A Complete Bibliography of Publications in *The Journal of Supercomputing*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

29 September 2015
Version 2.22

Title word cross-reference

(1) [1090]. 1 [299, 421]. 2
[299, 421, 478, 537, 806, 1094, 1134, 1271, 1300, 1373, 1455, 1730, 1797, 1826, 1855, 2023, 2029].
4 [1639, 1751]. 5 [299]. 9 [154]. * [1518]. 3
[414, 487, 498, 707, 826, 953, 959, 1119, 1201, 1315, 1633, 1673, 1674, 1770, 1876, 1902].
kr → r [255]. μ [447, 1884]. N
[257, 312, 414, 768, 826, 1119, 1256]. P
[693, 1739]. r → kr [255]. ε [1678].

-Ary [414, 498, 768, 826, 1119]. -based
-Cubes [414, 768, 826]. -D
[299, 314, 421, 478, 691, 1134]. -Dimensional
[312]. -disjoint [1751].
-Disjoint-path-coverable [2023].
-divergence [1978]. -fuzzy [1678].
-harmonic [1673]. -Means
[487, 707, 953, 1770, 1876, 2040]. -NN [1315].
-pairwise [1633]. -Point [154]. -SAT [1281].
-Set [1902]. -sized [693]. -tree [1119].

[?]CoarseKonstantopoulos:2009:EPT.

2 [5, 22, 58, 67, 79, 80, 91, 104, 112, 122, 150,
Century [382, 423]. certificateless [995].
certified [1811]. CertiVeR [771]. CFD
[408, 472, 700, 1823]. CFT77 [71]. CGM
[870]. Chain [410, 1552]. Chained
[937, 1005]. ChainMail [2057]. chains
[1274, 1623, 1639]. Challenges
[9, 1424, 1635, 1827]. changing [1609].
Channel [320, 407, 813, 826, 1309, 1341, 1738,
1891, 1930, 2016, 2038, 2069]. channel-based
[2069]. channel-recommendation [1738].
channels [809]. chaotic [1130, 2074].
Character [179]. Characteristic [743].
characteristics [1562, 1925].
Characterization [193, 294, 624, 692, 825,
1270, 1709, 1853, 1957, 1960].
Characterizing [954, 1735]. chassis [1857].
check [1779]. checking [1291, 1393, 1720, 1761].
checkpoint [1520, 1843]. checkpoint-based [1843].
checkpoint/restart [1520].
Checkpointing
[225, 308, 416, 605, 835, 892, 1042].
checkpointing-related [835]. Checkpoints
[640]. children [1820]. Chip [560, 825, 981,
990, 1129, 1180, 1214, 1241, 1260, 1317, 1537,
1601, 1656, 1684, 1766, 1802, 1826, 1899, 1936,
2015, 2016, 2027, 2054, 2060, 2069, 2075].
choice [791]. choices [1166]. Cholesky
[133, 269, 441, 459, 1273]. choose [1700].
chooser [1534]. choreographies [1323].
Chromosome [220]. Chromosomes [247].
Chronos [294]. chunked [1909]. Churn
cipher [1566]. Circuit [379, 460, 1128, 2025].
circuit-packet [2025]. Circuit-Switched
[379]. Circuits
[78, 280, 313, 314, 568, 641, 1275, 1945].
Circulation [214]. city [1986]. Class
[261, 280, 593]. Classification
[233, 953, 1363, 1364, 1497, 1683, 1726, 1762].
classified [1186]. classifiers [1406].
classifying [1903]. classroom [749].
clauses [1927]. client [714, 1747, 1864, 1946].
Cloning [1668]. Clos [1278]. Cloud
[924, 979, 1123, 1137, 1181, 1205–
1207, 1209, 1210, 1269, 1287, 1298, 1310, 1319,
1322, 1334, 1344, 1347, 1348, 1358, 1371, 1397,
1410, 1422, 1437, 1439, 1443, 1445, 1451–
1453, 1464–1466, 1491, 1535, 1564, 1566, 1582,
1583, 1587, 1608, 1612, 1617, 1621, 1628, 1643,
1671, 1675, 1680, 1690, 1707, 1710, 1718, 1735,
1745, 1749, 1752, 1755, 1758, 1765, 1772, 1778,
1781, 1784, 1793, 1795, 1800, 1827, 1861, 1868,
1873, 1878, 1882, 1886, 1898, 1906, 1916, 1920,
Cloud-assisted [1882]. Cloud-based
[1319, 1718, 1920, 1954]. cloud-oriented
[1206]. cloudlets [2035]. clouds
[1211, 1579, 1657, 1976, 2035]. CloudTaint
[1886]. Cluster
[220, 266, 276, 316, 321, 362, 363, 365, 366, 390,
466, 472, 476, 595, 621, 627, 630, 633, 661, 665,
675, 724, 737, 784, 906, 957, 963, 984, 988, 1019,
1070, 1087, 1165, 1238, 1268, 1314, 1321, 1572,
1591, 1613, 1685, 1721, 1810, 1813, 1955, 1967].
Cluster-based [316, 906, 2055]. Clustered
[679, 1556, 1992]. Clustering
[176, 281, 364, 487, 559, 665, 707, 777, 829, 867,
933, 953, 1049, 1106, 1217, 1234, 1644, 1655,
1673, 1750, 1770, 1821, 1876, 2005, 2047, 2071].
clustering-based [2071]. Clusters
[274, 334, 415, 500, 577, 614, 624, 637, 671, 709,
730, 793, 841, 859, 899, 900, 993, 1025, 1089,
1171, 1175, 1183, 1194, 1219, 1229, 1296, 1344,
1360, 1507, 1522, 1544, 1547, 1620, 1697, 1737,
[67]. CM-5 [166]. CMP [825, 1027]. CMPs
[1239, 1408, 2028]. CNI [227]. Co
[418, 624, 657, 665, 735, 975, 1087, 1161, 1957].
Co-Allocating [624]. co-allocation
[735, 975, 1087]. Co-Array [418, 657].
Co-occurrence [1161]. co-processing
[665]. co-scheduling [1957]. coalition
[2047]. Coarse [249, 495, 862, 1216].
course-grain [1216]. Coarse-Grained
[249, 495]. Code [125, 253, 291, 471, 738, 899,
Connectors [928, 1057, 1097, 1450, 1462, 1614, 1648].
Connections [639].
Connection [710, 941, 950, 977, 1136, 1668, 1760, 1766].
Connect [499, 1307].
Congestion [126, 1794].
Congestion-aware [668].
Conjugate [289, 1223, 1855].
Conjunction [1581].
Connect [499, 1307].
Connected [64, 318, 710, 941, 950, 977, 1136, 1668, 1760, 1766].
Connection [67, 150, 573, 1639, 1815].
Connections [693].
Connectivity [860, 898, 928, 1057, 1097, 1450, 1462, 1614, 1648].
Connectors [53].
Conquer [40, 248, 543, 790].
Conscious [316, 403].
Consensus [1902, 1902, 2067].
Conservation [373, 1028, 1782].
Consideration [1902, 2014].
Considering [1185, 1462, 1465, 1595, 1745].
Consistency [168, 692, 962, 1301, 1779, 1977].
Consistent [442, 562].
Consolidation [1195, 1600, 1749, 1857, 1976].
Constant [240].
Constrained [805, 983, 1097, 1145, 1337, 1391, 1968].
Constrains [625].
Constraint [1599].
Constraints [266, 1370, 1667].
Constructing [460, 988, 1158, 1934].
Construction [535, 976, 1019, 1437, 1519].
Constructs [43, 1340].
Consumption [730, 752, 825, 1004, 1109, 1510, 1620, 1687, 1824, 1967].
Contain [1319].
Content [355, 385, 426, 982, 1000, 1837, 1867, 2058].
Content-aware [2058].
Content-based [982].
Contention [340, 554, 733, 964, 1407, 1547, 1957].
Contention-Free [340, 554, 733, 1547].
Contents [534, 1403, 1795, 1997].
Context [27, 493, 808, 812, 968, 969, 971, 1172, 1393].
Context-adaptive [1172].
Context-aware [808, 968, 969, 971].
Continuation [851].
Continuation-based [851].
Continuous [561, 921, 1225, 1266, 1654].
Contract [1582].
Contraction [407].
Contrariwise [763].
Control [185, 298, 415, 454, 533, 546, 585, 750, 779, 878, 882, 952, 963, 974, 981, 1136, 1139, 1191, 1338, 1481, 1640, 1643, 1664, 1680, 1684, 1693, 1713, 1755, 1793, 1847, 1865, 1983, 2046, 2048].
Contral [872].
Contral-graded [1829].
Controller [968, 981, 1272, 1423].
Controlling [448].
Controls [1913].
Convection [526].
Conventional [20, 27, 277].
Convergence [492, 561, 955, 1247, 1443, 1816].
Convergent [52].
Convert [1307].
Determining [575, 630, 712].
Deterministic [296, 508, 647, 678, 1539].
Device [87, 751, 1254, 1529, 1544, 1842, 1874, 1895]. devices [968, 1097, 1529, 1666, 2059].
DFAs [1484]. DGMonitor [623]. DHTs [787].
diagnosability [816, 1244, 1518]. diagnosis [1224, 1244, 1519]. Diagnostic [77].
diagonal [1909]. Diagonals [541].
difference [1223, 1273, 1571]. differencing [1565]. Different [197, 622, 1120, 1348, 1839, 1967].
Dimensioning [760]. dimensions [1168].
Discover [1441]. Discovering [635, 1858]. Discovery [368, 652, 758, 873, 1209, 1536, 1604, 1619, 1686, 1717, 1900, 1928, 2008].
Discrete [83, 699, 1012, 1300, 1373, 1678].
Discretization [154, 1740]. Disease [480].
Disjoint [619, 976, 1005, 1107, 1633, 1751, 2023]. Disk [403, 660, 661, 832, 1314, 1329, 1558, 1770].
Disk-Resident [403, 1770]. Disks [675, 957].
Dispatching [1114, 1225, 1351]. display [905, 1610]. dissemination [982, 1146, 1472, 1526, 2047]. Distance [461, 474, 537, 708, 951, 1017, 1222, 1308, 1619, 1742, 1785].
Distributed-Memory [33, 157, 167, 175, 299, 303, 1374].
Distributed-Shared-Memory [198].
Distribution [257, 259, 410, 477, 632, 744, 853, 856, 929, 935, 1168, 1280, 1312, 1321, 1385, 1559, 1897, 1995].
Distribution-Independent [257].
Divide-and-Conquer [40, 248, 543, 790]. divisible [760, 1242]. division [1704].
DMetabench [1038]. DNA [1012, 1226, 1858]. DNA-based [1012, 1226].
Do [457]. DOALL [158]. Document [559].
Domain [335, 494, 809, 1339, 2052].
Domain-Specific [494]. domains

