Title word cross-reference

2 [CJ14a, CV12, HYWA09]. 3 [BCT13, CJ14a, CH14, FRB08, KSB+08, KYEB15, LKC15, SKRX13, TJ13b, TJS14, XLBB06, XCF08, XDX14, XPD12, ZJS10, ZMC15]. 4 [LCSP14]. \(\kappa \) [MP10]. \(\mu \) [RFDT15]. \(T \) [YYC07]. \(\Theta(\sqrt{n}) \) [CV12]. \(V_{th} \) [MP10].

-Bit [LCSP14]. -D [HYWA09]. -depth [CV12]. -tree [YYC07].

/high [MP10]. /high- [MP10].

alive [ABS+12]. All-Spin [VSRR15]. allocation [WWJ09]. alternate [LBGR08]. Alternative [RMK15]. ALU [SDS114].

Analysis [GRPT13, GFZ13, GPW+15, KYEB15, NLK+13, CCTP08, CSKM13, CWT14, DWL10, HCTK08, KSG14, PFOL07, RBGC14, ZFT13]. Analytical [KYEB15]. Annotation [PPP+13].

Application [DKK+15, Tah06, AMVG12, XS14]. Application-independent [Tah06]. Application-Specific [DKK+15]. applications [MFA+13, PFOL07].

Approach [BM15, BS15, DRSR14, JRLR15, ZGSA15, CQZK14, RT08, SZSS10].

Arbitrary [Mog14]. Architectural [VO06].

Architecture [CNHL08, DPB11, JOF+15, SGR+12, WX15, CQZK14, CV12, CA11, MTC+08, Moh12, PDL06, PDL07, SCL+09, TGL10, TCSV09, ZJS09, ZJS10, ZJS09b].

architecture-level [Moh12].

Architectures [AMF+15, CCWCC15, GCO+11, LGL15, RMG15, Shu09, BPH+11, CDG+12, Deh05, FGZ14, KWFH12, WVV13, XLBB06, ZMT13]. area [RT07].

Arithmetic [VM08, Gla14]. Array [LYWW13, MTC+08]. Arrays [CEW+13, CCTP08, CSKM13]. Artificial [DMM+15]. Assays [GC14]. assembled [GRS05]. assignment [SLX+14, ZS08].

Associated [GCO+11]. Associative [CCWCC15].

Asynchronous [GRPT13, SM11, VGZ11, ZXY11, CB09]. Asynchrony [SN11]. Automata [DPB11, DWL10].

ballistic [HYWA09, PFOL07]. Barely [ABS+12]. Based [DKK+15, GCO+11, GRPT13, HC15, LPB+15, MPM13, NPA+12, OBLD14, SGR+12, SSF+15, TMS+14, VSRR15, WX15, YXW+12, ZJ11, ZF15, CZ05, CHN09, DMR06, Deh05, GD12, GLA14, HMS+05, LJ10, MN06, SZS10, SC06, TCSV09, TR13, WZSC09].

Binary [CCWCC15, TR13]. biochemical [RBGC14]. Biochips [GCB14, MPM13, CZ05, DJRM09, DDM+06, RMBC12, RBGC14, SC06, SC08, XHSC07, XC08, YYY07]. Bioinformatics [Gui13]. Biology [Dea14, FHFK14, HD14, MH14, MSW14, OBL14, VMV13].

choices [Nar05]. Chronic [MGS+12].

