Title word cross-reference

\[(1,1) \quad \text{[Cao08, Krz11]} \quad (2,2) \quad \text{[Li00]} \quad (m,k) \quad \text{[MN00]} \quad (q) \quad \text{[Jia96]} \quad + \quad \text{[LJM14]} \quad 0.822 \quad \text{[Ano09]} \quad 16 \quad \text{[KM09]} \quad 2 \quad \text{[AM96, BV13, Mar94, NBKS99, QB15, ZV14, vKVW00]} \quad 2 \times 2 \quad \text{[AB10, AB13, Cao13, Kol05]} \quad 3 \quad \text{[GKY97, LPW06, NBKS99, PM97, PR96, mMP99, vKVW00]} \quad 4 \quad \text{[MR14]} \quad A \quad \text{[CC07]} \quad A - BX \pm X \ast B^* \quad \text{[LT08]} \quad A - XB \quad \text{[Den09]} \quad \alpha \quad \text{[Tre13]} \quad AXA^* = B \quad \text{[Tia13]} \quad AXB + CYD = E \quad \text{[yPxP06, WTZD10]} \quad AXB = C \quad \text{[fLyHZ11, Miy15]} \quad \mathcal{H} \quad \text{[Gra08, LOY08]} \quad \mathcal{K} \quad \text{[Mar95]} \quad D \quad \text{[BLLA11]} \quad \text{GMRES}(k) \quad \text{[KY95]} \quad H \quad \text{[AMM04, BCGM09, Chu04, KPV08, Leb02, Sun06, ZSCX10, DMM*08, Pul09]} \quad H_1 \quad \text{[AMM04]} \quad H_j \quad \text{[LPW06]} \quad H_{\infty} \quad \text{[Ozb13]} \quad hp \quad \text{[DMM*08]} \quad \text{IDR(s)} \quad \text{[CvG11]} \quad \text{ILU} \quad \text{[CGK94]} \quad k \quad \text{[BO08]} \quad \lambda \quad \text{[FLPW01]} \quad \ell_p \quad \text{[Dax94]} \quad LU \quad \text{[KNY00, DHS95, Saa94]} \quad M \quad \text{[Bea94, BNT94, Sau95, BCC98, IP13, JZ11, Kra02, LSL01, WQZ09, XZS10, ZJ06, vN00]} \quad R \quad \text{[DN12]} \quad \mathcal{H} \quad \text{[HK02]} \quad O(N) \quad \text{[Sac05]} \quad P \quad \text{[LHL07a, Pen09, AEHV15, Beu03, BB06, GKY97, LZ09, LO13, Pul09]} \quad p \times p \times 2(p \geq 2) \quad \text{[KJ12]} \quad Q \quad \text{[Cha12]} \quad QMR \quad \text{[FH94]} \quad QR \quad \text{[ADP96, Cha12, FG02, AG95, CH94]} \quad R \quad \text{[DW15, BKMil12]} \quad s \quad \text{[CK10]} \quad S/P \quad \text{[Bea94, BNT94]} \quad S_n \quad \text{[Lee12]} \quad SSOR \quad \text{[JO94]} \quad \sum_{i=1}^{n} i(x_j) x_i = g(z_j)(j = 1, 2, \ldots, n) \]
2010 [NL09]. 2D [BCV03]. 2nd [Kap02].

3-D [BG02]. 3D [MM02, NH98].

4th [Web10a]. 4th-order [Web10a].

60th [Vas03].

70th [CLR13, Vas05].

80th [SGP14].
MC08, Not98, Not02b, OST10a, PM97, RS02, SS02, Sei10, Sha99, TC10, VY14, XZS09, ZCW11, vN00. \textbf{Algorithm}
[ARSO14, AB12, AG95, BCK05, BPS95, BCB14, BFdP13, BD15, BLP01, CD11, CC03, CP12, ER96, FG02, FO95, Gan99, Het07, JR94, JZ11, Jou94, Kap99, Kau07, KNY00, Liv04b, LYL15, MPV06, MCH01, MLV05, MVV08, MP13, OC04, Ry08, RSR10, Roh92, SW96, Shi04, SS97, SWKW98, DW15, Sto92, SHT11, TGKR10, VVM05b, Van00, Vla00, WDS09, WM12, WL08, WW07, WtFW15, ZQ12, ZZ15].

Algorithms
[GL96, AH02, AMP99, BH04, BT15, Bun92, CL96, CS96, Cao04, CQ10, CJT03, DMY03, DFZ05, FLM09, FH94, HJR97, HR05, KLN14, KR14, Kub92, Lai97, LW98, Mar98, Mat96, Pfs99, RS07, Sac05, Sha98, SCD94, SB15, VY13, XZS10, YZ13, vGSZ15].

Algorithms
[ACR]+00, AW11, AMP99. Along
[MM95].

Alternately
[BGX06].

Alternatives
[Sid97].

AMG
[LOSO4, BBM]+06, GX14, KV06, MMM06, VPS02].

AMGe
[LV08].

Among
[Par92].

analyses
[PM97].

Analysis
[BLP01, CCvG06, CG15, MS07, Mat96, SPD05, SP06, Sha98, YZ13, XYXZ13, Ztu14, Axe15, BPS15, Bat95, BBG13, BV12, Cas11, CDC12, CTP90, CICL11, CL13, CLTW11, CV13, CDW06, Don10, EM11, FM15, GX14, HJR97, HHvRo4, Lee10, LVo4, LT09, LB08, MO11, MO14, MM98, MM02, NN11, NLZ11, Not10, PV99, P999, RR12, Saa00b, Sha99, The98, WW00b, WW11, mVdV02, vRH05].

analytic
[GN00, IT05].

analystically
[SSB04].

Analyzing
[RV12].

angle
[DMY03, Lee12].

angles
[GH06].

anisotropic
[BCZ12, CG15, GHT09, Hom06, KW99, KT08, KLM14, KNP03, Sch12, XZS15, YXZ13].

anti
[MMM09, Per06, XHZ03].

anti-persymmetric
[XHZ03].

anti-reflective
[Per06].

anti-triangular
[MMPM09].

antibandwidth
[SH14].

Any
[VL11].

Applic
[SB12].

Applications
[CC03, BBR02, MBW97, AM96, BGW05, BCC98, Car97, CD11, DQW15, GKK04, Lam12, LQY13, R11, V02, BG02, CSM06, Leb02].

Appli
[NAL94, LX08, Ada04, ACR]+00, BJL92, BKP02, BF96, BFM12, CC07, CCS10, CEQN07, CNP96, CCLN05, CNY05, FJ05, FH94, HPS15, Hua12, Kub92, LH11, LQ13, LT08, LW09, LT11, LT13, LPS15, MV05, NPR13, NR14a, SKR08, WW+C15, ZZ15, NL09, Ane09].

applied
[BCK05, CH05, LMM00, LD07, Mo11, M10, ZC11].

approach
[AMM04, AN13, CICL08, DY04, DGR11, DS02, FLPV01, GW12, HPP07, H00, KV92, KBF15, LVD02, MM97, MC08, RT02, Ste99].

approaches
[KNY99, MMC12, Mav01, NH98].

appropriate
[KV96].

approximants
[BLW08].

approximation
[AEH14, AH02, BE09, BF11a, BCF03, DK15, DK95, FMP03, HK02, HPS15, IT007, KJ12, KT08, LV12, LZQ12, OST10b, PW12, SLV04, SLV06, DW15, XG10, XHZ03].

approximations
[CYZ99, DLV06, FY01, HJR97, KN07, Mor07, Mor09, Per06, R00].

arbitrary
[HR05].

architectures
[FO95].

arising
[AN03b, BGM09, BPS00, BFM12, BR07, CZ15, FP15, Gem00, HPP07, HM14, MSV13, PM97, Sei10, SMS00, TC10].

arithmetic
[DK95, GKV12].

ARMS
[SS02].

Arnoldi
[BHHJ13, GGV13, HLLL13, KR14,
WW07, WtFW15, YYN12]. arrow
[BFG95, GNQ15]. Arrowhead [Zha92].
assignment [CQX11, LC13, LW04, LW05].
associated [CCG00, IP13, MO94].
Asymptotic
[BGP97, CGK05, Tre05, Lam12]. Asymptotical [DS02].
asynchronous [Sch99].
Atmospheric [BNP15].
Augmentation [Ca08]. Augmented
[BR07, CS97, LD07, MG08, Szu14, Zit05].
Automatic [Lee10]. Augmentation [Cao08].
Augmented [BR07, CS97, LD07, MG08, Szu14, Zit05].
Austin [Lee10]. Automated [SV11].
avoid [BFG95, GNQ15]. Axelsson
[AVX99, Vas05]. Axisymmetric
[CP06].
Composite-based [RR12]. compressed [BT15]. compression [lbr02]. compressive [ZZ15]. Computation [EJK01, Mai06, Ozb13, AT00, BV00, Chu04, Hac98, MVK04, MM11, MGF02, MX03, Sid97, WLHB12]. Computational [BGM11, CCvG06, Ema12, GSK97, Mar90, SS07]. Computations [MPV06, Axe98, AC11, BP13, Ema96, OST10b]. Computed [GL95a]. computer [CZ15, DK95, GL02]. computers [JO94, MM97, TSPSO06]. Computing [BDGL09, Dax04, Lor14, MRT98, NW15, vNR07, BGW05, CJL08, CIX05, DE06, FM09, KNX01, KBF15, KR06, LZY11, MM98, MVV08, RT02, SHT11, TS12, WQZ09, WW07, YYN12, ZQ12, MGMT09]. concept [Mey94]. concerning [BM05a]. Condition [BC10, CLTW11, YDH11, BB06, BT92, BG05b, CCG00, CDW06, DW07, Dia09, DXW12, DWQW13, EHM95, LX08, LH08, LLW09, Pn08]. conditioned [MM99, NCV05]. conditioning [BDGL09, LHW11]. conditions [Per06, Sy94, XHZ03, Zt00, Zt05]. conduction [AJ94]. conformed [AMM04, BMN05, KM99, LPW06]. conic [Naz95]. conjugate [AM95, BGP97, BMSS09, BB96, CNT07, Cha07, DMY03, DR03, Hac92, Kap94, Kap02, MO94, Mey94, Not02a, PR95, DW15, WD08, We94]. Connection [MC09]. conquer [KNX01]. Conservative [ALT05a]. Consistency [FLR03]. Consistent [Rie09, DBG06]. consistently [Bea94]. constant [AM96, Liv14, Mar94]. constrained [Ada04, AN03b, DD07, DR03, ER96, GW00, HMM10, KV06, Lin12, LV08, NBKS09, PW12, PSW14, Pen08, RS10, Sto92, SW12, Vla00, XJ12]. Constraint [SL10, Ber12, Cao09, fLyHZ11, pLL07, LV07, MRT02, yPyHZ04, WBL14]. constraint-preconditioned [Ber12, WBL14]. constraints [BPS13, Dob99, Lay05, LZQ12, MD03, MS07, SW12, VFDV13]. constructing [BFdP13, KKNY01, NY03]. construction [BC09, WWC15]. constructions [YNP04]. contact [Ada04, Hla99, IV04, NO04, ZV14]. Continue [DF01, CWS07, CC03]. continuous [Cas11, SSB15]. continuous-time [Cas11]. continuously [Vos09]. contrast [AY11]. control [BLP08, BFP10, BO13, Dat01, KK13, LC13, LW05, MSS07, MP13, PSW14, ROA13, SW12, VFDV13, ZHJL12]. controllers [Ozb13]. convection [BR99, FY97, HK12, KXXZ03, RSCTP15, XG10, ZYFG11, vRH05]. convection-diffusion [BR99, FY97, KXXZ03, ZYFG11, vRH05]. Convergence [BBG13, CL96, CP99, LT09, LB08, MD03, MM98, NH98, SH99, ZSCX10, Zit05, AJ94, BPS15, BS01, BGP97, BR99, BMSS09, BL08, BV05, C202, Che02, CIFT03, CK14, DS08, FVZ05, GR09, GD11, GX14, JK09, J094, Kap94, Kap05, KP06, L00, L12, MRT96, MC08, PS95, PR09, Pul08, RV12, SLV13, Sy94, VL11, ZW10, ZQ12, Zt00, vE02]. convergent [CQ10, GT09, Sol14]. convex [Car97, LM04, Shi02, Shi04]. core [BH04, Mor07]. core-functions [Mor07]. corner [BLZ08]. corrected [BKM12, MZ15]. correction [CS02, CRV14, GS99, NV08a, NFD10]. corrections [QXB09]. corrector [HM14]. corrector-type [HM14]. corresponding [AT00]. Corrigendum [HS14]. cosine [ROA13]. Coupled [LNP12, GLOW04, HMS99, LP01, TSPS06]. coupling [FS09, HPPS03]. couplings [Yot01]. covolume [CC06]. crack [CKW02, LW09]. criteria [Bid15, Pei07, Sol13]. Cross [OST10b]. Crout [May05, May07]. Crouzeix [KMS08, SSB04, Zhi14]. Crouzeix-Velte [SSB04]. cubic [HLLW05]. curl [CP06, KVP08, ZSCX10]. current [Bai12].
curvature \[\text{KRW08}\]. curvature-based \[\text{KRW08}\]. curvilinear \[\text{PSK08}\]. cycle \[\text{BLZ08}, \text{GT09}, \text{Lai97}, \text{NN10}, \text{Not98}, \text{VL11}\]. cycle-convergence \[\text{VL11}\]. cycles \[\text{NV08b}, \text{TGKR10}, \text{VL11}, \text{ZM08}\]. cyclic \[\text{MR14}\]. cyclically \[\text{GH11}\]. cylindrical \[\text{HG00}\]. Czech \[\text{FM99}\]. Czech-US \[\text{FM99}\].

D \[\text{GKY97}, \text{AM96}, \text{BV13}, \text{BG02}, \text{LPW06}, \text{Mar94}, \text{NBKS99}, \text{PM97}, \text{PR96}, \text{QB15}, \text{ZV14}, \text{mMP99}, \text{vKVW00}\]. damped \[\text{BC09}\]. damping \[\text{BTT13}\]. data \[\text{Bau08}, \text{BF11a}, \text{BFdP13}, \text{BH04}, \text{DQW15}, \text{NLZ11}, \text{PDV05}, \text{Ric09}\]. data-sparse \[\text{Bau08}, \text{BF11a}\]. Datta \[\text{CLR13}\]. Davidson \[\text{GS99}, \text{HLW05}, \text{MSV13}, \text{Not02a}, \text{Zho06}, \text{vNR07}, \text{vdE02}\]. DCT \[\text{CSCTP05}\]. DD \[\text{AB13}, \text{Cao13}, \text{AB10}\]. deblurring \[\text{Don05}\]. decision \[\text{Buc11}, \text{CEQN07}\]. Decomposition \[\text{CGK94}, \text{AN03a}, \text{AN07}, \text{AFK02}, \text{BP01}, \text{Bla04}, \text{BPS04}, \text{CS06}, \text{Car97}, \text{CGM01}, \text{CL13}, \text{CMT03}, \text{EM95}, \text{FLP90}, \text{FGNW14}, \text{GVT03}, \text{GB05}, \text{Gus03}, \text{HLM92}, \text{HC05}, \text{Ibr02}, \text{JM10}, \text{KV92}, \text{Kap98}, \text{Kap02}, \text{Kem12}, \text{KMMR10}, \text{Kho96}, \text{KN14}, \text{KNP03}, \text{LR95}, \text{LV99}, \text{LT09}, \text{LHW11}, \text{LT11}, \text{LT13}, \text{LMM00}, \text{MD03}, \text{MM02}, \text{NR14b}, \text{PY03}, \text{Sau95}, \text{TPSP06}, \text{WQ07}, \text{YL08}, \text{Zhu08}\].

deconvolutions \[\text{BF06}, \text{BLW08}, \text{LS06}, \text{SBS04}\].

decoupling \[\text{MV05}\]. Decoupling \[\text{LVW01}\]. Dedicated \[\text{SGP14}, \text{CLR13}\]. Dedication \[\text{NN15}\]. defect \[\text{NFD10}\].
defective \[\text{FS14}\]. deficient \[\text{DE98}, \text{GS97}\].
definite \[\text{ARMW14}, \text{AT05a}, \text{AV94}, \text{BT03}, \text{DJO9}, \text{Ema12}, \text{Kap08}, \text{KH07}, \text{Kol05}, \text{LHL07b}, \text{MV08}, \text{yPES07}, \text{SB12}, \text{WW08b}\].
definiteness \[\text{P13}\]. definition \[\text{VVM05c}\].

deflated \[\text{CS07}, \text{MN00}\].