illumination [1031]. ILU [444]. Image [201, 233, 244, 252, 288, 292, 691, 721, 727, 1035, 1050, 1052, 1282, 1402, 1497, 1565, 1579, 1581, 1665, 1683, 1932, 2040, 2052, 2058].

immediate [1293]. Immersed [230, 1854].

Impact [727, 741, 1511, 1704].

Immersed [230, 1854]. In-advance [1147]. In-memory [1843]. in-network [1496]. In-order [2029]. In-Place [278]. incentive [1798]. including [1846]. Incomplete [164, 888, 1273].

infrastructures [1586, 1965]. Initialization [290, 501, 579, 933]. initiation [2041].

Instance [486, 1286]. Instance-Specific [486]. Institute [381, 422]. Instruction [135, 137, 142, 359, 503, 602, 738, 1046, 1178, 1240, 1618, 1689, 1910, 2079].

Instruction-Level [135, 137, 142, 1910, 2079]. Instruction-Set [602]. instructions [1831].

Integrated [608, 752, 761, 934, 1275, 1539, 2025].

multi-hop [1022, 1301, 1463]. multi-instance [1286]. multi-layer [1597].

odieven [1826].

ODF [809]. OFDMA [850].

Off [261, 1002]. Off-Line [261, 1002].

offering [154]. Offloading [1690, 1746, 2035]. Offs [244, 276].

OGRO [771]. OGSA [974]. OGSA-DAI [974].

On-demand [951, 1130, 1453, 1586].

On-Line [261, 760, 848]. On-the-fly [1761, 1941]. one [48, 661, 902, 1066, 1640, 1641].

one-dimensional [48]. one-layer [1066].

one-round [1641]. Online [234, 433, 776, 1288, 1432, 1448, 1612, 1960].

only [661, 1049]. onto [144, 261, 567, 568, 1263]. ontological [1251].

Ontology [1452, 1643, 1994, 2020].

OpenACC [1504]. OpenCF [1062].

OpenCL [1197, 1521, 1725, 1763, 1990, 2030].

OpenMP/MPI [1544]. OpenRTE [762].

operand [2013]. Operating [170, 172, 176, 1121, 1124, 1645, 1698, 1775, 1960].

Operation [902, 956, 1284, 1552].

Operations [43, 154, 252, 287, 954, 1033, 1144, 1175].

operators [1225]. opportunistic [779, 1789, 1969]. Opportunities [266, 1827].

Optimizing [34, 382, 423, 664, 772, 868, 1063, 1150, 1328, 1491, 1549, 1802, 1853, 1858, 2017, 2058, 2059, 2065, 2076]. option [848, 1320, 1534]. options [1320]. Optoelectronic [314].

Order [76, 433, 510, 596, 689, 1189, 1296, 1862, 2029].

Organized [283, 1815]. organizing [1031]. orientation [1532].

Overhead [286, 302, 306, 1113, 1122, 1231, 1757, 1926].

