A Complete Bibliography of Publications in the
International Journal of Parallel Programming

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

01 August 2023
Version 2.39

Title word cross-reference

* [CS16], + [HVF18, SBC17], 0 [LS92], 1 [LS92], 2 [CTB14, ES11, IBA11], 3 [BC15, HPVRPF15, HF14a, HF14b, JGM15, LLGC17, LHP+17, SJKA99, fSxWC18, SBC17]. < [JS06a], > [JS06a]. (R) [BKT08, SM09]. T^M [BKT08]. i [TRD21]. K [LKS+20]. kd [WR18]. l_1 [GLLH17]. m [DPL86].

-D [ES11], -Means [LKS+20], -Minimization [GLLH17], -Tree [WR18], -way [DPL86].

1000 [SSMO96], 14 [HG18], 16 [Swa88], 18th [DB08]. 2 [ELK18], 2.0 [RSJ+19], 20 [TTF22], 2000 [IPR+05], 2011 [MCE13], 2013 [AG15], 2014 [Bro15], 2015 [PVG17], 2019 [Kes20], 2020 [RJO22], 2DT [BARSW95], 2DT-FP [BARSW95].

3 [EAK21], 3.0 [KaM10, OP10].

512 [RSJ+19].

95 [KaM10].

A. [Swa88], Abingdon [AM95], Above [LCT+20], abstraction [VR88].

Abstractions [ASS21, BCL14, LQWP10, YAI95].

Abstractive [KSF+18], Accelerated [DMC+18, HML+20, KLK16, PES+18, SF20, SBC17]. Accelerating
[FFS18, FRT+18, FJZ+15, HF14a, HF14b, LLGC17, MAWD+16, MNN22, PTdSF+12, SCS23, XWH21, ZHF+19, ZTY+19].

**Acceleration** [BC10, MCFM12, STM15].

**Accelerator** [ALPS19, EK17, FvLv+16, LWGZ18, SWG+18, TTF22, YZZ+19].

**Accelerators** [GP17, LCFC21, SdLC21, ZJL22].

**Access** [JG97, Joh94, LMHW18, OOR13, ZK07].

**Accesses** [GV95, LPB13].

**Accumulations** [MM16].

**Accumulative** [IH04].

**Accuracy** [CEP97, KP04].

**Accurate** [PZL+19, RGB+08, TA99].

**Accurately** [BGdS09, Low00].

**Achieving** [AMP+05, GAR+16, GS90, Won02].

**Acknowledgment** [Nie14].

**ACOTES** [MAB+11].

**Action** [WZG+17].

**Active** [RLK20].

**Activity** [FR95].

**Algebra** [CCG+14, CBR17, HKJ+18, KTRZ+17, MP04].

**algebraic** [SS89].

**Algorithm** [AFO+08, AKT+14, ASG20, BM09, CSCL20, CL96, Cra88, CDDM18, DMM91, DWS16, DZW10, EKU22, FBV21, GF14, GKC22, HNC+16, IP90, IKN00, JLDF19, JGW+18, KBD03, LLM+12, LMP98, LF15, LKS+20, MMN15, MSJ20, MCT+18, Mer86, MB12b, Mohl99, MVD+14, NFC+09, NB15, NRR99, NRGB17, NtMMW16, PS92, RY20, RY22, RK92, RRR2, Sl11, SF20, SWL05, Spr92, XZT20, ZQT20, ZTY+19, EG86, FcF87, GZ87, GT86, Hua89, JGA+88, LS92, Sch92, SRV88].

**Algorithm-Based** [NRR99].

**Algorithmic** [DMK21, DM17, EK17, GK18, HddMMK22, HK23, dMMHdLN21, SHK13, WE18, WMK19, WK20].

**Algorithms** [AT91, APR+18, AMAH01, AK17, ABSSS19, AGT17, BR14b, CAT18, CAP88, Dam07, DPs90, DMC+20, EO88, FG16, GM20, Ged13, GP17, GF14, HSXH19, IBA11, Iqb91, uHKAMFM16a, uHKAMFM16b, KPS14, Ltsd15, Liv91, MDMKdLN22, ÒO07, Pip18, RG15, SH87, SS92, SAS18, SKAT91, SJC18, SR90, XWH21, Zey05, ZL15, ZHF+19, DPL86, ECSS88, HFZ88, SDJS98, Swa88, Zha89].

**Alias** [LC11, WGW04].

**Aligned** [Dab21].

**Adjustment** [ZLC+19].

**ADL** [PC13].

**ADL-Based** [PC13].

**Admission** [NYHA14].

**Adoption** [SdLC21].

**Advance** [SL14].

**Advanced** [AAN+20, DLRs13, MAB+11, LF15, NdMMW16].

**Advantage** [TKN+08].

**AES** [XWH21].

**Affine** [Fea92b, KDV22, KP95, LM00, Mon97, Fea92a].

**Affinity** [GRG+14].

**After** [AKBPV19].

**Again** [MP04].

**Against** [DDJ+18, FDY+19, GWHY19, MWES19].

**Age** [DKB+09].

**Agent** [FLMR17a, FLMR17b, WLL+08, STB+18].

**Agent-Based** [FLMR17a, FLMR17b].

**Agents** [ES06].

**Aggregation** [HHW20, LSA+07, SBN03].

**Aggressive** [SK14].

**Agnostic** [AVM+16, NAP02].

**Aircraft** [MSJ20].

**AIDS** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**Air** [LCT+20].

**AI-Assisted** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**Agriculture** [GKC22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**Aircraft** [MSJ20].

**AIDS** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**Aircraft** [MSJ20].

**AIDS** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**Aircraft** [MSJ20].

**AIDS** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**AI** [GAG22].

**AI-Assisted** [GAG22].

**Aircraft** [MSJ20].

**AIDS** [GAG22].
Altruism-Based [LCL19]. AMAIX [ZLJ22]. Amdahl [Ano87a, PM07]. AMR [NLRH07]. Analyses [CI96, GV95, SJW22].

Analyzing [BDD+18]. Analysis

AK96, ABTZ00, AFO+08, AW98, BEA+19, BG96, BFRPvR+15, CSC+00, CSD21, CAZ02, CAT18, CPL+10, Fea91, Gha19, GGH96, HML+20, Jaki91, KP04, LTI7, LCL19, LYY5, LHF+15, LWDL17, LHP+17, LC11, MP01, MHL95, MP04, NSU22, NP19, PCJ20, PPEP08, RLEJ19, RRH03, Scati1, SSP+96, SO89, US05, WGW04, dMP+03, AD86, GTK+88, NPD89, AD86, GTK+88, NPD89, ASW+15, Dem11. Analyzing

APR+18, ALG+95, DF98, FM09, HRH08, SD11. AND-Parallelism [SRV88].

AND-Parallel [SH96, BS89]. AND/OR [RK92]. Android [AER+17].

Animation [BGMR11]. Announcement

Announcement [Int98, Ano86d, Ano92]. Anomalies [Jan15].


APP+02, AP03, BD90, BS07, CZT03, Dami07, EGK23, FJO+18, HL21, HTDL18, JCH+08, JA17, KS07, Mc07, MP04, Moli19, PG07, PB04, RSK09, Sek09, SKG09, TOM+11, VMS15, BH87, CRM92, WB87. Application-Aware [JAW17].

Application-Dependent [VMS15]. Application-Level [HTDL18]. Application-Specific [API03, TOM+11]. Applications

Ano16a, Ano18b, BEA+19, BEJD21, BBRII1b, BDD+18, CY14, CR19, CB17, CHCL14, CPT14, DPT17, DFH17, DS16, DGM09, EWH91, FM09, GH14, GS11, GS13, GRC+14, GGV17, Gre16, HK14, HMK09, HtBK+10, HLK+09, IPR+05, KMjC02, KPRS96, KTB18, LRG14, LW+17, LQPWP10, LWLG11, MV17, Mar09, MAJD16, MG15, MCWK01, MANR09, Mis09, OK99, ÖA21, PPQV16, RLNP+02, RSI+14, RGB+08, SR15, SUCV17, SSB+17, SASH12, SBN03, TG21, TB23, TMHT96, WL16, WLL47, ZK07, ZSS+19, ZD19, ZSH+12, GKM87, SJD98, SS89. Applicative [Hum87]. Applied

Applied [BUMS02, KaM10, Lin91a]. Approach

AK90b, AVM+16, BBB+17, CHB06, DM17, FCZ16, FJA+18, FBV+16, GAG22, GYL92, IRGPW15, KK20, KSF+18, KSA+18, LTF+12, LLL+15, LCT+20, MO91, NNP, OATGEL15a, PMV17, QZP15, STM15, VSDK09, qWIzKlC17, WS08, WEJ94]. Approaches

APR+18, JCH+08, PC1J+16, VCP+16].

Arbitration [BS91]. Architect [ARB+05]. Architectural

Architecture [LSH09, NP01, SEP08, TCV14, WGF+16]. Architectures

Architecture [AP86, ARB+05, BGGT02, CHL14, FCP+19, CDC09, DB08, DLRS13, FCZ14, GHKP98, HP13, LAD15, MGE13, MGJS15, Mis09, NFFC+09, NDMMW16, NAP02, RD08, STF+12, SJT13, TR21, YS22, ZTY+19, CB86, GKM87]. Architecture-Agnostic [NAP02].

Architectures [Ano18b, Ano18a, BG96, BFG+10, CP01, CND95, CJA20, GPP07, Ged13, GAG22, GGV17, HCEP98, HP13, LAD15, MCE13, MGJS15, Mis09, NFFC+09, NDMMW16, NAP02, RD08, STF+12, SJT13, TR21, YS22, ZTY+19, CB86, GKM87]. Area

Area [RSP20, Roy10, SWZ+15, WMN+17].

Argument [ABASS12, NG92]. Argument-Fetching [NG92]. Arithmetic

Arithmetic [ABASS12]. ARM [MGL+17]. ARMV8 [CFC+19, KHT21]. ARMV8-based

ARMv8-M [KHT21]. Arnoldi
Array [AM04, BG96, CZ12, CI96, Fea91, GV95, GS06, GW19, GB20, SMM94, TG05].

Array-oriented [CZ12]. Arrays [EHKT07].

Arrival [FPY08b, QA11]. Art [KPS14, LHL+16].

Artificial [CSCL20, GKC22]. ASIPs [ALTT17].

Assessment [KKSP18, KK20]. Assessing [EGK23, KKSP18].

Assessment [BKK20, BKK23, FJA+18, Hal86, UWF+20].

Assignment [CB01, Fos89]. Assimilation [GRV+17, GAG22, MMG04, RMG+13, CMW+94, LCF21].

Asteroid [RC16]. Astronomy [vNR11].

ASW [ZTY+19]. Asynchronous [BBC07, CJS21, DF98, GSS10, GW19, PHS19, SAS18, CG94].

Atmospheric [SMSH13]. Atomic [SW16, Win89].

Atomic [HVF18]. Attack [ABSSS19, MWES19]. Attacks [AAI+20a, AAI+20b, GW19].

Attempting [GYL92]. attitude [WSC20].

Attribute [MO91]. Attributes [BDD+18].

Auction [WWWG+19]. Auto [GG13].

Auto-Tuning [CCG+14, Ged13].

Automata [BR07, WSS18]. Automated [AZK+18, BEJD21, JGP+18, VNM19].

Automatic [AAB+16, API03, ALG+95, BG17, BGGT02, CZ12, CZTM03, Co95, CAV02, EM14, FCRC16, Gk94, GBV+06, GRC+14, GYP22, GMS00, HHC+15, Jak19, JW16, LQWP10, PHS19, SRS06, SHK13, SSB+17, SNS21, TFEK16, TG05, ZLC+19, vDSGBW08, KV87].

Automatically [DDJ+18]. Autonomic [GGV17].

Autonomous [KK11]. Autotuning [BC15].

Avoidance [NBA13]. Avoider [YZZ20].

Avoiding [MMN15, SJBV06]. AVX [RSJ+19]. AVX-512 [RSJ+19].

Aware [AOAM21, AAB+16, AVLV03, CTK+11, CAV02, DCX+17, FPCD14, GB20, HZZS20, JQWG15, JAW17, JDF20, KHT21, LQWP10, LGY16, LHLT19, Mar17, MMD21, PS23, QA11, WTZ+19, WTQ21, XLWX19, YHG16, MEF07, YFC21]. Awareness [KA120, RGB+08]. Axiomatization [GM20]. Axioms [FK87].


Categorized [LYL14]. Cattle [KSA+18]. Caused [MKAP05]. CCAP [JQWG15].
ccNUMA [NP01]. CCRP [BHL21].
Central [FVvL16]. Centric [CM06, FPCD14, KP01]. Cetus [BML13, RMG13]. Challenges [Bel94].
Change [LHAFM19]. Channel [Gha19, GL92, HZSS20, WQJY17].
Channel-Aware [HZSS20]. Channels [FDY19, KLK16, YDV19].
Characteristics [SH96, Tic90].
Characterization [AVMd16, GM20, YDV19]. Characterizing [BGMd09, CFX20].
Charismatic [LKS20]. Check [NR99]. Checking [AKBPv19, Hen21, HMK09, TLSG05].
Checkpointing [LNP91, RMG13]. Chemistry [CGN09]. Chinese [FCZ16].
Chip [AO19, AOAM21, GRV17, GG13, Gsc07, JLDF19, JDF20, KKZN12, KSEG14, KT01, LS07, MVB06, OP12, PM07, TGT18, TESK06, ZK07, ZGH15, ZC09, AH08].
Chip-Multi [AOAM21].
Chip-Multiprocessors [GRV17, TGT18]. Chips [NCR19]. choice [BS89]. Cholesky [GN89].
church [Ano86a]. Circuit [PMV17, WPC07]. circuits [BH87]. CISL [MPR05]. Cities [KIT20]. Clairvoyant [SY08].
Class [BE13, MPR05, IPR05].
Class-Based [MPR05]. Classification [CHYP96, CS20, KTBP18, Mon97, NAS23, QZP15]. Cleaning [MCT18]. Clearance [GAK20]. Climate [HNC16, HLF15].
Cloaking [MS99]. CLOMP [BGdS09].
Closure [CAP88, KP95, KPRS96, VK88].
Cloud [AAI20a, AAI20b, CAK17, DS20, HZL16, HC17, JM20, JQWG15, KJHB14, RLH14, WQJY17, ZXZ15, XLWX19, uRHH14].
Cloud-Based [AAI20a, AAI20b].
Clouds [JAW17, LTF12, LCT20].
Cluster [CYS16, EAT14, ES11, FPCD14, L09, LTL15, LSYG15, MDIP02, NIK00, SCB14, YS22]. Cluster-Based [FPCD14, L09]. Clustered [CPG01, GPK07]. Clustering [ANS20, BABW14, C40, CAP88, DMC91, FZ16, LKS20].
Clusters [BEA19, BS03, BC15, DWQ17, EAK21, FP08a, GCD03, GSY13, HC17, HOZ06, QA11, RPF18, TTF22, WK20].
CMP [DLX01, LTL15]. CMPs [BHZ06, FEM14, KZM11, LLY09].
CNNs [SWG18]. Co [GRA00, MP05, NB15].
Co-Generation [MPR05]. Co-operation [NB15]. Co-Scheduling [GRA00].
Coarse [CSF20, NO03, PMS97, SS21, WW17, AD89]. Coarse-Grain [PSM97].
Coarse-Grained [CSF20, SS21, WW17]. Code [AKBPV19, ABT20, BTB13, CPG01, GBL10, GKH17, JS10, KaM10, KAMAMA17, LF15, LC11, MGW99, MCA98, MP04, NRB04, NLLB23, O007, PT04, TFEK16, TF94, WNMW16, WK20].
Codes [CAZ02, ELGE17, HTK98, FK99, RMG13, SF20].
Coding [DRLS13, MB12b, SKEA14, YMW17].
Coflow [CLL21]. Coherence [CMW90, FC11, KSEG14, MPAG18].
PMM18, SNB04, SMH21, YDV19, BCK98].
Coherence-Free [PMM18]. Coherent [SS01, TGT18].
Coherence [KKSP18].
Collaborative [Gen16, JCMW18, VSDK09, WLMW15].
Colony [ASG20, CSCL20, dMMHDLN21].
Combinatorial [MAT23]. Combining [ABASS12, GV95, GH98].
HSCI16, LSM18, LLSS03, RK92, SMC94, WMC98].
Coming [LS07]. Commands [YL92].
commentary [Lin88a]. Comments [Swa88].
Commercial [NYHA14, RLPN02].

Communication [AAN+20, AH08, BG17, CTB14, GAR+16, GL95, IBA11, IKN00, JQJ+16, KHH08, KKZN12, KT01, KTT+99, LM00, MMN15, MEP07, MO91, OPLS17, PSM97, RGB+08, TOM+11, TA99, WZTH13, MO90].

Communication-Avoiding [MMN15]. Communication-Driven [TOM+11].

Communications [HZZS20, Mon97].

Compaction [DH00, KGK20, PYX17].


Comparison [BS07, DMC+20, HMF+13, OP10, SS01, ECSS88, FT87, GE89, Hua89, Kas86].


