A Complete Bibliography of Publications in *IMA Journal of Numerical Analysis*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

08 June 2023
Version 1.92

Title word cross-reference

\((k,l) \) [439, 440]. \(-1 \) [1367]. 1
[484, 505, 560, 1319, 1471]. \(1/2 \) [620]. \(1/x \)
[368]. 10 [1077]. 2 [579, 910, 1310, 1498]. 3
[79, 246, 353, 808, 1202, 1370, 1493, 1651, 1803]. 3/4 [1598]. 4 [53], [1, \(\infty \)] [368]. \(1/2 \)
[704]. 2 [1145]. A [1212, 1956]. \(ap \)
[1636]. \(AX + YB = C \) [2071]. B [1080]. \(\mathbf{R}^3 \)
[1274]. \(C^0 \) [287, 387, 536, 1394]. \(C^1 \)
[1585, 1714, 1856]. \(C^2 \) [693, 1716, 1493]. \(C_1 \)
[1625]. \(F \) [676]. \(Z \) [611], \(\chi \) [9]. D
[174, 219, 1827]. DG(\(p \)) [1120], dG(\(s \)) [946]. \(\epsilon \)
[113, 1119, 1893]. \(G^1 \) [858]. \(G^2 \) [858]. \(\gamma \)
[1392]. \(H \)
[1162, 1700, 1721, 1981, 670, 679, 1128, 1866]. \(H(\text{curl}) \) [1091]. \(H(\text{div}) \)
[822, 1092, 1072, 1371, 1607, 1606]. \(H^{-1} \)
[825]. \(H^1 \)
[16, 49, 657, 944, 1346, 1624, 1664, 1922]. \(H^2 \)
[338, 550, 657]. \(H^r(0, L) \) [193]. \(H_1 \) [804]. \(H_\infty \)
[1573], \(H_0^1(\mathbf{L}^2) \) [959]. \(hp \)
[30, 289, 469, 785, 1074, 1164, 1540, 1543, 1920, 2069, 704, 965, 964, 1604]. K
[869, 677]. \(I \) [642]. \(L(\mathbf{L}^2) \) [725]. \(L^2 \)
[49, 199, 390, 475, 747, 1043, 1423], \(L^2(\mathbf{H}^1) \)
[823], \(L^2(\mathbf{L}^2) \) [1238], \(L^\infty(\mathbf{I}; L^2(\Omega)^d) \) [243], \(L^\infty(\mathbf{L}^2) \) [963, 1889], \(L^\infty(L^\infty) \) [1120, 1121], \(L^p \) [953, 1103]. \(L^p \) [1892]. \(L_1 \) [1250, 1988, 1686, 1706, 1990, 1995, 2031, 2071]. \(L^2 \)
[456, 944, 1345, 628, 1994]. \(l_\infty \) [1706]. \(L_p \)
[1373, 1508, 1509, 1989]. \(\lambda \) [969]. \(LDL^T \)
[1740, 992, 676]. \(LR \) [1068]. \(LU \)
[64, 1138, 1234, 1280, 1870]. \(M \)
[584, 583, 1061]. \(A - \varphi \) [622]. \(T - \Omega \) [622]. \(\mathbf{H} \)
applied appraisal [118, 173, 259, 260, 533, 905, 1016, 1125, 1339, 1419, 1426, 1520, 1602, 1780, 1981].

appraisal [66, 118, 173, 179, 943, 1069, 1214, 1326, 1520, 1602, 1780, 1981].

approximants [866].

approximate [201, 449, 542, 583, 691, 726, 797, 832, 1106, 1166, 1314, 1521].

approximated [565, 621].

Approximating [1056, 1428, 18, 664, 689, 1571, 1572, 1573, 1751, 1873, 1898, 2012].

Arbitrarily [1792].

Arbitrary [708, 161, 682, 856, 906, 991, 1126, 1390, 1446, 1459, 645].

Asymptotic-preserving [783, 972].

Asymptotically [750].

asynchronous [750].

average [568, 1418, 449].

averages [824, 1376].

Average [1642, 63, 379].

averaging [621, 1658, 1777].

Average [621, 1658, 1777].
Delay degenerate-singular

Degenerate Deep decaying data-reduction [953, 1094, 1503, 1538, 2062].

[1001].

decoupled 1871, 2053].

damping [2032]. Darboux [682].

Darboux-type [682]. Darcy

[55, 61, 153, 276, 277, 385, 386, 546, 547, 718, 953, 1094, 1503, 1538, 2062]. Data

data-reduction [1462]. DDFV [79, 362].

decaying [1001]. decomposable [1681].

decomposing [804]. decomposition [133, 284, 297, 349, 496, 647, 829, 873, 948, 970, 980, 995, 1032, 1033, 1058, 1096, 1459, 1866, 1920, 2039].

decompositions [296, 379, 584, 583, 731, 920, 1175, 1280, 1871, 2053]. decoupled [182, 547].

Decoupling [1519]. Dedication [1223].

define [422, 1089, 1707, 1815].

definiteness [240]. defocusing [4].

deformations [331]. Degasperis [587].

Degenerate [1238, 11, 461, 478, 659, 904, 964, 1015, 1200, 1289, 1844, 1957, 1975].

Delves [68]. Delves-Lyness [68].

denominator [692]. density [493, 532, 802, 918]. depend [1909].

difference-type [2031]. differences [451, 628, 942]. different [1907].

differentiability [380, 837]. differentiable [1010, 1680]. differential [1, 58, 110, 158, 175, 200, 252, 336, 376, 416, 417, 441, 458, 467, 472, 490, 517, 521, 548].
differential [2054, 2073, 1204, 1946].
differential-functional [2073].
dissipation [190, 324, 459, 899, 1078, 1220, 1303, 2011, 2034].

d嬬issivity [824], digital [709, 990].

dilute [224].

dimension-splitting [1117].
dimensions [11, 62, 122, 157, 192, 239, 319, 619, 827, 865, 1071, 1088, 1172, 1393, 1429, 1446, 1557, 1558, 1702, 1885, 1920].
dimensions [14, 1657].
diffusivity [1441].
diffusion [19, 119, 150, 177, 197, 235, 260, 295, 324, 335, 365, 375, 399, 404, 461, 465, 484, 495, 501, 505, 503, 504, 549, 538, 580, 579, 621, 659, 672, 708, 725, 750, 766, 771, 781, 784, 788, 792, 810, 813, 824, 833, 834, 856, 908, 936, 960, 1035, 1065, 1191, 1247, 1256, 1249, 1255, 1270, 1289, 1294, 1311, 1319, 1320, 1339, 1346, 1393, 1424, 1426, 1427, 1429, 1436, 1441, 1458, 1457, 1473, 1470, 1472, 1474, 1495, 1543, 1539, 1560, 1590, 1592, 1600, 1602, 1604, 1635, 1684, 1700, 1709, 1775, 1779, 1788, 1796, 1824, 1879, 1883].
diffusion-uniform [1339].
diffusion [4, 24, 78, 131, 230, 243, 348, 392, 484, 488, 522, 823, 901, 939, 976, 995, 1023, 1139].
dimensibility [1979].
dimensionally [29].
dimensional [1197].
disc [1339].
disc [183].
disc [1099].
discontinuities [442, 443].
discontinuity [128].

discovered [1068].

discrete-time [842].

Diodes [33].

Dirac [484, 1670, 2045].

Direct [615, 818, 638, 1034, 1106, 1338].

Direction [303, 529, 580, 579].

Directional [338].

Directions [1010].

Dirichlet [998, 13, 183, 488, 845, 854, 997, 996, 1502, 1566, 1661, 1756].

Dirichlet-to-Neumann [183].

Disc [1099].

Discontinuities [442, 443].