DEFLATED-GMRES \[\text{MN00}\]. deflation \[\text{NV08a}, \text{SLV13}\]. degenerate \[\text{BMM06}, \text{Sto92}\]. degree \[\text{DS10}, \text{Gus04b}\].
delay \[\text{DGRR11}, \text{JLW05}, \text{LC13}, \text{MSV13}\]. delay-differential \[\text{MSV13}\]. denoising \[\text{LNP12}, \text{ZZ15}\]. denoising/deblurring \[\text{LNP12}\]. dense \[\text{CDGmM04}, \text{DS10}, \text{GTY97}, \text{KN07}, \text{KBF15}, \text{Ver00}\]. density \[\text{NY03}, \text{OST10b}\]. dependency \[\text{RV12}\].
dependent \[\text{CNT07}, \text{CRV14}, \text{GS05}, \text{HG00}, \text{KPT14}, \text{Mai06}, \text{MV13}, \text{RV08}, \text{Sha98}, \text{ZYFG11}, \text{vKVW00}\]. depending \[\text{Vos09}\].
derivative \[\text{LY15}\]. derivatives \[\text{AT00}, \text{Xie11}\]. derived \[\text{BDV06}\]. deriving \[\text{Mey94}\].
descent \[\text{De 13}, \text{NZ14}, \text{Shi02}, \text{Shi04}\]. design \[\text{AG99}, \text{BCK05}, \text{MC08}, \text{SMSW00}\].
designing \[\text{RS07}\]. designs \[\text{LVW05}\].
determinantal \[\text{CC07}\]. developments \[\text{SS07}\]. deviation \[\text{CCvG06}\]. device \[\text{GMR05}\]. Diagonal \[\text{SZ99}, \text{ACR}^{+00}, \text{BKR14}, \text{EW13}, \text{EM11}, \text{Fas05}, \text{FS09}, \text{HN05}, \text{HS05}, \text{KKM12}, \text{MCH01}, \text{Par03}, \text{PS00}, \text{TS12}, \text{ZZ15}\].
diagonal-plus-semiseparable \[\text{Fas05}\].

Dia
gonally \[\text{AK94}, \text{Yon96}, \text{MRT08}, \text{RT02}\].
diameter \[\text{Par03}\]. difference \[\text{AJ94}, \text{FY01}, \text{Fer96}, \text{Gem00}, \text{PR11}, \text{SCD94}, \text{Web10a}\].
different \[\text{Tre05}\]. differentiable \[\text{Est09}\].
differential \[\text{BKR11}, \text{BKR14}, \text{Bot13}, \text{JLW05}, \text{LH08}, \text{LWH11}, \text{LM03}, \text{MW11}, \text{MSV13}, \text{MM11}, \text{PS08}, \text{Rak99}, \text{RB08}, \text{SW12}, \text{TC10}, \text{ZCW11}, \text{Zhu14}\].
differential-algebraic \[\text{ZCW11}\].
diffusion \[\text{BC03}, \text{BR99}, \text{CCK06}, \text{CG15}, \text{FY01}, \text{Gan99}, \text{KZX03}, \text{KR08}, \text{KP10}, \text{LPS15}, \text{Max01}, \text{OC04}, \text{RSCTP15}, \text{Sch12}, \text{WWB04}, \text{XG10}, \text{YXZ13}, \text{ZYFG11}, \text{vRH05}\].
diffusion-\[\text{KR08}\]. digraphs \[\text{THC09}\].
dimension \[\text{BTT13}, \text{KCS11}, \text{vGZ15}\].
dimensional \[\text{AALS01}, \text{CGPV13}, \text{DY04}, \text{KT08}, \text{NLZ11}, \text{OZB13}, \text{Rja98}, \text{XSS09}\].
dimensionality \[\text{YZ13}\].
dimensions \[\text{XZS15}, \text{YZ13}\].

direct \[\text{Dam08}, \text{JZ11}, \text{JZ06}, \text{BLP01}, \text{CNY05}, \text{CS95}, \text{ES09a}, \text{GMRV05}, \text{HS05}, \text{MRT02}, \text{SW96}, \text{TPSP06}\].
direction \[\text{BB96}, \text{DBG06}, \text{XJ12}\].
directions \[\text{DS13b}, \text{ZS08}\]. Dirichlet \[\text{Rja98}\].
disaggregation \[\text{Pul08}, \text{PM11}\].
discontinuous
discrepancy [BC02].
discrete [BKP02, BBS12, DLVZ06, EWY03, HHvR04,
KT08, Wan00, WBWM04, vRh05].
discrete-difference [Web10a].
discretization [BCR11, BS01, CGM11,
DP03, HHvR04, HK12, Lay05, LPV01,
LOY08, UMO09, Zhu14].
discretizations [AT15, BCR14, BBS12, EGF11,
GHO15, Lee12, LOS04, MW11, Osw95, RS02,
SSB04, Web10a].
discarded [GS07, KS04, MNCT07, vRH05].
discriminant [NLZ11].
discs [Peñ07].
disordered [Sac05].
displacement [Bla94, WN05, Bla02, KM99].
displaying [EJK01].
distance [DFNY08, FS14, NR11].
distance-two [DFNY08].
distortion [BG02].
distributed [FO95, JO94].
distribution [AFSCSU14, Ber12, BF11b,
Cao09, DHSW11, GR05, SSB15, WBL14].
Distributive [GGLO08, GLOW04].
div [AMM04, CP06, GGL08].
divergence [MRT02].
divide [KNX01].
description [Kub92].
does [NN10].
Domain [CGK94, Car97, HLM92, KNP03, RVW98,
Zhu08, AFK02, BPS13, CS96, CGM01,
FLP00, GVT03, Guse03, HKKP07, JM10,
Kho96, LR95, LV99, LT09, LMM00, MD03,
PY03, PR11, RT99].
domains [Dah02, DS02, HKH+06, KM92].
Dominant [Yon96, MRT98, RT02, ZQLX13].
dominated [AMM04, CP06, HP97, RSCTP15].
dominating [GGL08].
double [QB15].
double-layer [QB15].
doubling [GB11, LYL15, MP13].
doubly [GHR98].
Downwind [HP97].
DQGMRES [SW96].
Dr [KVW10].
Drazin [WL03].
DRIC [Not94].
drangings [PM97].
dual [DH04, FLP00, GH01, HP04, Saa94, Sto92].
dual-dual [GH01].
dual-primal [FLP00].
Duffin [LWW09].
Dydxstra [ER96].
dynamic [Not94].
Dynamical [Bat95].
dynamically [MN00].
dynamics [Ema12].
eddy [Bai12].
edge [Dah02, RS02, ZSCX10].
Editorial [Axe96, Axe99, Axe03, Axe04,
Lan97, NT03, Saa00a, Yav04, Mar00, NT04].
effect [BS01, LW04].
Effective [HL08, LLW09].
Effects [CJT03].
Efficiency [DMM*08, CNT07, KN99, Tur00].
Efficiency-based [DMM*08].
Efficient [BVO0, BC03, FJP12, Gem00, HPS15,
Huc98, LV99, Poi00, VP95, WWX10,
mP99, BKS94, CP12, EFG11, HS13,
KBF15, KR14, LR08, OOO11, yP06,
RGG07, TSPSO06, WTZD10, XZS15].
eigCG [ARSO14].
eigendata [BC09].
eigenfrequencies [BTT13].
eigenpairs [MPV06].
eigenparameter [Vos09].
eigenproblem [BGP97, FT98, Not02a, XHZ03].
eigenproblems [Bas00, BPS00, BFS95, DS13b, FLPW01,
FJP12, KCS11, Ney02, TY10, Vos09, vDE02].
eigensolver [BMM*08].
eigenspaces [Zit05].
Eigenvalue [AN06, AB13, Cao13, KY95, LV04, Peñ09,
AFCSU14, AG99, AB10, Bai95, Ber12,
CQX11, CCvG06, CS02, DL07, Dia09,
EKS02, HKST12, HS08, HLL13, HLLW05,
LLL97, LLK14, Liv04b, LY15, M1111,
MV08, Mee01, MVS13, MZ98, PP95,
SJBH14, Sim03, Sot13, WQZ09, WBL14,
YLH11, ZQ12, ZQLX13, ZQW13].
eigenvalues [AT00, BWN05, CSYS14,
HHQ13, KSC05, KCV09, KCV12, LFH15,
LS05, LQY13, Mai06, MM11, SHT11, XC13].
eigenvector [W98].
eigenvectors [AT00, Mai06].
elastic [Hon06].
elasticity [AM96, AALS01, Axe99, BKY10, BLE97,
Bl9a4, BC12, GLGR10, GL98, GL02, GL13,
KK02, KS04, Mar94, Mar98, Pad99, Rja98,
XSZ09, XS11, XZS15].
elastoplastic [MBW97].
elastoplasticity [MM97].
electrical [MC04].
electrodynamics
[KMMR10]. electromagnetic [WDS09].
electromagnetism [CDG00, CDGM04].
electron [OST10b].

[LV12, AK99, AMM04, BBR03, BMN05,
BC12, CVZ99, CKW02, CGL05, DMM+08,
Dob99, EGF11, EWY03, GLGR10, HH06,
HS13, HK12, IV04, KMMR10, KR11, KS04,
KV06, Kra06, KLM14, Lai97, LV08, LR95,
LMM00, LPW06, PY03, PS00, PR95, RS02,
Rja98, RSCTP15, SGP14, SSB15, The98,
 Vas92, VI96, Vas02, WBWM04, XS09,
XS11, ZYFG11, ZSCX10]. elements

[BB00, GL13, HHvR04, Lee10, Osw95,
Pul09, RS02, ZHJL12]. elimination

[GIK02, Gro00, IK00, Pe~n03, Reu96].

Elliptic [CGK94, AV94, BBP03, BBS12,
BCZ12, CC92, CW97, CS02, CGL05,
CEL+96, DLVZ06, Dob99, DHR+04, DP03,
ELV94, EWY03, GN00, HKST12, KW99,
KR06, KT08, KMS08, KLM14, KM92,
LPV01, LW03, MRT02, MS07, MM11,
Ney02, RKB09, RT99, Sta96, VI96, Wan00,
ZSCX10, Zhu08, Zhu14]. Embedded

[GNR14]. embedding [FLPW01, RVW98].

EMC [Ver00]. enables [MC08]. enclosure

[Miy15, OOO11]. energetic [Lee12].

Energy [VSG09, BBM+06, KV06, Lee12,
MD03, SWY07]. energy-based [BBM+06].

Energy-minimizing [VSG09]. Engine

[RSR10]. Engineering

[LD08, NL09, WW08a, CEQN07, Ano08]. entries

[EW13, Par03]. envelope [BPS95].

Environment [ADP96, CEQ07, TT10].
environmental [MS07]. equalities

[CP06]. equality [DR03, LV98].
equidistantly [Rie09]. equilateral

[RSCTP15]. equilibrium [DSH11].
equispaced [FP05]. Equivalence [Szy94].
efficiency [FRI1]. Error

[BBG13]. Error [BNP15, GR04, Baz08, BT92, DXW12,
LX08, Ney02, SZ11]. estimations [CD11].
estimator [MVK04]. estimators

[AM96, MMN+10]. Euler [Cor04, NFD10].

European [Rag14]. Evaluating [BB01].
evaluations [KS10]. even [Not05a, XC13].
evolution [BBG13]. Ewing [LPQ06]. exact

[Bot13, DK95]. expansion

[DS02, MS07, RR12, ROA13]. expansions

[Tre05]. experience [BGM11].

Experimental [RR12]. experiments

[ABK97, GL02]. Explicit [Lam12].

Exponential

[PDV05, BV00, BCV03, DQW15, LLS12,
Mor07, PS11, Rag14, WtFW15]. expressions

[LT08, Not05a]. extended

[KS10, ZHZ10]. Extending [ARSO14].

Extension [BBP02, BBR03]. extensions

[Sun06]. exterior [GH01].
[SPD05, SP06]. extraction [LNY15].
extrama [LT08, Vla00]. extreme [HHQ13, LFH15].

F.E.M. [AM96]. Faber [Nov03]. factor [Ano09, Cha12, DM10, GIK02, IK00, KM09].
factored [KKNY01]. factoring [BG96, BT03, Bla94, CGG00, CGK05, Cha12, DH95, FG02, GN00, KNY00, KM92, OS01, RTN03, Saa94, SK01, QX09, ZHJL12].
factorizations [AMMP06, Bea94, CCS10, CH94, CV03, GNO15, MS14, mMvdV02, mMM04].

Factorized [KNY99, NY03]. factors [Bea94, BF11a, WL08]. family [AEHV14, AEHV15, GGZ12, LZ09, LS12, MCL01, MLV05, MY15, STZ12, XCG10, vKV00, DS10, FER96, JR94, KHO96, LEC10, MRT02, MVV08, RA99, RSR10, SOL14, SKR08, RR12].

Fast [BO13, Cao04, DMTY11, DQW15, FGT11, FP05, FS09, LLS12, LPS15, MS14, MCH01, MLV05, MY15, STZ12, XCG10, vKV00, DS10, Fer96, JR94, Kho96, Lee10, MRT02, MVV08, Rak99, RSR10, Sol14, SKR08, RR12].

Fault [NO04]. fault-zone [NO04].

FDFD [PR11]. FE [GKY97, PM97]. feasible [AW11].

feedback [DGRR11, LW05].

FEM [AB10, AB13, Beu03, BB06, Cao13, FS09, HPPS03, HMS99, KM99, Mar94].

FEM-BEM [HPPS03]. FEM/BEM [HMS99].

FETI [DH04]. FFT [ZV14].

Fictitious [HKKP07, RT99]. field [KMMR10]. fields [HPS15]. filter [RGG07].

filtering [AN03a, AN07, BPSH13, FGNW14, LNY15].

Filtering [EW13, HHQ13, RPR10, ROH92].

Finer [Vom12]. finer-grain [Vom12]. finger [ISZ09].

Finite [D099, KMMR10, AK99, AMM04, BBP03, BB00, BMN05, BC12, CY99, CKW02, CGL05, DMM+08, EGF11, EWY03, FY01, Fer96, GLGR10, GL13, HH06, HK12, KR11, Kra06, KLM14, Lai97, LR95, Lee10, LMM00, LPW06, Os95, PY03, PS00, Pr11, Pul99, RS02, R SCTP15, SGP14, SSB15, The98, Vaa92, VL96, WBM04, XZ09, X011, ZYFG11, ZSCX10]. finite-difference [PR11].

FIR [RS07]. First [KLM+06, BGM+12, GH98, Hm96, KNN01, LYY15, MMN+10].

First-order [KLM+06, BGM+12, Hm96, MMN+10]. fit [BDK+15]. fitting [DQW15, PDV05]. fixed [BG05a, Bir15]. fixed-point [Bir15].

Flexible [ZHJL12, vGSS15].

Flow [BLLA11, HG00, HK12, KR11, KRW08, Lay05, LV04, Ma00, MT96, Tr00, Web10b, Web10a, Yot01, vKV00, LD08].

Fluid [BLLA11, Ema12, HG00, Ma00, MT96, SV11, Web10b, Web10a].

