Sho00a, Sie04, Sti91, Sti94a, Sti94b,
Woe01, van94. ACP10, Bie95, DS09b, IIL17,
KYS05, KL96, KR06, LK16, LC13, MNT93,
Sar11, Sar13, Sie89, Tho00, Woe05, Woe06a].

universality [SS89a]. universe
[Bra09, Ven92]. Universes [DS09c].
Universitat [CTC90, Dit76]. Universiteit
BD09a. University [ACM81, IJW89,
CC89, CRS83a, HB93, IEE74, Jäj90, Lie81,
Oxb86, Pat90, Sch82a, Dit76]. universe
[Ven92]. UNIX [SY91, WG00]. Unknown
LCL+20. Unlabeled [GCMG15]. unleash
[MCN03]. Unlimp [Kah92]. unsafe [Con17].
unsigned [BCS89]. Unstructured
[Gon83, PFM+09]. Unsupervised
[CJN20, PKN09]. Untersuchung [Stu82].
Unveiling [WZY+18, BCCL10]. UOWHFs
[BR97]. updatable [ZVWM20]. Update
[An90a, GO07, GGR04]. Updates
[LCLX19]. Upon
[CS83b, Cha84b, CS87, CW91]. Upper
[DKM+88, DKM+94, GadHW96, DKM+91].
URAL [GT63]. URLs
[AY14]. urn [Ram87]. USA
[ACM03a, ACM07, BD88, Bel00, Bri92, Bri93,
BD08, Cop95b, Deb03, DJN09, FNY92,
Fra04, Fre90, Van10, GSW98, Joy03, Ker75,
Kii05, Lom93, Sho05, STi93, Sti94a, Wie99,
Yun02, ACM94d, ACM11, ACM12, FMA02,
HF13, ICD86, ICD87, ICD88, IEE88b,
IC90, IEE01, IEE02, IEE05, IEE10, IEE11b,
IEE13, MS05, USE91, USE00a, USE00b].
Usability [BDS88, Sch82a]. Use
[ACM75b, AT18, Bal05, BK84, Bor81, Bra84a,
Bra85, Bra86, BC90, Gur73, NR12, Rad70, WCS1,
Er86, adHMR93, RK15, Vak85, YIAS89].
Used [Stu85, GS94, Sch91a]. USENIX
[USE91, USE00b, USE90]. User
[RTK12, YY07, Bor81, DFR15, HL12,
LH02, LKY04, YRY04]. Using
[ANS97, ASW07, BDPSN97, Bar97,
BRM+09, BCK96b, Bor84, BÖS11, BM90b,
BI12, BT94a, BT94b, BM01, BT12b,
BMLLC+19, CP95a, CRdPHF12, CKB85,
CdM89, CdM90, CLYY92, CCW+17,
CJC+09, CJKK19, Cle84, CD48b, CE70,
CRR18, CY06, DLT98, Dav73, DK07,
Dod82, DL12, DSSW90a, DGKK12,
EFMRK+20, Fal85a, FLF11, FRB11, FJ13, GRBCC19, Ger86b, Gir87, Gre21, Gri77, GPA97, GAS+16, Har97, HG77, HNS84, HKY12, JRPK07, JTJOT9, JD12, JK11, Kab87, KSSS86, KM07, LK07, LAKW07, LQZH14, LR99, LMD+12, Lm73, MS02, MPP14, MBBS12, MNY81, MCK90, Moh90, Moh93, MlT+02, Mul72, NKT88, N83, OTKH11, OG94a, Omi89b, PAPV08, PPS21, PLKS07, PKW09, PW94, QG95, QG90, RL89, RLT83, RSD85, RSSD92, Rey14, Rob86, SD78, SS83]. Using [SRY99, Sho00b, SW86, SK05, Som99, SA97, SKM01, TK88, TC93, TA81, TA86, TGGF10, TK85, TS85, Tsa96, US09, VV84, WPKK94, Wan14, WLWZ19, WDP+12, Wil96, Wil79, WM19, YY07, YBQZ18, AÖD19, BSNP96b, BLC12, BK07a, BF08, BT90, BGG12, CDS20, CK88, CHL07, CKKK09, CP13, CTH96, D09a, DMP06, DKT06, DSO9b, DSSW90b, EH17, Fal86, FM89, Fly92, GTL21, GKK10, GC92, Ger86a, GDGK20, Gob75, GBL94, HDMC11, HKL07, HKLS12, HC14, HI88, HC02, HW88, HXLX13, ISO97, JFDF09, JHL08, JF90, JCC00, JBWK11, JM02, JF13, Kin99, KJS17, Kos14, Ku04, LG96, LLH02, LKY04, LW04, LNS11, LDKl2, LK16, MCM01, MCK89b, MG10, MP16, Mue04, Ok88, PCK95, RSSD95a, RSSD95b, RGNMPM12, Rö07, SK05, SB95, Sar11, STS+13, Tho17, UHT95]. Using [XZPG21, YTHC97, YL04, YRY04, ZGG05, ZW05, ZLY+13, ZRL+08, ZWS95].

Value [DG02, GIS05, Gra99, GYW+19, JLL+20, LLL+16, LM07, MZL+19, NS16a, PRK98, QXL+20, SDZ21, Cli95, MK12, Mii95, Shi17, WLC20]. valued [DH84, HM03]. values [ASW87, GS94, SB95]. Vancouver [ACM05, LL08, Yua92]. **Variable** [Dit91, Lit91, MF92, Mar64, OGAB14, PHL01, Pea90, Pea91, Sam76, Sav90, Sav91, ZPS90, ZPS93a, RKK14, ZPS93b].

Variable-Length [MF92, Pea90]. **Variables** [Die96]. **Variant** [XZPG21, YTHC97, YL04, YRY04, ZGG05, ZW05, ZRL+08, USSR]. **Utilisation** [OT91]. **Utility** [HNLK01]. **Utilization** [PS12, Wil71, CF89b]. Utilizing [KAS+22, KK85]. Utrecht [vL94]. **UUID** [BˇSH12].

Variable-increment [RKK14]. **Validation** [ML86]. valuation [JDW+19].

Value [DG02, GIS05, Gra99, GYW+19, JLL+20, LLL+16, LM07, MZL+19, NS16a, PRK98, QXL+20, SDZ21, Cli95, MK12, Mii95, Shi17, WLC20]. valued [DH84, HM03]. values [ASW87, GS94, SB95]. Vancouver [ACM05, LL08, Yua92]. **Variable** [Dit91, Lit91, MF92, Mar64, OGAB14, PHL01, Pea90, Pea91, Sam76, Sav90, Sav91, ZPS90, ZPS93a, RKK14, ZPS93b].

Variable-Length [MF92, Pea90]. **Variables** [Die96]. **Variant** [XZPG21, YTHC97, YL04, YRY04, ZGG05, ZW05, ZLY+13, ZRL+08, USSR]. **Utilisation** [OT91]. **Utility** [HNLK01]. **Utilization** [PS12, Wil71, CF89b]. Utilizing [KAS+22, KK85]. Utrecht [vL94]. **UUID** [BˇSH12].

Variable-increment [RKK14]. **Validation** [ML86]. valuation [JDW+19].
REFERENCES

Word [BH86, FLF11, KRJ+80, LHC05, BT89, Han17, ST85]. Words
[Chu90, DM90, Dos78a, KR79, KRRH84, MH00, ST86, Tro06, Wai84, Zou85]. work
[Coh93, MV08]. Working [Cer85, CE95]. works [Gre95, LWXS18]. Workshop
[IJW89, ABM06, ODB89, Ano92, BBD09b, BF89, BD08, CP87, CP88, Dam90a, Dam91, Dav91, De 95, DSZ07a, DSZ07b, DJRZ06, DJNR09, GQ95, He94, VQ95, QV90, RRS06, Rei88, Rue93, SZ93, Ytr06, vL94, An94, Bir07, Coh94, Gol96, KI94, Yu92, An94, Heu87]. World
[Ano93a, Dre17c, IEE92a, LC95, KL97]. worm [FNP09, CF89b]. Worst
[ANS09, ANS10, DMV04, F+93, FKS84, Lar81, Lar82a, FPS05, Mic02, MT16]. Worst-Case [ANS09, ANS10, DMV04, Lar82a, Lar81, Mic02]. worst-case/average-case [Mic02]. Wörterbücher [Wen92]. Write
[Moh90, Moh93, MN07, ZH18, ZHZ+19]. Write-Ahead [Moh90, Moh93]. Write-Friendly [ZH18]. Write-Once
[MNS07]. Wroclaw [ACHTJ07]. WSN [DL12]. WSNs [YLZ19]. Wyner
[DVS+14].

x [PvO95]. X9.30 [ANS97]. X9.30-2
[ANS97]. X9.62 [ANS05]. Xeon [JHL+15].

XML
[CN07, KRML09, MK12, WLLG08, WWZ09]. XMSS [HRB13, HBG+17]. xor [FJ13, CCHK08, MLP07, VQD05, vDGGL+16]. XOR-based [CCHK08, VQD05]. XPS
[Gen95]. XRDB [YNKM89]. XSB [SSW94]. XTEA [CV05].

year [Roe95]. Years [Kon10, IEE01, KR19]. Yi [Wag00]. Yi-Lam [Wag00]. Ynot
[NMS+08]. Yokohama [A&NW11]. Yoo
[KCC05]. Yoon [KCC05]. York
[ACM12, GSW98, HF13, IEE90, IEE99, Mat09, IEE90, IEE99, Jen76]. Yorktown
[AA79a]. YY [Nat92].

Zahlen [BJMM94b, BJMM94a]. Zakopane
[Win78]. Zeit effizienten [Kue83]. Zemor
[Gen95, Gen96, GIMS11, PQVQO8, TNS20]. Zero
[CLP13, Dam93, OYV94b, Dam94, OYV94a]. Zero-Knowledge
[CLP13, Dam93, OYV94b, Dam94, OYV94a]. Zheng
[PGV93a, PGV90a, PGV93b]. Zheng-Matsumoto-Imai
[PGV93a, PGV93b]. Zipper
[LWWQ08]. Ziv [DVS+14]. Zoning
[GRZ93]. Zugriffsoperationen
[Pei82]. zugriffsfreien
[Stu82]. zum [Eck74a]. zur
[Koe72, Kue83, Kue84a, Pet83]. Zurich
[KHW07, Lac96].

References

ACM:1969:PAN
ACM 24th National Conference. ACM Press, New York,
NY 10036, USA, ?? 1969. LCCN ??

Asano:1990:ISS

Tetsuo Asano et al., editors. Algorithms: International
Symposium SIGAL '90, Tokyo, Japan, August
16–18, 1990: Proceedings, volume 450 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, Germany /

Anderson:1979:CPH

M. R. Anderson and M. G. Anderson. Comments on perfect
hashing functions: a sin-

Anderson:1979:CCP

Ausiello:1986:IIC

Ajtai:1992:FTG

Apers:2001:PTS

Albertini:2014:MHE

Anshel:2016:CHF

Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul E.
REFERENCES

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash:

Ahmed:2016:RN

Ahmed:2016:RN

Abidin:2012:SUH

Arnold:1973:UHA

Arnold:1973:UHA

Andreeva:2016:NSP

Andreeva:2016:NSP

Azar:1999:BA

Azar:1999:BA

Ailamaki:2006:PIW

Ailamaki:2006:PIW
REFERENCES

Andreeva:2012:SAS

Atkinson:1974:FPQ

Arge:2007:ALP

REFERENCES

REFERENCES

ACM:1986:PFA

ACM:1986:PEA

ACM:1987:PEA

ACM:1988:PPS

ACM:1988:PTA

ACM:1989:PPE

ACM:1989:PEA

ACM:1989:PPS
REFERENCES

REFERENCES

REFERENCES

[ACM03b] ACM:2003:PAA

[ACM04] ACM:2004:SHP

[ACM05] ACM:2005:PSA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Álvarez-Cubero:2016:AVL

Ahrens:1985:SRS

Adams:2008:ENE

Ashur:2011:LAR

Ayday:2012:DAA

Aceto:2008:ALPa

Heide:1990:DHS

Meyer auf der Heide. Dy-

Heide:1993:HSS

Heide:1993:PAE

Adi:1988:DCC

Alon:1997:LHG

Alon:1999:LHF

AlMahmoud:2019:SPP

A. AlMahmoud, E. Damiani, H. Otrok, and Y. Al-Hammadi. Spamdoop: a

Ajtai:1984:HFP

Akl:1990:ACI

Appel:1993:HCG

Alon:2010:BFP

Aumasson:2017:SCP

Atighehchi:2019:GHC

Agarwal:2006:AGA

Angelino:2011:EMM

Abramsky:2010:ALP

Alt:2003:SAS

REFERENCES

Aldous:1987:HLP

Aldous:1988:HLP

Agrawal:2010:HLF

Aumasson:2007:AMH

Andreeva:2012:PFG

Andreeva:2015:OPH

Aumasson:2014:HFB

Jean-Philippe Aumasson, Willi Meier, Raphael C.-W.

informaworld.com/smpp/content~content=a741902753~db=all~order=page. encryption systems; plaintext bit; hash function; ciphertext errors; error extension; tree function; ciphertext attack; computable attack; connectivity; DES; RSA key selection; algorithm design.

