Entry Lehmkuhl:1989:OAA from tcs1985.bib
Last update: Thu Sep 27 02:46:57 MDT 2018
              
Top |
Symbols |
Numbers |
Math |
A |
B |
C |
D |
E |
F |
G |
H |
I |
J |
K |
L |
M |
N |
O |
P |
Q |
R |
S |
T |
U |
V |
W |
X |
Y |
Z
BibTeX entry
@Article{Lehmkuhl:1989:OAA,
  author =       "T. Lehmkuhl and T. Lickteig",
  title =        "On the order of approximation in approximative triadic
                 decompositions of tensors",
  journal =      j-THEOR-COMP-SCI,
  volume =       "66",
  number =       "1",
  pages =        "1--14",
  day =          "2",
  month =        aug,
  year =         "1989",
  CODEN =        "TCSCDI",
  ISSN =         "0304-3975 (print), 1879-2294 (electronic)",
  ISSN-L =       "0304-3975",
  bibdate =      "Sat Nov 22 13:29:49 MST 1997",
  bibsource =    "http://www.math.utah.edu/pub/tex/bib/tcs1985.bib",
  acknowledgement = ack-nhfb,
  classification = "C4240 (Programming and algorithm theory)",
  corpsource =   "Math. Inst., Tubingen Univ., West Germany",
  fjournal =     "Theoretical Computer Science",
  journal-URL =  "http://www.sciencedirect.com/science/journal/03043975/",
  keywords =     "algebraic border rank; algebraically closed ground
                 fields; approximative triadic decompositions;
                 computational complexity; equivalence; order of
                 approximation; real closed fields; tensors; topological
                 border rank; upper bound",
  pubcountry =   "Netherlands",
  treatment =    "T Theoretical or Mathematical",
}
Related entries
- algebraic,
35(2)329,
37(3)269,
37(3)305,
38(2)223,
39(1)3,
40(2)101,
40(2)257,
40(2)329,
41(1)33,
41(2)325,
42(1)1,
42(2)123,
43(2)123,
43(2)149,
44(3)333,
45(3)293,
46(1)13,
46(2)285,
46(2)313,
46(2)329,
49(2)121,
50(2)103,
50(2)137,
51(1)117,
52(3)205,
52(3)251,
52(3)307,
54(1)103,
55(2)265,
56(1)37,
57(1)3,
57(1)147,
57(2)205,
60(2)177,
61(1)1,
61(2)199,
66(2)205,
67(2)143,
67(2)261,
68(1)37,
69(1)69
 
- approximation,
36(2)309,
38(2)157,
38(2)293,
39(1)69,
39(2)207,
39(2)225,
40(2)195,
40(2)319,
41(2)125,
41(2)319,
42(1)1,
44(1)1,
46(2)329,
48(2)145,
48(2)257,
51(1)129,
51(1)177,
53(2)335,
54(1)129,
54(2)341,
57(1)131,
57(2)239,
58(1)183,
64(1)15,
68(1)1
 
- approximative,
46(2)329
 
- bound,
36(1)59,
36(2)231,
38(1)69,
38(1)133,
40(2)319,
41(2)247,
41(2)331,
43(2)201,
44(3)247,
45(1)63,
46(2)107,
46(2)329,
47(2)111,
47(2)149,
47(3)323,
49(2)171,
49(2)217,
52(3)239,
52(3)251,
54(2)325,
56(2)211,
57(1)97,
57(1)113,
58(1)175,
58(1)263,
60(3)285,
61(2)149,
61(2)299,
62(3)311,
63(2)203,
64(1)1,
64(1)15,
64(1)83,
64(1)125,
64(3)331,
66(1)105,
66(2)137,
67(1)55,
67(1)115,
69(3)319
 
- closed,
40(2)257,
41(1)95,
43(1)59,
47(2)159,
52(1)1,
64(1)55,
64(2)203,
68(2)155,
68(3)221
 
- decomposition,
39(2)107,
40(2)245,
43(1)11,
46(1)47,
47(1)1,
47(3)277,
48(1)1,
58(1)175,
58(1)325,
61(1)17
 
- equivalence,
35(1)43,
35(2)313,
36(1)21,
36(1)113,
37(2)151,
37(2)183,
38(2)157,
39(1)27,
39(1)z,
41(1)105,
41(2)223,
42(1)1,
43(2)213,
44(2)237,
46(2)107,
46(2)175,
46(2)305,
47(1)39,
47(1)71,
47(3)247,
47(3)263,
47(3)299,
48(2)145,
48(2)329,
49(2)185,
49(2)z,
50(3)241,
52(1)77,
52(3)177,
52(3)307,
53(1)67,
53(2)225,
58(1)183,
59(1)115,
63(1)19,
63(2)223,
64(1)39,
64(3)221,
67(1)65
 
- field,
43(1)91,
47(1)99,
64(1)15
 
- ground,
49(1)43,
54(2)237
 
- order,
38(1)83,
40(2)323,
41(1)81,
49(1)1,
52(3)193,
55(1)87,
57(1)153,
59(3)297,
60(1)1,
61(2)199,
63(2)113,
64(3)281,
66(3)299,
68(1)37,
68(3)333
 
- rank,
60(3)285,
61(2)299
 
- real,
41(2)185,
47(3)299,
53(2)345,
54(2)299,
54(2)341,
58(1)69,
58(1)249,
60(3)231,
65(2)153,
65(2)221
 
- tensor,
50(2)103
 
- topological,
37(2)183,
38(1)17,
38(1)35,
43(1)31,
43(1)59,
44(1)107,
52(1)165,
58(1)209,
58(1)325,
64(2)191,
67(1)121
 
- upper,
41(2)247,
46(2)107,
47(2)149,
49(2)217,
56(2)211,
58(1)263,
60(3)285,
61(2)149,
67(1)55