A Bibliography of Pseudorandom Number Generation, Sampling, Selection, Distribution, and Testing

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 October 2018
Version 1.295

Title word cross-reference

#14 [2264]. #15949 [868]. #4059 [1238]. #8373 [2087].

(0, 1) [1050]. (0, s) [2519, 2902]. (a^n - 1)/(a - 1) [914]. (j, c) [727]. (n^2) [2472]. (n^k) [2473]. (na) [2472]. (t, m, s) [2031, 2862, 2037, 2336]. (t, s) [2614, 2031, 2327, 2862, 2037]. (X^2 - Y^2)^1/2 [489]. 0.1(0 \times 1)0 \times 9 [139]. 1 [734, 872, 2815, 171, 709, 2937, 2939]. 1, 2, 3 [3448]. 1.13198824... [2496]. 10,000 [282]. $10.00 [168]. 10^{2857} [2467]. 10^{325} [2029]. 1200\mu [3096]. 128 [3121]. 13 [270]. 16 [270]. 2 [2815, 2106, 926, 3061, 2481, 2795, 2941]. 2, 000 [86]. $24.95 [2074]. 2^{-31} - 1 [834, 927]. 2^{15} [2124]. 2^{31} - 1 [3498, 799, 970, 1063, 1191, 1192]. 2^{31} - 69 [3344]. 2^{32} - 1 [1083]. 2^a [1468, 2224]. 2^b [1311, 1474, 1720]. 2^k [2595]. 2^{k-1} [2595]. 2^p [3208]. 2^p - 1 [2257]. 3 [1774, 3624]. 32 [3579]. 4 [270]. 48 [245]. 5 [270]. $52.95 [3548]. 64
\[\beta = 48 \pm 32 \pm 1 \]
0.57pJ [3221]. 0.57pJ/bit [3221]. '05 [3879, 3883]. '07 [3889]. '08 [3893].
1 [744, 1039, 1909, 1910, 3238, 3236]. 1.04 [3155]. 1.1 [3644]. 1.6 [3580]. '10
[3736, 3900, 3816]. 12 [2813]. 120 [2441, 3114]. 12th [3883].
'13 [3926]. 133 [265, 266, 303, 309]. 134 [872]. 13th [3852]. 14th
[3890, 3819]. 153 [925, 1081, 1082]. 155 [922, 1082]. 157 [973]. 16
2 [194, 219, 2242, 3329]. 2.4GHz [3339]. 20 [2074, 2408]. 200 [298, 359].
[3916]. 2014 [3657]. 204 [1080]. 205 [1091]. 20MHz [2524]. 20th
29th [3797, 3781]. 2nd [3754, 3767].
3 [3066, 3652, 1930, 3330]. 3-Key [2844]. 3.0 [2616]. 3.x [2263]. 30 [3459].
[1208, 2921, 2991, 1728, 3343]. 32-bit-word [533]. 334 [426, 471]. 33rd
[505, 607]. 38th [3839]. 39th [3889].
4 [457, 656, 3331]. 4086 [2829]. 40th [3803]. 41st [3860]. 42 [675, 676].
48-Bit [1017]. 488 [658]. 4Gbps [3221].
5.0 [1628]. 5.2 [2732]. 500 [3273, 318]. 51st [3910]. 52 [868]. 52nd [3925].
5th [3894].
60th [3927]. 61 [1227]. 623-dimensionally [2321]. 64-bit

= [3733, 3743].
Advancing [3898].

AES [2702, 2453, 2534, 2844].

Ahrens [2702, 2453, 2534, 2844].

Alternating [2401, 1195, 162, 49].

Alternatives [2900, 3507, 1444].

Almost All-Optical [2900, 3507, 1444].

Almost Algebraic-Geometry [2900, 3507, 1444].

alignments [1841].

algorithmic [1706, 554, 1545, 3843].

algorithmische [554].

algorithmischer [1706].

Arias [2873, 1365, 975, 894].

alignments [1841].

All-Digital [3221, 3339].

All-Optical [3522].

alla [461].

Alley [1942, 1828, 1949].

Allocation [627, 670, 710, 2603, 3293].

Almost [2900, 3507, 1444].

Along [3722].

Alternating [3006].

Alternative [3403, 802, 1893, 2551, 2727].

Alternatives [2401, 1195, 162, 49].

Alto [3926, 3845].

Amer [1238, 1008].

America [3548].

American [3736, 3801, 3731].

Amiel [315].

Among [2370, 1492, 282, 823, 1855, 2025, 2026, 2397, 2426].

Amplification [2558, 2724].

Amplified [3355, 3496].

amplifier [3368, 3369].

Amsterdam [3774].

Anal [908].

analiz [346].

Analog [349].

Analog-Digital [349].

Analogue [195, 1093, 540].

analyse [3743].

Analyses [1770, 2957].

Analysis [3029, 3693, 3032, 2263, 2082, 918, 919, 737, 3390, 963, 1178, 3667, 1858, 398,
analysis [2927, 2853, 3432, 765, 1698, 2714, 2858, 3303, 2647, 984, 1051, 3308, 3207, 1710, 1213, 1268, 2561, 3687, 3212, 1931, 646, 450, 2050, 724, 261, 2055, 2580, 2586, 2956, 3016, 207, 1541, 2346, 2347, 3236, 3465, 19, 234].

Analytic [1979, 1054].

Analytical [2521, 351, 3927].

Analyzing [2179, 2204, 1332, 2128].

anaylsis [488, 600].

Andersen [235].

Anderson [1011, 2466].

Android [3565].

Angeles [3729, 3776, 90].

angen¨aherten [275].

Angle [505, 607].

animals [1846].

Ann [675, 676].

Annealing [3615, 2949].

Annual [3870, 3874, 3879, 3889, 3893, 3926, 3904, 3797, 3758, 3793, 3803, 3826, 3835, 3839, 3860, 3910, 3925, 3767, 3891, 3869, 3856, 3808, 3749, 3817, 3763, 3768, 3773, 3779, 3784, 3789, 3800, 3818, 3823, 3832, 3850, 3857, 3819, 3859, 3755, 3766, 3781, 3877].

ANSI [2844, 2545, 2641, 2926, 2994].

Anthanasios [384].

Antithetic [703, 710, 2018].

Antony [3858].

ANTS [3843].

ANTS-III [3843].

any [344, 2383, 75, 599].

Aperiodic [3665, 2700, 3574, 3112, 1553].

APG [1816].

apparent [815].

Appearing [1500].

Appears [1317].

Appendix [2844].

Appl [2242, 3549].

Apple [1116, 1230].

Applesoft [1316].

applicability [1124].

Application [3365, 827, 3032, 3764, 878, 2756, 3774, 299, 2696, 2625, 3068, 1583, 2226, 2459, 2306, 43, 3096, 3539, 2953, 860, 287, 3124, 3233, 3150, 2823, 1970, 3393, 2758, 3908, 3286, 2703, 3421, 3422, 3295, 1095, 3524, 2041, 1160, 2800, 685, 949, 724, 1220, 2411, 135, 3127, 1548, 3138, 2678, 7].

Application-based [1583, 3524].

Applied [3740, 3736, 3731, 3169, 3907, 1136, 3928, 3804, 2159, 487, 316, 41, 239, 473, 2237, 3749, 3852].

Applying [3376, 2040, 3600].

approaches [2675].

Approximately [498, 1788].

Approximating [2442, 3427].

Approximation [2189, 2368, 2386, 1414, 1499, 2810, 2499, 1843, 3056, 1252, 1097, 1220, 729].

Approximations [143, 2769, 1046, 475, 999, 2989, 1221, 2958, 3019].

April [3764, 3736, 3774, 3908, 3745, 3862, 3747, 3808, 3782, 3783].

Arbitrary
Archimedean [3253]. Architecture [2817, 2764, 3333, 2061, 3244, 3505, 3708, 1542].
Architectures [1445, 3680, 3593]. Area [238, 1879, 3661, 3029, 197, 1684, 3454, 1280, 692, 3499].
Area-Efficient [3661, 3029]. areas [3890, 3859, 2712]. Argument [667]. arguments [425].
Arisen [1]. Arising [1241, 1513, 3471, 3549].
Arizona [3758, 3799]. Arlington [3817, 3851, 3866, 3760, 3807]. ARM7 [3055].
Arnold [2891].
arrival [2693]. Art [1702, 1724, 310, 3751]. Artefacts [1559].
Arthur [3009]. article [868, 2242]. Artifacts [2692].
Artificial [145, 64, 73]. Ascending [2714]. aSHIIP [3349]. ASIC [2761].
Aspects [3740, 3767]. Asperger [2944]. ASR [1227]. Assembler [2213].
assembly [3697]. assess [1900]. Assessing [2128, 2398]. Assessment [1363, 2082, 2756, 2612, 1286, 1443, 2293].
Assignment [838, 843, 845, 857, 858, 859]. Assoc [1238, 1008]. Associated [1244, 2731, 3136, 2815, 1002, 21, 253, 419].
Association [1796, 165, 3548, 949, 7]. associées [1002]. Assumption [3490].
assumptions [1483]. Astronomical [1396]. Asymmetric [684, 3669].
Asymptotic [563, 101, 3633, 667, 1522, 781, 2252, 1550, 55, 2255, 399, 3160, 2443, 2539, 1738].
Asymptotical [2834]. Asymptotically [3293, 1424, 2325, 650, 3003].
Asymptotics [2988]. asymptotiques [781]. Atari [1425]. AT [3398].
Attacks [3258, 2303, 3015, 3666, 3698, 3435, 1427, 164]. Attraction [1529, 366, 726].
Attractor [1655]. Auburn [3797]. auctions [3177]. Audio [3393].
Auditorium [3845]. August [3890, 3801, 3731, 3819, 3859, 3845, 3865, 3865, 3891, 3744, 3804, 2601].
Austria [3754, 3812, 3848, 3804, 3840]. Authentication [1968, 3712, 3230, 3231, 3198].
autism [2944]. Autocorrelated [1603, 982, 1835]. Autocorrelation [1571, 324, 634, 774, 775, 1668, 301, 430, 463].
Autocorrelations [325, 962]. Autocorrelazioni [962]. Autokorrelation [463]. Autokorrelation [430].
automata-based [1399]. Automated [1816].
Automatically [2359]. Automation [3185, 3915]. automaton [2814, 3723].
automorphisms [361]. Autonomous [3349]. Autoregressive [1691].
available [3113]. Avalanche [3226]. Average

Cryptology

Cryptosystem [3227, 1335, 3651]. cryptosystems [2388, 1349, 3127].

Crystal [3851, 53, 3866, 3760, 3807]. crystallography [3189].

cuda [3479, 3068, 3195, 3541].

Cumulant [1657]. Cumulative [3512, 3513, 2713, 1961, 561]. CURAND [3479, 3541].

Current [3078, 1150, 3079]. Current-Mode [3078, 3079].

Curve [2969, 2779, 3010, 34]. Curves [3383, 1998, 2840, 2577, 2982, 1585, 1260, 33].

Customer [2686]. Cusum [1169]. Cusum-Shewhart [1169].

cut [2526].

2954, 3629, 2495, 2071, 2258, 784, 3235. Dimensionality [2899].
dimensionally [2321]. dimensions [2173, 672, 708]. Diode [3580]. Dipole
[1846, 1898, 2248, 1950]. Directions [3747]. Dirichlet [3487, 3605, 2352].
Disappearance [2340]. discarding [2426]. DISCO [3812]. discontinuous
[2181, 1133, 188]. Discr´epance [1002, 529]. Discrepancies
Discrete-Event [3817, 1962, 1068, 2079, 2507, 2816, 3255, 1126].
Discrete-Time [2189, 3035]. discreteRV [3640]. discret [1542]. Discriminating [2763].
Disorder [53, 2944]. Dispersion [1073, 1346, 2250]. dissipative [3552, 3376, 3443]. Dissociated [2368]. dissociation [2944]. Distance
[3490, 2619, 3578, 1508, 3208, 719]. Distance-Bounding [3490]. distances
[3376, 1658, 1659]. Distanz [719]. Distinct [1472, 929]. Distinguishers
[3340, 2703]. Distinguishing [2530, 2544]. DistMe [3110, 3539].
Distributed [393, 2174, 3904, 3262, 1652, 1971, 194, 618, 2285, 319, 2211, 1882, 199, 3510, 2769, 3616, 1688, 1691, 589, 548, 2244, 3535, 1158, 363, 1108, 2499, 3595, 615, 312, 1449, 3031, 176, 2965, 314, 212, 3161, 1465, 42, 1466, 2373, 1313, 2699, 666, 1199, 1320, 469, 301, 3290, 327, 1256, 3292, 978, 1419, 2714, 2858, 1700, 224, 3683, 2557, 1936, 783, 1166, 1831, 691, 1441].
[1287, 2262, 3375, 3256, 3562, 3384, 1072, 2512, 3159, 194, 2437, 2827, 3052, 3497, 2192, 3609, 2612, 2110, 2698, 3638, 2983, 3064, 2116, 199, 3510, 3068, 1401, 3193, 978, 1208, 1338, 2991, 3198, 2854, 1419, 637, 1153, 1512, 1604, 3441, 2558, 2724, 1516, 2330, 1356, 1616, 2947, 3724, 2574, 1533, 3451, 2249, 1108, 862, 2955, 1621, 1109, 3661, 2422, 2672, 1112, 1167, 1627, 825, 1022, 1114, 1227, 3363, 3274, 3552, 961, 3029, 3632, 2175, 3561, 3718, 2362, 2608, 2687, 1186, 571, 2517, 1579, 3416, 2703, 3437, 3582, 2238, 1436, 3337, 2875, 2956, 1166, 2885, 3499].
Final [986, 2397]. Finalist [2490]. Finalists [2453, 2534]. finalizer [3456].
Frequency [2001, 2115, 3675, 2869, 1019, 610, 541, 1322, 3202, 2663, 692].
Frequency-Modulated [2869]. frog [2284]. frontiers [3898, 3877].
frustration [3235]. FTN77 [1883]. Fukuoka [3796]. Full
[3154, 1079, 1004, 3225, 2741]. Full-Length [1079]. Fully [3154, 1079, 1004, 3225, 2741].
Function-based [3249].
function [2967, 3153, 1599, 2347].
Functionality [2537, 2408]. functioning [2944].