[Anderson:1993:CHF]

[Anderson:1994:FSE]

[Anonymous:1983:MPM]

[Anonymous:1985:PFD]

[Anonymous:1985:SS]

[Anon:1986:IRN]

Anonymous:1992:PAW

Anonymous:1993:CSA

Anonymous:1993:FSH

Anonymous:1993:TCC

Anonymous:1994:WAM

Anonymous:1995:AUC

Anonymous:1995:FSH

Anonymous:1995:NAF

[Ano95c] Anonymous, editor. NATO ASI on Fractal Image En-
Anonymous:1995:SHS

Anonymous:1996:RF

Anonymous:2002:SHS

Anonymous:2008:SHS

Anonymous:2009:DSS

Anonymous:2009:PCA

Anonymous:2010:NDS

Anonymous:2012:SHS

Anonymous:2013:DSS

ANSI:1997:AXP

ANSI:2005:AXP

Arbitman:2009:ACH

Arbitman:2010:BCH

Y. Arbitman, M. Naor,

Miguel Areias and Ricardo Rocha. On the correctness and efficiency of a novel lock-free hash trie map design. *Journal of Parallel
REFERENCES

Anger:1994:IEA

Altawy:2018:SLT

Ariwasa:1968:RHM

Arikan:1994:IGE

Aghili:1982:PGD

Abdelguerfi:1989:EVA
M. Abdelguerfi and A. K. Sood. External VLSI algorithm for the relational database projection operation. *International Jour-
REFERENCES

REFERENCES

REFERENCES

[Asano:1993:APP]

[Abdulhayoglu:2018:ULS]

[Al-Talib:2007:IMS]

[Atighehchi:2020:PNA]

[Atkinson:1975:HMS]

[Aviv:2019:ELG]

[Ang:1998:TLH]
C. H. Ang, S. T. Tan, and T. C. Tan. Tried lin-

[AZ10] Nikolas Askitis and Justin
REFERENCES

REFERENCES

Bandypadhyay:1977:CWI

Burrows:1989:LAa

Barter:1983:ACS

C. J. Barter, editor. Australian Computer Science Conference. Proceedings of the 7th Conference (Adelaide, Australia, Feb. 6–8, 1983). University of Adelaide, Computer Science Department, Adelaide, South Australia, Australia, 1983. Published as Australian Computer Science Communications; vol 6, no. 1.

Barequet:1997:UGH

Batson:1965:OST

Batagelj:1975:QHM

Batory:1980:OFD

Batory:1981:AMP

REFERENCES

Batory:1982:OFD

Balkesen:2013:MCM

Bays:1973:NWC

Bays:1973:STS

Bays:1973:RHC

Bayer:1974:SCM

REFERENCES

Bohm:2007:FRA

Berman:1982:CFP

Berman:1986:CFP

Belazzougui:2009:HDC

Bernstein:2009:PQC

Bellare:2001:OCH

REFERENCES

Bellare:2012:LCH

Bernstein:1988:OCE

Belazzougui:2011:TPM

Bennett:1988:PAP

Bollobas:1990:CDC

Ball:1939:MRE

[BC39] W. W. Rouse (Walter William Rouse) Ball and H. S. M. (Harold Scott MacDonald [“Donald”]) Coxeter. Mathematical recreations and essays. Macmillan Publishing Company, New York, NY, USA, 11th edition, 1939. 45 pp. LCCN QA95 .B3 1939. According to Knuth [Knuth73, p. 507], this is one of two papers that first discuss the birthday paradox: “if 23 or more people are present in the same room, chances are good that two of them will have the same month and day of birth! In other words, if we select a random function which maps 23 keys into a table of size...
365, the probability that no two keys map into the same location is only 0.4927 (less than one-half).” The discovery is credited to unpublished work of H. Davenport (1927). See also [vM39].

Burkowski:1990:UPH

Bird:2006:BSE

Balachandran:2008:SHC

Bu:2010:SHF

Boldyreva:2009:FNM

Boneh:2016:BHP
Berra:1987:CAS

Biham:2015:CSR

Bellare:1996:KHF

Bellare:1996:MAU

Bedau:2004:CHF

Barr:2010:TCS

Bardin:1989:IU1

Black:2009:IHE

REFERENCES

Bell:1982:KSC

Bell:1984:HTV

Bancilhon:1988:PFI

Bauspiess:1992:RCH

Buchmann:2008:PQC

Blin:2010:ARS

Bao:2020:GAH
REFERENCES

Biryukov:2016:ANG

Bussi:2019:MHF

Berger:2012:GFL

Bosselaers:1997:RCH

Bertoni:2011:CSF

Bertoni:2012:KIO

Guido Bertoni, Joan Daemen, Michæl Peeters, Gilles Van Assche, and Rommy Van Keer. Keccak implementation overview. Report, STMicroelectronics,
REFERENCES

Baraani-Dastjerdi:1997:UCH

Bertoni:2006:RBM

Bertoni:2007:SF

Bertoni:2008:ISC

Bertoni:2009:RPK

Bertoni:2012:KSF

REFERENCES

REFERENCES

0782 (print), 1557-7317 (electronic).

Bell:1983:QCM

Bellare:2000:ACC

Benzinger:1998:SCB

Mike Benzinger. STL containers based on hash tables. C++ Users Journal, 16 (2):??, February 1998. CODEN CCUJEX. ISSN 1075-2838.

Bell:1983:MCS

Boral:1989:DMS

Bouillaguet:2008:ACR

Bender:2012:DTH

Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kranner, Bradley C. Kuszmaul, Dzejla

Barn:1995:ODP

Battiato:2011:RFH

Boeker:1987:SAG

Batory:1980:UMP

Batory:1982:UMP

Becker:1992:RBO

REFERENCES

Baritaud:1993:FHCb

Baritaud:1993:FHCa

Bellare:1994:ICC

Brun:2012:LLS

[GG12] Emmanuel Brun, Arthur Guittet, and Frédéric Gibou. A local level-set method using a hash table data

Barthe:2012:VIH

Barthe:2013:VIH

Bagheri:2012:SFP

Bierbrauer:1996:OAR

Bosselaers:1996:FHP

Berkovich:1985:MSP

REFERENCES

Bruckner:1986:MPH

Banieqbal:1990:RMH

Bast:1991:FRP

Ben-Hashemi:1993:FAC

Bernstein:2015:SPS

Ben-Haim:2012:PHC

Berman:2013:HPR
REFERENCES

REFERENCES

[BJMM94b] M. O. Benouamer, P. Jail-

Bocca:1994:ICV

Bell:1970:LQH

Bechtold:1984:UEH

Brassard:1988:GRP

Broder:1990:MAH

Barker:2007:RRN

Boldyreva:2012:NPG

Bogdanov:2011:SLH

Brier:2009:LFC

Boral:1988:SIC

Barkley:1989:PRH

REFERENCES

0190 (print), 1872-6119 (electronic).

Blasius:1995:GRR

Blackburn:2000:PHF

Bando:2012:FBG

Bloom:1970:STT

Blustein:1995:IBV

Battulga:2020:HTP

Bayer:1976:EST

REFERENCES

5915 (print), 1557-4644 (electronic). Also published in [Ker75, p. 508–510].

[Barklund:1987:HTL]

[BM87]

[BM89]

[Blakeley:1989:JIM]

[BM89a]

[Blakeley:1990:JIM]

[BM97]

[Bellare:1997:NPC]

[BM99]

[Brodnik:1999:MCT]

[BM01]

[Broder:2001:UMH]
REFERENCES

[BN85] Wilhelm Barth and Heinrich Nirschl. Sichere Sinnentsprechende Silbentrennung für die Deutsche Sprache. Angewandte Informatik, Applied Informatics,
REFERENCES

Barreto:2010:WNC

Bobrow:1975:NHL

Boilou:1979:OPM

Bookstein:1972:DH

Bookstein:1973:HST

Bookstein:1974:HCN

Borman:1981:PSP
REFERENCES

of SIGSOCC Bulletin. ACM
Press, New York, NY 10036,
USA, 1981. CODEN SG-
BLDB. ISBN 0-89791-056-7
(pt. 1), 0-89791-064-8 (pt. 2).
ISSN 0163-5794. LCCN H61
.S53 v.12 no.4-v.13 no.1-3.

Borgwardt:1984:PPU

P. Borgwardt. Parallel Pro-
log using stack segments
on shared-memory multipro-
cessors. In IEEE-ISLP’84
[IEE84], page ?? ISBN
0-8186-0522-7 (paperback),
0-8186-8522-0 (hardcover),
0-8186-4522-9 (microfiche).
CH2007-3/84:0002801.00.

Bosselaers:19xx:EFH

A. Bosselaers. Even faster
hashing on the Pentium.
In ????, page ????. ????,
????, 19xx. URL ftp://
ftp.esat.kuleuven.ac.
be/pub/COSIC/bosselae/
pentiumplus.ps.gz. Pre-
sented at the rump session
of Eurocrypt’97, Konstanz,
Germany, May 12-15, 1997,
and updated on November

Bos:2011:EHU

Joppe W. Bos, Onur Özén,
and Martijn Stam. Ef-
ficient hashing using the
AES instruction set. Lecture
Notes in CS, 6917: 507–522,
2011. CODEN LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/content/pdf/1
10.1007/978-3-642-23951-
9_33.

Boukliev:1995:NTL

I. G. Boukliev. New ternary
linear codes. IEEE Interna-
tional Symposium on Infor-
mation Theory, ????(????):
500–??, ????. 1995. CODEN
PISTFZ. ISSN 0271-4655.

Boutin:2012:NSW

Chad Boutin. NIST se-
lects winner of Secure
Hash Algorithm (SHA-3)
Competition. Press re-
lease., October 2, 2012.
gov/groups/ST/hash/sha-
3/index.html; http://
csrc.nist.gov/groups/ST/
html; http://www.nist.
gov/itl/csd/sha-100212.
cfm.

Boyd:1995:CCC

C. Boyd, editor. Cryptog-
raphy and coding: 5th Con-
ference — December 1995,
Cirencester, number 1025
in Lecture Notes in Com-
puter Science. Springer-Ver-
lag, Berlin, Germany / Hei-
delberg, Germany / London,
UK / etc., 1995. ISBN 3-
540-60693-9. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic). LCCN QA268 .C76
1995.
Boyd:1995:CCI

Boyer:1998:AAR

John Boyer. Algorithm alley: Resizable data structures. Dr. Dobbs Journal, 23(1):115–116, 118, 129, January 1998. CODEN DDJOEB. ISSN 1044-789X. Discusses some deficiencies of the Java library hash table support, and compares it with his algorithm and that used in the C++ Standard Template Library. Also compares the Jenkins hash function [Jen97] with the one proposed in this paper.

Beuchat:2011:LAU

Biliris:1994:EEO

Barbour:1997:DMH

REFERENCES

Brier:2009:CC

Budroni:2018:HGB

Ben-Porat:2012:VHH

Bakhtiari:1997:WGC

Buehrer:2010:DPS

Botelho:2007:SSE

Banerjee:1975:DLD

J. Banerjee and V. Rajaraman. A dual link data structure for random file organization. *Information Processing Letters*, 4(3):64–69,
REFERENCES

December ??, 1975. CODEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

Bellare:1994:OAEa

Bellare:1997:CRH

Bellare:2006:MPP

Bellare:2014:CCH

Bradley:1984:UMD

James Bradley. Use of mean distance between overflow records to compute average search lengths in hash files with open addressing. Technical Report 84/154/12, University of Calgary, May 1984. ?? pp. (email parin@cpsc.ucalgary.ca).

Bratbergsengen:1984:HMR

Bradley:1985:UMD

James Bradley. Use of mean distance between overflow records to compute av-
average search lengths in hash files with open addressing.

REFERENCES

[Brickell:1992:ACC]

[Brickell:1993:ACC]

[Bauer:2009:FSA]

[Blundell:2010:RTR]

[Black:2002:BBA]
John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-cipher-based hash-function constructions from PGV. In Yung [Yun02],
REFERENCES

[Black:2010:ABB]

[Bry84]

[Biham:1991:DCFb]

[Biham:1991:DCFa]

[Biham:1991:DCS]

[Bod93]
REFERENCES

[Bhatia:1994:FPH]

[Bhatia:1994:FIP]

[Bjatia:1994:FIP]

[Bentley:1997:FAS]

[Balkic:2012:GUI]

[Bakhtiari:1996:KHF]

[Bakhtiari:1996:PBA]

[Bakhtiari:1996:SCH]

S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. On selectable collisionful hash functions. Lecture Notes in CS, 1172:287–??, 1996. CO-
REFERENCES

Blackburn:2012:CHA

Brain:1989:NPH

Brain:1990:PHU

Brain:1994:UTE

Brain:1994:UTE

Bouabana-Tebibel:2012:HCB
Brown:2012:FPT

Buchholz:1963:FOA

Buckhart:1982:AII

Burkhard:1975:FTQ

Burkhard:1975:PMQ

Burkhard:1976:ART

Burkhard:1976:HTA

REFERENCES

Burkhard:1976:PMR

Burkhard:1977:ART

Burkhard:1978:PMH

Burkhard:1979:PMH

p228-burkhard/.

Burkowski:1981:PHH

Burkowski:1982:HHS

Burkhard:1983:IBI

Burkhard:1983:IIM

Burkhard:1983:PRI

Burkowski:1984:CHH

Burk:1992:HGP

Burkhard:2005:DHP

Burr:2006:CHS

Burr:2008:NHC

Buttner:1986:UDM

Butin:2017:HBS

REPRESENTATIONS

sp/2017/04/msp2017040037-abs.html.

