A Bibliography of Publications about \textit{PVM} (Parallel Virtual Machine) and \textit{MPI} (Message Passing Interface)

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 October 2018
Version 3.180

Title word cross-reference

\begin{itemize}
\item [+ [BDV03, Cha02, HDB+13, Lee12], 0 [ICC02], 1 [ICC02, LRQ01, VDL+15]. \textbf{\$19.95} [Ano95b]. 2 [Bha98, BAS13, CGU12, ES11, KRKS11, KO14, WMRR17]. \textbf{\$24.95} [Ano95c]. \textbf{\$27.50} [Ano96a]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, KLR16, MSZG17, NSM12, SSS99, SH14, TPD15, WR01, YSL+12]. \textbf{\$35} [Ano00a, Ano00b]. \textbf{\$35.00} [Ano99a, Ano99c, Ano99b, Ano99d]. 3D [KA13]. \textbf{\$60} [Ano00a, Ano00b]. 3 [PBC+01]. A [ARYT17]. \alpha{} [JMdVG+17]. Ax = b [BG95]. D [UZC+12]. H^2/H^\infty{} [GWC95]. k [She95, TK16]. M^3 [JSH+05]. PVM+ [Wil94]. N [IHM05, Per99, Rol08b, SP99, SRK+12]. SU(3) [BW12]. \tau{} [RGDM15, RGDM16]. XY [KO14].
\item . [Wil94].
\item /Fortran [TBG+02]. /many [KSG13].
\item /OpenMP [VDL+15].
\end{itemize}
1 [HMKV94, SOHL+98]. 10-Gigabit
[HcF05]. 100th [DLO03, IEE96c].
'11 [ACM11]. 11th [IEE97b, KKD04]. '12
[Hol12]. 128-processor [LL01]. 12th
[DKD05, Bi95]. 13th
[Ano95d, MTWD06, PSB+94]. 14th
[CHD07, CHD09]. 15-18 [SL94a]. 15th
[IEE95i, LKD08]. 16th [RWD09]. 17th
[KGRD10, MC94]. 18-21 [DKD07]. 18th
[DE91, EJL92, IEE91]. 1992
[KG93, R+92, VW92]. 1993
[Ano94c, GGK+93, IEE93a, IEE93e,
JPTE94, MMH93]. 1994 [Ano94a, Ano94e,
DSZ94, DT94, GN95, GT94, HK95, IEE94h,
PSB+94, SPE95, SPH95, VV95]. 1995
[ACM95a, ACM96a, AGH+95, BH95, Gt95,
Ham95a, IEE95b, IEE95a, IEE95d, IEE95h,
IEE95i, JB96, NM95, Nar95, Ten95, UCW95,
ZL96]. 1996 [ACM96b, Abr96, Boi97,
ERS96, IEE96f, IEE96e, IEE96i, Rec96].
[TBD12, IEE05]. 1st [Abr96, BR95a,
CGB+10, Kun94, Van95, Fer92].
2 [AKL99, BCAD06, BHS+02, BMPZ94a,
CwCW+11, CD96, DPSD08, FST98a,
FST98b, GFD03, GGHL+96, GT01,
GHL+98, GLT99, GLTO0b, GLTO0a,
HGMW12, Jou96, LC97, LSK04, MS02a,
MK04, P500a, SS99, SSL97, TRH00, VAT95,
bT01a]. 2-D [BMPZ94a]. 2.0
[BO01, LPD+11, LW97, Mat00b, NSM12].
2.2 [HRR+11]. 2.X [KS96]. 2000
[ACM00, LL01, LSK04, N050, ZSnH01].
2001 [ACM01, Old02]. 2003
[ACM03, AS14, Don06, OL05]. 2004
[ACM04]. 2005 [ACM05, DKD07]. 2006
[ACM06a, MTW07]. 2007 [SM07]. 2008
2012 [Hol12, TB14]. 2015 [IS16]. 21st
[IEE95a]. 25nm [Ano03]. 26th
[Ano93a, SL94a]. 27th [Ano94h]. 28th
[ZL96]. 2D [ZZZ+15]. 2D-DWT [ZZZ+15].
2nd [FK95, IEE93c, Nag05, YM97].
3 [Bri95, Che10, GBH14, GBH18, GPL+96,
GLT12, Gro12, HDT+15]. 3-D [Bri95].
3.0 [Ano97, Bra97, BRM02, BRM03, DBB+16,
KaM10, OP10]. 3.06 [Ano03]. 3.1 [WCC12].
3.4 [Gei97, GKP97]. 3.X [KS96]. 3000
[HWM02]. 33rd [ACM95a]. 37th [ACM06a].
3D [GAP97, Gra97, LO96]. 3D-Fall [Gra97].
3rd [ACM06b, CZG+08, Ano95a, IEE96a].
4 [Ano03, HRZ97, KSHS01, NU05, SD13,
SBT04]. 4.0 [DSGS17, JCP15, dOSMM+16].
4.5 [CBYG18], 43 [UZC+12]. 45-degree
[CT13]. 48th [IEE94c]. 4th
[BDW97, EdS08, FF95, USE00].
5 [TRH00]. 512 [RBB97c]. 5th
[AD98, Cha05, IEE94a, MdSC09].
600 [LSK04]. 6000 [AL93, NMW93]. 64
[dCZG06]. 64-bit [Wi93]. 6th [ACDR94,
DLM99, GT94, PW95, SHM+10, Sin93].
7th [ACM95b, CGKM11, DKP00, GN95,
PBG+95].
857 [MSMSW06]. 897 [HWS09]. 8th
[CMMR12, CD01].
90 [Ben95, SM03]. 9076 [Bri95]. '91
[BG91, EJL92, IEE91]. '92
[Sie92a, Sie92b, VW92]. '93 [Ano93f,
GGK+93, GHH+93, IEE93a, IEE93e].
93SC038 [FS93]. 93SC041 [Gle93]. '94
[BS94, DW94, GT94, IEE94b, IEE94h,
PSB+94, SPE95, WPH94, dGJM94]. 947
[LTDD14]. '95
[ACM95b, AH95, BH95, CLM+95, CJNW95,
DMW96, FF95, HAM95b, IEE95i, Lev95,
NM95, Van95, Ano98, FD97, KaM10].
95/NT [FD97]. '96
[ACM96b, ACM96c, BDLS96, BFMR96,
CH96, IEE96g, IEE96e, IEE96d, LHHM96,
Alamos [Old02]. Albuquerque [IEE91, IEE95d]. ALDY [GS96]. ALE [HAA+11]. Algebra [BDT08, CCD+13, CDD+13, Coo95b, IS16, MGMH97, Neu94, van97, BKvH+14, Cal94, Coo95a, PMZM16, dCH93]. Algebraic [CGPR98, Lev95]. Algorithm [ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, HD02b, ITT02, MW98, PKD95, PB12, RMDB99, SAS01, Sch96a, SWH15, Sta95b, TK16, WHDB05, ART17, AAAA16, ARL+94, AD95, BB95, BAV08, BY12, BCM+16, CUC95, CT13, CSW99, GM94, GCN+13, GGL+08, GKK+95, HWS09, IM95, JR13, KDSO12, KY10, KWEF18, Kan12, KPB16, KN17, KO14, Kon15, KRC17, LYZ13, MM92, MLVS16, MK00, NB96, NAJ99, OKW95, OMK09, PGBF+07, PSLT99, Ram07, RJC95, RAG+95, Sch96b, SOA11, Sur95a, TNIB17, Was95a, YULMTS+17, ZSK15, ZWL+17, dh94, van93, HWS09, LTDD14, Riz17, SMSW06]. Algorithm-based [PKD95]. Algorithm-Dependant [BP99]. algorithmic [RJDH14]. Algorithms [ACM95b, ATC94, ADRCT98, ASA97, CCSM97, DALD18, DAK98, DK06, FB94, GAMR00, GHR94, HO14, HHK94, IEE96d, IC92a, LHMM96, Li96, LAD16, MTSS94, MGMH97, MBS15, Nar95, Pet97, PKB00, SG15, VRS00, AK99, AL92, BHJ96, BMS+17, BID95, DDL95, FR95, FP92, GWC95, HL17, HPLT99, HKOO11, HS95b, Ju94, JRM+94, KL95, KRG13, LFL11, LNW+12, MTK16, MJG+12, NP12, Ols95, PP16, Pan95b, PPK09, PD11, PCS94, RH+96, SPE95, Sur95b, TSZC94, WCVR96, YLZ13]. alias [SOA11]. alias-free [SOA11]. aligned [AGIS94]. Aligners [SMM+16]. Alignment [dOSMM+16, AMHC11]. all-port [RJMC93]. All-to-All [LZH17, LZH18, Trä02b]. Allocation [AGS97, BS01, DGG+12, RFRH96]. alloy [TG94]. ALM [PZ12]. Altera [TK16]. Alternative [EM94, SWHP05, Trä12a, EKTB99]. ALWAN [HB96a, HB96b, MSB97]. Amazon [ZLZ+11]. AMBER [SL95]. AMBER4 [VM95]. American [Ara95]. AMIP [Gat95]. Among [CB16]. AMPIC [CCHW03]. amplified [EZBA16]. AMR [NLRH07]. AN2 [HBT95]. analogue [WWZ+96]. analyses [ANS95]. Analysis [BHW+17, BR02, BGG+02, BBC+00, BDL98, CGLD01, EML00, FK01, FJK+17, Hol12, KFB94, KNTO2, KRG13, LCK11, MCLD01, NAW+96, NMS+14, OS94, PZ12, PGAB+05, SPL+12, SBR95, SN01, TFGM02, Whi04, WM01, BB93, BBDH14, BBH+15, Che99, DSGS17, EPP+17, GR95, GFB+14, GKS+11, GE95, GE96, GT07, JB96, LC07, LLG12, LL16, LBH12, MBM+94, MMW96, MLA+14, MJPB16, Pat93, PHJM11, PGAB+07, SdSCP13, iSYS12, SS94, SDJ17, SPH95, Shi94, SLM+01, SSG95, TMC09, TW12, TFZZ12, Uhl95a, Uhl95c, VM94, YCL14]. analytical [BHW+12, HK09, JS13, KN17]. Analyzer [JJPL17, KKM15]. Analyzers [Ano01a]. Analyzing [BRU05, DF17, FM09, HG12, HCF05, PFG97]. anasslich [Ano94c]. Anatomy [KWEF18]. Andrew [Ano99c, Ano99d]. animal [LM99]. anisotropic [LB+16, SBB+16, YSVM+16]. 'Annai [CEF+95]. Annapolis [IEE96c]. Annealing [FH97]. Amnecy [VW92]. Anniversary [Ano92, Ano93e]. annotated [GGH99]. Annotation [MGA+17]. Announcements [Ano98]. Annual [ACM95b, Ano93a, IE95b, USE00, Van95, Y+93, ACM95a, Eng00, IE94e, IEE95l]. Ant [ITT02]. ante [Ano03]. antenna [DSOF11]. Anthony [Ano95c, Ano00b]. Antonio [Ano95d, IE95g, IE97c]. Any [Gro02a, Mar07]. AP [PBC+01, SMTW96]. AP [SMTW96]. AP1000
applications [BR04, BDV03, BAG17, BFM96, BFMT96a, CGK+16, CGBS+15, CDMS15, CLSP07, CBM+08, C1J+10, CFPS95, CCHW03, CCM+06, DZ98a, DSZ94, D+95, DCHO2, EKTB99, EGH99, EDSV09, FE17, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GJMM18, GS96, GHH+93, HZ99, HAJK01, JC17, JPTE94, LMG17, LCMG17, LZHY19, LS08, MA09, MBKM12, MLC04, MSCMC15, MS96b, NSBR07, NCB+12, NFG+10, P0K+16, Rab99, RS95, SJLM14, SPE95, SBG+12, SDJ17, SGH12, SG05, SLG95, SB01, SD16, TMC09, TBB12, TPLY18, Vet02, Wis96b, Wo092, WMP14, XLW+09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].

Applied [FGRD01, HC06, KaM10, HMKV94, MM92, NF94, PGK+10, DMW96, Was96].

Approach [AZG17, BHM94, BJ93, BHNW01, CRGM14, CD98, DLM+17, FFPO3, GCBL12, HD00, KBA02, KK02a, LGM00, Mart06, PRP01, Pet00a, Pet00b, RG013, Ros13, TJPF12, BK11, Bis04, BTC+17, CLY16, CP099, CRGM16, DiN96, EO15, FMS15, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LGS12, MGG05, MS99b, NEM17, OW92, SVC+11, SEC15, TF0900, W099].

Approaches [JCH+08, Ney00, SWHP05, SM02, BFLL99, CB11, PS00b].

Approximate

[Huc96, MM02, GGC+07, GG09, MM03].

Approximation [SLJ+14, SJLM14].

April [ANS95, AH95, Ano93g, Ano94h, CH96, DR94, GH94, Ham95a, IEE92, IEE93b, IEE95f, IEE96e, IEE97b, IEE05, LCH96, MC94, Nar95, Sie94, SW91, Ten95].

APS [GT94].

AQUApusph [CP15].

arbitrary

[HP11].

ARCH [Ada97, Ada98].

architectural

[GGC+07].

Architecture [BG94a, CGC+11, EBBK01, EM02, FD97, Fuj08, HRZ97, IEE97c, ITK700, LSZL02, PT01, PS01b, SMM+16, SC04, WK11, YTH+12, BBCR99, BG94c, CSPM+96].
Biconjugate [FGP12]. bidirectional [HE15]. Big
[GT+15, LK14, VPS17, ASS+17, Str94]. Biharmonic [RB01]. Bill [Ano99c, Ano99d].

billion [KTJ03]. Billions [MRB17]. binary [CG93, EPP+17, SGS95, TCBV10].

[CL03, Coo95b, MG97, Coo95a]. Bindings
[Ano98, VGRS16]. Bioinformatics
[BBH12]. Biological [CNM11, BA06]. Biomolecular [BCGL97, PZKK02]. BIP
[CDP99, Tou00]. BIP-Myrinet [Tou00]. BIP/Myrinet [CDP99].

bit [HLO+16, Wil93]. bit-parallel [HLO+16]. bitonic [PSHL11]. Black
[FSXZ14, Kha13, van93]. BLACS
[DSW96, DS96a, Wal95]. blame [DSG17]. BLAS
[Add01, ArvW03, FMFM15]. BLASTP
[LSMW11]. Block
[DDPR97, SMM+16, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, WO96].

Block-Cyclic
[DDPR97, WO95, HKMCS94, HC08, WO96]. block-tridiagonal [DR18]. Blocking
[FH98, BCH+08, HK+12, Nak03, HTA08]. Blood
[Pat93]. Blue
[BB99, YSP+05, MTK16]. Block-Cyclic
[DDPR97, SMM+16, WO95, ZB97, ADDR95, DR18, GP95, HKMCS94, HC08, WO96].
Cache-Oblivious [LZH17, LHZ18]. Caches [LB16]. Caching [kLCCW07, DO96, WMRR17]. CAE [KDL+95a, KDL+95b]. CAP [GR15, Mar05]. Caffe [AHHP17].
calculating [EZBA16, KD12]. Calculation [QRM96, GSMK17, KN17, MM95, NS16, SR11]. Calculations [RB01, Sta95b, ART17, WH96]. calculus [PQ07]. Calif [IEE93f]. California [ACM97b, Gat95, IEE93a, NM95, USE94, AH95, GE95, GE96, Has95, IEE93b, IEE93f, IEE94g, IEE95c, IEE95f, LF+93a]. Call [DW02, MCP17]. Call-Graph [DW02].
Calls [FHJ01, AGvL96]. CALPHAD [TKP15]. Cambridge [A095b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b]. CAMeL [KDL+95a, KDL+95b]. CAMeL/PVM [KDL+95a, KDL+95b]. CAMP [CLM+95]. Can [Gro02a, SBG+12].
Carolina [ACM95a]. cars [Str94]. CASCON [GGK+93]. Case [AIM97, BF01, BW+12, BDA94, BHL+95, CML04, DARG13, DH97, GL97a, GMdMBD+07, HHC+18, KCR+17, LSB15, RRBL01, SCI01, Tha98, BJ13, BJS99, Bri00, FO94, MS96b, PGK+10, Pri14, SIRP17, TPD15, Wal01b, ZSK15, LPD+11]. casting [KGB+09]. CATCH [DW02].

Canju [GPL+96, KSHS01]. Canju-3 [GPL+96]. Canju-4 [KSHS01]. Center [ACM98b, ACM99, ACM00, Hol12, IEE94b]. centered [JPOJ12]. Centers [EGR15].
Centre [IEE95e]. centric [SFSV13]. century [IEE95a]. CERN [VV95]. Cesena [CH96]. Cetraro [D+95, KG93]. cfrGcl [FLMR17]. CFD [SPE95, AMS94, ADT14, CP97, HAJK01, HT01, JR10, DK02, PBK00, YPAE09].
Characteristics [WR01, WT12, BN00, GL99, WT11]. Characterization [KB98, MM07, W096].
Characterizing [CBM91, BGD09, GScFM13, OdSSIP12]. Charge [BL95]. Charm [ZH06]. Charts [DSS00]. Check [MC17, LCC+03].
checkerboard [BW12]. Checking [CGZ13, Gro00, HMK09, LCC+03, MdSAS+18, PAdS+17, RAS16, SMAC08, YYW+12]. Checkpoint [SSB+05, SBF+04, CRM14, ZWZ05, ZHK06, BDB+13].
Checkpointing [DCH02, LMRG14, SSB+05, TSS00b, BMPS03, BCH+08, CG96, LCMG17, PKD95, S SSCC95, Ste96].

chemical [NMW93]. Chemistry [AKK+94, BR95a, DMW96, SSGF00].

Chemkin [Ano97, Bra97]. CHEMFI [RR01]. Chicago [CGKM11]. China [CZG+08, IEE97a, LHHM96, Li96]. Chip [Jes93b, URKG12, TDG13, dCZG06].

Cholesky [DG95, LC97b]. Chromosome [BM97, dOSMM+16]. Chromosome-Wide [dOSMM+16]. CICADA [MK94].

Circuit [WPC07, BJ95]. Circuits [GJN97]. Circular [Tsu07]. Circulation [GAM+02, Nes10, RSBT95]. CIS [AH00].

citation [Squ03]. City [Hol12]. civil [PW95].

CL [BHW+12, BBH+15, LW95]. CL-PVM [LW95]. CL ARRAY [ZT17]. clarified [WBBD15]. CLAS [DZDR95].

Class [DFN12, Ste00, Dem96, MSL96, RFH+95]. Classes [DeP03, GG09, Ott93]. classic [HL17]. Classical [BCGL97]. classification [TPLY18]. clauses [WC15]. Clemson [ACM95a]. Client [Ano93e, FSLS98, KS97, kLCCW07, Mat01b, Sch93, Sto98, Vis95].

Client-Agent-Server [Mat01b]. Client-Server [FSLS98, Sto98, Vis95]. Client-Side [kLCCW07]. Client/Server [Ano93e, Sch93]. climate [Str94]. CLIPS [Ano95a, Ano95e]. cIMAGMA [CDD+13].


Cloud [SIS17, URKG12, ZLZ+11, ZLP17, GHZ12, GWVP+14]. Cluster [AUR01, BKG02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Gei94, Gei00, GS+01, GT01, GC05, HD02b, IKT00, IDD94, KKH03, KSS96, KS01, KHS01, LR01, MFTB95, MM01, NOO2b, OF00, PFG97, RB01, RsT06, RLL01, SCR92, SHHI01, SHTS01, STO2a, TOTH99, Trä02b, bT01a, AL93, BLP93, BAL95, BTC+17, BID95, CCF+94, Cour93, ED94, GKO7, GMU95, Heb93, KEGM10, KO14, Kom15, LC07, Liu95, MW93, MM03, NOO2a, PDY14, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SSN94, Tho94, THM+94, Tsu95, UH96, YWO95, ZLZ+11, MS04].

cluster-based [LS96]. Cluster-enabled [SHHI01]. clustered [KHB+99]. Clustering [BBH12, HA10, RJC95, GGL+08, YCL14].