Fluid-solid [SV11]. FOM [GR99]. Form [Zha92, AB10, AB13, BCB14, BO08, BWN05, BBG13, Cao13, GS07, GNO15, Han13, KKNY01, LG12, MMM09, vNR07].

Formal [Tre05]. format [BG13, Gra08].

Formats [DK15, HKST12].

Function [CDDSC12, GGZ12, KS10, LZ09, Par03, PSS01, TR05, XZS10].

Functional
functionals [AMM04]. functions [CKW02, CLC11, CJL08, DK95, Est09, MN05, Mor07, Mor09, MP14, Naz95, Xie11].

fundamental [ZYL13]. Further [MMN+10, Saa00b]. fuzzy [CEQN07].

Galerkin [BBS12, CGM11, DLVZ06, HHvR04, KT08, LPV01, NSCTP05, SG14, WTGW14, vRH05]. games [AD12]. gauge [KMMR10]. Gauss [HP97, KLN99, LO13, Pe~n03, Sun06].

Gaussian [GIK02, IK00, Reu96]. Gay [Adi08]. General [JK09, AN13, BCB14, BCGM09, CS96, Kap98, KS15, Lor14, SZ99, SS02, ZW10].

generation [BG02, Gar01, Gar04, LM06, MS07]. geometric [BS10, Cho03, Gar04, HS11, HS14, LJM14, XS909, ZMO10].

geometric-based [XSZ09]. geometries [HKH+06, PSDK08]. Gerschgorin [LHLS07, Pei07]. Gerschgorin-type [LHLs07]. Gersgorin [KCV09].

Gersgorin-type [KCV09]. GES [BMM+08]. GES-SA [BMM+08]. gigaflops [Tur00].

Globally [CQ10]. GMRES [BR07, BE98, CZ02, De 13, DS08, DN12, GR99, Jon94, MN00, Sid11, Sim99, SWKW98, VL11, WZ94, ZM08, Zit00, Zit05, vV94].

GMRES-type [BR07]. GMRESR [vV94].

GPCG [Bla02]. GPCG-generalized [Bla02]. grad [GGLO08]. grade [TI05].

graded [BLZ08, BCS09]. gradient [AM95, BGP97, BMSS09, CNT07, Cha07, DMY03, DR03, Fac02, Kap94, Kap02, MO94, Mey94, PR95, SZ11, DW15, WD08, Wei94].

gradient-like [Mey94]. gradients [Not02a].

grain [Vom12]. Gram [Daz04, LBG13, LL17, Van00, WL08].

graph [KXZ03]. graphs [EJK01, VZ14].

greedy [BT15]. Grid [GVT03, Alb06, A07, BG02, CGPV13, CSCTP05, CG15, CRV14, Don10, ELV94, FVZ05, Fer96, GKK04, Gar04, GMS06, GHO15, KV96, MC08, NV08a, NN10, NH98, Not10, RSR10, RR12, ZSWX13]. grids [BH04, Bla03, ELV94, Gar01, GLGR10, LPW06, Mtt10, OCYM08, YXZ13, ZMO10].

group [WN05]. growth [GIK02, IK00, KM09, WL08]. GSOR [HES15].

Guest [Mar00]. h [Cha07, HMS99]. h-optimally [Cha07]. h-p [HMS99]. Hadamard [KM09].

Hamiltonian [AIT05a, AIT05b]. hand [ARSO14, ARMW14]. handy [Adi08].

Hankel [DQW15, KN07, OS01, SLV06, SB03].

Hankel-like [OS01]. hardback [Nab97].

Harmonic [HS08, MZ98, Bai12, GR99, GS07, Kho96, LGS12, Vom10, ZSWX13].

Hermitian [LT13, SB12, BGN07, CPS01, CSYS14, DBG06, Fas05, HM03, HSCTP05, Kol05, KKR14, LHL07b, LC05, Mee01, NC05, WD08, Wu15, ZW10, vdE02].

Hermitian-type [LT13]. Hessenberg [CGK05, Gen00, Ste95]. heterogeneous [BBS12, CGPV13, KP10, KN03, NH06].

heuristics [SH14]. Hierarchical [BH04, SGP14, BH07, BM13, CV03, EGF11, LO13, Pul09, WW07]. hierarchically [XCGL10, Xia12]. hierarchies [Alb06, DHR+04, EJK01].

High [Kap98,
AY11, AEHV14, AEHV15, GKY97, Lam12, NLZ11, NY03, SWKW98, SSB15, TSPSO06).

high-contrast [AY11]. high-dimensional [NLZ11]. high-order [AEHV14, AEHV15, GKY97, Lam12, SSB15, TSPSO06].

high-quality [NY03]. Higham [GIK02].

higher [GHW06, GL13, WQ07, XSZ09, XS11]. higher-order [GHW06, WQ07, XSZ09].

highly [BKP02, GVT03, Wan00]. hill [SH14]. homotopic [CCvG06].

HSS [Bai09, GD11]. HSS-like [Bai09]. Hurwitz [KSB13]. hybrid [BH04, CNY05, Lai97, LJM14, RTN03, Yan04]. hybridized [GT09]. hyper [CH05]. hyper-power [CH05]. hyperbolic [BBG13, JO01]. hyperellipsoids [BDK+15]. hypergraph [LQY13, XC13].

ill-posed [CLT11, DNR12, Est99, NR14b]. ILU [AMMP06, May05, May07, SZ99].

ILUCP [May05]. ILUT [Bas00, Saa94]. ILUT/ILDLT [Bas00]. image [BC02, CNSY05, Don05, GHW06, HHM10, Hom06, Per06, SKR08]. images [BNT94].

imaging [BNP15]. IMMB [Axe99]. impact [Ano99]. Implementation [AK99, BIS14, BM05a, DMY03]. Implicit [FP95a, BGX06, Bai12, BM05a, BD15, Che15, ISZ09, LVW01, MC04, PBN05, VVM05b, ZS08, mMvD02]. Imposing [Szu14]. Improved [ARMW14, Cor04, J094, BVV12, CGPV13, LV12, Sun06].

improvement [WL03]. Improvements [BB06]. Improving [BKY10, GKV12]. inclusion [LHLS07, LMK14, THCO9].

Incomplete [Jia96, BT03, Bla94, CCS10, GNQ15, Gro00, JO94, Kap02, KNY00, RTN03, Reu96, Saa94, SW96, Sau95, ZHJL12, mMvD02, mM04, GKY97].

incompressible [BKP02, HK12, LV04, Os99, Tur00, Web10b, Web10a, vKVW00]. increasing [DMY03]. increasing-angle [DMY03].

Incremental [CCS10, BT92]. indefinite [BRT07, CL96, CK01, CS95, CRV14, Krz11, LT09, Liv14, PS00, SL10, Vas92].

Indefinitely [DR03, LV98]. independence [DS08]. independent [CJL08, KPV06].

indirect [BLP01]. induced [Lay05, vGSZ15]. industry [mM04]. inequalities [AM96, CPSM06]. inequality [AALS01, Bla03, DGR11, DH04, DR03, EM95, Mar94]. Inexact [ABK97, HD07, Sid11, Bir15, CQ10, FK15, GB11, HLM92, KK02, KPV06, LLL07, LV98, Sin03, WtFW15]. infimum [Chu04].

infinite [Özb13]. Information [Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano13a, Ano13b, Ano13c, Ano13d, Ano14b, Ano14f, Ano15a, Ano15b, Ano15c, Ano15e, Ano14a, Ano14c, Ano14d, BF96, FJ05, Ano14e, Ano15d]. initial [Nov03, PBN05, VL11]. initializing [BMM+08]. inner [Gus04a, Mey94, MGF+02, Xia12].

Innovative [BDRS12]. integer [CP12].

integrable [SHT11]. integral [AFCSU14, MM09]. integration [LLS12, MC09]. integrators [Ber01, LJ04, Mor07, Rag14]. intensity [GKV12]. inter [MC08]. inter-grid [MC08].

interaction [SV11]. interchanges [EM11]. Interface [Wan00, JM10, Yot01, ZYL13].

Interior [LMV04, BMM06, BCS09, BPS13, HP04]. Interior-point [LMV04]. internal [HKH*06]. International [NL09].
Interpolating [MN05]. interpolation [BKY10, DFNY08, Gan05, HM03, KV06, LY15, MMPR10, Rie09, Vla00, Web10b, Yan10]. Interpreting [CPSM06]. interval [KSB13, Roh92, YLH11]. intervals [LHLS07, THC09]. Introducing [MS07]. invariant [AG95, DF01, MK94, YL08]. Inverse [LC05, NR14a, Tre13, AEHV14, BF11a, BM13, BPS00, BFG95, BFM12, CC07, DL97, DW07, DWWQ13, EW13, EKS02, Egg07, EHM95, FGT11, FK15, Han13, ISZ09, JZ09, KKNY01, Kho96, KN09, KKMM12, LLL97, pLL07, LW09, LZY11, MV13, MGF+02, NY03, yPyHZ04, Sol14, Sot13, TS12, WL03, XHZ03, Zho06, Ney05]. inverses [Cor04, Gus03, Huc98, LXW13, WN05]. inversion [BO13, KK02, LPS15]. invertibility [Den09]. involving [DWWQ13]. IOM [Jia96]. ion [TC10]. IPARS [LVW01]. IRAM [Xie11]. IRAM-based [Xie11]. Irreversible [BL03]. ISBN [Nab97]. isolation [EKS02]. isometric [Gar01, Gar02]. isospectrally [VW15]. Issue [Ano08, Ano12a, Ano12b, Ano12c, Ano12d, Ano12e, Ano12f, Ano13a, Ano13b, Ano13c, Ano13d, Ano14a, Ano14b, Ano14c, Ano14d, Ano14e, Ano15a, Ano15b, Ano15c, Ano15d, Ano15e, LD08, CLR13, Dat01, Fai06, WV01, Vas05, Axe99]. issues [BM05a]. iterated [AN03a]. iterates [DS13b]. iteration [AT15, AN94, BGM06, Bia10, Bia12, BZ13, BM13, CH05, Che15, Egg07, FK15, GB11, GH01, HML09, Kra02, KKR14, LLL97, Lam12, LS15, PS15, wX15, Zho06, ZS08, Ney05]. iterations [BGN07, BG05a, GGZ12, HN05, Kap05, KLN99, LZ09, Lin12, Lu05, NZ14, Saa00b, Sch99, vDE02]. Iterative [AT00, BF11b, CGK94, DBG06, GMR05, LPV01, NZ14, PM97, AEHV14, AEHV15, AK00, Ber01, BR99, CH05, CK01, CK10, EL94, FM99, GTY97, Gus97, HG00, HES15, HM14, LFQ08, Lec03, LSL01, LZY11, LM14, MM98, NO04, Ols99, yPyX06, PR96, PR11, PUL08, PM11, Sol14, Sun06, Szy94, WDS09, WTZD10, WW11, ZW10, Axe99]. IV [KN09]. Ivo [SGP14].

Kalman [BPSH13]. kernel [HK02, MN05]. kind [MM09]. KKT [BGM09]. Kronecker [CHe15, DWWQ13, EJK01, KN07, LS04, Per06, XG10]. Krylov [HS14, OC04, AFSCSU14, BPSH13, Bot13, BD15, C97, CQ10, CK10, Dam08, DK95, Emar12, Fas05, HS11, IT05, KS10, Mor07, MP14, NV08b, PPv95, Rag14, RLG12, RV12, Sid97, SS07, Yot01]. Krylov-accelerated [Em012]. Krylov-based [NV08b]. Kutta [Che15].