Circuit [DRSR14, GRPT13, KHR+15].
BJ10, DLWW08, KCC+14, MRH12, MMJ09,
Moh12, SZSS10, XDX14, YWH+13.
Circuits [AMF+15, BM15, BS15, Che15,
CV11, DD14, DNHL11, HM14, HLS14,
HN12, KZW+15, LCSP14, MZR+14, MJ11,
PLC+13, SM11, TJ13b, TSB15, VGZ11,
BCT+13, HZY+12, KT14, LRN05, LWH14,
LJ14, MHL08, MN06, PSM+06, Sek07,
TR10, TR13, WFCX09, XCF08].
Classical [DD14].
Clock [CH14, Che15, ANR+14, MRH12, XPD12].
Clock-Controlled [Che15].
Clock-Tree [CH14].
Clocking [SSF+15].
Clockless [MJ11].
Closed [SSN12].
Closed-Loop [SSN12].
Cloud [PHS+15, AMA+14].
Clustering [DRSR14].
Clusters [PPM+13, RT07].
CMOS
[CB09, Che15, HN12, HLFH+12, KHR+15,
MP10, Nar05, RT07, RYT+07, SCI+09,
SXL+12, ZC07, MRR12].
CMOS-nano [CB09].
CMOS+ [MRR12].
CMOS/molecular
[RYT+07].
CMPS [SKRX13].
CNFET [PFOL07].
Code [HH11].
Cofactor [SSP14].
Cognitive [KZL15].
Color [LM13].
Combination [VMV13].
combined [ZFT13].
Communication
[LG15, LMC+11, SX11].
compact
[DLWW08].
Compatible
[KCD15, KCC+14].
compensation
[MRH12].
completion [MNT14].
Complex
[VWP03].
Complexity [GR+12].
Composable [MHW14].
Computation
[CVK15, YWH+13, WDT14].
Computational [MSW14].
computer
[CV12].
Computers [JRL15].
Computing
[DMYT15, BN15, JRL15, KZL15, LGL15,
NV14, SDSS14, AMA+14, KMD12, KT14,
MHL08, McK07, PG12, VO06, WZSC09,
WDH+09, YW13].
configuring [RT08].
Congestion
[MKW+14, RMBC12].
Congestion-Aware
[MKW+14, RMBC12].
Connections
[LKC15].
Conservative [PPM+13].
consideration [LWH14].
Considerations
[MRR12, BJ10, WOW+10].
considering
[RYT+07, SLS+14].
Constants [Mog14].
constrained [HSC+07].
constraints
[CNHL08, HSC+07].
Consumption
[LYWW13].
Control [GCB14, ZJC+10].
control-path [ZJC+10].
Controlled
[Che15, DNHL11, HZSA14, SXL+12].
Converter [TSS14].
Core [DMYT15].
Correlation [AAMF13].
Cosine [DBG+14].
Cost [LCSP14, LGR08, TR10].
CPDI
[XD14].
Critical [CWT14].
Critical-reliability [CWT14].
criticality
[YWH+13].
Cross
[BS15, DKK+15, LYWW13, PRG+15, SS15,
ZGSA15, XDX14].
Cross-Layer
[BS15, DKK+15, PRG+15, SS15, ZGSA15].
Cross-Point [LYWW13].
cross-power
[XD14].
Crossbar
[KZL15, WDW13, YL14, CQZ14, Tah09, ZMT13].
Crossbars
[PDL15].
Cubes [DRSR14].
Current
[RFD15].
Cycle
[ZF15, SS10].
Cycle-Accurate [ZF15].
cycle-based
[SZSS10].
Cycles
[JRL15].
cyling
[GD12].
D
[CV12, BCT+13, CJ14a, CH14, FRB08,
HYWA09, KSB+08, KEB15, LK15,
SKRX13, TJ13b, TSS14, XLB06, XCF08,
XDX14, XPD12, ZJ10, ZMC15].
D-IC
[CH14].
DAC
[CS07, LC08].
DAHM
[AMVG12].
Data [HH14].
DC
[PK14].
Deadlock-Free [LKC15].
decision
[GL14].
decomposition
[HZA14].
Defect
[GUP11, WDW13, YL14, DVL10,
PDL07, SCI+09, Tah06, Tah09, TW10,
XC08, YC07].
Defect-Aware
[GUP11].
Defect-Free
[YL14].
defect-tolerant
[YC07].
defect/error
[TW10].
defect/error-tolerant
[TW10].
Defects
[CHN09].
degradation
[Edi14, SLS+14].
Delay
[GL14, CWT14, TR10].
Delay-based
Delivery [HLH+12, ZSXY11, ZS08]. Demand [HLH+12]. dependability
[PUBV07, TG07]. Dependence [NPA+12].
Dependent [AMF+15, ZWL+15]. deposited [BPH+11]. depth [CV12].

Design
[CB09, CDG08, DMR06, DLWW08, Gla14, TR13, TSB15, WOW+10, ZJS09a, ZGSA15, BJ10, BCT10, CB09, CDG+12, CJ14b, CNHL08, DMR06, DLWW08, Gla14, GRS05, HML+11, HYZ+12, KP10, LBG08, LMC+11, MLK+08, MRH12, MN06, Nar05, OSL06, RMBC12, SXL+12, WFCX09, XDX14, XHSC07, ZC07, ZXC10, ZJS09c].
design-considerations [BJ10]. Designing [DBG+14, RYT+07, TKBM12]. Designs [TZS14, ANR+14, ZS08]. Detection [SGR+12, ZFT13]. Device
[BJ10, CJ14a, HD14, Edi14, RYT+07]. Devices [GBLD15, NPA+12, PDL15, JRC+13, MHL08, RT08, YW13]. diagnosis [DJRM09, DDM+06]. Diagonal [HZSA14].
diagram [LJ14]. Digital [Che15, GCB14, HM14, HSL+14, KZL15, PPM13, DJRM09, DDM+06, KT14, RMBC14, RBGC14, SC08, XHSC07, XCO8, YYC07, ZXC10]. dilution [RBGC14].

Dimensional
[GUP11, MLK+08, WFCX09, XSI14]. diode
[BJ10, DMR06]. diode-based [DMR06].
diodes [LM13]. displacements [SWJ07]. dissipation [MHL08]. Distance [CV11]. distributed [AMVG12, STA+12, VMN10]. distributed-memory [VMN10].
distribution [XPD12]. DNA
[MT14, SKB13]. domain [XDX14]. Dot
[DPB11, DWL10, WDH+09]. DPA [Z11].

DRAMs [BJ10]. driven [GMM12, XSI14].
driver [HCTK08]. Droplet
[PM13, XHSC07, XCO8]. Droplet-Aware
[PM13]. droplet-interference [XHSC07].

Drug [HLH+12]. DSP [TWL09]. Dual
[MFA+13, MP10].
duty [GD12]. DVFS [MKW+14, ZF15]. DWT
[SGR+12]. Dynamic [CThG15, JOF+15, MRH12, ZMC15, AMVG12, WWJ09]. dynamically
[ZJS09a, ZJS09c, ZJS09b, ZJS10].

