A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 September 2015
Version 2.19

Title word cross-reference

1000 [SSMO96]. 16 [Swa88]. 18th [DB08].	
3.0 [KaM10, OP10].	
95 [KaM10].	
[CMW90, JQWG15, KKZN12, KSEG14, KD15, LTL15, LJE05, NIO+03, NBD98, PMHC03, RLPN+02, Roy10, SNB04, SS01, SJT13, TKN+08, TFMP97].

Cache-Coherent [SS01].

Cardiac [XOdFV+09]. Cartesian [AKHD13]. CAS [MMG04]. CAS-DSM [MMG04]. Case [BKT08, CG94, CML04, DE00, LDHL05, SPS14, TESK06, KM86].

Centric [CM06, FPCD14, KP01]. Cetus [BML+13, RMG+13]. Challenges [Bel94].

Chip [GG13, Gsc07, KKZN12, KSEG14, KT01, LS07, MVB+06, OP12, PM07, TESK06, ZK07, ZGH+15, ZC09, AH08].

choice [BS98]. Cholesky [GN89]. church [Ano86a]. Circuit [WPC07]. circuits [BH87]. CISL [MPR+05]. Clairvoyant [SY08]. Class [BEP13, MPR+05, IPR+05].

Cloud [JQWG15, KJHB14, RLH14, XZ+15, uRHH14]. Clouds [LTF+12]. Cluster [EAT14, ES11, FPCD14, LJ09, LTL15, LSY15, MLdp02, NIK00, SCB+14]. Cluster-Based [FPCD14, LJ09].

Clustered [CPG01, GBPK07]. Clustering [BAJW14, CAP88, DMC91]. Clusters [BS03, BC15, FPY08a, GCD+03, GSY+13, HOZ06, QA11]. CMP [LTL15]. CMPs [BHJ06, FC11, KKZN12]. Co [GRAG00, MPR+05, NB15].

Co-Generation [MPR+05]. Co-operation [NB15]. Co-Scheduling [GRAG00]. Coarse [NIO+03, PSM97, AD89]. Coarse-Grain [PSM97]. Code [ABTZ00, BTB+13, CPG01, GBLG10, GK94, JS10, KaM10, LF15, LC11, MGW99, MCA98, MP04, NR89, OØ07, PB04, TF94].

Codes [CAZ02, HTK98, FK99, RMG+13]. Coding [DLRS13, MB12b, SSEA14].

Coherence [CMW90, FC11, KSEG14, SNB04, BCK98]. Coherent [SS01]. Collaborative [VSDK09, WLWZ15]. Collection [Cra88, AH86].

Commands [GFL92]. commentary [Lin88a]. Comments [Swa88]. Commercial [NYHA14, RLPN+02]. committed [BS89].

committed-choice [BS89]. communicating [Mai87, RS90].

Communication [AH08, CTB14, GL95, IBA11, INK00, KHH08, KKZN12, KT01, KTT+99, LM00, MMN15, MEP07, MO91, PSM97, RGB+08, TOM+11, TA99, WZTH13, MO90].

Communication-Avoiding [MMN15]. Communication-Driven [TOM+11].

Communications [Mon97]. Compaction [DH00]. Compactors [ZC09].

Comparison [BS07, HMF+13, OP10, SS01, ECSS88, FT87, GE89, Hua89, Kas86].

Compatibility [CS97]. Compilation [AVL03, GBLG10, HMWH97, JB98].

Double-Precision [KJPN10].
Downsampling [LTSD15]. Driven
[CPMC96, GRC*14, RNJ*12, TOM*11, TESK06, XH98, JK86, Kas86]. dRuby
[Sek09]. DSM [BAP01, MMG04, WLL*08].
DSMs [HTK98], DSP [SHK13]. Dual
[WS08]. Dual-thread [WS08]. Duo
[BKT08]. Dynamic
[ABvK*13, CPG01, CML04, EWHS11, Hue07, JK12, JCD*14, KRW*05, LSA*07, LTF*12, LSYG15, NBA13, OVA04, PPA07, Pan08, PO07, RD08, RRH03, SR04, SJT13, TCUV14]. Dynamically [CHPC96, GMB*11]. Dynamics [ACC*02].

Early [TA99]. EARTH
[HTZ*97, HMT*96]. EARTH-MANNA
[HMT*96]. Editor
[EA09, MA10, SS10, BCL90, Ano00a, Ano14, Ayg03, Ban94, Ban04a, Ban04b, Car09, Fur95, Gau96, Giv07, Int98, JS06a, JS06b, Joe99, Joe03, McK07, Mis09, Ora03, Pan08, Seh98, Ve01, Ve02]. Editorial
[An086b, AG15, CTP13, FKT12, FH05, HK14, MCE13, MGJS15, MGD*14, OG11, PP10, SGK12, SS10].

Editors
[SMM11, HF06, AM07b, CHS99, CmHS99, EmH97, FmH96, GSA08, GS05, HN94].

Effect [NPD89, BCK98]. Effective
[CPMC96, HGT*12]. Effectiveness
[MHL95, SBN03]. Effects [HRH08, TF96].

Efficiency
[STF*12, SWZ*15]. Efficient
[ABvK*13, BR97, BEP13, BCL14, BFG*10, CPT14, CL96, EAT14, FPY08a, Fca92b, GGI4, GS06, GRR98, GmWHR98, IP90, IBA11, JGM15, KP05, LNP91, LS05, LNG12, LWLG11, NRR99, QRR00, Roy10, SRS06, SL14, SS*96, SO89, SKAT91, SHC15, SHZ*14, SJT13, TTF*08, WZTH13, XZX*15, Fca92a, Hua89]. Efficiently
[EGJS15, HR11, JMSG02]. Elastic [GG13].

CFF+06, DJS12, EAT14, FM09, GS06, GL95, JSHP97, KLG08, LLL+15, LEG11, Lys08, MFG+08, SNB04, SB91, TTF+08, Tic90, TF96, Ali86, Go88, Kas86, KM86, SRV88, exemplified [Tho87]. Expansion [BCC00].

Exploration [CZTM03, KWA+10, MSJ01, SEP08]. Exploring [AHKR01, PG07]. Exponentiations [NdMM09]. Expose [GV95]. Expression [AFM+06, IPR+05].

Extend [DFA+09]. Extended [BG03, Sch92, YAI95]. Extending [ABB+10, ML15]. Extensible [CP04, SHK13]. Extension [BG03, CFB94].

Extensions [API03, CZTM03, SG00]. Extracted [KP04]. Extracting [PJS+05]. Extraction [JK12].

Fabrics [GBC+08]. FACILE [GMP89]. Factor [BTB+13, MXP14]. Factorization [DZW10, GN89].

Failures [TKM89]. Fail [Lin91a]. FAIRIO [AKT+14]. Fairness [FK87]. False [GMB95]. Family [PVAE98]. Farm [EK14].

Fast [BC15, JLMW15, Joh94, Ken01, KT01, NIK00, RGB+08, SMC94, TA99, WZTH13].

Fast-Fits [Joh94]. Fast [AKHD13, EAT14, GJR09, LJ09, MEP07, NRR99, ZLJA12].

Fences [LNG12]. Fetch [HCEP98, MSJ01]. Fetching [NG92]. Field [QZP15].

Foreword [BmH98, NS97a]. Fork95 [KS97]. Form [CB01, TG05]. Formal [Bs07, KP05, LMP05, MP91]. Formats [Mar09]. Fortran [KaM10]. Four [TSS99].

FP [BARSW95]. FPGA [KJP10, MCFM12]. FPGA-Based [MCFM12]. FPGAs [STM15]. Fractal [MP04, SC88]. Fractional [JLMW15].

Framework [ASW+15, AmWHM99, BFS05, CP04, CHB06, DKB+09, EWH91, EHT07, JK12, KHH08, PG07, TLSG05, TRL09, VFNM12, ZGH+15, ACD+14, LP94].

Functional [ACC+01, BARSW95, BFS05, GMP98, GS06, HU86, PC13, Gol88, Wal87].

Functions [ACC+01, CFF+06]. Fusion [EM14, Ken01]. Fuzzy [GE90].

Garbage [Cra88, Fos89, LKWLG11, AH86]. Gateway [AML+10]. Gaussian [MV10].