Discontinuity [128].
1144, 1147, 1162, 1191, 1311, 1323, 1334, 1478, 1520, 1868, 1950, 670, 671, 1205, 1946

discretized [46, 421, 933, 1006].
Discretizing [523, 566]. discs [625]. disk [262]. dispersion [1228].
disposition-managed [1228]. dispersive [325, 1088, 1361]. Displacement [1160].
dissimilar [1851]. dissipation [415].
dissipative [1096, 1171, 1190, 1328]. Dissipativity [1181].
distance [1759, 1995]. distributed [170]. distribution [888, 946, 1929].
Divergence [907, 79, 153, 860, 912, 1071, 1408, 1409, 1655, 1748, 2053].
divergence-conforming [912].
divergence-free [860, 1071, 1408, 1409, 1655, 1748, 2053].
Divergence-preserving [907]. diverse [1816]. Divided [1545, 628]. do [1689].
Doppler [1491]. double [1156, 1352, 1624].
double-well [1624]. doubling [818, 1062].
doubly [1553]. Douglas [530, 1708].
downdating [1771]. DPG [917]. drift [335, 461, 505, 503, 949, 1598, 1611].
Dual-primal [1919]. duality [79, 1007].

eigenproblems [1671]. eigenstructure [1415]. eigensystems [1893].
eigenvalues [84, 354, 358, 375, 524, 650, 688, 923, 1246, 1330, 1461, 1537, 1620, 1735, 1894].
eigenvectors [1894]. Elastic [1709, 194].
elasto-acoustics [1595]. elastoacoustic [124].
elastodynamics [103, 110, 973].
elastoplastic [269]. electric [290, 802].
electrical [365, 1253]. electrically [349].
electroless [982]. electrolytes [181].
Electromagnetic [1244, 1088]. electron [1312].
electronic [1404].
electrophysiology [69]. electrostatic [625].
function [273, 343, 425, 485, 610, 664, 893, 894, 920, 974, 1212, 1298, 1306, 1373, 1563, 1585, 1680, 1689, 1718, 1743, 1897, 2021].

Galerkin-Chebyshev [1395].

Gaussian [139, 160, 221, 473, 983, 1105, 1513, 1521, 1551, 1563, 1639, 1674, 1871, 1925].

Gauker [1350].

Gegenbauer [1970]. GenEO [337].

General [21, 361, 438, 522, 549, 562, 687, 708, 728, 749, 764, 819, 834, 1182, 1179, 1190, 1351, 1657, 1680, 1723, 1748, 1900].

General-order [1680]. generalization [513, 603, 629, 1227, 1571, 1572].

Gevreys [1447].

Gibbs [16]. Gilbert [150, 182, 707, 768].

given [832, 892]. Givens [724]. gives [699].

Glimm [925]. Glimm-like [925].

Global [63, 162, 356, 357, 409, 453, 732, 736, 1131, 1158, 1823, 1914, 1958, 42, 822, 914, 977, 1028, 1142, 1187, 1268, 1342, 1875, 2056, 2066].

global-best [822]. globally [232, 1157, 1241].

GMRES [43, 167, 1909].

GMWB [1186]. Golub [1491]. good [1516].

Gordon [1880, 2045, 566, 1921, 1965].

Grad-div [901]. graded [117, 771].

gradient-like [46, 543].

gradient-multigrid [1955].

gradients [638, 1104]. grading [115, 944]. Gram [978].

graph [1132, 1709].

Graphs [1748, 132, 429]. Green [750].

integro [158, 900, 928, 1082, 1174, 1364, 1414, 1467, 1484, 1485, 1603, 1664, 1734, 1763, 1899, 2005, 2054].

integro-differential [158, 900, 928, 1082, 1174, 1364, 1414, 1467, 1484, 1485, 1603, 1664, 1734, 1763, 1899, 2005].

integrodifferential [178, 407].

integroparabolic [6]. intensities [267].

interacting [1709]. interaction [120, 877, 880, 935, 1073, 1168, 1169, 1407, 1676, 2018].

interactions [141]. interest [1335].

interface [435, 434, 432, 443, 729, 942, 1064, 1183, 1202, 1375, 1459, 1835]. interfaces [214, 385, 810, 834, 1761].

Interior [435, 1043, 387, 433, 535, 875, 965, 964, 992, 1049, 1187, 1246].

Interior-penalty-stabilized [435].

interlocking [590]. intermediate [2061].

interpolant [425, 694]. interpolants [1029, 1504, 1510, 1511, 1658, 1689, 1846].

interpolate [1212]. interpolated [531]. interpolating [54, 1668, 1933].

interpolations [2063]. Interpolatory [1886, 241, 1040, 2027].

inverse-type [1015]. inverses [1321, 1932].

Inversion [751, 1014, 401, 1608, 1750].

inverting [1620]. investigation [1444].

involutive [1425, 1927]. involved [756, 761].

isoclinal [1522]. Isogeometric [389, 392, 107, 391, 563, 1152]. isolated [45].

isometry [230]. Isoparametric [77, 909, 401, 859]. iso-thermal [1297].

iteration [171, 170, 169, 227, 607, 636, 867, 899, 905, 1016, 1196, 1366, 1382, 1534, 1894, 1945].

iteratively [315]. IV [1193].

J [527, 595, 735, 794, 1485, 1864]. Jacobi [1238, 1562, 383, 396, 415, 742, 1837, 1925].

Jacobi/elliptic [396]. Jacobian [631, 1107].

Jarrow [1335]. Jin [1806]. John [100, 993].

jumps [2066]. June [100].

kernels [363, 407, 422, 513, 544, 1398, 1521, 1899].

Kronrod [1565]. Krylov [865, 1070, 1534, 1691]. Kublanovskaya [993]. Kuramoto [6, 36, 520, 1445].

Kutta-composition [740]. Kutta-type [1431].

L [1145, 1457]. L-shaped [1457]. L. [86].
[85, 107, 177, 260, 319, 322, 435, 753, 1136, 1233, 1377, 1490, 1713, 1714, 1933].
Lagrangian [76, 264, 700, 1021, 1107, 1199, 1334, 1390, 1721, 1973, 1975]. Lagrangians
[887, 1368]. Laguerre
[1195, 1687, 1511, 1985]. Laguerre-type
[1195]. Lambert [1772]. Lamé [1618].
Laminar [1283]. Lanczos [1201, 1671].
Landau [768, 67, 180, 182, 577, 707, 1480].
Landscape [661]. Landweber [913].
Landweber-type [913]. Langevin
[1318, 1376, 1569]. Langevin-type [1569].
LAPACK [1134]. Laplace
[142, 436, 557, 739, 864, 1230, 1528, 1529, 1750, 1819, 1849].
Laplacian [915, 80, 104, 244, 334, 380, 690, 916, 1353, 1620, 1630]. Laplacians [1095].
Large [504, 250, 331, 530, 818, 1008, 1247, 1248, 1399, 1491, 1537, 1535, 1536, 1671, 1830, 2012, 2066].
large-scale [530, 818, 1008, 1399, 1535, 1536, 1830].
Largest [504, 1248]. largest
[1278, 1279]. later [993]. lateral [1709].
lattice [455, 566, 1463]. Laurent [1509].
Law [176, 360, 378]. laws
[128, 506, 520, 576, 609, 903, 1081, 1120, 1121, 1166, 1290, 1316, 1545, 1550, 1758, 1801, 1820, 1853, 1917, 2052].
Lawson [56, 1652]. Lawson-type [1652]. Lax
Layer-adapted [1427]. layers [1436, 1540].
LBB [1051]. LCP [1187]. LDG [331].
leading [1675, 1929]. leapfrog [1207].
Learning [429]. Least
[2059]. Least-squares [617, 156, 285, 370, 508, 578, 618, 632, 1356, 1556, 1787, 1884].
Lebesgue [646, 1076, 1233, 1903]. leg
[1052]. Legendre
[1083, 1167, 1395, 1687, 1510, 1680].
Legendre-Laguerre [1687]. Leja
[1233, 1903]. Leray [745, 1058]. Leslie [757].
Letnikov [1857]. level
[542, 581, 830, 836, 1235, 1284, 1533, 1627, 1821, 1902, 2023, 2033]. level-index
[581, 1821]. Levenberg [1377]. Lévy
[1316, 1896]. lexicographic [1149]. library
[1633]. Lie
[59, 499, 702, 1040, 1525, 1974, 2027].
Lie-algebraic [499]. Lifshitz [786].
Lifshitz [180, 182, 707, 67, 577]. like
[46, 491, 543, 925, 1133, 1395, 1396, 131, 1214, 1792]. limit [1880]. limited
[140, 633, 634, 1046]. limited-memory
[140]. limiting [330, 1001, 1191]. limits
[425, 1490]. Lindelöf [1196]. line
[42, 512, 554, 555, 684, 1197, 1839, 1923].
Linear
linear
linear-quadratic [1715]. Linearization
mixed-primal [61], mixing [345], mobility [204], mode [141, 2018], model [20, 60, 69, 203, 204, 205, 208, 268, 275, 271, 295, 307, 317, 330, 339, 461, 471, 482, 497, 503, 552, 564, 570, 748, 811, 802, 804, 874, 949, 972, 1073, 1297, 1335, 1401, 1411, 1421, 1426, 1441, 1468, 1471, 1496, 1549, 1665, 1733, 1770, 1806, 1844, 1877, 1982, 2046, 207], modeled [71], Modeling [185, 1364], modelling [33, 164, 640, 958, 1764, 1818], models [29, 224, 375, 588, 750, 774, 808, 966, 1028, 1739, 1754], modes [1120], Modification [1117, 838, 1491], modifications [1674], modified [178, 551, 978, 1000, 1046, 1225, 1234, 1420, 1423, 1505, 1626, 1849, 2050, 2056, 1942, 1221, 2022], Modulated [1773, 1151], modulus [719], molecular [1376, 1928], mollification [11], Mollifications [1085], Moment [334, 1640, 1405, 1406], Moment-free [1640], Monge [149, 1622], Mono [490], Mono-implicit [490], monodromy [762], Monotone [1493, 168, 342, 600, 1042, 1050, 1399, 1438, 1468, 1555, 1895, 1954], monotonic [642, 693, 694, 1031, 2031], monotonicity [698], Monotonous [45], monotony [796], monotony-preserving [796], Monte [619, 991, 1295, 1353, 1378, 1479], Morley [923, 2033], Morse [543], mortar [153, 154, 246, 272, 353, 1115, 1175, 1184], mortaring [1116], Morton [1335], motion [307, 472, 1627, 1665], motions [1155], motivated [946, 1046], moving [765, 807, 856, 1157, 1247, 1248, 1471, 1561, 1570, 1987, 2000, 1960], moving-boundary [807], MPFA [471], MR [527, 595, 735, 794, 1485, 1864], Multi [562, 1431, 36, 165, 203, 204, 205, 317, 1107, 1157, 1312, 1430, 1820, 2023], multi-block
[1107]. multi-component
[203, 204, 205, 317]. multi-configuration
[1312]. multi-dimensional [36, 1430, 1820].
multi-grid [1157]. multi-level [2023].
Multi-product [562]. Multi-symplectic
[1431, 165]. multicomponent [1024].
Multidimensional
[1384, 404, 750, 856, 925, 1714, 1753, 1784].
multidomain [919, 1531]. multifacility
[665]. Multigrid [582, 1858, 162, 813, 861, 1002, 1005, 1025, 1149, 1152, 1202, 1450, 1682, 1955, 2020, 2051, 2066].
multigrid-type [1002]. multilag
[178, 1225]. Multilevel
[151, 160, 398, 860, 288, 697, 1654, 2029].
multiparameter [402]. multiphase [973].
multiphysics [874]. Multiple
[1378, 2, 43, 247, 650, 971, 1170, 1404, 1539, 1564, 1850, 1884, 2030]. Multiplicative
[1717, 136, 821, 1336, 1432, 1448].
multiplier [85, 435]. multipliers
[107, 322, 1175, 1377]. multiply [1314]. multiply-connected [1314]. multipole
[1628]. multiprocessor [508].
multiquadric [238, 865]. multiquadrices
[420]. Multiscale [556, 2, 123, 196, 405, 574, 790, 958, 1166, 1393, 1773, 1895, 2011, 2024].
multi-splitting [168]. multi-state [1401].
Multistep [467, 1140, 1208, 1217, 35, 188, 359, 468, 611, 689, 1229, 1388, 1452, 1454, 1634, 1802, 1900, 1936, 1938]. multivalued
[441]. multivalued [1555]. Multivariate
[1556, 615, 709, 959, 1040, 1222, 2004].
Mysovskii [131].