Belkin:1989:SPT

Breen:1989:HFP

Barreto:2012:HCS

Bazrafshan:2013:IBS

Blackburn:1998:OLP

Baeza-Yates:1989:MSF

REFERENCES

Barnes:2015:PEP

Bao:2012:WBS

Czumaj:2000:CRH

Chen:2007:IHJ

Cain:1984:MAD

Canetti:1997:TRR
Coelkesen:1994:MCV

Challal:2005:HHC

Cercone:1983:SIS

Cercone:1985:ISF

Chang:1987:PAG

Chan:1988:OMP

Chang:1988:OMP
[C.C. Chang and C.H. Chang. An ordered minimal perfect hashing scheme

Chang:1991:NAA

Coburn:2012:NHM

CCCG:1989:CCC

Chang:2009:HTF

Cho:2008:DNX

Cai:2004:PPR

Chen:1991:DMK

Chen:2017:FMT

Chen:1991:HNT

Chen:1991:DMK

Cleary:1984:FCR

John G. Cleary and John J. Darragh. A fast compact representation of trees us-
REFERENCES

Colbourn:2019:DHF

Cheiney:1989:PTC

Cheiney:1990:PST

J. P. Cheiney and C. de Mandreville. A parallel strategy for transitive closure using double hash-based clustering. In McLeod et al. [MSDS90], page 347. ISBN 1-55860-149-X. LCCN ???.

Coron:2005:MDR

Cui:2019:STA

Coffman:1970:FSU

Camurati:1995:CHD

Celis:1986:RHHa

Cercone:1981:PHFa

Cercone:1983:CL

Cercone:1985:AAA

Cercone:1987:FAP

Cercone:1988:FAP
REFERENCES

CODEN AMLEEL. ISSN 0893-9659 (print), 1873-5452 (electronic).

Christodoulakis:1989:FOA

Christodoulakis:1989:RPV

Celis:1992:AHL

Catalano:2018:HSS

Cantone:2019:LES

Cooperman:1994:CPR

Cowan:1979:HKR

Richard M. Cowan and Martin L. Griss. Hashing – the key to rapid pattern matching. In Ng [Ng79], pages
REFERENCES

REFERENCES

Chang:1984:OMP

Chang:1984:SOM
[Cha84c] C. C. Chang. The study of an ordered minimal perfect hashing scheme. *Communications of the Association for Computing Machinery*, 27(4):384–387, April 1984. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). The English translation of Ref. 6 of this paper appears in [Hua82]; that book contains the fundamental prime number functions needed for the ordered minimal perfect hash functions described here.

Chang:1985:SLO

Chang:1986:LOR

Chang:1986:SCO

Chang:1988:APC

Chapman:1991:QSS

Chaudhuri:1994:TBO
References

[Che84a] Wen-Chin Chen. The Design and Analysis of Coalesced Hashing. PhD thesis, Department of Computer Science, Brown University, Providence, RI, USA, November 1984. ?? pp. See also [Che84b].

[Chi93] Andrew Chin. Locality-preserving hashing. In Anonymous [Ano93d], pages 87–98. ISBN ??, LCCN ??. I have been unable to locate this reference in several major libraries, including Dartmoth’s, sigh....

REFERENCES

Camacho:2008:SAC

Camacho:2012:SAC

Chen:2007:TPB

Czech:1992:OAGa

Czech:1992:OAGb

Czech:1997:PH
REFERENCES

Choudhury:2021:HLS

Christodoulakis:1984:ICA

Chen:2018:CHT

Chen:2018:YCE

Chung:1990:BCW

Chung:1991:IEH

Chung:1992:IEH

Chen:1993:AHF

[CIC80a] R. J. Cichelli. On Cichelli’s minimal perfect hash functions method. *Communications of the Association for Computing Machinery*, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the author’s response to the comments in [JO80] about [Cic80b]. See also [Sag85a].

REFERENCES

REFERENCES

REFERENCES

CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Chierichetti:2014:CLF

Chang:1993:RCO

Coetser:2009:REH

CODEN IFCSEN. ISSN 0129-0541 (print), 1793-6373 (electronic).

Cook:1983:STA

REFERENCES

Chang:1985:PAK

Chang:1986:LOM

Chang:1995:CHE

Chang:2005:PHS

Colbourn:2009:LHF

Colbourn:2009:RCP

Clapson:1977:IAT
Philip Clapson. Improving the access time for random access files. Communications of the Association for Computing Machinery, 20(3):127–135, March 1977. CO-
REFERENCES

DEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Chang:1992:OPD

Chang:2006:PHS

Chang:1982:SGC

John G. Cleary. Compact hash tables using bidirec-

Charles:2009:CHF

Cheng:2014:SSM

Click:1995:GCM

Cheng:2014:SSM

Chiu:2017:AAS

Chen:1995:STP

Chen:2012:EDI

Colbourn:2018:ACM

Chen:1998:EHB

Chen:1992:USR

Chen:1995:ASR

[CLYY95] Ming-Syan Chen, Mingling Lo, Philip S. Yu, and Honesty C. Young. Applying segmented right-deep trees to pipelining multiple hash joins. *IEEE Transactions on*
Knowledge and Data Engineering, 7(4):656–??, August 1, 1995. CODEN ITKEEH. ISSN 1041-4347.

J. L. Carter, G. Markowsky, and M. N. Wegman. Class of easily implemented hash functions. IBM Technical
REFERENCES

163

Cheng:2007:DHL

Chang:2008:IIS

Comer:1982:GPA

Cook:1982:LOM

Coburn:1994:ISH

Cohen:1984:MSP

Cohen:1994:ACF
REFERENCES

Cohen:1997:RHF

Cohen:1998:GHS

Coleman:1993:PTI

Coppersmith:1995:ACA

Constantin:2017:SHF
Lucian Constantin. The SHA1 hash function is now completely unsafe: Researchers have achieved the first practical SHA-1 collision, generating two PDF files with the same signature. ComputerWorld, ??(??):??, February 23, 2017. CODEN CMPWAB. ISSN 0010-4841. URL https://www.computerworld.com/article/3173616/the-sha1-hash-function-is-now-completely-unsafe.html.

Coppersmith:1995:ACC
Don Coppersmith, editor. Advances in cryptology, CRYPTO ‘95: 15th Annual International Cryptology Conference, Santa Barbara, Cal-
REFERENCES

Coron:2000:ESF

Coron:2002:SPP

Chaum:1987:ACE

Chaum:1988:ACE

David Chaum and Wyn L. Price, editors. Advances in cryptography — EUROCRYPT ’87: Workshop on the Theory and Application of Cryptographic Techniques, Amster-
Cai:1991:MNH

Cai:1991:LMN

Camion:1991:KHF

Cai:1995:UMD

Charnes:1995:ASH

Claessen:2013:SPN

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). Haskell ’14 conference proceedings.

Chaudhuri:2008:LCF

Chen:2008:IRS

Cromwell:1998:PBD

Collom:2018:FMM

Gerald Collom, Colin Redman, and Robert W. Robey.

Chaum:1983:ACP

Chung:1983:PSR

Celis:2011:BBS

Comer:1982:HBS

Chang:1983:DOM

Chang:1983:PMF

REFERENCES

CODEN PCCCDU. ISSN 0732-6181.

[Chang:1985:DLO]

[Chang:1985:DLM]

[Chang:1986:DOM]

[Chang:1987:PAM]

[Chesarini:1991:DHM]

[Cesarini:1993:SAH]

REFERENCES

Cooper:1993:TTA

Cramer:2002:UHP

Chakrabarti:2015:BPL

Cooperman:1996:NSP

Cormode:2010:ANG

Chiou:2012:IMA
REFERENCES

REFERENCES

[CV08] Chung:2008:TBH

[CW77a] Carter:1977:UCHa

[CW77b] Carter:1977:UCHb

[CW79] Carter:1979:UCH

REFERENCES

[Chang:1993:HON]

[Chen:2009:SHA]

[Chiu:2010:FMH]

[Chandramouli:2019:FFI]
Badrish Chandramouli, Dong Xie, Yinan Li, and Donald Kossmann. FishStore: fast ingestion and indexing of raw data. Proceedings of the VLDB Endowment, 12(12):1922–1925, August 2019. CODEN ????. ISSN 2150-8097.

[Contini:2006:FPK]

[Cobb:1991:SIP]

[Chen:2014:MLC]
REFERENCES

REFERENCES

Dietzfelbinger:1993:OPD

Crescenzo:2012:DFC

Diaz:2013:TLH

Dietzfelbinger:1990:NUC

Dietzfelbinger:1992:HPU

Daemen:1995:HFC

REFERENCES

[Dam94] Ivan B. Damgård. Interactive hashing can simplify zero-knowledge protocol design without computational

Dang:2013:CFI

Datta:1988:IPH

Davison:1973:RSC

Davies:1991:ACE

Day:1970:FTQ

Drechsler:2012:IEH
REFERENCES

10.1007/978-3-642-32808-4_33.

[DCM18] Kaimeng Ding, Shiping Chen, and Fan Meng. A novel perceptual hash algorithm for multispectral im-

[Darragh:1991:BCR]

[DeBonis:2011:CGT]

[Dhawan:2015:AEN]

[Danezis:2007:END]

[Dalal:2005:TWC]

[Dinur:2014:IPA]
deBalbine:1969:CAR

DeSantis:1995:ACE

Debnath:2003:CTA

Deen:1982:IIS

DeSantis:1995:ACE

Devroye:1986:LNB

Devine:1993:DID

Devroye:1999:HSR

REFERENCES

REFERENCES

REFERENCES

and Data Engineering, 1(2): ??, June 1989. CODEN ITKEEH. ISSN 1041-4347. Also published in [ICD87].

Dietzfelbinger:1992:PHF

DeWitt:1990:GDMb

DeWitt:1990:GDMa

Daemen:1993:FDO

Donaldson:1984:CMV

Dietzfelbinger:2001:SMP

[Dietzfelbinger:2008:DIB] Martin Dietzfelbinger, Martin Hühne, and Christoph
REFERENCES

[Dit76]

[Dietzfelbinger:1996:UHW]

[Dietzfelbinger:2007:DSM]

[Dittmer:1976:IEP]
this author [Dit76]. See also comments in [Sav91, Lit91, Pea91].

De:2007:IAS

REFERENCES

[DKO84c] D. J. DeWitt, R. Katz, F. Olken, L. D. Shapiro,
REFERENCES

REFERENCES

[DENIELOU:2006:APS]

[DONG:2012:UAS]

[DINUR:2017:IGA]

[DEREMER:1979:SCS]

[DOLEV:2009:BAU]

[DOLEV:2013:UPH]

[DURAND:2007:SPP]
Duan:2018:EGS

Diby:1990:DDK

Devroye:2003:CHF

Ducournau:2011:PCH

Doukas:2019:HFD

Nikolaos Doukas, Oleksandr P. Markovskyi, and Nikolaos G. Bardis. Hash function design for cloud
REFERENCES

Ducournau:2009:EAO

Devroye:2004:WCR

DeWitt:1992:PSH

Deen:1981:DCD

REFERENCES

[DP08] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and approximate member-
ship (extended abstract).
In Aceto et al. [ADG+08],
pages 385–396. ISBN
3-540-70574-0 (softcover).
LCCN ???. URL http://
www.springerlink.com/
content/r124235788213548/.

Das:2008:DHS

[DPH08] Saumitra M. Das, Himabindu
Pucha, and Y. Charlie Hu.
Distributed hashing for scal-
able multicast in wireless
ad hoc networks. IEEE
Transactions on Parallel and
Distributed Systems, 19(3):
347–362, March 2008. CO-
DEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

Delis:1992:PSC

[DR92] A. Delis and N. Roussopou-
los. Performance and scal-
ability of client-server archi-

tectures. In Proceedings of
the 18th Conference on Very
Large Databases, Vancouver,
page ?? Morgan Kaufmann
Publishers, San Francisco,

DeCanniere:2006:FSC

[DR06] Christophe De Cannière and
Christian Rechberger. Find-
ing SHA-1 characteristics:
General results and applica-
tions. Lecture Notes in CS,
4284:1–20, 2006. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/11935230_1.pdf;
http://link.springer.
com/content/pdf/bfm:978-
3-540-49476-8/1.pdf.

Dietzfelbinger:2009:AST

[DR09] Martin Dietzfelbinger and
Michael Rink. Applications
of a splitting trick. In Al-
bers et al. [AMSM+09], pages
ISBN 3-642-02926-4. ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA267
www.springerlink.com/
content/27w12p275w8njju3/.

Doyoddorj:2011:NSI

[DR11] Munkhbaatar Doyoddorj and
Kyung-Hyune Rhee. A
novel secure image hashing
based on reversible water-
marking for forensic analy-
sis. Lecture Notes in CS,
6908:286–294, 2011. CO-
DEN LNCSD9. ISSN 0302-
9743 (print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-23300-
5_22.