GCC [FKM+11]. GCM [GHR14]. Gene [AFO+08, MSA+07]. Gene/L [MSA+07]. General [IP90, IH04, WP00, SS89].

General-Purpose [WP00]. Generalized [GL92, FcF87]. Generate
generate-and-test [BG89, BS89].

Generation [BTB*13, CL96, Dar05, MPR*05, QRW00, SR90].

Generic [CPL*10].

Genetic [AMAH01, BM09, MB12b, SO89].

Genome [OOR13].

Geometric [SS89].

Ghost [MS11].

Girth [WS15].

Glacial [AW98].

Global [AH86, LLSS03, RBES00, TAY*12].

Globally [TV15].

GPGPU [BCL14, STF*12, YZ13].

GPU [BC15, BC10, CTB14, FJZ*15, GG13, LRG14, LTF*12, LEG11, LAD15, OOR13, OATGEL15a, PTdSF*12, SI11, SLZB13, SFAG14, SK14, ZYOY13].

GPU-based [BC10, OATGEL15a].

GPU-Friendly [OOR13].

GPUs [HLP11, KPS14, MS11].

Grabbing [Sun11].

Graph [BCL90, CZTM03, GP94, KL12, SSP*96, Spr92, WZB*92, GZ87].

Graphical [RG15].

Graphics [CPP*12, JGM15, SA11].

Grândola [AT91, Ken01, Sun11].

Grain [BG96, DV97, NRBR94, NIO*03, PSM97].

Greedy [CTK*11, GL92, AD89].

Grammar [MO91].

Grammars [PW92].

Granularity [PSM97].

Graph [BCL90, CZTM03, GP94, KL12, SSP*96, Spr92, WZB*92, GZ87].

Graphical [RG15].

Graphics [CPP*12, JGM15, SA11].

Graphs [DV97, Hue97, KPRS96, MXP14, OP10, OB13, Zha89].

Heads [AT91, Ken01, Sun11].

Grid [BFRPVR*15, SASH12, AFM*06, BBC07, BCC*05, SR04].

Grids [HP13, LLL*15, JS06b], Gröbner [Sch92].

Groups [BBC07].

Guaranteed [MEP07].

Guarded [GYL92].

Guest [AG15, CTP13, EA09, FKT12, HK14, HF06, MCE13, MGJS15, MGD*14, MA10, OG11, PP10, SM11, SGK12, SS10, AN00a, AY03, AM07b, Ban04a, Ban04b, Car09, EmH97, FmH96, Fur95, GSA08, Gau96, GS05, Giv07, Giv08, HN94, JS06a, JS06b, Joo99, Joo03, McK07, Mis09, Oro03, Pan08, Seh98, Ve01, Ve02].

Guided [MTT15].

H [Roy10].

H-NMRU [Roy10].

Handling [DFC*07, RBES00].

Hardware

[CPMC96, GV99, KT01, Lys08, MA*07, NDM09, SWZ*15, SD11, SH15, STM15, WS14, ZAV04, vNR11].

Hardware-Based [CPMC96, KT01].

Hardware-Supported [SD11].

Hardware/Software [GV99, Lys08, SWZ*15, STM15].

Heap [GH96, AH86].

Height [ABASS12].

Helper [ZGH*15].

Helping [Sun11].

Henderson

[Swa88].

Heterogeneous [ABB*10, Bro15, GMB*11, HtkB*10, HHC*15, LSYG15, LS05, MMN15, OATGEL15b, OP12, SEP08].

Heuristics [KPS14, CSG89].

HICOR [GK94].

Hierarchical

[Bro15, GP94, NN95, SSM09].

Hierarchically [PPEP08].

Hierarchies [GVB*06].

Hierarchy [MCW01].

High [BE14, BCS*09, BS07, Bro15, Car09, DB08, GBLG10, GJK*05, GE09, HK14, Jan15, KP05, KJPN10, LPB13, LQWP10, LWP04, MB12a, NFC*09, NDM09, SH96, SCB*14, WGW04, YZ13, YGRM14].

High-Level

[Bro15, Jan15, KP05, LQWP10, SH96, HK14].

High-Performance

[GJK*05, LPB13, MB12a, NDM09, WGW04, YGRM14].

High-Productivity [BCS*09].

High-Scalable [BS07].

Higher [NPD09].

Higher-order [NPD09].

Highly

[TAY*12, XZB*15].

Highly-Scalable

[TAY*12].

History

[CEP97, LJO8, LLSS03, sRRH14].

Hitachi

[TSB03].

HLPGPU [Bro15].

Home

[WWL*08].

Homogeneous [MMN15].

Horizontally [CB86].

Hotspotting

[ANO86c].

HP [IPR*05].

HPC

[HLK*09, JWQ15, LLM*12].

HW [KGB*08].

Hybrid

[BC15, CTB14, EK14, LG14, RRH03, SR15, VSH*11].

Hydrodynamics [Zey05].

Hypercube

[CSG89, DPSS00, GE89, NK88, Wai87].

Hypercubes [BB90].

Hypergraph

[CND95].

Hypergraph-Based [CND95].

Hypersequential [UKT00].

Hyperthreading [HR08].
[Bel94, NS97a]. Iteration [HF14a, HF14b]. Iterative [MS11, Rau96]. Iterator [GS11].

J [Swa88]. Jacobi [HOZ06]. Jacobians [BUMS02]. Java [AHKR01, FSS06, JMSG02, WP00]. Join [LLL+15, NSS12]. Join [RK92, MS11, Rau96].

Linear [CCG+14, FLMR02, JLMW15, KS90, KFC08, LDHL05, MP04, SMM94, Gao86]. Linked [HGT+12, HTmG+12, vdSGBW08].

Localization [OB13]. Locally [SNB04, TV15]. Lock [ZLD15]. Log [Mar09]. Logic [AVPG00, KBD03, Lin91a, SAB11, BH87, Con88, Kas86, SRV88, Tin88]. Logic-Based [KBD03]. Look [MP04]. Loop [AMP01, CL96, DH00, GVB+06, GMB95, GL95, IK00, LSL94, NG92, RAP95, WMC98, YA95, LP94]. Loops [Col95, GL95, MS11, MJ02, QRW00, Sar01, TFNG09, Wol86, YKM03, LAV98]. Low [Bos12, NBN+15, PO07, Roy10]. Low-Latency [Bos12]. Low-Power [NBN+15, PO07]. LTE [LF15].