Early [Ko12, ZGSA15]. Early-Stage
[ZGSA15]. ECG [SCZ+12]. Editorial
[CS07, Cha10, IN05, McK07, Nar08, TSB15, XCF08, Shn09]. Effect
[CV11, LYYW13, XPD12, HZY+12]. effects
[MLK+08]. Efficiency [TKBM12, ZS08].

Efficient [DJRM09, HN12, LKC15, NV14, SDSS14, VSRR15, ANR+14, GD12, KSB+08, PT12, TR13, SM11]. Elastic [PHS+15].

Elasticity [GOGCK11]. Electric [RFDT15].

Electroencephalography [TKBM12].

Electron [CEW+13, HYWA09]. Electronic
[YYW+12, JRC+13]. Electronics
[BY12, Ko12, HCTK08, WZSC09].

Electrostatic [GPW+15]. electrostatics
[KTW08].

Electrothermal
[CSKM13, HLH+12]. elements [CW08].

embedded [MCT10]. Embryonics
[TMM+07]. Emerging
[DMY15, GBLD15, KZP+15, TSB15, WZSC09, BC08, Edi14, PUBV07]. enabled
[WVGP13]. Encoding [ZWL+15].

Energy [DNHL11, GD12, LKC15, LYWW13, RFD15, STA+12, TKBM12, VSRR15, ZXY+11, KMD12, KSB+08, KP10, MHL08, MCT10, SMR+12, WOW+10, WCSSA10, SM11]. Energy [STA+12].

energy-adaptive [KMD12].

Energy-Efficient
[LKC15, VSRR15, GD12, SM11].

Energy-Neutral [LPB+15]. enhancement
[SC06]. Enhancing [KMD12].

environment [OSLT06]. Epilepsy [SN12].

Epileptic [SGR+12]. equation [KTW08].

error [LWX+14, ZXC10]. errors [SKH+13].

ESOP [DRSR14]. Estimation [CMJ14].

Eucalyptus [AMA+14]. Evaluating
[RT07]. Evaluation

Highlights [DR11]. Highly [HN12]. History [Ko12]. hosting [AMVG12]. HW [JRLR15]. HW/SW [JRLR15]. implementation [HH11, LWM+14, PHS+15, WDW13, CB09, CJ14b, LBGR08, LMG+11, RT07, SCI+09, ZJS09a, ZJS09c, ZJS10].

Locally [DNHL11]. Logic [CJ14a, CNH12, GCO+11, GUP11, LCSP14, PT14a, SSP14, VGGZ11, ANR+14, CJK14b, DJ08, HNS+05, LJ14, LTC08, MTC+08, PT12, TR13, ZMT13]. logic-based [TR13]. Loop [SS12]. Loss [HLS14]. Low [Che15, GBDL15, GLMG+15, KZ+15, KHR+15, MGS+12, MMJ09, PRG+15, SGR+12, SSF+15, Tah09, TSB15, ZJS10, ZJ11, ABS+12, CJK14b, CA11, KT14, LBGR08, LMC+11, MFA+13, WD+09]. low-cost [LBGR08]. low-latency [CA11]. Low-overhead [Tah09]. Low-Power [BDL15, GLMG+15, KHR+15, PRG+15, SGR+12, MMJ09, ZJS10, ABS+12, KT14, LBGR08, LMC+11, WD+09]. Low-Swing [SSF+15]. LTPS [LBGR08].

Memristive [CZQK15, GLMG+15, KZL15, MRR12, YW13]. mesh [EWKNW07].
meshless [KTW08]. Method
[GCS+11, ZSY11, MHM+08]. Methodology [CMJ14, CH14, CB09].
Methods [CZQK15, CCTP08]. metric [SMR+12]. Microarchitectural
[GOGCK11]. microarchitecture [MLK+08].
Microarrays [SKB13]. Microdevices [VMV13]. Microfluidic
[GCB14, HD14, MPM13, DJRM09, DDM+06, RMBC12, RBGC14, SC08, XHS07, XC08, YYC07, ZXC10].
microfluidics [CZ05, SC06]. microfluidics-based [CZ05, SC06].
Millimeter [MKW+14, KK12]. Millimeter-Wave [MKW+14]. Minimum
[LCSP14]. MINLP [BM15]. Mitigation [NLK+13]. mixing [RBGC14]. MN
[PHS+15]. MN-MATE [PHS+15]. mNoC [PDL15]. mobile [WDH+09]. Model
[BM15, CCWCC15, MZ+14, DIWW08, MHL08, MTC+08, ZC07]. Modeling
[MN06, SSN12, TKBM12, ZF15, KCC+14, KSG14, PFOL07]. Models
[KCD15, MHW14, FRB08]. Modular
[MHW14]. Modularization [FHFK14]. Module
[MPM13, LCJ14, ZS08]. Module-Based [MPM13]. Molecular
[CNHL08, DBP11, GPW15, PD15, WDW13, KSG14, KTW08, MHL08]. Monitoring
[MGS+12]. monolithic [BCT+13, XDX14]. MOS [KZW+15].
multi-peak [LM13]. Multi-Processors [PRG+15]. multicomputer [VMNI08].
Multicore
[PCD+11, ZMC15, KWFH12, SLS+14]. multidiscipline [Moh12]. Multilayer
[HC15, MHM+08, BPH+11]. Multilevel
[MRR12, VSRR15, CWL+13, FGZ14]. Multiple
[DDM+06, HZSA14, MMJ09]. Multiple-Controlled [HZSA14].
Multipliers [Mog14]. Multiprocessor
[YXW+12, CJ14b, GMM12, LWX+14]. multiprocessors [BPH+11, CA11].
Multistate [KHR+15]. multiwalled
[SXL+12]. mW [WOW+10].