Overheads [741, 1235, 2065]. Overlapped [306]. Overlapping [321].

Overlapping-Cluster [321]. Overlay [943, 1559, 1672, 1822]. overlays [1318].

overload [867]. oversubscription [1697].

Overview [137]. ownership [1819].

Package [57, 157, 1088]. packages [1622].

Sequential [324, 1115, 1132, 1244, 2049]. Serial [114, 655]. serialization [1687].
Shear [421]. Shear-Warp [421].
SigMR [2066]. signal [1892]. signals [1051, 1481]. signature [1470, 1814, 2066].
signatures [995]. signcryption [1869].
Similar [647, 952]. similarity [1447, 1497, 1774, 1832, 1881]. Simple [629, 1548, 1894]. Simplex [107, 891].
Variable-Precision [188, 1409]. variable-rate [996]. Variables [97, 371].
vehicular [1309, 1631, 1713, 1955, 2047].
Verifiable [1755]. Verification [351, 899, 1295, 1351, 1414, 1487, 1588, 1628, 1792, 1944, 2031]. verifier [1814]. verify [1158]. verifying [1124]. versatile [958].
version [11, 1482]. versus [1164, 1289, 1903].
virtualization [1659, 1784, 1801].
VoD [513]. VoIP [1417]. volatility [1345].
volumes [2057]. Volunteer [337, 949, 1488].
voting [1814]. VPN [681]. VR [472].
VR-Based [472]. vs [275]. vulnerability [1694].
WAN-Based [274]. warehouses [1677].
Warp [421, 1744]. WASMII [185]. waste [1904].
water [1066, 1506]. Watermarking [610, 1425, 1578, 1819]. Wave [374, 885].
Wavefront [269]. Wavelength [651, 1281, 1786]. wavelength-time [1786].
way [2066]. WDM [670]. weakly [950, 1668].
WebCL [1990].
weight [983, 1426, 1605, 1902].
weight-constrained [983]. Weighted [1585, 1693]. weights [822]. Weil [1470].
Well [376, 1019]. well-balanced [1019].
Well-Known [376]. WHILE [103]. White [1280].
Wide-Area [365, 761, 1870]. Width [78, 1945].
WLANs [1594]. word [908]. Work [451, 694].
Work-efficient [694]. Workbench [408].
Zero [1283]. Zero-energy [1283]. ZigBee [1450].

References

Anonymous:1987:DDS

Anonymous:1987:E

Anonymous:1987:CA

Siegel:1987:IMC

Bailey:1987:HPF

REFERENCES

REFERENCES

Caron:1988:PIQ

Grimes:1988:SSL

Buell:1988:LEP

Petersen:1988:SVR

Riganati:1988:BR

Anonymous:1988:CAa

Anonymous:1988:Ea

[34] Marina Chen, Young-Il Choo, and Jingke Li. Compiling parallel programs by optimizing performance.
REFERENCES

Kale:1988:PEP

Li:1988:PP1

Anonymous:1988:CAAd

Anonymous:1988:Ec

Anonymous:1988:PAa

Mou:1988:AMD

Nicolau:1988:FGC

Polychronopoulos:1988:T

Solworth:1988:PLC

Wu:1988:PAH

Anonymous:1988:CAe

Bieterman:1988:MGP

Armstrong:1988:MAA

Won:1988:BSH

REFERENCES

Anonymous:1988:CAf

Anonymous:1989:E

Allison:1989:GIS

Oruç:1989:CNC

Won:1989:HHS

Anonymous:1989:CAa

Burke:1989:AGN

Allison:1989:GIS

Oruç:1989:CNC

Anonymous:1989:CAd

Sohi:1990:UIM

Bailey:1990:FEH

Guzzi:1990:CFO

Tanaka:1990:CTF

Henderson:1990:UDD

Carlson:1990:LWP

REFERENCES

Anonymous:1990:LES

Reisman:1990:LEI

Anonymous:1990:CAb

Anonymous:1991:Ea

Wolfe:1991:DDP

Carlson:1991:ULM

REFERENCES

Anonymous:1991:CAb

Anonymous:1991:Eb

Stiller:1991:GGC

Tirumalai:1991:PWL

Malony:1991:TAP

Lee:1991:EPA

Johnson:1991:MAP

Cvetanovic:1991:EDP

[114] Sreejit Chakravarty and Ajay Shekhwat. Parallel and serial heuristics for the

Allison:1992:HDH

Anonymous:1992:CAa

Dorozhevtets:1992:EMM

Hainline:1992:VPE

Weiss:1992:MCR

Deo:1992:PHO

Anonymous:1992:CAb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ahmad:1995:MPF

Wadleigh:1995:HPF

Trevisan:1995:CCT

Sheu:1995:PMN

Wu:1995:CA

Anonymous:1995:Ea

Buell:1995:CCM

Iseli:1995:SSS

Ling:1995:WMD

Arnold:1995:SSE

Gokhale:1995:DPC

Louie:1995:VPS

Anonymous:1995:CAa

Anonymous:1995:Eb

Prestin:1995:PNS

Ramanujam:1995:BUT

Gao:1995:WCU

Anonymous:1995:CAb

Cypher:1996:QSP

Cameron:1996:PPM

Bae:1996:CDM

REFERENCES

Anonymous:1996:CAa

Bader:1996:PAI

Ou:1996:FPM

Anonymous:1996:CAb

Abdelrahman:1996:LHC

Arabnia:1996:PSR

Houlahan:1996:HSA

Shoemaker:1996:NAO

Anonymous:1996:CAc

Arabnia:1996:SIP

REFERENCES

REFERENCES

[224] Jarek Nieplocha and Robert J. Harrison. Shared memory programming in metacomputing environments: The
REFERENCES

REFERENCES

REFERENCES

Lengauer:1997:SPL

Brune:1997:HMP

Chan:1997:EFM

Li:1997:CTB

Liu:1997:PSB

Anonymous:1997:CAe

Arabnia:1998:E

REFERENCES

Houzet:1998:PBS

Mabin:1998:PAR

Johasz:1998:AMP

Ayed:1998:AHC

Fahringer:1998:ESA

Hsu:1998:EMA
Lati:1998:SFD

Abdelrahman:1998:CSA

Aluru:1998:DIH

Lin:1998:ESA

Darbha:1998:RCT

Budenske:1998:MLU

Li:1999:SSP

Eckert:1999:IRM

Omori:1999:OOF

Fu:1999:LCR

Hamdi:1999:PCE

Galdamez:1999:EBT

Chung:1999:PDJ

Jinsong Ouyang and Piyush Maheshwari. Supporting cost-effective fault tolerance in distributed message-passing applications with file op-

[293] Toshiyuki Imamura. An estima-
REFERENCES

85

Bourgeois:2000:CPC

Schnekenburger:2000:LBC

Li:2000:EDP

Takahashi:2000:HPR

Daisuke Takahashi and Yasumasa Kanada. High-performance radix-2, 3 and 5 parallel 1-D com-

Benner:2000:PPS

Latefi:2000:WBH

Shih:2000:SLC

Rauber:2000:DAD

Park:2000:LOL

Wu:2000:ITP

Avresky:2000:EFT

Caldwell:2000:MFT

REFERENCES

REFERENCES

[330] Gerardo Bandera, Manuel Ujaldón, and Emilio L. Zapata. Compile and run-time support for the parallelization...