[HP13, LTF+12]. Matching
[OOR13, Sca05]. MATLAB
[MGW99, SM09]. Matrices
[LPB13, LTSD15, LP94]. Matrix
[BR11a, DZW10, KJPN10, MN15, MGW99, SMM94]. Maximal [BCC00].
Maximum [Gao86]. Mean [AK96].
Measurements [JJL15]. Mechanism
[CHYP96, EM14, GMB96, ScK9, SHC15].
Mechanisms [GBP97, MO90]. Media
[LJ09]. Medium [DV97, NR94].
Medium-Grain [NBR94]. Meld [AKD98].
Membership [KJHB14]. Memetic
[NB15, ŌO07]. Memories [AM04, LPB13].
Memory [AF15, ANS+12, BS03, BS10, CCG+14, CHCL14, CCR88, DSR97, DZW10, GV8+06, GRC+14, GV99, GG93, ID80, JG97, Joli20, JMG92, LSL94, Luh90, MMR04, MCGW01, MBE03, MS99, MKAP05, NIK00, NAP02, OVA04, PO07, RRH03, SB10, SMC94, SD11, SHC15, SWL05, SSM96, SH15, SYO8, SASH12, TMHT96, TA99, VSH+11, WS14, YBRM14, ZK07, ZL015, ZS0+12, Con88, ECO88, FCF87, GHLN86, GSO90, GT86, Hen89].
Memory-Level [SASH12]. Merge [JK03].
Mesh
[DMC91, HAA+11, SMH13, SKA91].
Mesh-Connected [DMC91]. Message
[BB90, CB01, EWS11, GSO95, GCD+03, GZ87, Hua89]. Message-Passing
[C01, GCD+03, GZ87]. Meta [KPS14].
Meta-Heuristics [KPS14].
Metacomputing [ES06]. Metadata
[AGPGF14]. Method
[Ger10, GRG00, IS03, LNP91, LBA15, NDMM09, RAP95, SMN99, ZY0Y13, WO86].
Methodology [MOL05, RJS14]. Methods
[BCC+05, CCL12, MT96]. Metropolis
[CHB06]. Metrowerks [PB04]. Micro
[JSO6b]. Micro-grids [JSO6b].
Microarchitectural [AP103, DKB90].
Microarchitecture [PJS95].
Microbenchmarks [IPR95]. Microcode
[BAJW14]. Microfluidic [ZC09].
Microgrids [SS01]. Microprocessor
[LJE05]. microprogramming [CB86].
Microthread [BHJ06]. Migration
[CML04, JG97, NLRH97, PTdSF9+].
MILC [SKG90]. Milepost [FKM11].
MIMD [GL92, SDJS98]. Mini [ZXY15].
Mini-intrusive [ZXY+15]. Miniature
[BNB+15]. Minimal
[BTB+12, YA95, Zha89]. minimax
[NPT86]. Minimization [Mon97, PB04].
Minimizing [CH95, EDA96]. Mining
[CPP+12, HP13, OB13]. Mining-Based
[OB13]. Mispredicted [JSHP97].
Mispredicted-Path [JSHP97].
Misprediction [NB98]. Mixed
[BEG9+10, SDJS98]. Mixed-Mode
[BEG9+10, SDJS98]. Mobile [ES06]. Mode
[BEG9+10, OP12, SDJS98]. Model
[AG06, AK96, BAF94, BS07, CND95, DMMS91, DFA9+9, FPCD14, HLP11, Liv91, OATG15b, RSV95, RK13, TAY+12, TES06, JK86]. Model-based [RK13].
Modeling [AA15, AMP+05, BS07, KMW02, LEA15, MCE13, MGJS15, MOL05, PCC13, PRA86, TLS90]. Models
[BFS05, Den94, HHC+15, ID08, KP05, NAP02, RNJ+12, SMH13, SS01, SK91, VMS15, VCP+13, AD86, DM87]. Modern
[KPS14, LG10, LQWP10, ME15].
Modifications [Hue97]. Modular
[NDMM09]. Modules [SQ02]. Module
[AG98, EDA96, GRG00, LS98, Rau96].
Modulo-Scheduled [GRG00]. Molecular
[ACC92, BS07]. Monitor [TLT15].
Monitored [LJE05]. Monitoring
[BNB+15, ZXY15]. More² [Ano87d].
MORPHEUS [GMB11]. Motion
[MVD+14, TSS99]. Motivation
[HMWH97]. Movement [CB94].
Moving [HA9+11]. MPI [BS07, ES11, FPY08, GJ09, GSY+13, HMK09, LWP04, MOL05, MAN09, NSS12, RA09, SS01]. MPI/PVM [ES11]. MPSoC
[ID08, RGB⁺08, SWZ⁺15]. Much [MT96].
Multi
[AH08, AKHD13, ABvK⁺13, AML⁺10, ABB⁺10, BM09, CZ12, CTB14, DS97, FLD15, Ged13, GMB06, GS06, HtBK⁺10, JCH⁺08, KBG⁺08, MXP14, MG15, MHCF98, OATGEL15b, QZP15, RD08, RK13, SSP⁺00, SSEA14, SFAG14, Sun11, VSDK09, XOdFV⁺09, Zha10, ZGH⁺15, Ali86].
Multi-Core
[ABvK⁺13, AML⁺10, ABB⁺10, SSEA14, Zha10, CZ12, Ged13, MXP14, QZP15].
Multi-domain [RK13].
Multi-Fault [AKHD13].
Multi-GPU [CTB14, SFAG14].
Multi-layer [OATGEL15b]. Multi-Level [MHCF98, SSP⁺00, XOdFV⁺09].
Multi-Prefetcher [GMB06].
Multi-Processor
[HtBK⁺10, BM09, KBG⁺08, ZGH⁺15]. Multi-processors [AH08, DS97].
multi-sequential [Ali86]. Multi-Threaded
[MG15, VSDK09, GS06, RD08].
Multicomputer [FKD⁺97, Fos89].
Multicomputers [LNP91, SKAT91].
Multicore [CHCL14, HHW10, HMF⁺13, KJHB14, LLM⁺12, TKN⁺08].
MulticoreBSP [YBRM14]. Multicores [TFN09].
Multidimensional [Fea92b, LLM⁺12]. Multigrid [MT96].
Multilisp [Hal86]. Multimedia [BG03, KLi00, SG00, ZK07].
Multiple [ANS⁺12, CND95, Gsc07, LEA15, SQH92, TF94]. Multiple-Register-File [CND95].
Multiplication [Bos12, KJPN10].
Multiply [BBR11a]. multiprocessing [Bro86].
Multiprocessor
[AK96, DeB87, Go88, Gsc07, MB12b, Pan08, PPEP08, SEP08, SR04, BH87, GHLN86, GZ87, GTK⁺88, Hua89, PD89].
Multiprocessor-based [Pan08].
Multiprocessors [BBGM95, GV99, IPR⁺05, KSEG14, KT01, LS07, LSL94, MVÖ⁺06, NP01, OP12, SNB04, SMC94, SS01, TESK06, ZLD15, Con88].
Multiprocessing [FLD15].
Multipliing [CCT12].
Multiprocessing-Newton [CCL12].
Multithreaded [FSS06, HTZ⁺97, HMT⁺96, KMD12, LS07, MB99, OB13, WS08]. Multithreading [NEL⁺99, TESK06].
MUSE [AK92, AK90a, AK90b].
Nano [Mis09]. Nano/Bio [Mis09]. Nano/Bio-Inspired [Mis09]. Nanotube [CDC09].
Nanotube-Based [CDC09]. NASAView [SJKA99]. Nature [KPS14, MHCF98].
Near-Optimal [BB90]. Nearest [LTF⁺12].
Nebelung [MFG⁺08]. Need [KT01, Kue94]. Negative [DKB⁺09, WS15]. Neighbor
[LTF⁺12]. Nested [AMP01, EW96, MMS07, QRW00, Sar01, aMST07]. Nets
[AMP01, GL95]. Net [GG14, GSS10]. Nets [KMjC02, RA94]. Netuno [SCB⁺14].
Network [CPT14, FPCD14, GCD⁺03, HLS15, KKNZ12, LSH90, LSY95, Liv91, ML15, MANR09, PG07, SB03, AD86].
Network-Aware [FPCD14]. Network-Failure-Tolerant [GCD⁺03].
Networks
[BS15, IBA11, Li03, LS05, MVÖ⁺06, AD89]. NetWorkSpace [BCS⁺09]. Neural
[AMAH01, LSY95, LJ08]. Neuromimetic [RNJ⁺12]. Neuronal [CPP⁺12]. Neuron
[Zey05, SDJS98]. New-Age [DKB⁺09].
Newton [CCL12]. Next [Dar05]. NMRU [Roy10]. no [Swa88]. NoCs
[MEP07, TOM⁺11]. Node [LJ09]. Nodes [BNB⁺15].
Nest [CSTGL03, Spr92, Con88, LP94].
Non-overlapping [Spr92]. non-shared [Con88]. non-singular [LP94]. Non-Strict
[CSTGL03]. NoCoherent [BBGM95].
Note [Ano14]. Novel [DMMS91]. NUMA [BFG+10]. Number [HR11]. Numerical [EFED05, Zey05].

Ontology [AFM+06]. Open [AML+10, Cie91]. OpenCL [JSS+15].

OpenMP [AM07b, ABB+10, BdS07, BGdS09, BFG+10, BS07, BEG+10, DFC+07, DFA+09, FM09, GSA08, HMK09, HA+11, JCH+08, KaM10, KJS14, MG15, MFG+08, MBE03, MMS07, NIO+03, OOS+08, OP10, WPC07, aMST07].

OpenMP/MPI [BEG+10, HMK09].

OpenUH [CEH13]. Operating [NP01].

Operation [FLD15, NB15]. Operational [Cam89]. operationally [DM87].

Operations [ABASS12, FPY08b, IBA11, ML15]. OPS5 [GTK+88]. Optical [DMC91]. Optimal [AG98, BB90, DV97, DPO90, DLP86, MA87, Mer86, NG92, SMM94, YKM03, EG86, RB86]. optimality [Ga19].