Compiler [AZK+18, ALPS19, BML+13, BKT08, CGN+09, CTK+11, CP04, CFB94, CEH13, EM13, FKM+11, GBC+08, HTK98, JCD+14, Ken94, KTT+99, LCFC1, LEL+99, MMG04, MO91, MCA98, MAB+11, PB04, RMG+13, RBES00, SSP+00, SBC17, SG00, TMHT96, TJY99, YL13].

Compiler-Assisted [RMG+13, LCFC1]. Compiler-Generated [JCD+14, MCA98].

Compiler-Paralleled [HTK98, TMHT96].

Compiler-Towards [SSP+00]. Compilers [HML+20, MPR+05, ME15, SGK12].


Components [DKB+09, DJR16]. Composability [CB19]. Composable [AMP+05]. Composed [LWF+19].

Composition [GVB+06, GGV18, HHC+15, RK13]. Compositional [EHKT07, TLSG05].

Comprehensive [OATGEL15a]. Compressed [KK11]. Compression [BABW14, HNC+16, KKM09, TSS99, VHK+18].

Computation [BG17, BEP13, CJA00, Cz17, DMS91, FLMR02, HSCI+16, JAW17, KSBN22, LEA15, MCWK01, MNN22, NDMM09, PGLC+18, Ric90, SSM21, SK91, SSB21, KVM87, MA87].

Computation-Oriented [SSM21].

Computational [HLK+09, LLL+15].

Computations [HKJ+18, IH04, JLV21, NST89, PMHC03, SBC17, VCP+16, YH18, LRG+91, SS89, TKM89, Wai87].

Compute [LSM+18, SR15].

Computing [APR+18, ACD+16, Ano16b, Ano18b, Ano19, BE14, Car09, CTP13, CSR+20, CGPS18, CSTLG03, DDD+19, DFH17, Den94, DS20, FKV21, FKT12, GWY18, Gha19, HMF+13, HMKM22, HK23, HLS15, HS16, JM20, KJHB14, LLGC17, LRG14, MB12a, OATGEL15b, OG11, PLN+04, RLH14, SM09, SZ17, SWG+18, TG21, TRL09, TAY+12, TFPF18, VCP+16, WTZ+19, WTPQ21, WSO+07, WGW04, YS22, YFC21, Zha10, ZZS+19, NK88, DB08].

Concatenation [Zey05]. Concept [KaM10].

Concurrency [BAF94, Gen16, PCJ20, SB90, VSH+11, WLIW15, YZZ20, AD86, CP88, DM87, Pra86].

Concurrent/synchronization [AD86].

Concurrent [Ano16c, AR16, CHSC18, GMP89, LWDL17, PB01, SBC17, TSS86].
LRG14, MGL⁺¹⁷. Curve [Bos12]. Custom
[MCFM12]. Customization [GSY⁺¹³]. Customized [ASG20]. Cycle [FCJV99,
HZZS20, SAB11, TGT18, dMP⁺⁰⁸]. Cycle-Approximate [TGT18]. cyclic
[JB98]. Czip [HNC⁺¹⁶].

D [BC15, CTB14, ES11, HPVRPF15,
HF14a, HF14b, IBA11, JGM15, LLGC17,
LHP⁺¹⁷, SJKA99, fSxWC18, SBC17].
D-Stacked [LHP⁺¹⁷]. DAFT [ZLJA12],
Daily [Ano87c]. DancerFly [JDF20]. Data
[APR⁺¹⁸, AKHD13, ABTZ00, Ano16d,
AMKE18, ALPS19, AJF16, ANS⁺¹²,
ALG⁺⁹⁵, BARSW95, BS03, BBGM95,
BG96, BCL17, CFB94, CAK17, CAT18,
DDD⁺¹⁹, DM17, DC20, DTLW16, DMC⁺²⁰,
DX14, DFZ21, DLX⁺¹⁷, DJS12, EW96,
EK17, ELGE16, FJA⁺¹⁸, FRT⁺¹⁸, FPCD14,
GSP⁺¹⁷, GG14, GL18, GV99, CYL92,
GB20, HSCI⁺¹⁶, HZZ⁺¹⁹, HRRH08, HHW20,
HP13, HGT⁺¹², HTnG⁺¹², HNC⁺¹⁶, IR19,
KIT⁺²⁰, KTF23, KP01, KP04, LSA⁺⁰⁷,
LTL15, LVM16, LT17, LSM⁺¹⁸, LWL11,
LHF⁺¹⁵, MXP14, MHL95, MCWK01,
MMT15, NRR99, NP19, NAP02, NLRH07,
OK99, PCJ18, PMHC03, RSA⁺¹⁸, RG15,
RS90, RrC90, RSJ⁺¹⁴, SdLC21, SNB04,
SS99, SL14, SQH92, SR04, SH15, SASH12,
TESK06, TFM97, WTZ⁺¹⁹, WSC20,
WTQ21, WB87, WE18, WW17, XZT20,
XH98, YAF95, YWW⁺¹⁹, YS22, YLB19,
ZLA21, vSGBW08, CG94, Gao86]. data
[Kas86, Win89]. Data- [LSM⁺¹⁸].
Data-Centric [FPCD14, KP01].
Data-Driven
[AMKE18, DTLW16, TESK06]. Data-Flow
[Ano16d]. Data-Intensive [LWL11].
Data-Locality [CAK17]. Data-Obtaining
[XZT20]. Data-Parallel [AJF16, SQH92].
Data-Sharing [SNB04]. Database
[SB90, STM15, VK88]. Databases
[WZB⁺⁹²]. Datacenters [BHL21].
Dataflow [BS15, CGPS18, CZTM03, Foa91,
FBGEL19, JCW⁺¹⁸, LS98, NRB94, NG92,
OGP⁺¹⁶, TB23, WGF⁺¹⁶, ZD19].
Dataflow-Based [JCW⁺¹⁸]. Dataflow-Inspired [OGP⁺¹⁶]. Datapath
[SdLC21]. Datasets [MV17]. Datetime
[IS18]. DCF [JCW⁺¹⁸]. dCompaction
[PYX17]. Deadlock [LWDL17].
Deanonymization [GWHY19]. Debugging
[BBGM95]. Declarative [KT123].
Decomposed [WEJS94]. Decomposition
[ADC⁺¹⁷, BUMS02, QZP15, YYXX20].
Decomposition-Based [QZP15].
Decoupled [ZLJA12]. Deductive [FG16].
Dedup [DCX⁺¹⁷, GHD19].
Deduplication [DCX⁺¹⁷]. Deep
[CLL21, FFS18, GVB⁺⁰⁶, HZZ⁺¹⁹, MFC21,
PVF21, QGT⁺¹⁹, YZZ⁺¹⁹, ZJL22].
DeeperThings [SHS21]. Defect [OB13].
Defend [FDY⁺¹⁹]. Defense [YDV19].
Define [JACK20]. Defined [CSC10,
KWA⁺¹⁰, KIT⁺²⁰, NSU22, RMH21, DM87].
definite [GHLN86]. Definition [OK99].
Degree [AK17]. Delay [BMA02, NST89].
Delayed [PYX17]. Demand [JK86].
demand-driven [JK86]. Demonstrating
[ACC⁺⁰²]. Denotational [Hud86]. Dense
[KFC08, MVB⁺⁰⁶]. Dependence
[ABTZ00, DV97, GV95, KP04, MHL95,
Mon97, NP19, SW95, YAI95, WB87].
Dependencies [CDRV98, DSR17].
Dependencies [CH95, JB98]. Dependency
[MWES19, WTT⁺¹⁹]. Dependency-Aware
[WTT⁺¹⁹]. Dependent [DFA⁺⁰⁹, VMS15].
Deployed [ANAN⁺¹⁰]. Deployment [PK20].
Depth
[PTdSF⁺¹², ZJL22, KRR², KRS², SJW22].
Derivation [MLDP02, S089]. Derivative
[B0h23]. Derived [NFC⁺⁰⁹]. Deriving
[BAI87]. Description [ARB⁺⁰⁵, MPR⁺⁰⁵].
Descriptions [GWHY19, KPS05]. Design
[ACD⁺¹⁴, AML⁺¹⁰, AR16, BC10, BDD⁺¹⁸,
BS91, CHB06, CDC09, CZTM03, DMK21,
FVvL⁺¹⁶, HLA⁺¹⁰, KHH08, KWA⁺¹⁰,
KS97, LMHW18, MB99, OGP⁺¹⁶, PG07,
PP10, RK13, SSP⁺00, SY08, TLSG05, TKN⁺08, WLL⁺08. Designing
[BKK⁺20, BKK⁺23, SCB⁺14]. Desktop
[GS⁺13]. Detailed [LLGC⁺17]. Detect [DS⁺16].
Detecting [AKA⁺20, SW⁺05]. Detection
[CLJH16, CRM17, DV⁺97, HPY01, HTDL18,
Jan15, K¸SJ14, LFHAM19, MTT15, NSU22,
NRG⁺17, fSxCW⁺18, fS⁺18, WNWZ₁₅,
YW⁺₁₉, YLB₁₉, ZQT₂₀, Tho87].
Detection/Correction [HTDL18].
Determinism [SCB⁺14]. Deterministic
[EVK⁺22, PTD⁺06, ZC⁺17]. Developing
[CEH⁺13, EHKT⁺07, GHC⁺17]. Development
[Dam07, TCUV⁺14, dMP⁺03]. Device
[GZJ⁺18, MFGEL₁₉]. Devices [AER⁺17,
AGPGF⁺14, Dam07, JQJ⁺1₆, SHS⁺2₁]. DFA
[KJHB⁺14]. Diagnosis [GKC⁺₂₂].
Diagnostics [RC⁺₁₆]. Diagonalization
[HOZ⁺₀₆]. Difference [Ger1₀]. Different
[MC⁺₂₀, GPVP⁺₂₁, JCH⁺₁₄].
Differentiated [AKT⁺₁₄]. Diffusion
[HF⁺₁₄₄, HF₁₄₅b, SDJ⁺₂₁]. Digital
[GP⁺₁₇, RSP⁺₂₀, SS⁺₀₂, ZC⁺₀₉].
Digital-Microfluidic [ZC⁺₀₉]. Dijkstra
[FB⁺₂₁]. Dimensional [BARSW⁺₉₅,
EHKT⁺₀₇, LPB⁺₁₃, Fee₉₂₉, RG₁₈, WLL⁺₁₇].
dining [RB⁺₈₆]. Directed
[BDH⁺₁₄, Hue₉₇, Zha₈₉]. Directives
[AA⁺₂₁₆, HSCI⁺₁₆]. Discontinuous
[CF⁺₁₉]. Discovery [GH⁺₇₁₇]. Discrete
[Dem₁₁, PPQV⁺₁₆, SS⁺₂₁]. Disjoint [SH⁺₁₅].
Dispatcher [SY⁺₀₈]. Dispersion [RSV⁺₀₅].
Distance [BE⁺₁₃, HG⁺₁₂, KAI₂₀].
Distributed
[AKA⁺₂₀, BS⁺₀₃, BR₁₄₄b, Boh₂₃, CY₁₄,
CCL⁺₁₂, CR⁺₁₉, CHCL⁺₁₄, CSTGL⁺₀₃, DS⁺₉₇,
DZ⁺₁₀, EK⁺₁₄, FSS⁺₀₆, FPC⁺₁₄, FBGEL⁺₁₉,
GH⁺₁₄, GL⁺₉₅, HK⁺₂₃, HOZ⁺₀₆, JL⁺₁₈,
JAW⁺₁₇, KTF⁺₂₃, LWL⁺₁₉, Lin₉₁₉a, LHP⁺₂₂,
MP⁺₀₁, MMG⁺₀₄, MBE⁺₀₃, MVD⁺₁₄, NIK⁺₀₀,
OATGEL₁₅b, OG₁₁, PLN⁺₀₄, PS⁺₂₃, SNB⁺₀₄,
SW⁺₁₆, SB⁺₀₁, SHS⁺₂₁, TTF⁺₀₈, TTMD⁺₂₃,
qWLzKhC₁₇, WTL⁺₂₃, AH⁺₈₆, GS⁺₀₀, GT⁺₈₆,
PW⁺₈₇, RB⁺₈₆, RS⁺₉₀, TKM⁺₈₉, Tho₈₇, Sek₀₉].
Distributed- [FBGEL⁺₁₉]. Distributed-Memory
[BS⁺₀₃, TTMD⁺₂₃, qWLzKhC₁₇].
Distributed-Order [Boh₂₃]. Distributing
[HH⁺₁₀]. Distribution
[ALG⁺₉₅, HSCI⁺₁₆, NAP⁺₀₂, SSP⁺₉₆].
Distributions [AKHD⁺₁₃]. Divergent
[LV⁺₂₂]. Divide [MFC⁺₂₁].
Divide-and-conquer [MFC⁺₂₁]. Divisible
[RS⁺₁₄]. DMR [ZC⁺₁₇]. DNN
[LCF₂₁, WTL⁺₂₃]. Do [Kuc₉₄]. DocChip
[TRD⁺₂₁]. Document [LKS⁺₂₀, TRD⁺₂₁].
Domain [CB⁺₁₉, GF⁺₁₄, TFEK⁺₁₆, WL⁺₁₆,
WK⁺₂₀, RK⁺₁₃]. Domain-Based [GF⁺₁₄].
Domain-Specific [WK⁺₂₀]. Dominance
[Spr₉₂]. Dominating [DWS⁺₁₆]. Double
[KJPN⁺₁₀, LLM⁺₁₂]. Double-Precision
[KJPN⁺₁₀]. Downsampling [LTSD⁺₁₅].
DRAM [SJW⁺₂₂, WMN⁺₁₇, ZLJ⁺₁₇].
DRAMSpec [WMN⁺₁₇]. DRAMSys⁺₄.₀
[SJW⁺₂₂]. Driven [AMKE⁺₁₈, CPMC⁺₉₆,
DTL⁺₁₆, GRC⁺₁₄, RNJ⁺₁₂, TOM⁺₁₁,
TESK₀₆, VNU⁺₁₉, XH⁺₉₈, JK⁺₈₆, Kas₈₆].
Driver [GZJ⁺₁₈]. Drives [YY⁺₁₆]. DRL
DS [GN⁺₂₀]. DSM
[BAP⁺₀₁, MMG⁺₀₄, WLL⁺₀₈]. DSmS
[HTK⁺₀₈, KVG⁺₁₈]. DSP [SHK⁺₁₃].
DSParLib [LHP⁺₂₂]. Dual [WS⁺₀₈].
Dual-thread [WS⁺₀₈]. Duo [BKΤ⁺₀₈].
Duplication [CKC⁺₂₂]. Duty [HZZ⁺₂₀].
DVFS [CKC⁺₂₂]. DynaCo [SMH⁺₂₁].
Dynamic [ABvK⁺₁₃, CP⁺₀₁, CR⁺₁₉, CS⁺₉₇,
CML⁺₀₄, EHW⁺₁₁, GAG₂₂, Hue₉₇, JK⁺₁₂,
JW⁺₂₀, JCD⁺₁₄, KCW⁺₀₅, LSA⁺₀₇.
LTF⁺₁₂, LSY⁺₅₁, LCL⁺₁₉, LGY⁺₁₆, LMP⁺₀₅,
L⁺₀₅, MRLR⁺₁₆, MTT⁺₁₅, NₐB⁺₁₃, NL⁺₀₇,
OVA⁺₀₄, PD⁺₂₁, PD⁺₀₉, PC⁺₂₀, PO⁺₀₇,
PV⁺₂₁, RSP⁺₂₀, RM⁺₂₁, RD⁺₀₈, RR⁺₀₃,
SS⁺₁₆, SR⁺₀₄, SMH⁺₂₁, SJT⁺₁₃, TCUV⁺₁₄].
Dynamically [CHPC⁺₉₆, GMB⁺₁₁].
Dynamics [ACC⁺₀₂]. DySHARQ
[RMH⁺₂₁]. DyTO [JW⁺₂₀].
Eager [SAL16]. Early [PYC16, TA99].

EARTH [HTZ+97, HMT+96].

EARTH-MANNA [HMT+96]. Eat [CHSC18].

ECONOMICS [LCL19, YBDJ17].

Ecosystem [RSA+18]. Edge [MMD21, SHS21, YFC21, ZQT20].

Editor [EA09, MA10, SS10, BCL90, Ano00a, Ano16a, Ano16b, Ano16d, Ano16e, Ano18b, Ano19, Ano20, Ano21a, Ano21b, Ayg03, Ban94, Ban04a, Ban04b, Car09, Fur95, Gau96, Giv07, Giv08, Int98, JS06a, JS06b, Joe99, Joe03, Kes20, McK07, Mis09, NL23, Ora03, Pan08, Sch98, Ve01, Ve02].

Editorial [Ano86b, AG15, Bro19, CTP13, CAT18, DPT17, FKT12, FH05, GGE19, HGT+12].

Editors [SMM11, HF06, AM07b, CHS99, CmHS99, EmH97, FmH96, GSA08, GS05, HN94].

Eect [NPD89, BCK98].

effective [CPMC96, HGT+12].

Eectiveness [GYP22, MHL95, PYC16, SBN03].

Eects [HRH08, TF96].

Eciency [BBB+17, EK23, KTBP18, STF+12, SWZ+15].