Wismuller:2000:IRT

Girona:2000:SPP

Aversa:2000:RPP

Chapman:2000:PDT

Alme:2001:DDM

Tsaur:2001:ACR

REFERENCES

Plaks:2001:ERH

Susanto:2001:FAD

Bowen:2001:ASV

Fimmel:2001:DPA

Teich:2001:ODH

Liang:2001:DBA

McEwan:2001:HSR

Becker:2001:PDRa

Wu:2001:PNR

Vigo-Aguiar:2001:POS

Wang:2001:BIS

Bhalla:2001:PED

Akl:2001:ISQ

Antonopoulos:2001:AOS

Al-Ayyoub:2001:PPM

Quintana-Orti:2001:EAB

Chang:2001:CFA

Tsaoussidis:2001:EC

Batsiolas:2001:SIE

REFERENCES

REFERENCES

[391] Vincent Loechner, Benoit Meister, and

Myoupo:2002:OBS

Xu:2002:SPE

Plaks:2002:GEF

Bohm:2002:MSA

REFERENCES

[Chowdhury:2002:DDD]

[Salleh:2002:ESA]

[Anonymous:2002:GEE]

REFERENCES

Ahn:2002:EGC

Chang:2002:RCC

Wallcraft:2002:CCA

Yook:2002:SGA

Bahig:2002:PSI

Lin:2002:PSW

[421] Ching-Feng Lin, Don-Lin Yang, and

Oldehoef:2002:ISH

Cooper:2002:AOC

Deitz:2002:HLL

Cummings:2002:VTF

REFERENCES

Feng:2002:PSE

Mellor-Crummey:2002:HIT

Mohr:2002:DPP

Anonymous:2002:E

Anonymous:2002:E

REFERENCES

[436] Peter Langendörfer. Editorial comments. The Journal of Super-
REFERENCES

[441] R. Aversa, N. Mazzocca, and U. Villano. A case study of application analytical modeling in heterogeneous computing environments: Cholesky fac-
REFERENCES

REFERENCES

REFERENCES

[462] John Sum, Hong Shen, G. Young, Jie Wu, and Chi-Sing Leung. Analysis
REFERENCES

[467] Hojung Cha, Rhan Ha, and Jane W. S. Liu. Experimental analysis of timing validation methods for dis-
REFERENCES

[472] Andreas Gerndt, Thomas Van Reimersdahl, Torsten Kuhlen, Christian Bischof, Ingrid Hörschler, Matthias Meinke, and Wolfgang Schröder. Large-scale CFD data handling in a...

REFERENCES

REFERENCES

Bednara:2003:ASF

Kretzschmar:2003:LPE

Baumgarte:2003:PXS

Plaks:2003:ECSb

Janson:2003:ECA

Izadi:2004:AAT

Peigin:2004:PLS

Katsinis:2004:SIN

Er-El:2004:CMF

Bhalla:2004:ABI

REFERENCES

REFERENCES

[513] Singling Lee, Hann jang Ho, and Wen wei Mai. An efficient scheduling algorithm for information delivery on VoD
REFERENCES

Dekel:2004:ITT

Li:2004:ECC

Chan:2004:RTS

Anonymous:2004:CAa

Anonymous:2004:IA

Gavrilova:2004:GEE

REFERENCES

REFERENCES

Ralphs:2004:LHI

Li:2004:HPT

Dixon:2004:UDC

Bourgeade:2004:DLB

Yang:2004:SIH

REFERENCES

Martín:2004:HPA

Chaudhary:2004:EPT

Bhalla:2004:PCC

Anonymous:2004:TCV

Niculescu:2004:DDC

Grunberg:2004:SRT

[536] Marc Grunberg, Stéphane Genaud, and Catherine Mongenet. Seismic ray-tracing and earth mesh modeling on various parallel architectures.
REFERENCES

Albdaiwi:2004:PDP

Wu:2004:EMM

Akl:2004:SPR

Guo:2004:EPD

Hsu:2004:CDR

Yang:2004:PMI

[542] Laurence Tianruo Yang and Richard P.

[553] Po-Jen Chuang, Young-Tzong Hsiao, and Yu-Shian Chiu. An efficient value predictor dynamically using loop and locality properties. *The
REFERENCES

Lin:2004:HCF

Anonymous:2004:CAb

Gravvanis:2004:GES

Anonymous:2004:OEP

REFERENCES

[570] Yuan Zhao and Ken Kennedy. Scalarization using loop alignment and loop
REFERENCES

Haga:2005:DFU

Wu:2005:DFM

Kamangar:2005:MAC

Anonymous:2005:CAa

Chang:2005:PTD

REFERENCES

REFERENCES

Anonymous:2005:CAb

Anonymous:2005:CAc

Taha:2005:PSS

Lee:2005:QAA

Michailidis:2005:NPA

Parsa:2005:DIF

Anonymous:2005:CAb

[604] Minyقول Lim and Eui-Nam Huh. An efficient design and implementation

REFERENCES

REFERENCES

REFERENCES

Fin:2006:WAR

Yu:2006:MOG

Sklavos:2006:DAP

Fuzitaki:2006:NCD

Parsa:2006:NAP

Oldehoeft:2006:CSS

Coarfa:2006:ESI
REFERENCES

REFERENCES

REFERENCES

Xavier:2006:WMC

Cai:2006:CA

Ahuja:2006:SWG

HoseinyFarahabady:2006:GPG

Ohn:2006:DAC

Luo:2006:DMM

REFERENCEs

Deng:2006:PIK

Petit:2006:AWC

Ugur:2006:SPA

Myoupo:2006:WEB

Al-Ayyoub:2006:GMA

Huh:2006:ARM

[697] Natali Hritonenko and Yuri Yatsenko. Creative destruction of computing systems: analysis and modeling. The
REFERENCES

Wang:2006:GML

Blais:2006:SHT

Xiao:2006:ACN

Jigang:2006:AAA

Ro:2006:DEH

Mohamed:2006:HPM

Volckaert:2006:FGS

Chen:2006:DSD

Hababeh:2007:HPC

Li:2007:PBM

Hsieh:2007:EPS

Pandey:2007:SCM

REFERENCES

Frigo:2007:MBC

Obimbo:2007:PAD

Tsoi:2007:PAS

Zhu:2007:ECC

Chandra:2007:ESP

Jang:2007:DIP
REFERENCES

REFERENCES

[730] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, Andy B. Yoo, and Chita R.