Optimisation [PPEP08]. Optimised [Zha10].

Optimization [CFB94, CPM96, CS97, GnWHR98, HTmG+12, LDHL05, LM00, MO91, NIO+03, ÓO07, PCP+13, RLH14, SRS06, SSEA14, Sca11, SHZ+14].

Optimization-Based [SHZ+14].

Optimizations [BKT08, BG96, ID08, KSEG14, LEL+99, MS11, SB90, SLZB13].

Optimize [ZLAV04]. Optimized [LF15, MGW99, Sar01]. Optimizer [LSYG15]. Optimizing [BBR11b, CGN+09, MBE03, ZSH+12, MO90].

Optimum [EDA96]. Option [Ger10]. OR- [SH96].

Oriented [GS11, GS13, RGB+08, SRS06, AKT+14, CZ12]. Origin [IPR+05].

Overhead [CTB14, KR+05, SBJV06].

Overheads [BGdS09, LJS08]. Overlapping [IKN00, Spr92]. Overview [BML+13].

PAB-Based [GMB06]. Packet [QZP15].

Paradigm [EW96]. Paradigms [DX14].

PW92, PLN+04, PTD+06, PVAE98, PR99, RK92, RK87, Ric90. **Parallel**
[RSV+05, RMG+13, RGB+08, SGK12, SH87, SI11, SS92, SM09, SMSH13, SQH92, SK09, SM09, SO89, SKAT91, Sk91, SR90, Spr92, SS89, SC88, SHZ+91, Swa88, TSS99, TR109, VK88, WS15, WZB+92, YBRM14, Zey05, Zha89, Zha10, ZWJK05, uRHH14, ACD+14, BCL90, BCK98, Con88, DPL86, EG86, EO88, GN89, GZ87, GKB87, Hua89, JGA+88, JB98, Ken94, KMV87, KM86, LRG+91, LS92, Par86a, Par86b, Par86c, TSS86, Wai87, WB87, AK90b, Lin91a, Ali86, Cie91, SRV88, Tin88]. **Parallel-Access**
[Jo94]. **Parallelising** [GS13]. **Parallelism**
[ACC+01, BS03, DV97, EW96, GVB+06, Gsc07, GL92, HPY01, KP04, MT96, MMS07, RK90, SSEA14, SH96, SASH12, Tou05, WS08, XQF+09, BS99, CG94, Sch92, VR88, AK90a]. **Parallelization**
[BS07, Cz12, Co95, CAZ02, GK94, GMS00, Hu97, IS03, JCD+14, LWQ10, MVD+14, NN95, RAP95, SSP+00, SHK13, SJK99, SKA96, SR15, TFNG09, WP00, aMST07]. **Paralllelized**
[HTK98, TMHT96].

Parallelizing
[CHC14, GS11, KTT+99, ME15]. **Parameter**
[BR14a]. **Parameterized**
[LW97]. **pareil**
[Lin91b, Lin86, Lin87, Lin89, Lin90, Lin98]. **Parlog**
[FT87, Hum91]. **Parsers**
[BNWL90].

Parses
[IP90]. **Parsing**
[IP90, Lan90, PW92]. **Part**
[Fea92b, JS06a, KR87, RK87]. **Partial**
[AmWH99, DM87, Pra86]. **Partially**
[SY08]. **Particle**
[RLH14]. **Partitioned**
[AT91]. **Partitioning**
[CPG01, EW96, FCJ99, Iq91, Lys08, NS97b, SMM09, SWZ+15, SCH15, TG05, GZ87, KMV87, NK88, PD89]. **Partitioning-Independent**
[EW96]. **ParTriCluster**
[AFO+08]. **Pass**
[NS97b].

Passing
[CB01, EHWS11, GCD+03, GZ87, Hua89]. **Path**
[AT91, CSC+00, JSHP97, LJ08, OATGEL15a, SK97, SHZ+91]. **Path-based**
[LJ08]. **Pattern**
[BBR11a, CEP97, CPL+10, QA11]. **Pattern-based**
[BBR11a]. **Patterns**
[ALG+95, FPY08b, LLL+15, SHK13, ACD+14]. **PBX/VoIP**
[AML+10]. **PEMPS**
[MOL05]. **B.E.**
[Sca11]. **Bio-Inspired**
[Mis09]. **IP**
[LSHK09]. **MPI**
[BEG+10, HMK09]. **OR**
[RK02]. **PVM**
[ES11]. **Run-time**
[vdSGBW08]. **Software**
[GV99, Lys08, SWZ+15, STM15]. **synchronization**
[AD86]. **VoIP**
[AML+10]. **Per-Core**
[SA10]. **percolating**
[ACD+14]. **perfect**
[GE89]. **Performance**
[AM95, ASW+15, AK92, AD86, AKT+14, BE14, BS07, BGM+10, Car09, CHY96, CHPC96, DB08, GJK+05, GSY+13, GKB87, HRH08, HF14a, HF14b, HTM+12, JSS+15, JCH+08, KaM10, KJPN10, LPB13, Li03, LY95, LWP04, LLSS03, MB12a, MCWK01, MS11, MOL05, MMS07, ME15, NF+09, NMM09, NP01, PJS+05, PVAE98, RSJ+14, SGJ+03, SSEA14, Sca11, SCB+14, SA10, TSB03, TKN+08, Tin88, VCP+13, WGW04, YZ13, YBRM14, ZWJK05, dMP+03, BCK98].

Performance-Portable
[JSS+15]. **Personal**
[HOZ06]. **Perspective**
[KBG+08, WEJS94]. **Pessimistic**
[VS+11]. **Petaflows**
[ACC+02]. **Petascale**
[TAY+12]. **PETRA**
[ME15]. **Petri**
[KMJC02, RA94]. **Phase**
[JHLM01]. **philosophers**
[RB86]. **Pin**
[JK12]. **Pin-Based**
[JK12]. **Pipeline**
[DF98, GG13, GRAG00, LJ08, SR04, Gai89]. **Pipelined**
[AD89, Low00, MJ02, LAV98]. **Pipelining**
[BTB+13, GRAG00, RA94, YKM03, Gao86, WEJS94]. **Piranha**
[CGJ95]. **Placment**
[ANS+12, JQWG15, SHZ+14]. **Plane**
[Mer86]. **Planning**
[KRW+05, SI11]. **Platform**
[DZW10, FSS06, GMB+11, SSEA14]. **Platform-Independent**
[FSS06].
Platforms [BC15, HMF+13, MXP14, MMN15, MVD+14, RGB+08, VFIN12].
Pocl [JSS+15].

Point [LTF+12, NST89, Ano86a, EG86].
Points [Mer86, SS92].

Pollard [FWH+94].

Polling [Lin91a].

Polynomials [SWL05, ZYOY13].

Polynomials-Time [SWL05].

Port [CND95, IBA11].

Portability [KaM10].

Positive [GHLN86].

Post [NS97b].

Post-Pass [NS97b].

Post-Execution [DJS12].

Preadjustment [CSC+00, CHPC96, TF96].

Predicate [FK87].

Predictability [SS99].

Predictor [CHYP96].

Pre-execution [DJS12].

Precision [KJPN10, ML15].

Predicated [CSC+00, CHPC96, TF96].

Pex [FK87].

Predication [AmWKM99].

Predictive [PCP+13].

Profile [CMW+94, CPMC96].

Profile-assisted [CMW+94].

Profile-Driven [CMC96].

Profiling [CMC96, ZSH+12].

Program [Dar05, KMMS99, MCFM12, SNB04, SLZB13, CRM92].

Programmable [CDC09, Dam07].

Programming [AVPG00, BBC07, BARSW95, BCL14, DeB87, DX14, EK14, GMP98, GJK+05, GRR98, HK14, HUD86, KS97, KBG+08, Lin91a, Lub90, NAP02, PLN+04, PVAE98, SQH92, SS01, SFAG14, Swa88, UKT00, YBRM14, ACD+14, BCL90, BCK98, Ken94, Par86a, Par86c, Tin88].

Programs [BAF94, BS03, BDD+14, CB01, CZ12, EHKT07, Jan15, JLMW15, KSJ14, LMP98, Low00, MGW99, MOL05, MBE03, NS97b, OB13, SHK13, SJKA99, SK97, SO89, WP00, BS89, Con88, Gai89, Gol88, JB98, Kas86, SRV88].