Clustern [MS04]. Clusters [AH00, AHHP17, BDH+95, BDH+97, BWV+12, CSC96, DK06, GMDMB+07, GSV+13, HPP02, HSMW94, HVA+16, Hus00, JNL+15, LC97a, LH95, LVP04, MS98, MFPP03, Pan14, PKB01, PT01, PS00a, Pus95, Rei01, dOSMM+16, SFG98, SVl99, Ste00, Tou00, UP01, WLN03, WT12, YWCF15, YKI+96, AB95, ALR94, ADB94, ABG+96, ADVM05, BWT96, BD03, Br95, CRE01, EKT99, GBF95, HCL05, Hus99, JKH08, Jun96, JR10, JRM+94, KLY03, KLY05, KSL+12, KJEM12, LBD+96, Lee12, LL13, LL95, LKYS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PRS16, PL96, RCFS96, RGDML16, SR05, SC96a, SL95, TFZ12, WLN06, WLYC12, YST08, YL09, YHL11, YWCC11, ZHS99, dCH93].

CM [SBG+02]. CMMD [Har94, Har95]. CMPI [GHZ12]. CMS [FMS15]. CNF [IKM+01, IKM+02].


Coarse [ADRCT98, IOK00, KOI01, LGM00, NIO+02, NIO+03, Heb93, RJC95].

Coarse-Grain [IOK00]. coarse-grained [Heb93, RJC95]. coarsening [PSL19].

Coast [SI16]. Coastal [GAM+02].

CoCheck [MS96b, Ste96].

Code [AHP01, And98, BCGL97, CB00, CP97, CCK12, CBBGPA15, DDL00, DZDR95, HE02, KA10, KAMAMA17, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03].
SZBS95a, Sta95b, TGBS05, AMS94, ADB94, AFST95, BCA06, BAC07, BW12, Bha98, Bri95, Coul93, DLR94, EZBA16, FMFM15, GSMK17, Heb93, LIW+05, JLL8, KPL+12, KH10, MGS+15, MHR+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SFLD15, SMSW06, TBB96, VBLvdG08, VDL+15, Wor96, YL09]. codebooks [PMM95]. Codes [FAFD15, JFY00, SWH15, HTJ+16, HWS09, HANP00, JPP95, KBG+09, LRW01, Mal01, OLG+16, WB96]. Coding [Uhl94, Uhl95b, SCC96]. Coecients [MW98, ARYT17]. cognitive [PMD+12]. Coherence [MM07]. Coherent [SS01]. Collaborative [DCPJ12, DCPJ14]. Collapse [PKYW95]. Collecting [BMR01]. Collection [LTRA02, DH95, MGC+15]. collection-oriented [MGC+15]. Collections [JFGRF12]. Collective [BIL99, BIC05, CCA00, FVD00, FCLG07, FPY08, GLB00, GMdMBD+07, Hus99, KH96, MGJ+12, PGAB+05, SG15, TRG05, VFD02, WRA02, HS12, HG12, HW97, KHB+99, KBHA94, KHM+14, MBBD13, Pan95b, PGBF+07, PGAB+07, RJMC93, SCB14, SCB15, SS99, TD99, Tr12a, TFZZ12]. Collectives [CSW12, SVL99, ZAh12]. Collector [GTS+15, WK08a, WK08c, WK08b]. College [AGH+95, An94b]. Collision [QRMG96, Sta95b, ART17, FFFC99, LHLK10]. Collocative [MKW11]. Colony [TT02]. Colorado [R+92, IEE05]. Colt [WN10]. Columbia [IEE95a, IEE95c, MAB05]. column [HSP+13]. column-stores [HSP+13]. COMA [GB96]. Combined [CBH94, TJJF92]. Combining [DP94, Rab98, SCB14, Sch96a, SMAC08, YPAE09, Bor99, Sch96b]. comes [An94f]. Coming [HK95]. Commands [OLG01]. comments [Str94]. commerce [An94f]. commercial [An93g]. commodity [GGL+08]. Common [HEH98, DK13, WLR05]. Communicating [FKK+96b, GMPD98, FKK96a]. Communication [ABF+17, BCG+10, BIL99, BIC05, DCPJ12, DZZY94, EM02, FST98a, FJK+17, FGK+97, FBSN01, GFD03, GFB+03, GGS99, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, KBG16, LRT07, LC93, LCVD94a, MH01, MMH98, MR96, NIT00, PLK+04, RK01, RRAGM97, RsT06, SWHP05, SCP97, SGH12, SGB+02, SJ02, ST02b, SGL+00, SKH96, Sun12, TRG05, TGT05, TRH00, Tr02b, UKM97, WBB97, XH96, YC98, ZSG12, FH98, BHHJ06, BVML12, BBH+13b, BS94, BMG07, CAH17, CGL+93, Dem96, DW12, DCPJ14, DGB+14, DSB+16, DS96b, GKB7, GM13, Gra97, GL94, GB94, HB96a, HWX+13, Hus99, HW97, KH96, KB01, KLY03, KLY05, KHB+99, LR06b, LFL11, MLAV10, MMU99, MAB96, OGM+16, Pan95b, Par93, PGK+10, PM95, PKE+10, PSK+10, PS00b, SH14, SC95]. communication [TG09, Tr12a, Vet02, Wu99, WMP14]. communication-based [PGK+10]. Communication-buffers [MR96]. Communication/Computation [HIP92]. Communications [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, GT01, GBS+07, GMdMBD+07, IEE95b, IEE95e, LZH17, LZH18, MB00, VFD02, YTH+12, BT01a, ADLL03a, ADLL03b, CDP99, HS12, KBHA94, MBBD13, McR92, MN91, MS99c, RGDM16, SCB14, SCB15, TD99, WLYC12]. Communicators [DFKS01, GFD03, GFD05, FKS96, GJMM18, KH96, MGJ+12]. communities [ACM04]. Community [BH+17, FCP+01]. Como [CLM+95]. COMOPS [Lue99]. Compact [Uhl94, Uhl95b, Wor96]. compaction [VSW+13, WK08a, WK08b, WK08c]. Compactly [KLR16]. Comparative [KB98, PSK08, SN01, AGGR+95b, ED94, YCL14].
Comparing
[BF01, Fin97, GBR15, HVSH95, ICC02, LKJ03, ORA12, SSG95, WBS17].
Comparison
[BvdB94, BS07, HC10, KMB97, LCW+03, Mat94, Mat95, Ney00, OP10, OF00, PPJ01, Pok96, RS93, RBB97a, SS01, SHH94b, VS03, Wal02, ZBd12, Ahm97, AB93b, BL93, BID95, GMU95, Har94, Har95, JS13, KDSO12, KC06, MSP93, Ols95, PS07, PSHL11, Pri14, SdM10, SYR+09, SWS+12, SHH94a, TSZC94].

comparison-based
[PSHL11].

Comparisons
[GGS99, PGC02, CLYC16].

Compass
[PWD+12].
Compatible
[MM14, LBH12, OIH10].

Compatible
[MM14, LBH12, OIH10].

Compcon
[IEE93a].

compete
[Ano96a].

Compiling[DMB16, Hos12, CGK11].

Complete
[CLR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEEE11, TGEM09, WPH94, Whi04, AGM06, BvdB94, BDG+92c, BR95a, HVSC11, KBG+09, PBK99, RBB15, SPE95, SZBS95b, STT96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Compiling
[DMB16, Hos12, CGK11].

Complete
[BD907, GHLL+98, Nag05, Per97, SOH+98, YM97, Ano99a, Ano99c, Ano99d, Ano99d, PRS+14, SOHL+96].

Compiled
[PTT94].

Compilation
[BCG97, GMPD98, MB15].

Complex
[BCG97, GMPD98, MB15].

Complexity
[NPS12].

component
[HL10, KRKS11, Squ03].

Components
[BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01].

Composable
[MLGW18].

Composed
[Wel94].

Composition
[PHA10].

composite
[MALM95, YPA94].

Compositing
[GPC+17].

Composition
[CTK00, Cot04, DLB07, FC05, KH15, CFP96].

compound
[LLC13, SAP16].

comprehensive
[RST02].

Compression
[FSC+11, KBS04, VPS17, AAAA16, HE15, UH96, Wtt99], compression-based
[AAA16].

Compton
[BDD96].

Computation
[BKGS02, B+05, Cer99, DSM94, DSS00, EMO+93, ESM+94, Fer10, FF95, G91b, HIP02, IE94a, IE96c, KS15b, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, WTTTH17, ACM97a, ABDP15, Bis04, BALU95, Bos96, BHKR95, CL93, CMH99, CKP+93, DZZY94, HLM+17, HK94, KB01, KHSB19, KJI+16, KG93, Lev95, MLAV10, Neu94, NZZ94, NCKB12, PF05, PE10, Rö00, Shi94, SH14, TBB12, TPD15, TW12, Vol93, Wan97, Was96, SM07].

computation-communication
[SH14].

Computational
[ALR94, CMM03, DFMD94, JFY00, KH15, Liv00, MBS15, R+92, SZBS95a, SM07, SN01, TDBEEE11, TGEM09, WPH94, Whi04, AGM06, BvdB94, BDG+92c, BR95a, HVSC11, KBG+09, PBK99, RBB15, SPE95, SZBS95b, STT96, Str94, VDL+15, BR95a, CCHW03, R+92, SL94a, WPH94].

Compilers
[Ano98, Dan12, IOK00, KSS00, KSHS01, MB12, Mar09, MKW11, SSE12, SKS01, TJPV12, TGB+02, TGBS05, BAG17, HEHC09, LME09, LHC+07, LLC15, MA09, Mü03, PP16, RKBA+13, SHHI01, THH+05].

Compile
[GB94, TSY99, JE95].

Compile-run
[TSY99].

Compile/run-time
[TSY99], compiled
[KYL03, KYL05].

Compiler
[Ano89, Dan12, IOK00, KSS00, KSHS01, MB12, Mar09, MKW11, SSE12, SKS01, TJPV12, TGB+02, TGBS05, BAG17, HEHC09, LME09, LHC+07, LLC15, MA09, Mü03, PP16, RKBA+13, SHHI01, THH+05].

Compilers
[Ano98a, CFF+94, LZ97, MKV+01, SBT04, SS96, Hos12, PAG+95, ZT17].

Compiling
[DMB16, Hos12, CGK11].

Complete
[BG94, TSY99, JE95].

Compile-time
[GB94].

Computes
[DBK+09, KKL11, ZLZ+11].

computed
[FWS+17, SSS99].

Computer
[ACM06a, Ano94a, GTH96, IEE95l, IEE96b, IEE96c, IS16, KCR+17, Neu94, Old02, PMvdG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW6, EGDK92, HJY91, KDS01, MR96, SM93b, SAP16, TS12b].

Computation
[AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvdG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW6, EGDK92, HJY91, KDS01, MR96, SM93b, SAP16, TS12b].

Computational
[DFN12].

Computations
[AGH+95, ACGR97, CGU12, CGPR98, IH04, PBK00, PMvdG+13, WJ12, ANS95, AASB08, BL99, CG93, DMW6, EGDK92, HJY91, KDS01, MR96, SM93b, SAP16, TS12b].
GBF95, KOS$^{+}95a$, LR06a, MMB$^{+}94$, NF94, POL99, PBK99, Wal94a, Wal94b].

**Computing**

[ACM97b, ACM98b, ACM00, ACM01, ACM04, ACM06b, ACDR94, AIM97, BJ93, BBG$^{+}95$, BDG$^{+}93a$, BGR97a, BL95, BCP$^{+}97$, BRST94, BDH$^{+}95$, BDH$^{+}97$, BHN901, BBH12, CZ95a, CGB$^{+}10$, CLL03, CNC10, Cze16, DDS$^{+}94$, DER901, DPP01, DKN$^{+}92$, DGMS93, DT94, FTV00, Fer98b, FGKT97, Fo989, FS93, GLN$^{+}08$, GS92, Gei93a, GBD$^{+}94$, GSxx, Gei00, GN95, GL97a, GT94, Gua16, Hol12, HT901, IEE92, IEE93d, IEE94c, IEE94g, IEE95c, IEE95k, IEE95l, IEE96a, IEE96f, IFI95, KKO2a, KS97, LCK11, LG914, LG911, LR01, Lus00, dFMBdF902, ME17, Mat94, Mat95, MS04, Nov95, PKYW95, PR94b, SHT01, SCS12, Sun93, SSSS97, Ste00, SGS10, SW91, Sun90a, Sun90b, Sun92, Sun93, Sun94a, Ten95, VV95, VW92, WN10, YH96, YG96, ACGr902, ARYT17, AL92, AH95, ASCS95, A90c3g, A90c4e, A90c4h, A90c03, ADDR95].

**computing**

[AMV94, BPG94, BDG$^{+}92a$, BDG$^{+}94$, BKML95, Br95, BHW$^{+}12$, CZ95b, CZ96, CHK915, DLR999, DKD08, DW94, DT$^{+}95$, DMW06, DE91, EKTB99, EJL92, FB01a, FGRD91, FO94, FS95, Fer98a, FS98, FME$^{+}12$, FHC$^{+}95$, GGGC99, GS02, GS91a, GS93, G9393b, Gei94, GH94, GL997, HP902, HW11, HH14, HPY$^{+}93$, HS95a, HH95, mH12, IEE97a, IM95, JPOJ12, JY95, JMJ$^{+}11$, JPTE94, KO14, Kos95b, KSSS07, LV12, LH98, LCHS96, LHD$^{+}94$, LHD$^{+}95$, LM13, Ma94, M9393, Ma95, Mar07, PGS$^{+}13$, PKB06, Pen95, PGK$^{+}10$, PTT94, PB95, NV01, PWD$^{+}12$, RBS94, RJDH94, Sch93, SGS95, SM00, STT96, Si94, SP11, Sun94b, SGDM94, Sun95, SD99, TJ909, TKP15, TDB00, Th949, TS989, VM94, Vis95, Was96, YULM97, YLC16, YSL$^{+}12$, Zem94, ZWL13, ZGC94, ZHS99, ZKRA14, ACM98a, Kon00].

**Computing**

[PW95, Per96, SCR92, TGEM909, A90c5b].

**Concept**

[KaM10, LTR00, SB95], concern [A90c4i].

**Concurrency**

[ME17, NPS12, DGB$^{+}14$, PTG13].

**Concurrent**

[Ano89, BDG$^{+}91b$, BAS92, BHV12, BKH$^{+}13$, DG95, GS91b, GS92, GSxx, Gra94, H93, Sun92, Sun93, ZDR01, BDG$^{+}92a$, FS95, GS91a, GS91b, LPD$^{+}11$, N912, RGDML16, RCG95, Sun94b, SGDM94, Wal94a, Wal94b, WK08a, WK08b, WK08c, ZWZ$^{+}95$].

**condensed** [MC99].

**Condition** [GK10].

**Condor** [CF01, PL96], conduction [iSYS12].

**Conference**

[ACM90, ACM94, ACM96b, ACM96c, ACM97b, ACM98b, ACM04, Abr96, ATC94, AGH$^{+}95$, Ano89, Ano93f, Ano94a, Ano94e, Ano94i, ACGR94, BBG$^{+}95$, B$^{+}95$, B097, Bos96, BF996, BH95, CGB$^{+}10$, CH96, DSM94, DZ94, DKM07, DKA92, ERS95, ERS96, EJL92, FF95, Gat95, GN95, GT94, HAM95a, HAM95b, HS95a, HS94, Hol12, IE92, IEE94f, IE95b, IE95a, IE95e, IE95i, IE95l, IE95j, IE95l, IE96a, IE96d, IE96h, IE96i, IE92, LCH91, LF$^{+}93a$, M893, Nar95, OL05, PR94b, Re96, R$^{+}92$, SPE95, Si96, SM07, Sin93, SW91, USE95, USE00, VW92, Vol93, WPH94, Y93, YH96, ACM95a, ACM05, ACM06b, ANS95, Ano93b, Ano93c, Ano95a, BR95a, Bi95, BDLS96, DR94, Eng00, GH94, JPTE94, LS96, Ma95, PW95, Van95, ZL96, ACM94, Ano94g, IE95b, KKD903].

**Configurable** [IEE94d, PKB$^{+}16$, BB94].

**configurations** [PTL$^{+}16$].

**conflict** [TCP15].

**conformational** [MK94].

**Congress** [CJNW95, GHH$^{+}95$, PSB$^{+}94$, BH95, dGJM94].

**Congressi** [GT94].

**Conjugate** [BG95, GFPG12, MM92, Ols95].

**Connected** [BT01b, KRKS11, OFO00, Pet01].

**Connectivity** [Whi94].

**Conquer** [CTK01, Cza02, Cza03].

**conscious** [ZA14].

**consistency** [WBSC17, YYW$^{+}12$].
Consistent [TGT10, CG96, CG99a].
Console [PES99]. Consortium [BRST94].
construction [ART17]. Constructs [KDT+12, PGC02, BKH+13, BN00].
consumer [ACJ12]. Contact [Nak03].
CONTAIN [SBR95]. containers [Str12, ZT17]. content [GBF+14].
contention [ALW94, DSG17, Zahi12].
Context [DDG+12, DR18, MsSAS+18, OLG+16, PAdS+17, SCB15].
context-bounded [MsSAS+18, PAdS+17].
Contexts [CS14]. Contiguous [WTR03].
Contract-based [KPNM16]. contrarian [KSSS07]. Contrasts [GGS99]. Control [FLD98, FM09, IEE94e, MS97, MBK12, SFL+94, SHPT00]. controller [GCC95].
convention [CEGS07, TVV96].
Convention [ACM98b, ACM99, ACM00, Hol12, IEE94b].
Converse [BK96]. Conversion [ZG95b]. convex [GCN+13]. convolutions [DZZY94]. Cook [SD13]. Cooperation [Wis01, Str94]. Cooperative [DG97, DiN96, HRS19, kLCCW07, Pet00a, Pet00b, KN+13, SHLM14].
Correctness [MM07]. Correlated [FME+12].
Coscheduling [GRV01, GH01]. Cosenza [KG93]. cosmological [BADC07, Sai10].
Cost [KS15b, RLL01, GKL97, GWVP+14, Wu99].
County [ACM98b]. Coupled [BM15, SS01, SBR95, Gra97]. Coupling [BS93, KRC09, SB95, WKB96]. course [STT96]. COW [KMG99]. CPPvm [Gar01].
CPU [DF17, JR13, KSL+12, Lee12, LRG14, LCL13, FLL11, OFA+15, PDY14, P14, SSB+17].
CPU/GPU [KSL+12, Lee12, LCL13, OFA+15, SSB+17].
CPU/multi [SAP16]. CPUs [KH12, LNK+15, ON12, SFSV13, YSWY14].
crashworthiness [LCVD94a]. Crawler [W01a].
Cray [BL94, GRM99, MP95, Sch96a, Sch96b, AGB+96, A295, AFST95, CCM97, LKJ03, LSK04, MWO95, Oed93, RBB97c, SWS+12, SCC95].
CRAY-T3D [Sch96a, Sch96b]. CRAY-T3E [Che99].
Creation [H01a, MFC98, PS00a]. crew [GHL97].
CRI [MSCW95]. CRI-MAP [MSCW95]. Critical [DGS17, SLN+12, SDJ17].
cryptanalysis [BSN95]. Cryptographic [PV97, ABDP15]. cryptosystem [WLC07].
CS [FST98a, FST98b, JH96]. CS-2 [FST98a, FST98b]. CS/2 [JH96]. CT [DYN+06, NAJ99].
CT-scans [NAJ99].
cube [Patn95a]. Cubes [DERC01]. CUDA [Prl14, AUIHK15, AAAA16, ACMZR11, AC17, Ano12, BHS18, BY12, BTC+17, BAG17, BSH15, BBH12, CAM12, CGU12, DBC94, FME94].
Current [Bak98, GFD05, IFI95, BDG+93b, FK94, FHP+95]. Cut [OS97].
Customization [GSY+13]. Cut [CFG99a, CBX+12]. cut-through [CBX+12].
CVL [Har94]. Cybernetics [IEE95a]. Cycles [PL96]. Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96].
Cyclops [dCZG06]. Cyclops-64 [dCZG06].