G [530, 2896, 579, 621, 1910, 1052, 259, 69]. G5
gambler [3082]. Gambling [2427, 2593, 3596]. Game [2797, 3069].
gaming [480]. Gamma [654, 733, 798, 882, 1244, 895, 2317, 2468, 1018, 523, 863, 864, 990, 693, 785, 3594, 868, 873, 1233, 831, 372, 2763, 1203, 327, 936, 765, 807, 1051, 2036, 601, 856, 955, 728, 991, 824, 729, 694, 993, 742, 466].
gamma-distributed [327, 666]. Gamma-distribution [742]. gamma-rays [1051].
gammaverteilten [327]. gas [793, 661, 2249].
GASPRNG [3567]. Gate [3066, 2556, 2962]. Gates [3023, 3283]. Gateway [3866, 3760, 3807]. Gathering [2597].
Gauss [1808]. Gaussian [3027, 2596, 873, 994, 658, 1073, 3158, 2437, 3606, 1570, 2979, 3170, 294, 345, 2761, 3505, 2218, 3614, 2220, 2456, 3292, 2635, 2778, 2851, 2927, 2928, 3089, 3430, 3519, 3438, 3582, 3647, 3680, 635, 1598, 443, 1012, 3623, 852, 360, 2943, 3332, 3333, 3628, 523, 391, 3017, 3125, 3631, 3661, 1831, 3351, 865, 2884, 2255, 2348].
Gaussian-distributed [3292]. Gbit [3459]. Gbit/s [3459]. GCD
[1234, 1784, 1157, 1269, 1943, 1946, 2055, 1834]. GCDs [3092]. GECCO
Gen2 [3155, 3335]. généateurs [3725]. General
Generalised [2122, 873]. Generalization [436, 235]. generalizations [3500]. Generalized [3718, 1181, 1298, 1660, 2758, 3171, 1339, 632, 383, 3209,
2671, 994, 1849, 3154, 1756, 3606, 1874, 2693, 405, 433, 1321, 2763, 3614, 1895,
2013, 3088, 3430, 1806, 1268, 2949, 2668, 1035].
Generate [1290, 997, 1069, 1848, 2530, 1490, 3595, 1841, 2358, 752, 2118, 1201, 1548, 1835, 1631, 1961].
Generated [3144, 3254, 264, 241, 1042, 597, 3655, 368, 3473, 1284, 1744, 567,
736, 1659, 430, 463, 570, 3500, 1848, 2530, 1490, 3595, 1841, 2358, 752, 2118, 1201, 1548, 1835, 1631, 1961].
Generated [3144, 3254, 264, 241, 1042, 597, 3655, 368, 3473, 1284, 1744, 567,
736, 1659, 430, 463, 570, 3500, 1848, 2530, 1490, 3595, 1841, 2358, 752, 2118, 1201, 1548, 1835, 1631, 1961].
Generation [3366, 992, 1367, 2356, 3717, 1232, 2749, 3598, 827, 530, 733, 734, 869, 870,
871, 872, 3375, 2264, 2817, 2892, 1292, 2180, 1453, 2269, 2433, 2271, 2091, 3389, 829, 738, 2510, 798, 1073, 1241, 740, 214, 535, 461, 1300, 1978, 1465,
2438, 1075, 1184, 2097, 2688, 2897, 618, 3169, 1033, 1305, 1188, 1988, 3609,
2370, 1079, 2286, 2902, 90, 91, 2617, 1879, 2289, 579, 2290, 2694, 3178, 621,
436, 2291, 2528, 321, 2218, 1682, 1891, 2768, 3510, 3068, 581, 1327, 2630,
326, 2632, 2122, 2633, 1045, 1329, 3512, 3513, 1903, 1587, 756, 804, 1498].
Generation [2226, 1418, 2544, 2776, 2924, 3085, 806, 3619, 1147, 246, 3580,
674, 1596, 1700, 3680, 3522, 2138, 1802, 2784, 2023, 2024, 2931, 443, 2142,
2789, 637, 591, 715, 1154, 3001, 130, 185, 1052, 2480, 3532, 3686, 592, 1715,
2034, 2148, 642, 680, 225, 1054, 647, 3709, 257, 1938, 3215, 1356, 1616, 987,
2869, 3627, 1531, 3010, 2487, 284, 820, 855, 951, 952, 953, 954, 989, 1065,
1164, 3338, 1944, 1825, 2873, 611, 861, 1222, 1732, 3121, 556, 2252, 3014, 3459,
3712, 863, 864, 990, 2585, 163, 1736, 3018, 3125, 1831, 3127, 3128, 2168, 421].
Generation [1112, 1167, 526, 527, 1627, 693, 2425, 1551, 3550, 3690, 3475, 3664, 615, 1230,
2430, 1449, 1745, 3031, 3145, 1845, 1291, 2891, 3376, 3377, 3557, 3558, 3559,
3600, 1233, 1846, 2080, 2964, 3482, 344, 962, 2518, 3561, 828, 2088, 3037, 796,
1028, 1847, 180, 1456, 1378, 921, 881, 1652, 396, 1751, 3697, 397, 2362, 2273,
2970, 1975, 2275, 460, 1299, 1301, 964, 1566, 1662, 2758, 3272, 965, 966, 999,
1077, 1185, 1663, 1764, 2193, 3165, 3606, 969, 1125, 1385, 216, 1990, 2107,
318, 1389, 2373, 745, 541, 1037, 1251, 1391, 1477, 2905, 543, 183, 1253, 1320].
geneneration [623, 2762, 3569, 3285, 3671, 3638, 2914, 2005, 1041, 1780, 2449, 2628, 2706,

Generators [1930, 1055, 1725, 3657, 414, 1433, 3328, 3319, 3330, 3331, 2048, 3111, 782, 2572, 3113, 1618, 3332, 2049, 3218, 1063, 2408, 2574, 2951, 2163, 555, 2416, 2418, 524, 2582, 2583, 2342, 2806, 1361, 1539, 1735, 1954, 1109, 3347, 558, 2743, 3021, 1624, 1625, 2169, 1832, 2746, 3688, 785, 1282, 2066, 2427, 2593, 422, 1629, 423, 484, 3594, 826, 1633, 2355, 1024, 1116, 1170, 1284, 1286, 1443, 3552, 2595, 1840, 2429, 3028, 3029, 1231, 1369, 1289, 3632, 488, 3553, 2075, 3480, 2077, 1638, 3031, 1640, 2262, 3374, 3556, 3665, 2265, 3481, 3559, 1026, 2964, 3482, 3601, 3256].

generators [1768, 1995, 3701, 431, 1005, 272, 2288, 837, 972, 2834, 2981, 3702, 1318, 3611,
Goodness-of-Fit [2859, 1133, 1144, 608].

GPGPU [3541].

GPU [3600, 3392, 3643].

Graduate [3855].

Greedy [3340].

Grenoble [3748].

Gretl [3550].

Grid [1184, 2782, 3141].

GRNG [3661].

Guest [2275, 3022].

Guidelines [1679, 1532].

Guide [2275, 3022].

Hard-coded [3691].

Hardware-based [3227, 2778].

Hardware-optimized [3170].

Hash [3489, 3419, 2323, 3652, 3653, 1618, 3451, 3315, 3109, 3625].

Hashing [2098, 3563, 2028, 3714].

HASPENG [3199].

Havens [4796, 443, 929, 252].

Hawaii [3852].

Heads [2751].

help [2334].

HEMT [1448].

Hermite
[2979, 1138]. Herstellung [174]. Heston [3583]. Heterogeneous
[3271, 2769, 3156, 3214]. Heuristic [71, 2038, 2990, 2734, 3342].
Heuristic-Based [2038]. heuristics [2957]. HI [309]. Hidden [1676].
Hiding [3286]. hierarchical [3070, 2928]. Hierarchy [2138, 3349, 1564].
High [2356, 3367, 2085, 3635, 2603, 3047, 3183, 3184, 3191, 3074, 3675, 3916, 2464, 635, 2022, 3622, 3529, 3318, 1162, 3018, 3020, 100, 3470, 1030, 1296, 2602, 2685, 2608, 2687, 2974, 3057, 3170, 2517, 2761, 3284, 2982, 1684, 1896, 2120, 117, 3084, 3195, 128, 3432, 1914, 3437, 3438, 1921, 772, 2328, 225, 2944, 2870, 2954, 1165, 3629, 3460, 121, 2421, 2495, 3472, 2885]. High-density
[2603]. high-dimensional [2608, 2687, 2328, 2954, 3629]. High-entropy
[3047]. high-functioning [2944]. high-order [2982]. High-Performance
[3074, 3191, 3529, 3432]. high-period [2974]. High-Quality
[2085, 2517, 1896, 2120, 1914, 2421, 2495]. High-Speed
[2356, 3184, 3675, 3318, 3635, 2464, 1162, 2685, 3170, 1684, 117, 128, 772, 225]. Higher
[1657, 2382, 3153, 3422, 1218, 2879]. Higher-Order [1657]. Highly
Histogram [3392, 1580]. Histograms [3589, 1279]. Historical [2674].
History [70, 88, 701, 2705, 2723, 67, 1351, 369]. Hit [1746, 1979, 1752].
Hit-and-Run [1746, 1752]. Hitachi [2070]. Hitting [2379]. HK97 [3475].
Hlawka [848, 455]. HMAC [3716]. HMAC-DRBG [3716]. Hoare [3858].
Hoeffding [2244]. Homer [2450]. homogeneous [12, 1581].
Homomorphism [506, 2362]. homomorphisms [3143]. Hong [3872].
Honolulu [3852, 3009]. honor [3898, 3927]. honour [3858]. Hopfield [3348].
Hörmann [2896]. Horner [2498, 239]. Horseshoes [2304]. Horton [1867].
Hot [3845]. HotBits [2811]. Hotel
[3790, 3736, 3833, 3788, 3760, 3762, 3807, 3822, 3873, 3772, 3847]. Houston
[3757]. Huge [2998]. hundred [1196]. Hurst [2288]. HW [3091]. Hyatt
[3851, 3925, 3847]. Hybrid [3167, 349, 2494, 3227, 3028, 3153, 545].
hyperbolas [2068, 2349]. Hyperbolic [2731, 873, 994, 1756, 1905, 1937].
Hypercube [3771, 908, 909, 1326]. Hypercubes [3875]. Hypergeometric
[1328, 1143]. hyperplane [2195]. Hyperplanes [2197]. hyperspheres
[3251, 2954]. Hypotheses [173]. Hypothesis [434].
I. [867]. IBM [3734, 702, 793, 661, 1393, 1479, 470, 2533, 153, 1507, 482, 454].
IBM-Compatible [1479, 1507]. ibre [1024]. IC
[2685, 3403, 3283, 3284, 2332, 2482, 3346]. ICCMSE [3892]. ICGA [3869].
identical [929]. Identically [2499, 3290]. Identification [1422].
Identifying [3188]. identities [1358]. identity [2509, 1905]. IEEE
[3864, 3909, 3910, 3925]. If [1454]. IFIP [3908]. II
[3854, 1230, 3261, 1606, 1759, 2206, 1776, 1886, 1203, 251, 1923, 2026, 2398, 637, 1605, 678, 1434, 521, 2581, 864, 2169, 1547, 2071]. II.5 [744]. IIASA
Iterate [3414]. Iterated [2803, 2171, 244, 2785]. Iterating [1721].
iteration [111]. Iterations [2527, 3239, 3286, 1905, 3315]. Iterative
[1932, 1634, 1677]. IV [911]. ix [168, 3830].

[2752, 2365, 3508, 2781, 3654, 3007]. Java-implemented [3007]. JavaTalk
[3810, 3834, 3750, 3729, 3827, 3848, 3902, 3744, 3869, 3816]. Jump
[2983, 3064, 3065]. June [3823, 3874, 3889, 3903, 3912, 3926, 3740, 3881, 3843,
3920, 3798, 3754, 3729, 3909, 3738, 3828, 3855, 3902, 3867, 3816, 3829, 3856].
Jungles [2331]. Justification [2191, 985].