Efficient [ABvK+13, BR97, BEP13, BCL14, BFG+10, CR19, CPT14, CL96, CKC22, EAT14, FPY08a, Fea92b, FVvL+16, GSP+17, GG14, GN20, GL18, GAK20, GS06, GRR98, GHE+17, GmWHR98, HZZ+19, IFF90, IBA11, JGM15, KD22, KIP05, LPN91, LS05, LMG12, LWL11, LMH18, LGWZ18, NRR99, NDMMW16, QRW00, RFP18, RSP20, RLEJ19, Roy10, SRS06, SNS16, SL14, SSP+96, SS23, SO89, SKAT91, SHC15, SHZ+14, SJT13, TTF+08, WZTH13, XZ+15, YYJ16, YLB19, Fea92a, Hu89].

Efficiently [EGJS15, HR11, JMSG02].

Elastic [GG13, YBDJ17]. ElasticActor [ZLC19].

Element [MCT+18, RG15]. Elements [qW1JzKhC17]. Eliminate [KTT+99].

Eliminating [HTK98]. Elliptic [Bos12].

Embedded [Ano18a, Ano21b, AF13, CHB06, CFF+06, DLRS13, DLLX+17, Giv07, Giv08, KTBP18, LMPS05, MSJ20, MCE13, MGJS15, MAB+11, Pan08, PP10, PVG17, PO07, PPEP08, RJO22, SSM21, TLSG05, TFEK16, TGT18, US05].

Embedding [Li03, CSG89]. Emergency [GA90].

Emerging [HP13, JACK20, T21, ZZS+19].

Empirical [CCG+14, LDHL05, PMV17, SSM06, YYYX20]. Engaging [CS97].

Emulator [WCC16]. Enable [HP13, ID08, TAY+12]. Enabled [Boh23, FKM+11, GZJ18, GSY+13, JACK20, MMD21, SAI+20, RA09].

Enabling [GZJ18, SdLC21, SMDJ19].

Encore [GTK+88]. Encryption [AAI+20b, KBD03, NDMMW16, AAI+20a].

End [LSHK09]. End-to-End [LSHK09].

Endpoint [JLDJ19]. Energy [AVLV03, CPT14, CKC22, EAT14, FVvL+16, HYBA18, KIA20, LMH18, Mar17, SSM21, SJ13, VCP+16, XLMW19].

Energy-Aware [Mar17, XLMW19].

Energy-Constrained [VCP+16].

Energy-Efficient [CKC22, EAT14, FVvL+16, LMH18, SJ13]. Engine [BC15, RLM20, Gsc07].

Engineering [CPT14, Km10]. Engines [MCFM12].

Enhanced [ABASS12, FMSG17, GRAG00, HYBA18, KIA20, LMH18, Mar17, SSM21, SJ13, VCP+16, XLMW19].

Enhancement [AMP01, CY16, HML+20, KP01, LCL17, SAI+20].

Enhancing [ACC+01, GYP22, MP95, S748].

Ensembles [ASW+15]. Enterprise [LVM16].

Enumeration [AG98, GL18].

Environment [AFM+06, AA15, BFG+10, DMMP18, MFG+08, QFRA19, SQH92, UWF+20, vdSBW08].

Environments [BCS+09, BFRPVR+15, CAR09, CCL12, CAK17, GWPV21, HWW20, HDMMK22, HK23, KJHB14, LLM16, PCJ20, TTF+08, XLMW19, BCL90, Con88]. Epidemic

First [GAR+16, KS90, MKAP05, KR87, RK87].

First-Level [MKAP05]. Fish [WMK19].

Fixes [Joh94]. Fix [HZZ+19]. fixed [Ano86a].

Fixpoints [Ano87c]. Flat [FT87, TSS86].

Flexible [ELK18, KHH08, KKZN12].


Flows [YKM03]. Fly [JDF20, KSJ14].

Flying [LCT+20]. FOG [SLLJ17]. FORAY [ID08]. Forecast [BBB+17]. Forecasting [MMD21].

Forensics [ZXY+15]. Forest [YWW+18]. ForestGOMP [BFG+10].

Foreword [BnH98, NS97a]. Fork95 [KS97].

Form [CB01, TG05]. Formal [BdS07, KP05, LMS05, MP91].

Formalised [GGV18]. Formats [Mar09].

Fortran [KaM10, NLBB23]. Fortress [ASS21]. Forwarding [CLJH16].


Fractal [MP04, SC88]. Fractional [Boh23, JLMW15]. Framework [ASW+15, ASS21, AnWHM99, BKK20, BKK23, BFS05, CP04, CHB06, CB19, DK8+09, EWH811, EHKT07, FJA+18, GWYQ18, GHR20, JK12, KHH08, KKSP18, LFHAM19, MGL+17, PG07, SLLJ17, SW16, SBC17, SJW22, TLSG05, TRL09, VF1N12, YWW+19, ZGH+15, ACD+14, LP94].

Frameworks [Ano19, DX14, OP10, WTW+19, WTQ21].

Free [AR16, FLD15, FDM17, PPM+18, SMC94, Sun11, WTL+23, IP90, Lan90].


Fully [LF15, SHS21]. Functional [ADC+17, ACC+01, AJF16, BARS95, BPS05, GMP89, GS06, Hud86, KH18, Mat17, PC13, Goll88, Wai87]. Functions [ACC+01, CFF+06, DMC+18, SNS21].

Fusion [EM14, Ken01, LZ17]. Fuzzy [EG09, KK20].

Galerkin [CF19]. Games [CYS16].

Garbage [Cra88, Fos89, LWG11, AH86].

Gateway [AML+10]. Gaussian [MVB+06].

GCC [FKM9+11], GCD [ABSSS19]. GCM [GHM14, MSPR18]. Gemini [OXL+17].

Gene [AFO+08, MSA+07]. Gene/L [MSE+07]. General [DDJ+18, IP90, IH04, WP00, SS89].

General-Purpose [WP00].

Generalization [PMV17, WW17].

Generalized [GYL92, FcF87]. Generate [MGW99, BS89]. generate-and-test [BS89]. Generated [JCD+14, MCA98].

Generating [AK17, ALTT17]. Generation [BTB+13, BEJD21, CL96, Dar05, JW16, MPR+05, QRW00, SR90, SSB+17, TFEK16, qWk1zKc17, WK20]. Generator [CPL+10, EVK22].

Generic [BJM20a, GJK+05, GW19, MAT23, MCT+18, SM16, ZJL22]. Genetic [AMAH01, BM09, GKC22, MB12b, SO89].


GLE [DCX+17]. GLE-Dedup [DCX+17].

Global [AH86, LLSS03, PPQV16, RBES00, TAY+12].
Globally [DCX+17, TV15].

Globally-Locally [DCX+17].

Good [YBDJ17].

GMM [fS18].

GPGPU [LMHW18].

GPGPUs [KJ14].

GPI [HK14].

GPS [HVF18].

GPU [BC15, Boh23, BC10, CDDM18, CTB14, DK16, DMMF18, DMC+18, FRT+18, FJZ+15, GLLH17, GGV17, GI16, KL16, LJ22, LRG14, LTF+12, LLW+17, LEG11, LFHAM19, Moh19, MGL+17, NCR+19, OOR13, OTGEL15a, PTdSF+12, PHS19, PES+18, RSA+18, SI11, SF20, SLZB13, SJ18, SS+17, SBC17, SFAG14, SK14, WdS17, WE18, WK20, ZY013, ZH19+19, ZD19, ZTY+19].

GPU-Accelerated [DMC+18, SBC17].

GPU-Based [DK16, BC10, OOR13].

GPU-Friendly [OOR13].

GPUs [GL18, HLP11, JLDS16, KSBN22, KGK20, KPS14, LS20, MAWD+16, MS11, MNN22, QGT+19].

Grabbing [Sun11].

gradient [SDJS98].

GrADS [BCC+05].

Grain [BG96, DV97, NRB94, NIO+03, PSM97].

Grained [CTK+11, CSF+20, GL22, SDH22, SS+21, SZ18, WTQ21, WW17, AD89].

Grammar [MO91].

Grammars [PW92].

Granularity [PSM97, ZLC+19].

Graph [BCL90, CSR17, CSF+20, CTT+20].

GAR+16, GWYH19, GP94, HKJ+18, HSXH19, HK12, KSF+18, KTF23, PS23, SHL17, SMD19, SSS+96, Spr92, TH17, WZB+92, ZH19+19, ZS87, HKJ+18].

Graph-Based [KTF23].

Graphical [RG15].

Graphs [CPP+12, JGM15, SAB11].

Graphs [DV97, Hue97, KPR96, LFP16, MXP14, OP10, OB13, PVF21, Zha89].

Graphs* [EKU22].

Greedy

[AT91, Ken01, Sun11].

Grid [BFRPVR+15, MMD21, SASH12, WL16, AFM+06, BBC07, BCC+05, SR04].

Grid-Based [WL16].

GridFOR [WL16].

Grids [HP13, LLL+15, JS06b].

Gröbner [Sch92].

Group [KSA+18].

Groups [BBC07].

GrPPI [BJM20a].

Guaranteed [MEP07].

Guaranteed [GYL92].

Guards [GYL92].

Guest [AG15, Bro19, CTP13, CAT18, DPT17, EA09, FKT12, GGE19, GK18, Gre16, HK14, HF06, HSXH19, JH20, LFL+17, LT17, MCE13, MGJS15, MGD+14, MA10, OG11, PP10, PVG17, RJO22, GMI11, SGK12, SS10, TG21, TFFP18, ZS+19, Ano00a, Ayg03, AM07b, Ban04a, Ban04b, Car09, Emi97, Emi98, Fau95, GA08a, Gau96, GS05, Giv07, Giv08, HN94, JS06a, JS06b, Joe99, Joe03, Kes20, MK07, MS09, NL23, Ora03, Pan08, Seh08, Voi01, Voi02].

Guided [MT15].

GVirtuS [MGL+17].

H [Roy10].

H-NMRU [Roy10].

Hadoop [LSM+18, Mat17, NRGB17, RSA+18].

Halo [P919].

Handle [ELGE16].

Handling [DFC+07, FMSG17, HWW20, IR19, RBES00].

Hard [FJ+16].

Hardware [AVM+16, CHSC18, CPMC96, GP17, G999, HZZ+19, HL21, KT21, KTB18, Lys08, MSA+07, NdMM99, NdMMW16, OXL+17, OPLS17, PMM+18, RMH21, SWZ+15, SD11, SH15, STM15, TR21, WS14, YDV19, ZLA04, vNR11].

Hardware-Agnostic [AVM+16].

Hardware-Based [CPMC96, KT01].

Hardware-Efficiency [KTBP18].

Hardware-Friendly [HZZ+19].

Hardware-Managed [RMH21].

Hardware-Supported [SD11].

Hardware/Software [GV99, Lys08, OPLS17, SWZ+15, ST15].

HARE [JLD19].

Harsh [GPVP21].

Hash [AR16, CHSC18, LF217].

Health [AAN+20, GKC22].

Healthcare [DC20].

Heap [GH96, LLM16, AH86].

Heap-Based [LL16].

Heat [LYG+18].

Height [ABASS12].

Helper [ZGH+15].

Helping [Sun11].

Henderson [Swa88].

Heterogeneous [AER+17, ANS20, Ano21a, AMKE18, ABB+10, BEA+19, Bro15, Bro19, BMM20b].
ELK18, EAK21, EVK22, EGK22, GGV18, GMB+11, GHR20, HidMMK22, HK23, HtBk+10, HUC+15, KTRZ+17, LLGC17, LSYG15, LS05, MN15, Mar17, MFGEL19, NCR+19, QAEGEL15b, OP, OPLS17, PGLC+18, PHS19, PVF21, SSM21, SEP08, WLL17, XWH21. Heuristics [KPS14, CSG89]. HEVC [WdSAM+17]. HICOR [GK94]. Hierarchical [Bro15, GP94, MV17, NN95, PG16, SSMO96, WSS18]. Hierarchically [PPEP08]. Hierarchies [GVB+06]. Hierarchy [MCWK01]. High [APR+18, Ano16a, Ano19, BCS20, BE14, BCS+09, BCL17, BS07, Bro15, Bro19, Car09, DPT17, DFH17, DB08, DST21, EAK21, GGVQ18, GGE19, GBLG10, Gha19, GKH 18, GJK+05, Gre16, GHDQ19, GE90, HG18, HK14, Jan15, KP05, KTRZ+17, KJPN10, LPB13, LQWP10, LWP04, MB12a, dMMHdLN21, MSRP18, NFC+09, NSU22, NdMM20, NL23, OXL+17, PGLC+18, SH96, SAL16, SCB+14, SS23, TFEK16, TTF22, TGT18, WCC16, WM+17, WG04, WK20, YZ13, YBRM14, ZLA21, Ano21a, Kes20]. High-Level [Ano16a, Ano19, Bro15, Bro19, DPT17, EAK21, GGE19, GKH 18, Gre16, GHDQ19, HG18, Jan15, KP05, LQWP10, dMMHdLN21, SH96, SS23, WM+17, HK14, TTF22, Kes20, Ano21a]. High-Performance [APR+18, Ano19, GGVQ18, Gha19, GJK+05, LPB13, MB12a, NdMM9, PGLC+18, WCC16, WG04, WK20, YBRM14, ZLA21, DST21, OXL+17]. High-Productivity [BCS+09]. High-Scalability [BS07, higher [NPD89, higher-order [NPD89, Highly [TAY+12, XZZ+15]. Highly-Scalable [TAY+12]. Historical [TRD21]. History [BAA+19, CEP97, JLF19, JLY08, LLSS03, uRHH14]. History-Aware [JLF19]. History-Based [BAA+19]. Hitachi [TSB03]. HitFlow [FBGEL19]. HLFET [PIP18]. HLP [Bro15]. HLP [Ano16a]. Home [WLL+08]. Homogeneous [MMN15]. Homomorphisms [LBT17, RG18]. horizontally [CB86]. Hotspotting [Ano86c]. HP [IPR+05]. HPC [CAK17, CAT18, EAK21, HLK+09, JQJ+16, JQWG15, JLM+12, JY2+17, MAT23, NAS23, YS22]. HSDC [DFZ21]. HW [KBG+08]. Hybrid [AOAM21, ADG+17, BC15, CTB14, Cza17, DMMP18, EK14, FBGEL19, HST+16, JQJ+16, LFL+17, LRJ14, MMD21, RY20, RY22, RRH03, SR15, YSH+11, YWW+19, YLB19, ZL+17]. Hybridization [DS20]. Hydrodynamics [Zey05]. Hypercube [CSG89, DSE90, GE89, NK88, Wai87]. Hypercubes [BB90]. HyperFatTree [SWF+17]. Hypergraph [CND95]. Hypergraph-Based [CND95]. Hypersequential [UKT00]. Hyperspectral [CS20, LFHAM19]. Hyperthreading [HRH08]. I/O [AKT+14, CSF+20, MG15]. ICCG [IS03]. IDE [HLK+09]. Identification [BR14a, FR95, OP12, PYC16, WQJY17]. Identifying [DM20]. Identity [JGP+18]. IEEE [RJQ22]. If [AmWHM99]. If-Conversion [AmWHM99]. iGridEdgeDrone [MMD21]. II [Fea92b, KR87]. ILP [SKA96]. Image [AM95, AML+10, CGJK95, CDDM18, DMMP18, ES11, GP17, GSH9, HAA+11, JSS+15, JLMW15, KS97, LS91, LWP04, MPX14, NdMM21, NSS12, OGP+16, OXL+17, PB01, PC13, RG18, RSY+05, SM16, Sek09, SKG09, SY08, WLL+08, WPC07, WS15, YZ13, ZQ20, ...
ACD+14, GTK+88, TSS86, RK87. Implementations [AJF16, BS07, BEG+10, DE00, HPVRPF15, MWES19, Moh19, NaMC3MMW16, TSS99]. Implemented [MLdLP02]. Implementing [BAP01, MiI88, SPS14, SFAG14].