Project [BCC+05, MAB+11].

PROLOG [Ali86, AK90a, AK90b, Cie91, SB90, SH96, TSS86].

PROMIS [SSP+00].

Proof [FeF87].

Propagation [LMP98, MXP14].

Proposal [DFC+07, DFA+09].

Protein [FJZ+15].

Protocol [BAP01, DeB87, GSY+13, RA09].

Protocol-Based [DeB87].

Protocols
Proximity [LTL15].
Pseudosimulation [GT86]. PTAS [JLMW15]. pull [Par86c]. Purpose [WP00].
Push [RKG04, Par86c]. PyACTS [DGMP09]. Python [DGMP09].

QCD [SKG09]. QoS [AH08, uRHH14]. QoS-supported [AH08]. Quantifying
[BMHC98]. Quantitative [LAV98, Sca11].
Query [STM15]. Queue
[NSS12, WZTH13, ZLD15, CRM92]. Queue-Based [ZLD15]. Queueing
[RKG04, AD86]. Queues [GL92]. Queuing [WZTH13].

R [TRL09]. Race [KSJ14, MT15].
Radiation [LG10, Zey05].
Radiation-Induced [LG10]. Radio
[LR911]. Radios [KWA+10]. Railway
[FLMR02]. Randomized
[DS97, Li03, JGA+88]. Ranking
[DS97, uRHH14]. RANSAC [HPVRP15].
Rapid [TCUV14]. Rate [HCEP98]. Ray
[STF+12]. Ray-Traversal [STF+12].

RDMA [GSK+13, LWP04, RA09].
RDMA-Enabled [GSK+13, RA09].
Reachability [WZB+92]. Reaction
[HF14a, HF14b]. Real [EWSH11].
Real-time [EWSH11]. Really [Kuc94].
Rearrangement [SJBV06]. Recognition
[PR99, SS92, SHK13]. Recognizing
[PS92]. Reconfigurable
[GMB+11, GBC+08, KB03, NBN+15, PJ5+05, TKN+08, ZC09, CB86].
Reconfiguration [SA10]. Recovery
[JSHP07, LJ09, NBA09]. Rectangles
[Spr92]. Recurrence [LM00, Ga086].
Recurrences [SKA96]. Recursive
[GMS00]. Red [IS03]. Red-Black [IS03].
Reduce [MKAP05]. Reduced
[DV97, MB12b, OR13]. Reducing
[CEP97, CK02, CTB14, FCJ99, ZK07].
Reduction [ABASS12, ALV03, JS10, KRW+05, LHF+15, LJO8, ML15, PO07, SK97, SWL05, JK86]. Redundant
[CH95, EAT14, GV95, KTT+99].
Refactoring [BDH+14]. Referees [Lin92, Lin88b, Lin91h, Lin86, Lin87, Lin89, Lin90].
Reference [ALG+95, RRH03, WGW04].
Reference-Set [WGW04]. References
[FE91, MKAP05]. Referencing [TMHT96].

Remote [JG97]. Removal
[CDRV98, WS14].Renaming
[CSC+00, TA99]. Rendering
[BGMR11, SC88]. Rendezvous
[CMW90, RA09]. Reordering
[KP95].

Reorderings [MCWK01]. Replacement
[BE913, Roy10, TFMP97]. Representation
[CFB94, FWH+94, GP94, GBC+08, WGW04]. Reproduction
[Li03].

Requirement [MSJ01]. Requirements
[CMW90, EDA96, JSHP97]. Rescheduling
[BCC+05, CS97]. Reservations
[SL14].

Resizing [KD15]. Resolution [Hue97].
Resource [BS91, CTK+11, ZLD15, JK86]. Resource-Aware
[CTK+11]. Restarted
[LEA15]. Restoring [EGJS15].

Restructuring [MP04, PMHC03]. Results
[AK92, AW98, GTK+88, Hun87]. Reuse
[SBN03, XH98]. Reuse-Driven
[XH98]. Reverse
[AmWHM99, BE14]. Review
[Mar09]. Reviewers [Nic14]. Revisited
[PM07, WO86]. Revisiting
[KD15]. Right
[MP04]. Rinda [Sek09]. Robotic
[BUMS02].

Robust [LLS03, Zha10]. Route
[S11].

Routing [BB90, IBA11, LNP91, TOM+11].
Ruby [Sek09]. rule [KM86]. rule-based
[KM86]. Ruleset
[Sca11]. Run
Structure [EFED05, MGW99]. Structured [BAJW14, Fea06, HCEP98, MP95, NLHR07, SASH12]. Structures [CG94].

Subdivision [BFS05, Fea08b, HPVRP15, HMT96, LDHL05, MS11, Sca11, SPS14, KM86]. Subnetworks [PC13]. Sub [LS05]. Sub-networks [LS05].

Subroutines [CCG14]. Submission [LLL15]. Submitting [NSS12].

Super [AK96]. Super-Scalar [AK96]. Supercomputer [MAA+07].

Supernode [SPS14]. Superscalar [MSJ01, VMS15]. Superthreaded [TJY99].

Support [SD11, AH86]. Supporting [BH06, MMS07, OOS+08, SQH92]. SURF [Swa88].

Switched [FFY08a]. Symbolic [CFF+06, KP05, MP04, GKM87].

Symmetric [GMP86]. Symposium [DB08].

Synchronisation [BHJ06].

Synchronisation [GH99, GE90, HTK98, Jan15, JHLM01, KKZ12, Liv91, Lub90, NP01, HFM88, MO90]. Synchronizations [CH95]. Synchronous [BS15].

Synthesizing [AMP01, AMAH01]. System [AG06, AA15, BCS+09, BC01, EFED05, GG14, CD0+03, HMT96, KFC08, Mil88, MMS07, NK00, NP01, SLHR14, RNJ+12, SGJ+03, SJK199, SSM96, SH15, TSLG05, TTF+08, TRL09, XZX+15, XZY+15, KM86, Tisn88, KK11]. System-level [BC10].

SystemC [BFS05]. Systems [AF15, AMP+05, ANS+12, BAP01, Bro15, CHB06, CS97, DRLRS13, EWS11, FLMR02, FPC14, HRH08, HtBK+10, HLM+09, Kuc94, LLM+12, LSA+07, LMPS05, MP91, MCE13, MGJS15, MBE03, Pan08, PP10, PB01, PM07, PO07, PPEP08, RK92, SGK12, SEP08, SFAG14, TSS99, TKN+08, US05, WS14, WLL+08, AH86, Cie91, Dav87, GHLN86, Par86b, PD89, PW87]. Systolic [AP86, Ano87e, IP90, Lan90].

T [Swa88]. Table [CEP97, OOR13]. Tackling [SLZ13]. Tag [PO07, VFIN12]. Task [BM09, FPC14, GN89, GS13, GP94, HR11, MB12b, NIO+03, OP10, RLH14].

Task-Based [RLH14]. Tasking [DFA+09, KaM10]. Tasks [BC10, DFA+09, HR11]. TAU [MMS07].

TCP [LSHK09]. TCP/IP [LSHK09].

Technique [AKD98, CPMC96, Hu97, HAA+11, KTT+99, PB04, RGB+08, SR04, TOM+11, WLWZ15].

Technique-Application [PB04].

Techniques [AK96, CAZ02, GBLG10, KL00, KP04, LY95, SR06, STF+12, SK97, TAY+12, TJY99, ZLAV04]. Technologies [MAB+11]. technology [Ken94].

Telegraphic [ES11]. Telescoping [MK02].

Temperature [DKB+09]. Template [FG14]. Temporal [PMHC03]. Terascale [GCD03]. termination [Th97]. Test [CPL+10, KJHB14, SR06, BS89]. Testing [TCUV14, ZC09, Mai87]. Text [LYL14].

Their [CJ95, LW97, ACC+01]. Theory [GRAG00, RSJ+14, CP88]. Thread [CPL+10, JG97, ZGH+15, WS08].

Thread-level [WS08]. Thread-Parallel [CPL+10]. Threaded [HGT+12, HTMG+12, MG15, VSDK09, GS06, RD08]. Three [ABASS12]. Three-Argument [ABASS12].

Throttle [AK+14, BRB11b]. Throughput-oriented [AK+14]. Through [AHKR01]. Tightly [SS01].