Naghdi [275]. Nagumo [69]. narrow
[540, 679]. Natgeo [290, 179, 1738].
Near [262, 1507, 1508, 1509, 1658, 1803].
Near-best [1508, 1509, 1658].
Near-minimal [262]. Near-minimax
[1507]. nearest [341, 624, 1135, 1721].
neatly [861, 873, 1359, 1713, 1714].
nearness [47]. negative [329, 358, 914].
nematic [181]. nets [990]. network
[999, 1041]. networks [783, 1571, 1572].
Neumann
neutral [999, 1041, 1571, 1572]. neutral
[45, 421]. neutron [1479]. newest [944].
Newton
Newton-CG [2044]. Newton-like [131].
Newton-Mysovskii-type [131].
Newtonian [280, 281, 491, 600].
Newtonlike [2047]. NEWUOA [1703].
Nicolson [1011, 1251, 1464, 1738, 2032].
Nitsche [323, 434, 488, 565, 1115, 1116].
no [527, 595, 722, 735, 756, 761, 794, 1485, 1864].
no-fill [756, 761]. nodes
[31, 428, 820, 1564, 1862, 1861, 1923].
noise [113, 326, 821, 1105, 1277, 1316, 1336, 1432, 1438, 1448, 1481, 1584, 1715, 1978]. noisy
[156, 816]. Non
[354, 1258, 1653, 12, 115, 147, 235, 329, 444, 491, 496, 725, 739, 792, 937, 1073, 1105, 1187, 1241, 1257, 1264, 1366, 1419, 1420, 1455, 1459, 1467, 1496, 1502, 1537, 1555, 1610, 1617, 1844, 1969, 2068, 671].
Non-autonomous [1258]. non-conforming
[115, 792, 1419, 1617]. non-Fickian [235].
non-Gaussian [1105]. non-globally [1241].
non-interior [1187]. non-linear
[147, 444, 739, 937, 1366, 1455, 1496, 1844].
non-Lipschitz [12]. non-local [1073].
non-matching [496]. non-monotone
[1555]. non-negative [329].
non-Newtonian [491]. non-overlapping
[1459]. non-periodic [177].
non-self-adjoint [1502, 1969].
non-separable [1610]. Non-smooth
[1653, 1264, 2068]. non-standard [1467].
non-stationary [725]. non-symmetric
[1257, 1420, 1537]. Non-variational [354].
Nonasymptotic [345]. Nonautonomous
[359, 312, 311, 562, 1182, 1310].
noncoercive [502]. noncompact
[511, 1510]. Nonconforming
[476, 481, 1644, 28, 114, 37, 223, 466, 495, 549,
566, 687, 834, 1144, 1172, 1261, 1397, 1560,
1741, 1879, 1968, 2033]. nonconservative
[1776]. nonconstant [1203].
noncontractive [1692]. nonconvex
[356, 357, 485, 636, 1021, 1293, 1914, 1997].
nondefectivity [1948]. nondiscrete [1417].
nondivergence [1356].
nondivergence-form [1356].
nonequilibrium [1376]. nonhomogeneous
[13, 845]. Nonlinear
[1725, 673, 4, 21, 27, 37, 35, 61, 76, 119, 143,
165, 248, 271, 282, 286, 292, 342, 395, 462, 531,
553, 569, 602, 606, 609, 632, 635, 657, 672, 702,
725, 770, 772, 775, 832, 841, 852, 854, 867, 871,
886, 913, 928, 929, 931, 941, 950, 954, 956, 957,
1027, 1035, 1044, 1070, 1099, 1120, 1121, 1150,
1151, 1153, 1206, 1209, 1228, 1234, 1272, 1271,
1282, 1288, 1292, 1296, 1324, 1399, 1413, 1418,
1444, 1533, 1535, 1536, 1553, 1566, 1567, 1595,
1599, 1619, 1632, 1661, 1698, 1706, 1728,
1776, 1796, 1845, 1854, 1890, 1895, 1921].
2033, 2059, 2054, 2070]. nonlinearities
[1241, 1726]. nonlinearity [481]. Nonlocal
[14, 314, 69, 520, 544, 750, 1403].
nonmatching [127, 364]. nonmono tone
[555, 1197]. nonnegative [509, 628, 1089].
nonnormality [296]. nonoscillatory [383].
Nonoverlapping [362, 2039]. nonperiodic
[1668]. nonpolygonal [32]. nonpositive
[633]. nonresidual [489]. nonself [337].
nonself-adjoint [337]. Nonsimple [1860].
nonsingular [1014]. nonsingularity [1948].
Nonsmooth [1024, 1039, 1279, 1477, 140,
307, 487, 541, 637, 638, 661, 700, 913, 1025,
1026, 1118, 1250, 1306, 1307, 1576, 2009,
2022, 2048, 1904, 1278]. nonstandard
[1048]. nonstationary [32, 465, 1751].
nonstiff [1634]. nonsymmetric
[1062, 1401]. nonuniform
[31, 580, 1273, 1275]. nonuniformly [342].
nonunisolvent [486]. norm
[37, 105, 117, 316, 550, 712, 840, 1043, 1099,
1319, 1529, 1573, 1766, 1836]. normal
[680, 1177, 1295]. normalized [849]. norms
[23, 133, 619, 657, 823, 967, 1026, 1759, 2006].
ote [287, 370, 425, 584, 590, 756, 761, 964,
1191, 1396, 1752, 1775, 1899]. novel
[1551, 1977]. nuclear [564]. number
[161, 254, 255, 347, 379, 856, 2013].
n umbers [559, 1583, 2012]. Numer
[527, 595, 735, 794, 1485, 1864]. numerator
[692]. Numerical
[33, 124, 141, 176, 181, 194, 218, 224, 219, 222,
253, 268, 267, 299, 317, 326, 332, 333, 331,
382, 448, 474, 492, 541, 553, 539, 587, 589,
595, 596, 599, 623, 640, 641, 752, 811, 804,
810, 826, 884, 902, 904, 910, 921, 927, 934, 956,
969, 1089, 1091, 1137, 1156, 1231, 1256, 1267,
1303, 1325, 1327, 1329, 1335, 1368, 1398, 1404,
1445, 1566, 1627, 1693, 1736, 1862, 1861, 1887,
1953, 1954, 1989, 2026, 14, 142, 144, 147, 146,
148, 149, 164, 165, 245, 252, 291, 298, 304,
320, 335, 339, 367, 366, 402, 406, 413, 461].
numerical
[468, 487, 490, 507, 513, 515, 543, 547, 577,
592, 624, 629, 684, 739, 748, 745, 767, 770,
800, 886, 899, 883, 979, 922, 924, 950, 968,
1030, 1036, 1055, 1054, 1109, 1136, 1143,
1159, 1179, 1189, 1198, 1203, 1209, 1218, 1219,
1241, 1258, 1272, 1278, 1279, 1349, 1372, 1405,
1406, 1409, 1403, 1425, 1434, 1441, 1444, 1447,
1468, 1474, 1484, 1485, 1512, 1526, 1529, 1530,
1547, 1593, 1603, 1601, 1616, 1640, 1667, 1710,
1730, 1733, 1750, 1769, 1782, 1786, 1787, 1795,
1796, 1811, 1830, 1829, 1831, 1832, 1838, 1853,
numerical [1942].
numerical-analysis-focused [461].