Introspection [WHC+17].
Introspection-Based [WHC+17].
Intrusion [NSU22, NRGB17, YWW+19].
intrusive [ZXY+15], Invalidate [BAP01].
Invasive [SR15], invented [Par86b].
Inverse [SxW18], Inversion [NSU22, NRGB17, YWW+19].
Irregular [ACC+01, GF14, LLW+17, MCWK01, NST89, TB23].
ISA [MP95, WCC16].
Isomorphic [Ano87d].
Issue [Ano16b, Ano18b, Ano18a, Ano19, Ano21a, AM07b, Bro19, Car09, DB08, GSA08, Gha19, Giv07, Giv08, HSXH19, JAC07, ME07b, MB12a, Mis09, Pan08, PP10, PVG17, RJ022, SS10, SIZ17, TFPF18, WNMW16, ZS19, JS6b, TG21, AN021b, BMH98].
Issues [Bel94, NS97a].
Itemset [ASG20].
Iteration [HF14a, HF14b].
Iterative [MS11, PDN21, Rau96, ZHF+19].
Iterator [GS11].
J [Swa88].
Jacobi [HOZ06].
Jacobians [BUMS02].
Java [AHKR01, FSS06, JQJ+16, JMSG02, KF99, SSS3, WG04, WP00].
Job [LLL+15, NISS12, WW17].
Join [RJ92, BBC22].
Joint [HOZ06].
Journal [Ano66a].
JPEG [SEP08].
Just [SA19].
kD [STF+12].
kD-tree [STF+12].
Kernel [LYG+18, NLBB23, ZYOY13].
Kernelized [WCC16].
Kernels [KDV22, SSB+17, WSO+07].
Key [LKS+20, PZL+19].
Keyword [SNS21].
Kutta [BP17].
L [MSA+07].
Lab [ZC09].
Lab-on-Chip [ZC09].
Labeling [SH87, Swa88].
LACross [ZJG17].
Lagrangian [RSV+05].
LALP [MCFM12].
LALR [BNWL90].
Landin [MSJ20].
Landslide [WSC20].
Language [ARB+05, BARS95, BCL17, CFB94, FCZ16, Fos89, GS06, HUD86, KS97, MCFM12, MPR+05, SM09, TFEK16, WL16, WK20].
Languages [Ano19, CK02, FMSG17, Lan90, PS92, NP98].
Laplace [SEP08].
Learning [CR19, CLL21, CDDM18, DS16, FFS18, FKM+11, MAWD+16, OA21, PVF21, ZJG17, ZD19, ZJL22].
Learning-Based [ZJG17].
Leases [CM06].
Least [Ano86a].
Left [MP04].
Legacy [JBB21].
Legal [KP95].
Length [EM14, VHK+18].
Lessons [Hal86].
Level [AG06, Ano16a, Ano19, BCL17, Bro15, Bro19, DPT17, EAK21, GGE19, GBLG10, GK18, Gre16, GHD19, HG18, HTDL18, Jan15, JF21, KP05, LLW+17, LQWP10, dMMHdLN21, MHC98, MKAP05, NL23, SS+00, SSEA14, SH96, SS23, Svcu17, SMM94, SASH12, Tou05, WMN+17, XODFV+09, YWW+19, ZLJ+17, BC10, HK14, NN95, TTF22, WS08, KF20, AN021a].
Levels [Gsc07].
Leveraging [LTL+15].
LH [CS16].
Libraries [GJK+05].
Library [BRR11a, LCF21, LAD15, LHP+22, MFGEL19, SUCV17, YKLD17, YBRM14].
Life [YYYX20, Ano87e].
Lifetime [SZH18].
Light [CM06].
Light-Weight [CM06].
Lightweight [GKC22, PZL+19].
Like [NBB23].
Limit [KEKK16, LS98].
[MGW99, SM09]. Matrices
[LPZ13, LTS15, SDL17, LP94]. Matrix
[BRR11a, CFC+19, CFX+20, DZW10, JLV21, uHKAMFM16a, uHKAMFM16b, KJPN10, LHLT19, LKS+20, MMN15, MGW99, SMM94]. Maximal [BCC00].
Maximizing [BG17]. Maximum
[Gao86, KSBN22]. MC
[GN20]. MC-DS-CDMA
[GN20]. MCP [PIP18].
Mean [AK96]. Means [LKS+20]. Measure
[KKSP18]. Measurement
[WSC20]. Measurements
[JJIL15]. Measures
[Cza17]. Mechanism
[ANS20, CHYP96, EMI14, FFS18, GMB06, Sek09, SHC15, WTZ+19, WTK21]. Mechanisms
[GBP07, Gen16, NAS23, M090]. Media
[LJ09]. Mediato [BBB+17]. Medical
[HZZS20]. Medium
[DV97, NRB94]. Medium-Grain
[NRB94]. Meld [AKD98]. Membership
[KHJI15]. Memetic
[NB15, ÓO07]. MemJam [MWE19]. Memories
[AM04, LPB13]. Memory
[ABSSS19, AF15, ANS+12, BS03, Bds07, CCG+14, CHCI14, Cra88, CRM17, DS97, DZW10, FBGEL19, GVB+06, GRC+14, GV99, GGI31, HML+20, ID08, JG97, Jh094, JMSG02, KTF23, KEK16, LVJ22, LS20, LSL94, LMHW18, Lub90, MCM04, MCWK01, MBE03, MS09, MKAP05, NIK00, NAP02, OVAO4, PZL+19, PMM+18, P007, RC16, RRH03, SNB04, SMC94, SZH18, SD11, SAL16, SW16, SHC15, SWL05, SSM096, SH15, SY08, SASH12, TTMD23, TMHT96, TA99, VSH+11, WS14, WQJY17, WHC+17, wLiJuKHC17, WTZ+19, WTQ21, YJZ20, YBRM14, ZK07, ZLD15, ZLJ+17, ZSH+12, Con88, EO88, FCF87, GHLN86, G9S0, GTH6, Hem89]. Memory-Divergent
[LVJ22]. Memory-Level [SASH12].
Memory-Optimized [LS20]. Merge
[JK03, JLV21]. Mesh
[DMC91, HAA+11, SMHS13, SKAT91]. Mesh-Connected [DMC91]. MeshCleaner [MCT+18]. Meshes
[MCT+18, wLiJuKHC17]. Message
[BB90, CB01, EWH11, G05, GCD+03, JGZ+20, MFDU21, GZ87, Hu89].
Message-Passing [CB01, GCD+03, GZ87]. Meta [KPS14]. Meta-Heuristics [KPS14].
Metacomputing [ES06]. Metadata
[AGPGF14]. Metagenomics [LSM+18].
Method [BP17, DMM+18, Ger10, GRAG00, GHC+17, IS03, LNP91, LEA15, NdMM09, RCJ20, RAP95, SMM90, ZY013, W016]. Methodology
[KKV22, MOL05, RSJ+14, UWF+20]. Methods
[BCC+05, CCL12, CAK17, CJS21, MT96, RLEJ19]. Metropolis [CHB06].
Metawerks [PB04]. MID [FFS18]. Micro
[JS06b]. Micro-grids [JS06b]. Microarchitectural [API03, DKB+09].
Microarchitecture [API03, DKB+09]. Microbenchmarks [IPR+05]. Microcode
Microprocessor [LJE05]. microprogramming [CB86]. Microthread
[BHJ96]. Migration
[CML04, DST21, DLX+17, JG97, NLRH07, PDTs+12, WCH+17, XLWX19]. MILC
[SKG09]. Milepost [FKM+11]. MIMD
[GL92, SDJS98]. Mini [XYZ+15].
Mini-intrusive [XYZ+15]. Mobile
Mobility [MMD21].
Mode [BEG+10, OP12, YYYY20, SDJS98].
Model [AG06, AATT20, AK96, BEJD21, BAF94, BdS07, CND95, DMMS91, DTLW16, DFA+09, FCF16, FPDC14, FBGEL19, HLP11, HKJ+18, JM20, JF21, LLM16, LHL+16, LCL19, Liv91, NAS23, OGP+16, OATGEL15b, RSV+05, RK13, fSxWC18, TAY+12, TESK06, WSC20, YS22, ZJL22, JK86]. Model-Based [BEJD21, RK13].
Modeling [AA15, Ano18a, AMP+05, BS07, HYBA18, KMjC02, LEA15, Mat17, MCE13, MGJS15, MOL05, PCP+13, PVG17, Pra86, PS23, RJO22, SDH22, SSMH13, SS01, Ski91, SDL17, VMS15, VCP+13, AD86, DM87, FLMR17a].
Models [BFS05, CAT18, Den94, FLMR17b, HHC+15, ID08, KP05, Mat17, NAP02, RNJ+12, SMSH13, SS01, Ski91, SDL17, VMS15, VCP+13, AD86, DM87, FLMR17a].
Modern [HYBA18, KPS14, LG10, LQWP10, ME15].
Modifications [Hue97]. Modular [NdMM09]. Module [AAN+20]. Modules [DJR16, SQUH92]. Modulo [AG98, EDAG96, GRAG00, LJ08, Rau96].
Modulo-Scheduled [GRAG00]. Molecular [ACC+02, BS07]. Molecule [KKL16]. Moment [SSB21]. Monitor [LT15].
Monitored [LJE05]. Monitoring [GAK20, NBN+15, ZXY+15].
Monoparametric [IAR21]. Monte [BJM20b, PES+18]. Monte-Carlo [BJM20b, PES+18]. more \( T^M \) [Ano87d].
MORPHEUS [GMB+11]. Mosaic [MPAG18]. Motion [MVD+14, TSS99].
Motivation [HmWHR97]. Movement [CFB94]. Moving [HAA+11, ZQT20]. MPI [AJF16, BS07, BEG+10, ES11, FPY08h, GJR09, GSY+13, HMK09, LSM+18, LWP04, MOL05, MANR09, NAS23, NSS12, RA09, SS01]. MPI/PVM [ES11]. MPJ [QJ+16].
MPSoC [ID08, OPLS17, RGB+08, SWZ+15].
MPSoCs [GHR20]. Much [MT96]. Multi [AOA21, AH08, AKHD13, ABvK+13, AML+10, ABB+10, BEJD21, BM09, CSF+20, CZ12, CB19, CFB14, DS97, DS16, DTLW16, DJR16, FLDR15, GM02, Ged13, GMB06, GG17, GS06, HML+20, HtBK+10, JCH+08, JDF20, KGB+08, LG+18, MXP14, MV17, MG15, MHCF98, MFGEL19, NdMcdMMW16, OATGEL15b, PCJ20, QZP15, RPF18, RC16, RG18, RTD20, RD08, RK13, SS+00, SSEA14, SAT+20, fSxWC18, SSB+17, SFAG14, STB+18, Sun11, VSDK09, WQJY17, WLL17, WSC20, WZK20, XQyFV+09, YWW+19, Zha10, ZGH+15, Ali86, AGT17, QGT+19]. Multi-agent [STB+18]. Multi-app [DJR16].
Multi-device [MFGEL19]. Multi-dimensional [RG18, WLL17]. Multi-domain [RK13].
Multi-Level [MHCF98, SSB+20, XQyFV+09, YWW+19]. Multi-ML [AGT17]. Multi-Orientiation [LYG+18]. Multi-path [JDF20].
Multi-Prefetcher [GMB06]. Multi-process [PCJ20]. Multi-process/Multi-thread [PCJ20].
Multi-thread [PCJ20]. Multi-Threaded [MG15, VSDK09, DS16, GS06, RD08].

Multi-threading [DTLW16].


Multi-Zone [JCH+08]. Multicluster [FCJV99]. Multicomputer [FKD+97, Fos89]. Multicomputers [LNP91, SKAT91].

Multicore [AER+17, Ano16d, CHCL14, HHW10, HMF+13, KJHB14, LLM+12, LLM16, RSJ+19, SDH22, SS17, TKN+08, WLL17, ZC17].

MulticoreBSP [YBRM14]. Multicores [TFNG09].

Multidimensional [Fea92b, LLM+12]. Multigrid [MT96].

Multilevel [APR+18, ADC+17]. MULTILISP [Hal86].

Multiplication [Bos12, uHKAMFM16a, uHKAMFM16b, KJPN10, LHLT19].

Multiplications [CFC+19, CFX+20].

Multiply [BBR11a]. Multiprocessing [HML+20, Bro86].

Multiprocessor [AK96, DeB87, Ge08, Gsc07, MB12b, Pan08, PEP08, SEP08, SR04, BHS7, GHLN86, GZS7, GTK+88, Hua89, PD89].

Multiprocessor-based [Pan08].

Multiprocessors [AO19, BBGM95, GRV+17, GV99, IPR+05, KSEG14, KT01, LS07, LSL94, MVB+06, NP01, OP12, SNB04, SMC94, SS01, TGT18, TESK06, ZLD15, Con88].

Multiscalar [LZ17]. Multipletasking [CCL12].

Multiprocessing [DKB+09, BS15, CLJH16, GWHY19, GKC22, IBA11, JDF20, KAZ12, LSHK09, LYL14, LSYG15, LXL17, Liv91, ML15, MN09, NSU22, NRGB17, PG07, SAI+20, SZ17, SWF+18, SBN03, TG21, YMW+19, ZZZ+19, AD86].

Network-Aware [FPCD14].

Neural [AMAH01, AOAM21, FCZ16, GKC22, IBA11, JDF20, KAZ12, LSHK09, LYL14, LSYG15, LXL17, Liv91, ML15, MN09, NSU22, NRGB17, PG07, SAI+20, SZ17, SWF+17, SBN03, TG21, YMW+17, ZZZ+19, AD89].

Networks [AOAM21, Ano18b, CPT14, DM20, DFZ21, FCZ16, FPCD14, GCD+03, HZZ+19, HLS15, HS16, HL21, JACK20, JDF20, KAZ12, LSHK09, LYL14, LSYG15, LXL17, Liv91, ML15, MANR09, MSPR18, NSU22, NRGB17, PG07, SAI+20, SZ17, SWF+18, SBN03, TG21, YMW+19, ZZZ+19, AD86].

Networks-on-Chip [JLDF19].

Neuroimaging [RNJ+12]. Neuromorphic [CPP+12]. Neuron [Zey05, SDJS98].

New-Age [DKB+09]. News [FCZ16].

Newton [CCL12]. Next [Dar05].

MXNet [LWL+19]. My [MFU21].

Nano [Mis09]. Nano/Bio [Mis09].

Nano/Bio-Inspired [Mis09]. Nanotube [CDC09]. Nanotube-Based [CDC09].

NaraView [SJKA99]. Native [JQJ+16].

Nature [KPS14, MHC98].

Nature-Inspired [KPS14]. Navigational [PLN+04]. NC [PS92].

Nebelung [MFG+08]. Need [KT01, Kuc94]. Negative [DKB+09, WS15, LKS+20].

Neighbor [LTF+12, PK20]. Nest [AMP01, EW96, MMS07, QRW00, Sar01, aMST07].

Network-Aware [FPCD14].

Network-Failure-Tolerant [GCD+03].

Network-on-Chip [JLDF19]. Networking [CSCL20]. Networks [AAN+20, AKA+20, AATD20, AK17, BS15, CLJH16, GWHY19, GKC22, IBA11, JDF20, KAZ12, LSHK09, LYL14, LSYG15, LXL17, Liv91, ML15, MANR09, MSPR18, NSU22, NRGB17, PG07, SAI+20, SZ17, SWF+17, SBN03, TG21, YMW+19, ZZZ+19, AD89].

Networks-on-Chip [JLDF19].

NetWorkSpace [BCS+09]. Neural [AMAH01, AOAM21, FCZ16, GKC22, HZZ+19, LYL14, LXL17, LIO08, LWGZ18, MVB+06, MMD21, PMV17, RY20, RY22, SAI+20, WZG+17, YYYY20, YMW+17, ZZZ+19, AD89].

Organizations [GWPV21]. Orientation [LYG+18]. Oriented [ADC+17, FMSG17, GS11, GS13, KKSP18, KK20, LVM16, RGB+08, SRS06, SSM21, AKT+14, CZ12].

Origin [IPR+05]. Orthogonal [SSB21]. OS-Based [FC11]. OSD [AGPGF14]. Osmotic [FBV21]. Other [OP10, SS89].

Out-of-Core [SHLJ17, SMDJ19]. Out-of-Order [BS15, CSD21, MSJ01].

Output [CDRV98]. Output-Dependencies [CDRV98]. Overhead [CTB14, KOW+05, OPLS17, SJBV06]. Overheads [BGdS09, LJ08]. Overlap [BG17]. Overlapping [IKN00, Spr92].

Overview [BML+13].


Parallel [AKBPV19, APR+18, AMH01, AM04, AK17, ACD+16, ABvK+13, AA15, Ano16a, Ano18b, Ano21a, AVPG00, AJF16, BR14a, Bel94, BAF94, BARSW95, BGMR11, BS03, BWNL90, BR14b, BUMS02, DDD+18, BDI+14, Bro15, Bro19, BJM20b, CGN+09, CPP+12, CY14, CSD21, CB86, Cra88, CSTGL03, CDMH88, CAP88, Cza17, CPL+10, Dam07, DPT17, DDD+19, DMK21, DMMS91, DE00, DM17, DS97, DS16, Den94, DX14, DWZ10, DGMPO9, DSR17, ECSS88, EHKT07, EK14, ELK18, EVK22, EGK23, ES11, FFS18, FCRC16, GGE19, GBLG10, Ger10, GS11, GS13, GP17, GF14, GK18, GYL92, Gre16, GB20, GTK+88, GKC22, HSCI+16, HK14, HMF+13, HP13, HPVRPF15, HLS15, HS16, Hum91, HAA+11, IH04, Jan15, JW16, JLMW15, JK03, JLV21, Joh94, KS90, KK11, KS97, Kes20, KJH14, KFC08]. Parallel [KGK20, KGB+08, Kuc94, KR87, LMP98, LTF+12, LY14, LHL+16, LTL+15, LY95, LSL94, LVLG11, LHLT19, LB17, Lw00, LCL17, LG+18, Lys90, Lys08, MPX14, MM15, MLdlP02, Mar09, MAJD16, MFC21, MM16, MG15, MCA98, dMMHdL21, Mer86, Mil88, Moh19, MVD+14, MFGEL19, NB15, NRGB17, NdMM09, NdMCDMMW16, NdMMW16, NSS12, NST89, NL23, OOR13, OP10, OGP+16, ÔA21, ÔO07, OG11, PW92, PGLC+18, PLN+04, PTD+06, PVAE98, PM17, PR99, PCJ18, QFRA19, RK92, RK87, Ric90, RTD20, RSV+05, RMG+13, RGB+08, SGK12, SH87, SI11, SS92, SMM09, SMSH13, SQH92, SSM21, Sek09, SP20, SM09, SAS18, SQS9, SKAT91, Ska91, SR90, SSB21, Spr92, SS89, SZ17, SC88, SHZ+91, Swa88, TSS99, TG21, TRL09, YK88, VRGC19, WCC16, WL16, wWIJzKcC17, WR18, WS15, WZB+92]. Parallel [WE18, WYY+18, YH18, YS22, YBM14, Zey05, Zha89, Zha10, ZZS+19, ZQT20, ZWJK05, uRH14, ACD+14, BCL90, BCK08, Con88, DPL86, EG86, EO88, GN89, GZ87, GKM87, Hua89, JGA+88, JB98, Ken94, KMV87, KM86, LRG+91, LS92, Par86a, Par86b, Par86c, TSS6, Wai87, WB87, AK90b, Lin91a, Ali86, Cie91, SRV88, Tin88]. Parallel-Accessible [Joh94]. parallel_for [NCR+19]. Parallelisation [KH18].