Drescher:2017:BB

[Dre17a] Daniel Drescher. Blockchain
Basics. Apress, Berkeley,
CA, USA, 2017. ISBN 1-
4842-2603-8 (print), 1-4842-
2604-6 (e-book). xv +
255 pp. LCCN HG1710
.D74 2017. URL http://
link.springer.com/book/
REFERENCES

10.1007/978-1-4842-2604-9

[Drescher:2017:HD]

[Drescher:2017:HRW]

[Dodis:2012:HHA]

[DS84a]

[DS84b]

[DS97]

REFERENCES

REFERENCES

[DT87] Unmeshwar Dayal and Irv Traiger, editors. Proceed-
REFERENCES

198

REFERENCES

Dietzfelbinger:2000:ARG

Dietzfelbinger:2003:ARG

Dietzfelbinger:2005:BAD

Dietzfelbinger:2007:BAD

DeSantis:1990:DPS

DeSantis:1991:DPS

Ding:2008:MPH

Ehdaie:2016:HCR
REFERENCES

Esmat:2022:PHB

Elleithy:1991:VIS

Ecker:1974:BRG

Ecker:1974:PSQ

Enbody:1988:DHS

Ege:1986:DIG

Epstein:2012:AEA

Eiras-Franco:2020:FDN

Essex:2012:HTE

Elghamrawy:2017:PFC

Ehrig:1980:AIA

Engelmann:1993:SBC

Elder:1984:CDP

Ellzey:1982:DSC

Ellis:1983:EHC

Ellis:1985:CLH

Ellis:1985:DDS

Ellis:1987:CLH

Ellis:1988:CEH

Erlingsson:2007:CPA

Englert:1994:NSS

Etelz:1999:SHF

Er:1986:UTI

Ershov:1958:PPB

Ershov:1958:PAO

Estebanez:2014:PMC

Eugenides:1990:ESM

Estan:2006:BAC

Cristian Estan, George Varghese, and Michael Fisk. Bitmap algorithms for counting active flows on high-speed
REFERENCES

[Fal86] Christos Faloutsos. Multiattribute hashing using Gray codes. SIGMOD Record (ACM Special Interest Group
REFERENCES

REFERENCES

REFERENCES

Feigenbaum:1991:ACC

Feller:1950:IPT

Felician:1987:LHI

Feldman:1988:DSM

Forman:2009:EDL

Franco:1990:TFL

Fleischmann:2009:TFS

Fleischmann:2010:TFS

REFERENCES

Freire:2007:BHB

Figueini:1984:ACH

Farashahi:2013:IDH

Fisteus:2010:HCN

Files:1969:IRS

Fortune:1979:NRN

DEN IFPLAT. ISSN 0020-0190 (print), 1872-6119 (electronic).

[FHCD92a]
Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[FHCD92b]
Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud. Practical minimal perfect hash functions for large databases. *Communications of the Association for Computing Machinery*, 35(1):105–121, January 1992. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). URL http://www.acm.org/pubs/toc/Abstracts/0001-0782/129623.html. This is the first published algorithm for computing minimal perfect hash functions for lists of millions of words; previous algorithms were computationally infeasible for more than a few hundred words.

[FHC89]
Fan:2019:DSP

Frieder:1985:LSP

Filiol:2002:NST

FISHER:1987:FMP

FIPS:1993:SHS

FIPS:2002:KHM

FIPS:2002:SHS

REFERENCES

Field:2013:UCT

FJ13

Fredman:1984:SST

FK84

Fu:1989:CCN

FK89

Fujiwara:2021:FAA

FKI+21

Fredman:1984:SSS

Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with $O(1)$ worst case access time. *Journal of the Association for Computing Machinery*, 31(3):538–544, July 1984. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic). Extends the work of Tarjan and Yao [TY79], using a two-level data structure, the first containing pointers to the second, and the second containing blocks accessible by a perfect hashing function.

FKS84

Feldman:1973:CBS

FL73
Fan:2004:DBS

Fischlin:2008:MPP

Flajolet:1981:PEE

Flajolet:1983:PEE

Flajolet:1983:PC

Fernandez:2011:HWS

Flores:1977:DSM

Floyd:1987:HHP
REFERENCES

Fischlin:2008:RMP

Fischlin:2014:RMP

Ferguson:2010:SHF

Flynn:1992:ORU

Flajolet:1985:PCA

Faloutsos:1989:DUE

R. J. Fateman and C. G. Ponder. Speed and data structures in computer algebra systems. *SIGSAM
REFERENCES

[Feldman:1969:ABA]

Franklin:2004:ACC

[Freiberg:2011:LHB]

Freeman:1990:ICP

Friemel:1986:DM

Discusses the dynamic hashing scheme used by ASDAS, under development at Strathclyde University.

[Fortnow:2008:IIC] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and

Fiat:2009:AEA

Farashahi:2009:HEC

Fouque:2012:IHB

Fuerer:1988:UHV

Fusco:2012:RTC

Friedman:1976:GCH

Friedman:1977:EGC

[FW77] Daniel P. Friedman and David S. Wise. Erre-
REFERENCES

Fang:2017:OHT

Folk:1987:FSC

Gil:1996:TMH

 REFERENCES

Gonnet:1991:HAD

Guh:1990:PPS

Graefe:1995:FAU

Gollapalli:2015:IRH

Gerber:1987:IHS

Girdzijauskas:2010:SOH

[Šarūnas Girdzijauskas, Anwitaman Datta, and Karl Aberer. Structured overlay for heterogeneous envi-

Thomas Gettys. Algorithm alley: Generating perfect

Groner:1974:CHF

Gunji:1980:SHC

Garg:1986:OPK

Griswold:1986:IIP

Gavrila:1992:ORI

Ganguly:2004:TSE

Gao:2019:ERB

Y. Gao, X. Gao, X. Yang, J. Liu, and G. Chen. An efficient ring-based metadata management policy for

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. In Atkinson

Grassl:2011:CTZ

Girault:1987:HFU

Gebhardt:2005:NPV

Goldwasser:2002:DSN

Graham:1979:HST

Goto:1976:HLT

E. Goto and Y. Kanada. Hashing lemmas on time complexities with applica-
REFERENCES

Greene:1981:MAA

Greene:1982:MAA

Grewe:1994:ILM

Grewe:1995:ILM

Garcia:2005:HJA

Gueron:2008:VNF

Gauravaram:2012:SAR

Gueron:2012:PMS

Gauravaram:2010:HFU

Graham:1989:CM

Ghosh:1973:ACW

Gonnet:1982:EHL

Gonnet:1988:EHL

Gennaro:2006:FPB

Gubner:2021:OCH

Gong:2008:SIA

Grembowski:2002:CAH

Garcia:2011:CPH

Goodman:2011:SHS

Gong:2017:TMR

Wei Gong, Jiangchuan Liu, Kebin Liu, and Yunhao Liu. Toward more rigorous and practical cardinality estimation for large-scale RFID sys-

Rehak:2008:IAD

Graefe:1991:SVH

Graefe:1994:SVH

Gonnet:1977:AIH

G. Gonnet and I. Munro. The analysis of an improved hashing technique. In ACM-TOC’77 [ACM77b], pages 113–121.

Gil:1991:FHP

Gil:1994:SFP

Gil:1998:SFP

REFERENCES

Ghaffari:2018:MSV

Garcia-Molina:1990:ASI

Gardarin:1995:OFE

Gil:1990:AKC

Gall:1980:SIA

Gutmann:2005:WHC

Gauravaram:2007:USC
REFERENCES

Gonnet:1977:ALB

Gonnet:1980:OAH

Gonnet:1981:ELL

Gonnet:1983:UDB

Gonnet:1984:HAD

Gong:1995:CKH

Goto:1983:RSS

Gollapudi:2008:PTM

P. M. D. Gray. Implement-

García-Retuerta:2019:CTV

Grech:2011:JGE

Gregg:1995:HFT

X. Gregg. Hashing Forth: It’s a topic discussed so nonchalantly that neophytes hesitate to ask how it works. Forth Dimensions, 17(4):13–??, 1995. CODEN FODMD5. ISSN 0884-0822. [Gre95]

Grimson:1974:PSS

J. B. Grimson. A performance study of some directory structures for large data files. Information Storage and Retrieval, 10(11):??, 1974. [Gri74]

Griss:1977:EEE

Griss:1979:HKR

Green:2021:HSH

Griebel:1998:ASG

REFERENCES

Grosshans:1986:FSD

Gopal:1993:CCH

Guibas:1976:ADH

Guibas:1978:ADH

Gori:1989:AAC

Girault:1994:LCH

Gupta:1994:RSD

Goi:2001:IHF

Goto:1982:DLM

Gope:2017:ASS

Galli:2001:THO

Ganguly:1990:FPP

Gupta:1998:PTF

Greniewski:1963:ELK

M. Greniewski and W. Turski. The external language KLIPA for the URAL-2 digital computer. *Communications of the Association for Computing Machinery*, 6(6):322–324, June 1963. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (elec-
REFERENCES

tronic). Early work on derivation of hash functions.

Leo J. Guibas. The analysis of hashing algorithms that exhibit k-ary clustering. In *IEEE-FOCS’76* [IEE76], pages 183–196.

[GYW+19] Y. Guo, X. Yuan, X. Wang, C. Wang, B. Li, and X. Jia. Enabling encrypted rich queries in distributed key-value stores. *IEEE Transactions on Parallel and Dis-
REFERENCES

John Hamer. Hashing revisited. *SIGCSE Bulletin (ACM Special Interest Group on Computer Sci-

Harbi:2016:ASQ

Harbi:2015:ESQ

Halunen:2012:MGB

Hamer:2002:HR

Hanson:1990:PMAa

Han:2017:CPW

Harbron:1988:FSS

Harari:1997:HHF

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

Healy:2014:AKM

Hart:1995:SHC

Hasan:2006:CSE

Hanson:1990:PMAb

Hernandez-Castro:2012:AFH

Hu:2021:PMH

Hsiao:1994:PEM

Hsiao:1997:PEH

Hanna:2009:CEE

Hanna:2011:AHS

He:1987:PAS

Guo He. *Pipelined Array Sys-

Healey:1972:CEP

Headrick:1982:HRS

Hejlsberg:1989:COT

Hekmatpour:1989:LPI

Heller:1989:EH

Heller:1991:MHY

Helleseth:1994:ACE

Herbert:2007:WHP

REFERENCES

Heuer:1987:WRD

Herrin:1991:ADF

Hull:2013:SPC

Huang:2017:QAL

Huang:2015:QAL

Hikita:1977:AFP

Lai:2009:CCD
REFERENCES

Hendricks:2007:LOB

Hester:1985:SOL

Harn:2010:ELL

Haitner:2010:UOW

Hill:1978:CSVa

Hill:1978:CSVb

Hildebrandt:1982:VBD

zu Braunschweig, Braunschweig, Germany, 1982. ?? pp.

REFERENCES

DEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

Hagerup:1995:FPP

Halevi:2012:SPH

Hofheinz:2012:PHP

Hong:2010:PAR

Hong:2013:HOE

Hao:2004:ARF

REFERENCES

org/cgi/content/abstract/53/7/918; http://comjnl.oxfordjournals.org/cgi/reprint/53/7/918.

REFERENCES

Very Large Data Bases, 12 (3):244–261, October 2003. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

Halperin:2008:AEA

Hanaoka:2012:ICE

Hwang:2019:BBR

Ha:2007:SAE

Hagerup:2001:DD

Havas:1994:GHH

G. Havas, B. S. Majewski, N. C. Wormald, and Z. J. Czech. Graphs, hypergraphs and hashing. In van Leeuwen [vL94], pages 153–165. CO-
REFERENCES

Hassanzadeh-Nazarabadi:2020:DUL

Hiraki:1984:EAM

Hashida:1972:LAC

Holub:1987:NHE

Holden:2013:GHF

Hopgood:1968:xxx

Hopgood:1968:STO

Hanan:1963:ACT

M. Hanan and F. P. Palermo. An application of coding theory to a file address problem. IBM Journal of Research and Development, 7
REFERENCES

Halatsis:1978:PHT

Han:2002:CMV

Harris:1993:ODM

Harris:1996:JAC

Hsiao:2004:FCP

REFERENCES

Haitner:2007:SHC

Haitner:2014:NIH

Hulsing:2013:OPX

Hulsing:2016:MMT

Horowitz:1978:FCA

Horowitz:1984:FDS

Hoch:2008:SCH
Jonathan J. Hoch and Adi Shamir. On the strength of the concatenated hash combiner when all the hash functions are weak. Lecture Notes in CS, 5126:
REFERENCES

REFERENCES

10.1007/978-3-540-69812-8_61.

Hua:1982:INT

Huang:1985:MEH

Hughes:1985:LMF

Huisman:1990:SEM

Hulsing:2013:WOS

Hong:1988:IMB

He:2008:FED

He:2018:MBF

Huang:2013:FDH

Hohl:1994:SIH

Hadjieleftheriou:2008:HSS

Hsieh:1999:OWH

T.-M. Hsieh, Y.-S. Yeh, C.-H. Lin, and S.-H. Tuan. One-way hash functions with

IEEE:1988:PFI

IEEE:1990:PSI

IEEE:1993:ICD

IEEE:1991:PSI

IEEE:1969:ASS

[IEE74] IEEE, editor. 15th Annual Symposium on Switching and Automata Theory, October 14–16, 1974, the University of New Orleans. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1974.