Tightly-Coupled [SS01]. Tiled [FC11, OOR13]. Tiling [MHC98, XH98, ZK07]. Time [FC99, Fea92b, KRW+05, LCU92, LLM+15].
LWLG11, PTdSF+12, RAP95, RK13, SWZ+15, SWL05, Won02, YKM03, EWHS11, Fea92a, HtBK+10, TTF+08, vdSGBW08.

Tolerance [AKHD13, NRR99, ZLJA12]. Tolerant [EAT14, GCD+03]. Tolerating [AK96, JG97, LG10]. Too [MT96]. Tool [KSJ14, ME15, PVAE98]. Tools [ALG+95, ARB+05, DGMP09, LRG+91, Lut90, CB86].

Top [Sca11]. Top-Performance [Sca11].

Transaction-Based [AA15].

Transactionals [GRC+14, MFG+08, SH15, VSH+11, WS14, ZSH+12]. Transactions [SD11]. Transfer [SR04]. Transform [BC15, DLRS13]. Transformation [IKN00, SASH12, vdSGBW08, LP94].

Transformations [AG06, AMP01, GVB+06, GMB95, JS10, KP95, KP01, MO90, OK99, SPS14, WMC98, YA95]. transformed [Ano86b]. Transforming [BS89]. Transient [LG10]. Transition [OOR13]. Transitive [CAP88, KPR96, VK88]. Translator [ABV+93]. Translators [KRW+05].

Transparent [PSM97]. Transport [CJA00, Zey05]. Transpose [LPB13].

Transpositions [JGM15]. Traversal [STF+12]. Tree [BR14b, GH89, KF99, PS92, PW92, SMC94, DPL86, MA87, STF+12].

Tree-Based [KF99]. Trees [Li03, Zha89].

Triangular [MMN15]. Triangulating [Mer86, EG86]. Triggered [CJA00]. Trin [JK12]. True [BAF94]. TuCCompi [OATGEL15b]. Tuned [LAD15]. Tuning [CCG+14, LET+99, OATGEL15b, FKM+11, Ged13]. Two [BARSW95, EHKTO07, HFM88, JHLM01, LPB13, LS05, SS92]. Two-Dimensional [BARSW95, EHKTO07, LPB13]. Two-Phase [JHLM01]. Type [CP88]. Typed [BBC07]. types [Win89].

Units [CPP+12, JGM15, RG15, SAB11]. Universal [GP94]. Unroll [BTB+13].

Unrolling [Sar01]. updating [Hml87].

Upon [GL92]. URSA [PVAE98]. Use [GmWHR98]. Use [LLL+15, MT15].

User-Guided [MT15]. Users [Kuc94].

Using [BR97, BAF94, BAJW14, CHPC96, CPT14, Col95, CFF+06, DeB87, Dem11, GG14, G9K4, GG13, GRAG00, GH98, GE90, HLP11, HP13, ID08, JG97, JCD+14, Joh94, K6MjC02, KP95, KP05, LPB13, LQWP10, LS05, LNG12, LEA15, LM00, MCWK01, MANR09, MKAP05, NIK00, NIO+03, NRR99, NBA13, PLN+04, RA94, RLH14, RSJ+14, SSEA14, SAB11, Sun11, TSB03, TCUV14, TFMP97, ZC09, AD86, HAA+11, IPR+05].

Utilization [JHLM01, MGW99, ZLAV04]. Utilizing [CPL+10].

V [IPR+05]. V-Class [IPR+05].

Variable-Length [EM14]. Vector [BBR11a, TSS99]. Vectorization [BBG07, CRM92]. Vectorizing [CK02, SG00]. Verification [AG06, BFS05, CHB06, CFF+06, LMP805, SR806, US05].

via [EDA96, HCEP98, SSP+96, ZK07].
Video [DLRS13, KBD03, SSEA14, TSS99].
Virtual [EGJS15, HHW10, JQWG15, LCU92, PO07, SHZ+14]. Virtualization
[ZXY+15]. Virtualized [VFIN12].
Visibility [DPS90]. Vision [NFC+09].
Visual [CPT14]. Visualization [SJKSA99].
VLIW [ABASS12, CND95, CS97, GBPK07, ZLAV04]. VLSI [PP10]. VOD [LJ09].
Virtual [CCL12]. VORD [KJ14]. vs [NAP02].

Wait [FLD15, Sun11]. Wait-Free
[FLD15, Sun11]. Warm [LJE05].
Warm-Up [LJE05]. Warp [Lys08].
Waterman [FJZ+15, HM+13]. Wave
[LS07]. Waveform [CCL12]. wavefront
[Wol86]. Wavelet [BC15]. way [DPL86].
Weak [BAP01]. Web [HHC+15, NYA14].
Weight [CM06]. Weighted [Ken01]. while
[Col95, GL95]. while-Loops [Col95]. Who
[JK12]. Window [NMM09]. within
[LLL+15]. Without [LPB13]. Word
[FLD15, Sun11]. Work [AK92].
WorkCrews [VR88]. Workflows
[TTF+08]. Working [FR95]. Worklist
[GRC+14]. Workload [OP12]. Workloads
[VCP+13]. Workshop [SS10].
Workstation [NIK00]. Workstations
[LS05]. World [GHM14, HLP11].
Wormhole [LNP91]. Written [KM10].

XDP [CFB94]. XI [MCE13].
Y-Invalid [BAP01]. YuruBackup
[XZX+15].
Zone [JCH+08, MS11].

References

Anane:2015:TBE

Abboud:2012:CHR

Ayguade:2010:EOS
Eduard Ayguadé, Rosa M. Badia, Pieter Bellens, Daniel Cabrera, Alejandro Duran Roger Ferrer, Marc González, Francisco Igual, Daniel Jiménez-González, Jesús Labarta, Luis Martinell, Xavier Martorell, Rafael Mayo, Josep M. Pérez, Judit Planas, and Enrique S. Quintana-Ortí. Extending OpenMP to survive the het-

REFERENCES

Araujo:2008:PAG

Altman:1998:OMS

Abdi:2006:VSL

Araujo:2015:GES

Aviles-Gonzalez:2014:SMM

REFERENCES

Ali:1986:GGC

Ali:1990:FPS

Ali:1990:MAP

REFERENCES

Ali:1986:PEP

Abramson:1995:EPS

Al-Mouhamed:2004:AOP

Ayguade:2007:I

Ayguade:2007:SIO

Al-Mouhamed:2001:ENG

Ahmed:2001:STL

August:2005:ASC

anMey:2007:NPO

REFERENCES

REFERENCES

[Ano00b] Anonymous. Introduction. *International Jour-
REFERENCES

Anonymous:2000:Ib

Anonymous:2001:I

Anonymous:2003:E

Anonymous:2014:EN

Awasthi:2012:MDP

Ayala:2003:PAC

Arias:2000:PLP

Ben-Asher:1994:UTC

Yosi Ben-Asher and Eitan Farchi. Using true concurrency to model execution...
REFERENCES

Borin:2014:MCU

Banerjee:2004:GEIb

Ben-Asher:2001:INP

Ben-Asher:1995:FPF

[Yosi Ben-Asher, Gudula Runger, Assaf Schuster, and Reinhard Wilhelm. 2DT-

REFERENCES

Bordoloi:2010:GBA

Bernabe:2015:AEF

Barthou:2000:MSE

Berman:2005:NGS

Bianchini:1998:EEC

Bahi:2014:IR

Bull:2010:PEM

Bell:1994:SPC

Bilardi:2013:ESD

Broquedis:2010:FEO

Boton-Fernandez:2015:CAA

REFERENCES

Benini:2011:PRA

Bradley:1987:SLC

Bell:2006:SMS

Bik:2008:CSC

Bonyadi:2009:BGA
REFERENCES

REFERENCES

[BS89]

[BS91] Manfred Broy and Thomas

Benkner:2003:EDM [BS03]

Brown:2007:HSP [BS07]

Baudisch:2015:ESO [BS15]

Bachir:2013:MUF [BTB+13]

Braun:2002:PAS [BUMS02]

Tracy D. Braun, Renard Ul-

Camilleri:1989:OSO

Cybenko:1988:PPU

Carriero:2009:GEI

Corbera:2002:NSA

REFERENCES

Chiarulli:1986:PMT

Chakrabarti:2001:SSA

Camara:2014:EIL

Charr:2012:AEM

Chilstedt:2009:DEC

Calland:1998:RAO

Chapman:2013:EDO

Chang:1997:IBP

Carter:1994:XCI

Currie:2006:ESV

<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao:1995:MRD</td>
</tr>
<tr>
<td>Chen:2014:PCS</td>
</tr>
</tbody>
</table>
Chang:1996:UPE

Creusillet:1996:IAR

Ciepielewski:1991:SPP

Corporeaal:2000:CCT

REFERENCES

Russell M. Clapp, Trevor N. Mudge, and Donald C. Winsor. Cache coherence requirements for interprocess...