Kakutani [3209]. kappa [3595]. KASUMI [2536]. Keccak [3488]. KENO
[2046]. KENO-Va [2046]. kernel [2937]. Kernels [2938, 1950]. Key
[3367, 3258, 2269, 3045, 3276, 888, 2450, 2844, 2929, 1602, 2027, 1514, 2484,
1938, 1629, 3037, 3386, 2388, 3307, 1927, 3108]. Key-Stream [3367]. Keys
[3691, 3506, 1602, 3684, 2874]. keystream [3180, 3450]. keystreams [1766].
Kloosterman-type [1763]. KMCLib [3644]. Known
[1807, 3272, 2283, 781]. Knoxville [3771]. Knuth [1698, 677, 714]. Kochen
[63, 399, 71, 1133, 767, 2715, 97, 816, 188, 3453]. Kong [3872]. Kongruenz
[1024]. Kongruenz-Generatoren [1024]. konvexe [32]. konvexer [719].
Korea [3882]. Körper [32]. kriging [3492]. krivoi [34]. Kronescher [3491].
KY [3894].

L [530, 579, 621]. Laboratory [3728, 3730]. Lag [594]. Lagged
[2072, 2174, 1917, 2022, 2023, 2024, 1930, 3632, 2202, 1130, 1922, 2787, 1921].
Lagged-Fibonacci [1917, 2022, 2023, 2024, 3632, 1922, 2787, 1921].
Landau [689, 1107]. language [3705]. languages [3689]. Laning [168].
Laplace [2521, 667, 3002, 3216]. laptops [2270]. Large
[3728, 3262, 3497, 3498, 839, 667, 26, 2554, 2145, 185, 3213, 1529, 2965, 2827,
3053, 3164, 1321, 64, 73, 244, 95, 3721, 1053, 605, 230]. Large-Order
[3497, 3498]. Large-Scale [3728, 185, 2145, 2965, 95, 3721]. large-size [73].
largely [961]. Laser [3215, 3285, 3300, 3460, 3242]. Lasers
[3101, 3128, 3233]. Last [2166]. Latin [2328]. LatMRG [2131]. Lattice
[531, 567, 1972, 2895, 2436, 700, 2612, 2831, 2298, 2918, 2636, 3620, 3676, 2711,
Linear-Algebra [1813], linear-complexity [1517], linear-size [3601].
LLL [2915]. LLL-spectral [2915]. LLRANDOM [630]. Lmcgrid [3141].
Load [2206]. loaded [2455]. Loads [3046].
Low-Dimensionality [2899]. Low-Discrepancy [2617, 2149, 2326, 1540, 1848, 1215, 1346, 1712, 877, 1646, 2914, 2463, 2712, 1711, 3538, 2057].

Mixed [390, 326, 815, 943]. Mixing [1262, 552, 1677, 1201, 3456].
MIXMAX [3660]. Mixture [1452, 1093, 2073, 1014, 3120].
Mixtures [1499]. ML [1656]. ML-sequences [1656]. Mobile
Model [2817, 3615, 184, 53, 2953, 3141, 790, 2265, 3666, 3381, 1119,
2603, 3637, 2094, 2095, 1487, 2989, 1698, 3583, 3311, 1937, 2247, 2248, 3120,
2419, 1550, 3139, 1552]. Model-Based [3615]. Modeling
[1559, 2185, 3871, 3675, 3006, 1723, 3596, 1009, 1591, 2458, 2923, 226, 1542].
Modelling [2735, 3840, 1127, 1186]. Models [495, 1691, 1810, 2073, 3569, 930, 3070,
1786, 2712, 3751, 956, 2250, 2064, 3690, 1960]. Modern
[3367, 3740, 3693, 1126, 2380, 3299, 3600, 3744]. modification [1965, 1561].
Modified [992, 3269, 2106, 414, 2670, 993, 316, 2224, 3683, 191].
Modified-Logistic [3269]. Modular
[2096, 2913, 1155, 2488, 1394, 2128, 3092, 2791]. Modulated [2869].
modulator [3048]. Module [2916, 3150]. Modules [2566, 3727]. moduli
[2361, 2096, 1659, 1304, 1321, 2319, 2786, 3208]. Modulo
[2900, 247, 364, 368, 229, 2075, 926, 1251, 1314, 301, 709, 2637, 2849, 2481,
2941, 1720, 1438, 5, 2934]. Modulus [3498, 799, 970, 1003, 1083, 1474, 2049,
555, 2876, 2595, 1468, 1574, 1578, 1671, 1672, 1759, 1872, 1873, 2105, 2106,
2277, 2278, 1310, 834, 927, 1191, 1192, 1311, 2124, 2224, 762, 3299, 2477, 2864,
1734, 2740, 3343, 3344, 3131, 3132, 3353, 2257]. Molecular [2503, 3702, 1890].
molecular-dynamics [1890]. Moment [1850, 1032, 1567, 2239, 718].
Moment-Generating [1850]. Moments [752, 3413, 3422, 2123, 1218].
Monaco [3867]. Monica [3731]. monitoring [3218]. Monkey [1801, 2041].
Monkeying [2859]. Monographs [3548]. Monotone
Monte [3740, 176, 2433, 111, 3906, 3872, 1583, 3895, 629, 3901, 3296, 2789,
3828, 3848, 3855, 3876, 3886, 2242, 2046, 98, 187, 2950, 3867, 1825, 1739, 1171,
2076, 3034, 343, 2082, 176, 177, 2965, 210, 3485, 1558, 2181, 1559, 1293, 1645,
2183, 2184, 2599, 3260, 232, 1375, 877, 2090, 1122, 89, 193, 492, 3395, 1858,
150, 1981, 3398, 3054, 1245, 3921, 1186, 3502, 195, 3277, 2204, 2284, 2372,
2442, 574, 3872, 1249, 3278, 1676, 2111, 2208, 1085, 705, 2290, 2694, 3702,
1197, 196, 346, 218, 1774, 3612, 499, 127, 221, 322, 886, 1777, 501, 2295, 2447].
Monte Carlo [629, 176, 1559, 232, 1186, 3644]. Monterey
[3785, 3830, 3856, 3749]. Montgomery [2009, 2128, 2791, 2488]. monthly
Nonnegative

Nonnormal

Nonoverlapping

Nonparametric

Nonprobabilistic

Nonrandom

Nonrecursive

nonskewed

nonsuccessive

Nonuniform

nonuniformly

Norfolk

N¨orlund

Normal

Normale

Normali

Normalisation

Normality

Normalizing

Normally

normally-distributed

normalverteilter

NORTA

North

Norway

Note

Notes

November

Num

Num

NSWC

Nuclear

ns-2

ns2

On-the-Fly [3217]. on/off [2693]. One
[1962, 3554, 734, 3382, 2097, 2209, 2383, 3571, 2625, 1585, 1149, 1261, 1594,
439, 440, 475, 2467, 717, 2038, 2156, 1618, 3229, 3473, 1552, 3480, 872, 3287,
1403, 3069, 1406, 186, 2586, 1166, 5, 3247, 3663]. One-chip [3229]. one-class
[3530]. one-dependent [1406]. One-Dimensional [3473, 186]. One-line
[439, 440]. one-shot [3069]. One-Sided [475]. One-Table [162].
One-Time [3382, 2209, 2156]. One-Way
[3554, 3571, 1594, 2383, 1585, 1149, 1261, 3480, 3287, 1403, 3663]. Ones
[1353, 2044]. Online [3724, 2574, 3586, 3004]. Only
[2686, 3272, 3283, 3509, 2453]. Ontario [3859, 3816]. OpenBSD [2366].
openssl [3036]. Operating [3031]. operation [3031]. operations [3802]. operator
[1965]. operators [111, 2347]. opinion [277]. Optimal
[1028, 2091, 2361, 1304, 3607, 3700, 1665, 1666, 578, 668, 627, 670, 710, 1265, 3103,
1434, 1361, 1380, 2287, 2531, 2451, 3293, 2010, 3095, 3003, 813, 2804, 1665, 1666].
Optimality [578, 1087, 1057]. optimisation [3530]. Optimised
[3402, 3518, 3347]. Optimization [3402, 2517, 3913, 2386, 1909, 1910, 2056,
1442, 3769, 3147, 3257, 2967, 2516, 2704, 3804, 3538]. Optimized
[3210, 3333, 3170, 3723]. Optimizing [3713, 3243]. Optimum
[644, 610]. Oracle [3694]. Orbits [2096, 2891]. Order
[2357, 1657, 1865, 3497, 3498, 2901, 624, 1340, 1691, 2854, 3099, 53, 683, 2590,
1235, 1377, 2827, 3053, 3164, 1034, 2982, 1323, 2628, 45, 3225, 3344, 3462].
Order-Disorder [53]. Ordered
[2619, 1745, 148, 1854, 1001, 3058, 1129, 40]. ordering [2539]. Orders
[2382, 1036, 2586, 2879]. ordinal [429].
orangier [740]. Oregon [3857, 3843]. organic [3395]. Oriented
[2609, 3309, 3310, 3114, 1767, 2638, 3432]. Origin [1769]. origins [3922].
Orlando [3861, 3751]. Orleans [3870]. Orono [3801]. ors [3228].
orthogonal [1232]. Oscillation [2869]. Oscillator
[3378, 3483, 3405, 3646, 3137, 3360, 3368, 3369, 3666, 2685, 3404, 3181, 3202, 3206,
3352]. Oscillator-Based
[3378, 3368, 3369, 3666, 2685, 3552]. Oscillators
[3522, 3284, 206]. Other
[1445, 2860, 173, 576, 577, 116, 1491, 2463, 2547, 260, 958, 728, 3727, 3247].
Otherwise [2182]. Ottawa [3890]. outage [3311]. Output
[3694, 2689, 3670, 3652, 3588, 3466]. Overview [2674, 2366, 2849]. Oxford
[3858, 3750].
Polyominoes [2080]. Poor [735, 127, 3706]. Popular [2128, 639].
Population [1940, 8, 17, 134]. Populations [24, 12, 39]. Portability [972].
Problem
[2089, 3264, 51, 2833, 299, 1422, 383, 3653, 1732, 1560, 2753, 923, 3187, 933, 1866].
problème [2753]. Problems
[195, 575, 109, 1091, 26, 767, 337, 338, 1813, 1611, 1629, 2823, 193, 1855, 1179, 1190, 221, 201, 1717, 3587, 187, 2800, 686, 419, 164, 1545]. procédé [318].

Procedure
[1072, 1180, 925, 1081, 971, 436, 304, 277, 1721, 1555, 1636, 318, 1813, 1611, 1629, 2823, 193, 1855, 1179, 1190, 750, 221, 1717, 3587, 187, 2800, 686, 419, 164, 1545]. Proceedings [3763, 3784, 3809, 3832, 3919, 3926, 3730, 3785, 3766, 3774, 3731, 3798, 3752, 3757, 3771, 3853, 3729, 3793, 3794, 3916, 3827, 3751, 3866, 3867, 3892, 3816, 3747, 3829, 3830, 3783, 3749, 3782, 3743, 3831, 3879, 3893, 3778, 3824, 3769, 3790, 3748, 3764, 3765, 3736, 3810, 3833, 3756, 3834, 3858, 3825, 3750, 3780, 3872, 3792, 3754, 3859, 3803, 3860, 3864, 3854, 3861, 3788, 3883, 3847, 3799, 3828, 3848, 3855, 3876, 3744, 3804, 3760, 3762, 3869, 3822, 3849, 3772, 3841, 3817, 3768, 3773, 3779, 3789, 3800, 3818, 3823, 3850, 3857, 3870, 3874, 3903, 3912, 3837, 3728, 3734, 3796, 3900, 3920, 3797, 3745].

Processes

Produce
[1086]. Producing [333, 354, 74, 75, 380, 2875]. Product
[2535, 2989, 205, 3119, 874, 1130, 1891, 1211].

Products
[2934, 390, 523, 1994, 3426, 2744]. Professor [3858]. Profile
[2888, 2759, 2701, 2721, 2999, 1708, 1517, 2879, 1837]. Program
[3377, 3559, 2085, 1187, 3671, 223, 3133, 998, 2324, 599, 1352, 1104, 911]. Programmable
[2220, 1785, 2556]. Programmed
[876, 1650, 2885]. Programmierung
[866]. Programming
[3696, 2922, 2038, 1611, 3869, 866, 3750, 1190, 2119, 2647, 596, 2164].

Programs
[1450, 3263, 3603, 3264, 370, 459, 1000, 689, 1107, 1439, 3574, 897, 1936, 1848].

Project
[2526]. Projections
[3071]. Proof
[1963, 2748, 2429, 698, 399].

Proofs
[1910, 3526, 3650, 2380, 2047]. Proper
[2078, 1316, 2178]. Properties
[566, 829, 1977, 536, 2281, 2286, 2832, 836, 496, 184, 2552, 438, 412, 721, 1832, 2814, 3481, 2361, 1852, 2188, 293, 1761, 2105, 2198, 2203, 2282, 2611, 2108, 704, 2287, 141, 2700, 1325, 889, 755, 2301, 1007, 3083, 1593, 3299, 1696, 1705, 1520, 98, 781, 2801, 2948, 3010, 2741, 1738, 2172].