IEEE:1976:ASF

IEEE:1980:PCI

[IEE80a] Proceedings 4, COMPSAC 80, the IEEE Computer Society’s Fourth International Computer Software and Ap-
REFERENCES

267

IEEE:1980:ASF

IEEE:1982:SFC

IEEE:1984:ISL

IEEE:1985:FOC

IEEE:1985:PFD

IEEE:1988:DPI

IEEE:1988:SIC

IEEE:1988:ASF

IEEE:1988:ICP

IEEE:1989:ASF

IEEE:1990:PSN

IEEE:1991:PSA

IEEE:1991:PAS

IEEE:1992:PII

IEEE:1992:PAS

IEEE:1993:PSP

IEEE:1994:DEI

IEEE:1999:ASF

IEEE:2001:PII

REFERENCES

IEEE:2002:STI

IEEE:2005:PAI

IEEE:2010:PIA

[IH95]

[IJW89]

[IKO05]
REFERENCES

Ishai:2008:CCC

Ivanov:1990:HSO

Indyk:1997:LPH

Indyk:2001:SAM

Indyk:2013:SHH
REFERENCES

REFERENCES

Ishikawa:1993:MLI

ISO:1997:ITS

ISO:2004:IIIb

Itoh:1993:SCF

Ideguchi:2014:IDC

 REFERENCES

 [Jac92]

 [Jae81]
 G. Jaeschke. Reciprocal hashing: a method for generating minimal perfect hashing functions. Communications of the Association for Computing Machinery, 24(12):829–833, December 1981. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Hash functions, for a key x in a set S of positive integers, of the form \(h(x) = (C/(Dx+E)) \mod N \) are considered. Though the existence of h is guaranteed, the scheme suffers from many practical problems because of exhaustive nature of the search for h.

 [Jag91]

 [Jai89]

 [Jai92a]

 [Jai92b]

 [Jaixx]
pp. URL jain%erlang.dec@ decwrl.dec.com.

Jia:2019:ETS [JDW+19] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nezihe Merve Gurel, Bo Li,
Ce Zhang, Costas Spanos,
and Dawn Song. Efficient
task-specific data valuation
for nearest neighbor algo-
rithms. *Proceedings of the
VLDB Endowment*, 12(11):
1610–1623, July 2019. CO-
DEN ???. ISSN 2150-8097.

Jenks:1976:SPA
Richard D. Jenks, editor.
*Symspac ’76: proceedings of
the 1976 ACM Symposium
on Symbolic and Algebraic
Computation*, August 10-
12, 1976, Yorktown Heights,
New York. ACM Press, New
York, NY 10036, USA, 1976.

Jenkins:1997:AAH
Bob Jenkins. Algorithm al-
ley: Hash functions. *Dr.
Dobbs Journal*, 22(9):107–
109, 115–116, September
1997. CODEN DDJOEB.
ISSN 1044-789X. Describes
a new hash function which
is much better at produc-
ing uniform key distributions
than others commonly used,
yet remains acceptably fast.
See [Boy98] for comparison
with a related algorithm.

Janzadeh:2009:SCB
Hamed Janzadeh, Kaveh
Fayazbakhsh, Mehdi De-
hghan, and Mehran S. Fal-
lah. A secure credit-based co-
operation stimulating mecha-
nism for MANETs using hash
chains. *Future Generation
Computer Systems*, 25(8):
CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

A. Joux and L. Granboulan.
A practical attack against
knapsack based hash func-
tions. In De Santis [De 95],
pages 58–66. ISBN 3-
540-60176-7. ISSN 0302-
9743 (print), 1611-3349 (elec-
tronic). LCCN QA76.9.A25

Jha:2015:IMM
Saurabh Jha, Bingsheng He,
Mian Lu, Xuntao Cheng, and
Huynh Phung Huynh. Im-
proving main memory hash
joins on Intel Xeon Phi
processors: an experimental
approach. *Proceedings of
the VLDB Endowment*, 8(6):
642–653, February 2015. CO-
DEN ???. ISSN 2150-8097.

Jung:2011:SHB
Hyunhee Jung and Hyun Sung
Kim. Secure hash-based
password authentication pro-
tocol using Smartcards. *Lec-
ture Notes in CS*, 6786:
593–606, 2011. CODEN
LNCSD9. ISSN 0302-9743
(print), 1611-3349 (elec-
springer.com/content/pdf/
10.1007/978-3-642-21934-
4_48.
Jeong:2014:ITP

Jeong:2008:PBH

Jin:2020:HAH

Jovanov:2002:ANO

Jean:2014:ICA

Jaeschke:1980:CMP

G. Jaeschke and G. Osterburg. On Cichelli’s minimal perfect hash functions method. Communications of the Association for Computing Machinery, 23(12):728–729, December 1980. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This letter to the editor contains comments on [Cic80b], together with a re-
sponse from R. J. Cichelli [Cic80a].

Johnson:1961:ICM

Johansson:1997:BHS

Jouannaud:1985:FPL

Joux:2004:MIH

Joye:2003:TCC

Jutla:2007:PGC

Jensen:2008:OEM

Jenson:2007:SAP

Jin:2009:SMB

Jung:1987:IRC

Jacobs:1986:TRT

Janson:2016:UAL

Jia:2018:PPH

REFERENCES

1732 (print), 1937-4143 (electronic).

REFERENCES

Khanal:2022:UBI

Kawagoe:1985:MDH

Kawamoto:2015:LSH

Kanj:2018:SNN

Krause:1981:PHF

Max Krause, Nick Cercone, and John Boates. Perfect hash function search with application to natural language systems. Technical Report CMPT TR 81-6, Simon Fraser University, 1981. ?? pp. (email library@cs.sfu.ca).

Ku:2005:WYR

Kirk:1984:CMI

M. Kirk, R. J. Chignell, and J. Finnie. Computer model to indentify incompatibilities between the FM sound broadcasting and aero-

Ku:2003:WLL

Kim:2011:SSE

Koushik:1992:LDH

Knott:1989:HTC

Keller:1993:HRP

Keller:1996:FRP

Kennedy:1973:RSU

Kerr:1975:PIC

REFERENCES

Kocberber:2015:AMA

Kak:1995:ILM

Kaushik:2012:MGH

Kralevska:2018:HEC

Karplus:1984:FMP

Khan:1995:PDH

Kuo:1989:DSF

Kiessling:1985:DFU

Kilz:2001:PPS

Kilian:2005:TCS

Kim:1980:QOR

Kim:1999:NSP

Kim:2011:EHB

Kim:2017:MES

Kojima:1985:HFO

Khan:1996:PCI

Kelsey:2006:HHF

Kakvi:2012:OSP

Kakvi:2018:OSP

Kim:2012:SSL

Seahoon Kim, Yoonseop Kang, and Seungjin Choi. Sequential spectral learning
Kim:2009:SVH

Lioma:2008:AHT

Kaski:2012:HHS

Kim:1992:DSN

Kabiljo:2017:SHP

Kim:2007:EIK

Mooseop Kim, Youngse Kim, Jaecheol Ryou, and Sungik Jun. Efficient implementation of the keyed-hash message authentication code based on SHA-1 algorithm.

Kurosawa:1991:CFH

Kemper:1999:GHT

Kim:1987:ESJ

Knudsen:1995:NAA

Katajainen:1996:EUH

[Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. DIKU Report 96/8, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, 1996.]

Kencl:2008:ALS

Katz:2015:IMC

[Jonathan Katz and Yehuda Lindell. *Introduction to mod-

Karp:1993:Eps

Karger:1997:Chr

Karp:1996:EPS

Knudsen:1998:afd

Kompella:2012:RSF

REFERENCES

[King:2007:CRP]

[KLSY07]

[KM88a]

[Korner:1988:NBP]

[KM88b]

[Korner:1988:RAC]

[KM86]

[KMC86]

[KM92]

[Kato:1992:PCI]

[KM07]
A. Kirsch and M. Mitzenmacher. Using a queue to de-amortize cuckoo hashing in hardware. In ??, editor, *Proceedings of the 45th
REFERENCES

Adam Kirsch, Michael Mitzenmacher, and Udi Wieder.

http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/267.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/268.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/269.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/270.tif;
http://www3.oup.co.uk/computer_journal/hdb/Volume_18/Issue_03/tiff/271.tif;

Section 3, “A history of hashing schemes”, and the lengthy bibliography, are recommended and useful resources.

REFERENCES

Knuth:1975:ACP

Knuth:1977:DPR

Knudsen:1992:CL

Knuth:1998:LPG

Knudsen:2019:LHA

Kitsuregawa:1990:BSP

M. Kitsuregawa and Y. Ogawa. Bucket spreading parallel hash: a new, robust, parallel hash join method for skew in the super database computer...
REFERENCES

(SDC). In McLeod et al. [MSDS90], page 210. ISBN 1-55860-149-X. LCCN ???.

Kh. I. Kilov and I. A. Popova. Data metabase architecture for relational DBMS. Programming and
Computer Software; translation of Progammirovanie, (Moscow, USSR) Plenum, 7 (1):??, February 1981. CODEN PCSODA. ISSN 0361-7688 (print), 1608-3261 (electronic).

Kedem:1992:OPA

Krichevskii:1994:CSE

Knudsen:1996:HFB

Katzenelson:1992:TMT

Kohonen:1979:VFA

REFERENCES

[**Karp:1981:ERP**]

[**Kelley:1986:IMK**]

[**Kelley:1986:IME**]

[**Kelley:1988:MEH**]

[**Keller:1991:APH**]

[**Krovetz:2001:FUH**]

[**Krovetz:2006:VUH**]

Kim:2009:CIS

Kwon:2009:FXD

Kohonen:1984:ORS

Knudsen:2007:GFH

Kruse:1984:DSP

Kriegel:1986:EMD

Kriegel:1987:MDH

H. P. Kriegel and B. Seeger. Multidimensional dynamic hashing is very efficient for nonuniform record distributions. In ICDE’87 [ICD87],
REFERENCES

Sebastian Kniesburges and Christian Scheideler. Brief

Kölbl:2020:TTC

Kitsuregawa:1983:AHD

Kitsuregawa:1983:GRA

Kitsuregawa:1983:RAM

Kitsuregawa:1992:PGH

Karlin:1986:PHE

Karlin:1988:PHE

Ku:2004:HBS

Kuespert:1982:MLHa

Kuespert:1982:MLHb

Kuespert:1983:VZO

Kuespert:1984:USO

Kuespert:1984:EED

Kuich:1992:ALP

Kulkarni:1984:CHF

Kumar:1989:CCM

Kumar:1989:CCE

Kumar:1990:COE

Kutzelnigg:2006:BRG

Kutzelnigg:2010:IVC

Kenyon:1991:MQS

Katz:2009:SPH

Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authenticated key exchange from lattices. Lec-
Kortelainen:2012:GIH

Kroll:1994:DST

Klassen:2012:ITB

Kaps:2005:ESU

Kjellberg:1984:CH

Koslicki:2019:IMC

[Lai:1992:DSB] Xuejia Lai. *On the design and security of block ciphers.* Hartung-Gorre Verlag, Konstanz, Switzerland, 1992. ISBN 3-89191-573-X. xii + 108 pp. LCCN ??? This is the author's Ph.D. dissertation. “Secret-key block ciphers are the subject of this work. The design and security of block ciphers, together with their application in hashing techniques, are considered. In particular, iterated block ciphers that are based on iterating a weak round function several times are considered. Four basic constructions for the round function of an iterated cipher are studied.”.

[Lar83] Per-Åke Larson. Analysis of uniform hashing. *Journal*
Larson:1984:AHC

Larson:1985:HFS

Larson:1985:LHO

Larson:1988:LHS

Larson:1988:DHT

Larson:19xx:LHP

[LC88] Ted G. Lewis and Curtis R. Cook. Hashing for dynamic and static internal tables. Computer, 21(10):45–57 (or 45–56??), October 1988. CODEN CPTRB4. ISSN 0018-9162 (print), 1558-0814 (electronic). The authors survey the classical hashing function approach to information retrieval and show how general hashing techniques exchange speed for memory. It is a tutorial paper that covers, among other topics, dynamic and static hash tables, perfect hashing, and minimal perfect hashing.

[LC95] Mark Lomas and Bruce Christianson. Remote booting in a hostile world: to whom am I speaking? (computer security). Computer,
REFERENCES

745–756, May 2014. CODEN ???? ISSN 2150-8097.

REFERENCES

Lee:2012:OFL

Lieuwen:1992:PBJ

Luo:2002:SHR
Gang Luo, Curt J. Ellmann, Peter J. Haas, and Jeffrey F. Naughton. A scalable hash ripple join algorithm. In Franklin et al. [FMA02], pages 252–262. ISBN ???. LCCN ???. ACM order number 475020.

Leppanen:1998:BPS

Lesk:1988:GII
Levy:1989:LPT

Levelt:1995:IPI

Lever:2000:LKH

Lewis:1982:SEA

Laborde:2017:WFH

ACM:1982:CRA

Louis-Gavet:1978:DAI

Guy Louis-Gavet. Diverses applications issues d’une fonction f de compactage basée sur une étude mathématique du langage naturel (compactage de données, comparaison de textes, hash-coding). [various applications issued from a compression function f based on a mathematical study of the natural language (data compression,
comparison of texts, hashing).

Lamiroi:1996:ROI

Li:2013:NCD

Luo:2003:COA

Luo:2003:CDO

Luo:2004:IEH

Lefebvre:2006:PSH

Liu:2020:EIH

Lin:2005:GPW

[LHC05] Iuon-Chang Lin, Min-Shiang Hwang, and Chin-Chen Chang. The general payword: a micro-payment

Lu:2020:DSH

Lu:2021:SDH

Litvinov:1980:GHP

Li:1995:CKH

Li:2010:PAP

Li:2015:RDS

Liang:1995:PHF

S. Liang. A perfect hashing function for exact diagonalization of many-body systems of identical particles. Computer Physics

Lien:1981:AIC

Luhandjula:1992:FSI

Lin:1953:xxx

A. D. Lin. ??? The year is uncertain (???). Extends [Luh53] with an alternative overflow handling technique using “degenerative addresses” [Knu73, p. 541]., 1953.