| pressure-dependent [1146]. |
| pressure-robust [114, 907, 1334, 1423]. |
| pressure-stress [935]. pressures [30, 385]. |
| primal-dual [314]. primitive [135]. |
| problems [793, 823, 834, 842, 845, 844, 867, 884, 905, 906, 913, 917, 918, 932, 936, 940, 941, 942, 946, 950, 957, 959, 964, 962, 960, 970, 973, 979, 984, 988, 997, 996, 1025, 1030, 1042, 1059, 1064, 1069, 1088, 1105, 1106, 1107, 1115, 1119, 1125, 1150, 1157, 1158, 1160, 1163, 1173, 1184, 1189, 1202, 1206, 1229, 1247, 1272, 1271, 1281, 1282, 1284, 1288, 1293, 1306, 1307, 1325, 1322, 1323, 1324, 1330, 1331, 1333, 1339, 1340, 1357, 1360, 1368, 1375, 1391, 1418, 1427, 1436, 1435, 1458, 1472, 1474, 1492, 1494, 1498, 1530, 1537, 1535, 1536, 1540, 1543, 1546]. |
| Product [15, 569, 1921, 459, 528, 562, 829, 859, 1018, 1295, 1744, 1879, 1895, 2053]. |
| product-convolution [829]. products [1826, 1854]. profile [1001, 1084]. |

Recovery [1255, 200, 199, 621, 931, 1357, 1356, 1385, 1585, 1746, 1853, 2014, 2061, 199].

reduction [56, 57, 1117, 1462, 1611]. Redundancy [1855]. redundant [608].

Reeves [42, 651]. Referees [88, 90, 92, 95, 97, 99]. reference [884].

Refinable [418]. refined [31, 49, 853, 855, 1033, 1074]. refinement [1134, 1531]. reflection [985].

Residual-type [1963]. residuals [121]. residue [1940]. resistivity [1315]. resolution [149].

Richardson [990]. Riemann [570, 1553, 1679, 1916, 1925].

rigid [209, 843, 1710]. Ritz [1734, 1797].

RK [1753]. RK4 [112]. RLW [1060].

Robbins [1683]. Robin [216, 1256].

Robust [430, 434, 538, 687, 861, 1300, 1416].
Smoothness [1040, 2027, 374, 719, 991, 1433, 1575, 1582, 1855]. snapshot [1834].

Sneyd [2022]. Sobolev
[133, 227, 419, 646, 662, 991, 1051, 1373]. Sobolev-type [1373]. softmax [310].
space-time-dependent [1255]. spaced [1668]. spaces
spaces-based [953]. spanning [1748].

[233]. Spatial
[1524, 236, 260, 325, 326, 857, 1600].
spatially [890]. SPD [754]. SPDE [1326].

SPDEs [378, 1448, 1978]. special
[828, 914, 1825, 1936]. speciﬁed [618, 1330].
spectra [1386]. Spectral
spectral-in-time [1070]. spectral/ [469].
spectral/difference [1355]. spectrum
[1495, 1502, 1873]. speed [431]. sphere
[160, 240, 422, 820, 888, 1192, 1353, 1475, 1490, 1782]. spherical [116, 820, 1355, 1469].
spheroidal [233]. spine [20]. spiral [602].

nl [327, 148, 229, 410, 413, 418, 419, 423, 563, 602, 663, 714, 755, 858, 1103, 1112, 1176, 1275, 1299, 1439, 1462, 1493, 1612, 1625, 1668, 1711, 1762, 1853, 1856, 1855, 1858].
split [519, 706, 955]. split-step [955].

split-steps [706]. Splitting

Space-Time
[25, 189, 282, 381, 66, 1331, 1481, 1542, 1715].
space-time-dependent [1255]. spaced
[1668]. spaces
spaces-based [953]. spanning [1748].

Sparso-like [1396]. Source
[135, 506, 1150, 1166, 1801, 1820]. Space
stresses [583]. stretched [1416]. strict [240, 373], Strictly [422].
string [1702]. strip [1557]. strip-based [1557]. stroboscopic [1777]. Strong
strongly
[600, 623, 1014, 1271, 1365, 1443, 1722, 1954]. structural
[265, 933, 934, 1632]. structurally
[1514]. Structure
[939, 2046]. Structure-preserving
[939, 2046]. structured
[731, 1948]. structures
[1245]. studies [256]. Study
[836, 864]. Sturm
[257, 304, 358, 839, 918, 969, 1030, 1158, 1715].
Sub
[391, 1600]. sub-diusion
[1600]. Sub-Grid
[391]. subcycling
[763]. subdiffusion
[1250, 1251, 1252, 1255, 1277, 1281, 1397, 1477]. subdivision
[697, 1040, 1192, 1518, 1582, 1583, 1751, 2027, 2028]. Subgrid
[1050, 164]. sub-grid-scale
[164]. subject
[666, 2059]. submanifolds
[700, 1378]. submatrix
[1992]. Subsampled
[250, 327]. subsequent
[993]. subsonic
[1880]. subspace
[865, 1231]. subspace-breaking
[1231]. substructuring
[1557, 1558]. subtraction
[872]. successive
[796, 1100, 1505]. Sufficient
[862]. suitable
[563]. sum
[249, 310, 609, 791]. sums
[250, 368, 1298, 1993]. sup
[198, 391, 1359, 1520, 671]. super
[586, 747, 1046, 737]. super-convergence
[747]. super-convergent
[584]. super-linear
[1046, 737]. Supercloseness
[1436, 1457]. superconducting
[811, 1877]. superconductivity
[396, 802, 808]. superconductors
[223]. Superconvergence
Superconvergent
[1385, 2061, 584, 583, 911, 1723]. superlinear
[1706]. superposition
[72]. supersmoothness
[1855]. supported
[556]. Supraconvergence
[193]. supraconvergent
[936]. surface
[48, 59, 179, 211, 233, 403, 713, 714, 789, 809, 859, 989, 1102, 1230, 1262, 1322, 1324, 1742, 1743, 1962]. surface-fitting
[713]. surfaces
[202]. survey
[1678, 1811]. Sushi
[834]. SVD
[742]. SWIFT
[521]. switching
[53]. Symm
[815, 1383, 2037]. Symmetric
[938, 242, 483, 571, 581, 585, 583, 759, 1740, 875, 1078, 1201, 1220, 1257, 1263, 1420, 1470, 1527, 1537, 1545, 1613, 1628, 1650, 1671, 1705, 1766, 1821, 1896, 1897]. symmetrizable
[1269]. Symmetrization
[1460, 201]. symmetry
[53, 422, 696, 1232, 1579, 2018]. symmetry-breaking
[1579, 2018].
Symplectic
[723, 165, 454, 533, 1431, 1569, 1626]. symplecticity
[1080]. system
[19, 40, 206, 246, 396, 443, 474, 547, 581, 622, 659, 703, 743, 868, 1074, 1127, 1159, 1260, 1308, 1409, 1427, 1443, 1465, 1474, 1617, 1731, 1764, 1869, 1880, 1885, 1991, 2045, 2046]. Systems
[1674, 674]. T
[563]. T-splines
[563]. Takens
[299, 1232, 1231, 2018]. Tangential
[1102].

two- [122]. two-by-two [170].

two-factor [1468]. Two-grid [462].