Property
[179, 3136, 3376, 1120, 3167, 3705, 1266, 783]. property-based
[3705].

Pseudo-random
52

pseudorandom

pseudorandom

pseudorandom-number
[2595]. Pseudorandomness
[2887, 2176, 3264, 3491, 704, 2621, 2445, 3511, 2453, 2534, 2629, 2536, 2546, 2136, 3303, 2475, 1606, 2590, 2505, 2083, 2350, 3022, 2675, 2074].

pseudorandom-sequence
[1320]. Pseudozufallszahlenfolgen
[606].

psevdosluchainykh
[346]. PSI
[1392]. PUB
[1816]. Public
[2269, 888, 2450, 1927, 2484, 3187, 2388]. Public-Key
[888, 2450, 2484].

Publications
[259, 389]. Publicly
[3050]. PUF
[3712]. Pulse
[3405, 1785, 600, 3406]. Pulse-Excited
[3405]. Pulse/Data
[1785]. Pulses
[508, 509, 3242]. punched
[35]. punctured
[3651]. Pure
[3706]. Purpose
[1054]. Purposes
[2855]. PVT
[3339]. PVT-variation
[3339]. pW
[3273]. pyramids
[1426]. Python
[3618, 3519, 2317, 2318].

Q.R.N.G.
[3371]. Qs
[3506]. Quadratic

Quadrature
[891, 766, 713, 1012, 391, 2447]. Quality
[2085, 3395, 1782, 2630, 3642, 2022, 1063, 3018, 3126, 2882, 3147, 3257, 1863, 2517, 1892, 1806, 2120, 3084, 3195, 1914, 3437, 1921, 591, 2409, 2410, 2421, 2495, 2883, 2885].

quanta
[1186]. Quantendynamik
[11]. Quantifiers
[3163]. Quantis
[3545]. Quantitative
[3034, 720, 3905, 3622]. quantity
[225]. Quantum
[3365, 3366, 3476, 2749, 3370, 3389, 3041, 3609, 3280, 3704, 1584, 3076, 3294, 3515, 3581, 3522, 3684, 1938, 3446, 3627, 519, 2579, 3013, 3457, 3021, 3242, 3250, 3477, 3265, 3564, 372, 3057, 3566, 3702, 3288, 3290, 2454, 3423, 3075, 11, 3527, 3586, 3325, 3336, 2736, 2492, 3223, 3460, 3229, 3233, 3547, 3466, 2959, 3240].

Quantum-Mechanical
[519]. Quantumlike
[686]. quark
[3838]. 'quasi'
[311]. Quasi-Monte
Random

Random

Random

Random

Random

Random
[3674]. RV [1204].

S [3039, 315, 974, 1039, 437, 389, 3580, 2070, 3459]. S-3800 [2070].
Saarbrücken [3767]. SAC [3890, 2530, 2766]. SAC’99 [3859]. Safari [2331].
SAFE [3719, 2049]. Salford [1883]. Salt [3829]. Salzburg [3848].
same [365]. Sample [697, 1073, 3495, 619, 2905, 58, 781, 35].
samplers [1752]. Samples [1182, 1947, 8, 828, 64, 73, 17, 39, 134, 33, 230].
Saturday [3881]. Saturday-Wednesday [3881]. Saunders [3088]. Savage [2466]. SC’11 [3916]. Scalable [3164, 3199, 3717, 3610, 3567, 2780, 2470, 2471, 2270, 3086]. Scale [2173, 3728, 767, 185, 10, 2965, 14, 1666, 95, 3721, 1424, 2145, 1053].
School [2756, 3749, 630]. School-Based [2756]. Schwinger [2265]. Sci [1039]. Science [3752, 3863, 3757, 3745, 3755, 3758, 3761, 3776, 3781, 3787, 3793, 3803, 3826, 3835, 3839, 3860, 3864, 3910, 3925, 3917, 3767, 3759, 3814, 3887, 3892, 3878, 3747, 3782, 3783, 3765, 3858, 3846, 3877, 3746, 3539, 3805].
sciences [3868]. Scientific [3740, 2894, 1122, 3739, 1140, 1140, 1724, 2489, 3815, 3174, 2717, 3828, 3744].
Scientists [626, 274, 1200]. scores [429]. Scrambled [3209, 3688, 3115].
Scrambling [2614]. scramblings [2727, 3715]. screening [3224, 2586].
second-order [3225]. Secondary [2882]. Secret [2825, 1276, 2425]. Secure [3375, 2682, 3258, 1453, 3490, 2110, 2533, 2634, 3077, 3645, 3096, 3015, 1112, 1167, 2679, 3638, 3421, 1401, 2300, 1335, 3091, 3321, 3108, 2946, 2337, 1276, 3547, 2678, 3719, 1847]. Securely [3684]. sécuritaire [1847]. Security [3851, 3378, 3667, 3267, 1868, 2829, 3172, 3503, 2696, 2764, 2629, 3883, 2558,

simulation [3384, 211, 1858, 1460, 464, 1034, 271, 1252, 1088, 3573, 3739, 2449, 1487, 2221,
1142, 1255, 1890, 3288, 2123, 1334, 3194, 2850, 2016, 3432, 3530, 1710, 1914,
3521, 2328, 3443, 2333, 3539, 2051, 2249, 2422, 3662, 1956, 1957, 3363, 1961].
simulative [1706]. simultaneously [1744]. Sin [3485, 1126, 1570, 3612, 3613, 1343, 2782, 1428, 3320, 3535, 3110, 1531, 2808,
423, 3595, 3028, 3596, 3256, 2965, 3395, 2095, 3398, 3054, 1676, 2288, 3702,
1135, 1774, 3569, 1325, 2988, 1902, 1413, 2850, 2061, 3412, 3530, 1710, 1914,
3521, 2328, 3443, 2333, 3539, 2051, 2249, 2422, 3662, 1956, 1957, 3363, 1961].
simultaneously [1744]. SiN [3384, 211, 1858, 1460, 464, 1034, 271, 1252, 1088, 3573, 3739, 2449, 1487, 2221,
1142, 1255, 1890, 3288, 2123, 1334, 3194, 2850, 2016, 3432, 3530, 1710, 1914,
3521, 2328, 3443, 2333, 3539, 2051, 2249, 2422, 3662, 1956, 1957, 3363, 1961].
simultaneously [1744]. Sin [3485, 1126, 1570, 3612, 3613, 1343, 2782, 1428, 3320, 3535, 3110, 1531, 2808,
423, 3595, 3028, 3596, 3256, 2965, 3395, 2095, 3398, 3054, 1676, 2288, 3702,
1135, 1774, 3569, 1325, 2988, 1902, 1413, 2850, 2061, 3412, 3530, 1710, 1914,
3521, 2328, 3443, 2333, 3539, 2051, 2249, 2422, 3662, 1956, 1957, 3363, 1961].
space-bounded

trapezoidal

Treatment

Trees

Trends

Trial

Trials

Triangle

triangles

Trident

Trier

trigamma

Trinomials

Triple

triples

TRNG

TRNGs

Trojans

True

Triangular

Trident

Trier

trigamma

Trinomials

Triple

triples

TRNG

TRNGs

Trojans

True

Trees

Triangles

uniform [1224, 2958, 3019, 3593, 911, 5, 1835, 2676, 3274, 2985, 2924, 420, 1275].

unpublished [2966]. unreasonable [3801]. unrestricted [1734, 2740].

using [1124, 3276, 1249, 1195, 2526, 2624, 3416, 2915, 1400, 976, 1203, 2843].
VARIATES

VARIATIONAL
[2144, 3221, 3160, 3339].

VARIATIONAL
[243].

VARIATIONS
[2519].

VARIOUS
[683, 2823, 765, 99].

VARYING
[1528, 2978].

VAVILOV
[689, 1107].

VAX
[1305].

VAX-11
[1305].

VECTOR
[1445, 395, 2271, 2034, 2148, 1531, 2819, 1387, 2107, 1487, 1488, 244, 1416, 1596, 716, 1217, 1608, 1713, 1714, 1926, 2035, 3533, 646].

VECTORIAL
[3486].

VECTORIZED
[3724, 1177, 1473, 1355].

VECTORS
[531, 2185, 2510, 700, 2281, 505, 284, 1018, 3338, 1284, 2358, 567, 2087, 3605, 1753, 2282, 1131, 1199, 1253, 1320, 2228, 1520, 2476, 2802, 607, 1944, 2669].

VEGAS
[3823, 3864, 3910, 3828].

VERIFIABLE
[3667, 3050].

VERIFICATION
[2764].

VERIFIED
[2359, 3716].

VERMONT
[3835].

VERSATILE
[508].

VERSCHLÜSSELUNGSABBILDUNGEN
[1005].

VERSION
[3553, 996, 1090, 2601, 2994, 3626].

VERSIONS
[2530, 1017, 2824, 2017, 720].

VERSUS
[713, 2426].

attered
[1838].

VERTICAL
[2226].

VERWERFUNG
[1838].

VERY
[1165, 1283, 1321, 979, 1920, 2029, 2328, 651].

VERY-LONG-CYCLE
[1283].

VERY-LONG-PERIOD
[1920].

VI
[2473].

VIA
[1924, 1838, 2086, 2435, 2970, 3271, 1459, 2189, 3054, 2098, 3169, 2368, 2442, 3413, 3577, 2462, 2928, 3201, 1012, 2244, 2940, 3112, 951, 2668, 2806, 1627, 2065, 3362, 3364].

VICTORIA
[3800, 3893].

VIENNA
[3798, 3840].

VIEW
[1504, 1150, 1954, 755, 3751].

VIGENÈRE
[1861].

VIRGINIA
[3851, 3883, 3807, 3782, 3760].

VIRTUAL
[3327].

VISIT
[2166].

VISTA
[3822].

VISUAL
[3007].

VLSI
[3909, 1400, 3647, 1617, 1953, 1623, 1548].

VMPC
[3659].

VOL.
[637].

VOLATILITY
[3583].

VOLTAGE
[3221].

VOLUME
[3737].

VOTING
[3667].

VS
[881, 162].

VULNERABILITIES
[3327].

VYCHISLITELNYKH
[346].

W
[2087, 3066, 3155].

WA
[3916, 1504, 1908].

WADSWORTH
[259].

Wahrscscheinlichkeit
[554].

Wahrscheinlichkeitstheorie
[554].

WAKE
[3206].

WAKE-UP
[3206].

WALK
[2338, 2353, 193, 3648, 2147, 2248, 2253, 2254, 2341].

WALKING
[3555].

WALKS
[1241, 2039, 2798, 2190, 2525, 1774, 1888, 2843].

WALL
[3648].

WALSH
[1885, 2053, 1278, 826].

WALSH-SPECTRAL
[1278].

WALT
[3822].

WANG
[2794].

WARBLER
[3681].

WARNING
[1322, 2794].

WARP
[1581].

WASHINGTON
[2686].

WAY
[3554, 839, 3506, 2929, 2558, 2724, 1297, 3242].

WEAKLY
[1602, 1839].

WEAKNESS
[2623].

WEB
[2686, 3113, 2584].

WEBCAM
[2720].

WEDNESDAY
References

[1] Karl Pearson. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling. *Philosophical Magazine*, 50(302):157–175, July/December 1900. CODEN PHMAA4. ISSN 0031-8086. URL http://www.tandfonline.com/doi/pdf/10.1080/14786440009463897.

REFERENCES

75

REFERENCES

REFERENCES

REFERENCES

[34] N. V. Smirnov. Ob uklonenijah empiričeskoi krivoi raspredelenija. (Russian) [sur les écarts de la courbe de distribution empirique. (French)] [On deviations from the empirical distribution curve]. *Recueil Mathématique (Matematičeskii Sbornik)*, N.S., 6(48):3–26, ????. 1939. CODEN MATSAB. ISSN 0368-8666.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1954:RDc

Anonymous:1954:RDd

Bartholomew:1954:NUS

Hammersley:1954:PMM

Lehmer:1954:DRN

Meyer:1954:GTR

Moshman:1954:GPR

Page:1954:MCS

[139] E. C. Fieller, T. Lewis, and E. S. Pearson. *Correlated random normal deviates; 3,000 sets of deviates, each giving 9 random pairs with correlations 0.1(0 \times 1)0 \times 9*, volume 26 of *Tracts for computers*. Cambridge University Press, Cambridge, UK, 1955. 60 pp. LCCN QA47 .T7 no:26. Compiled from Herman Wold’s Table of random normal deviates (Tract no. XXV) by E. C. Fieller, T. Lewis, and E. S. Pearson: *Random normal deviates.*

REFERENCES

http://www.rand.org/pubs/research_memoranda/RM1237.html. Also appeared as AECU 3259.

REFERENCES

REFERENCES

[185] Mervin E. Muller. An inverse method for the generation of random normal deviates on large-scale computers. *Mathematical Tables and Other
REFERENCES

REFERENCES

195 Louis W. Ehrlich. Monte Carlo solutions of boundary value problems involving the difference analogue of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \left(\frac{K}{y}\right)(\frac{\partial u}{\partial y}) = 0$. \textit{Journal of the ACM}, 6(2):204–218, April 1959. CODEN JACOAH. ISSN 0004-5411 (print), 1557-735X (electronic).