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, Bri95, BPMN94a, BAS13, CGU12, CP15, EFR+05, ES11, GCN+13, HF14a, HF14b, JR10, KRKS11, KO14, KD13, KHS01, KLR16, MK94, MSZG17, NSM12, TPD15, WMRR17, WR01, YSL+12, vHKS94].
D-CICADA [MK94]. DAC [Cza02, Cza03]. Daemon [LB98], Dagum [Stp02].
d’Aix [GA96]. d’Aix-Marlioz [GA96]. Dallas [ACM00, IEE95L].
Dame [IEE96I]. Damping [YPA94]. DAMPVM [Cza02, Cza03]. DAMPVM/DAC [Cza02, Cza03]. DAMS [CD98]. Dangers [BCP+97]. DaRelL [KN95]. Data [AJF16, BMR01, BCG+10, BGD12, CKnWH16, DERC01, DiN96, EGR15, EASS95, GTS+15, GB98, GMPD98, Gua16, HA10, HB96b, HC06, JDB+14, KA13, LK14, LDJK13, MV17, Man01, ME17, MGA+17, MBJ15, NJ01, NPP+00b, NPP+00c, NA01, NLRH07, PCY14, Re01, SGH12, SPK96, SR96, Str12, TSH+15, WO95, We94, ZDR01, ZG95b, AB95, ASS+17, AGG+95, BK11, Ben95, BR12, BID95, CFFL00, CGK11, CGL+93, DRUC12, EP96, FB97, Fan98, FVLS15, FME+12, FKK+96b, FWS+17, GE95, GE96, HB96a, HC08, JB96, JCP15, JE95, JPOJ12, KN95, KJJ+16, KRG13, LOHA01, LF+93a, LL16, MA09, MMB+94, MMM13, MR96, NCN+12, NCB+17, NPP+00a, OPP00, PDY14, RJMC93, SJM14, SSS99, SPH95, SK92, TW12, WO96, YCL14, YWO95, ZJDW18, ZRQA11].
Data-centered [JPOJ12]. Data-Driven [ME17, NCB+12, NCN+17].
Data-Intensive [Rei01]. Data-Parallel
[AJF16, GB98, CKmWH16, SPK96, CGL+93,
FKK+96b, MMB+94, MR96, SK92].
data-parallelism [BR12],
data-privatization [KRG13].
Data-Structures [GMPD98]. Databank
[FCP91]. Database [AR01, BFZ97, EK97,
MWG97, MM14, PPT96a, MN91, PPT96b,
PPT96c, PMZM16]. databases
[BA06, Bos96, ZWL13]. Dataflow
[DT17, CSPM+96]. Datasets
[VPS17, KGB+09]. Datatype
[Gro00, SWHP05, KHS12]. Datatypes
[JDB+14, RTH00, SGH12, Tha98, CAHT17,
THRZ99]. Dave [Stp02]. David
[An99a, An99b, An09b, Nag05].
DawnCC [MGA+17]. DAWNING
[HWM02]. DAWNING-3000 [HWM02].
Day [IS16]. dbx [NE98, NE01]. DC
[B+05, IEE94h, IEE95k]. DCE
[Sch93, FLD96, RS93, Sch93]. DDL [FB97],
Deadlock
[LZC+02, SG12, HPS+12, HPS+13].
Deadlocks [FKJ+17]. Debugger [WCS99].
Debugger [HM01, NE01, CH94, CG99b,
MT96, XWS96]. Debuggers [An91a].
Debugging
[BDGS93, GKP96, KKV01, KV98, Mor95,
NE98, Wis97, ZLL+12, BL97, BS96a,
DKF93, HLOC96, KCD+97, MLA+14].
December
[Bil95, Eng90, HHK94, IEE96a, Ku94,
NM95, PBPT95, Y+93].
Decimation [PCY14]. decoder [MC17].
Decomposition [BJS97, CP97, EGH+14,
DBVF01, ET9V4, OMK09, SHHC18].
decompositions [NZZ94], deconfliction
t[TCP15]. Dedicated
[WLN03, Hus99, WLN06]. Deep
[AHHP17, SEC15]. Defined [Gua16].
Defining [GAML01]. Deformable [STK08].
Deforming [GAP97], degree [CT13],
degrees [KTJT03]. Delegation [YTH+12],
Delegation-Based [YTH+12]. Delft
[DSZ94]. Delivering [Hus98]. Delphi
[ACGdT02]. Demand [CTK00]. Denmark
[DW94, DMW96, Was96]. Dense
[AKL16, BDT08, CDD+13, Fuj98, Hog13,
PMvG+13, ZBD12, BRR99]. Densities
[MW98]. Density
[BL95, MC17, CBHH94, ZWHS95]. Denver
[ACM01, IEE05, R+92]. Dependable
[GM95]. Dependant [BP99]. Dependence
[LA+15]. Dependency [PPR01].
Dependent [DFA+09, HO14, MFT95,
DM12, LB+16, LSY+16, ON12, SSB+16,
TV96, YPA94, YSV+16, YSMA+17].
DEPICT [HM01]. Deploying
[PKB01, CLLASDPD99]. depth [SSS99].
Derivation [GB98]. Derived
[JDB+14, RTH00, SWHP05, Tha98,
CAHT17, Jou94, THRZ99]. Descent
[Sch01]. description [TKP15]. descriptors
[LN+12]. Design
[AS92, AAC+05, Ano1b, ACD+09, BCD+15,
BBH+13b, BS96b, BRM02, BRM03, CLP+99,
ETWaM12, FD02a, FF03, GG09, HWM02,
JSH+05, KVGH11, kLCC+06, kL11, LVP04,
Man94, MMSW02, NPS12, OFA+15, Pan14,
PLK+04, PCS94, SBG+02, SWYC94, SSL97,
SPK+12, Sum12, THM+94, USE94, VGRS16,
BR91, CARB10, CSS95, DS96b, FD02b,
GL94, GkLyCV97, KA95, LC07, MAS06,
OA17, PGK+10, PTW99, SL94b, Sep93,
Si96, SSD+94, SWL+01, Wal94a, Wal94b].
design-pattern [MAS06]. designed
[BSH15]. Designing
[GKZ12, LAD16, SWHP05, SH14, WYLC12,
ZLP17, AHHP17, DSOF11, Pan95b].
Designs [HVA+16, AAAA16, MC17, Shi94].
desktop [Mar07]. Detailed
[DLV16, RSPM98, BTC+17, LR06b]. detect
[Str94]. Detecting
[AGG+95, PPJ01, ZRQA11]. Detection
[BHW+17, CSW12, CBL10, CFMR95,
DMMV97, EML98, FME+12, HHC+18,
KS14, SG12, ZDD97, BBH+15, DE94a,
HDDGO9, HGMW12, HPS+12, HPS+13,
LZC+02, RAG95, TCP15, TDG13,
TWFO09, WTFO14, YULMTS +17.

Detector [DZDR95]. Determination [LAFA15]. Determine [BP99]. Deterministic [CFMR95, DK02, ZLL +12]. Develop [PD08]. Developer [IEE96i]. developers [Str94]. Developing [BFZ97, CCSM97, DDLN95, Reu03]. Development [AC17, Ano01a, BDG +91b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDabee11, ArvW03, ABC +00, BL97, BDG +92a, DS94, DHP97, KCD +97, LLC13, MMW96, PES99, SM12, TBB12, ZL96, Sei99]. Developments [Mat00a]. device [KKLLL11, LS10, SBQZ14, YWTC15]. Devices [GJN97, ZJDW18]. DFB [WWZ +96]. DFN [RS93]. DFN-RPC [RS93]. Diagnosis [AP96, LAdS +15]. diagnostic [RSBT95]. dictionary [LSSZ15]. Diego [Has95, LF +93a, NM95]. Difference [UZC12, GFP12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94]. Differences [AKE00, LCDZ97]. Different [AIM97, GL97b, JCH +08, Ney00, Rab98, RB97a, BN00, PY95]. Differential [MFTB95, Riz17, JK10, NF94, RBB15, SP11]. Differentiating [Cer99]. Differentiation [BBH +08, BGK08, CdGM06]. Diffusion [HF14a, HF14b, MW98, CEQS07, DM93, MM92]. Digest [IEE93a, IEE95c]. Digit [DALD18, LAD16]. Digital [KLR16, CIJ +10]. Dijon [YH96]. Dimemas [GLB00]. Dimensional [Car07, GA96, HD02b, KD12, LRQ01, MW98, SJK +17a, SJK +17b, AL93, KT02, LSSZ15, Ols95, PR94c, Ram07, RG18]. Dimensions [SAS01, Ano93g, HP11]. dipolar [LBB +16, LYSS +16]. DIPORSI [GGCBO01]. DipSystem [SPL99]. Direct [Bri10, GPC +17, LB98, WJB14, BCM +16, Gra99, HWS09, MM11, SW15]. direction [BDG +93b]. Directions [IFI95, FK94, FHP +95, Sun96]. directive [LV12, NO02a, YL09]. directive-based [LV12, YL09]. directive/MPI [NO02a]. Directives [BBG +01, BKO00, CCBPGA15, JFY00, LOHA01, VGS14]. directory [JCP15]. Discovering [FJK +17]. discovery [BK11, GWVP +14]. Discrete [ST17]. diskless [PKD95]. Disks [dFMBdFM02]. Dispersion [Rsv +05]. Displacement [BJS97, PSSS01]. Dissemination [GL97a]. Distance [MR12]. Distances [LAFA15]. Distributed [AGS97, Ano95e, BMS +17, BME02, BGR97a, BL95, Bha93, BJ95, BRST94, BT01b, BHKR95, CGB +10, CL10, CSW97, CC99, DMB16, DBA97, DFMD94, DG97, DHHW92, DHHW93a, EMO +93, ESM +94, FH95, Fan98, FTVB00, FK01, Fos98, FS93, FFFC99, GGMG99, GCGCO01, GCGS98, GCBM97, GWC95, GM95, HJ98, HC10, HRSA97, IEE93d, IEE93c, IEE94d, IEE94g, IEE95b, IEE95k, IEE95i, IEE95g, IEE96b, IEE96g, IEE96f, IEE05, JML01, KBA02, KP96, KDL +95b, KL95, KK02b, KSHS01, LC93, LHD +94, LHD +95, MZK93, MB12, MFTB95, MSCW95, Mat95, MBE03, NSBR07, NZZ94, NH95, Pen95, PKYW95, Pet00a, Pet00b, PTT94, PMM95, PBK00, PD98, PMvdG +13, RDG97, Sch94, SA93, SMOE93, SW91, Sun90a, Sun90b, TSS00b, THN00, WU93, WO97, WCS99, YH96, ZDD97, ZDR01, AMBG93, AGR +95b, AB95, Ano94e]. distributed [Arn95, ADMV05, BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF +95, CBHH94, CLLASDPD99, CPR +95, CK99, DLR94, DR94, DHW93b, DR95, EGH99, FB97, FS95, FS98, FHC +95, FHB +13, GBR97, GNC +10, GKK09, GkLyCY97, GP95, HCY +93, HHA95, IEE97a, JW196, KN95, KSG13, KJ +16, KDL +95a, LR06b, LFS93a, LFS93b, LH98, LKL96, Liu95, Maf94, MVTN96, Man98, MLC04, NA99, OLG +16, PK05, POL99, Par93, PR94c, RAGJ95, RFH +95, SSH08, SHH01, SL94b,
Sch93, SFL+94, SSC96, SPL99, Smi93b, SD99, TSP95, THM+94, Uhl95a, VM94, VB99, Vet02, Vis95, Wal94a, Wal94b, WPL95, Wan97, YLC16, YWO95, YX95, YPZC95, ZLP95, ZLC96, ZGC94, ZHS99, Pet01.

distributed-data [FB97].

Distributed-Memory
[CWS97, CC99, KN95, SSH08].
distributed-shared [ADMV05].

Distributing [AL2]. Distribution
[BB96b, MJB15, NPP+00b, NPP+00c, NA01, SR96, AGG+95, CSW99, GS96, HB96a, JMdVG+17, KRC17, NPP+00a, RJMc93, Wtb94]. Distributions
[ST17, WO95, HKMCS94, WO96, vHKS94].

Divergence
[SdSCP13, VSW+13].
diversity [EO15]. Divide
[CTK01, Cza02, Cza03].

Divide-and-Conquer
[CTK01, Cza02, Cza03]. DMMP
[BH02, ZL+12]. DNA
[PFG18].

DNAml
[CDZ+98]. DNMR
[SRI11].
docking
[ESSB13, ZWL13]. Document
[MH96, AD95]. Documentation
[BGD+xx]. Documents
[AN08]. does
[KC94]. dog
[LK14]. Domain
[BMR01, CP97, EGH+94, KLI1, ETV94, HE13, Ne93, NZ94, Oh14, OK90, Ram07, SHHC18, VM94].

Domain
[KR09]. Domangarra
[An095b, Ano96a, An099a, An099b, Nag05].
dOpenCL
[KSG13]. Double
[FKK96, PTT94]. down
[Str94].

Downloadable
[An098]. DP
[Arn95, KLR+15]. DPVM
[HLA+00]. draft
[DHH93b, GL92]. Draw
[ST17].

Dresden
[MdSC09]. Driven
[AIM97, ME17, PCY14, Hin11, NCB+12, NCB+17, Qu95, SIS17, TFWO09, WFTO14].

Dror
[Stp02]. drug
[GVWP+14]. drugs
[Str94]. DSIR
[LTR00, RTL99]. DSM
[KBPV07]. DSMC
[LI18]. DSMPI
[SSC96, SSC97]. DTM
[PS07]. DTS
[BHK95]. Dual

[BBC+00, GAM+02, DK02, CT13, LSSZ15]. dual-dictionary
[LSSZ15]. Dual-Level
[BBC+00, GAM+02, DK02]. dual-scanline
[CT13]. Dublin
[LKD08]. During
[DeP03]. Dust
[dLFMBdFM02]. DVFS
[PTL+16].

DWT
[ZZZ+15]. Dyn
[WNL03, WNL06]. Dynamic
[ACGR97, AGS97, AUR01, CGLD01, CKnWH16, CML04, CK99, CTK01, DMB16, DBA97, DFMD94, FMBM96, FD00, GFM03, GFM05, GROV1, GCBL12, GMPD98, GL95a, KFL05, NPP+00c, NLRH07, PK98, PLK+04, PT01, PGCJ+18, Ram05, SPH+18, SMI93b, SY95, TS12a, VdS00, Veto2, Wal01a, Wil94, YST08, Zel95, DDLM95, EO15, FH97, FCS+12, FKB08, JC17, MSMC15, NSBR07, NF94, OKW95, RBA17, RCG95, SCB14, SCB15, SCK+12, SK+14, WRSY16, YPA94, DvdVS94, FCS+12]. dynamically
[SSS99]. DynamicPVM
[DvdVS94]. Dynamics
[BST+13, BCG97, DR97, JFY00, KFM97, dLFMBdFM02, MH01, OS97, SZBS95a, SA93, TDBEE11, TGM09, YWCF15, ZB94, ALR94, ABG+96, AGJM06, Bvd94, BHS18, BvdSvD95, BBK+94, Bmpz94b, BMPZ94a, CC00b, FS099, HVSC11, JAT97, JMS14, KFA96, KPK13, KRG13, LSVMW08, OKM12, PARB14, PK99, RBB15, SEMP, SZBS95b, SKM15, TC94, WPH94].

Dynamische
[Wil94]. dynamite
[IvdLH+00, IHV+00]. Dynamite/DPVM
[HIvH+00]. DySel
[CKnWH16].

E-scale
[GUA16]. each
[An000a, An000b].

Early
[CD96, IL12, SLG95, EFR+05, KJ+93].

Earth
[KCTJ03, NA03, NA05a, NA05b, UTY02]. Earthquake
[UCS+12, KCTJ03, KME09].

Easily
[PKB01]. East
[IS16]. Easy
[HCA16, TDG13, MJPB16, SBF94].

EasyGrid
[BR04]. EASYPVM
[Saa94]. ECMWF
[HK93, HK95]. ed
[Nag05].
Enhancements [BDG+95, BCKP00, DM95b, DM95a].

Enhancing [BFIM99, FSC+11, MVTP96, MSMC15, OFA+15].

Ensemble [Cot97, Cot98, BY12, FH97].

Ensemble-Based [FH97].

Environment [BDGS93, BFG+10, BFM97, BGL00, CHPP01, CTK01, DLB07, DI02, DHHW92, DHHW93a, DDL00, FTVB00, FWR+95, GJN97, GL97a, HRSA97, KBA02, KKH03, KDL+95b, KVH97, LC93, Lus00, MSOGR01, MM02, MFG+08, MSS97, NJ01, Ong02, Rol94, SDN99, SGL+00, SGHL01, TTP97, WL96a, ABG+96, BDG+92b, BDG+94, BK96, BT96, CEF+95, CLLASPD99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+96, GkLyCY97, HZ94, IJM+05, IvdLH+00, KDL+95a, Kos95b, KFSS94, wL94, MSL12, MK07, NP94, PES09, PVKE01, PQ07, RNP13, SSKF95, Sch93, SPK96, SBF94, SWY94, Skj93, SSG95, TJD90, Tho94, WCC+97, WL96b, WLC07, ZLS96].

Environmental [ANS95].

Environments [Ano95e, Ano01a, Bak98, BF98, DT94, GF9+03, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SHH94b, SSS97, SCL00, TAH+91, ACGrT02, ARL+94, ARLR94, ADDR95, AMV94, Bon96, BFM99, CDH+94, CK99, DR94, DR95, EO15, HS93, HVSH95, LC07, MSP93, SS94, SHH94a, SAP16, TSS98, VB99, YS96, ZL96].

Environments-the [CDH+94].

EPS [GT94].

Evaluating [BwV+12, FVL15, FST98a, GFD05, GFCG01, GB96, HWW97, LH95, SSS97, ZSnH01, GScFM13, LTLC94, TG09, ZL+11].

Equation

Equations [Ano98, BG95, GK10, Huc96, LL93, MTFB95, ORA12, ZB97, BH9+12, Che99, IM95, JK10, Jou94, MM11, NF94, RBB15, SP11, SMSW06, ZZG+14, dH94].

Equi [LTRA02].

Equi-Join [LTRA02].

equivalencing [LL12].

Era [ABB+10, CZE+08, CGMM11, EdS08].

Erratum [Ano01b, HF14b, Wa194b].

Error [DFC+07, HPS+12, HPS+13].

Errors [FCLG07, SD16].

Erweiterung [GBR97].

ESA [Whi94].

ESBMC [MsS+18].

ESBMC-GPU [MsS+18].

Espoo [RWD09].

ESPRIT [CDH+94].

Estimation [GK10, AMHC11, CCU95, GB94, JMDV+17, KS13, ZWS95].

Estuarine [LRQ01].

Ethernet [CC00a, Fin97, HcF05, KJL93, KYL05, OF00, PFG97].

EU [Ano03].

Eugene [MC4+08].

Euler [DLR94, IID94].

Euler/Navier [DLR94, IID94].

EURO [HAMD95b, BMFR96, HAMD95b, BMFR96].

Euro-Par [BMFR96, HAMD95b, BMFR96].

Euromicro [IEE95h].

EuroMPI [CDND11, KGRD90, TBD12, TB14].

EUROPE [LCHS96, Ano92, Ano93e, Ano93f, Ano94g, Tou96].

European [AD98, Ano94i, BR95a, BL95, BDLS96, BC00, BDW97, CHD07, CHD09, CD01, CDND11, DK05, DLM99, DK00, DLO03, KGRD10, Kra02, KKD04, KKD08, MTWD06, RWD09, TBD12, WPH94, DHK97].

EuroPVM [BDLS96, OL05, DDK07, MTW07].

EUROPV/MPI [OL05, DDK07, MTW07].

EuroPVMMPI [KDDV03].

EUROSIM [BH95, DSZ94, BH95].

Eurospace [Tou96].

Eurospace-Ada-Europe [Tou96].

Evaluate [MW98].

Evaluating [BwV+12, FVL15, FST98a, GFD05, GFCG01, GB96, HWW97, LH95, SSS97, ZSnH01, GScFM13, LTLC94, TG09, ZL+11].

Evaluation

[ATM01, BF98, BIC+10, BM97, BEG+10, CLP+99, DI02, FST98b, FSSD17, Han98, JCH+08, KKK02b, KSS00, LGCH99, LNK+15, L979, kL11, LVP04, HMO1, MGC12, NNO00, OTK15, OM96, Pan14, Part93, RB01, SWHP05, SCP97, SEF+16, ...]
SBF+04, SM02, Sou01, SJK+17a, SJK+17b, TOOTH99, TSB02, TSB03, TTSY00, UM97, VY02, AB13, BBG+14, BBH...13a, BMG07, CB11, DDB+16, HPR+95, HASnP00, HPS95, IM94, JC17, JMdVG+17, LV12, LNW+12, MKP+96, MM03, MT96, MMH99, NN95, PSK08, RLFdS13, SL94b, SWS+12, SWY13, SFSV13, TSP95, THM+94, TMPJ01, Wor96, YWO95, YS93, ZHK06.