Two-level [1284, 1902, 542, 1533, 2033].

two-parameter [304, 1690]. two-phase [21, 40, 386, 471, 939, 1157, 1494, 1726].

Two-point [234, 913, 5, 301, 321, 524, 525, 793, 1042, 1125, 1597, 1843, 1878, 1883, 1937, 1466, 1472, 1523, 1654, 2022, 2023].

Two-scale [1622, 1429]. Two-sided [280].

type-6 [1856]. type-II [808].

ultraspherical [1082]. Unbiased [1353].

unconditionally [182, 1292, 1468, 1472].

unconstrained [129, 652, 1704, 1911, 2050].

uniform-in-time [1198]. Uniformly [2063, 1, 30, 518, 543, 579, 1474, 1888].

unilateral [107, 245, 717, 1902]. unipolar [461].

uniqueness [1980].

unit [428, 820, 1099, 1490, 1685].

unitary [1188].

unity [788]. Univariate [238, 420, 698, 699].

unknown [1105, 1784]. unsteady [494, 1712, 1881]. unstructured [833].

unsymmetric [542]. updates [1321, 1766, 2059, 2060].

Updating [1771, 1650, 1705]. upper [1771]. Upwind [1289, 22, 81, 361, 415, 495, 506, 1185, 1426, 1473, 1559, 1752, 1764]. upwind- [1559].

upwinding [1918]. Use [1343, 156, 186, 1099, 1321, 1714, 1837].

REFERENCES

wave-structure [1168].
wave-thermoelastic [1169]. wave-type [1144, 1147, 1478]. waveform [1770, 2017].
waveguide [1370]. Wavelet
[284, 404, 646, 521, 528, 829, 1867, 2004]. Wavelet-based [646, 521].
Wavelet-Fourier [404]. wavelets [1615].
Wavenumber [522, 1469]. waves [189, 826].
Weber [974]. wedge [142].
Weierstrass [610].
weight [516, 1513, 1674]. Weighted
[433, 1672, 105, 199, 824, 991, 1132, 1233, 1556, 1623, 1721, 1897, 1898]. weights [891, 1295, 1674, 1923]. Weiner [1511].
Weiner-Hopf [1511]. Well
[1604, 497, 599, 978, 1624, 1767].
well-conditioned [978]. well-posed [599, 1767]. Well-posedness [1604].
well-reservoir [497]. Wendroff [1446, 1916]. Wendroff-type [1446].
Wentzell [191]. were [1068]. Westervelt
[1276]. which [1014, 2072]. white
[326, 1105, 1438]. whole [1923]. Wick
[1497]. wide [1704]. wider [1013]. widths
[591]. Wiener [764, 1018]. Willmore [221].
Wilson [540]. Wimbledon [100, 100].
Winther [475]. withdrawal [1186].
without
[554, 930, 1355, 1637, 1703, 1828, 2067]. work [756, 761]. worst [636, 1673].
worst-case [636]. Wrap [1113].
Wrap-around [1113].

Xin [1806].

years [993]. yielding [953].

Zakharov [1127, 1880]. zeros [68, 697, 1020, 1213, 1510, 1511, 1785, 1810].

References

Ainsworth:2012:CEB

Ainsworth:2001:CEB

Ainsworth:2002:USF

Ainsworth:2011:CFE

Ainsworth:2017:CEB

Aitchison:1984:NMP

Akinola:2014:CJB

Akrivis:2018:SII

Akrivis:2016:LIS

Akrivis:2018:MNA

Akrivis:2021:LFE

Akrivis:2022:EEF

Akrivis:2011:LIM

REFERENCES

[71] David F. Anderson and Masanori Koyama. An asymptotic relationship between coupling methods for

Andreani:2008:TRS

Andreani:2005:SPG

Andreani:2017:ESO

Andreani:2017:SOS

Andreani:2022:CAL

Andreev:2004:IFE

REFERENCES

Andreev:2013:SSS

Andreianov:2012:DDG

Andreianov:2006:FVA

Angermann:1992:PES

Angermann:1995:EEF

Annaby:2015:EEA

Annaby:2007:CES

Annese:2023:SSL

[85] Michele Annese, Miguel A. Fernández, and Lucia Gastaldi. Splitting schemes

Anonymous:2004:R

Anonymous:2005:IV

Anonymous:2005:R

Anonymous:2006:IV

Anonymous:2006:R

Anonymous:2021:JWB

Anselone:1987:DCA

Antil:2020:PCE

Antil:2023:AFH

REFERENCES

Antonopoulos:2017:GFE

Antonopoulos:2020:SGM

Antonopoulos:2020:STD

Apel:2022:NPR

Apel:2001:NCF

Apel:2005:CTI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[161] Lori Badea. On the Schwarz-Neumann method with an arbitrary
REFERENCES

Badea:2014:GCR

Badia:2014:EAD

Badia:2014:CTW

Bai:2018:WMS

Bai:2003:RPC

Bai:1994:NBG

Bai:1998:MCM

[168] Zhong-Zhi Bai. On the monotone convergence of matrix multisplitting re-

REFERENCES

1994. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

[204] John W. Barrett and James F. Blowey. Finite element approximation of a

Barrett:1999:IEB

Barrett:1991:FEA

Barrett:2002:FEA

Barrett:2018:CFE

Barrett:2018:FEA

Barrett:2021:FEA

REFERENCES

Barrett:2021:PPF

Barrett:1984:FEM

Barrett:1986:TFE

Barrett:1987:FUF

Barrett:1987:TFE

Barrett:1988:FEA

Barrett:1989:FEA

Barrett:2008:NAA

Barrett:2010:NAG

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>Year</th>
<th>CODEN</th>
<th>ISSN (print)</th>
<th>ISSN (electronic)</th>
<th>URL</th>
</tr>
</thead>
</table>
REFERENCES

Barzilai:1988:TPS

Bauermeister:2010:FEA

Bause:2005:OCR

Beatson:1992:UIR

Beatson:2007:FEP

Beatson:2014:PCS

Behforooz:1981:ECI

Buse:1997:FER
Behie:1983:CFI

Behringer:2023:FDB

Belhachmi:2004:RPE

Belhachmi:2006:FEA

Bellavia:2015:SLC
Bellavia:2021:ACR

Bellavia:2020:SIN

Bellen:1990:SAR

Bellen:2002:PSN

Bellettini:1996:NSM

Beltran:2011:ECN

Beltran:2022:MVC

Belward:1985:FSA

Ben-Artzi:2018:DFO

Ben-Artzi:2021:FDA

Bendali:2014:LAR

Benitez:2022:PPS

Benner:2022:LIE

Benouahmane:2019:NMC
REFERENCES

Benzi:2008:BPR

Bermejo:2010:SLG

Bermudez:2006:ASA

Bermudez:1991:SSW

Bermejo:2012:NST

Bermudez:2010:NAF

BermudezdeCastroLopez:1982:MME

Bernardi:1990:SGS

Bernardi:2014:PAS

Bernardi:2001:EIM

Bernardi:1992:MSE

Bernardi:1987:MMT

Bernardi:2013:PAF

Bernardi:2010:NFE

REFERENCES

[291] Hakima Bessaih and Annie Millet. Strong L^2 convergence of time nu-
merical schemes for the stochastic two-

Besse:2021:EPM

Besse:2017:DGF

Besse:2015:DFI

Bessemoulin-Chatard:2014:FVS

Betcke:2014:SDN

Betcke:2007:GFD

Beyn:1990:NCC

[298] W.-J. Beyn. The numerical computation of connecting orbits in dynam-

Beyn:1994:NAH

Bi:2011:FVE

Bialecki:1991:SCM

Bialecki:2004:PGM

Bialecki:2003:OSC

Binding:1993:NMU

Bini:2022:FFF

REFERENCES

Blank:1995:SCW

Blank:2013:NAC

Blaschke:1997:CRI

Blechta:2020:LNL

Blowey:1996:NAM

Boffi:2017:RBP

Boffi:2023:CLF

REFERENCES

Bonnaillie-Noel:2016:ENC

Bonnans:2006:EES

Bootland:2023:OSM

Borm:2021:VOD

Bornemann:2007:MUN

Bornemann:2013:OCH

Borsdorf:2010:PNA

[341] Rüdiger Borsdorf and Nicholas J. Higham. A preconditioned New-

Borsos:2022:QNV

Borwein:1992:FEG

Bos:2017:TPA

Bou-Rabee:2013:NMM

Bou-Rabee:2009:SVI

Boubendir:2013:WNE

Boubendir:2016:HON

[348] Yassine Boubendir, Catalin Turc, and Victor Domínguez. High-order discretizations for the solution of integral equation formula-