Jiang:2007:SIB

Wang:2007:BTS

Hsu:2007:SCF

Yang:2007:RBE

Yang:2007:IDA

Chen:2007:SSS

REFERENCES

[743] Iyad A. Ajwa. A case study of Grid computing and computer algebra: par-

Lin:2007:DDS

Park:2007:EPA

Chiu:2007:HPA

Nomura:2007:PHM

Li:2007:TRC

Suarez:2007:AGT

Jin:2007:FFD

Chiu:2007:NDL

Son:2007:REC

Safaei:2007:PAF

Shih:2007:PBP

Imani:2007:PLB

Gravvanis:2007:SIG

REFERENCES

Fernando J. Barros. Modeling and simulation of parallel adaptive divide-

Shahriar:2008:MBH

Numrich:2008:MSC

Yang:2008:DPL

Sharifi:2008:YYA

Carino:2008:DLB

Athanasaki:2008:EPL

Nadara:2008:CGM

Akanda:2008:DEM

Lai:2008:DPD

Cathey:2008:URD

Sweeney:2008:HSR

Liu:2008:DTP

Liu:2008:MPP

REFERENCES

Bernabeu:2008:MPA

Sabzehparvar:2008:MMM

Santos:2008:EAP

Li:2008:NCM

Bellavista:2008:DCA

Seo:2008:RST

REFERENCES

Kausar:2008:SEK

Li:2008:TCP

Lee:2008:UMF

Cheng:2008:DSA

Hsu:2008:IRU

Huang:2008:FPM

[816] Qiang Zhu. On conditional diagnosability and reliability of the BC net-

[823] Junfeng Wang, Jin Liu, and Chundong She. Segment-based adaptive

Noori:2008:AFA

Flores:2008:ECC

Mahabadi:2008:PLI

Kalantari:2008:FAG

Souravlas:2008:MPS

Liu:2008:SCH

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chen:2009:MC

Caire:2009:DIL

dAuriol:2009:SEP

Cheng:2009:PBD

Xiang:2009:MEO

Lin:2009:OAQ

Xu:2009:SPN
REFERENCES

K[871]onstantopoulos:2009:EPT

Meng:2009:SIS

Cerin:2009:SIS

Deng:2009:ACO

deMello:2009:PDN

Cheng:2009:QAA

Hurault:2009:AST
181

Sopena:2009:BEM

Mazzoleni:2009:EIF

Liu:2009:LDL

Anonymous:2009:R

Li:2009:IHP

Li:2009:HCP

Fu:2009:EFF

Jung-Sheng Fu, Hao-Shun Hung, and Gen-Huey Chen. Embedding fault-free cycles in crossed cubes with...

Cho:2009:HSP

Eshaghian-Wilner:2009:EPP

Milovanovic:2009:SSO

Sider:2009:FLB

Zhang:2009:ICH

Isazadeh:2009:NFM

Hsieh:2009:OFT

[890] Sun-Yuan Hsieh and Chang-De Wu. Optimal fault-tolerant Hamiltonian-

Yarmish:2009:DSS

Nazir:2009:ACS

Khanli:2009:AGI

Goumas:2009:PES

Lin:2009:CSG

Lee:2009:FPA

deMendivil:2009:FAD

Huang:2009:PPC

Yang:2009:DBM

Walters:2009:FTS

Huang:2009:PPC

Hsu:2009:SAB

Lotfi:2009:PLG

REFERENCES

Li:2010:HPC

Wu:2010:ATL

Wu:2010:AMN

Guo:2010:DEE

Qu:2010:SFS

Fan:2010:DAP

Cao:2010:DED

Yang:2010:

Huang:2010:

Leiserson:2010:

Leung:2010:

Tanabe:2010:

Shahul:2010:

Sadik:2010:MHA

Numrich:2010:CES

Myoupo:2010:RCA

Sharifi:2010:DFI

Shih:2010:PBD

Yang:2010:NBA

REFERENCES

Mashayekhi:2010:CST

Du:2010:RPM

Randles:2010:BRW

Lee:2010:RTS

[950] Zhenyu Xu, James Wang, and Pradip K. Srimani. Distributed fault tolerant computation of weakly connected dominating set in ad hoc net-

Yassein:2010:NPB

Abu-Tair:2010:AMA

Yasami:2010:NUC

Abellan:2010:CBS

Charr:2010:DFT

Rashid:2010:AEP

Zhao:2010:CRM

Lee:2010:ISF

Kawsar:2010:DIF

Cheng:2010:HML

Lai:2010:CAM

Oh:2010:UBC

[976] Shuming Zhou, Wenjun Xiao, and Behrooz Parhami. Construction

Chen:2010:FHH

Shih:2010:MIH

Wei:2010:GTM

Li:2010:FHS

Sehgal:2010:SOC

Hassan:2010:DFE

REFERENCES

REFERENCES

REFERENCES

Kim:2011:OIS

Bulic:2011:AMF

Zhang:2011:IJS

Yang:2011:CWB

Linford:2011:SHP

Bargi:2011:TMT

REFERENCES

Arora:2011:TNI

Lai:2011:CRM

Qureshi:2011:EGA

Rakesh:2011:AMS

Abderazek:2011:NIL

Banicescu:2011:PSH

207

Zhang:2011:MBO

Huang:2011:RIE

Qu:2011:NCC

Lv:2011:IIB

Ding:2011:RME

Tang:2011:FRB

Zhu:2011:SEC
[1055] Linlin Zhu, Yan Zhao, Shigang Wang, and Hexin Chen. Spatial error con-
 REFERENCES

REFERENCES

Santos:2011:WSB

Sanjurjo:2011:OMC

Orobitg:2011:EPP

Pichel:2011:AES

delaAsuncion:2011:SOL

Alonso:2011:NEM

Gonzalez-Escribano:2011:TNP
Martinez-Zaldivar:2011:HPS

Pedraza:2011:GAB

Calvo:2011:CPM

Vigueras:2011:WBD

Redondo:2011:PEA

Quintana-Orti:2011:HPC

Lopez-Portugues:2011:GSF

[1075] Miguel L ópez-Portugu s, Jes us A. L ópez-Fernández, Alberto Rodr guez-Campa, and Jos Ranilla. A GPGPU

[Almeida:2011:PSM]

[Cascon:2011:ANA]

[Martínez-Zaldívar:2011:TBM]

[Prada:2011:PSA]

[Martínez:2011:UAA]

[Barri:2011:MMH]

Pedro Valero, José L. Sánchez, Diego Cazorla, and Enrique Arias. A GPU-based implementation of the MRF...