Lin:1963:KAR

Lindner:1996:DSH

Lipmaa:2002:OHT

Liskov:2007:CIH

Litwin:1977:ASD

Litwin:1977:MDP

Litwin:1978:VHD

Litwin:1979:HVN

Litwin:1979:LVH

Litwin:1980:LHN

Litwin:1981:TH

Litwin:1984:DAM

Litwin:1985:THF

Litvinov:1989:HSO

References

Lee:2004:CUA

Louchard:1983:PTC

Lodi:1985:SSH

Litwin:1986:BDA

Litwin:1987:NMF

Leng:1992:OWA

Lenzerini:2008:PTS

REFERENCES

Lee:2013:SQB

Lowden:2015:DPA

Leung:1989:LPA

Li:2018:SBI

Luo:2012:IDE

Liu:2017:TQC

Lee:2002:RUA

Cheng-Chi Lee, Li-Hua Li, and Min-Shiang Hwang. A remote user authentication scheme using hash functions. *Operating Systems Review,*
Luo:2015:ADL

Lim:2009:SPE

Lin:2011:HAB

Li:2016:FSA

Lin:2017:PHB

Lloyd:1981:IC1
J. W. Lloyd. Implementing clause indexing in deductive database systems. Technical
REFERENCES

Report 81/4, Dept. of Computer Science, University of Melbourne, Australia, 1981. ?? pp.

Liu:2021:DHB

Liu:2010:MPI

Liang:2010:LVB

Lueker:1988:MAD

Lai:1993:HFBa

Lai:1993:HFBb

Lueker:1993:MAD

Leighton:1995:LPF

F. T. Leighton and S. Micali. Large provably fast

Lee:2007:FDF

LMC07

Li:2012:SPS

LMD+12

[Liu:2014:MIK

LMLC14

Lee:2007:PSK

LMJC07

Luykx:2015:TPB

LMPW15
Lynch:2002:ADA

Lin:1989:PIB

Legtchenko:2009:CRR

Legtchenko:2012:RCR

Lipton:1993:CAH

Liu:2008:GBK

Litwin:1993:LLH

Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. LH* — linear hashing for distributed files.

Lomet:1993:FDO

Lin:2001:EHM
Shu Lin, M. Tamer Özsu,

Liang:2000:OMD

Li:2012:OPH

Leung:2004:LPD

Lin:2015:CRN

Landelle:2016:CFR

Luccio:1991:APU

Luccio:1992:AIP

Leifer:2003:GAS

Li:2012:WHT

Long:2006:GCA

Li:2018:LLP

REFERENCES

Linial:1996:NEH

Liu:2006:ECS

Lohman:1991:VLD

[Guy M. Lohman, Amâílcar Sernadas, and Rafael Camps, editors. Very Large Data Bases Proceedings: Proceedings of the Seventeenth Inter-

Litwin:1989:CTH

Luo:2021:NMH

Lochovsky:1980:SIC

[LT80] Frederick H. Lochovsky and ?. Taylor, editors. Sixth International Conference on Very Large Data Bases: reprinted from Very large data bases. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1980. ACM order no. 471800. IEEE catalog no. 80CH1534-7C. Long Beach order no. 322.

Lipski:1985:PFD

Lehmann:2009:MDH

Larangeira:2012:RCN

Lu:1990:HBJ

Lu:1992:WIL

Luhn:1953:xxx

Hans Peter Luhn. ??? Internal IBM memo that first suggested the idea of hashing, and one of the first applications of linked linear lists. Luhn is also the inventor of KWIC indexing, in 1960 [Knu73, p. 437]. See also [Lin53], January 1953.

Luhn:1958:BIS

Lum:1972:WIL

Lutterbach:1988:NSD

Li:2011:EDH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Mac95] Enrico Macii. The effect of clustering on the per-

Maddison:1980:FLH

Mairson:1983:PCS

Mairson:1992:ETE

Michail:2012:EHT

Mallach:1977:SST

Mandelbrod:2012:LHA

Martin:1964:HCF

REFERENCES

70 and MAC-M-165, Massachusetts Institute of Technology, A. I. Lab., Cambridge, Massachusetts, June 1964. ?? pp.

Martin:1971:DEA

Martin:1975:CDB

Martin:1977:CDB

Matias:1993:HPR

Mathieu:2009:PTA

Maurer:1968:PTI

Maurer:1983:IHC

Martini:2003:DHM

Paul M. Martini and Walter A. Burkhard. Double

Marton:2012:OCC

Manegold:2000:ODA

Mazeika:2007:ESA

Munro:1986:TCR

McMillan:1989:RRU

McCarney:1979:LLH

REFERENCES

[McN03] Tom McNichol. How two math geeks with a lava

Meijer:1995:HFB

Mekouar:1983:EPD

Miranda:2014:RSE

Mendelson:1982:AEH

Mennink:2012:OCS

Mennink:2017:OCS

Mergenthaler:1972:HCT

Merkle:1990:FSO

DEN JOCREQ. ISSN 0933-2790 (print), 1432-1378 (electronic).

Merkle:1990:OWH

MeyerAufDerHeide:1993:HSS

Mor:1982:HCM

Manolopoulos:1992:AHF

Munoz:2004:CRS

Mueller:2006:SMG

REFERENCES

[MH00] H. Mochizuki and Y. Hayashi:

[MI84] M. Machii and Y. Igarashi.

[MI85] L. L. Miller.
REFERENCES

Miller:1987:STS

Miller:1995:RAC

Miltersen:1998:ECC

Miltersen:1999:CPC

Miyaguchi:1989:NHF

Mironov:2001:HFM

Mirrokni:2017:OOM

Mitra:1973:SHP
[Mit73] Debasis Mitra. Solution to the hashing problem for

Mitzenmacher:2002:GHT

Mitzenmacher:2009:SOQ

Mittelbach:2012:HCS

Mitzenmacher:2017:BBH

Mathew:2008:JBH

Muthusamy:2014:IFC

REFERENCES

Myllymaki:1995:DTJ

Martin:19xx:ETJ

Ma:2015:TDH

Ma:2017:NDC

Martinez:2007:OXH

Madria:2001:FCC

REFERENCES

0169-023X (print), 1872-6933 (electronic).

Tal Moran, Moni Naor, and Gil Segev. Deterministic history-independent strate-

Mendel:2012:CAR

Mansour:1990:CCU

Mansour:1993:CCU

Matsumoto:1981:NCM

Monien:1992:DSE

REFERENCES

Moto-oka:1992:FGC

Mohan:1990:ACC

Mohan:1993:ACC

Miyaguchi:1990:CSH

Miyaguchi:1991:CSH

Molodowitch:1990:ADAa

REFERENCES

[MP90] Samuel P. Midkiff and David A. Padua. Issues in the compile-time optimization of parallel programs. Techni-
REFERENCES

Mennink:2012:HFB

Mennink:2016:EPH

Mendez:2007:CTH

Malensek:2014:EGG

Moody:2016:ISF

Mendon:2007:CTH
MedeirosDuarte:2019:CPC

Mendel:2010:RAR

Mitchell:1989:RHF

Mikkilineni:1988:ERJ

Murthy:1988:SSC

Malard:2002:DDH

Montuschi:2005:PIS

REFERENCES

[MSDS90] Dennis McLeod, Ron Sacks-Davis, and Hans Schek, editors. Very Large Data Bases: 16th International Conference on Very Large Data Bases, August 13–16, 1990,
REFERENCES

Malhotra:1996:SED

Mouha:2012:CIR

MeyeraufderHeide:1996:ESR

Maitin-Shepard:2017:ECM

Morrison:1987:QAH

Maier:2019:DSE

Tobias Maier, Peter Sanders, and Stefan Walzer. Dynamic space efficient hashing. *Algorithmica*, 81(8):
REFERENCES

3162–3185, August 2019. CODEN ALGOEJ. ISSN 0178-4617 (print), 1432-0541 (electronic).

REFERENCES

[MV91a] Yossi Matias and Uzi Vishkin. Converting high probability

Gal Mendelson, Shay Vargaftik, Katherine Barabash, Dean H. Lorenz, Isaac Keslassy, and Ariel Orda.

Martirosyan:2008:ECP

Mittermeir:1995:AVS

Matsushita:2009:PCH

Mu:2012:ALS

Majewski:1992:FGM

Majewski:1996:FPH

This paper claims the discovery of order-preserving perfect hashing methods that run in linear time.

Ma:2012:HPO

Mendelson:1979:PMO

Mendelson:1980:NAA

Mimaroglu:2012:ADC

Ma:2018:GEG

Mihaljevic:1998:CAB

Miodrag Mihaljevic, Yuliang Zheng, and Hideki Imai. A cellular automaton based

REFERENCES

REFERENCES

Niemeyer:1975:DV

Nilli:1994:PHP

NIST:1993:FPS

NIST:2015:SSP

Nielsen:2016:SLF

Nakayama:1988:HPJ

Nakajima:2002:PAP

Newhall:2002:CPC

Tia Newhall and Lisa Meeeden. A comprehensive
REFERENCES

Nakaike:2010:LER

Nazir:2022:DIE

Nanevski:2008:YDT

Ntantogian:2019:EPH

Naor:1990:SPS

Narita:2012:LJH

Kazuyo Narita, Shinji Nakadai, and Takuya Araki. Landmark-Join: Hash-join based string
REFERENCES

Noltemeier:1982:1

Noltemeier:1982:IIIE

Negri:1991:DJN

Nevelsteen:1999:SPU

Nguyen:2012:SOU

Newman:1990:PHG

Nielsen:1982:ALP

REFERENCES

Nguyen:2012:LRS

[NTY12] [NY85]

Nie:2013:CHB

Norton:1985:PMO

Naor:1989:UOW

Naor:1989:UOH

Nyberg:1996:FAH

Ouksel:1989:CML

Oaks:1998:BSH

Olagunju:1994:DPH

Olagunju:1994:ILS

Ordonez:2014:BVS

Anonymous:1989:DQO

REFERENCES

Oberschelp:1980:IID

Okamoto:1988:DMS

Omicinski:1989:HBI

Omiecinski:1991:AHJ

Omiecinski:1992:AHJ

Ollmert:1989:DD

Olsen:1969:RRF

Omicinski:1988:CSS

REFERENCES

Omiecinski:1989:CFC

Omiecinski:1989:HJP

Omiecinski:1991:PAL

Omar:2017:DHS

Odaira:2010:ERT

Ostlin:2003:UHC

Orenstein:1983:DHF

[Ore83] Jack A. Orenstein. A dynamic hash file for random and sequential accessing. In Schkolnick and
REFERENCES

Thanos [ST83a], pages 132–141. CODEN VLDBDP.

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otoo:1988:LDG</td>
<td>Ekow J. Otoo. Linearizing the directory growth in order preserving extendible hashing. In ICDE’88 [ICD88],</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

[Pan05] Rina Panigrahy. Efficient hashing with lookups in

Papadopoulos:1994:NHA

This is a plagiarized article. See http://www.sics.se/europar95/plagiarism.html for details. The original work from which the material in this paper was stolen is due to Thomas J. Sheffler and Randal E. Bryant, CMU report MCU-CS-92-172.

Park:2018:OTP

Palma:2008:EPC

Paterson:1990:ALP

Patarin:1994:HFA

Patarin:1995:CID

J. Patarin. Collisions and inversions for Damgaard's

Papadimitriou:1980:PBH

Purdom:1985:AA

Prokopec:2012:CTE

Preneel:1997:CHF

Pepper:1995:RSH

Preneel:1989:CHB

Park:1995:UPR

U. K. Park, H. K. Choi, and T. G. Kim. Uniform parti-

Park:2015:NSH

Pearson:1990:FHV

Pearson:1991:NFH

Peeler:1982:ZRV

Perry:1973:IME

Pescio:1996:AAM

Pujol:2012:LEC

Peterson:1957:ARA

major paper dealing with the problem of searching in large files. Defined open addressing in general, analyzed the performance of uniform hashing, and the behavior of linear open addressing with various bucket sizes.

Petersen:1983:AVV

Petersson:2013:MDL

Peyrin:2015:CAG

Perrizo:1995:DDV

Patin:2017:HHA

Pramanik:1988:OCR

Papadakis:2009:HBO

Patil:2017:HHA
REFERENCES

2017. CODEN ???? ISSN 1544-3566 (print), 1544-3973 (electronic).

Preneel:1993:CHF

Preneel:1993:HFB

Preneel:1993:IAH

Preneel:1993:PMD

Preneel:1994:HFB

Pawson:1973:CHT

Paul:2012:NPB

Panneerselvam:1988:NAS

Pflug:1987:LPN

Plachy:1989:PIC

Pocic:2018:FMB

Pineda:2009:UOD

Periasamy:2021:EHF

J. K. Periasamy and B. Latha.

Plauger:1998:SCCk

Park:2007:SDN

Poblete:1986:AFT

Ponder:1987:AHA

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Venue</th>
</tr>
</thead>
</table>

REFERENCES

[PT11a] Mihai Pătraşcu and Mikkel Thorup. The power of sim-

A. Pirotte and Y. Vassiliou, editors. Very Large Data
REFERENCES

400

Poblete:1997:ALL

Preneel:1995:MMB

Piper:1993:DSH

Prasanna:1994:SDP

Phan:2006:SCI

Peikert:2008:LTF

Pan:2013:CHF

Ping Pan, Licheng Wang, Yixian Yang, Yuanju Gan, Lihua Wang, and Chengqian Xu. Chameleon hash functions and one-time signature schemes from inner au-
tomorphism groups. *Fundamenta Informaticae*, 126(1):103–119, January 2013. CODEN FUMAAJ, ISSN 0169-2968 (print), 1875-8681 (electronic).