Evaluations [MM14]. Event [KKV01, NSLV16, THS+15, WM01]. Event-Based [NSLV16]. everything [CCM+06]. everything-shared [CCM+06]. Evolution [Mat01a, PS01a, RBB17, SSL97, SGDM94, GS93, SSD+94]. Evolutionary [B+05, DSM94, Rag96]. Evolving [Bad16, ER12, MDC09]. Ewing [Ano95c, Ano99c, Ano99d, Ano00a, Ano00b]. EWOMP’99 [BC00]. Exact [dOSMM+16]. Example [Che10, NB96, Pat93, SK10]. Exascale [Bad16, LV12, LSG12]. Exception [FMSG17]. exchange [MMM13, Pan95a]. excluded [BHW+12].

executable [WMP14]. Execution [AHD12, BME02, DT17, FC05, FM09, GR07, KLG+03, Mar05, MGF+08, MAGR01, Ney00, STY99, SAP16, EPML99, Mor95, SMAC08, TNIB17, TSY99, TSY00, UGT09].

Executions [GAML01]. Exhibition [HS95a, GH94, LCHS96]. Existing [CB00]. EXOCHI [WCC+07]. Expand [CGC+02]. Expanding [LA02]. expected [CAHT17]. Experience [BCP+97, BT96, CP98, PS01a, Tou00, AMS94, CARB10, KJA+93, RSC+15].

Experiences [APH01, BFK97, CMV+94, CLLASPDP99, GLN+08, GS91a, GI97, GB96, GL95d, ITTO2, JR10, KS97, Mar02, TEGM09, ZPLS96, ZKRA14, AL92, CCF+94, Sch94, SGDM94, BDG+93b].

Experiment [Luo99]. Experimental [BIL99, BIC05, EGC02, Ser97, UM97]. Experiments [BPWM97, CMC94, LGM00, OS97, RR00, ZB97, RHG+96, HAJK01].

Expert [BPG94]. experts [EO15]. ExpEther [NMS+14]. Explicit [BH912, GFG12, SGHL01, LC97b]. Explicitly [Ma912, SY+90]. exploit [ZPI06]. Exploitation [GGL+08, GAM+02, BK11, GAM+00].

Exploiting [Add01, BRL08, HEHC09, KFL05, NAAL01, Nob05, THH+05]. Exploration [AMuHK15, OFA+15, ABDP15, GE95, GE96, PDY14]. Explorations [BGG+15]. Exploring [IFA+16, MBK12, MU+15]. Expose [SAL+17]. Exposing [SD16].

Exposition [IEE95d]. EXPRESS [KS96, Ahm97, FK94, LH95, SHH94a, SHH94b]. Expression [BN12, KH15, Sur95a]. expressions [SFLD15]. expressive [TAl12a, YLC16].

Extend [DFA+09]. Extended [BR02, HTA08, SS99]. Extending [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMRG14, Mar03, OFA+15, RGDL16, SDV+95, TMTP96, CG96, GGHL+96]. Extensible [BL97, GS94]. Extension [AELGE16, BGR97a, CSAGR98, VATT95, Hum95, JH97, SG14, SC95, ZT17, GBR97].

Extensions [Fis01, GOM+01, GHL+98, HVA+16, HE15, DPD08, HP05, Kat93, Ano99c, Ano99d].


factorization [AZ95, BSvdG91, BRS92, DG95, KBP16, WLC07]. Factorizations

[SHH94a, SHH94b]. **GECCO** [B+05]. Geist [Ano95b]. **Gemini** [SWS+12]. **gems** [Fer04, mH12, Ngu08, PF05]. gene [PCS94, AWC+05, BKH+05, Eff+05, KMH+14, LM13, MSW+05].

**gene-finding** [PCS94]. **Gene/L** [AAC+05, BKH+05, Eff+05, MSW+05].

**Gene/Q** [KMH+14, LM13, MV17].

**General** [Che10, IH04, MW98, Ngu08, PF12, SK10, SWS+12, YPA94].

**General-Purpose** [Che10, ABDP15, CBM+08, KPNM16, PF05, SK10].

**Generalized** [DFKS01, FKS96, BSH12, SK10, WKS96, YPA94].

**generational** [WK08a, WK08b, WK08c].

**generative** [MA806]. **generator** [Lan99, TN1B17, YL09]. **Generic** [ARS89, AKL16, BBH12, CBP15, DSH13, FSH96, GTH96, HTO90, LTDD14, RGD16, SBS+17, TGBS05, YPA94].

**Geometric** [STK08, STT96].

**geophysical** [Has95].

**Georeferencing** [GCC98]. **Georgia** [USE00, UCW95]. **German** [EGH99, GBR97, Gra97, GEW98, Sei99, Wer95].

**Germany** [BDLS96, GH94, KGKD10, MTW06, MsSC09, PSB+94, Sch93, Tou96, Ano93a, BPG94, Cal94, GHH+93, WPH94].

**Gesellschaft** [Ano94c]. **get** [Str94].

**Getting** [Nob08]. **GF100** [WKP11]. **gHull** [GCN+13]. **GHz** [Ano03]. **Gibbs** [BPR15].

**Gigabit** [CC00a, HcF05, EGH99, OF00].

**Gigabit** [CC00a, HcF05, EGH99, OF00].

**GigaNet** [GT01, Tra02b, bT01a]. GIS [CFPS95, CCM97]. Give [DZ09b].

**Globally** [HBS+02]. **GLUE** [RAB98].

**GMRES** [hF94]. **Gmunden** [Vol93].

**GNU** [YSMA+17]. go [KC94]. good [Mat03].

**Göttingen** [Ano94c]. GP [LRGB15].

**GP-GPU** [LRGB15]. **GPFS** [AHP01, BIC+10, PTH+01a, PTH+01b].

**GPGPU** [BHG+15, HA11, HZG08, MBKM12, PTG13, TY14, YZ14, YEG+13].

**GPGPUs** [JMDV+17, LSB15].

**GPU-Accelerated** [KA13, SCSL12, PGdCJ+18].

**GPU-Aware** [Pan14].

**GPU-based** [MMO+16, SS09].

**GPU-code** [EZA16].

**GPU-programming** [HSE+17].
GPU-Resident [JDB+14], GPU Direct [OGM+16, YWCF15], GPUMP [ZC10], GPUrpc [IFA+16], GPUs [BY12, DS13, DS16, GML+16, GFPG12, GPC+17, GM18, HTJ+16, HLP10, HP11, HLP11, Hos12, IFA+16, JKM+17, JAK17, KGB+09, KKM15, KKLL11, KVGH11, LHB12, LRBC15, MA09, ON12, OHH10, PP16, PB12, SHLM14, SDB+16, SKK+12, Ts12, VY15, WRSY16, WJ12, WJB14, YLZ13, YSWY14, ZC10, ZZZ+15].
gpuSPHASE [WMRR17]. GPUVerify [BCD+12]. GQ [RFG+00]. GRACE [YKI+96, ZRQA11]. GRADE [DDL00].
Gradient [BG95, GFPG12, KN17, MM92, Ols95]. Grain [AZG17, IOK00, KOI01, MJJP16, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94].
Grained [ADRCT98, BBGG+10, LGM00, TCM18, YSS+17, Heb93, LZHY19, RJ9C95]. Grammatical [RBB+17]. Grand [DGMJ93, Ten95, BDG+92a]. Graph [BH+17, DW02, MM14, NPS12, PPR01, STV97, HLP10, HKOO11, PP16, PD11].
Graph-Based [NPS12]. Graph-Partitioning [STV97]. Graphic [HJBB+14]. Graphical [BDG+91b, DDL00, BDG+92a, KCD+97, KFS94, SSKF95, VDL+15].
green [PTL+16]. Grenoble [JPTE94]. Grid [AB93a, CGB+10, CLL03, DPP01, Fos98, KT02, LAf01, Liv00, MRB17, PLK+04, Rei01, TGE09, AB93b, Eng00, GLM+08, KRKS11, WYLC12, AASB08, BR04, CCHW03, DKD08, FC05, GFB+03, GL02, KTF03, KGBK+09, KSSS07, LC07, LS08, NSBR07, RPM+08, RTRG+07, SHTS01].
Grid-Adaptive [KT02]. Grid-Enabled [Fos98, GLM+08, KTF03]. Grids [NO02b, ACH+11, CC10, KKB+09, NO02a, NB96, BBH+06, GR07, Ram07, SN01].
GROMACS [BvdSDvD95]. Gropp [Ano95c, Aso99c, Ano99d, Ano00a, Ano00b]. Gross [LBB+16, LYSS+16, SSB+16, YSVM+16, YSMA+17]. Ground [HTHD99, NS16]. groundwater [AFST95, EGDK92]. Group [AD98, Ano98, Ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKP00, GN95, KGRD10, Kra02, KKD04, LCD08, MC94, MTWD06, RWD09, TBD12, UMK97, BDW97, DLO03, MMU99].
GUI-awareness [VGS14]. guidance [SDJ+17]. Guide [Aro12, D+91, GBD+94, LAo04, NO95, Per96, Ano95b, BDG+91a, MCK94].
Hamiltonian [ART17]. Handling [DFC+07, FMSG17, LSB15, GMM00, RC97, FFFF99, LNW+12, THRZ99]. hands [KmWH10]. hands-on [KmWH10]. Harbor [BB+00]. Hardware [BGG+15, BWW+12, Bru12, BCKP00, CDPM03, DWH02, GIMM18, HSP+13, LGM01, MFCC98, PSM+14, PKB+16, vdLJR11, ER12, GGL+08, PMZM16, Rab99, SBG+12, SH94, SWS+12, YAJG+15, ZLS+15]. Hardware-Based [CDPM03]. Hardware-oblivious [HSP+13]. harmonic
YULMTS+17, YPZC95, YZPC95, dAT17.

Imagery
[GGCM99, GGCGo01, GCGS98, GGGC99].

Images
[Uhl94, Uhl95b, VLO+08, NAJ99].

Imaging
[NH95, Has95, LM13, Pat93].

Imbalances
[MLVS16].

Immunodominance
[ZWL+17].

Impact
[ADLL03a, ADLL03b, BRU05, Bri12, TSS00a, WHDB05, DO96, FSV14, SHHC18].

Impacts
[Str94].

Implement
[GM95, PPT96c].

Implementation
[AB93a, AKL99, BGG+15, BGBP01, BPS01, BG95, BHP+03, BBS99, Ben01, BP98, BCD+15, Bjo95, BJS07, BIC+10, BMR02, BRM03, BMS94b, BMG07, CGC+02, CFMR95, DYN+06, DAK98, EFR+05, ES11, FH97, FD04, FHS099, FXXZ14, FJBB00, FHP94a, FHP94b, FHP+94, FSLS98, GBD99, GB98, GBS+07, Gro02a, HPP02, HR97, HKT+12, Huc96, HMA95, HAA+11, IBC+10, ITT02, IM94, JSS+15, JSH+05, LSL02, LTRA02, LS97, LWP04, MSL02b, MW98, MN91, MT96, MRH+96, NSS12, NN000, OTK15, OLG01, Pan14, PLK+04, PS00a, Pet97, PBB99, PTH+01a, PTH+01b, PB12, RDM99, RG18, RSV+05, SH94, SBF+04, SBG+02, Ser97, SCC96, SSC97, SZBS95a, SWJ95, SYF96, Sun12, Sur95a, TOTH99, TBC+02, TRH00, TJP01, USE94, VT97, WH94, WPC07, YGH+14, YWO05, ZZG+14, ACGdT02, AS92, AAAA16].

implementation
[AAC+05, ADLL03a, ADLL03b, AB93b, BR91, BvdSvD95, BR95b, Ber96, BCD99, BK96, BCK+09, BSS05, Bor99, BRR99, BS96b, BDV03, Br95, BB00, BAS13, CDP98, CEGS07, CG99a, CDMG96, CDBH94, CD06, DSW96, DS99a, DL10, DBC+16, DSOF11, DM12, FFB99, FWNK96, FGT96, FGG+98, GCC99, GG99, GB99, GAVRRL17, GL92, GL94, GL96, GLDS96, GL97c, GT07, GkLyC97, HBT95, HCL05, HSS95b, ITT99, IvdLH+00, JRM+94, JC96, KY10, KTF03, KBVP07, KL95, KVGH11, KB13, Lee12, LC07, LO96, MMO+16, Man94, MAIVAH14, MS95, MSZG17, ON12, OKW95, OA17, OGM+16, PHJM11, PR94a, PTW99, PCS94, Ram07, RRFH96, Seq93, SZBS95b, SCL97, Sto98, SNMP10, Sur95b, SL95, TKP15, TP15, TS12b, TA14, TCP15, Tsy15, TVV96, VDL+15, VGRS16, VM95].

implementation
[Was95a, WMR17, YPA94, ZLS+15, dH94, dAMCFN12, van93].

Implementations
[AKK+94, AII14, ACMIR14, AJF16, BM00, BS07, BEG+10, FB94, Gro02b, kLCC+06, LCW+03, Mar02, ORA12, Sap97, TSCA12, TGEM09, VS00, WT12, ZDD97, CLSP07, ER12, ED04, GML+16, ICC02, KWE18, MKP+96, NN95, Pri14, RLFdS13, WT11, YCL14].

implemented
[BBH14, EP96].

Implementing
[DPZ97, Fin94, Fin95, GL95b, HB96a, HB96b, LRT07, MMH98, MS99c, MSB97, SSC96, SS99, SMTW96, SGHL01, SCC95, Traf02a, Wil93, BWT96, LH97, YYX5].

Implementor
[GL95b].

Implicit
[MS02b, NA01, SGHL01, Bjo95, TSP95, WADC99].

Importance
[BCG+10, PCY14].

Importance-Driven
[PCY14].

Improve
[KBS04, SKH96, Tha98, GKF97, RHG+96].

Improved
[Tr902b, MMO+16, dAMCFN12].

improvements
[DPDS08].

Improving
[CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SM12, SCL00, XF95, CZ96, JKN+13].

in-house
[ZLS+11].

In-memory
[CRM14, HSP+13].

in-place
[HSE+17, PSHL11].

Including
[BW+12, GLT12].

incompressible
[BCM+16, Lou95, RM99, TS12b].

Incorporating
[LM94, LYZ13, TKP15].

Incremental
[dOSMM+16].

Indefinite
[YKW+18].

Independent
[BCL00, BRU05, CSW12, CDMS15, DiN96, MV17, YBZL03].

Index
[DALD18, LAD16].

Indexers
[Wal01a].
Indexers/Crawler [Wal01a]. Indexing [LTR00]. India [CGB+10, IEE96a, Kum94, PBPT95].
indicator [FSV14]. Industrial Construction [BPMN97, DHK97, ALR94, ABCI95a, ABCI95b, BT96, EKTB99, Was96, Kon00].
Inference [LAdS+15, TVCB18]. Infiniband [SWHP05, LCW+03, LVP04, LWP04, PK05, PRS16, SPK+12, ZLP17].
Infrastructure [WLR05]. infrastructures [GWVP+14]. Initial Construction [LLH+14, VDL+15, AL96, LSR95].
Initiated [SSB+05]. initiatives [Sun95]. initio [SSGF00, SEC15]. Injection [RRAGM97, SAL+17]. Inn [IEE93c].
Innovation [ACM03]. Input [CFF+94, SHM+12, JWB96]. input-aware [SHM+12]. Input-Output [CFF+94].
Input/output [JWB96]. Insight [IEE02]. Inspection [BPMN97]. inspired [NEM17, TDB00]. instances [RBAA+17, ZLZ+11].
Institute [Old02, TG94]. Instrumentation [MVY95, Yan94]. Insurance [PZ12].
Integer [ASA97, CF01, WLC07, ZC10, BHJ96, KVGH11]. Integrate Grade [CC10].
integral [HK94]. Integrals [FBSN01, NS16]. Integrate [GLR01]. Integrated [CFDL01, DGM99, HKN+01, KSV01, WL96a, DF17, HK10, KW14, VDL+15, WWZ+96, WL96b, XWZ96].
Integrating [BCLN97, CM98, Fin00, GJP01, KIA+93, KAH96, wL94, WTFO14, TWFO09].
Integration [CGC+11, CSW97, FD96, FB94, MAIVAHI4, Se99, AL96, CSW99, KB13, RBB15].
Integrator [Per99, SP99]. Intel [Ano96c, Ano03, DSGS17, MP95, OTK15, URKG12, VDL+15, YSMA+17].
Intelligence [BPG94]. intelligent [IEE95a, ZW+95]. Intel(R) [TBG+02, SBT04]. INTensities [ARYT17].
Intensive [Rei01, BFL09, BKML95, SL94a]. Inter [KFL05, LAFA15, FKL08, LFL11, SDB+16].
Inter-Atomic [LAFA15]. Inter-Node [KFL05, FKL08, LFL11].
inter-workgroup [SDB+16]. Interaction [MMMV97, GFV99, NSLV16, Sou01].
interactions [PARB14]. Interactive [Coo95b, KPK13, KA13, NE98, RTRG+07, STK08, Coo95a, IJM+05].
Intercommunication [TMP16].
Interconnect [Bru12, SJ02, BTW96, SWS+12, TBD96].
Interconnected [Hus00]. Interconnecting [MC98]. Interconnection [MANR09, SB95, AVA+16]. Interconnects [RA09].
Interface [Ano01b, BCFK99, BDH+97, CHD07, Cer99, CGH94, CDND11, DFKS01, DHHW92, DHHW93a, DBK+99, FKCC96, FSL98, Gle93, GLS94, GL95c, GLDS96, GLT00b, HDB+12, HRS97, KS95, KGRD10, KKV03, KKD04, KKD05, LKD08, LkLC+03, LW97, MP98, MS98, MSB94, MBS92, MTW06, PS01b, RWD09, SSL97, TBD96, TW01, TBD12, WD96, Wer95, YHGL01, Ada98, AD98, Ano93d, Ano94d, BBB+94, BBCR99, Bru95, BDW97, BR94, CFKL00, CFF+96, CD01, CG99b, DDD05, DDB+16, DS96b, DLM99, DPP00, DLO03, HPY+93, HRR+11, KOB01, KSJ96, KBA94, Kraf2, NS91, Pie94, PR94a, SL94a, SWJ95, SDV+95, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, AMHC11, BC14, BBH+06, BRU05, BDH+95, Cot04, DKD08, DiN96, FKS96, FG196, FGG+98, GGH+96, GLT99, GLS99, GLT00a, GL94, Han98, IBC+10].
Interface [KTF03, KKD05, LK10, MSL96, RRFH96, SWHP05, SLG95, SWL+01].
Jacobi [BBDH14, CGU12, LM99]. JaMP [KBVP07]. January [ERS96, GE96, HS94, IEE95h, IEE96g, MMH93, USE95]. Janus [GJP01]. Japan [SHM+10, SPE95, HHK94, IFI95]. Jason [Che10]. Java [ACM98a, Ano97, BCFK99, BDY99, Bra97, BKM00, CGJ+00, CFKL00, CLL03, DeP03, Fer98b, Fer98a, GGS99, KOB01, KBVP07, LRW01, MSS98, MG97, NE98, RAS16, SMS00, SZ99, TDB00, VGRS16, VG914, WN10, WCS99, YCH98, YHGL01]. Java-based [WCS99]. Java-MPI [GGS99]. Java/CORBA [LRW01]. JavaNOW [TDB00]. Jaypee [CGB+10]. Jersey [Bha93]. Jerusalem [DSM94]. Jiang [Ano95b]. Job [NSS12]. Jobs [GSHL02, OPM06, ZA14]. Join [BGD12, LTRA02, SML17, BMS+17, She95]. Joint [GT94, Ano03, YHGL01, Ano93c]. Jose [ACM97b, GE95, GE96]. JPEG [NU05]. JPT [BDY99]. JPVM [Fer98b, Fer98a, LGCH99]. Jr [ACM99]. July [ACM95b, ACM97a, B0i97, EV01, GA96, Has95, IEE93c, IEE96i, Lev95, PW95, TG94]. Jumpshot [ZLGS99]. June [ACM90, Ano94f, B+05, BG91, CZG+08, CGKM11, CMMR12, DZ94, DW94, D+95, IEE94e, IEE95c, IEE95i, IEE96d, IEE96h, KG93, LHJM96, Li96, McdS+08, MsDC99, R+92, SL94a, SHM+10, TG94, Vos03]. Jupiter [Str94]. Just [FKLB08, FSSD17, KFL95, FK94]. Just-In-Time [FSSD17, KFLB08]. JVMPI [DeP03].