Molero:2011:FAD

Redondo:2011:SFL

Ezzatti:2011:UGP

Migallon:2011:PPL

Belloch:2011:RTM

Sabbaghi-Nadooshan:2012:DBN

REFERENCES

REFERENCES

[1114] Saeed Parsa and Reza Entezari-Maleki. Task dispatching approach to reduce the number of waiting tasks

Aldea:2012:USC

Li:2012:RSS

Al-Dayaa:2012:RLT

Sharifi:2012:PID

Nitin:2012:CA

Liu:2012:NL

REFERENCES

Wang:2012:AOS

Fazlali:2012:EDM

Ryu:2012:OFH

Kim:2012:ESV

Thibault:2012:AIF

Dashtbozorgi:2012:HPS

REFERENCES

Zhou:2012:HSM

Jana:2012:OME

Safaei:2012:AMC

Moschakis:2012:EGS

Liu:2012:QNS

Kim:2012:TCI

Torkestani:2012:LAB

Javad Akbari Torkestani and Mohammad Reza Meybodi. A learning automata-based heuristic algo-

[1140] Javad Akbari Torkestani and Mohammad Reza Meybodi. A learning automata-based heuristic algo-

Li:2012:APR

Megherbi:2012:HCR

Zhou:2012:UMP

Wang:2012:OMS

Nitin:2012:DPA

Choi:2012:DHR

Jiang:2012:LEW

[1153] Fuu-Cheng Jiang, Der-Chen Huang, Chao-Tung Yang, and Fang-Yi Leu.
REFERENCES

Kim:2012:TPF

Qureshi:2012:TPS

Nimmagadda:2012:CSM

Wu:2012:EFP

Babamir:2012:CFR

Min-Allah:2012:CSR

REFERENCES

Afgan:2012:SPJ

Shahbahrami:2012:PIG

Mahfoudhi:2012:CSR

Couturier:2012:SSS

Jezequel:2012:SLS

Serrano:2012:CEH

Nam:2012:ADC

[1166] Beomseok Nam and Alan Sussman. Analyzing design choices for dis-

Massetto:2012:NSB

Taboada:2012:FMS

Tu:2012:PAO

Khan:2012:EEH

Lee:2012:PTM

Noori:2012:IFE

REFERENCES

Chang:2012:SDE

Qu:2012:SBM

Lesage:2012:HCM

Akpan:2012:HOC

Luo:2012:DMR

Yuanyuan:2012:IAM

Hsu:2012:EET

Hong:2012:SSP

Exposito:2012:DSJ

Fanyang:2012:SAK

Li:2012:OCM

Cazalas:2012:LCS

Malyshevkin:2012:OMP

Rong:2012:PSI

REFERENCES

[1212] Jean-Pierre Jung and Ibrahima Sakho. Towards understanding optimal MIMD

Zhou:2012:PCC

Lai:2012:FAA

Dang:2012:DDM

Tchendji:2012:ECG

Seba:2012:ABC

Khan:2012:GPB

Niemi:2012:MBS

Chen:2012:ABP

Su:2012:MIH

Mimaroglu:2012:ADC

Gravvanis:2012:SFD

Duh:2012:FPD

Safaei:2012:DSO

Chang:2012:MSR

Pallipuram:2012:CSG

Shieh:2012:PAR

Healy:2012:AME

Wang:2012:TAW

Chen:2012:AMI

REFERENCES

REFERENCES

Sanchez:2012:FTA

Wu:2012:ISM

Lin:2012:PLE

Suresh:2012:SND

dAuriol:2012:SV

Kuo:2012:HDS

Terzopoulos:2012:PER

Zhang:2012:SML

Kim:2012:GEA

Misra:2012:LAB

Wang:2012:RRN

Lee:2012:SCI

Lu:2012:OAS

REFERENCES

Cheng:2012:ITQ

Butt:2012:LLQ

Park:2012:APO

Seo:2012:FSH

Al-Sadi:2012:TPE

Simms:2012:PSD
Chen:2012:TCD

Kanal:2012:MMC

Kas:2012:TCD

Wang:2012:NDN

Sharma:2012:FEE

Tosun:2012:ERA

Falzon:2012:EGA

REFERENCES

Heydarian:2012:HPO

Ding:2012:PCC

Green:2012:CFO

Wu:2012:PEE

Pervez:2012:SSH

Baransel:2012:PIS

Fang:2012:AMC

Aksari:2012:FBS

Touzene:2012:NPB

Al-Dayaa:2012:TML

Wang:2012:END

REFERENCES

[1289] José M. Cecilia, José L. Abellán, Juan Fernández, Manuel E. Aca-cio, José M. García, and Manuel Ujaldón. Stencil computations on heterogeneous platforms for the Jacobi method: GPUs versus Cell BE.
REFERENCES

Syed:2012:FAD

Guo:2012:SSR

Nazir:2012:RBF

Cheng:2012:IAE

Jiang:2012:TLA

Avila-George:2012:SGC

REFERENCES

Dursun:2012:HPO

Wang:2012:EET

Li:2012:ORP

Davis:2012:PSE

Shahbahrami:2012:AAD

Li:2012:PAC

REFERENCES

Khan:2012:GN

Zeadally:2012:EEN

Yen:2012:NOB

Orgerie:2012:EEB

Hlavacs:2012:EEP

Hamza:2012:CDS

Ruiz:2012:OED
REFERENCES

REFERENCES

Wang:2012:SNA

Ahmad:2012:ALS

Zheng:2012:SFL

Fatone:2012:POP

Tanase:2012:DUD

Dou:2013:EMO

REFERENCES

UlHaq:2013:RBV

Czarnul:2013:MRT

Cao:2013:SPO

Yu:2013:HAW

Davidrajuh:2013:DWB

Ren:2013:BDG

Xiao:2013:DDV
REFERENCES

REFERENCES

[1343] Ruipeng Li and Yousef Saad. GPU-accelerated preconditioned iterative

[1350] Rui Zhou, Qingguo Zhou, Yong Sheng, and Kuan-Ching Li. Erratum to:

Babamir:2013:SVR

Khan:2013:GCC

Wang:2013:RPM

Chen:2013:LMI

Chen:2013:MPM

Vishnu:2013:DEE

Piwonska:2013:LCA

Dorronsoro:2013:CGA

Khouadjia:2013:MEC

Heydarian:2013:NHP

Goude:2013:AFM

Czarnul:2013:MDI

Seredynski:2013:ADC

Shiraz:2013:SVM

Cortina:2013:PHP

Galiano:2013:PSD

Lopez-Portugues:2013:PFD

Frances:2013:DUF

Herrera:2013:TAQ

REFERENCES

Lobeiras:2013:IMA

Alvarez-Bermejo:2013:SSK

Diaz:2013:TLH

Vigueras:2013:RCU

Acosta:2013:LSP

Abdeyazdan:2013:TGP

Mansouri:2013:JSD

AkbariTorkestani:2013:DCM
[1391] Javad Akbari Torkestani. Degree constrained minimum spanning tree prob-

[Loni:2013:AFS]

[Naderan:2013:PDB]

[Choi:2013:MCC]

[Papapostolou:2013:HEA]
REFERENCES

Liu:2013:TCN

[1399]