Chen:1994:PAI

Capitanio:1995:HBM

Collard:1995:APW

Cleaveland:1988:TTC

Carroll:2004:FIE

Canal:2001:DCP

Czutro:2010:TPI

Conte:1996:HBP

Cao:2012:PMN

Chessa:2014:EEE

Crammond:1988:GCA

Chuang:1992:APU

Conte:1997:OVC

Carter:2000:PAR

Chen:1989:HEH

Cristobal-Salas:2003:NSE
Alfredo Cristobal-Salas, Andrei Tchernykh, Jean-Luc Gaudiot, and Wen-Yen Lin.

REFERENCES

Clark:2003:ADA

Damaj:2007:PAD

Darema:2005:NGS

Davison:1987:BSP

DeSouza:2008:ISI

Alejandro Duran, Roger Ferrer, Eduard Ayguadé, Rosa M. Badia, and Jesus Labarta. A proposal to extend the OpenMP tasking model...

REFERENCES

Dias:2013:SUT

Degano:1987:POM

Dehne:1991:OCM

Das:1991:PSA

deStGermain:2003:PAI

Dekel:1986:OPA

Dehne:1990:OV

Dehne:1997:RPL

Darte:1997:OFM

Dobre:2014:PPP

Dong:2010:PNM

Enokido:2014:EER

El-Gindy:1986:OSP

Egger:2015:ER

Emoto:2014:AFM

Kento Emoto and Kiminori Matsuzaki. An automatic fusion mechanism for variable-length list skeletons in SkeTo.

REFERENCES

DEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

ElKabbany:2011:DLB

Fensch:2011:EBC

Fujimoto:1987:SMA

Feautrier:1992:SESa

[Fea92a] Paul Feautrier. Some effi-

Feautrier:1992:SESb

Feautrier:2006:SSS

Feng:2015:ASW

Fummi:2005:E

Francez:1987:FAC

REFERENCES

Furlinger:2009:CAE

Farrens:1996:GEI

Foster:1989:MGC

Fiore:2014:CBD

Faraj:2008:BEA

Faraj:2008:SPA

REFERENCES

REFERENCES

Gaudiot:1996:GEI

Guo:2008:CIR

Gaster:2010:CTH

Gangwar:2007:EBB

Graham:2003:NFT
REFERENCES

[GGL00] Martin Griebl, Paul Feautrier, and Christian Lengauer. Index set splitting. *Inter-
REFERENCES

Gou:2013:AGC

Gijsbers:2014:ESR

Gupta:1989:SIB

Ghiya:1996:CAP

George:1986:SSP
REFERENCES

Guzman:1987:PSA

Gupta:1992:EPF

Griebl:1995:CSD

Granston:1995:LTP

Gendler:2006:PBM

Grasset:2011:MHD

REFERENCES

REFERENCES

Govindarajan:2000:ECS

Goes:2014:ASD

Grun:1998:SEP

Greenlaw:1990:ASA

Gaudiot:2005:MGE

Jean-Luc Gaudiot and Siang Wun
REFERENCES

Grelck:2006:SFA

Giacaman:2011:PIP

Giacaman:2013:PTP

Gao:2008:GEI

Gschwind:2007:CBE

REFERENCES

Grelck:2010:ASP

Gu:2013:PCI

Granston:1995:CFD

Gornish:1999:IHS
REFERENCES

Girbal:2006:SAC

Govindarajan:1992:AGP

Gilbert:1987:PGP

Hussain:2011:PIA

Halstead:1986:AML

Robert H. Halstead, Jr. An assessment of Multilisp — lessons from experience. *International Journal of Par-
REFERENCES

David E. Hudak, Neil Ludban, Ashok Krishnamurthy, Vijay Gadepally, Siddharth...

Hawick:2011:RLS

HLS15

HMT+96

REFERENCES

319–348, August 1996. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Hank:1997:RBC

Hwu:1994:GE

Holobar:2006:DJJ

Heinecke:2013:EAE

Hidalgo-Paniagua:2015:CSP

Hoeferinger:2001:UIP

REFERENCES

- **Hoffmann:2011:ATP**

- **Hassanein:2008:AEH**

- **Holzenspies:2010:RTS**

- **Han:1998:EBS**

- **Huang:2012:POT**
 Yan Huang, Jie Tang, Zhi min Gu, Min Cai, Jianxun Zhang, and Ninghan Zheng.

Hendren:1997:CCE

Huang:1989:SEP

Hudak:1986:DSP

Huelsbergen:1997:DRR

Hunt:1987:EAU

Huntbach:1991:PBB

Imre:2011:ESR

Issenin:2008:UFM

Iwasaki:2004:NPS

Ishizaki:2000:LT

Introduction:1998:EA

Editorial Introduction. Editor’s announcement. *International Journal of Parallel Programming*, 26(1):1–2, Febru-

Ibarra: 1990: EAP

Iyer: 2005: EEH

Iwashita: 2003: BRB

Jannesari: 2015: DHL

John:1998:CCP

Jimborean:2014:DSP

Jin:2008:PEM

Jenks:1997:ELT

Janakiram:1988:RPB

Jodra:2015:ETG

Jose L. Jodra, Ibai Gurrutxaga, and Javier Muguerza. Ef-

calling? A pin-based dynamic call graph extraction framework. International
Journal of Parallel Programming, 40(4):410–442, August
2012. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http:

[JLMW15] Slobodan Jelić, Sören Laue, Domagoj Matijević, and
Patrick Wijerama. A fast parallel implementation of a PTAS for fractional packing

Jin:2015:CCC

Jin:2015:CCC

JSP97

Jourdan:1997:RRB

Jesshope:2006:SIM

Jeyapaul:2010:CTT

Jesshope:2006:GEI

JS06a

JSS+15

Jaaskelainen:2015:PPP

Pekka Jaaskeläinen, Carlos Sánchez de La Lama, Erik Schnetter, Kalle Raiskila,
REFERENCES

Kapinos:2010:PPP

Kasif:1986:CDD

Kachris:2003:RLB

Kriaa:2008:PPM

Keramidas:2015:RCR

Kennedy:1994:CTM

Kennedy:2001:FGW

Kistler:1999:TBA

Kolberg:2008:DLS

Kalla:2008:FFC

REFERENCES

Ko:2014:SPD

Kumar:2010:FBH

Kirovski:1999:PBP

Kavadias:2012:CIN

Kella:2011:AAP

Kavadias:2012:CIN

REFERENCES

93

REFERENCES

Kessler:1997:FPP Christoph W. Kessler and Helmut Seidl. The Fork95 parallel programming lan-
REFERENCES

Kayi:2014:BAC

Kim:2014:VVF

Krishnan:2001:NFC

Kubota:1999:TER

Kuc:1994:WDU
Kempf:2010:ASB

Lobeiras:2015:BTB

Llosa:1998:QER

Lu:2011:PAA

Li:1992:VTV

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lin:2012:ESC

Li:1991:ECM

Lowenthal:2000:ASB

Li:1994:SL

Langemeyer:2013:USM

Liao:2010:SAA

Lo:1991:OTM

Lee:2014:BCA

Lin:1991:PIS

Loots:1992:PAK

Lipasti:1998:EVL

Mikko H. Lipasti and John Paul Shen. Exploiting value locality to exceed the dataflow limit. *International Journal...
REFERENCES