REFERENCES

REFERENCES

REFERENCES

[230] Donald D. Wall. A random number test for large samples. In Anonymous [3734], pages 7–11. LCCN ???.

REFERENCES

[243] Edmund Hlawka. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. (German) [Functions of bounded variation in the

Kiefer:1961:LDE

Kuehn:1961:BPR

Liniger:1961:MDH

Mamangakis:1961:MNR

Manelis:1961:GRN

Marsaglia:1961:ERV

Marsaglia:1961:GER

REFERENCES

REFERENCES

REFERENCES

Marsaglia:1962:RVC

Marsaglia:1962:SPG

MendesFrance:1962:CMF

Pathria:1962:SSR

Richtmyer:1962:CFE

Scheuer:1962:GNR

Shanks:1962:CD

Sibuya:1962:FCN

REFERENCES

REFERENCES

REFERENCES

Kolmogorov:1963:TRN

Laughlin:1963:RAR

MacLaren:1963:FPG

Magleby:1963:SNF

Marsaglia:1963:GDR

Marsaglia:1963:RNF

Moses:1963:TRP

Poore:1963:CAR

[324] David L. Jagerman. The autocorrelation and joint distribution functions of the sequences \(\left\{ \frac{a_m j^2}{m} \right\}, \left\{ \frac{a_m (j + \tau)^2}{m} \right\} \). *Mathematics of Computation*, 18(86):211–232, April 1964. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[399] Miklós Csörgö. A new proof of some results of Rényi and the asymptotic distribution of the range of his Kolmogorov–Smirnov type random

[405] I. J. Good and T. N. Gover. The generalized serial test and the binary expansion of \(\sqrt{2} \). *Journal of the Royal Statistical Society. Series A (Gen-
REFERENCES

[409] G. Itzelsberger. Some experiences with the poker test for investigating pseudorandom numbers. In Hollingdale [3739], pages 64–68. LCCN QA76.5 D55 1965.

REFERENCES

REFERENCES

REFERENCES

[460] R. R. Coveyou. Random number generation is too important to be left to chance. In Anonymous [3740], pages 70–111. LCCN QA1 S565 v. 3.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:1970:FVP

Behboodian:1970:ERV

Blaisdell:1970:RSP

Butler:1970:AAG

Cenacchi:1970:PRN

Dixon:1970:NSE

Downham:1970:SAA

REFERENCES

Hastings algorithm, a generalization of the work in [118]. See [2705, page 255].

REFERENCES

Marsaglia:1970:RV1

McShane:1970:RSE

Murry:1970:GAG

Payne:1970:FTP

Prasad:1970:PDA

REFERENCES

REFERENCES

[554] Claus Peter Schnorr. *Zufälligkeit und Wahrscheinlichkeit: Eine algorithmische Begründung der Wahrscheinlichkeitstheorie*. (German) [Randomness and probability. An algorithmic foundation of probability theory], volume 218 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
REFERENCES

Ahrens:1972:CMS

Alam:1972:AVM

Barr:1972:CMN

Basu:1972:ITF

Behboodian:1972:CNS

Beyer:1972:LSR

Cenacchi:1972:QRS

REFERENCES

REFERENCES

CS-TR-72-254, Stanford University, Department of Computer Science, Stanford, CA, USA, January 1972. 21 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Hamming:1973:NMS

Holland:1973:GAO

Knop:1973:AAR

Kozlov:1973:EEM

Learmonth:1973:NPS

Levin:1973:NRS

Lewis:1973:GFS

REFERENCES

[639] Frank Neuman, Robert Merrick, and Clyde F. Martin. The correlation structure of several popular pseudorandom number generators. Report
REFERENCES

[646] P. Pohl. The multicyclic vector method of generating pseudo-random numbers. I. Theoretical background, description of the method and al-

REFERENCES

REFERENCES

[677] Michel Mendès France. Suites de nombres au hasard (d’après Knuth). (French) [Sequences of random numbers (according to Knuth)]. *Sémin Théorie des Nombres*, 6(??):??, 1974–1975. CODEN ????. ISSN ????

REFERENCES

REFERENCES

[Chay:1975:MUB]
REFERENCES

Kleijnen:1975:AVC

Levin:1975:UDSa

[711] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Mat. Sb. (N.S.)*, 98(?):??, ???. 1975. CODEN ????. ISSN ???.

Levin:1975:UDSb

[712] M. B. Levin. On the uniform distribution of the sequence $\alpha \lambda$. *Math. USSR-Sb.*, 27(?):183–197, ????. 1975. CODEN ????. ISSN ???.

Malcolm:1975:LVG

MendesFrance:1975:SNA

Miyatake:1975:GPR

Monroe:1975:CIT

Nance:1975:IFR

Newman:1975:MIF

Niederreiter:1975:DDM

Niederreiter:1975:QVR

Pohl:1975:MFP

Pollard:1975:MCM

REFERENCES

REFERENCES

Witsenhausen:1975:SPD

Yao:1975:ASA

Anderson:1976:PRR

Atkinson:1976:CGB

Atkinson:1976:SAG

Bays:1976:IPR

Blood:1976:CPR

REFERENCES

Brent:1976:ABE

[737] R. P. Brent. Analysis of the binary Euclidean algorithm. In Traub [3747], pages 321–355. ISBN 0-12-697540-X. LCCN QA76.6 .S9195 1976. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.7959. The complexity of the binary Euclidean algorithm for the greatest common denominator is shown to be \(O\left(0.705 \log N\right)\) for large \(N = \max(|u|, |v|)\). See [2434] for an update, and a repair to an incorrect conjecture in this paper. See also [2360], where the worst case complexity is shown to be \(O(\log N)\), and the number of right shifts at most \(2 \log(N)\).

Chamayou:1976:DAG

Chambers:1976:MSS

Claustriaux:1976:GCN

Enison:1976:PTB

REFERENCES

REFERENCES

Niederreiter:1976:CSL

Niederreiter:1976:DPR

Niederreiter:1976:SIL

Niederreiter:1976:SNE

Pohl:1976:DMP

Rouault:1976:PAE

Rudolph:1976:RNG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[839] Nancy L. Geller. Some examples of the weak and strong laws of large numbers for averages of mutually independent random variables. *The
REFERENCES

Hoaglin:1978:SAR

Hollander:1978:TDU

Holmlid:1978:UCP

Kiefer:1978:PNA

Li:1978:EMN

REFERENCES

REFERENCES

[857] Lee W. Schruben and Barry H. Margolin. Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments. Journal of the American Statistical Association, 73

REFERENCES

REFERENCES

REFERENCES

[Bright:1979:QRN]

[Brown:1979:CPNa]

[Brown:1979:CPNb]

[Burford:1979:AVM]

[Cheng:1979:SSG]

[delJunco:1979:HLV]

REFERENCES

REFERENCES

Tripathi:1979:RFI

vanLint:1979:PRA

Wang:1979:MND

Williams:1979:SPF

Wright:1979:ECR

Ahrens:1980:SBP

Atkinson:1980:TPR

Basu:1980:RAEa

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Lindley:1980:RAE

Marsaglia:1980:GRV

OBrien:1980:PIR

Peskun:1980:TTC

Petkovic:1980:RRV

M. S. Petkovic. A representation of random variables by the probable intervals. Freiburger Intervall-Ber. 80/10, Universität Freiburg, Freiburg, Germany, 1980. 12–20 pp.

Ribeiro:1980:MOS

Rice:1980:DQF

S. O. Rice. Distribution of quadratic forms in normal random variables—evaluation by numerical integration. *SIAM Journal on Scientific and
REFERENCES

[953] B. W. Schmeiser. Random variate generation: a survey. Technical report, School of Industrial Engineering, Purdue University, West Lafayette, IN,
REFERENCES

REFERENCES

REFERENCES

Greenwood:1981:PFA

Ide:1981:EZM

Kaplan:1981:ERS

Kemp:1981:EGL

Kirkpatrick:1981:VFS

Kozlov:1981:ECI

Kronmal:1981:VAR

[989] B. W. Schmeiser and V. Kachitvichyanukul. Poisson random variate generation. Research Memorandum 81-4, School of Industrial Engineering, Purdue University, West Lafayette, IN, USA, 1981.

[995] F. Baccelli and E. G. Coffman. A data base replication analysis using an M/M/m queue with service interruptions. *ACM SIGMETRICS Perfor-
REFERENCES

...mance Evaluation Review, 11(4):102–107, December 1982. CODEN ????
ISSN 0163-5999 (print), 1557-9484 (electronic).

Bartels:1982:RVN

[996] Robert Bartels. The rank version of von Neumann’s ratio test for ran-
March 1982. CODEN JSTNAL. ISSN 0162-1459 (print), 1537-274X

Blum:1982:HGC

[997] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. In IEEE [3755], pages 112–117.
IEEE catalog number 82CH1806-9. IEEE Computer Society
order number 440.

Crigler:1982:RCP

[998] J. R. Crigler. RANDOM: a computer program for evaluating pseudo-
uniform random number generators. U.S. Government Report AD-A
118412/6, Naval Surface Weapons Center (K 106), Dahlgren, VA 22448,
USA, August 1982. vi + 41 + 3 pp. URL http://www.dtic.mil/dtic/
tr/fulltext/u2/a118412.pdf.

Devroye:1982:NAR

1982. CODEN JSCSAJ. ISSN 0094-9655 (print), 1026-7778 (electronic),
1563-5163.

DiDonato:1982:FSP

[1000] A. R. DiDonato. Five statistical programs in Basic for desktop com-
puters. Report NSWC TR 83-13, Naval Surface Weapons Center (Code
K104), Dahlgren, VA 22448, USA, November 1982. vi + 96 + 4 pp. URL

Dykstra:1982:MLE

functions of stochastically ordered random variables. Journal of the American
JSTNAL. ISSN 0162-1459 (print), 1537-274X (electronic). URL http://
REFERENCES

REFERENCES

REFERENCES

Plumstead:1982:ISG

Rizzi:1982:GPB

Roberts:1982:ITN

Schmeiser:1982:BGR

Shen:1982:FAD

Tracht:1982:RAN

Vahle:1982:BPR

REFERENCES

REFERENCES

Fushimi:1983:DGF

Fushimi:1983:IOE

Fushimi:1983:RTR

Gokhale:1983:EBG

Helstrom:1983:CDQ

Hopkins:1983:SAAAb

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1083] George S. Fishman and Louis R. Moore III. An exhaustive analysis of multiplicative congruential random number generators with

REFERENCES

REFERENCES

REFERENCES

Rasmussen:1984:FPS

Ronse:1984:FSR

Scholtz:1984:GS

Schorr:1984:PLV

Smith:1984:EMC

Thesen:1984:SER

REFERENCES

REFERENCES

Barbara, August 19–22, 1984, sponsored by the International Association for Cryptologic Research.

REFERENCES

held at the University of California, Santa Barbara, August 19–22, 1984, sponsored by the International Association for Cryptologic Research.

REFERENCES

REFERENCES

[1153] A. Ian McLeod. Statistical algorithms: Remark AS R58: a remark on Algorithm AS 183. an efficient and portable pseudo-random number gen-
Monahan:1985:ARN

Montgomery:1985:MMT

Niederreiter:1985:STP

Norton:1985:EBG

Percus:1985:PBS

Pierchala:1985:IMU

Reichert:1985:LLT

REFERENCES

REFERENCES

Vitter:1985:RSR

Yashchin:1985:ADC

Afflerbach:1986:SLS

Anderson:1986:MMC

Anon:1986:IRN

Blum:1986:IUC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Shore:1986:AID

Shore:1986:SGA

Sowey:1986:TCB

Stephens:1986:TBE

Stephens:1986:TUD

Wolfram:1986:RSG

Wolfram:1986:TAC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

1613-9798 (electronic). URL http://www.springerlink.com/content/q7885421202m6565/.

[1292] Pierre Beauchemin, Gilles Brassard, Claude Crépeau, Claude Goutier, and Carl Pomerance. The generation of random numbers that are probably prime. Journal of Cryptology: the journal of the International
REFERENCES

REFERENCES

[1312] Alan M. Frieze, Johan Håstad, Ravi Kannan, Jeffrey C. Lagarias, and Adi Shamir. Reconstructing truncated integer variables satisfying linear

REFERENCES

LEcuyer:1988:GLC

LEcuyer:1988:LCG

Levitan:1988:QSN

Luby:1988:HCP

Mactutus:1988:CSN

Matsumoto:1988:FPS

[1344] M. Matsumoto and Y. Kurita. The fixed point of an \(m\)-sequence and local non-randomness. Report 88-027, Department of Information Science, University of Tokyo, Tokyo, Japan, 1988.