NANA [PDL06]. nano [CB09, LDL10, MP10, PDL06, SCI+09, ZMT13, ZS10, ZC07, MRR12, ZJS09c, ZJS09a, ZJS09b].
nano-architectures [ZMT13].
nano-CMOS [MP10, SCI+09, ZC07]. nano-scale [LDL10, PDL06]. nano/
CMOS [ZJS10, ZJS09c, ZJS09a, ZJS09b].

NANOARCH [Bah09]. NANOARCH07 [Shu09]. NANOARCH’09 [DR11].
nanoarchitectures [Tah06, Tah09]. Nanoarray [FGZ14, GRS05].
nanocomputing [WWJ09]. Nanocrossbar [GUP11]. Nanodevice
[GCO+11]. Nanodevice-Based [GCO+11].
Nanodevices [CZQK15]. Nanoelectronic
[YL14]. nanofabrics [SMR+12]. Nanophotonic
[BPB+12]. negative [KCC+14].

Nanomagnet [CNHL2]. Nanoelectronic
[VD11]. nanometer [CQZK14, EWKNW07, Nar05, RT07, RT08, WZSC09].
nanoarchitectures [HYWA09].
nanomaterials [ZMT13]. Nanoscale
[JRC+13, NLK+13, Shu09, CQZK14, EWKNW07, Nar05, RT07, RT08, WZSC09].
nanophotonic [BPB+12]. Nanosystem
[HYWA09].

Nanoscale
[JRC+13, NLK+13, Shu09, CQZK14, EWKNW07, Nar05, RT07, RT08, WZSC09].
nanoarchitectures [HYWA09].
nanosystem
[HYWA09]. Nanotube [GRPT13, HC15, DLWW08, HZY+12, MN06, SXL+12].

Nanotube-Based [PRG13, MN06]. Nanowire
[Deh05, RK15]. Nanowire-based [Deh05]. nanowires
[SRD+06]. NBTI
[KCC+14, LSH14, SLS+14, YWH+13].
NBTI-aware [YWH+13]. Near [NPA+12].
Near-Field [NPA+12]. negative [KCC+14].

NEMS [HN12]. net [BPH+11]. net-zero
Network [CCWCC15, PDL15, BPH+11, CDG+12, LMC+11, PDLs06, PT14b, WVGP13, ZFT13, YXW+12].
network-enabled [WVGP13].

Network-on-Chip [PDL15, BPH+11, CDG+12, WVGP13, YXW+12]. Networks
[CTP14, Dea14, KCD15, LPB+15, GD12, LJ10, LDI10, LWX+14, XPD12].

Networks-on-Chip [CTP14]. Neural
[CThG15, CCWCC15, KCD15]. Neuro
[CZqk15, CQZK14]. Neuro-Inspired
[CZqk15, CQZK14]. Neuromorphic
[AMF+15, HN15, KZL15, KCD15, RMG15, ZWL+15]. Neutral [LPB+15]. Next
[GFZ15]. NML [DNHL11]. NoC
[KYEB15, MKW+14, ZF15]. NoC-Based
[ZF15]. NoCs [LKC15]. Node
[PHS+15, YWH+13]. Nodes [LWM+14].
Nonhierarchical [PPM+13]. Nonvolatile
[Hc15, SCZ+12, SRKR13]. Novel
[SKB13, Tzs14, ZSXY11, RT08]. NTC
[Cv12]. Number [HH11].

off [ZFT13]. off-chip [ZFT13]. Offline
[MT14]. offs [CDG+12]. On-Chip
[CZQK15, LWM+14, Tzs14, CWL+13, LWX+14, CA11, LMC+11]. Operation
[MPM13]. Operations [CVK15]. Optical
[NPA+12, YXW+12, CA11].
Optical-Electronic [YXW+12].
Optimization [DKK+15, ZGSA15, DLWW08, LWH14, WFCX09, ZJS09c].
optimizations [CW+13]. Optimized
[CCWCC15, ON15]. optimizing [TR10].
Organizing
[DK9, RGM15, LDL10, PDL07]. oscillator
[SXL+12, ZFT13]. outputs [TR10].
Overhead [ZJ11, Tah09].