Parallelising [GS13]. Parallelism [AER+17, ADC+17, ACC+01, BS03, BJM20a, DV97, EW96, GBV+06, GGV18, GHDF19, Gsc07, GL92, HPY01, JBB21, JF21, KP04, LFL+17, LS20, LH+22, MT96, MMS07, RSK09, SEA14, SSNS16, SH96,
SASH12, Tou05, WTL+23, WS08, WW17, XOdFV+09, BS89, CG94, Sch92, VR88, AK90a. **Parallelization** [AAB+16, BG17, BS07, CZ12, Co95, CAZ02, CF19, ELGE16, FLMR17b, FCRC16, FJO+16, GK94, GYP22, GMS00, HML+20, Hue97, IS03, JCD+14, LQWP10, LXL17, dMMKdLN22, MVD+14, NN95, PPQV16, RAP95, RLEJ19, SSF+00, SHK13, SJKA99, SKA96, SR15, SNS21, TFNG09, TH17, WNMW16, WdSAM+17, WP00, aMST07, FLMR17a]. **Parallelize** [MRLR16]. **Parallelized** [CR19, ELGE17, HTK98, TMHT96]. **Parallelizing** [CHCL14, GS11, KTT+99, ME15, WZG+17]. **Parameter** [BR14a]. **Parameterized** [LW97]. **Paralog** [FT87, Hun91]. **Parsers** [BNWL90]. **Parsing** [IP90, Lan90, PW92]. **Part** [JS06a, Fea92b, KR87, RK87]. **Partial** [AmWHM99, CKC22, DM87, GM20, RSP20, Pra86, SZH98]. **Partial-Duplication** [CKC22]. **Partial-PreSET** [SZH98]. **Partition** [WLL17]. **Partitioned** [AT91]. **Partitioning** [CGP01, EW96, FCJJ99, GAR+16, Iq91, KEKKK16, LGY16, Lys08, MRLR16, NS97b, OPLS17, PDN21, PS23, SMN09, SWZ+15, SHC15, TG05, GZ87, KMV87, NK88, PD89]. **Partitioning-Aware** [PS23]. **Partitioning-Independent** [EW96]. **Partitions** [DM20]. **ParTriCluster** [AF+08]. **Pass** [NS97b]. **Passenger** [RLK20]. **Passing** [CB01, EWS11, GCD+03, JGZ+20, MFU21, GZ87, Hua89]. **Path** [AT91, CSC+00, JAW17, JSHP97, LPF16, LJO8, OATGEL15a, SK97, SHZ+91, JDF20]. **Path-based** [LJ08]. **Pathfinder** [JAW17]. **Pattern** [ACD+16, BBR11a, CEPP97, CPL+10, DDD+19, EVK22, GHC+17, LGY+18, QA11, WSS18]. **Pattern-Based** [EVK22, BBR11a]. **Patterns** [ALG+95, BDD+18, DMRK21, DM17, DS16, FPY08b, JB22, LLL+15, RDB20, SHK13, YLB19, ACD+14]. **Patterns-Based** [BDD+18]. **PBX/VoIP** [AML+10]. **PCIE** [OXL+17]. **PCM** [SZH18, ZLJ+17]. **PCBM-Based** [SZH18]. **Per-** [SA10]. **percolating** [ACD+14]. **perfect** [GE89]. **Performance** [AM95, APR+18, ASW+15, AK92, AD86, Ano19, AkT+14, BE14, BS07, BEG+10, Car09, Chyp96, CHPC96, Cza17, DFH17, DB08, DCX+17, DMC+18, EGK23, GMRQ18, GJE19, Gha19, GJ+05, GSY+13, KMB87, HRH08, HF14a, HF14b, HTmnG+12, JSS+15, JL+18, JCH+08, KaM10, KTRZ+17, KJP10, LPB13, LPF16, Li03, LWL+19, LY95, LW04, LLSS03, LCL17, LWGZ18, MB12a, MCWK01, MS11, MOL05, MOL05, MSR18, MMS07, ME15, NFC+09, NjMM09, NP01, PJS+05, PGLC+18, PVAE98, PS23, RDB20, RJ+14, SGJ+03, SEEA14, Sca11, SAI+20, SAL16, SCB+14, SA10, TSBo3, TFEK16, TK+08, Tin88, VCP+13, WCC16, WGW04, WK20, YZ13, YBRM14, ZLA21, ZWJ05, ZJG17, dMP+03, BCK98, DSB17, OXL+17]. **Performance-Efficient** [LWGZ18]. **Performance-Portable** [JSS+15]. **Performances** [DFZ21]. **Persistent** [GW19]. **Personal** [H0Z06]. **Personalized** [LCT+20]. **Perspective** [KBG+08, WESJ94]. **Perspectives** [Ano16c]. **Pessimistic** [VSH+11]. **Petaflops** [ACC+02]. **Peta-scale** [TAY+12]. **PETRA** [ME15]. **Petri** [KMjC02, LWDL17, RA94]. **PGAS** [JF21]. **Phase** [JHLM01, LGY16]. **Phi** [BP17, Cza17, ELGE17, LLGC17, PES+18]. **philosophers** [RB86]. **Phrase** [LKS+20]. **Physical** [WLW+17]. **Phytium** [CFX+20]. **PIMP** [MFU21]. **Pin** [JK12]. **Pin-Based**
[JK12]. Pinning [CR19]. Pipeline
[DF98, GG13, GRAG00, JBB21, LJ08, MFU21, SR04, Gai89].
Pipeline-Integrated [MFU21]. Pipelined
[AD89, Low00, MJ02, NdMMW16, SWG+18, LAV98]. Pipelining [BTB+13, GRAG00, OGP+16, RA94, YKM03, Gao86, WEJS94].
Piranha [CGJK95]. Pitfalls [HML+20].
Placement
[ANS+12, DCX+17, JQWG15, SHZ+14].
[KCW+05, LCT+20, SI11]. PLASMA
[YKL17]. Platform
[DTLW16, DZW10, ELGE17, FSS06, GMB+11, LIW+17, SSEA14, ZJG17]. Platform-Independent [FSS06].
Platforms [BC15, FRT+18, Gha19, HMF+13, MXP14, MMN15, MVD+14, PGLC+18, PVF21, RGB+08, VFIN12]. pool
[JSS+15]. Point
[KSA+18, LTF+12, NST89, Ano86a, EG86]. Points [Mer86, SS92]. Polaris [FWH+94].
Policies [BEP13, CML04]. Policy [Roy10].
Polka [Dav87]. Pollination [MSJ20].
Polling [Lin91a]. Pollutant [RSV+05].
Pollution [MKAP05]. Polygons [SS92].
Polyhedra [LV97, QRV00]. Polyhedral
[DV97, IAR21, JCD+14, PCP+13, SA19].
PolyJIT [SA19]. Polymorphic [CGPS18].
Polynomial [SWL05, ZYOY13].
Polynomial-Time [SWL05]. Pool
[ACB+16]. Pools [HR11]. Port
[CND95, IBA11]. Portability
[EGK23, KaM10]. Portable [EAK21, EVK22, JSS+15, JF21, LS91, NLBB23].
Porting [YKL17]. positive [GHNL86].
Post [NS97b]. Post-Pass [NS97b].
Potential [HML+20]. Potentials [PDN21].
Potentials-Based [PDN21]. Power
[AOAM21, AVLV03, GHR20, JS10, NBN+15, PO07, RSP20, SDH22, SWZ+15, SA1+20, WMN+17, ZLJ+17, ZJG17]. Power-Aware
[AOAM21, AVLV03]. PR [KAI20].
Practical [CAP88, EKU22, GH96, Ski91, WZTH13, Hun87]. PRAM [GRR98]. Pre
[DJS12]. Pre-Execution [DJS12].
Precision [KJHN10, ML15]. Predicated
[CSC+00, CHPC96, TF96], predicates
[FK87]. Prediction [AmWHM19].
Predictability [SS99]. Predicting [ÖA21].
Prediction
[AOAM21, CEP97, JSHP97, LEG11, MOL05, SK14, TF96, ZWJK05, ZJG17]. Predictive [PCP+13]. Predictor
[CHYP96]. Predictors [KMG01, LJ08].
Preface [CY14, WNMW16]. Prefetch
[FDY+19, HGT+12, WLL+08].
Prefetch-Based [WLL+08]. Prefetch-Obfuscator [FDY+19].
Prefetcher [GMB06]. Prefetching
[CTK+11, DJS12, GRV+17, GV99, HGT+12, HTmG+12, ZGH+15]. prefix [MA87, SS99].
Pregel [TH17]. Presence [JSHP97].
Preserving [DC20]. PreSET [SZH18].
pressure [LAV98]. Prevent [GMB06].
Price [Ger10]. Pricing [WWG+19].
Primitive [JLV21, JHLM01]. Primitives
[DeB87, JK86]. Priority
[BEP13, LLM16, NYHA14, SS17, CRM92].
Priority-Based [NYHA14]. Privacy
[DC20]. Private [JJL15]. Probabilistic
[LY95, LC11]. Problem
[AT91, AVPG00, BR14b, DE00, Fea92b, MB12b, oatgEL15a, WS15, Fea92a, LS92, RB86].
Problems [HAA+11, Iqb91, LSM+18, LHP+17, MFC21, Cic91]. procedural
[SB98]. Procedure [KKMS99, SMM94].
Procedures [CK02, GMS00]. Process
[FPY08b, LCL17, QA11, SSEA14, KMOV87].
Process-Based [LCL17]. process/Multi
[PCJ20]. Processes
[EAT14, Mai87, PW87, R90, Tho87].
Processing [AM95, APR+18, CPP+12, CY14, DJR16, GGI14, GL18, GSS10, GB20, HZL16, HSSX19, JGP+18, JGM15, KIT+20, LT17, LAD15, Lys08, Mil88, NS97b, PTD+06, PS23, RSK09, RSA+18, RG15,
SAB11, SHLJ17, SMDJ19, SBN03, TSS99, TRD21, TA99, WZB*92, WW17, ZLA21, ZHF*19, Ano87e, ECSS88, WB87.

**Processor** [BGMR11, BKTO8, FCJY99, FvVL*16, GWVP21, HfBK*10, JHML01, KBD03, KTT*99, SMM94, TKN*08, WSS18, WS08, WSO*07, XWH21, BM09, KGB*08, ZGH*15, Sca11]. **Processors** [AOAM21, AK96, AMKE18, BG03, Cra88, Giv07, Giv08, GE90, HYBA18, KLG08, KL00, LG10, LZ17, MSJ01, PG07, QZP15, RPF18, SDH22, SKA96, SA10, WLL17, Zha10, AH08, DS97, Hem89, MA87, PW87].

**ProDACT** [FDY*19]. **Productive** [GHDF19]. **Productivity** [BCS*09, BS07, Car90, KaM10]. **Profile** [CMW*94, CPMC96, GAG22]. **Profile-assisted** [CMW*94].

**Profile-Based** [GAG22]. **Profile-Driven** [CPMC96]. **Profiling** [CPMC96, LPF16, WTL*23, ZD19, ZSH*12]. **Profiling-Free** [WTL*23]. **Program** [Dar05, KH18, KKM99, MCMF12, SNB04, SLZB13, VNU19, CRM92].

**Programmable** [CDC09, Dam07]. **Programming** [AGT17, Ano16a, Ano21a, AVPG00, BBC07, BARSW95, BCL14, BCL17, Bro91, BJM20b, CBR17, CAT18, DPT17, DMK21, DK16, DeB87, DX14, EK14, ELK8, EAK21, EVK22, EGK23, FBGEL9, GGE19, GMP89, GK18, GJK*05, Gre16, GW19, GRR98, HSCI*16, HG18, HK14, HKJ*18, HLD86, KS97, Ks20, KBG*08, LHL*16, Lin91a, Lub90, MRLR16, MFGE19, NL23, NAP02, PLN*04, PYAE98, QFRA19, RPF18, SQH92, SS01, SS23, SFAI14, Swa88, UKT00, VRGCI19, YS22, YBRM14, ACD*14, BCL90, BCK98, Ken94, Par86a, Par86c, Tin88].

**Programs** [AR16, AJF16, BAF94, BS03, BDH*14, CB01, CZ12, DaB21, DJR16, DSR17, EHKTO7, FCRC16, FJO*16, IAR21, Jak19, Jan15, JW16, JLMW15, KSJ14, LMP98, LWDL17, LBT17, Low00, MGW99, MOL05, MBE03, NS97b, OB13, SHK13, SJKA99, SK97, SO98, SCS23, VNU19, WP00, BS89, Con88, Gai89, Gol88, JB98, Kas86, SRV88].

**Progressive** [QGT*19]. **Project** [BCC*05, MAB*11]. **Projection** [ISxWC18]. **PROLOG** [Ali86, AK90a, AK90b, Cie91, SB90, SH96, TS856].

**PROMIS** [SSP*00]. **Promoting** [WLL*17]. **proof** [FeC87]. **Propagation** [LMP98, LX17, MP14, SF20].

**Properties** [MAJD16]. **Property** [LWDL17]. **Proposal** [DFC*07, DFA*09].

**Protein** [FJZ*15, KLK16]. **Protocol** [BAP10, DeB87, GSY*13, MPAG18, PK20, RA09]. **Protocol-Based** [DeB87]. **Protocols** [BHL21, SB91, BCK89].

**Provenance** [AKA*20]. **Provide** [SS17]. **Proximity** [LTL15]. **Pruning** [WHC*17].

**Pseudo** [EVK22]. **Pseudo-Random** [EVK22]. **Pseudosimulation** [GT86].

**PTAS** [JLMW15]. **Pthreads** [JBB21]. **pull** [Par86c]. **Pure** [SNS21]. **Purge** [SAL16].

**Purpose** [WP00]. **Push** [RKG04, Par86c].

**PVM** [ES11]. **PyACTS** [DGMP09].

**Python** [DGMP09].

**Q&A** [GM20]. **QCD** [SKG09]. **QoE** [RY20, RY22]. **QoS** [AH08, BDD*18, RY20, RY22, SS17, uRHH14]. **QoS-supported** [AH08]. **Quadrant** [PK20]. **Quality** [KK20, RLK20]. **Quantifying** [MHC98].

**Quantitative** [LVJ22, LAV98, Sca11].

**Quantum** [PG16]. **Query** [STM15, WWG*19]. **Queue** [BBB*17, NSS12, WZTH13, ZLD15, CSF*20, CRM92].

**Queue-Based** [ZLD15]. **Queueing** [RKG04, TB23, AD86].

**Queues** [GL92, LLM16, RMH21]. **Queueing** [WZTH13].

**R** [TRL09]. **Race** [KSJ14, MTT15, YLB19].

**Radial** [DMC*18]. **Radiation** [LG10, Zey05]. **Radiation-Induced** [LG10].

**Radio** [vNR11]. **Radios** [KWA*10]. **Radix**
Railway [FLMR02]. Random [AK17, EVK22, GAR+16, YWY+18].
Randomized [DS97, Li03, JGA+88].
RDMA-Based [LWP04, ZLA21]. RDMA-Enabled [GSY+13, RA09]. Reachability [WZB+92]. Reaction [HF14a, HF14b].
Reactive [BHL21]. Read [DCX+17, MV17]. Real [BEJD21, EWH11, FJA+18, FJO+16, GAK20, LCT+20, RSA+18, YLB19].
Reduction [ABASS12, AVLV03, JS10, KCW+05, LHF+15, LJ08, ML15, PO07, SK97, SWL05, JK86].
Redundant [CH95, EAT14, GV95, HTDL18, KTT+99]. Refactoring [AKBPV19, BDH14, BJM20b, BJM20a].
References [Lin92, Lin88b, Lin91b, Lin86, Lin87, Lin89, Lin90]. Reference [ALG+95, RRH03, WGW04].
Reference-Set [WGW04]. References [Fea91, MKAP05]. Referencing [TMHT96].
Region [CMW90, JSHP97]. Region [CMW90, JSHP97]. Register [ALTT17, AVLV03, BE14, BGGT02, CND95, EDA96, LkCH94, LHLT19, Tou05, ZLA04, ZAV98, NP98]. Register-Aware [LHLT19]. Register-File [ALTT17]. Register-File [ASBP21]. Register-Aware [LHLT19].
Rendezvous [CMW90, RA09]. Reordering [JDF20, KP95]. Reorderings [MCWK01].
Repair [SDL17]. RePhrase [DDD+19]. Replacement [BE13, Roy10, TFMP97]. Representation [CFB94, FWH+94, GP94, GBC+08, KSA+18, LYG+18, WGW04].
Represented [SSB21]. Reproduction [L03]. Request [DCX+17, HZL16].
Request-Aware [DCX+17]. Requirement [MSJ01]. Requirements [CMW90, EDA96, JSHP97]. Rescheduling [BCC+05, CS97]. Reservations [SL14].
WMK19, AD89, DPL86, KR87, RK87.