Monahan:1988:CAG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chassaing:1989:ORN

Dagpunar:1989:CPP

Danilowicz:1989:DDP

Deak:1989:URN

Devroye:1989:RVG

Durst:1989:ULC

Edgeman:1989:RNG

REFERENCES

REFERENCES

REFERENCES

Impagliazzo:1989:ECS

Impagliazzo:1989:HRR

Impagliazzo:1989:PRG

Kachitvichyanukul:1989:ABS

Kahaner:1989:NMS

Kamps:1989:CPL

[1406] U. Kamps. Chebyshev polynomials and least squares estimation based on one-dependent random variables. Linear Algebra and its Applications,
REFERENCES

REFERENCES

REFERENCES

Mertsch:1989:PAS

Niederreiter:1989:STC

Paul:1989:IRN

Percus:1989:RNG

Pickover:1989:PRG

Reber:1989:PNG

Rhee:1989:OPIa

[1434] Wansoo T. Rhee and Michel Talagrand. Optimal bin packing with items of random sizes. II. SIAM Journal on Computing, 18(1):139–151, Febru-
ary 1989. CODEN SMJCAT. ISSN 0097-5397 (print), 1095-7111 (electronic).

REFERENCES

REFERENCES

Dagpunar:1990:SMD

Deak:1990:RNG

Deak:1990:URN

DeArman:1990:IRN

DeMatteis:1990:CPR

DeMatteis:1990:LRC

Deng:1990:GUV

Doring:1990:ENZ

[1466] H. Döring. Erzeugung normalverteilter Zufallszahlen mit 16-bit-PC. (German) Generation of normally-distributed random numbers on an
REFERENCES

REFERENCES

Goldreich:1990:NCI

Goldreich:1990:SPD

Golland:1990:BRB

Haastad:1990:PRG

Hildebrand:1990:RCS

Hormann:1990:AMG

Hortensius:1990:CAC

REFERENCES

REFERENCES

Kelton:1990:BRB

Kemp:1990:BRB

Kemp:1990:NAG

Kemp:1990:PRA

Kinderman:1990:CCG

Korolev:1990:ADR
REFERENCES

Macomber:1990:DUR

Marsaglia:1990:DBR

Marsaglia:1990:RNG

Marsaglia:1990:TUR

Maurer:1990:PLR

Micali:1990:EPR

REFERENCES

90-012, University of Tokyo, Faculty of Science, Dept. of Information Science, Tokyo, Japan, April 1990. 6 pp.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Dunweg:1991:BDS

Eichenauer-Herrmann:1991:ASI

Eichenauer-Herrmann:1991:CCP

Eichenauer-Herrmann:1991:CIC

Eichenauer-Herrmann:1991:DIC

Eichenauer-Herrmann:1991:DQC

Eichenauer-Herrmann:1991:ICPa

REFERENCES

REFERENCES

REFERENCES

[1616] Terry Ritter. The efficient generation of cryptographic confusion sequences. *Cryptologia*, 15(2):81–139, April 1991. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://fizz.sys.uea.ac.uk/~rs/ritter.html; http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM; http://www.informaworld.com/smpp/content~content=a741902748~db=all~order=page. cryptographic confusion sequences; pseudo-random sequence; random number generators; cryptographic applications; random sequences; incompleteness theorem; deterministic implementation; external analysis; RNG comparison; chaos; Čebyshev mixing; cellular automata; linear congruential; linear feedback shift register; nonlinear shift register; generalized feedback shift register; additive types; isolator mechanisms; one-way functions; combined sequences; random permutations; primitive mod 2 polynomials; empirical state-trajectory approach; RNG design analysis; GFSR.

REFERENCES

Walsh:1991:MFR

Wheeler:1991:PMN

Wheeler:1991:SIC

Yamamoto:1991:NEM

Yang:1991:UCR

Zeng:1991:PBG

Baker:1992:PPT

Bays:1992:IRN

Bellido:1992:SBR

Berdnikov:1992:RNG

Binder:1992:MCS

Bratley:1992:ITL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ishikawa:1992:MHS

Kleijnen:1992:PNG

Kleijnen:1992:RMS

Ko:1992:GPB

Kolonko:1992:GUD

Krawczyk:1992:HPC

Lagarias:1992:PN

REFERENCES

REFERENCES

Szyszkowicz:1992:GRP

Tang:1992:SDA

Tezuka:1992:AAC

Tezuka:1992:FGL

Traub:1992:MCA

Tsai:1992:AFT

vonHanxleden:1992:CDP

Warford:1992:GPR

Wikramaratna:1992:TBA

Wollan:1992:PRN

Won:1992:USN

Anderson:1993:CCB

Atkinson:1993:UGR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1805] Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. Dynamic generation
of discrete random variates. In ACM, editor, Proceedings of the
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms: Austin,

[1806] Ueli M. Maurer. A simplified and generalized treatment of Luby–Rackoff
pseudorandom permutation generators. Lecture Notes in Computer Sci-
ence, 658:239–??, 1993. CODEN LNCSDC. ISSN 0302-9743 (print),
service/series/0558/bibs/0658/06580239.htm; http://link.springer-

with known, long cycle length. Cryptologia, 17(1):55–62, January
1993. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586
(electronic). URL http://www.informaworld.com/smpp/content~
content=a748639214 “db=all” order=page. random number generator;
cryptographic keystreams; division algorithm; seed values; long cycle
length; keystream generation.

with support for signature functions. In Miosa [3812], pages 81–94. ISBN

[1809] H. N. Book review: Random Number Generators and Simulation, by
CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (electronic).

Random Numbers for multiple comparisons with the best. Management
Science, 39(8):989–1001, August 1993. CODEN MSCIAM. ISSN 0025-
1909 (print), 1526-5501 (electronic).
REFERENCES

[1817] Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer. Another test for randomness: Response. *Communications of the ACM*, 36(7):108–110, July 1993. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic). See [1353, 1458, 1803, 1827]. The authors report that they would now recommend the MCG \(x_{n+1} = 48\,271x_n \mod (2^{31} - 1) \) over their original \(x_{n+1} = 16\,807x_n \mod (2^{31} - 1) \).

REFERENCES

[1827]

Yang:1993:NBS

Zechner:1993:EBV

Zurbenko:1993:WCR

Aiello:1994:PPP

Allison:1994:UHA

Angus:1994:PIT

Annan:1994:RAA

REFERENCES

REFERENCES

[1861] William J. Corcoran. A multiloop Vigenère cipher with exceptionally long component series. *Cryptologia*, 18(4):356–371, October 1994. CODEN CRYPE6. ISSN 0161-1194 (print), 1558-1586 (electronic). URL http://www.informaworld.com/smpp/content“content=a748639272”db=all“order=page. multiloop Vigenère cipher; exceptionally long component series; computer generation; polyalphabetic cryptographic system; character set; linear congruential generating function; component series; cryptanalysis; multiloop system; computationally secure; personal computers; Spectra Publishing; Power Basic; BASIC.

Cuccaro:1994:TTQ

Davis:1994:CRA

DeArmon:1994:RLO

Deng:1994:DIR

Devroye:1994:NHS

Eastlake:1994:RRR

REFERENCES

REFERENCES

REFERENCES

[1903] Zaven A. Karian and Rohit Goyal. Random number generation and testing. *Maple Technical Newsletter*, 1(1):32–37, Spring 1994. CODEN ????. ISSN 1061-5733. URL http://www.can.nl/Systems_and_Packages/Per_Purpose/General/Maple/mtn/mtnv1n1.html. This article describes the Maple-language random-number generator, a multiplicative congruential generator (xnew = (A x + C) mod P) with A = 427,419,669,081, C = 0, P = 10^{12} – 11, and initial seed 1. It was used up to Maple Version 9 (2003). Later versions of Maple instead use the Mersenne Twister.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1979] Asit Dan, Philip S. Yu, and Jen Yao Chung. Characterization of database access pattern for analytic prediction of buffer

REFERENCES

Eichenauer-Herrmann:1995:IUB

Eichenauer-Herrmann:1995:NPE

Eichenauer-Herrmann:1995:PNG

Eichenauer-Herrmann:1995:QCP

Eichenauer-Herrmann:1995:RCM

Eichenauer-Herrmann:1995:UAA

REFERENCES

Entacher:1995:IPN

Entacher:1995:PSS

Feige:1995:RGP

Fleischer:1995:TTP

Gardy:1995:DAS

Gutbrod:1995:FRN

REFERENCES

Hallgren:1995:LCG

Hamilton:1995:EBU

Hamilton:1995:UGR

Han:1995:PGF

Hellekalek:1995:CBP

Hellekalek:1995:GDE

Hellekalek:1995:IPN

REFERENCES

REFERENCES

[2022] Michael Mascagni, Steven A. Cuccaro, Daniel V. Pryor, and M. L. Robinson. A fast, high quality, and reproducible parallel lagged-

Mascagni:1995:PPNa

Mascagni:1995:PPNb

Matus:1995:CIAa

Matus:1995:CIAb

Micali:1995:SMG

Miller:1995:RAC

REFERENCES

REFERENCES

Ong:1995:CBG

Owen:1995:RPN

Palubeckis:1995:HBB

Pattanaik:1995:AER

Penrice:1995:AEP

Percus:1995:TAM

REFERENCES

REFERENCES

[2068] Stefan Wegenkittl. Are there hyperbolas in the scatter plots of inverse congruential pseudorandom numbers? Journal of Computational

REFERENCES

REFERENCES

REFERENCES

Beyer:1996:CLS

Bland:1996:SRN

Boppana:1996:BCP

Bromley:1996:QNG

Brunner:1996:PCO

Bryc:1996:BRB

REFERENCES

[2098] Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via integer arithmetic without primes. Lecture Notes in
REFERENCES

REFERENCES

George S. Fishman. Monte Carlo: concepts, algorithms, and applications. Springer series in operations research. Springer-Verlag, Berlin,
REFERENCES

REFERENCES

[2124] Chiang Kao and J. Y. Wong. An exhaustive analysis of prime modulus multiplicative congruential random number generators with modulus

LUBY:1996:PCA

LUO:1996:TDS

MARINI:1996:CHR

MARSAGLIA:1996:DBT

MASUDA:1996:PPR

MATSUMOTO:1996:SDR

MATTHEWS:1996:SRN

REFERENCES

Niederreiter:1996:LDS

Niederreiter:1996:QPG

Nisan:1996:ERH

Ogawa:1996:RRP

Paplinski:1996:HIL

Petrov:1996:LTP

Radovic:1996:QMC

[2155] Igor Radović, Ilya M. Sobol, and Robert F. Tichy. Quasi-Monte Carlo methods for numerical integration: Comparison of different low discrep-

Rubin:1996:OTP

Sanchis:1996:PAC

Schervish:1996:VWT

Schneier:1996:ACP

Sethumadhavan:1996:NPE

Sezgin:1996:RNG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bellare:1997:PRN

Berblinger:1997:MCI

Berg:1997:CNF

Binder:1997:AMC

Binder:1997:MCS

Cario:1997:MGR

report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL, USA, 1997.

Coddington:1997:RNG

Compagner:1997:RER

Couture:1997:DPM

Dai:1997:RCD

Dai:1997:RRW

Deng:1997:SJC

REFERENCES

Eichenauer-Herrmann:1997:ADH

Eichenauer-Herrmann:1997:AEP

Eichenauer-Herrmann:1997:CCC

Eichenauer-Herrmann:1997:ICP

Eichenauer-Herrmann:1997:PSN

REFERENCES

Foster:1997:DOT

Gell-Mann:1997:ETZ

Grabner:1997:MSR

Hamilton:1997:AR

Hamilton:1997:ARP

Hellekalek:1997:CAP

REFERENCES

Hellekalek:1997:GRN

[2215] P. Hellekalek. Good random number generators are (not so) easy to find. In Troch and Breitenecker [3840], page ?? ISBN 3-901608-11-7. LCCN ???

Hellekalek:1997:NPNa

Hellekalek:1997:NPNb

Herendi:1997:FGR

Heuer:1997:CCS

Imperiale:1997:PUG

REFERENCES

Kreckel:1997:PAM

LEcuyer:1997:BLS

LEcuyer:1997:EBT

LEcuyer:1997:ILS

LEcuyer:1997:RNG

LEcuyer:1997:TBS

LEcuyer:1997:URN

[2236] George Marsaglia. A random number generator for C. Posted to the sci.math.num-analysis news group, September 29, 1997. URL http://mathforum.org/kb/thread.jspa?messageID=1607565. From the posting: “Keep the following six lines of code somewhere in your files. #define znew ((z=36969*(z&65535)+(z¿¿16))¡¡16) #define wnew ((w=18000*(w&65535)+(w¿¿16))&65535) #define IUNI (znew+wnew) #define UNI (znew+wnew)*4.656613e-10 static unsigned long z=362436069, w=521288629; void setseed(unsigned long i1,unsigned long i2)z=i1; w=i2; Whenever you need random integers or random reals in your C program, just insert those six lines at (near?) the beginning of the program. In every expression where you want a random real in [0,1) use UNI, or use IUNI for a random 32-bit integer. No need to mess with ranf() or ranf(lastI), etc, with their requisite overheads. Choices for replacing the two multipliers 36969 and 18000 are given below. Thus you can tailor your own in-line multiply-with-carry random number generator.”.