p [DPB11]. p-QCA [DPB11]. Papers
[SN10]. paradigm [LBGR08, WZSC09].
Parallel [Dea14, DJRM09, STA+12].
Parallelism [JOF+15, GN08]. parameter
[RYT+07]. Parametric [FRB08]. Part
[ZJS09c, ZJS09b]. Partial [LKC15].
Partitioning [LRN05]. path
[CWT14, ZXC10]. paths [ANR+14]. Pauli
[HSA14], peak [LM13]. [MRR12]. ACM
[Shu09]. Bitline [LYWW13]. CMOS
[ZJS10, ZJS09a, ZJS09c, ZJS09b].
defect-tolerant [ZMT13]. Delay [CMJ14].
error-tolerant [TWL09]. high-
[MP10].
molecular [RTY+07]. SW [JRLR15].
TODAES [BC08]. Peres [DJ08].
Performance
[CDG+12, DNHL11, LYWW13, MKW+14,
ON15, Bea11, BPH+11, DLWW08, LMC+11,
LCT12, MN06, PFOL07, RT07, STA+12,
WWJ09, SM11]. performance-aware
[STA+12]. phase [JRC+13]. Photonic
[BPH+11]. photonics [Bea11]. physical
[BCT+13, HZ+12]. PicoServer [KSB+08].
Piezoelectric [RFDT15]. pillar [MFA+13].
pin [XHSC07]. pin-constrained [XHSC07].
Pipeline [SM11]. PLA [CNH12].
Placement
[BM15, LWH14, YYC07, LRN05]. PLAs
[CHN09]. Plasticity [AMF+15]. Point
[LYWW13, NV14]. Policies [ON15].
Pooling [ZMC15]. portability [GN08].
post [XS14]. post-bond [XS14]. Power
[Che15, GBDL15, GLMG+15, HN12,
JRLR15, KZW+15, KHR+15, LWM+14,
MGS+12, PRG+15, SGR+12, TSB15, ZJ11,
ZXY11, ZGSA15, ZF15, ABS+12, ANR+14,
GMM12, KT14, KK12, LJ10, LBGR08,
LMC+11, MMJ09, MP10, MFA+13.
WDH09, XDX14, ZS08, ZJS10, ZFT13].
power-efficient [ANR+14]. Power-Gating
[HN12, ZF15]. Powered
[JRLR15, WCSSA10]. Powerful [VMV13].
pre [XS14], pre-bond [XS14]. Predictive
[DKK+15, ZC07]. Pressure [MGS+12].
Primitive [GRPT13]. primitives
[HMS+05]. Proactive [PRG+15].
Probabilistic [KSG14, KT14]. Probes
[SKB13]. problem [EWKNW07]. Process
[GPW+15, KAKSP14, XPD12]. processing
processing-in-wire

productivity

rejuvenation

Reliable

redundant

redundancy

redundant

Reliability

reliable

Replacement

resilient

Resource

Resource-Efficient

Reversible

replugging

Realizing

Reasonable

Reconfigurable

Quantifying

quantum

QuickRecall

Radial

Radix

RAM

random

Realtime

Real

Realization

Redundant

red Cedar

Redundancy

Redundant

redundant

Redundancy

Redundant

Redundant
simulator

[HYWA09, LJ10]. Simulators

[ZF15, KCC+14], Single simulator

[CEW+13, XSL+12]. Single-Electron simulator

[CEW+13, single-walled [XSL+12]. sizing

[LSH14]. Skew [NPA+12]. Small

[MkW+14]. Small-World [MkW+14]. SoC

[HLH+12]. soft [LWX+14, SKRX13]. soft-error [LWX+14]. Software

[AMA+14, ZJT+14, CNPR14, MNT14]. Solution

[VGZ11, MN06, Moh12]. solver [KTW08].

Sort [GUP11]. space

[TJ13a, XLBB06, ZJS09a]. Sparse

[RMG15]. Spatial [KWFH12]. Special

[BY12, DMYT15, DR11, Gui13, HN15, Moh12, MSW14, SS15, STH15, AD14, BC08, Bal09, CS07, Edi14, LC08, McK07, PG12, PR13, WDT14, XCF08]. specialized [BC08]. Specific [DKK+15]. Specification

[OBLD14], spectrally [KTW08]. Speedup

[KAKSP14]. SPICE [KCC+14].

SPICE-compatible [KCC+14]. Spike

[AMF+15, ZWL+15].

Spike-Time-Dependent [ZWL+15].

Spike-Timing-Dependent [AMF+15].

Spiking [CThG15, KCD15].

Spin

[AKW+13, VSR15, CSKM13, CWL+13, EKWNW07, MFA+13]. Spin-transfer

[AKW+13, CWL+13, MFA+13].

spin-transfer-torque [CSKM13].

spin-wave [EKWNW07]. SpiNNaker

[PCD+11]. Spintronics [KZW+15]. SRAM

[HKM15]. Stabilized [Chc15]. stacked

[KWFH12, MHH+08, SKRX13, ZS08]. stacked-

[Vdd] [ZS08].

[KS+08, MH+08]. Stage [ZGSA15].

Stand [RFDT15]. Stand-By [RFDT15].

Standard [CMJ14]. state [ABS+12].

Stochastic [MR+14]. stochastically

[GRS05]. Storage [SCZ+12, VSR15].

strain [LWH14]. strategies

[FRB08, GRS05]. stretching [MRH12].

structures [PSM+06]. STT

[AKW+13].

STT-MRAM [AKW+13]. STTRAM

[WX+15]. STTRAM-Based [WX+15].

studies [CNPR14]. Study

[PPM+13, CB09, HCTK08]. styles [CJ14b].

Sub [ON15, RFDT15, WO+10]. Sub-techniques

[RFDT15]. Sub-Block [ON15]. sub-mW

[WOW+10]. Subcrossbar [YL14].

Supercapacitor [LPB+15].

Supercapacitor-Based [LPB+15].

Supervised [CZQK15]. Supply

[LWM+14, MMJ09]. Surface

[CMJ14, KTW08]. Survey

[GBLD15, KK+12, CNPR14]. sustainability

[KMD12]. sustainable [PG12]. Swing

[SSP+15]. Symposium [Shu09]. synapses

[JRC+13]. Synaptic

[Shu09].