Boumal:2019:GRC

Boumal:2020:EGR

Boumenir:2001:CNE

Boutelje:2010:NSL

Boyaval:2022:FVA

Boyer:2012:AUF

Boyer:2010:NSA

REFERENCES

Bozzini:2015:IVS

Bradji:2007:ODC

Bradji:2008:DCH

Braess:1986:NSB

Braess:1983:NSO

Braess:2005:AES

REFERENCES

[377] Charles-Edouard Bréhier, Jianbo Cui, and Jialin Hong. Strong convergence rates of semidiscrete splitting approximations for the stochas-

Brehier:2017:AIL

Breiding:2020:ACN

Breit:2023:NAT

Breit:2020:STA

Breimer:2020:FAJ

Bremer:2014:PEA

Andrea Bressan and Bert Jüttler. Inf-sup stability of isogeometric Taylor–Hood and sub-grid methods for

[Bressan:2013:IDS]

[Brett:2016:OCE]

[Brezinski:1983:ECC]

[Brezinski:2022:SAT]

[Briggs:2002:FDA]

[Brink:1996:CR]

[Brix:2015:MPD]

Broersen:2015:PGD

Brown:2004:SIS

Brown:1982:VII

Brownlee:2004:AOI

Brugiapaglia:2021:WFC

Brumm:2014:HMM

Brunner:1989:NST

Brunner:1986:PSC

Brunner:2001:GMC

Brunner:2009:DGA

Brunner:2010:SPC

Brunner:2011:ACS

Brutman:1986:GAP

Brutman:1990:IPA

Bryson:2005:SDC

Buffa:2017:RSL

Buffa:2009:CEB

REFERENCES

Burrage:1987:ASG

Burrage:1988:ASR

Burrage:1988:OPI

Buscaglia:2012:IEF

REFERENCES

Buscaglia:2015:FEM

Bustinza:2008:CLD

Butcher:1986:OOS

Butcher:2010:TBS

Caceres:2017:MVE

Cahlon:1992:NSF

Cahlon:1982:PPA

Cai:1999:APD

[450] Xing Cai, Bjorn Fredrik Nielsen, and Aslak Tveito. An analysis of a preconditioner for the discretized pressure

Caliaud:2023:EEF

Caloz:1997:SAR

Calvo:2002:HOS

Camacho:2015:PPE

Camano:2018:EAA

Cangiani:2014:ADG

Cangiani:2017:CNV

Cano:2014:BPC

Cao:1997:HBM

Cao:2019:CMF
X. Cao, S. F. Nemat-Nasser, and I. S. Pop. Convergence of an MPFA finite volume scheme for a two-phase porous...

REFERENCES

Carstensen:2000:CMF

Carstensen:2019:PPE

Carstensen:2021:NFE

Carstensen:2016:CRU

Carstensen:1997:SBE

Carter:2007:SEE

Cartis:2012:ACR
C. Cartis, N. I. M. Gould, and...
REFERENCES

[492] Carlos Castro, Sorin Micu, and Arnaud Münch. Numerical approximation of the boundary control for the

Celledoni:2001:MAM

Cermak:2011:SAP

Chadha:2011:RGE

Chainais-Hillairet:2011:FVS

Chainais-Hillairet:2020:LTB

Chainais-Hillairet:2007:ABF

Chains-Novak:2003:CFV

REFERENCES

Xiao-Wen Chang, Christopher C. Paige, and G. W. Stewart. New per-

REFERENCES

Chen:2012:MCA

Chen:2023:EID

Chen:1989:EEO

Chen:2023:AEE

Chen:2017:MSC

Chen:2020:EEH

REFERENCES

REFERENCES

Chen:2014:AMM

Chen:1994:EEF

Chen:2000:NMS

Chen:2022:LSP

Cheng:2009:DFN

Chernih:2014:MMC

[556] A. Chernih and Q. T. Le Gia. Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic
REFERENCES

Chernov:2019:HVE

Chernov:2019:HVE

Cheung:2001:FEA

Chiang:1994:POS

Chien:1997:DGM

Chen:2011:MPO

Cho:2020:BPI

REFERENCES

Chu:2015:FRF

Chu:1995:ETP

Chu:2018:HDF

Chung:2012:SDG

Cifani:2011:DGM

Cimrak:2005:EES

Clark:1988:LRI

Clavero:2006:UCA

C. Clavero, J. L. Gracia, and J. C. Jorge. A uniformly conver-

[586] Bernardo Cockburn and Shi-qiang Xia. An *a priori* error analysis of adjoint-

[593] David Cohen and Llúís Quer-Sardanyons. A fully discrete approximation of the one-dimensional stochastic wave
REFERENCES

123

Colbrook:2020:EUT

Coleman:1989:ENM

Coleman:1989:NMR

Coleman:2003:OCC

Colombini:2015:NAV

Congreve:2013:DGF

Congreve:2013:DGF

REFERENCES

Coughlan:2007:TLM

Coulombel:2023:SSF

Courtes:2020:EEF

Cox:1981:LSS

Cox:1982:DVI

Cox:1991:ACB

Cox:1985:LSS

Cox:1989:ALS
REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

REFERENCES

[648] Stephan Dahlke, Thorsten Raasch, Manuel Werner, Massimo Fornasier, and Rob Stevenson. Adaptive frame methods for elliptic operator equations: the steepest operator descent ap-
REFERENCES

130

Dahmardah:1983:FSS

Dai:2015:CQO

Dai:2006:CBB

Dai:2002:RLC

Dai:2003:AMG

Dallmann:2016:LPS

[655] Helene Dallmann, Daniel Arndt, and Gert Lube. Local projection stabiliza-
REFERENCES

Oleg Davydov and Larry L. Schumaker. Interpolation and scattered
Dawson:1982:FAR

Dax:1986:EAS

Dax:1989:MSL

DeAsmundis:2013:SPS

DeBonis:2009:NMS

deDios:2017:ASP

DeDios:2023:PEP

REFERENCES

REFERENCES

Dedieu:2003:NMR

Dedner:2022:RNV

Deif:1990:RPP

DelBuono:2002:MMA

DelPezzo:2015:OCF

Delbourgo:1994:AEH

Delbourgo:1989:SPI

Delbourgo:1983:RQS

[693] R. Delbourgo and J. A. Gregory. C^2 ra-
REFERENCES

[701] Nadiia Derevianko, Gerlind Plonka, and Markus Petz. From ESPRIT
REFERENCES

137

Descombes:2013:LTS

Deugoue:2021:FDF

Devaud:2020:PGS

dHalluin:2005:RNM

Dharmaraja:2010:OST

DiFratta:2020:LSO

REFERENCES

REFERENCES

Diogo:1991:HTC

Dione:2020:OEE

Discacciati:2018:OSM

Ditzian:1988:MSD

Dixon:1984:RII

Dixon:1985:UA

Dobson:2014:TNP

Dobson:2013:SSH

REFERENCES

REFERENCES

Dopico:2012:ASS

Dormand:1984:GEE

Dormand:1987:FRK

Dormand:1987:HOE

Dormand:1991:CHO

Dormand:1985:GEE

dosReis:2022:SMV

Doss:2005:QMU

Doucette:1994:NMN

[739] Robert L. Doucette. A Nyström method for the numerical solution
REFERENCES

Droniou:2018:IEG

Droniou:2022:CAN

Du:2009:AMF

Du:2019:ACD

Ducroz:1992:SMM

Duan:2020:NAF

Duan:2022:ASS

REFERENCES

Dujardin:2016:ABS

Dumas:2011:CCW

Duncan:1991:SES

Duncan:2007:OGD

Dunne:2009:FMN

Dunst:2015:CRT

Dunst:2015:OCE

Duran:2000:NIR
[770] A. Durán and J. M. Sanz-Serna. The numerical integration of rela-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Elliott:1987:EAE

Elliott:2005:FEA

Elliott:2021:UTC

Elliott:2009:NAT

Elliott:1981:FEA

Elliott:2017:ACS

Elliott:1983:EEF

REFERENCES

NADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Elliott:2007:FEA

Elliott:2013:FEA

Elliott:2011:NCA

Elliott:2001:NAM

Elliott:1993:AA

Elman:2007:SSS

Elman:2016:EIA

[828] Adrien Escande. Fast closest logarithm algorithm in the special orthogonal group. IMA Journal of
REFERENCES