LA [AAC+05, BGH+05, EFR+05, MSW+05]. LA-MPI [YSP+05]. Lab [Str94]. Labeling [PPJ01, KRKS11]. labelling [HLP10]. laboratory [JY95]. Lafayette [EV01, EdS08]. Lagrangian [CG94a, CT94b, RSV+05, TC94]. Lahey [Ano98]. Lake [Hol12]. LAM [OF00, RsT06, SSB+05, Squ03, ZWZ05]. LAM/MPI [OF00, RsT06, SSB+05, Squ03, ZWZ05]. lambda [PQ07]. lambda-calculus [PQ07]. LAMGAC [MSOGR01, MS02a]. Lamport [TPLY18]. LAN [CCU95, CDH+95, MSOGR01, MTSS94, TSZC94, ZGC94]. LAN-based [TSZC94]. LAN-MESSAGE [MTSS94]. Lanzos [GP95, Sch96a, Sch96b]. Landing [dCZG06]. Landsat [GGCM99, GCGS98]. Landsat-TM
Languages [CGC99, GCGS98]. Lane [HHC+18].

Language [ACM96a, NM95, PD98, TA14, WLR05, Ben95, CGK11, Hos12, Nob08, RKB+13, Röb00]. Languages [CGC99, FMSG17, FSSD17, CH96, Mar05, Olu14, SWS+12, PBG+95, SS96]. LANs [Fin97]. LAPACK [Add01, ARvW03].

LaPerm [WRSY16]. LAPI [BGBP01]. Laplace [ACMR14]. Large [AELGE16, BGG+15, BHH+00, CS14, CRGM14, DHHW92, DHHW93a, DHL00, GS91b, IAM+02, HA11, HK+12, DK02, KCP+94b, KOW97, LRMG14, NPP+00c, SHM+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LM13, MAL19, NDK91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH+13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LF11]. LIB [NPP+00d]. libefp [KS15a].

Large-Scale [AELGE16, BHH+00, CS14, CRGM14, DHHW92, DHHW93a, DHL00, GS91b, IAM+02, HA11, HK+12, DK02, KCP+94b, KOW97, LRMG14, NPP+00c, SHM+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LM13, MAL19, NDK91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH+13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LF11]. LIB [NPP+00d].

Large-Scale [AELGE16, BHH+00, CS14, CRGM14, DHHW92, DHHW93a, DHL00, GS91b, IAM+02, HA11, HK+12, DK02, KCP+94b, KOW97, LRMG14, NPP+00c, SHM+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LM13, MAL19, NDK91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH+13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LF11]. LIB [NPP+00d].

Layer [CSAGR98, HEH98, FKK96a, PT994, dialAMC11, dialAMCFN12]. Layered [DIN96]. Layering [Hus01]. layers [KC94]. Layout [WG17, BGH+05, HP11, LDJK13, Str12]. Lazy [TCBV10]. Leaks [DIV16]. Learned [GKPS97, MWO95]. Learning [AHHP17, Gro01b, FE17, KWEF18, LSSZ15, SEC15, TWFO09, WO09, WUTO14]. learning-based [FE17]. Least-Squares [VRS00]. Lecture [Gei93a]. Lederman [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. Leeds [Abr96]. legacy [BR04, LP00, LRW01]. Lemon [DRUC12]. Lenses [MWO95]. Level [AELGE16, BGG+15, BHH+00, CS14, CRGM14, DHHW92, DHHW93a, DHL00, GS91b, IAM+02, HA11, HK+12, DK02, KCP+94b, KOW97, LRMG14, NPP+00c, SHM+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LM13, MAL19, NDK91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH+13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LF11]. LIB [NPP+00d]. libefp [KS15a].

Libraries [BHLS+95, BWW+12, CS14, CRGM14, DHHW92, DHHW93a, DHL00, GS91b, IAM+02, HA11, HK+12, DK02, KCP+94b, KOW97, LRMG14, NPP+00c, SHM+04, TS12a, TW01, XF95, BMPS03, CAWL17, CRM14, CRGM16, EPP+17, GGS99, HE15, HK09, Hos12, KCP+94a, wL94, LCMG17, LM13, MAL19, NDK91, Nak05b, STY99, SCL97, SG14, SFLD15, YZ14, ZWZ05, ZZZ+15, BBH+13a]. Leveraging [HDB+12, NPP+00c, SHLM14, LF11]. LIB [NPP+00d]. libefp [KS15a].

Library [AKL16, Ada97, Boo01, BLW98, Coo95b, DHH97, EM02, FHK01, For95, GBF+03, GSB97, Gro02a, H896b, ITK+00, JPT14, KGB16, OD01, PLK+04, PS01a, R020, Saa94, SBG+02, Sta95b, SKH96, TD98, UTO02, WN10, YKLD17, ZC10, Ada98, AMHC11, Arn95, CS95, Coo95a, CRDC12, DXB96, FB97, Fan98, FKK96a, GDC15, GLM+08, GL94, HB99a, HLM+17, Har94, Har95, JKM+17, JC96, KS15a, KN95, LR06a, MSL96, PKB06, PS00b, RFH+95, SCC96, SH96, ZT17, C95, McD96, Sun12]. Life [PZ12, Str12]. Lifiting [vdLJR11]. Lightweight [CKWH16, DT17, FLB+05, KMK16, TCM18, FS95, Ott93]. Like [BST+13, KBO00, CGJ+00, KO01, VGS14, CSS95]. Likelihoods [MSCW95]. LIME [DRUC12]. Limits [GB96, MBK12].
Linda [Mat94, KS96, MSP93, BLP93, CSS95, Gal97, Mat95, TDB00]. Linda-like [CSS95].

Line [BoFBW00, CGS15, Wis98, Bor99]. Linear [ASA97, BDT08, BG95, CDD+13, Ga03, Huc96, LLY93, LZ97, MGMH97, MSB97, YKW+18, van97, BNV95, BhvH+14, BAV08, BRR99, CEGS07, DR18, Gra99, GFGP12, Jou94, MW98, MM11, OKW95, SCC96, SMSW06, dCH93, dH94]. Linear-scaling [Gao03]. Lines [NE01, YULMTS+17]. Link [BGR97b, SJ02]. Linked [WJ12]. Linkoping [FF95]. LINPACK [JNL+15].

Linux [Sei99, SMTW96, USE00, SSS97, Ano01a, GSN+01, MK04, OF00, PS07, PKB01, RSt06, Sei99, Slo05, SGL+00, YL09]. Linz [Kra02]. lipid [FHSO99]. Liquid [NSS00, JLS+14]. Lisbon [IEE93d]. LISP [ACM90]. List [Tra98, WJ12]. Lithe [PHA10]. Lithography [RDM99].

Liverpool [AD98]. LLVM [SML17]. Load [Ano94b, BKdSO1, BS05, DI02, DR95, DK06, GCBL12, HE02, MM02, NP94, PT01, Pus95, SGS95, ST97, Wal01a, Bir94, CKO+94, D296, DLR94, DvdLV94, EZBA16, FMBM96, FH97, GS96, Hum95, JH97, MM03, SCL97, SY95, Wi94]. load-balanced [EZBA16]. Local [BSG00, CDHL95, CCS97, IKM+01, AMHC11, BY12, CGL+93, FSV14, IKM+02, LHD+94, LHD+95]. Locality [MBJ15, ZLP17, BHR08, HJYC10, RKBA+13, WRSY16]. Locality-Aware [MBJ15, HJYC10]. localization [HC08]. Locally [BHS+02]. Locating [PNV01].

Lockheed [Str94]. Locking [kL11, CRAWL17, PGK+10]. Logging [BCH+03]. Logic [KI17, BJ95, KMC96, KMC97, POL99]. logical [TPLY18]. LogP [CKP+93].

London [EJJL92, Ano93g, Ano94f]. Look [HCZ16]. lookup [BJ13]. Loop [DMB16, SHM+10, TJPF12, SHLM14, WYLC12, WLYC12, YST08, YWC11].

Loops [AH12, LHA01]. Loosely [Ada97].

Lop [RGML16, RGDM15]. Louisiana [USE95, IEE96b]. Love [Dan12]. Love-Hate [Dan12].

Low-Bandwidth [NE01]. Low-Cost [RLO1, GK97]. Low-Density [MC17].


Luminous [KNT02]. Lumsdaine [Ano99c, Ano99d]. Lusk [Ano95c, Ano99c, Ano99d, Ano99b, Ano00a, Ano00b].

Lustre [DL10]. Luther [ACM99]. Lyngby [DW94, DMW96, Was96]. Lyon [BFMR96, FR95].

M [PBC+01]. M-SPH [PBC+01]. M6A [EM00a]. M6B [EM00b]. MA [Ano95b, Ano95c, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b].

Machine [AS92, AGIS94, BJ93, BS93, CHD07, D+91, FE17, Fis01, GBD+94, Gre94, KNT02, KKDV03, KKD04, LKD08, MTWD06, Nov95, Pat93, Per96, RWD09, TY14, VSO0, We94, AD98, AL92, Ano95b, BR91, BDG+91a, BPC94, Bir94, BDL96, BDW97, CARB10, CLM+95, Cav93, Cha96, Che99, CD01, CC00b, DM93, DKD05, DLM99, DPK00, DLO03, FM90, KWEF18, KMC97, Kra02, LG93, MN91, MRH+96, NB96, Sch94, SK92, SCC96, SL00, TVCB18, TW12, TWFO09, W009, WFTO14, ARL+94, BG94b, JPP95, KKD05, KL10, QRG95, SSS96].

machine-learning [WFO09]. machine-learning-based [WFO14].

Machines [BP99, BZ97, BCC+00a, BT01b, DR97, EGR15, GB96, GTS+15, HC10, MGL+17, STY99, SCS12, ZWJK05, BCA+06, BSC99,
BCC\textsuperscript{+00b}, DDS\textsuperscript{+94}, DCH02, GKZ12, KN95, PRS16, SL94b, TSY99, TSY00, WPL95, ZWL13, Gel01, YC98]. made [MJPB16].

MAFFT [ZLS\textsuperscript{+15}]. Magnetic [Y\textsuperscript{+93}, PKE\textsuperscript{+10}]. Magnetism [Y\textsuperscript{+93}]. magnetized [CF19].

Magnetohydrodynamic [KT02, WWFT11]. Magnetostatic [BB93]. MagPIe [KHB\textsuperscript{+99}]. Main [Tou96].

Maintaining [PKB01]. maintenance [ZDR04, ZDR01]. Makes [ZG95b, Str94]. Managable [EDSV09, MSMC15]. Mambo [WZWS08]. Man [IEE95a]. Manageable [PKB01]. Managed [KCR\textsuperscript{+17}, LB16, SYR\textsuperscript{+09}]. Management [A97, AUR01, BGR97b, BGL00, EK97, FDG97a, FDG97b, GJR09, PPT96a, PS00a, SIS17, STY99, THS\textsuperscript{+15}, ARS89, DZ96, DF17, FLD96, GJM18, GL50a, JCP15, LF\textsuperscript{+93a}, PPT96b, PPT96c, YWT15].

Manager [Sep93], managers [FLD96]. Managing [FLD98, FGKT97, Liv00, NPS12, Obe96].

Manchek [Ano95b]. Manipulation [KKV01]. Manual [CSW12, NSLB16, Reu01]. Many [DT17, LZH17, LLCD15, RB01, TCM18, YTH\textsuperscript{+12}, ACMZR11, VDL\textsuperscript{+15}, dCZG06]. Many-Core [LZH17, TCM18, YTH\textsuperscript{+12}, LLCD15, ACMZR11, KSG13, MBBD13, dCZG06]. Many-Cores [DT17]. Manycore [MJB15, KCB\textsuperscript{+09}]. Map [JPT14, FFM11, FJBB\textsuperscript{+00}, MSCW95].

MAPA [JJPL17]. Maple [Pet00a, Pet00b, Pet01]. Mapping [GAMR00, HCO6, NTR16, RRL01, TSC94, WO99, DDLM95, EO15, HCO8, TWF009, WST\textsuperscript{+13}, WFT014, WK08a, WK08c, dCZG06, WK08b]. MapReduce [JS13, MMM13, PD11, WZH16]. Maps [BM97, KRC17]. Marc [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. March [ACM95a, ACM06a, Ano89, Ano93c, CAl94, DKM\textsuperscript{+92}, IEE93f, IEE94d, IEE95b, IEE97a].

Marine [LLRS02]. market [LF\textsuperscript{+93a}]. Markov [BBH12, FK01]. Marloz [GA96]. marshaling [CFKL00]. MARTE [RGD13].

Martin [ACM99]. Maryland [IEE96c, SPH95]. MASA [SMM\textsuperscript{+16}]. MasPar [ARL\textsuperscript{+94}]. Massachusetts [IEE94e]. masses [Cha98]. Massive [Sie92a, MALM95, OLG\textsuperscript{+16}]. Massively [BJ93, BHS18, BBH12, DZ94, IEE94a, IEE96c, KHS19, Oed93, Sie92b, Sta95b, CS96, DR94, HVSC11, KN17, KnWH10, LCL\textsuperscript{+12}, MYB16, RBB17, SRK\textsuperscript{+12}, DSZ94].

massively-parallel [MYB16]. Master [FH98, EML00, LTR00, HP05]. master-slave [HP05].

Master-Workerproblem [FH98]. Master/Slave [LTR00]. Master/Worker [EML00]. Matching [GGC\textsuperscript{+07}, KS01, MM02, OWSA95, WH94, MM03, Qu95, YPZC95, YZPC95].

Materials [Y\textsuperscript{93}, SSP\textsuperscript{+94}]. mathematical [Wan97, Has95]. Mathematics [Whi04, ANS95]. MATLAB [BKGS02, Whi04, Ano97, Bra97, ZZG\textsuperscript{+14}]. MATLAB-MPI [BKGS02]. MatlabMPI [KA04, Kep05]. MATOG [WG17].

matrices [DR18, GG99, GSMK17, Kan12]. Matrix [AKL16, BSvdG91, Cha96, DS13, Fu08, GKI0, PMvdG\textsuperscript{+13}, TQDL10, TD98, ART17, CMH99, ER12, FAF16, FJZ\textsuperscript{+14}, KBP16, PKD95, TP15, XLL13]. Matrix-Vector [AKL16, DS13, Fu08, XXL13]. Maui [ACM97a]. Max [Ano94c].

Max-Planck-Gesellschaft [Ano94c]. maximisation [CCU95]. maximum [HKOO11]. Maxwell [And98]. May [ACM96b, ACM06b, ACH\textsuperscript{+95}, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95d, IEE95i, PR94b, SPE95, SW91, SS96, Van95]. Maydan [Stp02]. MBCF [MHH99]. MCA [WCS\textsuperscript{+13}]. McDonald [Stp02]. MCHF [SYF96]. McLean
Micro-applications [SGH12].
Micro-Benchmark [BWV+12, YSWY14].
microbenchmark [BO01].
Microcoded [PWP+16], microtask [OIS+06], MIDAS [BFZ97].
Middleware
[AUR01, CLL03, CC10]. Middleware
[DP01]. Minipoint [JMS14]. Mignon [LS08].
Migratable [KOW97]. Migrating
[VSRC94, VSR95, IvdlH+00, KBG+09].
Migration [Ano94b, CCK+95, CLL03, CML04, CCB2G15, CTK01, NPP+00c, NLRH07, Ott94, OS97, ST97, AMBG93, BBGL96, CKO+94, CRM14, CRGM16, CK99, DDYM09, HZ99, LCV94b, LM13, QHCC17, RRFH96, SS599, SLC97, Ste96].
Milan [HS95a]. million [LHLK10].
Millions [BBG+11]. MIMD
[BvdB94, BB93, BCL00, Uhl95a, WST95].
MIMD/MMMP [BB93]. MIMI [GCC99].
MINIME [DS16]. MINIME-GPU [DS16].
minimization [POL99]. Minimum
[KA95, Wu99, NCB12]. mining [MA09].
Mississippi
[IEE94f, IEE95j, IEE94f, IEE95j].
mitigating [OSSP12]. Mitigation
[BBH…+13a]. Mitsubishi [An03]. mittle
[Wil94]. Mixed [ASA97, BEG+10, CF01, OPP00], ST02a, MRH+96, SK00, SB01].
Mixed-Mode [BEG+10]. Mixing
[CP98, GAP97, CBYG18]. mixture [EO15].
MK [NS91]. mm_par2.0 [OKM12]. MN
[An049h]. Mob [STV97]. Mobile [ITT02].
Mode [BGK08, Bri02, BEG+10, LRT07, SB01, XY95]. Model [AP96, BGG+02, BdS07, CKmnWH16, Cha02, CZZ+98, Dar01, DAF+09, FSX14, FBSN01, GLB00, GLRS01, HLP11, KD12, LGG16, LA02, LRQ01, MKW11, NSL16, NO2b, Ram05, RSV+05, RRL01, SPM+10, SB95, SPH+18, TNH00, VT97, Wal01a, AL93, BSC99, Bir94, BG94b, BDV03, CMV+94, CL93, CKP+93, ED94, GJZK12, GCM+10, GlrTCY97, GWVP+14, GTK10, HLP109, HK09, HK10, KOS+95a, KSL+12, KLV15, LR06b, LA06].
\[MSL96, PS01b, RRFH96, SWHP05, SLG95, SWL+01, TGT05, TDB00, Wer95, YGH+14].
Message-Passing [Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GLT00b, MP98, PBK00, Pok96, RRBL01, AAC+05, Ana04d, Ana05c, Ana00a, Ana00b, BvdSvD95, CDZ+98, GL92, Hm96, KJA+93, LR06a, LBD+96, wL94, LMM+15, PS00b, SS95, Ste94, DiN96, GHH+96, Han98, RRFH96, SLG95, Wer95, YGH+14].
Message-Passing-Interface [Wer95].
MessagePassing [Se99]. Messages
[KBS04, SKH96]. Messaging
[HEH98, KC94]. Meta
[BCL97, FBD01a, FGRD01]. Meta-Applications [BCL97].
Meta-computing [FBD01a, FGRD01].
Metacomputing [Fin00, MSF00, MS99b, FBVD02].
MetaHaskell [Mai12]. metaheuristics
[ZSK15]. metal [JLS+14]. MetaMP
[OW92]. metaprogramming [Mai12].
meteorological [RSBT95]. Meteorology
[HK93, HK95]. Method [ACMR14, BP99, BJ97, CGU2, FLC07, GSI97, HC06, KMK18, OM90, Riz17, TSS99a, ARY17, BB94, BCM+16, DSOF11, ETV94, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15a, KD12, LCL+17, Nak95, NS16, PTT94, Pri14, Q95, SHHC18, TKP15, YBZ10, dIAMCF012, AAB+17, OTK15].
Methodologies [Sun91b]. Methodology
[MOL05, WTT17, HPR+95, LM94, WMP14]. Methods [BCMR00, CMK00, DFN12, EGH+14, FGK97, FPG92, KLR+15, KL11, NA01, Sch01, SM07].
TDBEE11, Whi04, BZ97, CEG90, DF17, D+95, Gra09, Has95, LSR95, MM11, Nak05a, PKG+10, R+92, SL94a, SG905]. Metrics
[DB02, PAR814]. Metropolis [HJB14].
Mexico [IEE91, S194]. MGCG [TSS99a].
MGF [GLM+08]. MIAOW [BGG+15].
MIC [CCB2G15]. MICE [BK96]. Micro
[Ana03, BWV+12, SGH12, YSWY14].
LLH$^{+}$14, Mar05, MdSAS$^{+}$18, MSZG17, MGC$^{+}$15, NO02a, Nak05a, PAD$^{+}$17, RAS16, RGDM16, RCG95, Sch93, SH94, Sch99, SMAC08, Sr94, VBLvdG08, Vis95, Wan02, WC15, WYLC12, YX95, TA14.