Segmented [JLV21]. Seismic [PTdSF+12, Wal87]. Selected [KPS14]. Selecting [Low00]. Selection [CS20, DE00, GAR+16, KDV22, SAS18, WTZ+19, WTQ21, uRH14]. Selective [KGM01, TFMP97]. Self [DWS16, EFED05, FKM+11, HHW10, HCl7, KFC08, LSL94, LJE05, NSS12].

Self-Adapting [EFED05]. Self-Monitored [LJE05]. Self-Scheduling [LSL94, HCl7]. Self-stabilizing [DWS16].

Self-Submitting [NSS12]. Self-tuning [FKM+11]. Self-verified [KFC08]. Semantic [HHC+15, KSF+18, LQWP10].


Sensor [CPT14, DM20, NBN+15, RY20, RY22]. Separation [SS92]. Sequence [LHF+17, SO89, ECSS88, Hua89].

Sequences [AK17, FJZ+15]. Sequential [FCRC16, LNG12, TNFO9, WMNW16, Ali86]. Serial [NIK00]. Series [DMP+20].

Server [AFM+06, CYS16, LJo9]. Servers [EAT14, NYHA14, RC16, WLI+17].

Service [DWQ17, GAK20, LJo9, YFC21, uRH14].

Services [HZL16, HHC+15]. Set [API03, CTZM03, DDD+19, GFL00, HCEP98, Mer86, SRS06, WGW04, XZT20, SZH18].

Sets [DWS16, FR95, LHFC+15, NRR99, SS92, EG86]. several [Hem89]. SFLA [DS20]. SGI [CML04, IP+05]. Shape [CAZ02]. Share [TV15]. Shared [BS03, BS91, CCG+14, Cra88, FBGEL19, GV99, GG13, HML+20, HR11, LSL94, Lub90, MCG04, MBF03, NIK00, NAP02, SNB04, SR15, SCM94, SOS1, SS17, SM096, SY08, WQYJ17, YBRM14, ZLD15, Con88, FcF87, GLMN86, Hem89].

Shared-address [HR11]. Shared-Memory [BS03, CCG+14, FBGEL19, GV99, HML+20, LSL94, NIK00, NAP02, SM94, YBRM14, GLMN86].

Sharing [CML04, GMB95, SNB04, YBDJ17].

Shifting [DH00]. SHMEM [SS01]. Shortest [AT91, OATGEL15a]. Shortest-Path [AT91]. shuffle [GE89].


Signed [GWLY19]. Significance [VCP+16]. SIMD [GS90, KJHB14, Moh19, PES+18, JBV6, SDJ98, TB23].

Similarity [Cza17, Geall13, RB22]. Simple [CL96, WS08, LS91]. simplicial [EG86].

Simplify [MFGEL19]. Simplifying [MCA+98]. Simulating [BH87]. Simulation [AAvB+13, AA15, Anolea, CSD21, Dem11, GHR20, KWA+10, KP05, LJE05, MCE13, MGJ15, MANR09, PVC17, PPQV16, RJO22, SAB11, SJW22, TGT18, Zey05, ZWJ15, GT86]. Simulation-Based [ZJW15, KWA+10]. Simulations [ASW+15, CGN+09, GZJ18, HLP11, HF14a, HF14b, LLGC17, PES+18].

Simulator [WPC07]. Simulators [MPR+05, PC13, TCUC14]. Simultaneous [LEE+99, PIP18, WS08, WE18]. Single [CB01, Dab21, EKG23, Fos89, HF14a, HF14b, PM07]. Single-Source [EGK23].

Single-Valuedness [Dab21].

Sink [PK20, SA+20].

SISAL [AM95]. Site [GWPV21]. Size [KDV22, Low00].

SKA1 [FVVL+16].

SKA1-Low [FVVL+16]. Skeleton [DK16, DM17, EK14, ELK18, GRC+14, GGV17, IH04, MFC21, RFP18, SFAG14, STT+18].

Skeleton-Based [GGV17].

Skeleton-Driven [GRC+14].

Skeletons
[CPT14, DMK21, EM14, EK17, GK18, HdMMK22, HK23, JCD+14, KHi18, dMMHdLN21, SM16, WE18, WMK19, WK20], SkePU [ELK18, EAK21], SkeTo [EM14], Skew [HHW20], Skewing [Won02, Wol86], Skew [IR19], Sliding-Window [NdMM09, SF20], Slots [BMA02], Small [HZJ16, HLP11, Sca11, SNS21], Small-Ruleset [Sca11], Small-World [HLP11], Smart [DK16, KIT+20, MMD21, UWF+20, SJT13], Smith [FJZ+15, HMP+13, RSJ+19, TG05, ZTY+19], SMPs [BS03], Spec [LVE03, TLT+15], Speculative [AK92, CHPC96, Col95, ElGE16, JCD+14, KLG08, KJHB14, KT01, LEG11, MS99, MKAP05, PPQV16, RA09, TFNG09], Speculatively [ElGE17], Speculatively-Parallelized [ElGE17], Speech [PR99], Speed [GE00, MSPR18, NSU22, PMV17, TGT18, EG86], speed-up [EG86], Speeded [Zha10], Speeded-Up [Zha10], Speeding [SAB11], Speedup [Gal89], Speedups [KS90, GS90], SPICE3 [WPC07], Spike [CPP+12], Spill [PB04], Spin [HLP11], Spinnaker [RNJ+12].
Spline [AP86]. Split [WR18]. Splitting [GFL00]. SPMD [Dab21]. SPP [SSMO96]. SPP-1000 [SSMO96]. Spread [LEA15].
SQL [HHW20], SR8000 [TSB03]. SSD [OXL17]. stabilizing [DWS16]. Stack [BEP13]. Stacked [LHP17]. Stage [EDA96, PYC16]. Stand [DJR16].
State-of-the-Art [LHL16]. State-Space [KS90]. Stateful [ACC+01, DM17]. States [DDJ18]. Static [BCC00, CB01, CSD21, HYBA18, Li03, MRLR16, NIO+03, RRH03, Gao86].
Stencil [CB19, HdMMK22, MS11, SBC17]. Stiff [MLdlP02], STL [HG18]. Stochastic [ASV+15, RSV+05]. Storage [AMAH01, CM06, JSHP97, LT17, NG92, WTZ+19, WTQ21, AH86, CSF+20].
Storage-Centric [CM06]. Store [BG96]. Stores [AZK+18]. Storm [ZLA21]. Story [MSA+07]. Straightforward [MCT+18].
Strassen [uHKAMFM16a, uHKAMFM16b]. Strategies [CGJK95, CF19, FLMR17a, FLMR17b, LJ09, PK20, SAS18]. Strategy [GSP+17, IS03, JM20, RBES00, WLL+08, WR18, ZLJ+17]. Stream [GSS10, GHDF19, GHR20, LHP+22, RSA+18, RGB+08, TF94, ZK07, ZLA21, SRV88]. Stream-Conscious [ZK07]. Stream-Oriented [RGB+08].
Streaming [BRR11b, CHCL14, HtBK+10, LJ09, MAB+11, SSNS16, TB23, VNU19]. Streams [CPP+12, DM17, Tic90]. Strict [CSTG+03]. Structural [AMP+05].
Structure [EFED05, LWDL17, MGW99]. Structured [BABW14, Fea06, GGV18, HCEP98, MV17, MP95, NLRH07, SASH12].
Structures [BCL17, CL96, ELGE16, GL18, HGT+12, HTmG+12, JSHP97, RG15, SL14, SH15, vdSGBW08]. Student [FJA+18].
Studies [CG94]. Study [BKT08, DE00, FPY08b, HPVRPF15, HMT+96, LVJ22, LDHL05, MS11, PMV17, Sca11, SPS14, KM86]. Styles [PC13]. Sub [LS05]. Sub-Networks [LS05].
Subscribers [Ano92]. Suitable [MV16+06]. Suites [SGJ+03]. Summarization [KSF+18]. Summation [ML15]. sums [MA87]. Super [AK96, JLDS16, YWY+18].
Super-Resolution [YWY+18]. Super-scalable [AK96]. Supercomputer [MSA+07]. Supercomputers [SBC17, qWlJzhC17]. Supernode [SPS14].
Superscalar [MSJ01, VMS15]. Superthreaded [TJY99]. Support [EK17, GRR98, KTB18, PB01, WGF+16, BCL90].
Supported [SD11, AH08]. Supporting [BHJ06, CY516, FMSG17, MS07, OOS+08, SQH92]. SURF [Zha10]. Surfaces [AP86, BGMR11, DMC+18, PGLC+18, SC88].
Surrogate [JM20]. Surveillance [IS18, WZG+17]. Survey [BR14b, KPS14, LHL+16, LMP05, SJC18, YH18, YS22, Cie91]. Survive [ABB+10].
SVM [CSCL20]. SW [KBG+08]. Swap [FLD15, Suna1]. Swarm [dMMKdLN22, NdMMW16, RLH14].
SWIMM [RSJ+19]. Switched [FPY08a]. Switches [SWF+17]. Symbolic [ACD+16, CFF+06, KP05, MP04, GKMB87].
Symmetric [GMP89]. Symposium [Ano21b, DB08]. Synchronisation [BHJ06, FG16]. Synchronization [DSR17, GH89, GE90, HTK98, Jan15, JHLM01, KKKZ12, Liv91, Lub90, NP01, AD86, HFM88, MO90].
Synchronizations [CH95]. Synchronous [BS15]. Synopsis [HZL16]. Synthesis [PG16]. Synthesizing
vdSGBW08]. **Time-aware** [YFC21]. **Timed** [GHR20]. **Timed-Value** [GHR20]. **Times** [SB91]. **Timing** [FDY+19, GHR20, MP91, WQJY17, WMN+17, YDV19]. **TINPAR** [KTT+99]. **Tissue** [LLGC17]. **Tissue-Scale** [LLGC17]. **TLB** [JS10, VFIN12]. **TM** [SUCV17]. **TM-Based** [SUCV17]. **TMT** [VFIN12]. **Tokenization** [Sca11].

**Tolerance**

[AKHD13, NRR99, WGF+16, ZLJA12]. **Tolerant** [DFZ21, EAT14, GCD+05]. **Tolerating** [AK96, JG97, LG10]. **Too** [CHSC18, MT96]. **Tool** [DST21, FG16, KAMAMA17, KSJ14, ME15, PDN21, PVAE98, WMN+17]. **Tools** [ALG+95, ARB+05, DGMP09, LRG+91, Lub90, CB86]. **Top** [Sca11]. **Top-Performance** [Sca11]. **Topological** [GE89]. **Topologies** [MVB+06]. **Torus** [IBA11]. **Trace** [Maj87, RLPN+02, RLEJ19, RD08]. **Trace-based** [RD08]. **Traces** [MANR09]. **Tracing** [BEJD21, ZD19]. **Traffic** [ANS20, CLL21, GAK20, PYC16]. **Training** [JCW+18, IYL14, QGT+19, WTL+23]. **Transaction** [AA15, NBA13]. **Transaction-Based** [AA15]. **Transformation** [CRM17, GRC+14, MFG+08, PMM+18, SAL16, SW16, SH15, VSH+11, WS14, YZZ20, ZH+12]. **Transactions** [CHSC18, DTLW16, SD11]. **Transfer** [SR04]. **Transfers** [ALPS19]. **Transform** [BC15, DLRS13]. **Transformation** [HSCI+16, IKN00, KH18, fSwWC18, SASH12, vdSGBW08, LP94]. **Transformations** [AG06, AMP01, GVB+06, GMB95, HRC17, JS10, KP95, KP01, MO99, OK99, SPS14, TH17, VNU19, WMC98, YAI95]. **transformed** [Ano86b]. **Transforming** [BS98, JBB21]. **Transparent** [LCW+05].

**Transparent** [PSM97, PPQV16, YZZ20]. **Transport** [CJA00, VHK+18, Zey05]. **Transpose** [LPB13]. **Transpositions** [JGM15]. **Travel** [LCT+20]. **Traversal** [STF+12]. **Traversing** [ZHF+19]. **Traversing-Based** [ZHF+19]. **Tree** [BR14b, BJM20b, GH89, KF99, MM16, PS92, PW92, SM16, SMC94, SWF+17, WR18, YJY16, DPL86, MA87, STF+12, PYX17]. **Tree-Based** [KF99, SWF+17]. **Trees** [Li03, MN22, Zha89]. **Triangular** [MMN15]. **Triangulating** [Mer86, EG86]. **Trie** [AR16]. **Triggered** [CJA00, VHK+18]. **Trin** [JK12]. **Triple** [DC20]. **True** [BAF94]. **TrustZone** [KHT21]. **TuCComp** [OATGEL15b]. **Tuned** [LAD15]. **Tuning** [BG17, CCG+14, LEL+99, OATGEL15b, FKM+11, Ged13]. **Tunnels** [KLK16]. **Two** [BARSW95, EHK07, FJO+16, HFM88, JHLM01, LPB13, LLW+17, LS05, SS92]. **Two-Dimensional** [BARSW95, EHK07, LPB13]. **Two-Level** [LLW+17]. **Two-Phase** [JHLM01]. **Type** [CP88, ELK18, HZZ+19, VNU19]. **Type-Driven** [VNU19]. **Type-Safe** [ELK18]. **Typed** [BBC07, BCL17]. **types** [Win89]. **TZmCFI** [KHT21].

**UAV** [SI11]. **Uintah** [PHS19, dMP+03]. **Ultra** [NSU22]. **Ultra-High-Speed** [NSU22]. **Unbalanced** [MFC21, OP10]. **Uncover** [WS08]. **Understanding** [STF+12]. **Unequal** [YBDJ17]. **Unicast** [DFZ21]. **UniCNN** [SWG+18]. **Unification** [SSNS16, CRM92]. **Unified** [DLRS13, HPY01, RK13]. **Unified** [SWG+18]. **Uninterpreted** [CFX+06]. **Union** [CAP88]. **Union-Find** [CAP88]. **Unit** [JW16]. **UniTi** [RK13]. **Units** [CPP+12, JGM15, RG15, SAB11]. **Universal** [GP94]. **Unroll** [BTB+13]. **Unrolling** [Sar01]. **Unstructured** [qWIJZhKhC17]. **Update** [SMD19]. **updating** [Hun87]. **Upon** [GL02]. **Urban**
URLs [CLJH16], URSA [PVAE98]. Use [GmWHR98]. Useful [YYYX20]. User [LLL+15, MTT15]. User-Guided [MTT15].

Users [AKA+20, BBB+17, KuC94]. Using [AKBPV19, APR+18, AAN+20, ASG20, BR97, BKK20, BKK23, BEJD21, BAF94, BABW14, BM20b, CHPC96, CPT14, CS20, Col95, CFF+06, DeB87, Dem11, DS16, DTLW16, DMC+18, DMC+20, DJR16, DS20, ELGE17, FFS18, GAR+16, GG14, GK94, GN20, GG13, GRAG00, GAK20, Valedictory [Lin92].

Utility [ASG20, YBDJ17]. Utilizations [JHLM01, MGW99, ZLAV04]. ZC09, AD86, HAA +, AD86, SSB21, Sun11, TSB03, TCUV14, TFMP97, RL20, SHZ+14, XLWX19]. Virtualization [MGL17, WLW+17, ZXY+15].


Waterman [FJZ+15, HMF+13, RSJ+19, ZTY+19]. Watermarking [GP17]. Wave [LS07].


Window [DM17, NdMM09, SF20]. Window-Based [DM17]. Winograd [uHKAMFM16a, uHKAMFM16b]. Wireless [DM20, RY20, RY22]. within [LLL+15].

References

[AK92, YH18]. WorkCrews [VR88].

Workflow
[CAK17, DST21, LWF+19, SDL17].


Workshop [SS10]. Workstation [NIK00].

Workstations [LS05], World [GHM14, HLP11, WLW+17, YLB19].

Wormhole [LNP91], Write [MV17].

Written [KaM10]. WSN [PK20].

X10 [ASS21]. x86 [MGL+17]. XDP [CFB94]. Xeon [BP17, Cza17, LLGC17, ELGE17, PES+18]. Xeon/Xeon [Cza17]. XI [MCE13]. XV [PVG17].