Eymard:2013:GOE

Eymard:2011:SFV

Ezquerro:2002:GDC

Ezquerro:1997:MCM

Fabiano:1995:FDA

Faermann:2000:LAS

Fairweather:1991:BMN

Fairweather:1983:AED

REFERENCES

Falletta:2018:BCF

Falletta:2014:STB

Falletta:2012:STB

Fang:2020:FEM

Fang:2022:QRE

Faou:2009:GHW

Faou:2018:CNG

REFERENCES

Farago:2009:CDP

Farago:2012:DMP

Farhloul:1998:MFE

Farhloul:2001:RMF

REFERENCES

REFERENCES

REFERENCES

[883] Raúl Ferreira, Pablo Groisman, and Julio D. Rossi. Adaptive numerical schemes for a parabolic prob-
REFERENCES

[891] Bengt Fornberg. An algorithm for calculating Hermite-based finite difference

REFERENCES

REFERENCES

[912] Guosheng Fu and Wenzheng Kuang. Uniform block-diagonal preconditioners for divergence-conforming HDG methods for the generalized Stokes equations and the linear elasticity

[920] Edward J. Fuselier and Grady B. Wright. A radial basis function method

1991. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

REFERENCES

[949] Laura Gastald, Raphaëlle Herbin, and Jean-Claude Latché. A discretization of the phase mass bal-

Gatica:2022:SBF

Gatica:2012:TSP

Gaukler:2011:CSS

Gaukler:2017:NLT

[956] Ludwig Gauckler. Numerical long-time energy conservation for the non-

173

REFERENCES

REFERENCES

Gill:2017:SSM

Giraud:2002:WMG

Girault:1999:SCP

Girault:2004:DDM

Girault:1996:FEE

Girault:2022:AEP

Gittelson:2012:RGF

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
REFERENCES

[999] Lukas Gonon, Philipp Grohs, Arnulf Jentzen, David Kofler, and David Siska. Uniform error estimates for
REFERENCES

[1006] Olga Gorynina, Alexei Lozinski, and Marco Picasso. Time and space adap-

Graser:2013:TDA

Graser:2015:NSN

Graser:2019:TNN

Gratton:2023:ARM

Gratton:2008:RTR

Gratton:2018:CGR

Graves-Morris:1984:VVR

Greenberg:1995:OTN

Leon Greenberg and Marco Marletta. Oscillation theory and numerical so-

Gregory:1982:PRQ

Griebel:2014:ABV

Griebel:2019:SVD

Griewank:1983:CHP

Griffiths:1988:SPB

Griffiths:1992:SAN

Griffiths:2010:ARM

Grindrod:2010:PR

REFERENCES

REFERENCES

Guglielmi:1998:DDS

Guglielmi:2001:GPN

Guglielmi:2006:SPC

Guglielmi:2001:GPN

Guillen-Gonzalez:2011:NEE

Gunzburger:2020:LRE

Gunzburger:2019:EAS
Max Gunzburger, Nan Jiang, and Zhu Wang. An efficient algorithm for simu-
REFERENCES

[1067] J. M. Gutierrez and M. A. Hernandez. Newton’s method under weak...

[1074] W. Hackbusch. Convolution of hp functions on locally refined
REFERENCES

REFERENCES

Hansen:2009:NHO

Hardering:2023:TET

Haque:1987:CSO

Hare:2022:EBO

Hardering:2023:QCC

Harder:2022:EEC

Harrach:2023:RLI

REFERENCES

REFERENCES

[1119] P. W. Hemker, G. I. Shishkin, and L. P. Shishkina. ϵ-uniform schemes with high-order time-accuracy for parabolic
REFERENCES

REFERENCES

Hernandez:2009:AVM

Herr:2017:TTI

Heuer:2001:ASM

Hewett:2015:FIB

Higham:1989:AEC

Higham:1991:GEV

Higham:2005:SRR

Higham:1988:FSV

REFERENCES

REFERENCES

[1148] Reinhard Hochmuth. A localized boundary element method for the
REFERENCES

REFERENCES

REFERENCES

Hu:1999:SRK

Hu:2023:PPE

Hu:2019:TLO

Hu:2023:SSH

Hu:1998:GMT

Hu:2004:PPS

REFERENCES

Huang:2002:MEM

Huang:2012:APM

Huang:2005:GLL

Huhtanen:2010:RAU

Humphries:1993:SSN

Hundsdorfer:1994:EGL

Hundsdorfer:2004:NFL

REFERENCES

[1198] Hussain A. Ibda, Cecilia F. Mondaini, and Edriss S. Titi. Fully discrete numerical schemes of a data

REFERENCES

Iserles:1984:SAS

Iserles:1982:OSS

Iserles:2001:MMM

Iserles:2004:NQH

Iserles:2005:NQH

Iserles:2008:HOR

Iserles:2009:HOR

Iserles:2014:SSD

REFERENCES

REFERENCES

Janovsky:1995:CAT

Jantsch:2019:LCW

Jbilou:1999:IMM

Jeltsch:1998:ABS

Jennings:1982:BSV

Jenschke:2019:AMS

Jensen:2017:FEC

[1253] Bangti Jin, Yifeng Xu, and Jun Zou. A convergent adaptive finite element method for electrical

REFERENCES

REFERENCES

Kessler:2002:PEE

Ketcheson:2015:ASR

Khalifa:1982:CQC

Khan:2021:RPE

Khor:1990:FRM

Khristenko:2023:STF

King:1986:NDF

Kirsch:1990:CAC

REFERENCES

REFERENCES

[1320] Natalia Kopteva and Simona Blanca Savescu. Pointwise error estimates for a singularly perturbed
REFERENCES

221

1987. CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Krivko:2014:NIH

Kruse:2014:OEE

Ku:2011:PEE

Ku:2016:LPE

Kucera:2014:DUE

Kucera:2019:TGE

Kuhn:1998:CFD

[1350] Alexey Kuznetsov and Justin Miles. On the rate of convergence of the
REFERENCES

Lakkis:2012:GRA

Lamba:2007:AEM

Lamichhane:2009:ISS

Langdon:2001:BIM

Lanteri:2013:CDG

Larson:2020:SHO

Larsson:2011:FEA

REFERENCES

[1372] Veerle Ledoux, Marnix Van Daele, and Guido Vanden Berghe. Efficient nu-

REFERENCES

Leok:2012:PCV

Leok:2011:DHV

LeVeque:1988:FAS

Levesley:1994:CCM

Levin:1986:MRS

Levine:1985:SRG

Levitin:2004:SPS

Levy:2005:SSD

REFERENCES

Li:2003:LGC

Li:2003:NSL

Li:2022:CNV

Li:2003:LGC

Li:2011:CDF

Li:2022:DLS

Li:2011:SNA

[1408] Xu Li and Hongxing Rui. A low-order divergence-free h(div)-conforming fi-

[1415] Xin Liang, Zhen-Chen Guo, Tsung-Ming Huang, Tiexiang Li, and Wen-

Lindner:2021:SCH

Linke:2017:OVE

Linss:2004:EEF

Linss:2009:LAM

Lipman:2010:APS

Lipman:2010:APS

Liu:2018:SES

Liu:2022:LFF

Liu:2020:SAM

Loach:1991:BLS

Lombardi:2011:IEE

Lopez:1983:SAB

Lopez-Fernandez:2013:GCQ

Lopez-Gomez:1992:SSM
REFERENCES

LopézMarcos:1988:SCN

LopézMarcos:1994:NAP

Lorcher:2007:LWT

Lord:2004:NSS

Lord:2013:SEI

Lu:1993:SBM

Lu:2022:HMH

Lube:2002:SFE

[1451] Gert Lube and Maxim A. Olshanskii. Stable finite-element calcula-

Lui:2009:LNO

Lund:1989:SSG

Lund:1984:SCM

Lych:1988:DRS

Lyness:1989:ILR

Ma:2018:EEC

Ma:2022:AGF

Ma:1987:FPM

Madden:2003:UCN

Maes:2006:HBP

Maeztu:1989:SCF

Mahata:2023:NDE

Maier:2023:EAF

Maire:2006:MCM

REFERENCES

[1488] T. Malkmus, M. Ruzicka, S. Eckstein, and I. Toulopoulos. Gener-

[Marsden:1984:CSI]

[Maset:2013:SPE]

[Mason:1981:NMI]

[Mason:1983:NBA]

[Mason:1984:NBA]

[Mastroianni:1994:NIB]

[Mastroianni:1997:NIB]