Lin:2005:EBH

Laudon:2007:CWM

Lee:2007:DBI

Larsen:2009:ABE

Liu:1994:SSS
REFERENCES

DEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Li:2015:ODN

Leite:2012:NNS

Li:2015:CCM

Langr:2015:DAL

Lubachevsky:1990:SBR

Loechner:1997:PPT
[LW97] Vincent Loechner and Do-

REFERENCES

Li:2014:PTI

Lysecky:2008:SPE

Meijer:1987:OCP

Muller:2010:GEI

Munk:2011:APA

Main:1987:TFT

Miguel-Alonso:2009:INS

Margaris:2009:LFF

Mendelson:1999:DAM

Meira:2012:SIC

Moghaddam:2012:IBG

REFERENCES

REFERENCES

Mellor-Crummey:2001:IMH

Mustafa:2015:PPE

Manolache:2007:FAC

Merks:1986:OPA

Milovanovic:2008:NEE

REFERENCES

Meh:2015:MTP

Melo:2014:GE

McAllister:2015:GES

Marsolf:1999:UMS

Mitchell:1998:QML

Maydan:1995:EDD

Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Effectiveness of data

Miller:1988:ISB

Mishra:2009:GEI

Michelogiannakis:2015:ESP
REFERENCES

Moss:2005:CCB

Mendelson:2006:I

Moshvos:1999:SMC

Meng:2011:PSI

Moreira:2007:BGS

José E. Moreira, Valentina Salapura, George Almasi, Charles Archer, Ralph Bellofatto, Peter Bergner, Randy Bickford, Mathias Blumrich, José R. Brunheroto, Arthur A. Bright, Michael Brutman,
REFERENCES

Matheson:1996:PMM

Metzger:2015:UGD

Martinez:2006:DGN

Carmen Martínez, Enrique Vallejo, Ramón Beivide, Cruz Izu, and Miquel Moretó. Dense Gaussian networks:

Monteiro:2014:PFS

Ma:2014:DPI

Nalepa:2015:COP

Nicacio:2013:TSU

REFERENCES

REFERENCES

References

Novack:1995:HAI

Norris:1998:ECR

Nikolopoulos:2001:AOS

Neirynck:1989:EAH

Nau:1986:EAM

REFERENCES

[NYHA14] Ibtelal Nafea, Muhammad Younas, Robert Holton, and Irfan Awan. A priority-based

Ortega-Arranz:2015:CEN

Ortega-Arranz:2015:TML

Ossner:2013:GMB

Ozturan:2011:GEP

OBoyle:1999:NDT

REFERENCES

issn=0885-7458&volume=36&issue=3&page=131.

REFERENCES

Ortega:2004:DMI

Parallax:1986:WPB

Panda:2008:GEI

Parallax:1986:BPP

Parallax:1986:HPS

Parallax:1986:WPB

Pandey:2001:SIE

Palanciuc:2004:SCM

Penry:2013:ABS

Park:2013:PMP

Park:1989:DPM

Pai:2007:FFE

[Rajani Pai and R. Govindarajan. FEADS: a frame-

Pin:1995:I

Pin:1999:I

Pan:2004:DPC

Paul:2007:ALR

REFERENCES

REFERENCES

Pratt:1986:MCP

Panesar:2006:DPP

Palis:1992:NAR

Park:1997:AGT

Panetta:2012:ATD

REFERENCES

[Rajagopalan:1994:SSP]

[Rashti:2009:SAM]

[Rau:1996:IMS]

[Rana:1986:ODS]

[Rohou:2000:HGC]

[RMG+13] Gabriel Rodríguez, María J. Martín, Patricia González, Juan Touriño, and Ramón Doallo. Compiler-assisted

[Rosas:2014:IPD] Claudia Rosas, Anna Sikora, Josep Jorba, Andreu Moreno,

[RSK09] [SAB11] Roberiti:2005:PIL

[Sar01] [Suri:2010:IAP] Sen:2011:SCB

REFERENCES

Stepoway:1988:PRF

Scarpazza:2011:TPT

Silva:2014:EDE

Schwab:1992:EPG

Shriraman:2011:ACH

So:1998:MCG

[SDJS98] John John E. So, Thomas J. Downar, Raghunandan Janardhan, and Howard Jay Siegel. Mapping conjugate gradient algorithms for neu-

Sohr:1998:GEI

Seki:2009:DRI

Shee:2008:AEH

Steuwer:2014:I

Sreraman:2000:VCM

REFERENCES

openurl.asp?genre=article&
issn=0885-7458&volume=28&
issue=4&spage=363.

[SJG+03] Hideki Saito, Greg Gaertner,
Wesley Jones, Rudolf Eigenmann,
Hidetoshi Iwashita, Ron Lieberman,
Matthijs van Waveren, and Brian Whitney.
Large system performance
of SPEC OMP benchmark
suites. International Journal
of Parallel Programming, 31
CODEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640 (electronic).
asp?J=4773&I=33&A=3&LK=
NM; http://ipsapp007.kluweronline.com/content/
getfile/4773/33/3/abstract.htm;
http://ipsapp007.kluweronline.com/content/
getfile/4773/33/3/fulltext.pdf;
issn=0885-7458&volume=31&
issue=5&spage=197.

[SJH96] Kish Shen and Manuel V. Hermenegildo.
High-level characteristics of OR- and
Independent AND-parallelism
in Prolog. International Journal
of Parallel Programming,
CODEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640 (electronic).

The scalability of disjoint data
structures on a new hardware
transactional memory
system. International Journal
of Parallel Programming,
CODEN IJPPE5. ISSN 0885-
7458 (print), 1573-7640 (electronic).
REFERENCES

Slagter:2015:AME

Sarvestani:2013:ERA

Susswein:1991:PPC

Song:2014:OBS

Sanci:2011:PAU

Shahbahrani:2006:ACR

[SJBV06] Asadollah Shahbahrani, Ben Juurlink, Demid Borodin, and Stamatis Vassiliadis. Avoiding conversion and rearrangement overhead in SIMD architectures. *International Journal of Parallel Program-
REFERENCES

Sasakura:1999:NIV

Sundararajan:2013:SCE

Schlansker:1997:TCP

Sun:2014:AVP

Schlansker:1996:PCR

Singh:1991:EAP

Shi:2009:BIO

Skillicorn:1991:MPP

Schneider:2014:LBD

Shen:2013:ITI

Sharma:2009:MLP

Scott:1994:FCF

Michael L. Scott and John M.

Stojcev:1994:OSP

Salapura:2011:GEI

Sarojadevi:2004:CPE

Schepke:2013:OMR

Stavros Souravlas and Manos Roumeliotis. A pipeline technique for dynamic data transfer on a multiprocessor...
 REFERENCES

REFERENCES

Sazeides:1999:LDV

Shan:2001:CMS

Sankaraiah:2014:POV

Sterling:1996:EEC
Sheffler:1996:EDA

Saito:2000:DPC

Sukhwani:2015:HSA

Sundell:2011:WFM

Stoltz:1995:DVB

REFERENCES

1995. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Swain:1988:CSH

Song:2005:PTA

Sha:2015:PEH

Subramani:2008:DIS

Tyson:1999:MRF

Tipparaju:2012:RTE

Tomic:2014:UDR

Trancoso:2006:CCM

Tyson:1994:CSM

Tyson:1996:EEP

Tyson:1997:MDC

REFERENCES

0885-7458&volume=39&issue=3&page=357.

[Vianna:2013:APM] Emanuel Vianna, Giovanni Comarello, Tatiana Pontes, Jussara Almeida, and Virgilio

Enrique Vallejo, Sutirtha Sanyal, Tim Harris, Fernando Vallejo, Ramón Beivide, et al. Hybrid transactional memory with pessimistic concur-
REFERENCES

REFERENCES

[Wu:2000:CPG] Peng Wu and David Padua. Containers on the paral-

REFERENCES

Yang:1995:MDD

Yzelman:2014:MCH

Yun:2003:TOS

Yang:2013:IHP

Zhao:2009:LTL

Zeyao:2005:CAP

[Zey05] Mo Zeyao. Concatenation algorithms for parallel numerical simulation of radiation hydrodynamics coupled with neutron trans-

Zhang:2015:HTP

Zhang:2010:COP

Zalamea:2004:SHT

Zhang:2007:RCM

Zhang:1989:PAM

Zalamea:2004:SHT

Zhang:2015:QBA

Zhang:2012:DDA

Zyulkyarov:2012:POT

Zheng:2015:VBM