Synchronous [RFDT15]. Synthesis

[CEW+13, CH14, CW08, DRSR14, HD14, LCSP14, MPM13, PT14a, SSP14, SKB13, CCTP08, DJ08, LI14, MMJ09, PT14b, SSZ10, SC08, XCO8, ZXC10]. Synthetic

[Dea14, FHFK14, HD14, MHW14, MSW14, OBLD14, VMV13]. System

[CJ15, HH+11, LWM+14, SS15, SN11, SCZ+12, CB09, MP10, YW13, ZJS09c, ZJS09b, PCD+11, YXW+12]. system-level

[MP10]. System-on-Chip

[PCD+11, YXW+12]. Systems

[DMYT15, GBLD15, KZW+15, TS15, TKB12, ZSYM11, GMM12, LBGR08, LXW+14, Moh12, MCT10, PG12, STA+12, SLS+14, WOW+10, WCSA10].

systems-on-chip [GMM12, LWH+14].

tasks [STA+12]. Technique

[Chc15, HLH+12]. Techniques

[GBLD15, TJ13b, BCT+13, KP10]. Technologies

[GBLD15, TS15, BC08, Edi14, PR13, PUBV07, VO06, GN08].

Technology [CTP14, GMM12, KZW+15, KSB+08, MH+08, SS15, XCO8, ZXC10].

Technology-Agnostic [CTP14].

Technology-driven [GMM12].

Temperature [PRG+15, KCC+14, LWH14].
Template [RDH14]. Templates [SM11].
temporal [KWFH12]. Test [TJ13b, XS14].
Testable [SDSS14, XDX14, LBGR08].
testing [DJRM09, RT08, XS14, ZJT+14].
TFT [HCTK08, LWH14]. TFTs [LBGR08].
theoretic [DLW10]. Theory [RBGC14].
Thermal [TJ13b, KWFH12, XS14].
thermal-driven [XS14]. three
[MLK+08, WFCX09, XS14].
three-dimensional [MLK+08, WFCX09, XS14]. Threshold
[PT14a, MMJ09, PT12, PT14b, WDH+09].
Through-Silicon-Via [TZS14].
throughput [CA11, RMBC12]. Tile
[HMS+05]. Tile-based [HMS+05]. Tiled
[DPB11]. Time
[ZWL+15, LWX+14, MNT14]. timed
[WCSA10]. Timing [AMF+15]. Tolerance
[WDW13, DWL10, LSH14, SCI+09, Tah06, Tah09, XC08].
Tolerant [CVK15, HH11, LWX+14, PDL07, TLW09, YYY07, ZMT13].
tool [HZY+12]. torque
[AKW+13, CSM13, CWL+13, MFA+13].
Torus [YXW+12]. Torus-Based
[YXW+12]. trade [CDG+12]. trade-offs
[CDG+12]. transfer
[AKW+13, CSM13, CWL+13, MFA+13].
Transform [DBG+14]. Transformations
[GOGCK11, BCT+13]. transient [ZFT13].
Transiency [JRLR15]. Transistor
[CEW+13, GLMG+15, HCC15, DLW08, HZY+12]. Transistors
[HN12, WDH+09].
Transporters [PPM+13]. Tree
[CH14, YYY07]. Trojans [ZFT13]. TSV
[KYEB15]. tunneling [LM13]. Two
[GUP11]. Two-Dimensional [GUP11].

ULS [MP10]. Ultra
[CJ14b, KZW+15, KT14, MGS+12, TSB15].
Ultra-Low [TSB15]. Ultra-low-leakage
[CJ14b]. Ultra-Low-Power
[KZW+15, MGS+12]. units [Gla14].
Universal [CZQQK15, CVK15, MP10].
Using

[DPB11, GOGCK11, GUP11, HZSA14, HLH+12, PT14a, VSRR15, BPH+11, CMJ14, DRSR14, HMS+05, JRC+13, KT14, KK12, KCD15, LBGR08, LSH14, MMJ09, MHM+08, RBGC14, SSZ10, SXL+12, SC06, YYY07, ZFT13, ZJT+14, KSB+08].
Utilizing [WDH+09].

Validation [SSN12]. Variability
[GPW+15, NLK+13]. Variable [DKK+15].
Variable-Latency [DKK+15]. Variation
[GLMG+15, MRH12, ZMT13].
Variation-Aware [GLMG+15]. variation/
defect [ZMT13]. variation/
defect-tolerant [ZMT13]. Variations
[CMJ14, CJS14a, CJS15, KAKSP14, RYT+07, XPD12]. Vdd [ZS08]. Vertical [LKC15].
Via [TZS14, WWJ10]. vibration
[WCSA10]. Viewpoint [GFZ13]. virtual
[Sek07]. virtualized [MNT14]. VLSI
[AMF+15, DKK+15, MRH12]. Volatile
[KHR+15, RM15]. Voltage
[Che15, JOF+15, SXL+12]. voltages
[MMJ09, WDH+09]. vs [CJ14a].
vulnerability [SKR13].

wafer [MHM+08]. wafer-to-wafer
[MMH+08]. walled [SXL+12]. Wave
[MKW+14, EWKNW07]. waves [KK12].
Web [AMVG12]. while [RYT+07]. wire
[Gla14, SXL+12]. Wireless [LPB+15, LWM+14, MGS+12, MKW+14, TKBM12, CDG+12, GCD12, WOW+10, WVGP13].
waves [DK09]. Wordline [LYWW13].
Wordline/Bitline [LYWW13]. Workload
[PRG+15, SLS+14]. Workload-Aware
[PRG+15]. World [MKW+14]. WoSAR
[AD14]. Write [GLMG+15, WX15].
Write-Aware [WX15]. Writes [VSRR15].