Mastroianni:2014:GQR

Mastroianni:2014:GQR

Mastroianni:2014:GQR

Mastroianni:2014:GQR

Mastroianni:2014:GQR

Mastroianni:2014:GQR

[1520] Gunar Matthies and Lutz Tobiska. Local projection type stabilization ap-

REFERENCES

Melenk:1999:FEM

Meng:2023:MVE

Meng:2018:DDE

Meng:2012:SLD

Mengi:2005:ACP

Messoudi:1995:SPR

Metzger:2022:CFE

REFERENCES

REFERENCES

Mihai:2006:ASB

Mihai:2009:ASB

Miller:1994:NNP

Miller:1995:PUM

Miller:2000:LSM

Milner:1996:MFE

Milovanovic:2011:GQR

REFERENCES

Mirzaei:2012:GML

Mishra:2022:EGE

Mishra:2023:EGE

Mitchell:2016:HEC

Mittal:1991:HOF

Mommer:2006:SPF

Monjezi:2023:PBA

Monk:2022:HMS
[1577] Peter Monk and Yangwen Zhang. An HDG method for the Steklov eigenvalue
REFERENCES

Moore:1981:COA

Moore:1986:OAS

Moore:1995:CPP

Moore:1999:ACS

Moosmuller:2019:ISV

Moosmuller:2021:SNG

Mora:2005:WES

Mora:2022:VEM

REFERENCES

Mora:2020:PPE

Morales:2012:SQP

Moret:1990:PNM

Morton:1981:E

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Morton:1993:DCD

Morton:1991:FVM

Morton:2010:CDP

Motte:1988:NCM

Mu:2015:NW

[1594] Lin Mu, Junping Wang, and Xiu Ye. A new weak Galerkin finite element method for the Helmholtz
REFERENCES

Muhr:2023:DGC

Mulansky:1992:CAS

Mullenheim:1992:STP

Muller-Gronbach:2022:SOM

Murdoch:1992:CSS

Mustapha:2011:IFD

Mustapha:2023:SOA

Mustapha:2012:UCD

Mustapha:2010:SOA

Mustapha:2014:WPV

Nabet:2016:CFV

Natale:2018:CVF

Natale:2018:VFE

Navarrete:2016:ASI

Navot:1987:EMT

[1609] I. Navot. An Euler–Maclaurin transformation of a slowly convergent series

Nicaise:2005:CAF

Nicaise:2008:PEE

Nie:1985:LMF

Nielsen:2009:PIL

Nigam:2012:HOC

Nochetto:2019:TSM

Nochetto:2009:SDW

Norton:2012:FEA

REFERENCES

REFERENCES

Osborne:2000:NA

Osborne:1999:NAS

Ostermann:1990:HEE

Ostermann:2020:LTE

Ostermann:2000:NSD

Oswald:1998:OMP

Oyarzúa:2014:EDF
REFERENCES

Pachon:2010:PSC

Pages:2021:WSE

Palagallo:1987:NBA

Palencia:1984:ETI

Pan:1994:MCC

Pani:1991:FEG

Pani:1991:PEE

Pani:1999:QMP

Pani:2002:GMF

[1664] Amiya K. Pani and Graeme Fairweather. H^1-Galerkin mixed finite

References

[1679] Timothy N. Phillips. An embedding method for the Cauchy–Riemann equa-
REFERENCES

Phillips:1988:LCG

Phillips:1989:FSS

Phillips:1986:PSM

Pickering:1993:FSR

Pierre:2010:UCF

Pinar:2018:BPA

Pinar:1999:SLI

Ma:2001:CLL

REFERENCES

REFERENCES

Powell:2008:DNM

Powell:2010:CWR

Powell:1981:STP

Powell:1984:CSC

Pozza:2017:GQQ

Pozzi:2005:DDP

Pozzi:2019:EFI
REFERENCES

Pryce:1989:CIR

Pytlak:1994:CCG

Qi:2011:ALD

Qi:2019:EEF

Qiu:2016:SHM

Qiu:2020:MDM

Quell:2000:NSE

Radu:2018:RMC

References

Reginska:1986:SEA

Reifenberg:2000:NSB

Reisinger:2013:ALD

Reisinger:2014:INT

Ren:2016:APS

Fang:2011:SAB

Repin:2011:GRE

REFERENCES

Sanz-Serna:2019:SAA

Saranen:1992:QML

Sardella:2000:CFE

Saunders:1984:VIS

[1789] Bernhard A. Schmitt and Rüdiger Weiner. Equilibrium attractivity of
REFERENCES

[1797] S. W. Schoombie and J. F. Botha. Error estimates for the solution of the radial Schrödinger equation by the...

Schotzau:2021:ECM

Schotzau:2001:ECG

Schotzau:2004:MHD

Schroll:1996:FDS

Schropp:2000:OSM

Schropp:2008:PRK

REFERENCES

[1820] Wen Shen. Error bounds of finite difference schemes for multi-
REFERENCES

Shen:2006:TAS

Sheng:1989:SLP

Sheng:1994:GEE

Shih:2000:IMS

Shingel:2009:ISO

Sidi:2012:UFE

Sidi:1982:RA

Shih:2000:IMS

Shingel:2009:ISO

Sidi:2012:UFE

Sidi:1982:RA

REFERENCES

289

oxfordjournals.org/cgi/reprint/27/3/529.

Skrobanski:1990:BNM

Slevinsky:2018:UHA

Sloan:1981:SAC

Sloan:1986:PMI

Sloan:1988:GMIa

Sloan:1988:GMIb

Sloan:1984:FVG

Sloan:1993:FOC

Slodicka:2006:TDS

Sonar:1996:ORU

Song:2022:MHV

Sorokina:2014:RSC

Sorokina:2007:LQI

Sousa:2022:CAG

Speleers:2008:MMP

Spence:1983:SPG

Spence:1982:NTP

REFERENCES

Srivastav:1983:NSSb

Srivastav:1983:NSSa

Stein:1997:BHF

Stein:1998:EBH

Steinbach:2016:TFP

Stephan:2000:DD

Stevenson:2008:CDO

293

REFERENCES

Stuart:1989:LII

Styles:2001:EEF

Stynes:2015:FDM

Stynes:2001:SDM

Su:2018:EEF

Suli:2020:FDF

Sun:1995:FEMb

[1890] Daniel B. Szyld and Fei Xue. Several properties of invariant pairs of nonlin-

REFERENCES

CODEN IJNADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

Editors: 2001: E

Ting: 1981: CPB

Titarev: 2007: AAA

Tobiska:2015: RPE

Todd: 1989: CPA

Todor: 2009: NAE

Todor: 2007: CRS

REFERENCES

REFERENCES

NADH. ISSN 0272-4979 (print), 1464-3642 (electronic).

[1945] J. L. M. van Dorsseelaer and M. N. Spijker. The error committed by stopping

vanDorselaer:1999:IMP

Vandereycken:2013:RGC

Vannieuenhoven:2015:RAT

Varah:1993:EPV

Vasconcelos:1998:PIM

Veeser:2012:PCF

Vejchodsky:2006:GLC

REFERENCES

Verdi:1985:NAH

Verfurth:2022:NHN

Verfurth:1984:CCG

Vigo-Aguiar:2007:FSR

Viscor:2013:RFD

Viswanath:2001:GEN

Voller:1985:IFD

vonWahl:2022:UEF

Henry von Wahl, Thomas Richter, and Christoph Lehrenfeld. An unfitted Eulerian finite element method

Vulanovic:2001:PMS

Walk:2022:KPE

Walz:1989:EBS

Wang:2019:FAE

Wang:2011:DGM

Wang:2020:VEM

[1975] Kaixin Wang and Hong Wang. Uniform estimates for a family of

Wang:1998:CEB

Wang:2004:NFF

Wang:2017:SCR

Wang:2007:BBP

Wang:2000:CNM

Wang:1996:CPA

REFERENCES

Watson:1988:MCS

Watson:1988:SPS

Watson:1990:CAD

Watson:1991:AOS

Watson:2002:GNM

Weber:1996:CRF

Weber:2022:PFN

Weideman:2010:ICI

REFERENCES

REFERENCES

REFERENCES

Wyns:2017:CAM

Xi:2020:MLM

Xia:2015:HDF

Xiang:2011:CCF

Xiang:2013:ECC

Xie:2010:SEP

Xie:2012:AOE

[2035] X. Xu, W. Huang, R. D. Russell, and J. F. Williams. Convergence of de Boor’s algorithm for the generation of

[2050] Ya Xiang Yuan. A modified BFGS algorithm for unconstrained optimiza-
REFERENCES

REFERENCES

Zvan:2001:FVA