L [Nab97, CZ02, ZMO10]. L-shaped [ZMO10]. L. [JK09]. Lagrange [Cor04]. Lagrangian [GM08]. Lagrangians [LD07]. Lamé [BKP02]. Lanczos [ARSO14, CWS97, CQ03, FG02, FJ05, Lam12, LW98, Mee01, Mor09, PV99, PS11, Par92, Sim03]. Lanczos-type [CWS97, FG02]. Laplace [QB15, SLV13]. Laplacian [CV13, UMO09, XC13]. Laplacians [BO08]. Large [Ben08, Jia96, WV01, AG99, Axe98, Bar02, BCB14, BLP08, BES14, BV00, BG00, BG05b, BHHJ13, CLR01, CR05, DMY03, Dux94, DNR12, DR03, EW13, FJP12, GTY97, Gra08, GR04, JZ09, KBF15, LLL97,
LV98, MZ98, Sid11, WDS09, Xie11, vGSZ15. Large-Scale [VW01, Ben08, Bar02, BCB14, BLP08, BES14, DMY03, Gra08, GR04]. large-size [FJP12]. largest [VW01, Ben08, Bar02, BCB14, BLP08, BES14, DMY03, Gra08, GR04]. latency [RTN03]. layer [QB15, RV12]. layered [BDM+14]. Lazaro [Vas03]. LDL [mM04]. learning [SZ11]. Least [CYZ99, pL07, Tia13, AB00, AK99, BDLG09, Bar02, BMM06, BGM09, BGM11, BGM+12, CNP96, CTP09, CP12, CP06, Dax94, DE98, DW07, DWWQ13, ES07, ES09a, ER96, FB95, GW00, GR05, KLM+06, LVD02, LZ12, LL97, MMN+10, MVK04, MLV05, Miy15, Pen08, Ren98, RLG12, Sto92, WKS95, WWC+15, ZHZ10]. Least-rank [Tia13]. Least-squares [CYZ99, pL07, Tia13, AB00, AK99, BDLG09, Bar02, BMM06, BGM09, BGM11, CTP09, CP06, DW07, ES07, ES09a, ER96, LVD02, Pen08, ZHZ10]. Least [VW01, Ben08, Bar02, BCB14, BLP08, BES14, DMY03, Gra08, GR04]. learning [SZ11]. Least-squares [CYZ99, pL07, Tia13, AB00, AK99, BDLG09, Bar02, BMM06, BGM09, BGM11, CTP09, CP06, DW07, ES07, ES09a, ER96, LVD02, Pen08, ZHZ10]. Left [WD08]. lemma [Gus04a, Mar95]. length [BDK+15]. Level [SH14, CGM01, CS02, CRV14, DLVZ06, GVT03, HH06, HHvR04, KM99, KV96, NCV05, OC04, S299, SP06, SV11, VSG09, XZS10, YXZ13, Zik08, vRH05]. Level-based [SH14]. level-dependent [CRV14]. Levinson [Bun92]. life [KVW10]. like [Bai09, BMM06, Lee10, Mey94, OS01, PRP109, mMP99]. likelihood [ES05]. limit [LY15]. limiting [DS13b]. line [BDK+15, DMY03, MM95]. Linear [NLA94, Ano09, IT507, Jia96, Nal97, ZQ12, ARS014, ARMW14, Ada04, AW11, ACR+00, AIT05b, JNL92, AMP99, AK00, AN03b, BDLG09, BPS15, Bai10, BCR11, BZ13, BCR14, BKY10, BG13, Bas00, BLE97, BLB08, FBPS0, Ber01, BWN05, Bla02, BvdV00, Bot13, BC12, BFM12, BMO06, CS09, CS11, CDGM04, CPSM06, CSCTP05, CGL05, CC03, CK01, CK14, DGB+13, Dat01, DGD99, DGGRR11, DW07, DWWQ13, DNR12, DJ09, DN12, FGT11, FP15, FS09, Gem00, GM11, GSS01, GY08, GT97, GS05, GW00, GL98, GL02, GL13, HHvR04, HES15, HSCTP05, JZ09, Jov94, JO94, KK02, KPVP06, KS04, KFB15, Kra02, KS15, KKR14, LX08, LHL07b, LT09, LC13, LL97, LV98, LMV04, Mar00, MCH01, MV05, May01, MP13, Mey94, MC04, Naz95, NQ96, NLZ11, Nov03]. linear [OC04, Obz13, Pad99, PBN05, PM97, PT14, RGG07, RT99, SZ99, SS02, SB12, SS07, SMSW00, Sto92, Sun05, SL10, Szu14, TT10, VFDV13, VW01, WKS95, WD08, WM12, Wu15, XZS09, XZ11, XZS15, wX15, YDH11, ZW10, vGSZ15]. linear-constrained [XJ12]. linear-quadratic [BLP08]. Linearization [LZ12]. linearizations [KR14]. linearized [BGX06, NFD10]. linearly [Bl94, LVD02, Sto92]. Lipschitzian [DS02]. load [WLH12]. Local [CGM01, CV13, ELV94, MO11, BS01, Don10, Kra06, MMN+10, MM95, Pul08]. Localization [KVC12]. localizations [KCV09]. locally [BB00, KR11]. locations [BB97]. logarithm [Lor14]. Long [Kem12, Yan10]. long-range [Yan10]. Long-time [Kem12]. look [LYL15]. loosely [TSP00]. Low [AN07, Bau08, BF96, CH94, DFZ05, AT15, BE09, Gra08, HC05, KPT14, KS15, NY03, QX09, SLV04, SLV06, Tyr92]. Low-complexity [DFZ05]. low-density [NY03]. Low-rank [BF96, CH94, AT15, BE09, Gra08, HC05, KPT14, KS15, QX09]. lower [Apb06, SPD05, SP06]. LQ [BG00]. LQ-Schur [BG00]. LSQR [RY08]. LTI [ZS08]. LU [CCS10]. Lyapunov [BL08]. M [KVW10]. maintaining [Par92]. making [CEQR07]. manifolds [MK94, SZ11]. Manteuffel [Lee10]. manufacturing [CNY05]. mapping [BG02]. mappings [Gar02]. maps [MK94]. Marek [SGP14]. Markov [AD11, BLA11, Ben11, BK11,
Markov-modulated [BLA11].
Markovian [BMP11].
mass [EKS02].
master [DK15]. matching [BCZ12, KXZ03]. matchings [HS15].
material [LNP12].
mathematician [Voe92].
Matlab [Bra02].
Matrices [Yon96, AFSCSU14, AIT05a, AN94, AN06, AB10, AN13, AB13, Axe15, BPS95, BP13, BNT94, BH07, BF11a, BM13, BT03, BV00, Ber12, BWN05, BG05a, BFG95, BG05b, BFM12, BCC98, BCGM09, BM05b, BM06, CS96, Caoo, Caoo, Caoo, Ca13, CDSC12, CCLN05, CGK05, CX05, Dia09, DS10, Don10, DNR12, DS13a, Dos99, ES09b, Est09, FLR03, FG02, Fas05, FP95a, GIK02, GS97, GR04, HH06, HR05, HS15, Hua12, HC05, IK00, JR94, Kau07, KN07, Kol05, Kra02, Kra06, Leb02, LVD02, LSL01, LS05, LS06, LHL07a, pLL07, Mai06, MM08, MM09, Mat96, MCC+12, MN05, NR11, NPR13, OS01, Pei09, yPhHZ04, Poio0, Sei10, SJBH14, SS97, SB03, Sol14, Stim06, Tren05, VVM05a, VP95, VVM05b, VVM05c, VW15, Vas92, WBL14, XCG10, XHZ03, YHL11, ZH10].
matrices [vN00, Nab97].
Matrix [AB00, AG95, AC11, Bm92, GTX97, Not05a, YNP04, Zha92, FS14, AH02, AEHV15, AD11, Bai10, BE09, BFdP13, BB01, Ben08, BG05, BG05a, BG00, BHHJ13, CCG00, CH03, CLC11, CSYS14, DBG06, DGRR11, DK95, EW13, EM95, EHM95, ER96, FLPP01, GHR98, GGZ12, Gra08, HK02, HM03, IP13, Ibr02, JZ11, KV2, Kap98, Kap99, KNX01, KH07, KS10, KM09, KR14, KPT14, KS15, LZ09, LOY08, fLxHZ11, pLL07, LT08, LT11, Lor14, LPS15, MVV08, MSS07, MRT98, Miiy15, Mor99, MP14, OOO11, PS11, yPxP06, yPES07, Rja98, Roh92, San95, Sha98, Ste99, SHT11, TS12, TT10, TH09, Tia13, TY10, Vas02, WW08b, WTZD10, WtFW15, XJ12, Xie11, XQ09, wX15, YDH11, ZJ06].
matrix-dependent [Sha98]. Matrix-free [GT97, YNP04, AD11, TT10].
matrix-valued [Xie11]. max [BDK+15].
max-length-vector [BDK+15].
maximization [SH14]. Maximum [BCHT04, Gar02, ES05].
Maximum-weight-basis [BCHT04].
Maxwell [GS07, LGS12, MV13, ZSWX13].
McCormick [Lee10]. mean [KNX01].
means [MS14]. measure [BG02].
media [BKP02, CGPV13, KP10, NH06, WWX10, Yot01]. Median [LYN15].
Memory [KR14, FO95, JO94].
Memory-efficient [KR14]. Mesh [KPV06, BC10, BGM+12, DHR+04, DS08, KPV08].
Mesh-independent [KPV06]. meshes [BB00, BLZ08, BCS09, HMS99, KR11, KV96, MAV01, RSCTP15, SRGL13, XZS15].
meshfree [LOY08, LOS04]. Meshing [HKH+06].
Method [Jia96, ABBP10, AK99, AN94, AM95, AFK02, BC09, BG13, BM06, BES14, BS01, Bb02, Bot13, BHHJ13, BMS09, BCZ12, BC12, BCS09, BPS13, CKW02, C20, CNT07, CQX11, Cha07, CGL05, CH05, CG15, CNY05, Cho03, C001, CP06, CK14, DL97, DMY03, Dux94, DJ09, DS13b, DR03, EKS02, ES09a, EWY03, FLP00, Fer96, GHT09, GS09, GT09, GD11, Hac92, HPP07, HES15, Hüm06, HD07, HHQ13, HLL13, JMF10, Kap94, Kem12, KY95, KKN0, KW09, KXZ03, KPV06, KR11, KS10, Kra02, KTO8, KPT14, KM92, LFH15, LV08, LPV01, Lio0, LT09, LB08, LS15, Liv14, LJ14, LMM00, LV98, LVM04, MZ15, MO94, MM98, MRT96, Mee01, MSV13, MW20, MBW97, Mit10, MP14, MN00, NQ06, NR14b, Not94, PS11, PS95, yPxF06, PR95, PR96, PR11].
method [Rak99, RS01, RS02, RV12, Reu96, RT99, ROA13, Sha99, Sim03, Sun06, TS12, WD08, WQZ09, WBWM04, WTZD10,
Wu15, XSZ09, XJ12, XZS15, Xie11, XQ09, YYN12, YYZ13, ZYFG11, ZYL13, Zf15, ZM10, vNR07, vRH05. **Methods**

[Ano08, CGK94, LD08, NL09, VW01, WW08a, ARW14, AM96, Ada04, AD12, AEH14, AEH15, AMMP06, AK94, AV94, Axe98, Axe99, AK00, AN03b, Axe15, BR07, BGN06, Bai09, Bai10, Bai12, BDRS12, BZ13, BCR14, BP13, BLP97, Baz08, BGM11, BK11, BGP97, BR99, BGW05, BDV06, BCS09, BM05a, CEQN07, CS09, CS11, CGM01, CS02, CSCTP05, CEL96, Che02, CCK06, Che15, CWS97, CK10, Dam08, DMTY11, Den12, Den14, DBG06, Dob99, EZ96, EM11, ELV94, Fal06, Fal10, rFS09, FM99, FM15, FP95b, GB11, GLGR10, GVT03, GM95, GVV13, GM06, Gus97, GL95b, HS11, HS14, HP04, HLLW05, IV04, JS96, KMMR10, KP00, KCS11, KLM14, KS15, KKR14, Lee10, Le12, Li00, LSL01, LHL07b, LLW09, LNY15, LZY11, LMM00, MMC12, MMMM09, Mar00, MG08, MPS96].

methods

[MZ98, NBKS99, NSCTP05, Not05b, Not10, PN05, PY03, PRP10, Pul08, PM11, Rag14, SRGL13, SB12, SK01, SWY07, Sei10, Sid11, SS07, SGP14, Sta96, Szy94, VSG09, VZ08, Wei94, Wie99, wX15, ZW10, ZSCX10, ZSWX13, Zik08, vV94, Fal08, GL02]. **MILU** [WH94]. **Mindlin** [CY99]. **minimal** [BGX06, CF05, JR94, MRT96, SW96, Sta96].

Minimization

[EHM95, CDG00, Car97, DMY03, DFZ05, Het07, KV06, MD03, NZ14, XJ12]. **Minimizing** [CV91, AM04, VSG09]. **Minimum** [GH01, DE98, DBG06, DS10, Gus03, HMS99, Kap05, Miy15, Saa00b]. **minmax** [Vos09]. **MinRes** [KK13]. **mirror** [BCK05]. **Mixed**

[DXW12, AB10, AB13, BBG13, Ca013, CEL96, CCK06, GH01, GT09, GS07, Lai97, LPV01, LGS12, PY03, PS00, RVW98, VJ96, WBWM04, Web10b, YZ13]. **mixed-order** [Web10b]. **mode** [STZ12]. **Model**

[Lay05, Sha99, BLLA11, FLPW01, Gus98, KNP03, MV13, XG10, ZS08]. **model-order** [MV13]. **modeling** [FH94, WWX10].

modelling [Gar04, GMR95, NH06, SWY07]. **Models** [CEQN07, Bai12, BL03, BV13, Buc11, DSHW11, GB15, LNP12, PGT14, QB09, TC10]. **modern** [MM97]. **Modifiable** [BE09]. **modification** [CSYS14]. **Modified** [LHL07b, wX15, Bea94, CS95, DJ09, Kap02, KP06, NR14b, Sm06, WL08, ZZ15, SB12]. **Modifying** [Alb06]. **Modular** [BC02]. **modulated** [BLLA11]. **Modulus** [Bai10, BZ13, DJ09, wX15]. **Modulus-based** [Bai10, BZ13, wX15]. **moment** [GHR98, VFV13]. **Moments** [BFM12]. **Monotone** [IV04, ZZ15]. **monotonic** [LD07]. **monotonicity** [Mar95]. **Moore** [DW07, DWQ13, KKMM12, LWX13]. **Moreau** [PSW14]. **mortar** [DP03, PY03]. **MRRR** [MP06]. **MSMAOR** [CK14]. **Multi** [NH06, BCK05, CS02, Lee12, PDV05, SB99, SV11, TC10, ZHJL12, vGS15]. **multi-channel** [PDV05]. **multi-energetic** [Lee12]. **multi-ion** [TC10]. **multi-level** [CS02, SB99, SV11]. **multi-mirror** [BCK05]. **multi-parameters** [ZHJL12]. **Multi-scale** [NH06]. **multi-shift** [vGS15]. **multidimensional** [BBKY06]. **Multifrontal** [ADP96]. **Multigrid** [AD12, BB00, BCS09, BBKY06, Den12, Den14, Fal08, Fal10, GLGR10, KRW08, Mav01, SRGL13, Wie99, WTWG14, ZV14, Ada04, Ay11, BKY10, BLE97, BBS12, BQ08, BH04, BISC14, BDV06, BLZ08, BMM+08, BV12, BM+12, BDM+14, BS10, Cho03, DY04, DFN08, Don05, Don10, DHR+04, EZ96, Ema12, Fal06, FM15, GLOW04, GGL08, GHT09, GKV12, GT09, Gra08, GM06, BH10, Het07, H0m06, IV04, KXX03, KR11, KR06, Le12, LOS04, Liv04b, Liv14, LJM14, LD07, MO11, MMC12, MO14, MP10, MWZ06, MBW97, MC08, MM97].
Mit10, NN11, NSCTP05, Not05b, NV08b, OST10a, Pf99, RS02, RV12, Ren96, RBV08, Sha98, SKR08, SSB15, TGKR10, TC10, TY10, UMO09, VZ08, VY14, Wan00, Web10b, Web10a, XZS09, XZS15, YW12, Zhu14, ZMO10, vRH05.

Multigrid [DM10]. multigrid-based [UMO09]. Multilevel [AT15, CEL+96, CV03, Osw95, Sta96, AM96, AMM04, AN94, AV94, BMN05, BCZ12, CL96, DMTY11, Kra02, Kra06, KTM08, KLM14, KP10, Lai97, LSS03, LM06, MM95, May07, Not98, Not02b, Not05b, Pad99, SS02, Sha99, SLV13, The98, Yot01, vN00].

Multisecant [rFS09]. multisensors [CNSY05]. Multisplitting [RLG12, AMP99, BZ13, CS09, CS11, JS96, LSL01, Ren98].

Multistep [BCC98, CP99, FP95b]. mutivariate [LZQ12, MKP04].

Nath [CLR13]. Navier [AB12, CA99, HFW01, LMM00, Ols99].

near [CNY05, Ver00]. near-circulant-block [CNY05].

near-singularity [Ver00]. nearby [FS14]. nearest [GHR98, MRT98, NW15].

neutral [ZCW11]. neutron [Cha07, CMG11]. Newton [ABB10, AMMP06, ABK97, AFK02, BC09, BMM06, CQ10, DL97, DS13b, GB11, GKK04, GD11, HP04, KP06, LB08, Lu05, LV98, NQ96, OC04, Sch99, Vla00, Yot01, ZZ15, Zhao06].

Newton-like [BMM06]. Newton-type [ABB10, Vla00]. NLA [Axe10, Vas05]. nodal [BDV06]. nodes [FP05]. noisy [BC09]. Non [AMP99, VW01, BMM06, Bla02, BMN05, CL96, Cao04, Car97, CGM01, CPS01, CGL05, CK01, CIX05, D02, EZ96, FP05, GB11, GM11, GVT03, HKP07, HSCTP05, KP06, KM99, Kra02, LVD02, LHL07b, Lu05, LMM00, LV98, LMV04, Mav01, MZ98, MC04, NQ96, OC04, RT99, SB12, Sei10, WD08, vN00].

non-conforming [BMN05, KM99].

non-convex [LMV04]. non-equispaced [FP05]. non-Hermitian [SB12, CPS01, HSCTP05, LHL07b, WD08].

Non-linear [VW01, Bla02, CGL05, KV06, Kra02, LV98, LMV04, Mav01, MC04, NQ96, OC04, RT99]. non-linearly [LVD02]. non-Lipschitzian [DS02]. non-negative [BMM06, CFx05]. non-overlapping [CGM01, GVT03, LMM00].

non-smooth [Car97]. Non-stationary [AMP99, LMM00].

non-symmetric [Bla02, CL96, CA99, Cao04, CR01, EZ96, GB11, GM11, HKP07, Lu05, MZ98, Sei10, vN00].

nonaligned [YXZ13]. Nonequivalence [FLPW01]. Nonlinear [Gra08, AMM06, AC11, BRT07, De13, DGR11, rFS09, GD11, MV13, MSV13, Naz95, yPES07, SCD04, Vos09, XZS10, ZZ15].

nonlinearly [DW15]. nonnegative [BGX06, BMM09, BGM11, CQZ13, Sot13, WWC+15, ZQ12, ZQX13, ZQW13].

Nonnormality [Baz08]. nonlinearly [Hua12]. nonsingularity [Pen07].

nonsmooth [Che02, CQ10].

Nonsymmetric [CGK04, YW12, ARS04, Bai95, BGM09, Ema12, HM14, IP13, Jou94, LW07, LB08, Mey94, Not10, SJBH14, Sta96, SL10, Vas92, WTVW14]. nonzero [ZHJL12].

norm [CDG00, Dux94, DE98, DBG06, EM95, EHM95, Gar02, Miy15, XJ12, YL08].