Pagh:2010:COH

Pagh:2014:COH

Pittel:1988:STE

Quittner:1981:CSH

Quinlan:2002:VNA

Quisquater:1989:BHF

Quisquater:1990:BHF

REFERENCES

Quisquater:1995:ACE

Quisquater:1997:ASS

Qu:2016:CHT

Quittner:1983:ECI

Quisquater:1989:ACE

REFERENCES

Quisquater:1990:ACE

Qi:2018:TSL

Radke:1970:UQR

Radue:1983:DIS
Jon Radue. On the design of an interactive spelling dictionary for personal computers. SIGPC Notes (ACM Special Interest Group on Per-

Radhakrishnan:1992:IBC

Richter:2015:SDA

Ragde:1993:PSC

Roman:2007:SCP

Ramakrishna:1987:CPH

Ramakrishna:1988:EPM

Ramakrishna:1988:HPA

Ramakrishna:1989:ARP

[Ram89a] M. V. Ramakrishna. Analysis of random probing hashing. Information Pro-

Ramakrishna:1989:PPB

M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text searching. Communications of the Association for Computing Machinery, 32(10):1237–1239, October 1989. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). Computing Reviews: “This short communication deals with a special kind of hash function called ‘Bloom filters.’ These filters are used, for example, to search a differential file containing updates to a main file.”.

Ramakrishna:1992:SPH

Raman:1997:KFM

Ramakrishna:1991:DPH

Rijmen:2001:WHF

Rigoutsos:1994:SPS

Rao:2011:STE

Regnier:1981:AHT

Regnier:1982:LHG

Regnier:1985:AGF

Regnier:1988:THA

Reif:1988:AWC

Reid:2003:SSE

Remy:1992:ERE

Reyes:2014:FKM

REFERENCES

Ramakrishna:1997:EHH

Richter:1989:HJA

Ramirez-Gutierrez:2012:IRT

Raghavan:1990:RIM

Rigoutsos:1992:MPM

Rigoutsos:1995:BAM

Risson:2009:TDR

John Risson, Aaron Harwood, and Tim Moors.

REFERENCES

REFERENCES

Ramamohanarao:1982:DHS

Ramakrishna:1989:FOU

Rathi:1990:PCE

Rathi:1991:PCE

Richardson:1987:DEP

Ramamohanarao:1983:PMR
REFERENCES

REFERENCES

LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

REFERENCES

Ross:2007:EHP

Rosenfeld:2012:OCC

Ross:2021:TPS

Rotem:1989:CMH

Roussev:2009:HDF

Rovan:1990:MFC

Ramakrishna:1991:PHF

M. V. Ramakrishna and G. A. Portice. Perfect hashing functions for hardware

REFERENCES

Mohammad Reza Reyhanitabar and Willy Susilo. On capabilities of hash domain extenders to preserve enhanced security properties. *Lecture Notes in CS*, 7496:288–299, 2012. CO-

Rivest:2014:SSR

Ramamohanarao:1984:RLH

Ramamohanarao:1985:PMR

Riazi:2017:CSC

Ramamohanarao:1989:PMRa

Ramamohanarao:1989:PMRb

Ramamohanarao:1990:MAH

Ramamohanarao:1992:PRU

Raghavan:1981:ELS

Raite:1987:PTC

Ruchte:1987:LHP

Ramakrishna:1989:DEH

Rattanaritnont:2012:CTS

Ruckert:2015:MSS

REFERENCES

Rickman:1973:SIL

Rigoutsos:1997:GEI

Ramaswamy:2007:HSP

Reyhanitabar:2007:NIM

Rabitti:1990:DST

Ramakrishna:1997:PPS

abs/10.1142/9789812819536_0023.

DEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

Sarkar:2011:TBC

Sarkar:2013:NML

Sarkar:2015:FNR

Sasaki:2011:MMP

Savoy:1990:SBF

Savoy:1991:NFH

Sheffler:1993:AHP

Thomas J. Sheffler and Randal E. Bryant. An analysis of

Sabharwal:1995:PHT

Sabharwal:1997:IDN

Shankar:2007:DAI

Saikia:2014:PHF

Stevens:2017:AFS

Scolari:2016:SCP

Sprague:1977:PTH

Ralph H. Sprague and R. Chattergy, editors. *Proceedings of the Tenth Hawaii

REFERENCES

Schmitt:1982:CPF

Schmidt:1990:GPH

Schneider:1990:CQP

Schneier:1991:OWH

[Sch91a] Bruce Schneier. One-way hash functions: Probabilistic algorithms can be used for general-purpose pattern matching. Dr. Dobbs Journal, 16(9):148–151, September 1, 1991. CODEN DDJOEB. ISSN 1044-789X.

Schnorr:1991:FHE

Schnorr:1993:FHIa

Schnorr:1993:FHIb

Schnorr:1993:FIE

Scharinger:2001:CDD

[Sch01a] J. Scharinger. Construction of data dependent chaotic permutation hashes to ensure communications integrity. Lecture Notes

Scharinger:2001:ASK

Schlaffer:2011:SDR

Severance:1976:PGA

Samson:1978:STU

Sacks-Davis:1985:PMK

Ron Sacks-Davis. Performance of a multi-key access method based on descriptors and superimposed coding techniques. Information system, 10(4):391–403, 1985. CODEN INSYD6. ISSN 0306-4379 (print), 1873-6076 (electronic). Hashing algorithm used to create descriptors for file indexing; this extends the author’s earlier work [SDR83b].

Schneider:1989:PEFc

D. Schneider and D. DeWitt. A performance evaluation of four parallel join algorithms
REFERENCES

Schneider:1989:DTA

Schneider:1989:PEFa

Schneider:1989:PEFb

Schneider:1990:TPCb

[SD90a] D. Schneider and D. DeWitt. Tradeoffs in processing complex join queries via hashing in multiprocessor database machines. In McLeod et al. [MSDS90], page 469. ISBN 1-55860-149-X. LCCN ???

Schneider:1990:TPCa

Stern:1995:IPV

ACM:1990:PFA

ACM:1991:PSA

Shih:1991:CDC

Sacks-Davis:1987:MAM

Sacks-Davis:1983:ILH

Sacks-Davis:1983:TLS

Sajadieh:2015:ERD

Sacks-Davis:1983:TLS

REFERENCES

Sorenson:1975:DDH

Schellhorn:2014:SCP

Spirovska:2021:OCC

Smith:1989:ITD

Shafieinejad:2021:SPQ

Sedgewick:1983:MAC

Sedgewick:1983:A

[Sed83b] Robert Sedgewick. Algorithms. Addison-Wesley,
REFERENCES

REFERENCES

REFERENCES

Sharma:2009:DAC

Shaolan:2011:EDE

Seiden:1994:FSO

Shapiro:1986:JPD

Smith:1997:EHF

Sheil:1978:MST

minimal perfect hash functions.

Shekita:1991:HPF

Sher:2006:MDS

Shemanske:2017:MCE

Sun:2017:CMC

Shim:2017:PME

Shmoys:2000:PAA

Shoup:1996:FPS

[V. Shoup. On fast and provably secure message authentication based on universal hashing. Lecture Notes in CS, 1109:313–??, 1996. CODEN LNCS9D9. ISSN 0302-9743 (print), 1611-3349 (electronic).]

Shoup:2000:CTU

Shoup:2000:UHF

Starzetz:2009:HBC

Shoup:2005:ACC

REFERENCES

tronic). URL http://link.springer.com/content/pdf/10.1007/978-3-642-01399-7_34.

Shen:2020:VRS

Ling Shen, Richang Hong, Haoran Zhang, Xinmei Tian, and Meng Wang. Video
retrieval with similarity-preserving deep temporal hashing. *ACM Transactions
on Multimedia Computing, Communications, and Applications*, 15(4):1–16,

Sockut:2009:ORD

Siegel:2004:UCE

Alan Siegel. On universal classes of extremely random constant-time hash

Silverstein:2002:JIS

Alan Silverstein. *Judy IV Shop Manual*. Hewlett-Packard Corporation, ???.

Silverstein:2002:PPH

Craig Silverstein. A practical perfect hashing algorithm. In Goldwasser et al. [GJM02],

Simon:1998:FCO

REFERENCES

Schuhknecht:2015:SDS

Suzuki:2001:ESB

Stevens:2015:FCF

Shang:1988:DCP

Shahzad:2016:AEP

Schweller:2007:RSE

REFERENCES

REFERENCES

[SP21] Ayesha S. Shaikh and Vibha D. Patel. Significance of the transition to biometric template protection:

Spector:1988:CFD

Spe92

Safkhani:2014:CCA

Sprugnoli:1977:PHF

Renzo Sprugnoli. Perfect hashing functions: a single probe retrieving method for static sets. *Communications of the Association for Computing Machinery*, 20(11): 841–850, November 1977. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). This is the first discussion on perfect hashing; describes heuristics for constructing perfect hash functions. See comments in [AA79a].

Sourlas:2016:EHR

Severance:1990:DLH

C. Severance, S. Pramanik, and P. Wolberg. Distributed linear hashing and parallel projection in main memory.
databases. In McLeod et al. [MSDS90], page 674. ISBN 1-55860-149-X. LCCN ???

Schay:1963:MKA

Sethi:1989:FSR

Song:2001:HMO

Shin:1999:HFM

Schay:1962:AFA

Schmidt:1980:IPC

[SS80] Jeanette P. Schmidt and Eli Shamir. An improved program for constructing open

Shen:1983:OSU

Schmidt:1988:SCO

Shasha:1988:ECE

Schmidt:1989:AUP

Sequin:1989:PRT

Schmidt:1990:ACH

Schmidt:1990:SCO

Schmidt:1992:GPH

Douglas C. Schmidt and Tatsuya Suda. GPERF: a perfect hash function generator.

[Sarkar:2001:PAE]

[SS06]

[Shpilrain:2016:CLF]

[Sara:2001:SCT]

[SSL+18]
Xiaobo Shen, Fumin Shen, Li Liu, Yun-Hao Yuan, Weike Liu, and Quan-Sen Sun. Multiview discrete hashing for scalable multimedia search. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 9(5):
REFERENCES

53:1–53:??, July 2018. CO-
DEN ???. ISSN 2157-
6904 (print), 2157-6912 (elec-
tronic).

[Soomro:2005:DDH]
H. K. Soomro, S. A. A. Shah, and A. A. G. Shaikh. Develop-
ment of dynamic hashing key generation method for Java based Sindhi programming environment. Mehran Uni-
versity Research Journal of Engineering and Technology, 24(2):125–130, 2005. CODEN ???. ISSN 0254-
7821.

[Stipic:2013:PGT]
Srdan Stipi´ c, Vesna Smiljkovi´ c, Osman Unsal, Adri´ an Cristal, and Mateo Valero. Profile-
guided transaction coalescing-
lowering transactional over-
heads by merging transac-
tions. ACM Transactions on Architecture and Code Opti-
mization, 10(4):50:1–50:??, Decem-
ber 2013. CODEN ???. ISSN 1544-3566 (print), 1544-3973 (electronic).

[Sagonas:1994:XED]
Konstantinos Sagonas, Ter-
rance Swift, and David S. Warren. XSB as an efficient deductive database engine. In Snodgrass and Winslett
[SW94b], pages 442–453. ISBN 0-89791-639-5. ISSN 0163-5808 (print), 1943-
5835 (electronic). LCCN QA 76.9 D3 S53 v.23 no.2

proceedings/mod/191839/
p442-sagonas/p442-sagonas. pdf; http://www.acm. org/pubs/citations/proceedings/
mod/191839/p442-sagonas/

[Schkolnick:1983:ICV]
Mario Schkolnick and C. Thanos, editors. 9th International Conference on Very Large Data Bases: Florence, Italy, October 31–November 2, 1983. Very Large Data Bases Endowment, Saratoga, CA, USA, 1983.

[Schkolnick:1983:NIC]
Mario Schkolnick and Costantino Thanos, editors. Ninth Inter-
national Conference on Very Large Data Bases, Florence, Italy, October 31-November 2, 1983. Very Large Data Bases Endowment, Saratoga, CA, USA, 1983. ISBN 0-
934613-15-X. LCCN QA 76.9 D3 I61 1983.

[Sebesta:1985:MPH]
Robert W. Sebesta and Mark A. Taylor. Minimal perfect hash functions for reserved word lists. SIG-
REFERENCES

Sebesta:1986:FIA

Schweitz:1993:AHS

Stahl:1973:HGH

Stallings:1994:SSH

Stallings:1999:HAK

Stallings:2006:WSH

Stamp:2006:ISP

Stewart:1982:DSV

A. D. Samples, D. Ungar, and P. Hilfinger. SOAR: Smalltalk without bytecodes. SIGPLAN Notices, 21(11):107, November 1986. CODEN SINODQ. ISSN 0362-1340 (print), 1523-
REFERENCES

[Sundar:1991:LBD]

[Sundar:1993:LBC]

[Sun:2002:BJP]

[Sun:2015:CCH]

[Schnorr:1994:PFH]

[Schnorr:1995:BBC]

[Suganya:2006:LRK]

[Steindorfer:2015:CSM]
REFERENCES

C. Slot and P. van Emde Boas. On tape versus core: An application of space efficient perfect hash functions to the invariance of space. In ACM-TOC’84 [ACM84b], pages 391–400.