Y-Invalidate [BAP01]. YAKL [NLBB23].

Yield [SS17]. YuruBackup [XZX+15].

Zone [JCH+08, MS11].

---


[AAI+20b] M. A. Manazir Ahsan, Ihsan Ali, Mohd Yamani Idna Bin Idris, Muhammad Imran, and Muhammad Shoai. Countering statistical attacks in cloud-based searchable encryp-
Ahmad:2020:LBC


[AAI+20]

Alabady:2020:NSM


[AATD20]

Abboud:2012:CHR


[ABB+10]

Ayguade:2010:EOS


[ABASS12]
Aldaya:2019:MTA


Amme:2000:DDA


Almer:2013:PDB


Attali:2001:EFI


Almasi:2002:DSM

[ACC+02] George S. Almasi, Călin Cașcaval, José G. Castaños, Monty Denneau, Wilm Donath, Maria Eleftheriou, Mark Giampapa,


Arcucci:2017:DTR

Aguilar:2017:TPE

Araujo:2008:PAG

Arras:2015:LSE

Aiello:2006:EOS

Altman:1998:OMS


Abdi:2006:VSL


Araujo:2015:GES


Aviles-Gonzalez:2014:SMM


Allombert:2017:MMP


REFERENCES


[AKA+20] Idrees Ahmed, Abid Khan, Adeel Anjum, Mansoor Ahmed, and Muham-

Abadi:2019:VPC


Abraham:1998:MST


Ali:2013:MFT


Arunagiri:2014:FTO


Ayguade:1995:ARP

Eduard Ayguade, Jesus Labarta, Jordi Garcia, Merce Girones, and Mateo Valero. Analyzing reference patterns in automatic data distribution

**Ali:1986:PEP**


Part of the BC-machine project, SICS, Sweden.

**Ashcraft:2019:COA**


**Asher:2017:GAR**


**Abramson:1995:EPS**


**Al-Mouhamed:2004:AOP**


**Ayguade:2007:I**

Eduard Ayguadé and Matthias S. Mueller. Introduction. *International
REFERENCES

Ayguade:2007:SIO


Al-Mouhamed:2001:ENG


Arandi:2018:DDT


Apostolakos:2010:DIV

Ahmed:2001:STL


anMey:2007:NPO


August:1999:PRI


Anonymous:1986:CLF

Anonymous. The church of the least fixed point. *International Journal of Parallel Programming*, 15(5):457, October 1986. CODEN IJPPE5. ISSN 0885-

Anonymous:1986:EJT


Anonymous:1986:IA


Anonymous:1986:H


Anonymous:1987:AL


Anonymous:1987:C

Anonymous:1987:ICI


Anonymous:1987:SP


Anonymous:1992:IAS


Anonymous:2000:GEI


Anonymous:2000:Ia


Anonymous:2000: Ib
REFERENCES

Anonymous: 2001: I


[Ano01]

Anonymous: 2014: EN


[Ano14]

Anonymous: 2016: ENH


[Ano16a]

Anonymous: 2016: ENS


[Ano16b]


Anonymous:2021:ENSa


Anonymous:2021:ENSb


Awasthi:2012:MDP


Ahmad:2020:CHV


Akturk:2019:ATS


Azevedo:2005:AAD

Arunkumar:2020:HUI

Anand:2021:FAX

Ahn:2015:FAP

Adamson:1991:GPA
REFERENCES


REFERENCES


Ben-Asher:2001:INP


Ben-Asher:1995:FPF


Blough:1990:NOM


Barone:2017:AFQ


Baduel:2007:ATO

Laurent Baduel, Françoise


REFERENCES


**Barthou:2000:MSE**


**Berman:2005:NGS**


**Bianchini:1998:EEC**


**Bailey:1990:PGE**

REFERENCES


[BCS+09] Robert D. Bjornson, Nicholas J. Carriero, Martin H. Schultz,


Raphael Beamonte, Naser Ezzati-Jivan, and Michel R. Dagenais. Automated generation of model-based constraints for common...

Bell:1994:SPC


Bilardi:2013:ESD


Broquedis:2010:FEO


Bruschi:2005:FFV

Francesco Bruschi, Fabrizio Ferrandi, and Donatella Sciuto. A framework for the functional verification of SystemC models. *International
REFERENCES


Bodik:1996:ADF


Bulic:2003:EAC


Barigou:2017:MCC


Bronevetsky:2009:CA


Bik:2002:AIR

Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin Tian. Automatic intra-register vectorization for the Intel(R)

**Benini:2011:PRA**


**Bradley:1987:SLC**


**Bai:2021:CCC**


Manuel E. Bermudez, Richard Newman-Wolfe, and George Logothetis. Parallel construction of SLR(1) and LALR(1) parsers. *International Journal of Parallel Pro-


Mitja Bezensek and Borut Robic. A survey of parallel
REFERENCES


Brooks:1986:BBM


Brooks:1991:SDS


Brooks:2015:HLH


Brown:2019:GES


Bansal:1989:TGT


Broy:1991:SDS
Benkner:2003:EDM


Brown:2007:HSP


Baudisch:2015:ESO


Bachir:2013:MUF


Braun:2002:PAS

Tracy D. Braun, Renard Ulrey, Anthony A. Ma-

Choi:2017:DLA


[CAK17]

Cybenko:1988:PPU


[CAP88]

Carriero:2009:GEI


[Car09]

Camilleri:1989:OSO

Cuomo:2018:GEP

Corbera:2002:NSA

Chiarulli:1986:PMT

Chakrabarti:2001:SSA
REFERENCES


Cuomo:2018:PIM


Calland:1998:RAO


Chapman:2013:EDO


Chang:1997:IBP


Crivellini:2019:OPS


Carter:1994:XCI

REFERENCES


Chen:2019:OSM


Currie:2006:ESV


Carriero:1994:CSA


Carriero:1995:PSS


[CHPC96] Po-Yung Chang, Eric Hao, Yale N. Patt, and Pohua P.

[CHYP96]


[CHYP96]

Chen:2018:YCE


[CHSC18]
REFERENCES


[CMW90] Russell M. Clapp, Trevor N.
REFERENCES


Chen:1994:PAI


Capitanio:1995:HBM


Collard:1995:APW


Conery:1988:BEP


Cleaveland:1988:TTC


REFERENCES


Chessa:2014:EEE


Chasparis:2019:EDP


Crammond:1988:GCA


Chuang:1992:APU


Cvetanovic:2017:ROT


Zhongqi Cheng, Tim Schmidt, and Rainer Domér. Scaled static analysis and IP reuse for out-of-order parallel Sys-

Chen:2020:CCG


Chen:1989:HEH


Cristobal-Salas:2003:NSE


Czapinski:2014:RCO


REFERENCES


REFERENCES


**Davison:1987:BSP**


**DeSouza:2008:ISI**


**Devi:2020:TPP**


**Deng:2017:GDG**


**Danelutto:2019:REP**


**Dai:2018:RAS**

Weiqi Dai, Yukun Du, Hai Jin, Weizhong Qiang, De-

**Daumas:2000:PIS**


**DeBenedictis:1987:MUP**


**Demsky:2011:UDE**


**Dennis:1994:MMP**


**Donaldson:1998:AAP**


REFERENCES


REFERENCES


[Dehne:1991:OCM] Frank Dehne, Russ Miller, and Andrew Rau-Chaplin. Optical clustering...


DeMicile:2018:GIO


Das:1991:PSA


dStGermain:2003:PAI


Dekel:1986:OPA


Dehne:1990:OV

Frank Dehne, Quoc T.


REFERENCES


[DX14] Ciprian Dobre and Fatos Xhafa. Parallel programming paradigms and frameworks in big data.


[ECSS88] Elizabeth W. Edmiston, Nolan G. Core, Joel H. Saltz, and Roger M. Smith. Parallel processing of biological sequence comparison algorithms. *International Journal of Par-

**[EDA96]**

**[EFED05]**

**[EGK23]**
Emoto:2007:CFD


Ernsting:2014:SFS


Ernsting:2017:DPA


Eedi:2022:IOP


Estebanez:2016:NDS

Estebanez:2017:UXP


Ernstsson:2018:SFT


Emoto:2014:AFM


Ellis:1988:APM

Evripidou:2006:MMA


Ewedafe:2011:PID


Ernstsson:2022:DPP


Evripidou:2000:I


Engelhardt:1996:PIP

IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).


REFERENCES


[FCJV99] Farkas:1999:MAR


Sijiang Fan, Jiawei Fei, and Li Shen. Accelerating deep learning with a parallel mechanism using CPU + MIC. *International Journal of Parallel Programming*, 46(4):660–673, August 2018. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).


REFERENCES


Farhan:2018:RTD


Frieb:2016:PAH


Feng:2015:ASW


Francez:1987:FAC


Fillo:1997:MMM

Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter, Andrew Chang, Yevgeny Gurevich, and Whay S.

**Fursin:2011:MGM**


**Franke:2012:GEC**


**Feldman:2015:WFM**


**Favati:2002:RCI**


REFERENCES


REFERENCES

Song:2018:VDU

Factor:2006:PID

Song:2018:TDB

Foster:1987:FPB

Furnari:1995:GEI

Fiorin:2016:EDS
REFERENCES

Faigin:1994:PIR

Geng:2022:PBA

Gao:1986:MPL


[GBPK07] Anup Gangwar, M. Balakrishnan, Preeti Ranjan Panda, and Anshul Kumar. Evaluation of bus...


REFERENCES

Gijsbers:2014:ESR


Garcia:2019:GEH


Goli:2017:ACS


Goli:2018:FCI


Gupta:1989:SIB


Ghiya:1996:CAP

[Rakesh Ghiya and Laurie J. Headren. Connection analysis: a practical interprocedural heap analysis for C. *International...
REFERENCES


Ghalaty:2019:ESI


Gu:2017:DEP


Griebler:2019:HLP


George:1986:SSP


Gaspar:2014:BCW

References

Gruttner:2020:TVS

Givargis:2007:SIE

Givargis:2008:GEI

Gregor:2005:GPH

Genaud:2009:FMP
REFERENCES


REPRESENTATION OF THIS DOCUMENT AS IF YOU WERE READING IT NATURALLY.


Griebl:1995:CSD


Góra\wski:2018:EPL


Gao:2017:AOM


Gava:2020:AIC


Granston:1995:LTP


Gendler:2006:PBM

Grasset:2011:MHD


Giacalone:1989:FSI


Gyllenhaal:1998:OMD

REFERENCES


REFERENCES

openurl.asp?genre=article&q


REFERENCES

issn=0885-7458&volume=19&issue=2&spage=111.

Gaudiot:2005:MGE


Grelck:2006:SFA


Giacaman:2011:PIP


Giacaman:2013:PTP


Gao:2008:GEI


[GTK+88] Anoop Gupta, Milind Tambe, Dirk Kalp, Charles


REFERENCES

Gao:2019:ASG

Gesp:2021:EDP

Guo:2018:SRF

Govindarajan:1992:AGP

Gao:2022:EEI

Gilbert:1987:PGP
John R. Gilbert and Earl Zmijewski. A parallel graph partitioning algorithm for a message-passing multiprocessor.

Gouk:2018:ERL


Hussain:2011:PIA


Halstead:1986:AML


Han:2017:SLS


Hao:1998:IIF

Eric Hao, Po-Yung Chang, Marius Evers, and Yale N. Patt. Increasing the instruction fetch rate via block-structured instruction set architec-
REFERENCES


REFERENCES


Hu:2021:CHA


Hudak:2009:CSI


Hawick:2011:RLS


Hsu:2015:NPC


Hamidouche:2013:PSW

Hilbrich:2009:MCC


Harel:2020:SSP


Hum:1996:SEM


Hank:1997:RBC


Hwu:1994:GE


Huang:2016:CFL

Holobar:2006:DJJ


Heinecke:2013:EAE


Hidalgo-Paniagua:2015:CSP


Hoeflinger:2001:UIP


REFERENCES


Huntbach:1991:PBB


He:2018:GRA


Haj-Yihia:2018:SSE


Han:2016:SSB


Han:2019:FFE


Han:2020:CAD

Tao Han, Miaowang Zeng, Lijuan Zhang, and Arun Kumar Sangaiah. A channel-aware duty cycle optimization for node-to-node communications in the Internet of medical things. *International Journal of Parallel Programming*, 48
Iooss:2021:MTP


Imre:2011:ESR


Issenin:2008:UFM


Iwasaki:2004:NPS


Ishizaki:2000:LTA


Introduction: 1998: EA


REFERENCES


Iwashita:2003:BRB


Jeon:2020:GES


Jakobsson:2019:A


Jannesari:2015:DHL


Jin:2017:P


Janjic:2021:RLP


Jimborean:2014:DSP


Jin:2008:PEM


Ju:2018:DDB


REFERENCES

Jiang:2020:MPO

Jung:2001:TPB

Jin:2015:IPB

Jayaraman:1986:PRM

Jeon:2003:PMS


REFERENCES

Ji:2021:SMN

[JLV21]

Jeevan:2020:DDT

[JM20]

Joisha:2002:EAJ
Pramod G. Joisha, Samuel P. Midkiff, Mauricio J. Ser-
REFERENCES

tronic). URL http://ipsapp007.kluweronline.com/content/getfile/4773/31/1/abstract.htm;
http://ipsapp007.kluweronline.com/content/getfile/4773/31/1/fulltext.pdf;

Johnson:1994:PAM


Javed:2016:TSJ


Jin:2015:CCC


Jesshope:2006:SIM

REFERENCES

Jeyapaul:2010:CTT [JS10]

Jourdan:1997:RRB [JSHP97]

Jaaskelainen:2015:PPP [JSS+15]

Jannesari:2016:AGU [JW16]

Khan:2020:EOP [KAI20]
Kapinos:2010:PPP


Khan:2017:RCS


Kasif:1986:CDD


Kachris:2003:RLB


Kriaa:2008:PPM

REFERENCES


Kumar:2005:CTP

Keramidas:2015:RCR

Kelefours:2022:MET

Kultursay:2016:MPL

Kennedy:1994:CTM

Kennedy:2001:FGW
Ken Kennedy. Fast greedy

**Kessler:2020:GEN**


**Kistler:1999:TBA**


**Kolberg:2008:DLS**


**Koster:2020:MPR**


**Kannan:2018:FPT**

Venkatesh Kannan and G. W. Hamilton. Func-


REFERENCES


REFERENCES


REFERENCES

[150]

/ipsapp009.lwwonline.com/content/getfile/4773/13/5/abstract.htm;
http://ipsapp009.lwwonline.com/content/getfile/4773/13/5/fulltext.pdf;
http://ipsapp009.lwwonline.com/content/getfile/4773/13/5/fulltext.pdf;

http://ipsapp009.lwwonline.com/content/getfile/4773/29/1/fulltext.pdf;


http://ipsapp009.lwwonline.com/content/getfile/4773/21/4/fulltext.pdf;
<table>
<thead>
<tr>
<th>REFERENCES</th>
</tr>
</thead>
</table>
| [KS90] Kale:1990:PSS | L. V. Kalé and Vikram A. Saletore. Parallel state-

**Kessler:1997:FPP**


**Kumar:2018:GSR**


**Khatri:2022:SMF**


**Kayi:2014:BAC**


**Khan:2018:ATS**

Atif Khan, Naomie Salim, Haleem Farman, Murad Khan, Bilal Jan, Awais Ahmad, Imran Ahmed, and Anand Paul. Abstractive text summarization based on improved semantic graph approach. *International Journal of Par-
REFERENCES


   http://ipsapp009.lwwonline.com/content/getfile/4773/13/2/fulltext.pdf;


Kubota:1999:TER


Kuck:1994:WDU


Koduru:2018:SSC


Kempf:2010:ASB


Lobeiras:2015:BTB

REFERENCES


Langlois:1990:SPC

Llosa:1998:QER

Loulouque:2017:CPP

Lu:2011:PA

Li:2021:CA

Lu:2017:PEE
Xingjing Lu, Long Chen, and Zhiyuan Li.