Normal [Gus04b, SZ11, LS05]. normality
norms [SB03]. normwise [DW07, FT98]. Notch [RS07]. Norms [NR11]. Normwise [SB03]. Null [ITS07]. Null-space [Sim03]. Nullspace [Sim03]. Nullspace-free [Sim03]. Nuclear [XJ12]. Null [ITS07]. Null-space [Sim03]. Nullspace [Sim03]. Numbers [BG05b, CCG00, CLTW11, CDW06, DW07, Dia09, DXW12, DWWQ13, Liv14, YDH11]. Numer [SB12]. Numerical [NLA94, Ano08, Ano09, BL08, Ben11, CH03, CA99, GS05, HHM10, HJR97, fLyHZ11, Bai95, BDRS12, BK02, At95, BGM11, Ber01, BDS94, CQX11, CJW06, Cor04, CJT03, Dat01, DS02, GY08, HPS15, L104, LH08, LH09, LHW11, LGS12, Lin12, MM09, MP13, OCYM08, Os09, Özb13, SHT11, Tur00, Mar00].

parabolic \cite{AT15, JM10, KK13}. Parallel \cite{AO07, AMMP06, Bas00, BLE97, BGM+12, BS10, GR05, GL96, KR11, LSL01, LGS12, NO04, RT99, The98, Voe92, WH94, ZYFG11, ACR+00, AMP99, BPS00, BvdV00, CS09, CS11, CJT03, DFNY08, FJP12, FM99, GMR05, GS01, GMOS06, GL98, GL02, GL13, Hac92, HS05, JO94, KK02, Kuz92, LW01, LSS03, MM97, MBW97, MC04, MR14, Pad99, PR95, PR96, Rak99, Ren98, Sid97, TSPSO06, Van00, WLBH12, mMvdV02, mM04}. parallelism \cite{Vom12}. parallelizable \cite{GL95b}. parameter \cite{AK99, GNR14, GS05, KPT14, MSV13, Not02b}. parameter-dependent \cite{GS05, KPT14}. parameter-free \cite{Not02b}. parameterized \cite{CCvG06}. parameters \cite{Bai09, BNP15, GHO15, Mai06, Yan04, ZHJL12}. parametrization \cite{Hua12}. Parlett \cite{EM95}. pARMS \cite{LS03}. Part \cite{GL98, GL02, GL13}. Partial \cite{LW04, LW05, BGP97, CQX11, LH08, LHW11, LW03, MW11, MM11, Not02a, Rak99, RBV08, SW12, TC10, Zhu14, vNR07}. partially \cite{DD07, WQZ09}. particle \cite{Sei10}. partition \cite{BDV06}. partitioned \cite{AB10, AB13, Cao13, Poi00}. partitioning \cite{CJT03}. partitionings \cite{GKY97}. past \cite{Axe10}. pathology \cite{PM11}. pattern \cite{CDG00, ISZ09}. PDE \cite{BDM+14, GHW06, Lin12, PW12, RS10}. PDE-based \cite{GHW06}. PDE-constrained \cite{Lin12, PW12, RS10}. PDEs \cite{AT15, Hem96, Hoom06, MO11, VSG09, VZ08, ZM00}. Peaceman \cite{LR95}. PEERS \cite{KS04}. penalized \cite{BPS13, Dos99}. penalties \cite{MG08}. penalty \cite{BCS09, BPS13, DH04, Lai97, Psw14}. BEM \cite{HMS99}. deburring \cite{LNP12}. disaggregation \cite{MM98}. ILDLT \cite{Bas00}. pencil \cite{LW05}. pencils \cite{BB01}. Penrose \cite{DW07, DWWQ13, KXMM12, LXW13}. Performance \cite{BT15, Sei10, MM04, Alb06, BE98, MO14}. periodic \cite{KK13, Var08}. periodicity \cite{BDS94}. permanents \cite{WLBH12}. permittivity \cite{PR11}. permutation \cite{May07}. Perron \cite{ES09b, KN01, LCN13, NX03}. perspective \cite{OST10a}. persymmetric \cite{XHZ09}. Perturbation \cite{Cas11, CLC11, GW00, WW08b, YL08, TP09, Cha12, CPT11, FT98, JY05, LS05, LS06, LCN13, O'H14, WKS95, WL03, YDH11}. perturbations \cite{AIT05a, AIT05b, LXW13}. perturbed \cite{Sau95}. Petrov \cite{CGM11}. phase \cite{DY04, HS13, NH06}. phylogenetic \cite{BL03}. physics \cite{TC10}. physics-oriented \cite{TC10}. Physiology \cite{PM11}. Piecewise \cite{HM96}. pinch \cite{LPW06}. pinch-outs \cite{LPW06}. pipes \cite{HG00}. pivoted \cite{HC05}. pivoting \cite{BM05b, BM06, EM11, May05, May07}. placement \cite{Dod11}. planar \cite{GLR10}. plane \cite{BLE97, Ypm95}. planewise \cite{MM09}. planewise-like \cite{MP09}. plants \cite{Ozb13}. plasticity \cite{ABK97, Car97, HJR97, Wie99}. plate \cite{AY11, CYZ99}. player \cite{AD12}. Plemmons \cite{NN15}. plus \cite{Fast05, HN05, KN07, MCH01}. point \cite{AN06, Axe15, Bai09, Bai12, BMM06, Ber12, BG05a, Bir15, Cao04, Cao8, Cao9, CZZ11, CH03, HP04, HD07, KP00, KKR14, Krz11, KXMM12, LOY08, LOS04, LW07, LMV04, MZ15, P13, SJBH14, VL96, WBL14}. point-type \cite{Cao08}. points \cite{HM96}. Poisson \cite{AK01, CJL08, Dah02, RSR10, TSPSO06}. polar \cite{CCG00, LS06, RT02, YL08}. Pole \cite{Dod11, LC13, LW04, LW05}. poles \cite{Mee01}. policy \cite{BLLA11}. polyhedral \cite{Dah02}. polynomial \cite{Gao05, GKV12, HM96, HS08, LW98}. polynomials \cite{BB97, BGW05, BG05a, KR14, MO94, MN05, Nov03}. population \cite{DHSW11}. poroelasticity \cite{GLOW04}. porous \cite{OH06, WWX10, Yot01}. posed
positive [ARMW14, AIT05a, AV94, BP13, BT03, CS09, CS11, DJ09, Kap98, Kol05, LHL07b, MVV08, PS11, yPES07, P 13, SB12, WW08b].

positive-definite [DJ09, Kol05, LHL07b, MVV08, SB12].

positivity [KSB13].

possible [VL11].

Post [KLN99].

Post-processing [KLN99].

posteriori [AM96, BLP01, Pul09, Ney02].

potential [Kho96, MRT96, Shi02, Shi04].

potential-reduction [Shi04].

$
1000$

[Ano08].

power [CEQN07, CH05, DS13b, GGV13, JZ09, WW07].

practical [DGB +13, Kap99, WQZ09, WM12].

Prandtl [Wie99].

Prandtl-Reuss [Wie99].

Preconditioned

Preconditioning

Preencryption

presentation [EJK01].

preserving [Wan00].

pressure [Lay05, vKVW00].

pricing [LLS12, Rag14].

Primal [HP04, RT02, FLP00].

Primal-dual [HP04].

principal [GH06].

principle [BC02, Vos09].

principles [Gar4].

priori [HM96].

PRISM [Axe98].

Prize [Ano08].

probabilistic [WWC +15].

probabilities [NX03].

probability [LCN13, MM98].

probing [TS12].

problem [AH02, AK99, Bai95, BDK +15, BFPS10, CZ15, Car97, CPSM06, CGL05, CG15, CJT03, DL97, DWQ13, Dsd11, Eso07, ES09a, ER96, GKK04, Gu98, Hbh10, Ha99, HS08, IV04, KV06, KV07, KNP03, LLL07, LVL15, LD07, MV13, MRT96, MV05, Me01, Ob99, OC04, yPyHZ04, Ren98, RSR10, Rja98, RT99, Sau95, SH14, Sim03, Sot13, VFdV13, Vla00, WKS95, XZS10, ZJ06, ZYFG11, ZYL13, ZV +14].

Problems [CGK94, GL96, Ada04, AB00, AW11, AIM05b, AG99, AV94, Axe98, AN03b, BBP03, Bai09, Bai10, Bai12, BZ13, BKY10, BKP02, Bar02, BLE97, BBS12, BMM06, BGM09, BGM11, BLP08, BC03, Bla94, BC02, BBG13, BdV00, BRT07, BO13, BMD +14, CL96, CNT07, CQX11, CGP13, CRS05, CEQ07, Cao04, CQ11, Ccv06, CC92, CNP96, CW97, CS02, CTP09, CEL +96, CCK06, CWS97, CC03, CLTW11, CP12, CV13, CRV14, CK14, Dax94, DE98, DW07, Dia09, DNR12, DJ09, DHR +04,
DP03, DR03, Egg07, EGF11, ELV94, EWY03, FY01, FGT11, Gar04, GGLO08, GH01, GHT09, GVTO03, GGZ12, GL08, GL02, GL13, HP97, HKST12, HJR97, Han13, HS13, HD07, HLLL13, HLLW05, JZ11, JM10, KK02, KR11, KP00, KK13, KR06, KT08, KMS08, KLM14, Krz11, KM92, LLL97, LR95.

problems [Lay05, LPV01, LV99, LW07, Lin12, LZ12, Liv04b, LL97, LV98, MZ15, MMM09, MS07, Mar00, Mar98, MRT02, MSS07, May01, MSV13, MP13, MM97, MBW97, MM02, MZ98, NR14a, NR14b, Nov03, OS10, Pad99, PBN05, PSW14, Pen08, RR12, ROA13, Shi02, Shi04, SV11, Sta96, Sto92, Tre13, VL96, Ver00, Wan00, WWC15, XG10, XZS15, wX15, ZZ15, ZHZ10, ZSCX10, mMP99, mM04, VW01].

Procedure [IDVV96, JZ09, LR95].

processes [AD11, BL03, Buc11, DGB13, NH06].

processing [Dat01, KLN99, SKR08].

Procrustes [CZ15, KH07].

products [Che15, DQW15, Mat96, Mey94].

Professor [SGP14].

properties [DMY03, EZ96, ES09b, YLH11].

proposal [NCV05].

properties [BFdP13, pseudo-overlap [mMvdV02]. Pseudospectra [VV15]. PSF [BNP15].

published [Ano09]. pure [KM99].

purely [BF11a]. Python [BISC14].

QLP [HC05]. QR [CGK05, Fas05, VVM05b].

quadratic [BLP08, BG05a, BMP11, CQX11, CCvG06, DD07, DR03, EGF11, HLLL13, KLM14, LC13, LW05, LZQ12, LY15, MP13, QXB09, Ste99, XZS15]. quality [BC10, Kap98, NY03].

quantum [KMRR10]. Quasi [RSCTP15, Gar01, Gar02, HMS99, LY15, MN05, SW96, ZZ15].

quasi-isometric [Gar01, Gar02].

quasi-kernel [MN05]. quasi-minimal [SW96]. quasi-Newton [ZZ15].

Quasi-optimal [RSCTP15]. quasi-uniform [HMS99].

question [JK09]. queueing [BLLA11].

quotient [FK15, Het07, NZ14, PS95, Zho06].

Radim [Cao13]. radiosity [Leb02].

radix [MR14], radix- [MR14].

random [HPS15, LW98]. range [CJW06, Yn10, ZW10]. range-Hermitian [ZW10].

rank- [DW15]. rank-1 [KJ12, WQ07].

Rank-deficient [GS97, DE98]. rank-one [CSYS14, O'H14].

ranks [LT08, STZ12].

Rapid [LO13]. rarely [BG05b]. rate [BS01, CHT03, MRT96, RV12, Zik08]. rates [Li00].

Rational [Fas05, Mor09, Rag14, Mee01, Mor07, Tre05].

Raviart [KMS08, LV12, Zhua14]. ray [Liv04b]. Rayleigh [FK15, Het07, HS08, NZ14, PS95, Zho06].

Raytcho [Vas03]. RBFs [FP15]. RD [Mor07]. RD-rational [Mor07].

reaction
Real [AK00, Bra02, CHV05, GHR98, MSV13, Sot13, vNR07].
realizability [Sot13]. realizable [CfX05].
realization [Baz08, PR96]. reciprocals [Vöm10]. reconstruction [CNSY05].
rectangular [BS01, LS06, Osw95, Pul09]. Recursive [FLM09, NV08b, LSS03, Not05a, NA97, SS02]. recycling [RLG12]. red [NA97]. red-black [NA97]. reduced [ES05, GH11, KN14, VW15]. reduced-rank [ES05]. reducible [BCR14]. Reducing [VY14, Zha92]. reduction [AK94, BPS95, BTT13, Lay05, LO13, MMM06, MV13, MR14, PV99, Shi02, Shi04, VP95, YZ13, ZS08, vGSZ15].
reduction-based [MMM06]. reductions [KNX01]. refined [BB00, HS08, KR11]. Refinement [GL5a, BS01, BGM +12, DMM +08, ELV94, MMN +10, MMM95, Mit10, VW11].
Refining [Pei07]. reflective [Per06]. regenerative [AD11]. Regions [PS95, Naz95]. registration [GHW06, HHM10, Höm06]. regression [ES05]. regular [CLC11, FG02, FT98]. regularity [Dah02]. Regularization [BGM09, IDV96, BCB14, CRS05, CLTW11, Don05, DNR12, GNR14, LHW11].
regularized [ES07, ES09a, FGT11, MLV05, RLG12]. regularizer [KRW08]. Reissner [CY99]. related [AK94, GGZ12, Li00, Mor09]. relations [Tia13]. relationships [Tre05].
Relaxation [BKM +12, Dax94, FP95b, Gran99, LZQ12, Liv04a, PB05, Yan04]. Relaxation-corrected [BKM +12]. Reliable [Ber01, Hla99]. remarks [LS06, Mar95]. reorthogonalization [Van00]. Repairing [Ver00]. repeated [AT00]. repetitive [DGB +13].
RIC [Not94]. Riccati [BGX06, BLP08, GB11, GL95a, Gra08, HM14, IP13, LB08, LS15, Lu05, Var08]. Richard [LPQ06]. Riemannian [FJ05]. right [ARSO14, ARMW14, Lin12]. right-hand [ARSO14, ARMW14]. rising [KNY99]. Ritz [GR99, HS08, Vöm10].
RLSL [BLP01]. Robert [NN15]. Robust [AY11, BMN05, KSB13, KW99, KLM14, MM12, Not02b, AMM04, BT03, CDG00, KK01, Lee10, SZ99, Xia12, XS11, vN00].

SA [BMM +08, GX14]. saddle [AN06, Axe15, Bai09, Bai12, Ber12, Cao04, Cao08, Ca09, CZZ11, CH03, HD07, KP00, KKR14, Krr11, KKMM12, LOY08, LOS04, LW07, MZ15, P 13, SJBH14, VL96, WBL14]. saddle-point [Bai09, Bai12, KKR14, KKMM12, LOY08, VL96]. same [GHR98]. sample [DXW12]. sampled [Rie09]. sampling [AFSCSU14, FGT11]. SANs [LS04]. SAXPY [Ymp95]. Scalable [DH04, FLP00, Liv14]. Scale [VW01, Axe98, Bar02, BCB14, Ben08, BLP08, BES14].