Model-Based [AP96, LGG16], Modeling [ACM96, ATM01, BS07, CDM93, FST98a, GAM$^{+}$02, MOL05, NM95, RGDM15, SEF$^{+}$16, TD99, VF02, XH96, BDP$^{+}$10, Bic95, JL18, KM10, KME09, KEGM10, LZHY19, MS99a, XXL13, YMYI11].

Modeling [FST98b, GC05, Ham95a, KDL$^{+}$95b, BJS93, BZ97, CMK00, Cer99, CNM11, CK06, EMO$^{+}$93, ESM$^{+}$94, GJN97, PPF89, SS01, SMOE93, Whi04, BB95, BO95, CH96, Duv92, KO14, LV12, MCB05, NES10, RSBT95, RBAI17, SYR$^{+}$99, Wal00, WBSC17].

Modern [AHHP17, DARG13, KDT$^{+}$12, LNK$^{+}$15, SM07, HH14, PMZM16]. modes [WZWS08].

Modelling [FST98b, GC05, Ham95a, KDL$^{+}$95b, BJS99, HTHD99, KDL$^{+}$95a, MSML10, QHHC17].

Models [AKK$^{+}$94, BS93, BZ97, CMK00, Cerm99, CMN11, CK06, EMO$^{+}$93, ESM$^{+}$94, GJN97, PPF89, SS01, SMOE93, Whi04, BB95, CH96, Duva92, KO14, LV12, MCB05, Nes01, RSBT95, RBAI17, SYR$^{+}$99, Wal00, WBSC17]. moderate [Uh95a].

Modified [Riz17, GP95, KD12]. Modular [CT02, HPP02, FWS$^{+}$17, HLM$^{+}$17]. modulator [WWZ$^{+}$96]. modulator/DFB [WWZ$^{+}$96]. Module [An98]. Modules [AKK$^{+}$94, DS96b]. modules-design [DS96b]. Molecular [ABG$^{+}$96, BSI$^{+}$13, BCG07, BL95, BS07, DR97, DI02, KMB97, LAFA15, MH01, SA93, YWCF15, ZB94].

Motif [WWZ$^{+}$96]. molecular [ART17]. molecule [ART17].

Monitored [KRS99, Whih94]. Monitoring [AH00, BCLN97, Beg93b, BF96, BFM96, BFMT96b, CD98, BK98, GSN01, LY93, LW97, BWG97, MVY95, SGL$^{+}$00, UP01, Wis98, Wis01, Yan94, Beg92, Beg93c, Beg93a, BB94, BS96a, BFMT96a, FLB$^{+}$05, LC07].

Monodomain [ORA12]. Monte [HJBB14, RP95, WH96, ADRCT98, AK99, DAK98, NSSLV16, RR00, SK00, SKM15, ZZ04].

Monterey [An089, Gat95, USE94].

Montpellier [DE91], Montréal [Lev95].

MOPS [GJN97]. Morehouse [AGH95].

Morgan [SD13], Morton [LZH18].

MOSIX [BBGL96]. motif [FMS15].

motors [SKM15]. movement [MV17].

Moving [HAA$^{+}$11, LSG12].

MPEG [GKL95, KFA96]. MPEG [NU05].

MPEG-4 [NU05]. MPI [ARYT17, AD98, An095c, An099a, An099b, An099d, An000a, An000b, BDW97, CHD07, CDD09, CD01, CDND11, DK05, DLM99, DKP00, DLO03, GBR97, GEW98, IEE96i, JMS14, KGRD10, Kra02, KKD04, LKD08, MTWD06, Nag05, Per97, PS01b, RWD09, RIVRG12, ST02a, TDB00, TDB12, Vre04, WSN99, YM97, ST02b, ACGr02, Ada06, Ada90, ACH$^{+}$11, APJ$^{+}$16, AAS08, ART17, ATM01, ACRG97, AK99, ABF$^{+}$17, AHP01, ACMZ99, ALW$^{+}$15, ADL103a, ADL103b, And98, FH98, AVA$^{+}$16, An0393, An094d, An099, An00a1, An00a3, AK00, AKL99, AJF16, AIM97, AD0+05, AHP17, Bad16, BV99, BCM900, Bak98, BF98, BCF99, BBC$^{+}$10, BCG$^{+}$10, BBG$^{+}$11, BGBP01, BBS99, BBG$^{+}$14, BA06, BCAD06, BADC07, BGR97a, BKGS02, Ben01, BW12, BH91, BKH$^{+}$13, BIR99, BIC05, BP98, BF01].

MPI [BBC99, BBDH14, BK96, BDH01].

MPA [Bha98, BfDA94, BHS$^{+}$95, BHS$^{+}$02, Bsl04, BHH. . .13a, BBH$^{+}$13b, DBB$^{+}$13, BIC$^{+}$10, BR04, BCM$^{+}$16, BTC$^{+}$17, BM00, Boo01, BBC$^{+}$02, BCH$^{+}$03, BHK$^{+}$06, BCC$^{+}$00, BS96b, BMR02, Bri02, BRM03, Bri10, BMP03, BS07, BD98, Bru95, BDH$^{+}$95, BDH$^{+}$97, Bri12, BL98, BFBW01, BEC$^{+}$10, BCH$^{+}$08, BWV$^{+}$12, CGC$^{+}$02, CSW12, CGC$^{+}$11, CwCW$^{+}$11, CRE09, CEE0, CRE01, TTC10, CP08, CAHT17, CGJ$^{+}$00, CFKL00, CSS95, CGBS$^{+}$15, CGG10, CB90, CD01, CMS15, CGS15, CBL10, Cha02, CEGS07, CDP99, CA00, CDFL01, CL03, CGZQ13, CC17, CSAGR98, CNC10, CC00a, CGH94, CCS97, CMF95, CDD$^{+}$96, Coo95a,
Coo95b, CFF^+96, CRGM14, CRM14, CRGM16, CC99, CT02, CD96, CG99b, DPS05, DPSD08, Dan12, DSG17, DZ96, DZ98a, DR18, DW02, DLM^+17, DZ98b, Dem96, DPP01, DLB07, DVSW96]. \textbf{MPI} [DS96a, DRUC12, DKD07, DI02, DL10, DCPJ12, DCPJ14, DAK98, DGG^+12, DGB^+14, DDB^+16, HD02a, DXB96, DOSW95, DCH02, DBK^+09, EZBA16, EGH99, EDSV09, ES11, FH97, FD96, FDG97a, FDG97b, FLD98, FD00, FBD01a, FBD01b, FGRD01, FBVD02, FD02a, FD02b, FD04, FCLG07, FB95, FB96, FB97, Fan98, FPY08, FFB99, FNSW99, FTVB00, FFP03, FMS15, FHK01, FKH02, FSC^+11, FCS^+12, Fin97, Fin94, Fin95, FWNK96, Fin00, FLB^+05, FC05, FST98a, FST98b, FJK^+17, FKK^+96b, FKK96a, FGT96, Fos98, FHPS94a, FHPS94b, FHP^+94, FHP^+95, Fra95, FWR^+95, FKLB08, FBSN01, FSLS98, GBR97, GFD03, GFD05, GDC15, GGGC99, GGCN99, Gao03, GBR97, GEW98, GBS^+07, GLM^+08, GL92, GL94, GL95a, GL95b, GKL95, GL95c, GL96, GLDS96, GL97c, GL97b, GHL^+98, GL99, GLT99, GLS99, Gro00, GLT00b, GLT00a, Gro01a, Gro01b, Gro02a, GL02, Gro02b, GT07, GLT12, Gro12, GPC^+17, GC05, GSY^+13, Gua16, HJ98, HC10, Har94, Har95, HLL7, Hat98, HO14, HD02b, HE02, Hem94, HZ96, Hem96, HRZ97, HZ99, HE99, HGMM12, HMK09, HPS^+12, HPS^+13, Hin11, HRR^+11, HDB^+12, HDB^+13, HDT^+15, HKN^+01, HLOC96, HKT^+12, HVSC11, HWX^+13, HM01, HCA16, HG12, HcF05, Hus98, Hus00, Hus01, HWW97, IDS16, IRU01, ITKT00, ICC02, JL18, JF95, JDB^+14, Jes93b, JMM^+11, JS13, JNL^+15, Jon96, JR10, JSH^+05, KB01, KFA96, KS15a, KPW05, KW14, KWFW18, KD12, Kan12]. \textbf{MPI} [KFL05, KB98, KKB02a, KL94, KLY03, KLY05, KSJ95, KSJ96, KN17, KBS04, KGK^+03, KH^+99, KMB97, KL^+15, KR09, KMG99, KEGM10, KRG17, KV98, KAC02, KCD06, KMH^+14, KRG13, KL14, LAD^+15, LRS02, LTDD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Lee12, LZ97, LRW01, LPD^+11, LL00, LZH17, LZZ018, kLCC^+06, kLCCW07, KL11, LFL11, LS10, LC06, LCW^+03, LVP04, LWP04, LGG16, LYS^+16, LB96, LM17, LCM17, LNLE00, LO96, lLR04, LZY19, LS08, LL01, LZC^+02, LKJ03, LCC^+03, LKYS04, LSK04, LL^+14, MBBD13, MM99, MS02a, MS02b, MV17, MTK16, Man01, Man98, MLVS16, MLAV10, MKP^+96, MSCM15, MSL12, MH01, MLS96, MS96a, MC98, MG05, MAS06, MM02, MOL05, MCS00, MAN09, MRIP11, MG97, MMM13, MTW07, MK04, MCLD01, MM98, MM99, MS99c, MB00]. \textbf{MPI} [MvWL^+10, NAW^+96, NO02b, NO02a, Nak05a, Nak05b, NSR07, NE98, NE01, Nes10, NSS12, NH95, NCB^+12, NCB^+17, NA99, NW98, Nit00, NHT02, NHT06, NFG^+10, NN95, OM66, OLG^+16, OKM12, OIS^+06, OD01, OF00, Ong02, OP98, OL05, OGM^+16, OMK90, Pac97, PARB14, Pan14, PK08, PES99, PLK^+04, PSK08, PDY14, PS00a, PS01a, PHJMN11, PTL^+16, Per99, PZ12, PGK^+10, PFG97, PLR02, PGAB^+05, PGBF^+07, PGBA^+07, Pla02, PD11, PSS01, PSK^+10, PTH^+01a, PTH^+01b, PS00b, PTW99, QB12, Qui03, Rab98, Rab99, RDMB99, RR99, RSST95, Ran05, RA09, RAS16, RCF96, RBB97a, RBB97b, RBB97c, RPM08, RTH00, RH01, Reu01, RST02, Reu03, RGDM15, RGDM16, RNPM13, RPM^+08, Röhl00, Rol08b, RsT06, RFRH96, RRR^+99, RTRG^+07, SE02, SCB14, SCB15]. \textbf{MPI} [SPM^+10, SSB^+05, Sap97, SSB^+16, SDJ17,
SGH12, SBF+04, SW12, SBF+02, SG05, Ser97, SS01, SWS+12, SG12, STY99, SM02, SM03, SPH+18, SP99, SZ11, SC04, SSC96, SS99, SZBS95a, SZBS95b, SDN99, Sv99, SJ02, SWJ95, SMTW96, SH96, SDB94, SLG95, SDV+95, SPH96, Sla05, SVC+11, SK00, SB01, SOHL+96, SOHL+98, Sni18, SHH18, SISO7, STo3, Ste96, ST97, Sto98, SV99, Str96, Sum12, SN01, TOTH99, TAH+01, TSY99, TSY00, TKP15, Th98, TGL02, TG09, TPLY18, TW01, TD99, Tra98, THRZ99, TR00, Tra02b, Tra02a, TGT10, Trä12a, Trä12b, TMPJ01, TFGM02, Tsu97, TFZS12, UTY02, URK12, VFD02, VS00, VPS17, VSRC94, VSRC95, VGRS16, VdS00, VP00, VVD+09, WH96, Wal95, Wal96a, WD96, WO96, Wal01a, Wal01b, Wal00, WC09, WNL03, WNL06]

MPI [Wer95, WST95, Whi04, WLR05, WWZ+96, Wis98, WB96, WM01, WADC99, WOR96, WRA02, WCS99, WT11, WYLC12, WT12, WYLC12, WMP14, XH96, XLIW+09, YM97, YL09, YHL11, YWC11, YCL14, YBMCB14, YPAE09, YTH+12, YSP+05, Zha12, ZZO4, ZLZ+11, ZWZ05, ZLPI17, ZJDW18, ZLL+12, ZZ95, ZSNH01, ZKRA14, ZA14, bTO1a, diAMCFN12, KH96, Mar06, YM97, Ano96a, Ano99c, Ano99c, Ano99b, Ano99d]. MPI-1 [SOHL+98]. MPI-2 [Ano99c, Ano99d, Ano00a, AKL99, BCAD06, BHS+02, CW+11, CD96, DPD08, GFD03, GCHL+96, GTO1, GHL+98, GLT99, GLTO06, GLTO06, HGMW12, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, bTO1a, BADC01]. MPI-3 [GBH14, GBH18, GLT12, HDT+15]. MPI-ACC [APJ+16]. MPI-Based [Ada97, FSC+11, RDMB99, SM03, Ada98, AVA+16, GKS+11, Gra97, LRW01, OL+16, OP98, SZ11, TMPJ01]. MPI-basierte [Gra97]. MPI-benchmark [Reu01].


MPI-interoperable [YBMCB14]. MPI-IO [BIC+10, CGC+02, CFF+96, DL10, FWNK96, FSLS98, LRT07, LGG16, PSK08, PTH+01a, SW12, Sto98, TGL02, ZZ04]. MPI-IO/GPFS [PTH+01a]. MPI-LAPI [BGBP01]. MPI-Level [LPV04]. MPI-like [CGJ+00]. MPI-only [LS10]. MPI-OpenCL [JNL+15]. MPI-OpenMP [MS02b]. MPI-parallelized [KMG99].


MPI Allgather [GMdBMBD+07]. MPI_Connect [FGRD01].

MPI Connect [FGRD01].

MPI Connect [FGRD01].

MPI Connect [FGRD01].