[2238] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. In IEEE [3839], pages 458–467. CODEN ASF-

REFERENCES

Woodward:1997:ECD

Wu:1997:MCR

Zubkov:1997:PTD

Aiello:1998:DPP

Andreev:1998:NGD

Antoch:1998:RPN

REFERENCES

Bach:1998:EPM

Baldwin:1998:PAB

Baldwin:1998:PPR

Ballesteros:1998:TRN

Barni:1998:CPD

REFERENCES

[2274] Paul D. Coddington and Sung-Hoon Ko. Random number generator for parallel computers. In Greg Egan, Richard Brent, and Dennis Gan-
REFERENCES

Couture:1998:GEI

DSouza:1998:SBD

Eichenauer-Herrmann:1998:IUB

Eichenauer-Herrmann:1998:LBD

Eichenauer-Herrmann:1998:SQI

Ellison:1998:CRN

REFERENCES

Fuster-Sabater:1998:LPS

Gammel:1998:HRR

Garcia:1998:GCE

Gentle:1998:RNG

Gutmann:1998:SGP

Hamilton:1998:AEP

REFERENCES

Hellekalek:1998:ARQ

Hellekalek:1998:CAP

Hellekalek:1998:DTP

Hellekalek:1998:GRN

Hellekalek:1998:WST

Hickernell:1998:LRH

REFERENCES

Kolmogorov:1998:TRN

Larcher:1998:DPS

LEcuyer:1998:GPI

LEcuyer:1998:RNGa

LEcuyer:1998:RNGb

LEcuyer:1998:RNGc

LEcuyer:1998:RNGd

REFERENCES

REFERENCES

Miller:1998:BPG

Morohosi:1998:DAR

H. Morohosi and M. Fushimi. Designing asymptotically random GFSR sequences. Report METR 98-11, Department of Mathematical Engineering and Information Physics, The University of Tokyo, Tokyo, Japan, 1998.

Niederreiter:1998:AGA

Niederreiter:1998:NSA

Owen:1998:LSS

Park:1998:AGC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Falk:1999:SAG

Fernandez:1999:AER

Fernandez:1999:ANRa

Fernandez:1999:ANRb

Gartner:1999:PCP

Gartner:1999:RCZ

REFERENCES

[2385] Benjamin Jun and Paul Kocher. The Intel random number generator. White paper prepared for Intel Corporation, Cryptography Re-
REFERENCES

REFERENCES

informs.org/doi/abs/10.1287/opre.47.1.159; http://www.jstor.
org/stable/222902.

[2392] P. L’Ecuyer. Some recommendable uniform random number genera-
tors. In Helena Szczerbicka, editor, Modelling and simulation: a tool for
the next millennium: 13th European Simulation Multiconference 1999,
ESM’99: June 1–4, 1999, Warsaw, Poland, volume 1, pages 185–190.
1-56555-171-0 (vol. 1), 1-56555-172-9 (vol. 2). LCCN ????

[2393] Pierre L’Ecuyer. Tables of linear congruential generators of different
pdf.

[2394] Pierre L’Ecuyer. Tables of maximally equidistributed combined LFSR
1999. CODEN MCMPAF. ISSN 0025-5718 (print), 1088-6842 (elec-

36A5FC62.17C9CC33@stat.fsu.edu. Posting to the sci.crypt.random-numbers,
thread/ca8682a4658a124d/.

[2396] M. Mascagni. Some methods of parallel pseudorandom number gen-
eration. In Heath et al. [3853], pages 277–288. ISBN 0-387-98680-

[2397] F. Matúš. Conditional independences among four random variables. III.
Final conclusion. Combinatorics, Probability and Computing, 8(3):269–
276, May 1999. CODEN CPCOFG. ISSN 0963-5483 (print), 1469-
REFERENCES

REFERENCES

Presented at the ANSI X9F1 Meeting, Institute for Defense Analyses, Alexandria, VA.

Soto:1999:STRc

Stauffer:1999:IMT

Sudan:1999:PGX

Tomassini:1999:GHQ

Tretiakov:1999:EMC

Trevisan:1999:CEU

[2423] Luca Trevisan. Construction of extractors using pseudo-random generators (extended abstract). In ACM [3850], pages 141–148. ISBN 1-58113-
REFERENCES

[2428] Bob Jenkins, Jr. ISAAC: a fast cryptographic random number generator. Web site, 19xx. URL http://burtleburtle.net/bob/rand/isaacafa.html. ISAAC (Indirection, Shift, Accumulate, Add, and Count) is based on cryptographic principles, and generates 32-bit random numbers. ISAAC-64 is similar, but requires 64-bit arithmetic, and generates 64-bit results.
REFERENCES

REFERENCES

31–36, January 2000. CODEN MNMTA2. ISSN 0026-9255 (print), 1436-5081 (electronic).

Hickernell:2000:ELS

Hormann:2000:AAG

Hormann:2000:ARV

IEEE:2000:IPH

Impagliazzo:2000:EPR

Indyk:2000:SDP

REFERENCES

[2467] George Marsaglia. The monster, a random number generator with period over 10^{2637} times as long as the previously touted longest-period one. Technical report ?????, Florida State University, Tallahassee, FL, USA, ???? 2000.

REFERENCES

REFERENCES

Soto:2000:RTA

Stefanescu:2000:GUR

Stefanov:2000:OQR

Sugita:2000:RWS

Takashima:2000:HPR

Tomassini:2000:GHQ

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Fischer:2001:CLT

Fischer:2001:TRN

Folegati:2001:CLR

Gerosa:2001:FIB

Gonsalves:2001:PAS

The program contains code (near the end) for the portable ran
yu() generator. It is a linear congruential generator with multiplier $A = 31167285 = 0x1db9335$ and modulus $M = 2^{48}$, implemented to require only 32-bit signed integer arithmetic.

REFERENCES

Hernandez:2001:FNO

Hernandez:2001:GAC

Howgrave-Graham:2001:PRN

Iwata:2001:PAF

Johnson:2001:CCO

Kang:2001:PMT

[2536] Ju-Sung Kang, Okyeon Yi, Dowon Hong, and Hyunsook Cho. Pseudorandomness of MISTY-type transformations and the block ci-

REFERENCES

REFERENCES

www.rand.org/content/dam/rand/pubs/monograph_reports/2005/
digits.txt.zip; http://www.rand.org/pubs/monograph_reports/
MR1418.html. See also [146].

Rukhin:2001:STS

[2572] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker,
Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heck-
et, James Dray, and San Vo. A Statistical Test Suite For Random
and Pseudorandom Number Generators for Cryptographic Applications.
National Institute for Standards and Technology, Gaithersburg, MD,
csrc.nist.gov/rng/sts-1.5.tar; http://csrc.nist.gov/rng/

Rukhin:2001:TRS

DEN TPRBAU. ISSN 0040-585X (print), 1095-7219 (electronic). URL

Schindler:2001:EOT

[2574] W. Schindler. Efficient online tests for true random number gen-
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/
bibs/2162/21620103.htm; http://link.springer-ny.com/link/
service/series/0558/papers/2162/21620103.pdf.

Shackleford:2001:FIN

FPGA implementation of neighborhood-of-four cellular automata ran-

Shaltiel:2001:SEA

[2576] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-
entropies and a new pseudo-random generator. In IEEE [3864], pages

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Kunchenko:2002:PPE

Kuo:2002:CCC

LEcuyer:2002:CEG

LEcuyer:2002:OOR

LEcuyer:2002:RAR

LEcuyer:2002:SST

REFERENCES

McCullough:2002:RNG

Mita:2002:PBG

Moon:2002:IDC

Murray:2002:IYP

Niederreiter:2002:ADI

Niederreiter:2002:ICS

[2664] Barry Shackleford, Motoo Tanaka, Richard J. Carter, and Greg Snider. FPGA implementation of neighborhood-of-four cellular automata ran-

Shparlinski:2002:DDH

Sugita:2002:RNI

Tan:2002:PPP

Tang:2002:CRN

Tang:2002:LBS

REFERENCES

REFERENCES

Yaguchi:2002:CLP

Yao:2002:CBR

Aamodt:2003:CSP

Andem:2003:CTE

Anonymous:2003:DR

[2681] Anonymous. */dev/random*. Web site., June 8, 2003. From the site: “Thus, in 1994 noted Linux kernel hacker Theodore Ts’o wrote a driver for Linux, which takes information about hard to predict events like keyboard and mouse use, packet and disk drive timings, and so on, and uses it to seed a cryptographically secure random number generator. A process can then open up the ‘file’ */dev/random* (usually a character device), and read out random bytes. The driver keeps an estimate of how much entropy remains in the pool — if it goes below 0 then any reads will block until more entropy is added.” Also this: “the actual driver is implemented in drivers/char/random.c in the Linux source tree.”.

[2686] Diane Crawford, Simone Santini, Ralph Castain, William F. Dowling, John Cook, Simon Dobson, Peter J. Denning, Robert Dunham, Jef Raskin, and Dennis Tsichritzis. Forum: When is a computer more like a guitar than a washing machine?; corroboration the only way to determine Web accuracy; how to teach critical thinking about Web content; create a random number service based on the Mersenne Twister; make fiasr uses a legal requirement in DRM systems; “The Missing Customer” redux; enthusiasm, drive, wisdom, patience not tied to age. *Communications of the ACM*, 46(7):11–13, July 2003. CODEN CACMA2. ISSN 0001-0782 (print), 1557-7317 (electronic).

REFERENCES

REFERENCES

REFERENCES

Intel:2003:IRN

Joe:2003:RAI

Kocarev:2003:CPR

LEcuyer:2003:CGC

Lemieux:2003:RPL

Li:2003:ULD

Lodwick:2003:EVC

Louchard:2003:ARS

Marsaglia:2003:EKD

Marsaglia:2003:RNG

Marsaglia:2003:TOS

Marsaglia:2003:XR

xorshift generators and the well-understood linear feedback shift register generators. See also [3448, 3541, 3630] for the failure of Marsaglia's xorwow() generator from this paper. See [2865, 3688] for detailed analysis.

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Sugita:2004:SPR

Tang:2004:SGM

Tirler:2004:EKR

Tonon:2004:URS

Tsang:2004:TCT

REFERENCES

REFERENCES

Banks:2005:DES

Barak:2005:MAP

Beliakov:2005:CLR

Beliakov:2005:UNR

Benony:2005:CPC

Blackburn:2005:PNP
REFERENCES

[2826] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom generator. Lecture Notes in Computer
Deng:2005:EPM

Dodge:2005:RNG

Eastlake:2005:RRR

Elsner:2005:IRN

Entacher:2005:BLP

Falcioni:2005:PMC

REFERENCES

REFERENCES

REFERENCES

Tang:2005:EER

Tang:2005:MLC

Tang:2005:RMR

Terpstra:2005:SIC

Topuzoglu:2005:LCP

Tu:2005:SRD

REFERENCES

Wichern:2005:GGP

Wiese:2005:IPN

Wiese:2005:PRP

Zhang:2005:ZBH

Zuquete:2005:EHQ

REFERENCES

REFERENCES

REFERENCES

Dickinson:2006:EEL

El-Mahassni:2006:DNC

Evans:2006:DOS

Faure:2006:SCR

Feige:2006:SIR

Finnigin:2006:CPN

REFERENCES

Jerusalem and University of Haifa, Jerusalem and Haifa, Israel, March 6, 2006. 18 pp. URL http://www.pinkas.net/PAPERS/gpr06.pdf.

Hanley:2006:PFR

Hars:2006:MIA

Hartinger:2006:NUL

Hechenleitner:2006:PSG

Hong:2006:DRN

Indyk:2006:SDP

REFERENCES

LEcuyer:2006:ISB

LEcuyer:2006:TSL

Lee:2006:HGN

Lee:2006:IBH

Maffre:2006:WKT
REFERENCES

REFERENCES

[2949] Thomas Schanze. An exact D-dimensional Tsallis random number generator for generalized simulated annealing. *Computer Physics Communi-

generator [1022] developed for 16-bit arithmetic to a new four-part combination generator for 32-bit arithmetic with a period of $2^{121} \approx 10^{36}$.

REFERENCES

[2978] Paul Dupuis, Kevin Leder, and Hui Wang. Importance sampling for sums of random variables with regularly varying tails. *ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Alimohammad:2008:CAG

Alimohammad:2008:EAH

Alioto:2008:APE

Alvarez:2008:ETR

Attya:2008:ROC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Howes:2008:U

Inaltekin:2008:ANE

Jang:2008:CDH

Joe:2008:CSS

Jovanovic-Dolecek:2008:UMT

Kalos:2008:MCM

Wei Li, Kangshun Li, Wensheng Zhang, Chao Wang, and Ying Huang. A random number generator based on particle dynamical evolutionary

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Cao:2009:DSB

Cecen:2009:NHN

Chen:2009:FPM

Chen:2009:MTR

Chi:2009:PQN
REFERENCES

Arthur Dryver. Code snippet: The enhancement of teaching materials for applied statistics courses by combining random number generation and

REFERENCES

[3181] R. A. Guinee and M. Blaszczyk. A novel true random binary sequence generator based on a chaotic double scroll oscillator combi-

REFERENCES

REFERENCES

REFERENCES

Svozil:2009:TCQ

Tafazzoli:2009:PCE

Tang:2009:FPS

Tawfeeq:2009:RNG

Thamrin:2009:EHB

Tian:2009:PTE

REFERENCES

Umlauft:2009:GNS

vanMeel:2009:GFS

Verloop:2009:HTA

Volos:2009:IEP

vonzurGathen:2009:SSP

Wang:2009:NPR

REFERENCES

REFERENCES

[3250] Alistair A. Abbott, Cristian S. Calude, and Karl Svozil. A quantum random number generator certified by value indefiniteness. Re-

REFERENCES

[3262] A. A. Borovkov. Integro-local and local theorems on normal and large deviations of the sums of nonidentically distributed random variables in

REFERENCES

REFERENCES

Quantum Communications and Quantum Imaging VIII.