Dennis Shasha and Tsong-Li Wang. Optimizing equijoin queries in distributed databases where relations are hash-partitioned. *ACM Transactions on Database Systems*, 16(2):279–??, June 1, 1991. CODEN ATDSD3. ISSN 0362-5915 (print), 1557-4644 (electronic).

[SXLL08] Minho Sung, Jun Xu, Jun Li, and Li Li. Large-

[SY91] Shibata:2008:LFD

[SYW+20] Shao:2020:HCS

Guolin Sun, Tong Zhan, Boateng Gordon Owusu, Ayepah-Mensah Daniel, Guisong Liu, and Wei Jiang. Revised reinforcement learning based on anchor graph hashing for autonomous cell activation in
REFERENCES

Szymanski:1982:HTR

Szymanski:1985:HTR

Tenenbaum:1981:DSU

Tenenbaum:1986:DSU

Tai:1979:IPT

Tamminen:1981:OPE

Tamminen:1982:EHO

Tamminen:1985:SAC

[Tam85] Markku Tamminen. On search by address compu-
REFERENCES

Tanaka:1983:DSD

Taylor:1989:SIA

Tharp:1991:TBD

Tang:2005:LTO

Tsichritzis:1983:MF

Tang:1993:URH

Tang:2004:AHR

REFERENCES

Tomasic:1997:DSE

Tharp:1988:FOP

Thorup:2013:STF

Thorup:2017:FPH

Taylor:1997:AHN
REFERENCES

Takemasa:2020:DPF

Torres:1999:SIS

Takata:1989:MMM

Tan:1993:RSM

Tang:1995:SLO

Tseng:2007:DHS

Tseng:2009:FSA

[TLLL09] Kuo-Kun Tseng, Ying-Dar Lin, Yuan-Cheng Lai, Ying-Dar Lin,

Thai:2018:TLB

Tang:2016:RIH

Tubaishat:2002:PEL

Triplett:2010:SCH

Tsudaka:1992:PHJ

Tomkins:2020:NZT

Hayley Tomkins, Monica Nevins, and Hadi Salmasian. New Zémez–Tillich type hash functions over $\text{GL}_2(F_p)$. Journal of Mathematical
REFERENCES

REFERENCES

CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Thom:1986:SAD

Trono:1992:UPC

Trono:1995:CTS

[Tro95] John A. Trono. A comparison of three strategies for computing letter oriented, minimal perfect hashing functions. SIGPLAN Notices, 30(4):29–35, April 1, 1995. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic). This paper introduces a simple modification that produces dramatic speedups to the algorithms of Cichelli [Cic80b] and Cook and Oldehoeft [CO82b].

Trono:2006:OTL

Tremblay:1976:IDS

Tremblay:1984:IDS

Tilchin:1985:EDS

REFERENCES

Thomlinson:1998:NBP

Tai:1981:CCH

Tharp:1982:PTS

Tai:1986:CCC

Talia:2010:EDQ

Tian:1993:NHF

Torenvliet:1983:ROT

Leen Torenvliet and P. van Emde Boas. The reconstruction and optimization of trie hashing functions. In Schkolnick and Thanos [ST83a], pages 142–156. CODEN VLDBDP.

Teuhola:1991:MSA

REFERENCES

[UCFL08] Tanguy Urvoy, Emmanuel Chauveau, Pascal Filoche, and Thomas Lavergne. Tracking Web spam with HTML

REFERENCES

10.1007/978-3-540-92957-4_58.

USENIX:1990:UCC

[USE90]

USENIX:1991:PWU

[USE91]

USENIX:2000:PAL

[USE00a]

USENIX:2000:PUT

[USE00b]

Vakhshoori:1985:UHD

Valduriez:1987:JI

Valiant:2015:FCS

van der Pool:1973:OSAb

Vandery:1992:FHN

vanTrung:1994:CCC

Gucht:2010:PHE

Vaudenay:1992:FHI

Vaudenay:1993:FHI

Vaudenay:2006:ACE

Vckovski:2000:MTS

Vingralek:1994:DFO

Radek Vingralek, Yuri Breit-
References

Vitter:1985:OAM

Vitter:1987:DAC

Vanderendonck:2005:XBH

Vasudev:2021:SPP

VandenBraak:2016:CXH

VanderHoeven:2012:IP1

Joris van der Hoeven and Mark van Hoeij, editors. IS-SAC 2012: Proceedings of the

vanderPool:1972:OSA

vanderPool:1973:OSAa

deVillers:1974:HSS

DeVilliers:1974:HSS

vanderVegt:2012:PCH

Veklerov:1985:ADH

Ventae:1984:FTR

Ventae:1986:GDS

Olli Ventae. *N*-gram driven search for sentences in a syn-
Vitter:1980:TCH
J. S. Vitter. Tuning the coalesced hashing method to obtain optimum performance. In IEEE-FOCS’80 [IEE80b], pages 238–247.

Vitter:1980:ACHa

Vitter:1980:ACHb

Vitter:1981:SMS

Vitter:1981:DAH
Vitter:1982:DAH

Vitter:1982:ICH

Vitter:1983:ASP

Vitter:1985:EIO

Vitter:2001:EMA

Varghese:1987:HHT

vanLeeuwen:1994:GTC

REFERENCES

Violà:1996:ALP

Violà:1998:ALP

van Trung:2014:TBF

Valduriez:1984:MHS

VanWyk:1986:CHL

van Oorschot:1994:PCS

Vadhan:2012:CPS

REFERENCES

REFERENCES

White:1990:CSA

Wu:2003:HHS

Wang:2016:CNC

Wegman:1979:NCA

Wegman:1981:NHF

Wu:1994:AGH

Walker:2007:PHF

Wang:2022:CLI

Weng:2012:RIC

Wolf:1991:EAP

Weems:1972:DAE

Weems:1988:SPA

Wee:2007:OWP

Wee:2011:TRC

REFERENCES

Wee:2012:DPH

Wenzel:1992:WBU

M. Wenzel. Wörterbücher für ein beschränktes universum. (German) [Dictionaries for a limited universe]. Diplomarbeit, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany, ???1992.

Wartik:1992:HA

Wang:2004:CHF

Weiss:2012:MSH

Wu:2012:PPA

Weaver:1994:SAM

REFERENCES

REFERENCES

REFERENCES

Willard:1985:NDS

Dan E. Willard. New data structures for orthogonal range queries. *SIAM Journal on Computing*, 14 (1):232–253, February 1985. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic). This paper, together with an earlier report [Wil78], present seven data structures for orthogonal range queries which are more efficient than earlier data structures used for this purpose, such as box array hashing.

Williamson:1985:CCS

Wildner:1996:CAS

Wild:1997:AAB

Willard:2000:ECG

Wiley:2003:DHT

Winkowski:1978:SMF

J. Winkowski, editor. *Mathematical Foundations of Com-
REFERENCES

Winternitz:1983:POW

Winternitz:1984:SOH

Winters:1990:MPHb

Winters:1990:MPHa

Wirth:1975:AD

Wirth:1983:AD

Wirth:1986:ADS

Westergaard:2007:CME

REFERENCES

tronics in Agriculture, 8(2): 105–??, March 1, 1993. CODEN CEAGE6. ISSN 0168-1699.

Wyman:2019:IAT

Witten:1994:MGC

Witten:1999:MGC

Woelfel:2001:NBO

Woelfel:2005:BOS

Philipp Woelfel. Bounds

D. Wood. Parallel queues and pools, an evaluation. Master’s thesis, Courant Institute, New York University,
REFERENCES

New York, NY, USA, January 1989. ?? pp. Revised version available as NYU Ultracomputer Note #150.

Weng:2010:IHV

Wang:1994:SDP

Wei:2012:SIV

Wah:1990:PIC

Wolfson:1997:GHO

Wright:1983:SFS

William E. Wright. Some file structure considerations

Wegbreit:1976:PPC

Warren:1993:PHO

Whiting:2003:MPH

Wang:2013:PPC

Gaoli Wang and Yanzhao Shen. Preimage and pseudocollision attacks on step-reduced SM3 hash function. *Information Pro-

hash families from algebraic
curves over finite fields. *Journal of Combinatorial The-
ory (Series A)*, 93(1):112–
124, January 2001. CODEN
JCBTA7. ISSN 0097-3165.

[WY00] Kun-Lung Wu and Philip S.
Yu. Latency-sensitive hash-
ing for collaborative Web caching. *Computer Net-
works (Amsterdam, Nether-
644, June 2000. CODEN ????
ISSN 1389-
1286 (print), 1872-7069 (elec-
elsevier.nl/gej-ng/10/
15/22/48/25/69/abstract.
hn; http://www.elsevier.
nl/gej-ng/10/15/22/48/
25/69/article.pdf; http://
www9.org/w9cdrom/301/
301.html.

[WYT93] J. L. Wolf, P. S. Yu, and
J. Turek. A parallel hash join algorithm for managing data skew. *IEEE Transactions on Parallel and Dis-
tributed Systems*, 4(12):1355–
??, December 1, 1993. CODEN ITDSEO. ISSN 1045-
9219 (print), 1558-2183 (elec-
tronic).

[WYW14] Zongyue Wang, Hongbo Yu,
and Xiaoyun Wang. Crypt-
analysis of GOST R hash function. *Information Pro-
cessing Letters*, 114(12):
CODEN IFPLAT. ISSN
0020-0190 (print), 1872-6119
(electronic). URL http://
www.sciencedirect.com/
science/article/pii/S0020019014001458.

[WYD+18] Weiqing Wang, Hongzhi
Yin, Xingzhong Du, Quoc
Viet Hung Nguyen, and Xi-
aofang Zhou. TPM: a tem-
poral personalized model for spatial item recommenda-
tion. *ACM Transactions on
Intelligent Systems and Tech-
nology (TIST)*, 9(6):61:1–
61:??, November 2018. CO-
DEN ????. ISSN 2157-
6904 (print), 2157-6912 (elec-
acm.org/ft_gateway.cfm?
id=3230706.

REFERENCES

REFERENCES

Xu:2006:TNH

Xia:2009:APL

Xue:2019:SEA

Xu:2014:HTM

Xin:2013:LVR
REFERENCES

2013. CODEN IEMUE4. ISSN 1070-986X.

REFERENCES

Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. A fast, small, and dynamic

REFERENCES

Yum:2010:FVH

YKLH10

Yao:1983:SSG

YkWY83

Yi:1997:NHF

YL97

Yang:2004:ACH

YL04

Yen:1990:HTS

YLB90

Yi:2009:SSG

YLC+09

Yang:2019:NAK

YLSZ19
REFERENCES

Yu:2020:VBG

Yokoyama:1989:NLP

Yamane:1989:DEH

Yadan:2009:HJO

Yu:1987:RDI

Yoon:2004:SUA

Yum:2009:SLF

Yao:2005:HBL

Yang:2011:NHB

Yaniv:2016:HDC

Yang:1997:HFM

Yu:2006:SST

Ytrehus:2006:LFN

REFERENCES

Yu:1992:IWR

Yu:2018:RHT

Yuan:1992:VLD

Yuba:1982:SOP

Toshtisugu Yuba. Studies on optimization problems of key searching. Denshi Gijutsu Sogo Kenkyuho Kenkyu Hokoku/Researches of the Electrotechnical Laboratory, 18(823):??, March 1982. CODEN DGSKBS. ISSN 0366-9106.

Yung:2002:ACC

Yuval:1975:FNN

Yang:2009:ILV

Young:2001:HRS

Yu:2016:NFC

Yoon:2007:SCH

Yen:2000:WOW

Zeller:1991:AHJ

Zemor:1991:HFG

Zeller:1990:AHJ

Zemor:1994:HFC

Zhang:2005:ILL

Zuo:2018:WFC

Zuo:2019:LHH

Zhou:2021:ELS

Zhang:2021:TME

Zuo:2019:WDH

Zhang:2009:IBR

Zhao:1994:DDBa

X. Zhao, R. G. Johnson, and N. J. Martin. DBJ — a dynamic balancing hash join algorithm in multipro-

Zhao:1994:DDBb

Zhao:1994:DDBc

Zee:2008:FFV

Zhang:2012:LLF

Zhang:2018:AKS

Dongxiang Zhang, Yuchen Li, Xin Cao, Jie Shao, and Heng Tao Shen. Augmented keyword search on spatial entity databases. *VLDB Journal: Very Large Data Bases*, 27(2):225–244, April 2018. CODEN VLDBFR. ISSN 1066-8888 (print), 0949-877X (electronic).

[ZNPM16] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and

Zhou:1993:DAH

Zhao:2013:AAP

Zobrist:1970:NHMb

Zou:1985:MMC

Zheng:1990:HOW

Zheng:1993:HOWa

Zhang:2017:LBP

Zhang:2014:FFS

Zou:2012:PAS

Zhang:2021:LCF

Zhang:2019:SPB

Zhou:2020:NUI

REFERENCES