Ramrekha:2013:SAA

[1400]

Vaidya:2013:SCM

[1401]

Bueno-Delgado:2013:MLB

[1402]

Cho:2013:SDC

[1403]

Park:2013:HPN

[1404]

Park:2013:ARB

Cho:2013:DLM

Atoofian:2013:IPS

Lira:2013:RTD

Lei:2013:FIE

Son:2013:SBC

Tinetti:2013:RFL

Wang:2013:TSP

Good:2013:HAE
[1413] Tim Good and Mohammed Benaissa. A holistic approach examining RFID design for security and privacy. *The Jour-
REFERENCES

REFERENCES

Kou:2013:HPN

Ergu:2013:AHP

Sadri:2013:ISS

Zhong:2013:RCP

Wang:2013:CRA

Wu:2013:LCM

REFERENCES

Jian:2013:PDM

Song:2013:RRO

Seo:2013:TDP

Huang:2013:SSP

Xie:2013:EOA

Chen:2013:HBA

Li:2013:EIM

[1442] Jognwoo Kim, Sanggil Kang, Yujin Lim, and Hak-Man Kim. Recommendation algorithm of the app store

Wu:2013:ISI

Ranjan:2013:PPS

Flahive:2013:OSO

Pedersen:2013:DMD

Park:2013:MTP

Nakariyakul:2013:FSA

Rho:2013:BSG

REFERENCES

Chen:2013:ELB

Koo:2013:NAV

Zhang:2013:SMD

Kim:2013:LMC

Chang:2013:RTV

Kim:2013:VBA

Cui:2013:LBA

Li:2013:SDS

Yang:2013:PEC

Jing:2013:SAR

Seitkulov:2013:NMS

Shon:2013:ESS

Choi:2013:RRB

Chen:2013:SPS

Lee:2013:MGP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1528] Yong hwan Kim, Chan-Myung Kim, Youn-Hee Han, Young-Sik Jeong, and

Chung:2013:DAR

Yuan:2013:DCF

Aron:2013:QBR

Villar:2013:ISQ

Huang:2013:EAL

Wu:2013:OMD

Mahafzah:2013:PAM

[1542] Basel A. Mahafzah. Performance assessment of multithreaded quick-

[Slagter:2013:IPM] Kenn Slagter, Ching-Hsien Hsu, and Yeh-Ching Chung. An improved partitioning mechanism for optimizing mas-

Shi:2013:SMC

Azizi:2013:TPH

Myung:2013:EIO

Kim:2013:SNH

Park:2013:QBM

Sohn:2013:DFM

Peng:2013:EEC

REFERENCES

REFERENCES

Tso:2013:SAI

Bang:2013:DBD

Hwang:2013:ADR

Fan:2013:DIP

Hsu:2013:RIB

Jeong:2013:CBC

Chen:2013:RPP

Lim:2013:NAC

Han:2013:RCS

Choi:2013:IDS

Chou:2013:TIB

Lin:2013:EAE

Chen:2013:TSE

Zhong:2013:NCR

Wang:2013:DSH

Gil:2013:DCS

Cao:2013:PNB

Allenotor:2013:FGQ

Tan:2013:IPA

Ding:2013:SDC
Yang:2013:HBT

Liu:2013:SMB

Wanalertlak:2013:SFH

Adabi:2013:NSC

Park:2013:CSR

Guan:2013:SSA

Cano:2013:HPE

REFERENCES

REFERENCES

[Adabi:2014:BLF]

[Ergu:2014:FSS]

[Touzene:2014:NPA]

[Yu:2014:MPP]

[Kim:2014:HCP]

REFERENCES

292

Okuyan:2014:DVR

Rezaee:2014:FPA

Filelis-Papadopoulos:2014:PMA

Choi:2014:PLM

Ali:2014:SDA

Park:2014:QBM

Bossard:2014:PDP

[1648] Zhu-Qing Jiao, Ling Zou, Yin Cao, Nong Qian, and Zheng-Hua Ma. Effective connectivity analysis of fMRI data
REFERENCES

Kang:2014:SSD

Rawat:2014:WSN

Mo:2014:NPA

Thompson:2014:CIC

Kuila:2014:ASL

REFERENCES

REFERENCES

Lai:2014:TFL

Somasundaram:2014:SEC

Sentis:2014:DEP

Abdeyazdan:2014:DCB

Ahmadi:2014:ERA

Khan:2014:IPR

Xiong:2014:NSM

REFERENCES

[1684] Jili Yan, Guoming Lai, and Xiaola Lin. A novel distributed conges-
REFERENCES

REFERENCES

Rahmani:2014:SSA

Ansari:2014:WAC

Maghsoudlo:2014:CVM

Salami:2014:PTM

Piga:2014:AGP

Utrera:2014:SPJ

Holmbacka:2014:TMM
REFERENCES

Marowka:2014:MES

Moore:2014:BUA

Farahnakian:2014:ALB

Guo:2014:FTH

Cheng:2014:DLT

Vijayalakshmi:2014:ASR

Miedes:2014:IBM

REFERENCES

Tang:2014:CTC

Khan:2014:EGS

Park:2014:BPM

Gong:2014:EPS

Arab:2014:MCB

Ros:2014:CBA

Netjinda:2014:COS

Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari. A formal frame-

Di:2014:CMC

Bistouni:2014:IEG

Khodja:2014:PSL

Chang:2014:PIC

Cecilia:2014:ESP

Cano:2014:SCD

Bossard:2014:DPH

REFERENCES

Cao:2014:EAH

Sun:2014:PCM

Rajkumar:2014:DDG

Vilaplana:2014:QTM

Shen:2014:P

Tian:2014:MNL

Xu:2014:VCA

Zhang:2014:LDP

Ludan Zhang, Yi Liu, Rui Wang, and Depei Qian. Lightweight dynamic partitioning for last-level cache

\cite{Yan:2014:OMB} Xin Yan, Xiaohua Shi, Lina Wang, and Haiyan Yang. An OpenCL microbenchmark suite for GPUs and CPUs. \emph{The Journal of Supercomputing}, 69 (2):693–713, August 2014. CODEN
REFERENCES