[22]
DMY03, Gra08, GR04, NH06. scaled [CTP09]. scaling [BBKY06, GH015, HS15].
scoating [FG11, MV13, WDS09].
Scheme [Zha92, BS01, CRV14, GB11, GSS01, GMOS06, LLS12, Poi00, RR12].
schemes [AIT05b, AJ94, Bir15, DE06, Gus03, HM14, OCYM08]. Schmidt
[Dar04, LBG13, LL97, Van00, WL08].
Schrödinger [CJL08]. Schur [BG00, BCK05, BG05a, Bra02, BCGM09, BD15,
Bun92, HKKP07, KSB13, KW99, Kra06, LW03, MMMM09, PW12, Rak99, SGP14,
TSPS006, WW08b, WTWG14, vNR07].
Schwarz [AB13, Cao13, AALS01, AB10, BK11, CZ02, DS08, KP00, OC04, VSG09, XZS10].
scientific [Axe98]. searches [DMY03].
Second [JM10, VFdV13, CEL+96, DLVZ06,
KPV06, LM06, MM09]. second-generation [LM06]. Second-order [JM10, DLVZ06].
sector [LZ09]. seed [ARMW14].
segmentation [LNP12]. Seidel
[HP97, KLN99, LO13, Sun06]. select [Alb06]. selected [BT1T13]. selection
[AO07, CDG00]. selective [NO04]. self [Leb02, MWZ06, MM11]. self-adaptive
[MWZ06]. self-adjoint [MM11].
Selfadjoint [AV94]. Semi [Mar98, CH05,
Ema12, GLGR10, KH07, LJ14, LD07,
MCH01, MC08, Par92, WW08b, Xia12].
semi-algebraic [MC08]. Semi-coarsening
[Mar98]. semi-definite
[Ema12, KH07, WW08b]. semi-iterative
[CH05, LJ14]. semi-monotonic [LD07].
semi-orthogonality [Par92].
semi-separable [MCH01, Xia12].
semi-structured [GLGR10].
semiconductor [GMR05].
Semiconvergence [CS11]. Semidefinite
[LZQ12, CS09, CS11, HHQ13, PS11].
semidiscrete [GB15]. Semilocal [GD11].
semiorthogonal [HLLL13].
semiseparability [VVM05a].
semiseparable [Fas05, VVM05a, VVM05b,
VVM05c, XCL10]. sensing [BT15, ZZ15].
Sensitivity [CL13, GL05a, PV99]. separable [MCH01, Xia12]. sequences
[AFSCSU14, Not05a, TT10]. sequential
[ACR07, HHQ13, LFH15]. serendipity
[HH06]. series [RAO13]. set [BDK+15].
sets [LLK14]. Several [Wu15]. Shader
[Nab97]. Shamanskii [LB08]. shape
[HP04]. shaped [GH11, ZMO10]. shapes
[AG95]. shared [JO94]. shell
[MBW97, The98]. Shift [PS11, BBP03, IP13,
MC09, MP14, WtFW15, vGSZ15, Sim03].
shift-and-invert [MP14, WtFW15, Sim03].
Shift-invert [PS11]. shifted
[CV13, JR94, SLV13, UMO09]. Short
[Lai97, SHT11, You96]. sided
[FK15, JZ11, ZJ06, Zik08]. sides
[ARS04, ARMW14]. Sign
[Nab97, CLC11, GZG12]. Sign-Solvable
[Nab97]. signal [Dat01, HM03]. signless
[XC13]. Signorini [Hla99, IV04]. similarity
[VVM05a]. similarly [Tre05]. SIMPLE
[LV04, KNY99]. simpler [WZ94].
simplified [BM06, ZV14]. simulating
[MC04]. simulation
[BFPS10, BVdV00, BO13, PR11].
simulations [KR11, NO04]. simulator
[LVWO1]. Simultaneous
[OK15, Pe~n03, AT15, GM11, LT11]. sinc
[BCR11, BCR14, NSCTP05]. Sine [CW97].
single [PDV05]. single-channel [PDV05].
singly [HS05]. Singular
[AFSCSU14, BCC98, CKW02, Cao08, CL13,
Dod11, FP95a, FH04, HS11, HS14, JLW05,
KR06, Krz11, KKM12, LSL01, LHLS07,
LHW11, LT13, MPS96, NR14b, Roh92,
Sau95, SS97, Thc94, Thc09, Tre05, ZW10].
Singular-value [AFSCSU14]. singularities
[BLZ08, CKW02, Dab02, LLW09].
singularity [VR00]. sixtieth [LPQ06]. size
[FJP12]. skew
[BN07, KKR14, LHL07b, SB12, Wu15].
skew-Hermitian
[SB12, BGN07, KKR14, LHL07b, Wu15].
small [DXW12, KV96]. smallest [MVV08, MM11]. Smith [BES14]. smooth [Car97, HKKPP07, The98]. Smoothed [BDM+14, CDW06, OS10, Sch12, BMM+08, BVV12, GHT09]. smoother [ZV14].

smoothers [GGLO08, GKV12, HBH10, LJM14, MO11, Yan04]. smoothing [BC09, EJ96, GLOW04, HP97, TC10]. smoothness [Cho03]. SNAP [ITS07]. Sobolev [AFK02]. social [GB15]. software [Voe92]. solid [Ada04, SV11]. Solution [Bar02, BFPS10, Ben11, JL09, ACR+00, AD11, Axe98, Axe99, BDGL09, Bai95, BKP02, Ban08, BMM06, BL08, BS01, BPS00, BMP11, BRT07, BDS94, Bot13, BFM12, CGPV13, CLR01, Che15, CA99, Cor04, FJP12, Gem00, GTY97, Gra08, GSO5, GL98, GL02, GL13, HJR97, HGO0, Hla99, ITS07, JZ11, JO94, KRW08, LX08, LTV01, LV09, LGS12, Lin12, LI97, Lot07, MS14, MP13, MM97, MBW97, Miy15, Ols99, yPES07, Ren98, Sim03, Ste95, TSPS06, WVC+15, ZLY13, VW01]. Solutions [GL95a, Pen08, AW11, BGX06, CH03, DE98, DBC06, HM96, KR06, fLYHZ11, pLL07, PPv95, Tia13]. solvability [XHZ03]. Solvable [Nab97]. solve [BG13, KBF15, Liv04b, ZJ06]. solver [BvdV00, CH03, GKK04, KK13, KR06, LSS03, LM06, MNC07, MRT02, Ols99, Pad09, PR11, RTN03, Rak99, RGG07, SS02, Sol14, SKR08, Yot01]. solvers [AG99, ABK97, Ber01, BC02, BO13, FS09, HLM92, HS05, LR08, Mey94, NO04, Sch12, Sc099].

solves [Cha07]. Solving [BG05a, Nov03, AH02, AK99, AK00, Cao04, CQ10, CC03, CN05, DN12, EM11, FH94, HKK07, HM14, JLV05, Jov94, KS15, KKMM12, KM92, LT09, Liv14, MZ15, MLV05, NQ96, PM97, yPxs06, RSR10, Shi02, Sto92, TT10, Var08, Vla00, WTZD10, mMP09, mm04, vGSZ15]. Some [BFC95, BM05a, CGK94, CQ02, HM14, LS06, Mar95, Sun06, Ber01, BB06, CDW06, DS10, GL02, LV08, LHL07a, Peñ09, ZXS15]. SOR [Che02]. sorting [Bra02]. Space [Lec12, AT15, AM04, AFAK02, BPSH13, BV13, BC12, GB15, ITS07, KV92, RSR10]. Space-angle-energy [Lec12]. spaces [GH06, LV12, LZY11, LPW06, VSG09]. Sparse [CDG00, CDGM04, Vas02, WVC+15, AB00, BPS95, Bas00, Bau08, BF11a, BPS00, BV00, BG00, CS96, DR03, EW13, FJP12, GHO15, Gus03, HS15, HS05, Huc98, ISZ90, JZ09, KKNY01, KNY99, LLL97, LV98, Mey94, NLZ11, NY03, NH98, RTN03, SZ99, SS02, WLBH12, vGSZ15]. sparsity [Poi00]. Special [Ano08, CLR13, Fal06, LD08, WV01, Vas05, Ben08, Dat01, ES07, Mey94, Axe99]. specially [SHT11]. specified [fLYHZ11]. Spectral [CDDSC12, mMDv02, BPS95, BFp13, CQZ13, CIX05, LQY13, LNQ13, MS14, MC09, Par03, SK01]. spectrum [Cao09, Lor14]. Speed [LY15]. splines [LY15]. Split [HR05]. Splitting [HN05, BGN07, Bai10, Bai12, CJJ11, Che15, Gan99, KKR14, LHL07b, SB12, Wu15, wX15]. spring [EKS02]. spring-mass [EKS02].

SQP [AH02]. Square [DNR12, TY10, Mor09]. squared [BES14]. squares [AB00, AK99, BDGL09, Bar02, BMM06, BGM09, BGM+12, CYZ99, CNP96, CTP09, CP12, CP06, DE98, DW07, DWQW13, ES07, ES09a, ER96, FB95, GW00, GR05, KLM+06, LVD02, pLL07, LZ12, LI97, MM+10, MVK04, MLV05, Miy15, Peñ08, Ren98, RLG12, Sto92, Tia13, WKS95, WVC+15, ZHZ10]. SSOR [GKY97, WH94]. Stability [CJW06, DHS95, OCYM08, BV13, DGB+13, DS13a, EM11, KSB13, Lee10, NX03, Peñ03, Sau95]. stabilization [AB12, DGB+13, DGR11, Lay05]. Stabilized [BH07, Cao04, EY03, LMM00]. Stabilizing [VK97]. Stable [OS01, Gem00, LXW13, MCH01]. stage [AMMP06, JS96, MPS96]. staggered
standard [Han13, LPV01]. standard-form [Han13]. standpoint [Voe92]. start [LW98]. State [DGRR11, BV13, BF11b, CD11, DK15, KV92, PSW14]. state-constrained [PSW14]. state-space [BV13, KV92]. state-time [DK15]. static [DGRR11, BV13, KV92, PSW14]. state-constrained [PSW14]. state-space [BV13, KV92]. steady [DGRR11, BV13, BF11b, CD11, DK15, KV92, PSW14]. steady-state [BF11b]. Steepest [De 13, NZ14, Shi02, Shi04]. Stein [BES14]. step [AV94, CK10, Li00, PBN05]. stepping [Lam12]. steps [Fas05, Shi02]. Stewart [HC05]. Stiefel [CZ15]. Stieltjes [AN94]. stochastic [AD12, BDM +14, GHR98, MM98, RBV08, ROA13, SGP14, TY10]. Stokes [AB12, AK09, BK02, CA99, HFW01, LR08, Lee10, LMM00, LD07, OS09]. Stokes-like [Lee10]. Strang-type [ZCW11, CNP96, NR12]. strategy [BE98, CDG00, DMM +08, GT97, HSCTP05, Kap94, PM97, PGT14, SMSW00]. strength [OST10a]. Strengthened [AALS01, AM96, Bla03, Mar94]. stress [MM02]. stretch [TY10]. stretched [KM92, ZMO10]. stretching [AB00]. Strong [DBG +13, DS13a]. strongly [KW99]. structure [BS01, Hem96, Rja98, WN05]. Structured [BGW05, BG05b, CCLN05, MCC +12, SLV04, Tyr05, DGG99, Dia09, GLGR10, Gen00, LD02, LYL15, MMC12, MKV04, MLY05, MP13, NR11, Poi00, Sm05, SHT11, Tre05]. structures [BCK05, BH04, EJK01]. structuring [SV11]. Studies [Zho06]. study [LR08]. sub [CZ15, LPS15, SV11]. sub-diffusion [LPS15]. sub-Stiefel [CZ15]. sub-structuring [SV11]. subclasses [LHL07a]. subdomain [HLM92]. subgraph [BCZ12]. submatrix [KK02, fLYHZ11, pLL07, yPyHZ04]. suboptimal [HS15]. subsets [MPV06]. Subspace [CS02, DGD99, Bot13, CS97, Dam08, DK95, HS11, HS14, IP13, KS10, LFH15, LS15, NR14a, RLG12, Sid97, SS07, ZS08]. Subspace-by-subspace [DDG99]. subspaces [BDK +15, DF01, IT05, PPv95]. substructuring [GMR05]. Subtracting [KJ12]. successive [BGN07, Gus03, WQ07]. successive-overrelaxation [BGN07]. sufficient [Pul08]. sum [AD12]. summation [FP05]. Super [CNSY05]. Super-resolution [CNSY05]. Superconvergence [FY01]. superfast [CHV05]. Superlinear [Kap05]. superlinearly [CQ10]. superoptimal [CJW06]. supersymmetric [LFH15, WQ07]. supply [CPSM06]. supported [FP15]. supports [Pul09]. Surfaces [LD08]. surveillance [LNY15]. survey [CQZ13, SK01]. SVD [FJ05, XQ09]. sweeping [BPS15]. switching [MN00]. Sylvester [Bau08, BHHJ13, CLR01, CD11, DXW12]. Sylvester-observer [CLR01, CD11]. Symmetric [ATT05b, QXB09, Zha92, ARMW14, AG95, AK00, BGP97, BV00, Ber12, Bla02, BC09, BPS13, BM05b, BM06, CL96, CRS05, Cao04, CS09, CS11, CDGmM04, CK01, CHV05, CS95, DS10, DJ09, EW13, EZ96, GB11, GM11, HKK07, HR05, HES15, HS15, IK00, Kap98, Kau07, LOY08, LQY13, pLL07, Lu05, MVV08, MZ98, NSCTP05, Not02a, O'H14, PS11, PS00, RTO2, Scl10, SS97, Sot13, VVM05b, WQZ09, WBL14, Wu15, XHZ03, XQ09, YLH11, ZQW13, vN00]. symmetrization [GM11]. symmetrizing [TY92]. symmetry [Pen08, Szu14]. symmetry-constrained [Pen08]. symplectic [DS13a]. synchronization [CvG11]. synchronous [BZ13]. synthesis [RGG07]. system [AALS01, BC09, Baz08, BB06, BvdV00, GMB +12, CJL08, GLOW04, ...
HES15, ITS07, KLM+06, KRW08, LW04, MMN+10, SB12, SC94, ZS08]. systematic [GLOW04]. Systems
[Jia96, Nab97, ARSO14, AM06, Ada04, ACR+00, AMP99, AK00, AN03b, BPS15, BG13, Bas00, Bat95, BGM09, BFFS10, BMN05, BRT07, Bot13, CS09, CS11, CDGM04, CD11, CPSM06, CPS01, CSCTP05, CC03, CNY05, CK01, CA99, CH05, CS95, CP06, DGD99, DGRR11, Dob09, Dod11, DN12, EKS02, Ema12, EM11, FP15, FLM09, FH94, Gem00, GM11, GSS01, GTY97, GKY97, GS05, GD11, HKKP07, HS11, HN05, HSCTP05, JZ09, JL09, Jou94, KBF15, KM99, KKR14, KKM12, La97, LX08, LIOY08, LOS04, LJ04, LHL07b, LT09, LC13, LC05, LC07, LW03, Lot07, MO11, MS14, MW11, MCH04, Mey94, MPS96, NSCTP05, NCV05, PM97, P13, RVW08, SZ99, SS02, Sac05, SP06, SS07, SMSW00, St95, Sun05, SL10, Sz14, TT10, TC10, VDFV13, VZ08].

systems [WD08, WM12, WTWG14, Wu15, ZW10, vGSZ15, HS14].

\[mM04\]. tangential [AN03a, AN07].
technique [HM03, IP13, NY03].
techniques [ACR+00, BB00, Bla94, CDDISC12, CS97, Dat01, EY94, GNR14, HK02, HS05, LM06, SZ99, Ver00]. tensor [AT15, BG13, DQW15, DK15, DS13b, HKST12, KN04, LQY13, LC13, OSM03, STZ12, DW15, VQ90, XCI3, ZQ12, ZQLX13, ZQW13].
tensors [CQZ13, FMPS13, HHHQ13, KJ12, LFH15, LKL14, LQX13, MCC+12, O'H14, WQ07].
term [Lai97, WM12]. Termination [Bir15].
tessellations [DE06]. test [BC09].
tetrahedral [Bla03]. th [AEHV15, LZ09].
their [BP10, CEQ07, KUB92, LYY15, LHW11, TL13, VON10, XIE11]. theorem [Ad08]. theorems [BP03, BKP02, CP99]. Theoretical [MO14, Gar04, Not05b].

theories [BDRS12]. theory [ABK97, CCvG06, CQZ13, FT98, GW00, GL98, HM14, JL09, LQY13, NQ13, VW97]. thermal [HK12]. thin [The98]. third [ABBP10, BCR11, BCR14].
third-order [ABBP10, BCR11, BCR14]. Thomas [LV12]. three [AALS01, BB06, CGP13, DM10, Ibr02, KT08, RA98, XZS15, YW12].

three-dimensional [AALS01, CGP13, KT08, RA98].

three-way [Ibr02]. threshold [Saa94, SZ99].

thresholding [LM06]. Tight [OOO11].