Yield [SC06, FRB08].
Z [HZSA14]. zero [BPB+12].
References

REFERENCES

REFERENCES

Carmona:2008:FMA

Coussy:2015:FBN

Chang:2012:PED

Chen:2013:SAR

Chen:2014:CTS

Chakrabarty:2010:E

Cheng:2015:SSC

REFERENCES

Crocker:2009:DFQ

Chaudhuri:2014:VDS

Chen:2014:ULL

Chen:2015:GPF

Chaudhuri:2014:ALD

Crocker:2012:RPA

Crocker:2008:MQD

Cotroneo:2014:SSA

[CNPR14] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo. A survey

Chabi:2014:RLA

Chakrabarty:2007:ESI

Chatterjee:2013:EAS

ChappetDeVangel:2015:RSD

Chung:2014:DET

Choi:2011:EQI

Choi:2012:DQA

REFERENCES

DEN ????. ISSN 1550-4832 (print), 1550-4840 (electronic).

Chien:2015:FTO

Chuang:2008:SRS

Chen:2013:CCB

Chen:2014:CRP

Chakrabarty:2005:DAM

Chabi:2015:CUS

DeVos:2014:DGF

REFERENCES

DeVos:2014:MCC

Donald:2008:RLS

Davids:2006:MFD

Deans:2014:PNS

Datta:2009:EPT

Dehon:2005:NBP

Dysart:2009:OWR

[DRSR14] Kanalika Datta, Gaurav Rathi, Indranil Sengupta, and Hafizur Rahman. An improved reversible circuit synthesis approach using clustering of...

Pierre-Emmanuel Gaillardon, Edith Beigne, Suzanne Lesecq, and Giovanni De Micheli. A survey on low-power techniques with emerging technologies: From devices to systems. *ACM
REFERENCES

Grissom:2014:IAC

Gaillardon:2011:MNB

Ghidini:2012:EEM

Graziano:2013:HVB

Gladstein:2014:DBP

Ghofrani:2015:LPV

Garg:2012:TDL
Siddharth Garg, Diana Marculescu, and Radu Marculescu. Technology-driven limits on runtime power management algorithms for multiprocessor...

Guiducci:2008:HPP

Galceran-Oms:2011:MTU

Graziano:2015:PVE

Ghavami:2013:DAR

Gojman:2005:EDS

Guiducci:2013:ISI

Goren:2011:DAN

[GUP11] Sezer Gören, H. Fatih Ugurdag, and Okan Palaz. Defect-aware nanocrossbar logic mapping through matrix canonization using two-dimensional

Hossain:2015:MGN

Huang:2008:RAF

Huang:2014:FMD

Haron:2011:RRN

Huang:2012:IRD

Hanninen:2014:QI

Hadjam:2014:RED

Fatima Zohra Hadjam and Claudio Moraga. RIMEP2: Evolutionary design of reversible digital circuits. *ACM
REFERENCES

REFERENCES

4832 (print), 1550-4840 (electronic).

Jafri:2015:AID

Jackson:2013:NES

Kamal:2014:IPV

Kuñoğlu:2014:RMN

Krichmar:2015:LSS

REFERENCES

Khasanvis:2015:LPH

Komerath:2012:RBP

Kant:2012:EDC

Kocak:2010:IDT

Kgil:2008:PUS

Kumawat:2014:PMA

Kim:2014:ICU

[KT14] Jaeyoon Kim and Sandip Tiwari. Inexact computing using probabilistic circuits: Ul-

Kuo:2008:MSA

Kursun:2012:STT

Khayambashi:2015:ARA

Kim:2015:RDN

Kang:2015:SEU

Li:2008:ADP

Lebeck:2008:IDS

[LC08] Alvin R. Lebeck and Krishnendu Chakraborty. Introduc-
REFERENCES

Lin:2014:QQM

Li:2014:SAB

Liu:2012:RAP

Liu:2010:RSO

Lee:2015:REE
Jinho Lee, Kyungsu Kang, and Kiyoun Choi. REDELF: an...