MPI Connect [FGRD01].
Multiplication [AKL16, DS13, Fuj08, TQDL01, FAF16, FJZ+14, XXL13].
Multipole [AAB+17, LCL+12, YBZL03].
Multiported [SG15]. Multiprocessing [MW93, VGS14]. Multiprocessor [Pet97, ABCI95a, ABCI95b, ADMV05].
MultiProcessors [BDV03, CC99, HPP02, NPP+00d, SBW91, SS01, Tra98, JE95, KC06, SYR+09, AGIS94].
multiprogrammed [TSY99].
Multiprogramming [BHP+13, DS13, Fuj08, YSS].
Multicore [BR95a].
Multiprocessor [BB91].
Multiregions [BHP+13, DS13, Fuj08, YSS].
multiservice [CLLASPDP99], multisource [ZDR04]. multistage [ZGN94]. Multistart [Cza13]. multitasking [FH95].
multithread [GCC99, SWYC94, ZG98].
multithread-safe [GCC99].
Multithreaded [AZG17, DGG+12, PS01b, RBA05, TGBS05, WJ12, DSG17, TM09, TG09, WCC+07].
multithreaded [BM95]. Munich [BDLS96, GH94]. Mushy [Wit16]. MUST [HPS+12, HPS+13].
n [Pan95a, ADB94, RTRG+07]. N-body [ABD94, RTRG+07]. n-cube [Pan95a].
NAG [DHP97, For95, MCD96]. NAMD [PZKK02]. Naming [MSF00]. Nancy [BR95a]. NanosCompiler [GAM+00].
Narrow [YSS+17]. NAS [CRE99, CE00, CCF+94, CDD+96, KS96, KAC02, MM99, WAS95b, WT11, WT12].
National [Str94, BRST94]. Native [SZ99].
NATO [KG93, TG94]. NATUG [Ara95].
NATUG-7 [Ara95]. nature [DSM94].
Naver [Che99, DLR94, HSMW94, IDD94, Lou95, SC95]. NB [BG91]. NC [Agr95a, SL94a]. nCUBE2 [BL94]. Near [PKYW95]. Nearest [DI02].
Nearest-Neighbor [DI02]. Nebelung [MFG+08]. NEC [GPL+96, HR97, TRH00]. Necessary [NPP+00b]. Needed [Gei99]. Neighbor [DI02], neighborhood [HS12]. Nek5000 [MGS+15].
Nekbone [GML+16]. Nemesis [BMP07]. Nesbet [BL95]. Nested [AH01], BR12, BS01, DLR99, GLP+00, H10, MMS07, TTSY00, ZL17, aMST07, AGJ06, BS05, HSE+17, THH+05, YZ14].
Nests [DMB16]. Net [CNM11, NE05, NE01, PES99].
Net-Console [PES99]. Net-Box [NE98, NE01]. netCDF [LKLC+03].
Netherlands [DSZ94, Ano93c, Van95].
Nets [S0100, Str94]. Network [ACM98a, AR01, BDG+91b, BDG+93a, BCKP00, CZ95a, CDHL95, CSC96, DM95b, DM95a, DBA97, DFMD94, DGLM93, DGLM93, EK97, Fer98b, Fis01, GS91b, GS92, G93a, G5xx, Hsu98, ITT02, LB98, LH95,MSC95, MANR99, OF00, OWSA95, TW01, AL92, AH95, AVA+16, BDG+92b, BDG+92c, BDG+94, BSV91, B95, Bon96, BKK94, BID95, BMF96, C94e, CLLASPD99, Fer98a, GS91a, Gei93b, GK97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, KA95, LH98, LHD+94, LH+95, MK94, MRH+96, POL99, PR94c, PTW99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPL96, G97].
Network-Balancing [DBA97].
Network-Based [BDG+91b, GS92, BDG+92a, IM95].
Network-Specific [DM95b, DM95a].
network-topology-aware [SPK+12].
Networked [FGK97, GBD+94, Nov95, Per96, Ano95b, BAZ94, BMS94a, BAZ94a, GM94, HS93, RG+99].
Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Hol12, LCK11, CXB+12, GHR, HS95a, ITT99, LCH96, MELK93].
Networks [CS12, CD93, DDP07, GF99, GLH97, NL94].
MSL96, PD98, SWL+01, YHGL01, YX95, Ada98, BR91, DM12, LKL96, OKM12, RFH+95, SL94b, TDG13. object-based [LKL96]. Object-Oriented [BCFK99, PD98, SWL+01, Ada98, DM12, OKM12, RFH+95]. Objects [KH15, Man01, MFC98, HS93, SOA11, SC95, YWO95, ZPLS96]. Oblivious [LZH17, LZH18, UALK17, HSP+13]. observations [ZKRA14]. observed [CAHT17]. Occam [ACDR94, GN95, MC94, EM94, SHH94a, SHH94b]. Ocean [BS93, GAM+02, Bic95, Mal01, Nes10, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93]. octree [JL18]. octree-based [JL18]. ODE [Ano97, Bra97]. ODEs [Pet97]. OdinMP [BB00]. OdinMP/CCp [BB00]. Off [CGS15]. Off-Line [CGS15]. Offering [EK97]. Official [Ano98]. Offload [BR05]. Offloading [MGA+17, DSGS17, KBG16]. ofT [Rol08a]. Oil [FSXZ14, ZAFAM16]. OKs [Ano03]. old [LK14]. OMB [BWV+12]. OMB-GPU [BWV+12]. OMIS [LW97]. Omni [KSS00, KSHS01]. OmniRPC [SHTS01]. OMP [SGJ+03]. OMP2001 [TSB03]. OMP2012 [MBB+12]. OMPi [ACH+11, OM96]. OmpSs [ABF+17, YAJG+15]. on-chip [TDG13]. On-Demand [CTK00]. On-line [BoFBW00, Wis08]. On-the-fly [KSFJ14]. ONC [RS03]. One [BPS01, GFD03, GFD05, GBH14, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, GBH18, LSK04, MS99e, OS95, PGK+10, dIAMC11]. one-dimensional [OS95]. one-layer [dIAMC11]. One-Sided [BPS01, GFD03, GFD05, GT01, HDB+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, DBB+16, LSK04, MS99c, PGK+10]. only [LS10, Squ03]. Ontario [GGK+93]. onto [OFA+15]. OOMPI [MSL96]. OOPS [RFH+95]. OPAL [CwCW+11, NW98]. OPAL-MPI [NW98]. opaque [SOA11]. Open [BGG+15, KDL+95b, AVA+16, KDL+95a, Nob08, GBS+07, VGRS16]. Open-Source [BGG+15, AVA+16, Nob08]. OpenACC [CGK+16, CCBPA15, GML+16, GM18, HTJ+16, JCP15, KLV15, Kom15, LB16, LSG12, MG+15, OGM+16, QC17, RLFd13]. OpenACC-based [KLV15]. OpenCL [ABDP15, APBeF16, AB13, BLPP13, BDW16, BN12, BH+12, BBH+15, BAS13, CDD+13, CP15, CIJ+10, CHKK15, CCK12, CS14, DARG13, Di14, DWL+10, DWL+12, FADF15, FLMR17, FE17, FSV14, FVLS15, GScFM13, GDDM17, HD11, HE15, HHC+18, JSS+15, JK+17, JR13, JNL+15, JMDV+17, KKM15, KH12, KM10, KKL11, KSL+12, KJJ+16, KB13, KPK13, Lee12, LNK+15, LL16, LAF15, MC17, MAIVAH14, MTU+15, MSZG17, MHSK16, ON12, OTK15, ORA12, PCY14, PHW+13, PB12, RG18, RGD13, RBB15, RBB17, SFSV13, SAP16, SSB+17, SG14, SFLD15, SGS10, Str12, THS+15, TK16, TMW17, TKP15, TY14, WTT17, WZHZ16, YSWY14, YWTC15, YSL+12, ZWL+17, ZT17, dAT17]. OpenCL-accelerated [ZWL+17]. OpenCL-Based [WTT17, WZHZ16, JK+17]. OpenCL-to-WebCL [CHKK15]. OpenGL [Ano98, LH97, ORA12]. openMosix [Slo05]. OpenGL [Cha05, CZG+08, CGKM11, CMMR12, EV01, JMS14, MdSC09, SHM+10, Vos03, OKM12, ST02a, ST02b, Add01, ArW03, ABC+00, AHD12, AAB+17, AELGE16,
ACMZR11, ATL+12, ADT14, ACJ12, Ano97, Ano01b, Ano03, AKE00, ADMV05, ADR+05, AGMJ06, AM07, ACD+09, ABB+10, BST+13, BR02, BHP+03, BME02, BN00, BF01, BBHD14, BWW+12, BCC+09, BCC+09, BGK08, BGG+02, BS01, BS05, BGC+00, Bra97, Bri00, BDV03, BdS07, BGdS09, BFG+10, BGD12, BC00, BS07, BB00, BKO00, BO01, BEG+10, CRE99, CE00, Car07, CB00, CGLD01, CDK+01, CLYC16, CM08, CHPP01, CBPP02, Chat02, CM05, CGKM11, CMNR12, Cla98, CBYG18, CCM+06, CCBPGA15, CC00b, DM08, DWO2, DBVF01, DSGS17, HDD02a, DFC+07, DFA+09, ETWaM12, EM00a, EM00b, EV01, EdIS08, FGRT00, FMSG17, FSXZ14, FM09, GSA08]. OpenMP [GJP01, GSKM17, GG09, Goe02, GÁVRR17, GAM+00, GAML01, GOM+01, GAM+02, Gra09, HPP02, HP05, HDDG09, HA10, HO14, HDD2b, HMK09, HASnP00, HKN+01, HAJK01, HVSC11, HLCZ00, HTO1, HCL05, HEH09, HLJC10, HAA+11, LJM+05, ICC02, IOK00, ITT02, JC15, JKH08, JP012, JFY00, JFY+03, JCH+08, JMJ+11, JR10, KB01, KS15a, KOB01, KaM10, KO10, KN17, KH03, KT02, KS14, KLR+15, KBVP07, KBG+09, KK01, KT01, KH15, KAC02, KCo6, Kuh98, KPO00, KRG13, KSS00, KSSH01, KJEM12, LOHA01, LP00, LLRS02, LD01, LME09, LL12, LHC+07, LNW+12, LYSS+16, LA02, LA06, LMR14, LH98, LL01, LLH+14, MKC+12, MS02b, Mal01, MM07, MB12, Mar02, Mar03, MLC04, Mar05, MPD04, MCB05, Mat00a, Mat00b, Mat01a, Mat03, MG05, MGC12, MG15, MM11, MFG+08]. OpenMP [MKV+01, MBE03, MRRP11, MMSW02, MKW11, MM14, MMS07, MB15, MJBP16, MCdS+08, Mill01, Mill02, Mill03, MBB+12, NO02b, Nak05a, NIO+02, NOI+03, NEM17, NPP+00b, NPP+00c, NPP+00a, NPP+00d, NAAL01, NA01, NON00, Nob08, N005, NHT02, NHT06, OOS+08, OP10, OPW+12, PARB14, PPJ01, PVK01, PK05, PZ12, PGC02, PKE+10, Qiu03, Ran05, RDLQ12, RLRVG12, RBAA05, SIE12, SSB+16, SHHI01, SHTS01, SK01, SLGZ09, SGZ00, SPL+12, SHPT0, SSA01, SK00, SB01, Stp02, TCM18, TBS12, TS12a, TSB02, TTSY00, TSS0a, TSCM12, TPF12, Th99, TBF+02, THH+05, TGBS05, VDL+15, VPS17, VGS14, Vos03, Vre04, Wal00, Wal02, Wan02, WCC12, WC15, WPC07, WT11, WYLC12, WT12, WYLC12, YK+18, YHL11, YW01, YCL14, YKL17, YPAE09, YSM+16, YSM+17, YYW+12, ZAT+07, ZS00H1, aMST07, dCZ06, RM99]. OpenMP [SGF00, WCS+13]. OpenMP* [KDT+12]. OpenMP-based [LNW+12]. OpenMP-like [BK000, KOB01, VGS14]. OpenMP-oriented [MLC04]. OpenMP-style [JP012]. OpenMP/MPI [BG+10, HM09, LCL13, LYS+16, MMG05, NO02b, N005a, SSB+16, SK00]. OpenSHMEM [HVA+16]. OpenTuner [BAG17]. OpenUH [HEH09, LHC+07]. Operating [MMH98, RGD97, USE94, Wil93, ARS89, Sei99]. operational [KOS+95a]. Operations [BIL99, BIC05, CCA00, FCLG07, FPY08, GFD05, GLB00, PSM+14, PGAB+05, TRG05, TG05, WRA02, BMG07, D13S, IDS16, KHB+99, KMH+14, PGAB+07, PKD95, S99, TFZ12]. Operators [NHT02, NHT06]. opportunistic [CC10]. Opportunities [LB16]. optical [MRH+96]. Optimal [BP99, GAM00, ZGN94, BB95, ER12, PQ07, PT+16, Su95a]. optimiertes [Sei99]. optimisation [AMuHK15]. Optimising [Boo01, FKH02]. Optimistic [SCL00, CXB+12, PY95]. Optimization [BSGG00, BHNW01, DBA97, Goe02, HS12, Hus00, ITT02, KGK+03, KMH+14, MC17, MBS15, Mi101, NOI+02, NOI+03, PSS01, SM03, SVL99, SWH15, TRG05, WTTH17,
Optimizations [NSLV16, SSE12, iSYS12, TSS00a, BVML12, HEHC09, LL16, MV17].

Optimize [WLYC12].

Optimized [AKL16, Bri02, FAFD15, MAIVAH14, PM95, PTH+01a, THS+15, WJB14, BKvH+14, MMM13, Sei99].

optimizer [BHRS08, Rag96].

Optimizing [BGH+05, CXB+12, FMFM15, KKP01, MBE03, NSZS13, OM96, SSAS12, TGL02, TGT05, GS02, LHC+07, RKBA+13].

Options [RR00].

Orange [ACM98b].

orbit [CFF19, SSN94].

Order [BL95, DFN12, LZH18, KN17, KME09, KEGM10, KB13, MYB16, OGM+16].

ordering [Zah12].

ordinary [NF94, RBB15, SP11].

Oregon [ACM99, IEE93e, SW91].

Organization [BPC94, JFGRF12].

Oriented [Ada97, BCFK99, FMSG17, MSL96, PD98, YHGL01, Ada98, BR91, DM12, MGC+15, OKM12, RFH+95, SWL+01, ML0C+13].

Origin [LL01, LSK04, ZSnH01].

Origin2000 [Bri00, MH01].

original [RNPM13].

Orlando [ACM98b].

Orleans [IEE96b, USE95].

ORNL [Bor99].

OSCAR [IOK00, Slo05].

oscillations [KHBS19].

oscillator [BJ13, GSMK17].

OSDI [USE94].

OSF [Sch93].

Other [OP10].

OtOt [DKF94b].

Otto [Ano96a, Ano99a, Ano99b, Nag05].

out-of-core [BL99].

Output [CFF+94, HE02, JWB96].

Outstanding [LSB15].

Overcoming [JKHK08].

Overhauling [BDW16].

Overhead [BR02, FST98a, XH96, CRGM16, KC94, KRS99, LHZY19, ZRQA11].

Overheads [BCG+10, BGdS09, BCM11, S994].

Overlap [BRU05, DCPJ12, DCPJ14, MLAV10, PSK08, SH14].

Overlapped [GPC+17].

Overlapping [KB01, kLCC+06, PKE+10, BBH+15, MMM13].

overlay [CXB+12].

overlay-based [CXB+12].

Overview [CFF+96, Gre95, GL95c, Zol93, GHZ12, GPL+96, Wer95].

OWL [JKN+13].

Ownership [FHB+13].

Oxford [Boi97].

P [CAM12, WHDB05].

P-RnaPredict [WHDB05].

P03M [BJ93].

P2P [GR07, GGL+08, GJR09, SBG+02].

P2P-MPI [GGL+08, GJR09].

P4 [KS96, Mat94, Mat95].

PA [ACM04, Ham95a, ACM96c].

Pablo [BFMT96a, BFMT96b].

Pablo-based [BFMT96a, BFMT96b].

Pacific [IEE95e].

Package [PSK08, SH14].

Package2010 [JKHK08].

Packets [Uhl94, Uhl95b].

Packets [Uhl94, Uhl95b].

PaCT [Mal95].

PaCT-95 [Mal95].

PACX [FGMRD01, KI90, RBB97b].

PACX-MPI [KI90, RBB97b].

Page [CML04, NP+00c].

pages [Ano95b, Ano95c, Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Ano00a, Ano00b].

Pagoda [YSS+17].

pairwise [AMHC11].

Palazzo [GT94].

PALLAS [KVH97].

Papers [BDB+13, OL05, TB14, ACM90, CHD09, DKD07, IE93a, IE95c, KKD03, MWT07, Old02, Ano93f, Cha05].

PARA [DW94, DMW96, Was96, CD96].

parabolized [SCC95].

ParADE [KKH03].

Paradigm [HIP02].

Paradigms [BGD12, CM98, HD02a, HD02b].

Paradyn [MHC94a, MHC94b].

Paragon [Ano96c, HWW97, MP95, PR94a].

Parallel [ACM95b, Ada97, ATC94, Agr95a, AMHC11, AGH+95, AS92, ADRC98, AK99, AMBG93, ASA97, AL96, AP96, Ano95b, ACM14, AB38a, AJF16, BHM94, BJ93, BBG+95, BCLG97, BFL99, BP99, BG95, BS93, BGD+91a, BKGS02, Ben01, BP98, Bha93, Bie95, BGK08, Bis04, BALU95, BCL00, BSG00, BBC+00, BBG+01, BFZ97, BD9L98, BDH+95].
BDH+97, BTO1b, BMS94b, BMP94a,
BFM97, BKO00, BBH92, BGL00, CGG+02,
CHD07, Cee99, CDZ+98, CUC95, CDK+01,
Cha02, CGB+10, CNC10, CFF+94, CSW97,
CMH99, CFP95, CSMT97, Coo95b, CT94a,
CT94b, CC00b, Cze16, DSM94, DERC01,
DYN+06, DK13, Di 14, DRO02, DSS90, D+91,
DKM+92, DGM93, DTR94, DZDR95, DO06,
EKTB99, EGR15, EM00a, EM00b, EGDK92,
EJL92, ES11, FGRD01, FHSO99, FJB+00,
FP93, Fer98b, FHK01, Fis01, For95, FP92.

Parallel [FB94, FS93, FF95, GCBM97,
GLN+08, GBD+94, GKP97, GR07, GSI97,
GSMK17, GB98, GHL97, GK98, GFPG12,
GJN97, Gre94, GLS94, GL97a, GLS99,
GkLyCY97, HJ98, HLP10, HO14, HK94,
HK93, HK95, HH94, HT01, HAA+11,
IEE93b, IEE94a, IEE94f, IEE95h, IEE95f,
IEE95g, IEE95j, IEE96b, IEE96c, IEE96g,
IEE96e, IEE96d, IEE97b, IEE05, ITKT00,
IBC+10, IOK00, ID94, IH04, IHM05,
JAT97, JML01, Joo94, JRM+94, KFA96,
Kan12, KKO2a, KO101, KNT02, Kat93,
KBS04, Kep05, KR09, Kon00, KKP01,
KMC96, KM97, KS96, KKD93, KKD04,
KS01, KVB97, KHS01, Kuh98, KGB16,
Kum94, Lad04, LLDD14, LTR00, LKD08,
LSL97, LTL92, LTR02, LHMM96, Li96, LZ97,
LHZ97, kLCC+06, LQ96, Lus00, MSOGR01,
MS02b, MM92, MG97, dLFMBdFM02,
Mar06, Mar07, MFTB95, MSC95, Mat94].

Parallel [Mat95, MBS15, MGC12, MG15, MRB17,
MM11, Mic93, Mic95, MTW96, MCLD01,
MS95, MCD+08, MB+12, MSB97, NO02b,
NO02a, Nak03, Nak05a, Nak05b, NSZ93,
Nar95, NSS12, NAJ99, NJ01, Nov95, Oed93,
OP10, OLGO1, Ong02, Ott93, OWS95,
Pac97, PPT96a, PVKE01, Pat93, PSZ90,
PV97, Per99, Per96, PLO92, PKB+16,
PBC+01, Qui03, RR00, RDM99, RBS94,
Ree96, RS95, RC97, RSV+05, RÖ00, RÖ94,
RWD09, RLT99, RLL01, SCP97, SPE95,
SGZ00, Sch01, Sch96a, Sch96b, Seg10, Ser97,
Sev98, She95, SM03, SP99, Sie94, Sie92a,
Sie92b, Sin93, STV97, SWH15, Sot01,
Sta95b, Ste94, SSN94, SGS10, Str96, Str97,
Str94, SNNP10, Sun90a, Sun90b, Sun94a,
Syd94, TMP16, TSS00b, TTP97, TC94,
TGP+15, TQD91, THN00, TDBE11].
parallel-programming [KKJ+08], parallel/distributed [FHC+95, Wan97], parallel [GEW98]. parallelization [LK93]. parallelisation [SJK+17a, SJK+17b, WCVR96, LF93b]. parallelism [CGC+11, EdS08, EK97, FKKC96, GLP+00, GAM+02, GPC+17, DK02, KT02, Mar03, MGA+17, MMS07, MdSC09, RBA05, SHM+10, SML17, SZ00, TCM18, TTSY00, Thr99, YPAE09, ATL+12, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HSE+17, HK09, JC17, JPOJ12, Kos95b, OPP00, RKBA+13, SLGZ99, SHPT00, THH+05, TWFO09, WO09, WFT014, WRSY16, YZ14, PGdCJ+18].

Parallelization [AL93, And98, AIM97, BCM11, BS07, CRE99, CP97, Con93, Cza03, ETV94, HA10, JR10, Kik93, KLR+15, LP00, OD01, Pok96, QMG00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZS08, WR01, aMST07, AGM06, BW12, BDY99, BJ99, CDD+96, Gao03, Goe02, IDS16, IJM+05, JL18, JJY+03, JMS14, KS15a, KD12, KRG13, MCB05, MG05, Nes10, NEM17, OLG+16, TWFO09, VBLvdG08].

Parallelized [FBSN01, OKM09, KMG99, OKM12]. parallelizer [BHR+08]. Parallelizing [BST+13, Car07, GGH99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12]. Parallelldatorcentrum [Eng00]. Parallying [LRQ01].

[DERC01, DLV16, FSSD17, KK02b, MFTB95, OM96, ST17], partially [CdGM96]. Particle [GSI97, KHS01, NSLV16, ZZ04, BAS13, CFF19, FFFC99, GSMK17, KPK13, RFH+95, VDL+15]. particle-based [FFFC99], particle-in-cell [VDL+15], particle-mesh [BAS13]. particulate [ATL+12]. Partitionierung [Gra97]. Partitioning [CTK01, KLS11, STV97, CT13, Cha96, Gra97, GKCF13, YST08]. partners [Str94]. Pasadena [IEE95c]. PASCO [ACM97a]. passage [PTMF18]. Passing [AMHC11, AKL09, Att96, BZ97, BC14, BBH+06, BBG+01, BRU05, BDH+95, BDH+97, BGR97b, BFM97, CHK07, Cer99, CGH94, Cot97, Cot98, CTK00, Cot04, CDN11, DFK01, DDK08, DHH92, DHH93a, DDL00, FKKC96, FKS96, FGT96, Fo98, FGG+98, FB94, G07, GB96, Gle93, GLS01, GLS94, GL95c, GLDS96, GLT99, GL99, GLT00b, GLT00a, GL04, IBC+10, KTF03, KGRD10, K97, KSV01, KKD04, KKD05, LK08, LI0, Luo99, MIP98, MTSS94, M98, MSL96, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Po96, PS01b, RRBL01, RWD09, RG9+00, SWHP05, SWL+01, ST02b, TG97, T05, T00, T01, WD96, Wer95, Wis97, YHGL01, ZG95a, ZG96, ZLL+12, Ada98, AD98, AAC+05, An03d, An09d4, An095c, An000a, An000b, BL97, BvdSvd95, Bjo95, Bnt95, BDW97, BFIM99]. passing [CGJ+00, CDZ+98, CRD99, CD01, DFK93, DM93, DKD05, DS96b, DHH93b, DOS96, DLM99, DKP00, DLO03, FK94, FHB+13, GL92, HP90, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, WL94, LCY96, LMM+15, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SW95, SDV+95, SZ99, SSG95, ST94, TSZ94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DiN96, GGH9+96, Han98, Hem94, RRF96, SLG95, Wer95, YGH+14]. Past [Dar01]. Path [CGPR98, GAM90, SDJ17, SLN+12, Zed95]. path-based [SLN+12]. Pathway [CNM11]. PATOP [BFB01]. Pattern [CST12, CC17, JJPL17, RDML09, MAS06, SJLM14]. pattern-based [SJLM14]. Pattern-Independent [CST12]. Patterned [Dar01]. Path [CGPR98, GAM90, SDJ17, SLN+12, Zed95]. path-based [SLN+12]. Pathway [CNM11]. PATOP [BFB01]. Pattern [CST12, CC17, JJPL17, RDML09, MAS06, SJLM14]. pattern-based [SJLM14]. Pattern-Independent [CST12]. Patterned [ST17]. Patterns [DMM97, FP08, KB98, P9+16, RRAMG97, S912, DZZY94, GAVRRL17, HGM12, PM95, P9K+10]. PC [AH00, EKTB99, KS01, LKYS04, RLL01, Ste00, WLYC12, YST08, YL09, MMB+94]. PC-Cluster [RLL01]. PCAT [ACD94, GN95]. PCAT-93 [ACD94]. PCAT-94 [GN95]. PCG [G97]. PCI-based [G97]. PCRCW [BS94]. PCs [CRE99]. PCSC [LM94]. PCTE [HZ94]. PCTRAN [KHS01]. PDCS [YH96]. PDE [GBR15, NHT02, NHT06, NPS12]. PDES [PT01, SCL00, SCL01, HO14, HHA95]. PDGC [CGB+10]. PDP [IEE96g]. Peer [GR07]. Peer-to-Peer [GR07]. PELCR [PQ07]. PEMP1 [FB95]. PEMP1s [MOL05]. Pennsylvania [ACM96b, IEE94d]. pentadiagonal [K972]. Pentium [An003]. Pentium(R) [SBB04]. PENTRAN [KHS01]. people [ASC95, An094]. per-triangle [SOA11]. perception [CLM+95]. perceptual [WPL95]. Performance [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, ATM01, AR01, An001a, An001b, ADR+95, Bak98, BBGL96, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BDL08, BCKP00, BHNW01, BFMT96b, BFHW01, B9+10, CGK+16, CDD+13, CRE99, C9D95, CGL01, CNM11, CHE99, CSC96, CBPAGA15, DPSD08, DM95b, DW02, DZ98b, DP001, DWL+10, DBK+99, EGH99, EGC02, EML98, EML00, FD02a, FGRT00, FCP+01, FSC+11, FST98b, FGKT97, GFD03, GKP96, GGS99,
GBH99, GRRM99, GBS+07, GC05,
GMdMBD+07, GSY+13, HVA+16, HKN+01,
Hol12, HF14a, HF14b, HPS95, Hus98, IEE92,
IEE93c, IEE94g, IEE95k, IEE96f, IEE97c, IF95, IRU01, IHvA+00, JSS+15,
JC17, JCH+08, JS13, KDSO12, KaM10,
KL94, KH12, KBS04, KBN97, KKP01,
KL94, KH15, KK02b, KH10, KSS00, La01
LAdS+15, LCK11, LC97a. **Performance** [LB98, LGCH99, LNK+15, LH98, LC93,
LkLC+03, LNW+12, LS10, LCW+03,
LVP04, LWP04, LDC97, LZhY19, LC97b,
LKS04, MM+94, MKP+96, MPD04,
ME17, MGGH97, MGC12, MM02, MM03,
MOL05, MS99a, MHC94b, MMSW02, MK04,
MCLD01, MM99, MM14, NSL16, NMW93,
NPP*00d, NMS+14, NN95, O TK15,
OF00, OLG01, PARB14, PKB01, PHJM11,
PS12, PR94b, PFG97, PGAB+07, PGC02,
PY95, PTH+01b, PS01b, QHC17,
QB12, Rab98, RBB97a, RBB97c, RH01,
RRA07, Ros13, RS06, SG+93, SP+10,
SLJ+14, SWHP05, SCP97, SEF+16, SPL+12,
SCSL12, SM02, SM03, SSC97, SJ02, SSSS97,
SC96b, SIK96, SJK+17a, SJK+17b, TSB02,
TST03, TTS00, Ten95, Tha98, TBG+02,
TGT10, Tri+12b, TFGM02, TFZ12, VFD02,
VY02, WN10, WAS95b, WM01, WT11,
WT12, XF95, XH96, XXL13, YC98].