Tkhanov [BCB14, CRS05, CLTW11, Don05, GNR14, LH11]. time [AT15, Bai12, Bot13, CNT07, Cas11, CJL08, DGRR11, DK15, GS07, HG00, Kem12, KK13, Lam12, LLS12, LG12, LC13, MV13, MC09, RBV08, ZYFG11, ZSWX13, vKVVW00].

time-delay [DGRR11, LC13].

time-dependent [CNT07, MV13, RBV08, ZYFG11].

time-exact [Bot13]. time-harmonic [Bai12, GS07, LG12, ZSWX13].
time-independent [CJL08]. time-periodic [KK13]. times [KVW10].

tire [SMSW00].

Toeplitz [AH02, BG05a, BG05b, CP99, CPS01, CGK05, CNY05, CH05, CS95, Don10, Est09, FLM09, HR05, Hem96, HSCTP05, KN07, LC05, LC07, Lot07, LPS15, MS14, MV08, NR11, NPR13, NCV05, P11, WFW15].

Toeplitz-plus-Hankel [KN07]. tolerant [RTN03]. tool [FM15, GS97]. tools [BP03].
topology [HP04, Vas02]. total [CTP09, FB95, GR05, LVD02, MVK04, MLV05, ZZ15]. totally [BP13, Hua12].

Trace [KCS11, BFM12]. transfer [Don10, GVT30, KV92]. transfers [WTWG14]. transform [CW97].

transformation [FLPW01, LL07, MC09, VVM05a].

transformations [CH05, Dax04, Han13, JO01].

transforming [Li12]. transforms [FP05].

transition [LC13]. translation [KY95].
transmission [GH01]. transport [Cha07, CGM11, HM14, TC10]. treatment [JM10, MM09]. tree [Võm12]. Trees [BMP11]. Trefftz [LLW09]. triangle [RSCTP15]. triangular [BNT94, BF11a, FP95a, GLGR10, KKR14, LPS15, MMMM09, Mit10, RS10, SRGL13]. Tridiagonal [NPR13, Zha92, BM05b, BM06, EM11, XQ09, YLH11]. trigonometric [CHV05, FP05]. trigonometry [Gus97, Gus98, Gus03]. trilinear [BG02]. triplet [LT11]. triplets [SS97]. Truncated [GKK04, KS15, LHW11, NR14b]. truncation [STZ12]. Trust [Naz95]. Tubes [LD08]. Tuned [FK15]. tuning [FLPW01]. tunnel [PM97]. twisted [XQ09]. Two [CSCTP05, DLVZ06, ES09b, rFS09, HH06, JS96, KM99, KV96, PBN05, XZS10, Yon96, Zha92, ZSWX13, Zik08, vRH05, AM96, AD12, AMMP06, AN13, CGPV13, CM01, CG15, DYL04, DNY08, DBG06, ELV94, FVZ05, FK15, FH94, GVT03, HHevR04, JZ11, MCH01, MSV13, MPS06, NN10, NH06, Not10, NCV05, VSG09, WM12, XSZ09, YXZ13, ZJ06]. two-by-two [AN13]. two-component [NH06]. two-dimensional [DY04, XZS09]. Two-grid [CSCTP05, DLVZ06, ES09b, rFS09, HH06, JS96, KM99, KV96, PBN05, XZS10, Yon96, Zha92, ZSWX13, Zik08, vRH05, AM96, AD12, AMMP06, AN13, CGPV13, CM01, CG15, DYL04, DNY08, DBG06, ELV94, FVZ05, FK15, FH94, GVT03, HHevR04, JZ11, MCH01, MSV13, MPS06, NN10, NH06, Not10, NCV05, VSG09, WM12, XSZ09, YXZ13, ZJ06]. Two-level [DLVZ06, HH06, KM99, KV96, XZS10, vRH05, CM01, GVT03, HHevR04, NCV05, VSG09, YXZ13, Zik08]. two-phase [NH06]. two-player [AD12]. two-regular [PM97]. Two-sided [Zik08, FK15, JZ11, ZJ06]. Two-stage [JS96, AMMP06, MPS06]. Two-step [PBN05]. two-term [WM12]. Two-Way [Zha92, MCH01]. type [ABBP10, BR07, Baz08, Ben08, Cao08, CWS97, FG02, GKK04, HM14, KKNY01, KV09, LHS07, LT13, NR12, SCD94, Vla00, ZCW11]. typical [XZS15].

REFERENCES

[28] NY03]. vibrating [BC09, CD11, LW04].
video [LNY15]. view [HS11, HS14]. vision [CZ15]. volume [CGL05]. Voronoi [DE06].

water [CPSM06]. wave [BO13, CJL08, Liv04b, Liv14, RV12, mM04].
wave-ray [Liv04b]. waveform [FP95b, Gan99, PBN05]. wavelet [ISZ09, LM06]. wavelets [VV97]. Way [Zha92, Ibr02, MCH01]. weakly [BPS13].
weather [BS10]. weight [BCHT04]. weighted [Bar02, SLV04, SLV06, YL08].
Well [MM09]. Well-conditioned [MM09].
where [Sau95]. wind [BFPS10]. wise [BF11b]. within [BS01, NFD10]. without [EM11, HM96, Van00]. Woodbury [MS14].
workshop [FM99].
years [Axe10, LBG13]. Yosida [PSW14].
Young [KVW10].
zero [AD12, BB97]. zero-sum [AD12]. zeros [MN05]. Zienkiewicz [Ano08]. zone [NO04].

References

Axelsson:2013:RCB

Axelsson:2011:MCN

Amat:2010:TON

Axelsson:1997:INS

Ammodio:2000:ABD

Amparore:2011:RMF

REFERENCES

Akian:2012:MMT

Adams:2004:AMM

Adib:2008:HPG

Amestoy:1996:MFM

Amat:2014:AIO

Amat:2015:NFH

Axelsson:2002:SSP

Al-Fhaid:2014:SVE

[AFSCSU14] A. S. Al-Fhaid, S. Serra-Capizzano, D. Sesana, and M. Zaka Ullah. Singular-value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matri-

Arushanian:1999:ILS

Axelsson:2000:RVI

Axelsson:2010:P

Alber:2006:MCS

Axelsson:1995:GCG

Achchab:1996:ECT

Austin:2004:RMA

Arnal:2006:PNT

Arnal:1999:NSP

Axelsson:1994:AMI

Achdou:2003:ITF

Axelsson:2003:PML

Axelsson:2006:EEP

[Ano09] Anonymous. *Numerical Linear Algebra with Applications* impact factor for 2008 has been published to be 0.822. *Numerical Linear Algebra with Applications*, 16(9):i, ???? 2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Anonymous:2012:IIf

Anonymous:2013:IIa

Anonymous:2013:IIb

Anonymous:2013:IIc

Anonymous:2013:IID

Anonymous:2014:IIa

Anonymous:2014:IIb

Anonymous:2014:IIc

Anonymous:2014:IID

Anonymous:2014:IIe

Anonymous:2014:IIf

Anonymous:2015:IIa

Anonymous:2015:IIB

Anonymous:2015:IIC

Anonymous:2015:IID

Anonymous:2015:IIE

Alber:2007:PCG

Abdel-Rehim:2014:ISM

Abdel-Rehim:2014:EEA

Andrew:2000:ICD

Andreev:2015:MPL

317–337, March 2015. CODEN NLAAEM. ISSN 1070-5325.

Axelsson:1994:VSM

Alefeld:2011:BEA

Axelsson:1996:E

Axelsson:1998:PSM

[Bar02] Venansius Baryamureeba. Solution of large-scale weighted...
REFERENCES

Basermann:2000:PBI

Batterson:1995:DAN

Bau:2008:LRS

Bazan:2008:NEP

Broyden:1996:CTB

Bazan:1997:ZLP

REFERENCES

Constantin Bacuta, James H. Bramble, and Joseph E. Pasciak. Using finite element tools in proving shift theorems for

Bastian:2012:AMD

Blomgren:2002:MSI

Bai:2009:SNM

Branets:2010:CNB

Brannick:2012:ASP

Bazan:2014:EGF

Bru:1998:MSM

Rafael Bru, Rafael Cantó, and Joan-Josep Climent. On M-multisplittings of singular M-matrices with application to Markov chains. *Numerical Linear Algebra with Applications*, 5
REFERENCES

Bru:2009:SCG

Broman:2004:MWB

Bae:2005:SAA

Bai:2011:SDB

Bai:2014:ORS

Brenner:2009:MMS

Bergamaschi:2003:EAE

Luca Bergamaschi, Marco Caliari, and Marco Vianello. Efficient approximation of the exponential operator for discrete

Boonen:2006:AMM

Burrage:1998:PVA

Barlow:2009:MLR

[Bea94]

Beauwens:1994:AFM

Benner:2008:LSM

Benzi:2011:NSM

Bertaccini:2001:RPI

REFERENCES

Bergamaschi:2012:EDC

Benner:2014:SSM

Beuchler:2003:APV

Berry:1996:LRO

Bebendorf:2011:PAD

Busić:2011:ICW

Bebiano:2013:ACP

REFERENCES

[BG05b] A. Böttcher and S. M. Grudsky. Structured condition numbers of large Toeplitz matrices are rarely better than usual condition numbers. *Numerical Linear Algebra with Applications*, 12(2–3):95–102, March/
REFERENCES

April 2005. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

[BGW05] Dario A. Bini, Luca Gemignani, and Joab R. Winkler. Structured matrix methods for CAGD: an application to com-

REFERENCES

REFERENCES

[BM05a] Luigi Brugnano and Cecilia Magherini. Some linear algebra

[BM05a] Luigi Brugnano and Cecilia Magherini. Some linear algebra

Bunch:2005:PSS

Bunch:2006:SPS

Benner:2013:PII

Bellavia:2006:IPN

Brezina:2008:GEB

Blaheta:2005:ROM

Bini:2011:SQV

Dario A. Bini, Beatrice Meini, and Federico Poloni. On the

Bouyouli:2009:NRC

Bai:2012:E

Berisha:2015:EAP

Beauwens:1994:IUT

Bell:2008:AMF

Borzi:2013:FSS

Botchev:2013:BKS

Barreras:2013:ACM

REFERENCES

[Barnard:1995:SAE]

[Bergamaschi:2000:AIP]

[Bey:1999:CBI]

[Baglama:2007:AGT]
James Baglama and Lothar Reichel. Augmented GMRES-type

Brandts:2002:MCS

Bonettini:2007:SIS

Bennett:2001:EOD

Buckeridge:2010:PGM

Bischof:1992:GIC

Benzi:2003:RIF

Blanchard:2015:PCG

Jeffrey D. Blanchard and Jared Tanner. Performance comparisons of greedy algorithms in

[Benner:2013:ODS]

[Buchhol:2011:BRM]

[Bunch:1992:MPL]

[Bergamaschi:2000:ECE]

[Bouagada:2013:SSS]

[Bomhof:2000:PLS]

[Brezina:2012:ICA]

REFERENCES

Bertaccini:2005:EPM

Bai:2013:MBS

Cihlar:1999:NSN

Cao:2004:FUA

Cao:2008:ABP

Cao:2009:NSD

Cao:2013:CBM
Carstensen:1997:DDN

Caswell:2011:PAC

Chan:1992:CPE

Chien:2003:ALA

Cai:2007:DRG

Chaitin-Chatelin:2000:CNA

Chen:2006:CMC

Cucker:2006:SAS

Chen:1996:MPM

Canha:2007:MMD

Chu:2005:CMR

Chen:2015:AAB

Cai:1994:CSD

Chang:2005:APQ

Xiao-Wen Chang, Martin J. Gander, and Samir Karaa.
REFERENCES

Chatzipantelidis:2005:FVE

Carvalho:2001:LPT

Chang:2011:GEB

Calandra:2013:ITG

Chan:1994:LRR

Chen:2003:NVS

Chen:2005:SIM

Xuzhou Chen and Robert E. Hartwig. The semi-iterative...

[B] **Chang:2007:CGM**

[B] **Chang:2012:PFF**

[B] **Chen:2002:CSM**

[B] **Chen:2015:GKP**

[B] **Chow:2003:UMM**

[B] **Chu:2004:CIO**

[B] **Codevico:2005:SSR**

REFERENCES

REFERENCES

Cai:2002:FEM

Cai:1996:CEM

Chen:2013:SAG

Chen:2011:PAS

Calvetti:2001:SLS

Chu:2013:SID

Chu:2011:CNP
Delin Chu, Lijing Lin, Roger C. E. Tan, and Yimin Wei. Condition numbers and perturbation analysis for the Tikhonov regularization of discrete ill-posed problems. *Numerical
REFERENCES

Ching:2005:DMS

Ching:2005:SRI

Ching:2000:IOI

Cai:2007:NEC

Cai:2007:NEC

Ching:2005:SRI

Calvetti:2005:TRL

Cools:2014:NLD

Concus:1995:MDP

Cai:1996:ODD

Chan:2002:SCM

Cao:2009:PMM

Guangxi Cao and Yongzhong Song. On parallel multisplitting methods for symmetric positive semidefinite linear sys-

Cao:2011:SPM

Chan:2005:TGM

Cools:2013:LFA

Cvetkovic:2009:P

Collignon:2011:MSI

Tijmen P. Collignon and Martin B. van Gijzen. Minimizing
REFERENCES

REFERENCES

[DNY08] Hans De Sterck, Robert D. Falgout, Joshua W. Nolting, and Ulrike Meier Yang. Distance-two interpolation for parallel

DiFiore:2005:LCM

Dabkowski:2013:SPS

Dey:2011:SFS

Dostal:2004:SFO

Douglas:2004:CAM

Demmel:1995:SBF

Dayar:2011:BED

Tuğrul Dayar, Holger Hermanns, David Spieler, and Verena Wolf. Bounding the equilibrium distribution of Markov

[DM10] J. E. Dendy, Jr. and J. D.

REFERENCES

Methods and Parallel Computing, Part 2 (Milovy, 1997).

[DR03] C. Durazzi and V. Ruggiero. Indefinitely preconditioned conju-

Diao:2013:CNM

Diao:2012:MCC

Dardyk:2004:MAT

Elmaliki:2011:EHP

Egger:2007:PCI

Elsner:1995:MNN

Elmroth:2001:CPG

REFERENCES

REFERENCES

REFERENCES

[Falgout:2006:SIM]

[Falgout:2008:MM]

[Falgout:2010:MM]

[Fasino:2002:LT]

[Fezzani:2014:BFD]

REFERENCES

REFERENCES

REFERENCES

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Garanzha:2004:VPG

Gao:2011:INM

Gosnell:2015:USD

Guo:2011:SGC

Gemignani:2000:ESS

Gaspar:2008:DSM

Gleich:2013:PAM

<table>
<thead>
<tr>
<th>REFERENCES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gee:2009:NSA</td>
<td>Michael W. Gee, Jonathan J. Hu, and Raymond S. Tuminaro. A new smoothed aggregation multigrid method for...</td>
</tr>
</tbody>
</table>

Grimm:2006:HOP

George:2002:GFG

Garanzha:2004:TNT

Ghysels:2012:IAI

Gruzinov:1997:BSP

Ghavimi:1995:BES

REFERENCES

REFERENCES

Goossens:1999:RHR

GR04

Guo:2004:ELS

Goossens:1999:RHR

Guo:2005:PVD

Grosz:2000:PIB

Gouveia:1997:RDM

Genseberger:1999:ACE
Menno Genseberger and Gerard L. G. Sleijpen. Alternative correction equations in the Jacobi–Davidson method. *Numerical Linear Algebra with Ap-
REFERENCES

Gustafson:1998:OTM

Gustafson:2003:OTP

Gustafson:2004:ND

Giraud:2003:GTO

Gulliksson:2000:PTG

Guo:2014:NUB
Cui Guo and Hua Xiang. A note on the upper bound in SA AMG convergence analysis. *Numeri-
REFERENCES

Cal Linear Algebra with Applications, 21(3):399–402, May 2014. CODEN NLAAEM. ISSN 1070-5325.