Zhu:2014:ALM

Teng:2014:NRT

Furhad:2014:SCM

Lee:2014:JPT

Abbas:2014:PEM

Entezari-Maleki:2014:CPA

Hadian:2014:HPP

Li:2014:RTO

Qi:2014:STB

Lakhlef:2014:EME

Lakshminarayanan:2014:SSP

Javanmardi:2014:PNA

Zhou:2014:MSM

Yen:2014:CAT

REFERENCES

Zhou:2014:DFV

Ouyang:2014:OCP

Choi:2014:AHP

Chang:2014:ICR

Villar:2014:FCM

Horri:2014:NRA

Yan:2014:EFG

Fu:2014:OMA

Yeo:2014:ESS

Kim:2014:SCC

Lee:2014:IDF

Ahn:2014:SEH

Zuo:2014:DAS

Yoon:2014:UTC

Lee:2014:SSS

Tu:2014:EPB

Koo:2014:CRB

Hsu:2014:VWR

Yang:2014:CCS

Saravanan:2014:CSS

Su:2014:ECG

Ranilla:2014:HPC

Frances:2014:PAS

Uribe-Paredes:2014:TES

Ramiro:2014:GII

[1833] Carla Ramiro, M. Ángeles Simarro,

Fernandez:2014:CPE

Alonso:2014:PAN

Tabik:2014:PEK

Sevilla:2014:UBC

Arrondo:2014:SLF

Lopez-Portugues:2014:ANS

Peinado:2014:STI

[1840] Jesús Peinado, Pedro Alonso, and Javier Ibáñez. Solving time-invariant

Arnal:2014:PRE

Acosta:2014:ATM

Cores:2014:MAL

Pinol:2014:PSA

Garcia-Martinez:2014:GIH

Lorenzo:2014:DRM

Bermejo:2014:DPM

[1847] J. A. Alvarez Bermejo, M. A. Lodro-

[1854] Pedro Valero-Lara. Accelerating solid-fluid interaction based on the immersed boundary method on multicore and...

Gonzalez-Dominguez:2014:AAW

Bernabé:2014:IAE

Pahlavan:2014:PRH

Gonzalez-Alvarez:2014:POH

Gholizadeh:2014:OPD

Lai:2014:NHC

Khan:2014:BBB

Rahnama:2014:TIP

Farash:2014:CIE

Farash:2014:ECC

Chen:2014:RRC

ElBouabidi:2014:DAS

Yan:2014:PPR

San
tos:2014:DSR

Cui:2014:OBD

Zhu:2014:PEA

Xu:2014:SSB

Chen:2014:EAL

Dai:2014:CAA

[1882] Jie Dai, Yu Zhao, Yinhua Liu, Li Qi, and Chuaping Hu. Cloud-assisted

Zhang:2014:DCN

Xia:2014:MUD

Zhang:2014:LFL

Yuan:2014:CET

Raub:2014:EMM

Tu:2014:ESM

Wu:2014:PCM

329

Takouna:2014:MRO

Wang:2014:ESK

Pani:2014:RTB

Xie:2014:DIP

Basanta-Val:2014:SDG

Saleemi:2014:EES

Liu:2015:ECB
El-Boghdadi:2015:CPW

Hosseinimotlagh:2015:SSE

Valls:2015:PCE

Hasanzadeh:2015:DOG

Daryanavard:2015:FPA

Cheng:2015:SCP

Pallipuram:2015:SVO

Lynar:2015:BGQ

REFERENCES

Huang:2015:TRA

Singh:2015:QQA

Ahmed:2015:SGS

Zhao:2015:IND

Zhao:2015:EST

Ma:2015:EEP

Cordeschi:2015:EEA

REFERENCES

Parsa:2015:MFI

Asanya:2015:DPQ

Han:2015:DSS

Vilaplana:2015:HPC

Cebrian-Marquez:2015:AHU

Jiang:2015:TSD

Iturriaga:2015:PLS

Nourikhah:2015:MPM

Bistouni:2015:SCN

Castillo:2015:FAM

Benner:2015:ELS

Ramiro:2015:MHP

Kim:2015:UWC

REFERENCES

[1933] Ahmet Duran, M. Serdar Celebi, Senol Piskin, and Mehmet Tuncel. Scala-

Yang:2015:FPS

Pascual:2015:LAP

Tosun:2015:AMA

Naserian:2015:CAJ

Amiri-Zarandi:2015:PEG

Zhang:2015:NSS

Chen:2015:PST

[1940] Chia-Jung Chen and Rong-Guey Chang. A priority scheduling for
REFERENCES

García:2015:FAR

Kianfar:2015:NMA

Cocana-Fernandez:2015:EEA

Avila-George:2015:ESG

El-Boghdadi:2015:DWR

Chunlin:2015:CEA

Azizi:2015:FTR

Farouk:2015:CEC

Zarrabi:2015:GSA

Chen:2015:AMW

Djenouri:2015:GBB

Couturier:2015:SMA

Jiang:2015:TSG

Ahmad:2015:OUM

Arkian:2015:CBV

Aron:2015:HHA

deBlanche:2015:ACM

Nikounia:2015:GMG

Zhang:2015:EGC

Salkhordeh:2015:OSL

REFERENCES

Dhurandher:2015:ERB

Stenico:2015:MNT

Wang:2015:AFD

Pop:2015:DSA

Nakata:2015:PBP

Wu:2015:HTM

Alvarez-Bermejo:2015:PAS

REFERENCES

REFERENCES

Cho:2015:OA

Chen:2015:PMD

Seo:2015:DAA

Kim:2015:UHS

Ji:2015:HEV

Hashmi:2015:UPL

Kim:2015:TVB

Huang:2015:URM

Vinas:2015:DAM

Beltran:2015:APM

Jiang:2015:AAG

Seo:2015:OMC

Khan:2015:AST
Gomez:2015:HBA

Yildirim:2015:CSP

Li:2015:AMR

Su:2015:AGP

Kim:2015:FEE

Ahmad:2015:VMM

Meneses:2015:CCA

Elsayed:2015:NPE

Fan:2015:ECP

Touzene:2015:AAB

Stojanovic:2015:DMI

Villar:2015:OCC
References

Kelefouras:2015:MSM

Kotiyal:2015:RLB

Karim:2015:SSO

Lai:2015:LAD

Wang:2015:DHR

Chen:2015:DPC

Sarbazi-Azad:2015:AMS

Pakdaman:2015:ICP

[2025] Farhad Pakdaman, Abbas Mazloumi, and Mehdi Modarressi. Integrated

Falahati:2015:PEP

Hu:2015:DAM

Valls:2015:PDS

Daneshtalab:2015:ODA

Karami:2015:SPA

Wu:2015:DHD

Fe:2015:EON

Kumar:2015:OCD

Wang:2015:CGT

Wang:2015:SGT

Wang:2015:PPB

Jiang:2015:GTB

Liu:2015:GTB

Wu:2015:WSC

[2053] Fuhui Wu, Qingbo Wu, and Yusong Tan. Workflow scheduling in cloud:

Lotfi-Kamran:2015:PPG

Zhao:2015:FFB

Chrust:2015:ALF

Rodriguez:2015:SCG

Kim:2015:OSC

Moon:2015:OHM

Modarressi:2015:LDS

REFERENCES

353

Yazdanpanah:2015:DSE

Chen:2015:ALS

Stankovic:2015:SAP

Mahfoudhi:2015:TPR

Zhu:2015:OFT

Ahn:2015:SMB

Jimenez:2015:EEM

354

REFERENCES

Chaturvedi:2015:AMR

Filipovic:2015:OCC

Nejatollahi:2015:VSD

Mbock:2015:RBM

Rau:1993:ILPb