Entry Gebuhrer:1974:CPM from lnm1970.bib
Last update: Sat Oct 14 02:51:54 MDT 2017
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Gebuhrer:1974:CPM,
author = "M. O. Gebuhrer",
title = "Une classe de processus de {Markov} en m{\'e}canique
relativiste. {Laplaciens} g{\'e}n{\'e}ralis{\'e}s sur
les espaces sym{\'e}triques de type non compact.
({French}) []",
journal = j-LECT-NOTES-MATH,
volume = "381",
pages = "80--133",
year = "1974",
CODEN = "LNMAA2",
DOI = "https://doi.org/10.1007/BFb0057258",
ISBN = "3-540-06783-3 (print), 3-540-38384-0 (e-book)",
ISBN-13 = "978-3-540-06783-2 (print), 978-3-540-38384-0
(e-book)",
ISSN = "0075-8434 (print), 1617-9692 (electronic)",
ISSN-L = "0075-8434",
MRclass = "60J30",
MRnumber = "0397889 (53 \#1745)",
MRreviewer = "R. M. Dudley",
bibdate = "Fri May 9 19:07:16 MDT 2014",
bibsource = "http://www.math.utah.edu/pub/tex/bib/lnm1970.bib",
URL = "http://link.springer.com/chapter/10.1007/BFb0057258/",
acknowledgement = ack-nhfb,
book-DOI = "https://doi.org/10.1007/BFb0057249",
book-URL = "http://www.springerlink.com/content/978-3-540-38384-0",
fjournal = "Lecture Notes in Mathematics",
journal-URL = "http://link.springer.com/bookseries/304",
language = "French",
}
Related entries
- 60J30,
191(0)17,
191(0)21,
191(0)147,
258(0)51,
258(0)64,
307(0)1,
330(0)95,
381(0)37
- classe,
131(0)167,
131(0)297,
133(0)64,
154(0)70,
172(0)22,
178(0)83,
179(0)95,
196(0)25,
208(0)82,
209(0)207,
217(0)1,
239(0)263,
279(0)1,
290(0)1,
290(0)32,
293(0)205,
317(0)239,
319(0)126,
336(0)144,
372(0)158,
372(0)226,
384(0)109,
392(0)30,
392(0)37,
404(0)138,
407(0)381,
410(0)97,
428(0)132
- compact,
129(0)67,
129(0)112,
129(0)122,
144(0)22,
168(0)75,
171(0)102,
180(0)107,
184(0)121,
185(0)47,
231(0)77,
231(0)95,
235(0)44,
235(0)59,
242(0)1,
242(0)24,
244(0)323,
247(0)55,
248(0)99,
255(0)10,
266(0)1,
266(0)17,
266(0)35,
285(0)72,
285(0)134,
318(0)12,
318(0)59,
318(0)167,
318(0)182,
336(0)28,
336(0)125,
345(0)58,
354(0)130,
364(0)92,
374(0)43,
375(0)53,
384(0)260,
396(0)5,
396(0)28,
396(0)92,
412(0)288
- Dudley, R. M.,
170(0)62,
170(0)71,
381(0)78
- en,
119(0)103,
119(0)126,
119(0)159,
132(0)196,
151(0)318,
151(0)411,
151(0)476,
152(0)37,
152(0)127,
152(0)180,
152(0)349,
154(0)43,
179(0)173,
179(0)187,
205(0)11,
205(0)21,
205(0)71,
205(0)183,
211(0)67,
225(0)667,
228(0)103,
258(0)118,
258(0)130,
265(0)87,
275(0)177,
283(0)180,
288(0)218,
321(0)180,
331(0)84,
332(0)48,
332(0)59,
341(0)293,
341(0)317,
383(0)50,
383(0)171,
383(0)242,
384(0)1,
392(0)23,
392(0)76,
409(0)418,
410(0)15
- espace,
112(0)33,
116(0)21,
116(0)30,
116(0)65,
117(0)39,
119(0)95,
119(0)103,
124(0)47,
139(0)48,
139(0)112,
154(0)39,
164(0)54,
180(0)107,
191(0)103,
205(0)21,
205(0)113,
213(0)22,
213(0)28,
213(0)90,
213(0)112,
213(0)137,
222(0)53,
259(0)19,
275(0)1,
275(0)14,
275(0)147,
275(0)158,
275(0)166,
277(0)34,
277(0)118,
300(0)21,
300(0)40,
325(0)1,
331(0)84,
331(0)183,
332(0)1,
332(0)69,
383(0)157,
383(0)286,
404(0)133,
404(0)164,
404(0)229,
409(0)98,
409(0)204,
409(0)223,
409(0)357,
410(0)1
- laplaciens,
191(0)127
- mécanique,
383(0)242
- Markov,
190(0)13,
212(0)248,
258(0)109,
258(0)177,
307(0)165,
321(0)146,
321(0)172,
330(0)46,
330(0)95,
330(0)170,
330(0)213,
330(0)239,
381(0)172,
390(0)1,
390(0)114
- non,
5(0)137,
5(0)213-2,
112(0)159,
119(0)185,
132(0)108,
191(0)138,
205(0)129,
224(0)344,
228(0)170,
244(0)289,
244(0)323,
266(0)1,
317(0)45,
336(0)15,
383(0)171,
407(0)381
- processus,
124(0)60,
124(0)71,
132(0)85,
139(0)1,
191(0)21,
191(0)37,
191(0)177,
258(0)64,
258(0)109,
307(0)1,
307(0)165,
321(0)1,
321(0)38,
321(0)77,
321(0)95,
321(0)122,
321(0)146,
321(0)172,
379(0)137,
381(0)25,
381(0)37,
381(0)155,
390(0)1,
390(0)37,
390(0)114
- type,
139(0)152,
142(0)176,
148(0)100,
152(0)37,
152(0)77,
152(0)127,
152(0)532,
182(0)77,
185(0)189,
196(0)74,
205(0)129,
205(0)216,
233(0)27,
233(0)76,
241(0)71,
243(0)54,
243(0)134,
249(0)99,
254(0)78,
258(0)113,
261(0)30,
266(0)273,
277(0)118,
296(0)149,
312(0)65,
312(0)145,
319(0)123,
322(0)1,
323(0)245,
323(0)358,
323(0)406,
331(0)211,
337(0)253,
351(0)120,
369(0)171,
381(0)1,
381(0)155,
383(0)186,
384(0)184,
386(0)92,
386(0)102,
386(0)117,
386(0)177,
386(0)200,
386(0)218,
395(0)235,
398(0)62,
402(0)100,
409(0)242,
410(0)77,
414(0)17,
414(0)58,
418(0)58,
418(0)132,
418(0)161
- une,
116(0)1,
116(0)164,
124(0)1,
124(0)47,
132(0)108,
132(0)159,
164(0)35,
164(0)54,
180(0)145,
191(0)82,
191(0)138,
191(0)141,
205(0)129,
205(0)183,
225(0)1,
258(0)1,
258(0)35,
258(0)164,
259(0)28,
259(0)114,
275(0)27,
275(0)82,
321(0)25,
321(0)48,
321(0)51,
321(0)61,
321(0)77,
321(0)118,
340(0)401,
341(0)293,
379(0)12,
381(0)1,
381(0)11,
381(0)78,
381(0)289,
383(0)88,
410(0)97,
411(0)95,
411(0)152,
413(0)231,
421(0)145