[3300] Yu Liu, Wenzhuo Tang, and Hong Guo. True random number generator based on the phase noise of laser. In 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), pages 1–2. IEEE Computer Society Press, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
REFERENCES

Lovett:2010:PGC

Luan:2010:PRC

Luo:2010:PAE

Marsaglia:2010:SKR

Marton:2010:RDC

Meka:2010:PGP

REFERENCES

REFERENCES

Proschan:2010:BQQ

Qi:2010:DFR

Quantis:2010:RNG

Quantis:2010:RTR

Ristenpart:2010:WGR

Roper:2010:CRNa

Roper:2010:CRNb

Roper:2010:CRNc

Roper:2010:CRNd

Saiprasert:2010:MMM

Saiprasert:2010:OHA

Saito:2010:VMT

Segui:2010:AIP

[3352] B. Valtchanov, V. Fischer, A. Aubert, and F. Bernard. Characterization of randomness sources in ring oscillator-based true random number

Varbanets:2010:ICG

Wikramaratna:2010:TEC

Williams:2010:FPR

Wu:2010:ULT

Xiaohui:2010:DCR

Xin:2010:IEB

[3358] Hong Xin, Zhu Shujing, Chen Weibin, and Jian Chongjun. An image encryption base on non-linear pseudo-random number generator. In 2010
REFERENCES

Ying:2010:DRN

Yoo:2010:IRR

Yu:2010:NRN

Zafar:2010:GRN

Zhmurov:2010:EPR

Anonymous. Quantum random bit generator service. Project developed by Centre for Informatics and Computing, Ruđer Bošković Institute, Zagreb, Croatia, 2011. URL http://random.irb.hr/.

Anonymous. Quantum random bit generator service. Project developed by Centre for Informatics and Computing, Ruđer Bošković Institute, Zagreb, Croatia, 2011. URL http://random.irb.hr/.

Araneus Information Systems Oy. Araneus Alea I. Web site, 2011. URL http://www.araneus.fi/products-alea-eng.html. From the Web site: “The Alea I uses a reverse biased semiconductor junction to generate wide-band Gaussian white noise. This noise is amplified and digitized using an analog-to-digital converter. The raw output bits from the A/D converter are then further processed by an embedded microprocessor to combine the entropy from multiple samples into each final random bit and remove any bias caused by imperfections in the noise source and A/D converter.”

Jacques M. Bahi, Raphaël Couturier, Christophe Guyeux, and Pierre-Cyrille Héam. Efficient and cryptographically secure generation of

\textbf{REFERENCES}}
REFERENCES

Bellovin:2011:FMI

Blackburn:2011:DSS

Blanchet:2011:ERE

Boerstler:2011:RNG

Bohl:2011:FAR

Bradley:2011:PTR

Brown:2011:DRN

REFERENCES

REFERENCES

[3412] Parikshit Gopalan, Raghu Meka, Omer Reingold, and David Zuckerman. Pseudorandom generators for combinatorial shapes. In ACM [3912],

Heam:2011:SEU

Hedayatpour:2011:HFB

Hofert:2011:SET

Hung:2011:DRD

Hwang:2011:SID

Jian:2011:TBQ

Yi Jian, Min Ren, E. Wu, Guang Wu, and Heping Zeng. Two-bit quantum random number generator based on photon-number-resolving detection. Review of Scientific Instruments, 82(7):073109, 2011. CODEN
REFERENCES

REFERENCES

Mukherjee:2011:RGU

Phillips:2011:PRN

Qiu:2011:ATB

Quantis:2011:RRW

Ren:2011:QRN

Rose:2011:KBT

REFERENCES

[3448] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. Parallel random numbers: as easy as 1, 2, 3. In Lathrop et al. [3916], pages 16:1–16:12. ISBN 1-4503-0771-X. LCCN ???.

REFERENCES

Symul:2011:RTD

Tang:2011:ESG

Tang:2011:PES

Taylor:2011:DR

Veillette:2011:TCP

Versolatto:2011:MPR

REFERENCES

REFERENCES

REFERENCES

Abbott:2012:SKS

Abbott:2012:TFA

Anonymous:2012:CTC

Applebaum:2012:PGL

Barash:2012:GSP

Barker:2012:RRN

Bayon:2012:CEA

[3483] Pierre Bayon, Lilian Bossuet, Alain Aubert, Viktor Fischer, and François Poucheret. Contactless electromagnetic active attack on ring oscillator

Becher:2012:TNN

Beisbart:2012:WMC

Berger:2012:CPR

Bergman:2012:GRV

Bertoni:2012:KSF

Boldyreva:2012:NPG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[3520] Liang Li. Testing several types of random number generators. MS thesis, Department of Computer Science, Florida State University, Tallahassee, FL, USA, Fall 2012. vi + 91 pp. URL http://search.proquest.com/pqdtglobal/docview/1287745850/.

REFERENCES

Science, 7417:68–85, 2012. CODEN LNCS9. ISSN 0302-9743 (print),
1007/978-3-642-32009-5_5/.

[3527] Jaroslaw Adam Miszczak. Generating and using truly random quantum
states in Mathematica. Computer Physics Communications, 183(1):118–
dc124, January 2012. CODEN CPHCBZ. ISSN 0010-4655 (print), 1879-
article/pii/S0010465511002748.

Pseudorandom generator to strengthen cooperation in VANETs. Lecture
ISSN 0302-9743 (print), 1611-3349 (electronic). URL http://link.
springer.com/content/pdf/10.1007/978-3-642-27579-1_47.

[3529] Nimalan Nandapalan, Richard P. Brent, Lawrence M. Murray, and Alis-
tair P. Rendell. High-performance pseudorandom number generation on
graphics processing units. Lecture Notes in Computer Science, 7203:609–
618, 2012. CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349 (elec-
tronic). URL http://link.springer.com/chapter/10.1007/978-3-
642-31464-3_62.

algorithms and an indifference-zone ranking and selection procedure un-
der common random numbers for simulation optimisation. Journal of
Simulation, 6(1):56–66, 2012. ISSN 1747-7778 (print), 1747-7786 (elec-
tronic).

[3531] Samuel Neves and Filipe Araujo. Fast and small nonlinear pseudorandom
number generators for computer simulation. Lecture Notes in Computer
Science, 7203:92–101, 2012. CODEN LNCS9. ISSN 0302-9743 (print),
1007/978-3-642-31464-3_10/.

[3532] NIST. Recommendation for random number generation using determin-
istic random bit generators. Special Publication 800-90, National Insti-

REFERENCES

REFERENCES

[3560] Georg T. Becker, Francesco Regazzoni, Christof Paar, and Wayne P. Burleson. Stealthy dopant-level hardware trojans? Report, University of Massachusetts (Amherst, USA); TU Delft (The Netherlands); ALaRI (University of Lugano, Switzerland); Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum (Bochum, Germany), June 7, 2013. 18 pp. URL http://people.umass.edu/gbecker/BeckerChes13.pdf.

REFERENCES

Hu:2013:PSG

IBM:2013:IPC

Imai:2013:CRN

Khoshkenar:2013:NTR

Liberty:2013:THR

Liu:2013:ITT

REFERENCES

Ozkaynak:2013:SPP

Pae:2013:EOR

Sainudiin:2013:PER

Saito:2013:VMT

Schretter:2013:DIM

Sezgin:2013:FBP

REFERENCES

Barabesi:2014:NUR

Barash:2014:PGA

Baron:2014:LSP

Blacher:2014:PRN

Braverman:2014:PGR

Chen:2014:EES

Cheng:2014:GBR

[3605] Ching-Wei Cheng, Ying-Chao Hung, and Narayanaswamy Balakrishnan. Generating beta random numbers and Dirichlet random vectors

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Year</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>DOI</th>
</tr>
</thead>
</table>

Mohamed:2014:MCS

Raaphorst:2014:CSC

Rivest:2014:SSR

Saito:2014:XV

Sanguinetti:2014:QRN

Sileshi:2014:AHG

REFERENCES

REFERENCES

Passerat-Palmbach:2015:TSS

Pollack:2015:SNN

Potter:2015:MUE

Raitza:2015:RRN

Romano:2015:AGR

Sarkar:2015:FNR

REFERENCES

Bayon:2016:FME

Chang-Fong:2016:CSC

Chattopadhyay:2016:ETS

deAndrade:2016:RNG

Dorre:2016:ELO

Guskova:2016:RPL

Herbert:2016:LIV

Karney:2016:SEN

Koerner:2016:REB

Lao:2016:BFD

Lecuyer:2016:ALB

Li:2016:ITS

REFERENCES

Nekrutkin:2016:CBF

NIST:2016:SDR

Ohsaka:2016:DIA

Vigna:2016:EEM

Yamakami:2016:PGA

Yu:2016:GPR

Anonymous. The DUHK attack: Don’t use hard-coded keys. Web site., October 25, 2017. URL https://duhkattack.com/. From the introduction: “DUHK (Don’t Use Hard-coded Keys) is a vulnerability that affects devices using the ANSI X9.31 Random Number Generator (RNG) in conjunction with a hard-coded seed key. The ANSI X9.31 RNG is an algorithm that until recently was commonly used to generate cryptographic keys that secure VPN connections and web browsing sessions, preventing third parties from reading intercepted communications.” See [3698] for details of the attack.

REFERENCES

[3715] Sebastiano Vigna. Further scramblings of Marsaglia’s xorshift generators. *Journal of Computational and Applied Mathematics*, 315(??):175–181, May 1, 2017. CODEN JCAMDI. ISSN 0377-0427 (print), 1879-

REFERENCES

Mullner:2018:RSS

Petrica:2018:FOC

Sanders:2018:EPR

Basuyaux:20xx:RNG

LEcuyer:20xx:PNG

Wagner:20xx:WRS

[3727] David Wagner. Writings on randomness; source code for generating randomness; source code for testing randomness; hardware for generating randomness; source code to other useful crypto modules; miscellaneous. World-Wide Web site., 20xx. URL http://www.cs.berkeley.edu/~daw/rnd/.
[] Anonymous:1951:PSS

REFERENCES

Rice:1971:MS

Zaremba:1972:ANT

Patil:1975:MCS

Hoaglin:1976:PNI

Ralston:1976:ECS

Traub:1976:ACR

[3747] J. F. Traub, editor. Algorithms and Complexity: Recent Results and New Directions: [Proceedings of a Symposium on New Directions and
REFERENCES

REFERENCES

REFERENCES

REFERENCES
662

REFERENCES

REFERENCES

IEEE:1987:ASF

Odlyzko:1987:ACC

Abrams:1988:WSC

ACM:1988:PTA

Edwards:1988:CPC

REFERENCES

REFERENCES

IEEE:1990:PAS

IEEE:1990:PSN

Pomerance:1990:CCNb

Anonymous:1991:PIS

REFERENCES

REFERENCES

Pflug:1992:SOP

Simmons:1992:CCS

Steele:1992:PA

Swain:1992:PWS

Vouk:1992:PAS

REFERENCES

REFERENCES

[Sincovec:1993:PSS]

[Swartzlander:1993:PSC]

[ACM-SIAM:1994:ASD]

[ACM:1994:PTS]

[Desmedt:1994:ACC]

REFERENCES

REFERENCES

REFERENCES

Andradottir:1997:PWS

Gell-Mann:1997:QJA

IEEE:1997:ASF

Troch:1997:PSI

Wyrzykowski:1997:PNP

Banks:1998:HSP

REFERENCES

http://www.loc.gov/catdir/description/wiley037/97051533.html;
http://www.loc.gov/catdir/toc/onix01/97051533.html.

Buhler:1998:ANT

Hellekalek:1998:RQR

IEEE:1998:HCC

Kent:1998:ECS

Medeiros:1998:WSC

Niederreiter:1998:MCQ

[3848] Harald Niederreiter, Peter Hellekalek, Gerhard Larcher, and Peter Zinterhof, editors. *Monte Carlo and Quasi-Monte Carlo methods 1996: proceedings of a conference at the University of Salzburg, Austria, July 9–12,
REFERENCES

USENIX:1998:SUS

ACM:1999:PTF

Anonymous:1999:NIS

Fossorier:1999:AAA

Heath:1999:APP

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Beyer:2005:GEC

Helleseth:2005:STA

Meadows:2005:CPA

Smart:2005:CCI

REFERENCES

Henderson:2006:S

Niederreiter:2006:MCQ

Schroeder:2006:NTS

Ytrehus:2006:CCI1

ACM:2007:SPA

Adams:2007:SAC

REFERENCES

[3901] Pierre L’Ecuyer and Art B. Owen, editors. *Monte Carlo and Quasi-Monte Carlo Methods 2008*. Springer-Verlag, Berlin, Germany / Hei-

REFERENCES

REFERENCES

Cooper:2012:HWC

Dunn:2012:EMC

Dyson:2012:TCO

Gentle:2012:HCS

Hwu:2012:GCG

IEEE:2012:PIA

REFERENCES