**Li:2019:ABE**


**Liu:2020:PAU**


**Lee:2005:EOS**


**Liu:2015:PCU**

REFERENCES


REFERENCES


**Li:2010:TRI**


**Liao:2016:PBA**


**Liu:2015:DRA**


**Li:2016:MPP**


**Liu:2019:RAO**

Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. Register-aware

[Li03]

Liu:2017:SMC


Lo:2022:DCT


Li:2003:PRE


Lindstrom:1986:SPR


Lindstrom:1987:SPR

Gary Lindstrom. Sans pareil: Referees. *Internation
REFERENCES


Lindstrom:1988:SPR  [Lin88b]


Lindstrom:1990:SPR  [Lin90]

Lindstrom:1991:SPR  [Lin91b]
REFERENCES

Lindstrom:1992:RV


Livesey:1991:NMB


Loh:2008:MPH


Lee:2009:RSS


Luo:2005:SSM

REFERENCES


Laccetti:2016:LCM


Lu:2003:ABH


Li:2017:TL


Loechner:2000:CO


**Lee:1998:CPA**


**Loghi:2005:DFV**


**Lin:2012:ESC**


**Li:1991:ECM**


**Lowenthal:2000:ASB**

David K. Lowenthal. Accurately selecting block

Li:1994:SLT


LP94

Langemeyer:2013:USM


LPB13

Lattuadaa:2016:PET


LPF16

Liao:2010:SAA


LQWP10

Lo:1991:OTM

REFERENCES


Lee:2014:BCA


Loots:1992:PAK


Lin:1991:PIS


Lipasti:1998:EVL


Lin:2005:EBH

REFERENCES


REFERENCES


Lin:2018:CHM
Han Lin, Zhichao Su, Xiandong Meng, Xu Jin, Zhong Wang, Wenting Han, Hong An, Mengxian Chi, and Zheng Wu. Combining Hadoop with MPI to solve metagenomics problems that are both data- and compute-intensive. *International Journal of Parallel Programming*, 46(4):762–775, August 2018. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

[LSM+18]

Li:2015:ODN

[LSYG15]

Leite:2012:NNS

LTF+12

Li:2015:CCM


Liu:2017:DPA


Liu:2019:SA

C

[Li:2019:IPD]


Lu:2018:SPE


Li:2019:IPD


Liu:2004:HPR

Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. High performance RDMA-based MPI

**Liu:2017:PBP**


**Lin:1995:PPA**


**Li:1998:Ia**


**Li:1998:Ib**


**Lu:2018:PHK**


**Li:2014:PTI**


[MA87]


[MA10]


[MA11]


[MAB+11]


[MAB+11]

REFERENCES


Main:1987:TFT


Mariani:2016:SPP


Margaris:2009:LFF


Marowka:2017:EAM

Matsuzaki:2017:FMH


MacGregor:2023:GEC


Martinez-Angeles:2016:RLG


Mendelson:1999:DAM


Meira:2012:SIC


Moghaddam:2012:IBG

Mohsen Ebrahimi Moghadam and Mohammad Reza Bonyadi. An immune-based genetic algorithm

**Min:2003:OOP**

Seung-Jai Min, Ayon Basumallik, and Rudolf Eigenmann. Optimizing OpenMP programs on software distributed shared memory systems. *International Journal of Parallel Programming*, 31 (3):225–249, June 2003. CODEN IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic). URL http://ips/app007.kluweronline.com/content/ips/frames/Refs/referenceskapmain.asp?J=4773&I=33&A=5&LK=NM; http://ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.kluweronline.com/content/ips/app007.1998:SCF

**Mellor-Crummey:1998:SCF**


**McAllister:2013:GES**


**Menotti:2012:LLP**

Ricardo Menotti, João M. P. Cardoso, Marcio M. Fernandes, and Eduardo Marques. LALP: a lan-
guage to program cus-


**McKee:2007:GEI**


**Mei:2018:MGS**


**Mellor-Crummey:2001:IMH**


**Mustafa:2015:PPE**

REFERENCES

Manolache:2007:FAC

Merks:1986:OPA

Martinez:2021:PSD

Milovanovic:2008:NEE

Moreton-Fernandez:2019:MDC
REFERENCES


Dragan Milicev and Zoran Jovanovic. Control flow regeneration for software pipelined loops with conditions. International Journal of Par-
REFERENCES


Mutlu:2005:UFL


[MNN22] Rajesh Pandian Muniasamy, Rupesh Nasre, and N. S. Narayanaswamy. Accelerating computation of Steiner trees on GPUs. *International
REFERENCES


REFERENCES


Mall:1991:FTA


Melvin:1995:EIS


Menon:2004:LLL


Menezo:2018:MSC


Moss:2005:CCB

REFERENCES


[Mendelson:2006:I]

Menouer:2016:MSD


[Menouer:2016:MSD]

Meng:2011:PSI


[Meng:2011:PSI]

Moshovos:1999:SMC


[Moshovos:1999:SMC]

Moreira:2007:BGS

[MSA+07] José E. Moreira, Valentina Salapura, George Almasi, Charles Archer, Ralph Bellofatto, Peter Bergner, Randy Bickford, Mathias Blumrich, José R. Brumeroto, Arthur A. Bright, Michael Brutman, José G. Castaños, Dong Chen, Paul Coteus, Paul Crumley, Sam Ellis, Thomas Engelsiepen, Alan Gara, Mark Giampapa, Tom Gooding, Shawn Hall, Ruud A. Haring, Roger

[Moreira:2007:BGS]
REFERENCES

http://ipsapp009.lwwonline.com/content/getfile/4773/13/3/fulltext.pdf;

http://ipsapp009.lwwonline.com/content/getfile/4773/13/3/fulltext.pdf;


REFERENCES

Matheson:1996:PMM

Metzger:2015:UGD

Malakar:2017:HRW

Martinez:2006:DGN

Monterio:2014:PFS

Moghimi:2019:MFD
Ahmad Moghimi, Jan Wichelmann, Thomas Eisen...

Ma:2014:DPI


Nikolopoulos:2002:RVM


Nalepa:2015:COP


Nansamba:2023:FMR

Nicacio:2013:TSU


Nanda:1998:MR


Nylanden:2015:LPR


Navarro:2019:HPT


Nedjah:2016:PIC


Nedjah:2009:HPH


[NIK00] Hironori Nakajo, Aki-

[Nakano:2003:SCG]


[NL23]


[NLBB23]

REFERENCES


REFERENCES

192


Neirynck:1989:EAH


Nau:1986:EAM


Najjar:1994:EMG


Natesan:2017:HBP


Narasimhan:1999:UDF


[RB94]

[NPD89]

[NRGB17]

[NP86]

[NRR99]
Najjar:1997:FSI


Newburn:1997:PPP


Neuberger:2012:MIS


Nicol:1989:DPS


Naqash:2022:SAB


Nafea:2014:PBA

Ibtehal Nafea, Muhammad Younas, Robert Holton, and Irfan Awan. A priority-based admission...


REFERENCES


Ouiyang:2017:HSP

Orailoglu:2003:GEI

Ortega:2004:DMI
REFERENCES

Ou:2017:GNH

Panda:2008:GEI

Parallax:1986:HPS

Parallax:1986:WPB

Pandey:2001:SIE
Raju Pandey and James C. Browne. Support for


Parallax:1986:BPP
Parallax. The bards on parallel programming.


REFERENCES

Park:2013:PMP

Eunjung Park, John Cava- 
zos, Louis-Noël Pouchet, Cèdric Bastoul, Albert Cohen, and P. Sadayap- 
pan. Predictive modeling in a polyhedral op- 
timization space. International Journal of Par-
CODEN IJPPE5. ISSN 0885-7458 (print), 1573- 

[Park:1989:DPM]

Kee-Hyun Park and Lawrence W. Dowdy. Dynamic par- 
titioning of multiproces- 
sor systems. Interna-
tional Journal of Par-
allel Programming, 18(2): 
91–120, April 1989. CO-
DEN IJPPE5. ISSN 0885- 
7458 (print), 1573-7640 
(electronic). URL http:/ 
/www.springerlink.com/ 
openurl.asp?genre=article& 
issn=0885-7458&volume= 
18&issue=2&page=91.

[PD89]

Plazolles:2018:SMC

Bastien Plazolles, Didier El Baz, Martin Spel, Vincent Rivola, and Pascal Gegout. SIMD Monte-
Carlo numerical simulations accelerated on GPU and Xeon Phi. International Journal of Parallel 
Programming, 46(3):584– 
606, June 2018. CODEN IJPPE5. ISSN 0885-7458 
(print), 1573-7640 (elec-
tronic).

Pai:2007:FFE

Rajani Pai and R. Govind- 
darajan. FEADS: a frame-
work for exploring the ap-
lication design space on 
network processors. Interna-
tional Journal of Par-
allel Programming, 35(1):1– 
31, February 2007. CO-
DEN IJPPE5. ISSN 0885- 
7458 (print), 1573-7640 
(electronic). URL http:/ 
/www.springerlink.com/ 
openurl.asp?genre=article& 
issn=0885-7458&volume= 
35&issue=1&spage=1.

[Papin:2021:SIP]

Jean-Charles Papin, Christophe Denoual, and Raymond Namyst. SPAWN: An it-
erative, potentials-based, dynamic scheduling and 
partitioning tool. International Journal of Par-
allel Programming, 49(1): 
81–103, February 2021. 
CODEN IJPPE5. ISSN 0885-7458 (print), 1573-

[PDN21]
REFERENCES

Pavlidis:2016:HSQ


Palomar:2018:HPC


Peterson:2019:AHM


Pinter:1995:I


Pinter:1999:I


Popa:2018:AMH

Coden: IJPPE5. ISSN 0885-7458 (print), 1573-7640 (electronic).


REFERENCES


Papagiannopoulos:2018:HTM


PMM+18

Phan:2017:ESI


Petrov:2007:DTR


Panda:2010:GES


Pop:2008:AOH

Traian Pop, Paul Pop, Petru Eles, and Zebo

Pellegrini:2016:TSP


PPQV16

Phillips:1999:PSR


PR99

Pratt:1986:MCP


Pra86

Palis:1992:NAR


PS92

Presser:2023:PAP

Daniel Presser and Frank Siqueira. Partitioning-aware performance modeling of distributed graph processing tasks. *Inter-
REFERENCES

Park:1997:AGT


Panesar:2006:DPP


Panetta:2012:ATD


Park:1998:PPP

REFERENCES


References

Pan:2017:DDC


Pan:2019:LAM


Qian:2011:PAP


Quiroz-Fabian:2019:VNV


Qin:2019:TDN


Quillere:2000:GEN


Rana:1986:ODS


Rohou:2000:HGC


Rivault:2022:SSJ


Rahman:2016:ASO


Rounce:2008:DIS

REFERENCES

Reguly:2015:FEA

Rasch:2018:MDH

Ruggiero:2008:FAT

Rice:1990:SDP

Reichenbach:2022:GES


[RLH14] Fahimeh Ramezani, Jie Lu, and Farookh Khadeer Hussain. Task-based system load balancing

[Ryuk:2020:ACE][RLK20]


[Ramirez:2002:STC][RLPN+02]


[Rodriguez:2013:CAC][RMG+13]


[Rheindt:2021:DDS][RMH21]

REFERENCES


REFERENCES


Roberti:2005:PIL


Rinaldi:2020:IPA


Ramesh:2020:QQE


Ramesh:2022:RNQ


Suri:2010:IAP

Simburger:2019:PPO


Sen:2011:SCB


Siddique:2016:PRE


Sarkar:2001:OUN

Sengupta:1990:CCO

Sung:2012:DLT

Sourouri:2017:PCF
Mohammed Sourouri, Scott B. Baden, and Xing Cai. Panda: a compiler framework for concurrent CPU + GPU execution of 3D stencil computations on GPU-accelerated supercomputers. *International
REFERENCES


Surendra:2003:EFA


Stepowa:1988:PRF


Silva:2014:EDE

REFERENCES

Schwab:1992:EPG


Sylvestre:2023:AOP


Shriraman:2011:ACH


Sagi:2022:FGP


So:1998:MCG

REFERENCES

Sun:2017:RWM


Santos:2021:END


Seki:2009:DRI


Shee:2008:AEH


Shan:2020:GAP

[SF20] Bowei Shan and Yong Fang. GPU accelerated parallel algorithm of sliding-window belief propagation for LDPC

**Steuwer:2014:IIA**


**Sreraman:2000:VCM**


**Saito:2003:LSP**


**Salapura:2012:GEP**

REFERENCES


[SHLJ17] Zhiyuan Shao, Jian He, Huiming Lv, and Hai Jin. FOG: a fast out-of-core graph processing frame-

**Stahl:2021:DFD**


**Susswein:1991:PPC**


**Song:2014:OBS**


**Sanci:2011:PAU**


**Shabahrami:2006:ACR**


[SL14] Joerg Schneider and Barry Linnert. List-based data structures for efficient management of advance

**[SLZB13]**

**[SM09]**

**[SMC94]**

**[SMDJ19]**

**[Sato:2016:GIT]**

**[Shao:2019:BEB]**


H. Sarojadevi, S. K. Nandy, and S. Balakrishnan. On the correctness of program execution


**Sosic:1990:PAL**


**Souravlas:2004:PTD**


**Schreiber:2015:ICB**


**Sanchez:2006:ETA**


**Somogyi:1988:BAS**

Z. Somogyi, K. Ramamo- hanarao, and J. Vaghani. A backtracking algorithm

**Springsteel:1989:PGP**


**Sarkar:1992:Pas**


**Sazeides:1999:LdV**


**Shan:2001:Cms**


Sankaraiah:2014:POV


Seewald:2021:CGC


Sterling:1996:EEC


Sbirlea:2016:SEU


Sheffler:1996:EDA


Saito:2000:DPC

[SSP+00] Hideki Saito, Nicholas J.

[SSP+00] Hideki Saito, Nicholas J.


REFERENCES


**REFERENCES**

Sun:2018:UPA


Song:2005:PTA


Sha:2015:PEH


Subramani:2008:DIS


Srinivasan:2017:SIN


Shi:2018:PPE

Yang Shi, Yanmin Zhu,


[TESK06] Trancoso:2006:CCM


**Tyson:1994:CSM**


**Tyson:1996:EEP**


**Tan:2016:ATB**


**Tyson:1997:MDC**


**Tian:2009:SPS**

REFERENCES


REFERENCES


[Tao:2008:PAR] Jie Tao, Marcel Kunze,
REFERENCES


[Talpin:2005:CBM]


[TLSG05]

Evan Torrie, Margaret Martonosi, Mary W. Hall, and Chau-Wen Tseng. Memory referencing behavior in compiler-


[Torner:2011:CDR]


[Touati:2005:RSI]

REFERENCES

Tekleyohannes:2021:DCH


Tierney:2009:SPC


Takahashi:2003:PEH


Taylor:1986:PIF


Tan:1999:PIB

Min Tan, Janet M. Siegel, and Howard Jay Siegel. Parallel implementations of block-based motion vector estimation for video compression on four parallel processing systems. *International
Teodoro:2008:RTS


Thoman:2022:CHL


Tonci:2023:DMF


Tousimojarad:2015:SLS


Khan:2016:OMM


Uchihira:2000:SBH


Ugarte:2005:VES


Ullah:2020:LBS

Farhan Ullah, Junfeng

Vianna:2013:APM


Vassiliadis:2016:ESC


vanderSpek:2008:CRT


Veidenbaum:2001:GEI

REFERENCES

Veidenbaum:2002:GEI

Venkatasubramanian:2012:TTT

Viitanen:2018:VLI

Valduriez:1988:PET

Velasquez:2015:BBA
Ricardo A. Velásquez, Pierre Michaud, and André Seznec. BADC0:

vanNieuwpoort:2011:CRA


Vanderbauwhede:2019:TDA


Vandevoorde:1988:WA


Vega-Rodriguez:2019:PPB


Vander-Swalmen:2009:CAM

Pascal Vander-Swalmen, Gilles Dequen, and Michaël Krajecki. A collabora-

[Vallejo:2011:HTM]

[Wainwright:1987:DPC]

[Wang:2017:GPH]
Biao Wang, Diego F. de Souza, Mauricio Alvarez-Mesa, Chi Ching Chi, Ben


[Wu:2017:VPP] Song Wu, Yongchang
REFERENCES


[WU:2015:CTC]


[WLWZ15]


[Wolf:1998:CLT]


[Wrede:2019:FSS]


[Weis:2017:DHL]

Wolfe:1986:LSW


Wonnacott:2002:ASL


Wu:2000:CPG


Weng:2007:OIS


Wang:2017:CIS

Sheng Wang, Weizhong Qiang, Hai Jin, and Jinping Yuan. CovertInspector: Identification of shared memory covert timing channel in multi-tenanted cloud. *International Journal of Par-


Williams:2007:SCK  

Wang:2018:HPM  

Wang:2023:SPF  

Wang:2021:TAF  

Wang:2019:DAS  

Wu:2017:GLS  
Hsiang-Huang Wu and Chien-Min Wang. Generalization of large-scale data processing in one


[WZB+92]
Xu:2019:MCE


Xavier:2009:MLP


Xing:2021:AAA


Xiao:2020:FDO


Xu:2015:YSE

Yang:1995:MDD


Ye:2017:REC


Yzelman:2014:MCH


Yao:2019:CTC


Yao:2017:ONC


Yin:2022:CSB


Yao:2019:IDF


Yang:2018:IIS


Yang:2020:EMD


Yang:2013:IHP

Yi Yang and Huiyang Zhou. The implementa-
REFERENCES

Yu:2019:BLC


Yu:2020:CCB


Zhao:2009:LTL


Yu:2019:BLC


Yu:2020:CCB


Zhao:2009:LTL


Yu:2020:CCB


Zhao:2009:LTL


Zins:2019:TPM

Zeyao:2005:CAP


Zhang:2015:HTP


Zhang:2010:COP


Zhu:2019:WAI

Zheng:2017:LLB


Zurstrassen:2022:ADG


Zhang:2021:RBA


Zalamea:2004:SHT


Zhang:2007:RCM

Zhao:2019:EAS


Zhang:2015:QBA


Zhang:2017:OPL


Zhang:2012:DD


Zhang:2020:VBM


Zyulkyarov:2012:POT

[Ferad Zyulkyarov, Srdjan Stipic, Tim Harris,