Lee:2013:CIP

Li:2011:IHN

Lin:2014:NTL

Liu:2014:CHP

Wulong Liu, Yu Wang, Yuchun Ma, Yuan Xie, and Huazhong Yang. On-chip hybrid power

REFERENCES

Liu:2014:CSN

Liang:2013:EWB

Majerus:2012:WUL

Ma:2008:MCE

Xiaojun Ma, Jing Huang, and Fabrizio Lombardi. A model for

[MN06] Yehia Massoud and Arthur Nieuwoudt. Modeling and design challenges and solutions

Myers:2014:ISI

Mohanty:2014:SOS

Metodi:2008:HLI

Madsen:2014:SMC

Narendra:2005:CD

Narayanan:2008:E

Narayanan:2013:VNF

NLK+13]
Naruse:2012:SDN

Nguyen:2014:RED

Oberortner:2014:RBD

Olorode:2015:IPS

Ottavi:2006:HHE

Plana:2011:SDI

Patwardhan:2007:SOD

Jaidev Patwardhan, Chris Dwyer, and Alvin R. Lebeck. A self-organizing defect tolerant

Pang:2015:MLN

Pang:2015:MLN

Patwardhan:2006:NNS

Patwardhan:2006:NNS

Paul:2007:PBC

Paul:2007:PBC

Peper:2013:BCF

Peper:2013:BCF

Piovesan:2013:ERP

Damiano Piovesan, Giuseppe Profiti, Pier Luigi Martelli,
Piero Fariselli, and Rita Casa-dio. Extended and robust protein sequence annotation over conservative nonhierarchi-
cal clusters: The case study of the ABC transporters. *ACM Journal on Emerging Techno-

Paul:2013:ISI

Bipul C. Paul and Arijit Ray-
chowdhury. Introduction to the
special issue on memory tech-
nologies. *ACM Journal on
Emerging Technologies in Com-
puting Systems (JETC)*, 9(2):
10:1–10:??, May 2013. CODEN ????. ISSN 1550-4832.

Patnaik:2015:PPC

Milan Patnaik, Chidham-
baranathan R., Chirag Garg,
Arnab Roy, V. R. Devanathan,
Shankar Balachandran, and
V. Kamakoti. ProWATCH: a
proactive cross-layer workload-
aware temperature manage-
ment framework for low-power
chip multi-processors. *ACM Jour-
nal on Emerging Technologies in Computing Sys-

Prasad:2006:DSA

Aditya K. Prasad, Vivek V.
Shende, Igor L. Markov,
John P. Hayes, and Ketan N.
Patel. Data structures and
algorithms for simplifying re-
versible circuits. *ACM Jour-

Palaniswamy:2012:EHII

Ashok Kumar Palaniswamy
and Spyros Tragoudas. An
efficient heuristic to identify
threshold logic functions. *ACM Journal on Emerging Techno-

Palaniswamy:2014:ITL

Ashok Kumar Palaniswamy
and Spyros Tragoudas. Im-
proved threshold logic synthe-
sis using implicant-implicit al-
gorithms. *ACM Journal on
Emerging Technologies in Com-
puting Systems (JETC)*, 10(3):
21:1–21:??, April 2014. CO-
DEN ????. ISSN 1550-4832.

Pierce:2014:NTN

Luke Pierce and Spyros Tragoudas.
Nanopipelined threshold net-
work synthesis. *ACM Jour-
nal on Emerging Technologies in Computing Sys-

Prodan:2007:DDE

Lucian Prodan, Mihai Udrescu,
Oana Boncalo, and Mircea
Vladutiu. Design for depend-

Roy:2014:TAG

Rahman:2014:AQT

Romani:2015:SSC

Rahman:2015:NVR

Rodriguez:2015:TSS

Rad:2007:EAP

[RT07] Reza M. P. Rad and Mohammad Tehranipoor. Evaluating area and performance of hybrid FPGAs with nanoscale clusters and CMOS routing.
REFERENCES

Sen:2014:RRC

Sekanina:2007:EFR

Sharad:2012:LPA

Shukla:2009:GEI

Srinivasan:2013:NAF

Sun:2013:EVC

Sun:2014:WAC

Shafaei:2014:CSR

Sheikh:2012:EPA

Schulhof:2007:SRC

Shang:2011:INC

Srivastava:2012:CLV

Saeedi:2010:RCS

Tahoori:2006:AID

Tahoori:2009:LOD

Taskin:2009:SRB

Tyrrell:2007:ED

Tang:2013:DSE

Tang:2013:TCT

Tolbert:2012:MDA

Tempesti:2007:SRH
Thapliyal:2010:DRS

Thapliyal:2013:DER

Todri-Sanial:2015:GES

Tang:2009:DET

Tida:2014:NTS

Vacca:2011:ASN

VanMeter:2008:ADM

Venken:2013:SBM

Lyn Venken, Kathleen Marchal, and Jos Vanderleyden.

VanMeter:2006:AIQ

Venkatesan:2015:EEA

Wenck:2010:SST

Wille:2014:ISI

Wang:2013:HRD

Wu:2009:SCD

REFERENCES

Wang:2010:DCS

Wettin:2013:CNE

Wang:2009:ENP

Xu:2008:IDR

Xie:2008:ESI

Yuan Xie, Jason Cong, and Paul Franzon. Editorial: Special issue on 3D integrated circuits and microarchitectures. ACM Journal on Emerging
Xie:2014:TCP

Xu:2007:ADP

Xie:2006:DSE

Xu:2012:EPV

Xiang:2014:TDT

Yuan:2014:FEA

Yang:2013:MDC

Yang:2013:NAC

Ye:2012:TBH

Yuh:2007:PDT

Zhao:2007:PTM

Zoni:2015:MDP

Zhang:2013:DTU

Zhao:2015:CLA

REFERENCES

Zhang:2011:FBP

Zhang:2009:DSE

Zhang:2009:HNCb

Zhang:2009:HNCa

Zhang:2010:LPN

Zhao:2014:SRS

Zhang:2015:DCP

REFERENCES