Gonzaga:2008:FNL

Hay:1992:PCG

Hansen:2013:OPS

Hamilton:2010:NMS

Huckaby:2005:SPQ

Hu:2007:IBB

Hemmingsson:1996:TPB

Hezari:2015:PGI

Davod Hezari, Vahid Edalatpour, and Davod Khojasteh Salkuyeh. Preconditioned GSOR iterative method for a class of complex symmetric system of linear equations. Numer-
Hetmaniuk:2007:RQM

Hemmingsson-Fränden:2001:NOP

He:2000:SBF

Hakopian:2006:TLP

Haber:2010:NOC

Hu:2013:FEE

Hemker:2004:FTL

P. W. Hemker, W. Hoffmann, and M. H. van Raalte. Fourier two-level analysis for discontinuous Galerkin discretization with...

Haase:1992:DDP

Hansen:1996:PPS

Hanna:2003:CMB

Huang:2014:SPC
N. Huang and C. F. Ma. Some predictor–corrector-type iterative schemes for solving nonsymmetric algebraic Riccati equations arising in transport theory. *Numerical Linear Algebra
Heuer:1999:PMR

Ho:2005:SIC

Homke:2006:MMA

Hackbusch:1997:DGS

Hoppe:2004:PDN

Harbrecht:2003:MPC

Harbrecht:2015:EAR
Helmut Harbrecht, Michael Peters, and Markus Siebenmorgen.

Heinig:2005:SAS

Hu:2005:OTS

Hochstenbach:2008:HRR

Hayami:2011:GVK

Hogg:2013:EAP

Hayami:2014:CGV

Hogg:2015:USM

Huckle:2005:PSN

Huang:2012:PTN

Huckle:1998:ECS

Ibraghimov:2002:ATW

Irabraghimov:2000:BGF

Iannazzo:2013:SST

Bruno Iannazzo and Federico Poloni. A subspace shift technique for nonsymmetric algebraic Riccati equations associ-

Imakura:2009:IWS

Ilic:2005:KSA

Ilic:2007:LSS

Iontcheva:2004:MMM

Jia:1996:IIO

Johnson:2009:GR

Johnson:2009:STC

Charles R. Johnson and Joshua A. Link. Solution theory for complete bilinear systems of equations. *Numerical Linear Algebra with Applications*, 16(11-12):929–934, 2009. CODEN NLAAEM. ISSN 1070-
REFERENCES

5325 (print), 1099-1506 (electronic).

Jin:2005:CPS

Jun:2010:SOT

Anonymous:1992:JNL

Joubert:1994:CBR

Jagels:1994:FMR

Janovská:2001:NHT

Jones:1996:TSM

Jia:2009:PSA

Jiang:2011:DAS

Kaporin:1994:NCR

Kaporin:1998:HQP

Kaporin:1999:PAF

Kaporin:2002:UMO

I. E. Kaporin. Using the modified 2nd order incomplete Cholesky decomposition as the conjugate gradient preconditioner.
REFERENCES

Kaporin:2005:SCM

Kaufman:2007:RAF

Kolberg:2015:EAS

Kokiopoulou:2011:TOE

Kostic:2009:GTL

Kemper:2012:LTB

Kiskiras:2007:NCS

Khoromskij:1996:FCI
Boris N. Khoromskij. On fast computations with the inverse to harmonic potential operators.

REFERENCES

152–170, January 2014. CODEN NLAAEM. ISSN 1070-5325.

Kim:2006:FOS

Kraus:2014:RMM

Kraizek:1999:PPG

Kutchero:1992:AFM

Kolev:1999:TLP

Kravvaritis:2009:GFH

Ketelsen:2010:FEM

Kraus:2008:MPC

Kilmer:2007:KPA

Kindermann:2014:NAT

Kirkland:2001:DCA

Kolotilina:1999:FSA

REFERENCES

Kolotilina:2000:IFA

Kolotilina:2005:BEB

Klawonn:2000:COS

Kuznetsov:2010:NMA

Kressner:2014:PLR

Kim:2006:MIC

NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Kolev:2008:CAM

Kostler:2006:AMS

Kimmritz:2011:PMM

Kressner:2014:MEA

Kraus:2002:APM

Kraus:2006:AMP

Kostler:2008:MSO

Krzyzanowski:2011:BPS

[Piotr Krzyżanowski. On block preconditioners for saddle point...
problems with singular or indefinite \((1,1)\) block. Numerical Linear Algebra with Applications, 18(1):123–140, January 2011. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Krizkova:1996:TLP

Kolev:2006:AEA

Kostic:2012:LGE

Kincaid:2010:LTD

Khoromskij:1999:RSC

Kim:2003:MMB

Kharchenko:1995:ETB

Lai:1997:SCN

Lambers:2012:EHO

Langer:1997:E

Layton:2005:MR

Lin:2008:CAN

Leon:2013:GSO

REFERENCES

Lin:2005:ITP

Liu:2007:NBE

Li:2013:P

Li:2013:PBP

Lukas:2007:OMP

Luo:2008:CPS

Leblond:2002:SAM
Lee:2010:USA

[Lee10]

Lee:2012:SAE

[Lee12]

Li:2007:OGT

Li:2007:MHS

LHao:2015:SSP

Li:2008:ECN

Li:2007:SSM

Li:2007:ECN

LH08

Li:2007:SSM

[SB12]

Li:2007:OGT

Hou-Biao Li, Ting-Zhu Huang, Hong Li, and Shu-Qian Shen.

Li:2011:ICT

Li:2000:CBC

Linsenmann:2012:CRT

Livne:2004:CCR

Livshits:2004:AMW

Livshits:2014:SMM

Lei:2004:BPS

Siu-Long Lei and Xiao-Qing Jin. BCCB preconditioners for systems of BVM-based numerical

Lu:2014:HGA

Longley:1997:AGS

Lee:2012:FET

Li:2009:ECN

Limon:2006:MAS

Alfonso Limon and Hedley Morris. A multilevel adap-
References

Lube:2000:NNO

Luksan:2004:IPM

Li:2015:MFB

Lor:2014:CLU

Terry A. Loring. Computing a logarithm of a unitary matrix

Li:2013:EST

Layton:1995:PRP

Larin:2008:CSE

Langville:2004:KPA

Li:2005:PBE

Li:2006:SRP

Lin:2015:NSI

Li:2001:PMI

Wen Li, W. Sun, and K. Liu. Parallel multisplitting itera-

REFERENCES

LeTallec:1999:ESM

Lashuk:2004:EAS

Lashuk:2008:SVE

Lashuk:2012:EA

Lemmerling:2002:STL

Lacroix:2001:DPI

Sébastien Lacroix, Yuri V. Vassilevski, and Mary F. Wheeler. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numerical Linear Algebra with Applicat-
REFERENCES

120

[LX08] A. J. Laub and J. Xia. Applications of statistical condition es-

Mailybaev:2006:CME

Margenov:1994:UBC

Marek:1995:SRB

Mathias:1996:AAO

Mavriplis:2001:MAN

[Mav01] Dimitri J. Mavriplis. Multi-grid approaches to non-linear diffusion problems on unstruc-
REFERENCES

Mayer:2005:ICI

Mayer:2007:MCI

Meynen:1997:APA

Murillo:2004:FIP

Michelini:2008:SAA

Meerbergen:2009:CCB

REFERENCES

Michael:2012:SMT

Mastronardi:2001:FST

Meyer:1994:CSI

Matioli:2008:NFP

Montero:2002:AIC
G. Montero, L. González, E. Flórez, M. D. García, and

Marek:1998:CAI

Mihajlovi:2002:CDP

Mastroianni:2009:WCM

Mehrmann:2011:ACS

MacLachlan:2012:RAM

MacLachlan:2006:ARB

Scott MacLachlan, Tom曼特龙eff, and Steve McCormick. Adaptive reduction-based AMG. *Numerical Linear Algebra with
REFERENCES

Mackey:2009:NMP

Manteuffel:2010:FRE

Mongamade:2002:SAP

Moriya:2000:DGM

Kentaro Moriya and Takashi Nodera. The DEFLATED-GMRES(m,k) method with switching the restart frequency dynamically. Numerical Linear Algebra with Applications, 7(7-8):569–584, October/December 2000. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-
REFERENCES

REFERENCES

Martikainen:2002:FDS

Marcato:2007:IEC

Malyshev:2014:FSU

Mathew:2007:ABM

Meerbergen:2013:JDM

Mastronardi:2005:NLA

Mancini:2013:ISP

Markovsky:2004:CMS
Ivan Markovsky, Sabine Van Huffel, and Alexander Kukush.
REFERENCES

Mastronardi:2008:FAC

Mardal:2011:PDS

Mehl:2006:COS

Morgan:1998:HPM

Ma:2015:CUM

Notay:1997:NOP

References

Nabben:1997:BRM

Noutsos:2005:PPI

Neymeyr:2002:PEE

Neymeyr:2005:NII

Naumovich:2010:AMW

[NFD10] Anna Naumovich, Malte Förster, and Richard Dwight. Algebraic

Noordmans:1998:CRS

Niessner:2006:MSM

Nithiarasu:2009:JCN

Anonymous:1994:NLA

Ng:2011:SLD

Napov:2010:WDT

REFERENCES

[Notarnicola:2005:MRE] Filippo Notarnicola. Matrix re-

Notay:2005:AMA

Notay:2010:AAT

Novati:2003:SLI

Noschese:2012:GCS

Nazareth:1996:GNM

Noschese:2011:SDN

Noschese:2012:GCS

REFERENCES

[NX03] Michael Neumann and Jianhong Xu. On the stability of the com-
putation of the stationaryprob-
abilities of Markov chains using Perron complements. *Numerical Linear Algebra with Ap-
lications*, 10(7):603–618, October/November 2003. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Nikishin:2003:PTA

A. A. Nikishin and A. Yu. Yeremin. Prefiltration technique via aggregation for construct-

NY03

NZ14

Ols99

Katsuhisa Ozaki, Takeshi Ogita, and Shin’ichi Oishi. Tight and efficient enclosure of matrix multiplication by using optimized BLAS. *Numerical Linear
REFERENCES

Olshevsky:2001:SFH

Olshevsky:2001:SFH

Oseledets:2010:CAT

Oswald:1995:MPD

Ozbay:2013:CCI

Pestana:2013:CPS

REFERENCES

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Pena:2009:EBS

Per06

Pflaum:1999:AAM

Pestman:2014:CSW

Liao:2007:LSS

Payer:1997:ISS

Pultarová:2011:PPI

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Ricardo D. Pantazis and Daniel B. Szyld. Regions of convergence of

[PvD99] Christopher C. Paige and Paul Van Dooren. Sensitivity anal-

Czech-US Workshop in Iterative Methods and Parallel Computing, Part I (Milovy, 1997).

REFERENCES

Rosseel:2008:AMS

Rost:2008:AMS

Renaut:1998:PMS

Rie:2009:CIE

Rjasanow:1998:SBE

REFERENCES

Aurobinda Routray and Smarak Swain. Fast algorithms for designing variable FIR notch filters. *Numerical Linear Al-
REFERENCES

REFERENCES

REFERENCES

827–838, October 2005. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Seibold:2010:PAM

Sousedik:2014:HSC

Shi:2002:CPR

Yixun Shi. A combination of potential reduction steps and steepest descent steps for solving convex programming problems. *Numerical Linear Algebra with Applications*, 9(3):195–203, April/May 2002. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-
REFERENCES

Shen:2014:EDP

Sayed:2001:SSF

Sturmer:2006:BRH

Sun:2010:CPN

Schuermans:2004:SWL

Schuermans:2006:BRH

Sheikh:2013:CSL

Sosonkina:2000:PSL

Soleymani:2014:FCI

Soto:2013:FRC

Salapaka:2006:ANP

Salapaka:2005:ACB

Salinas:2013:MMC

Simoncini:1997:AAS

Saad:2002:AAR
Y. Saad and B. Suchomel. ARMS: an algebraic recursive multilevel solver for general

Simoncini:2007:RCD

Stoyan:2004:GDA

Sundar:2015:CMA

Starke:1996:MMR

Stewart:1995:SBH

Stefanovski:1999:GEA

Stoer:1992:DAS

REFERENCES

Schleicher:2007:MMM

Saad:1999:DTT

Shi:2011:NEM

Szularz:2014:ISA

Szyld:1994:ECC

Thum:2010:TPO

Thekale:2010:ONM

Tian:2009:DII

[THC09] Gui-Xian Tian, Ting-Zhu Huang, and Shu-Yu Cui. The digraphs

Thess:1998:PMP

Tian:2013:LSS

Trench:2005:ARB

Trench:2013:IPU

Tang:2012:PMC

Trias:2006:DSF

Tebbens:2010:PUS

Jurjen Duintjer Tebbens and Miroslav Tůma. Preconditioner

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

REFERENCES

5325 (print), 1099-1506 (electronic).

vanGijzen:2015:FMS

vanKan:2000:FPC

Vassilevski:1996:PMF

Vecharynski:2011:ACC

Vlachkova:2000:NTA

vanNota

REFERENCES

vanNoorden:2007:CPG

Voevodin:1992:PSS

Vomel:2010:NHR

Vomel:2012:NGF

Voss:2009:MPN

VanHuffel:1995:ERA

vanRaalte:2005:TLM

Vanlent:2009:EMC

2009. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Fernando Guevara Vasquez and Benjamin Z. Webb. Pseudospec-
REFERENCES

Wang:2009:PIA

Webster:2010:AMO

Webster:2010:AMM

Weiss:1994:PGC

Washio:1994:PBP

Wieners:1999:MMP

Walden:1995:OBP

Wei:2003:IPB

REFERENCES

CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Wu:2010:CEI

Wei:2008:PAG

Wu:2015:SVH

Wu:2007:PAA

Wei:2008:NME

Wen:2015:SSN

REFERENCES

Wheeler:2010:EAM

Xu:2015:MMB

Walker:1994:SG

Xie:2013:ESL

Xia:2010:FAH

Xiang:2010:KPA

Xie:2003:SCI

Xia:2012:RIO

REFERENCES

[Yan04] Ulrike Meier Yang. On the use of relaxation parameters in hybrid

Yang:2010:LRI

Yavneh:2004:E

Yan:2011:CNB

Yuan:2011:PEB

Yang:2004:MFC

Yong:1996:SCT

REFERENCES

[YYN12] Jun-Feng Yin, Guo-Jian Yin, and Michael Ng. On adaptively accelerated Arnoldi method for

Ye:2013:AAA

Zhang:2011:STP

Zha:1992:TWC

Zhu:2014:AMP

Zhou:2006:SJD

Zhu:2008:DDP

Zhao:2010:PLS

Zikatanov:2008:TSB

Zitko:2000:GCC

Zitko:2005:CCR

Zeng:2006:DAS

Zhong:2008:CCR

Zubair:2010:GMM

Zhang:2012:LCA

Liping Zhang and Liqun Qi. Linear convergence of an algorithm for computing the largest

Zhang:2011:PCF

Zhao:2013:IIF

Zhang:2015:MQN