**Performance** [Van94, YWC11, YS93, YWC15, YS+05,
ZLGS99, ZWJK05, ZHK06, ZSnH01,
ABDP15, Ahm97, ADLL03a, ADL03b,
Apo03, AFST95, BDP+10, Ber96, BDV03,
BFM96, BFMT96a, BFIM09, CRE01,
CATH17, CLY16, CBPP02, CBM+08,
CHKK15, DM95a, DL10, DO96, D+95,
DWL+12, DE91, Duf92, EFR+05, ES13,
FAL16, FD02b, FE17, FVS14, FME+12,
Fin97, GS02, GGC+07, GK97, GR95, GHZ12,
GML+16, GL96, GLDS96, GL97c, GL99,
GWVP+14, HDDG09, HW11, HAS9500,
HAJK01, HK10, HVSC11, HHA95, HG12,
HcF05, JKH08, JMJ+11, JKN+13, KPB16,
KKB15, KS13, LBD+96, LTL94, LC07,
LBH12, LC96, LB96, LL01, LKJ03, LSK04,
MC17, MP95, MSC15, MSW+05, MSL12,
MABG96, MHC94a, MSZG17, MJPB16,
MGC+15, NU05, NFG+10, OHI01, OD02,
PGB+13, PHW+13, PGK+10, PF05,
PMZ+16, PTW99, Rab99, Re03, RGDM15].

**Performance** [YWC11, YS93, YWC11, YS+05,
ZLGS99, ZWJK05, ZHK06, ZSnH01,
ABDP15, Ahm97, ADLL03a, ADL03b,
Apo03, AFST95, BDP+10, Ber96, BDV03,
BFM96, BFMT96a, BFIM09, CRE01,
CATH17, CLY16, CBPP02, CBM+08,
CHKK15, DM95a, DL10, DO96, D+95,
DWL+12, DE91, Duf92, EFR+05, ES13,
FAL16, FD02b, FE17, FVS14, FME+12,
Fin97, GS02, GGC+07, GK97, GR95, GHZ12,
GML+16, GL96, GLDS96, GL97c, GL99,
GWVP+14, HDDG09, HW11, HAS9500,
HAJK01, HK10, HVSC11, HHA95, HG12,
HcF05, JKH08, JMJ+11, JKN+13, KPB16,
KKB15, KS13, LBD+96, LTL94, LC07,
LBH12, LC96, LB96, LL01, LKJ03, LSK04,
MC17, MP95, MSC15, MSW+05, MSL12,
MABG96, MHC94a, MSZG17, MJPB16,
MGC+15, NU05, NFG+10, OHI01, OD02,
PGB+13, PHW+13, PGK+10, PF05,
PMZ+16, PTW99, Rab99, Re03, RGDM15].
Preconditioners [Huc96].
Preconditioning [Nak03, GGC+07].
predictability [GRRM99]. Predicting [RRAGM97]. Prediction [Nak03, GGC+07].
Predictable [RRAGM97]. Predicting [GRRM99]. Prediction [MOL05, WHDB05, ZWJK05, ADR+05, BDV03, CMV+94, HHA95, RBAI17, SEC15, SC96b, SNS94, Was95a, ZAT+07].
Predictive [FJK+17]. Preemptive [BBH+06, BBGL96].
Preface [DKD07, OL05].
Prefetching [BIC+10].
Prefix [WJ12, DK13, MYB16].
Preliminary [BF98, Wal01a, RJC95, RLFdS12, SWS+12].
Preprocessors [Ano01a].
Prescription [MRH+96]. Present [Dar01]. presented [ACM90].
Preservation [RNP13].
Press [Bha93]. principles [BSC99, HS12, SSP+94].
priority [DR95, Man98].
Prism [SDN99].
private [Str94]. privatization [KRG13].
Probabilistic [LadS+15]. Probability [QRMG96, Sta95b]. Problem [BZH15, DALD18, DAK98, GAMR00, ICC02, Lee06, MTS94, RLR92, ZS99, AB97, DSM94, GM94, GCKF+13, HMKV94, IHM05, MM92, SL00, SP11, Cza13].
Problems [ASA97, BHM94, BHM96, BMR01, BPMN97, CGPR98, EML98, HA911, DK02, MBS15, Nak03, Riz17, AL96, CEGS07, FR95, LSR95, NZZ94, OMK09, SC96a, SD99]. procedure [AGLv96].
Procedures [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACGR94, CINW95, GN95, Hol12, IEE93f, IEE95d, IEE02, KG93, LCK11, MC94, R+92, SM07, Ten95, TG94, dGM94, ACM96b, Ano94e, Ano94i, BPG94, Bo97, BH95, CLM+95, DSS94, DE91, EIJ92, FF95, GHH+93, HK95, HHK94, IEE94a, IEE94b, IEE94c, IEE95b, IEE95e, IEE96a, IEE97c, IEE05, JPT94, Kun94, LF+93a, Li96, PSB+94, PB95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM05, ACM06b, ACM06a, ATC94, Ag95a, AGH+95, AH95, Ano89, Ano92, Ano94a, BBG+95, Bha93, CHD07, CZ9+8, CGKM11, CMRR12, CGB+10, CDND11, DMR+92, DT94, DL00, EV01, EdS08, ERS95, ER96, Fer92, FK95, Gatt95, GGGK+93, GA96, GT94, Ham95a, HS94, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94e, IEE94d, IEE94f, IEE94h, IEE94g, IEE95h, IEE95k].
Proceedings [IEE95i, IEE95f, IEE951, IEE95g, IEE95j, IEE96g, IEE96f, IEE96c, IEE96d, IEE96h, KGRD10, LK00, MWD06, MM93, MCdS+08, MS90, Ost94, PR94b, Ree96, RWD09, SC92, SHM+10, Sie94, T912, USE94, USE95, USE00, V92, V93, Y+93, Y96, AD98, B91, BDM96, B94, Bo96, BMI96, BDW97, C96, CD01, D954, DK95, DW94, DM96, DLM99, DKP00, Eng00, FR95, GH94, HAM95b, HS95a, IEE96c, IEE97a, Kra02, KKD04, LCS96, Mal95, PBC+95, Sch93, Tou96, V95, VL93, Was96]. Proceedings. [BHA93, Ano94e, IEE94i, IEE96i, IEE97b, LH9M96].
Process [AUR01, BGL00, CLL03, DeP03, DK06, FD97a, FD97b, FLD98, FP98, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MLVS16, MK00, SH9C18, Ste96].
Process-Management [BGL00].
processed [H98]. Processes [CB16, MW98, Pet00a, Pet00b, FS95, SPK+12].
Processing [ATC94, A95a, AR01, BBG+95, DMR+92, GCG99, GGGGO1, HJB+14, IEE93b, IEE93f, IEE95e, IEE95h, IEE95f, IEE95g, IEE96b, IEE96g, IEE96c, IEE96d, IEE97b, IEE05, IOK00, JDB+14, KOI01, KS15b, LSVW08, MLGW18].
MSML10, Nar95, NH95, NJ01, PLR02, PD98, Ree96, RRBL01, Rol94, SCP97, Sev98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BHS18, BFMR96, CFPS95, CLLASPDP99, DSZ94, FWS+17, GDC15, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Kum94, LHK10, LG93, PSB+94, PPB95, RKBA+93, Röh00, RC95, SSS99, SLS96, VDL+15, Wö92, WWFT11.

Processors
[HC06, Oed93, Ott94, PWP+16, RR02, Snin93a, SBTo4, UALK17, ABDP15, AC17, DCH02, HC08, LL01, OIS+06, RNPM13].

Processor-Oblivious [UALK17].

Processors
[AJ97, Bri10, HK93, HK95, MB15, OLG01, PKKK02, BBG+14, CBM+08, DBL11, HTA08, HWX+13, KnWH10]. Producing
[HAJK01]. product
[CMNH99, ER12, SMSW06]. production
[CLdJ+15, SL00]. productive [LV12].

Productivity [BS07, KaMa10, Wi16]. products
[Ano97, Bra97]. profile
[TWFO09, WTO01]. profile-driven
[TWFO09, WTO01]. profiler [AS92].

profiles [Wit94]. profiling
[GPL+96, LZYH19, Rab99, Vet02].

Program [Ano96d, AB39a, BMS94b, CHP01, Cot07, EML98, MM95, MRV00, Ney00, PS01b, TS00, TH00, UT02, CDZ+98, JF95, LP00, LCL13, OKM12, PPF89, Sai10, TNIB17, TMP01, ZL96].

programmation [VP00]. Programmable
[OA17].

Programmer [Gua16, Wit16].

programmers [CGG10]. Programming
[ACM90, Ada97, ACGR97, ASA97, ACJ12, Ano96b, BBG+10, BL93, BH92, BF01, BBG+01, BK00, CMK00, CDK+01, CKnWH16, Cha02, CZG+08, CF01, Cza03, DM98, DARG13, DDL00, DK06, DWL+10, EM00a, EM00b, FTVB00, FWR+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKH03, Kep05, KP96, KnWH10, KVV97, Lad04, Lao01, LLRS02, MSOR01, Mat94, Mat95, MCdS+08, NO01b, SPM10, SSO1, SDN99, SHH94b, ST02a, ST02b, SGS10, Stp02, TTP97, VT97, Vre04, Wal01a, Wal02, W097, Y97, YHGL01, ACGdT02, AmuHK15, Ano95c, Ano00b, AB13, BJ13, BCA+06, BB94, BS96a, BKHH+13, CLY16, Cha05, CEF+95, CDH+94, CGH+14, DYL+12, Duv92, EASS95, EV01, FB95, FB96, Fan98, FST99, Fer04, Fra95, FHH+13, FF95, GKC12, Ge96, GBH14, GBH18, GRTZ10, HTA08, HS99].

programming
[HZ94, HDB+13, HVS99, HSW+12, HZG08, KDS012, KOB01, KSS13, KSL+12, KL15, KPNM16, KFS94, KKK+08, LV12, LFS93a, LFS93b, LH98, LPP+11, LHH+14, MMB+94, MVT96, MYP93, MC99, MGC+15, NO02a, Nak05a, NYNT12, NBS08, OIS+06, Oul14, OW92, Pac97, PKE01, PFO0, Qui03, RJDH14, SK10, iSYS12, SSKF95, SYM+09, Sg10, SPK96, SBF94, SPL99, SHH94a, SD99, VP00, VOS03, Wal01b, Wan02, WCC+07, WADC99, WYLC12, WLYC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, HSE+17, Che10, SD13].

Programs
[AJJ16, Beg93b, BKdSH01, BGG08, BGG+02, BDL98, BGL00, CS12, CRE99, CHP01, CD98, DLB07, DMMV97, Di14, FKH02, FJK+17, GR07, GTH96, GL04, GC05, HC10, HKN+01, HM01, KLF05, KL94, KS14, KKV01, KSV01, Ma09, MVY95, MOL05, MBE03, MKEW11, MCDL01, MB15, NSZS13, NE98, NE01, NPP+00d, OM96, PPJO1, RH01, RFG+00, SGZ00, SBF+04, SR96, TGBS05, We94, Wis97, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BMPS03, CRE01, CLD15, CgL+99, CH94, CRM14, CFPR06, DFK93, DKF94b, EP96, EP+17, FLB+05, FKL08, GGH99, GRRM99, GKS+11, GB94, HD11, HZ96, HLOC96, HEHC09, KCD+97, KS13, KO14, Kom15, LGKQ10, LLG12, LL16, LBB+16, HLYS+16, LMM+15, LCZ+02,
LCC+03, MT96, MdSAS+18, Mor95, NBK99, Obe96, OdSSP12, PES99, PAdS+17, RAS16]. programs [Reu03, RRG+99, SSB+16, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, TMW17, THH+05, UGT09, VVD+09, YSVM+16, YMSA+17, YYW+12, ZJDW18, ZRQA11]. Progress [BRU05, LAdS+15, SPH+18, MLA+14, MC94]. Progress-Dependence [LAdS+15]. Project [BHK+06, BSH15, DHK97, MRV00, ABC+00, CDH+94]. Promise [Ano93e]. Promotion [OCY+15, WBBD15]. Proposal [DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14]. Proposals [Wal96b]. protected [GHD12]. protein [GAVRRL17, SEC15, ZAT+07]. proteins [BHW+12, BBH+15, FMS15]. Protocol [CAWL17, GSY+13, KL11, LMM+15, RA09, XF95, BDB+13, CW+11, DDYM99, MN91, MB00, ZFI06]. Protocol-based [LMM+15]. Protocols [BCH+08, DM93, LH98]. Prototopological [dFMBdFM02]. Prototype [Ano01b, FHP+94, MMSW02, BK96, CCF+94, KLY03, KLY05]. prover [Sut96]. Provide [Add01, LMRG14]. Provides [Ano98, Nel93]. Providing [GKP97, Zah12]. Proving [MS96b]. PRS [UCW95]. Pruning [SMM+16]. PS [AMV94]. Pseudo [Wal01a, Lan09]. Pseudo-search [Wal01a]. Pseudorandom [WHDB05]. Pseudospectra [BKS02]. pseudospectral [Br95, MRRP11]. PSPVM [BWT96]. Pthread [ZAT+07]. Pthreads [AS14, TS12b]. PTX [SYS12]. Public [Str94, GWVP+14, Ne93, RST02]. Public-private [Str94]. Puma [BS96b]. purely [HSE+17]. Purpose [BDT08, CHe10, SZBS95a, Sun94a, ABDP15, CBM+08, KPNM16, PF05, SK10, SZBS95b]. PVaniM [BCLN97, TSS98]. PVFS [IRU01]. PVM [AD08, BL94, BDL96, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DKP00, DLO03, Krak02, KKD04, LKD08, McD96, MTW06, RWD09, Wi94, AJ97, Ahm97, AS92, ACR97, ADRCT98, AL92, AGR+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95c, Ano96b, Ano96c, ABC95a, AB95b, ABG+96, AGLv96, AB93b, AB93a, ADMV05, BSN95, BL93, BFL99, BBGL96, BG95, BS93, BDG+91a, BDG+92b, Beg92, BDG+93b, BDG+93a, Beg93b, Beg93c, Beg93a, BDG+95, BS96a, BDG+xx, BL95, BR95b, Ber96, BJS97, BT96, BWT96, BG94a, Bon96, BG94b, BG94c, Bor99, BCD96, BRR99, BFZ97, BID95, BMS94b, BFM96, BMT96a, BMT96b, CMV+94, CP97, CD95, CKO+94, CCK+95, CSPM+96, CZ95a, CGPR98, CG93, CDHL95, CDH+95, CF91, CZ96, CS96, CG96, CG99a]. PVM [CSC96, CDM93, CdGM96, CPR+95, CT94a, CT94b, CF96, CT02, CD98, CT01, DG95, DKh94a, DDYM99, DM95b, DM95a, DP94, DMMV97, DG97, DFN12, D+91, DGMS93, DGMJ93, DHP97, DPZ97, EP96, EM94, EGD92, ED94, EM02, EML98, EML00, ES11, EMO+93, ESM+94, EK97, FMBM96, FD96, FLD96, FH95, FHS99, FO94, FSTG99, FJBB+00, Fin97, FD97, FS97, For95, FS93, GRV01, Gal97, GCBM97, GS91a, GS91b, GS92, GS93, Gei93a, Gei93b, GDB+93, GBD+94, Gei96, GKP96, Gei97, GKP97, Gei98, GSxx, Gei00, Gei01, GTH96, GB96, GM95, GSHL02, GFV99, GGH99, GS96, Gör01, GHL97, Gre95, Gre94, GL97b, GMU95, GlLy97, HB96a, HB96b, HSMW94, HJ98, Har94, Har95, HBT95, HPS+96, Hem96, HEH98, HTHD99, HVSH95, HH95, HRSA97, Hue96, Hum95, HS95b]. PVM [ITT99, IvdlH+00, IDD94, IKM+01, IKM+02, JAT97, JH97, JML01, JW96, JC96, KBA02, Kat93, KK98, KP96, KBM97, KDL+95a, KDL+95b, KG96, KCP+94a,
KCP + 94b, KOW97, KMC96, KS96, KZCS96, KS97, KV98, KAHS96, KK02b, LGM00, LB98, LSQL02, LHCT96, wL94, LFS92, LFS93a, LFS93b, LH95, LC93, LY93, LLY93, LW95, LH97, LK96, LDC97, MW98, Man94, MVTP96, Man01, MP95, dlFMbdFM02, MTS94, MPT95, MSCW95, MSP93, Mat94, Mat95, MMU99, Mat01b, MRV00, MK97, Mck94, MC98, MFC98, MY95, MS96b, Mie93, Mie95, MT96, MS99a, MS99b, MHC94a, MHC94b, MRH + 96, MS95, MC99, MWO95, Nel93, NP94, Neu94, NBK99, Ney00, NB96, NAJ99, Nov95, Obe96, Ols95, OPP00, Ott94, OWSA95, PPR01, PK98, PPT96b, PPT96a, PPT96c, POL99, PTKY95, PVM [Per96, Pet97, PTT94, Pla02, PNV01, PD98, PY95, PL96, Pus95, QRG95, QRM96, Qu95, QMR00, RR00, RS93, Rag96, RS95, RHG + 96, RRAGM97, Rol94, RGD97, Saa94, SAS01, Sch94, Sch96a, Sch96b, SB95, SFG98, SGS95, SSS99, SP96, Sep93, Sev98, Shi94, SA93, SR96, SHH94a, SHH94b, Sn93a, SBR95, SC96a, STT96, SME93, SGL + 00, SGHL01, SCL97, SSS97, Sta95b, SY95, SYF96, SC96b, Str94, SKH96, Sun90a, Sun90b, Sun92, Sun93, Sun94a, SGDM94, Sun96, STMK97, SN01, SCL00, Sun95b, Sut96, SL95, TMTP96, TC94, TDB96, TD98, Tsd95, Uhl94, Uhl95b, UH96, UK97, VSRC94, VSRC95, VB99, VAT95, WKS96, WH94, VCVR96, WAS95b, WOC97, Wis96a, WL96a, Wis98, Wis96b, WL96b, WCS99, Wn99, WLC07, XWS96, XF95, YG96, YK1 + 96, ZPLS96, PVM [ZPI06, ZB94, Zem94, ZDR01, ZG95a, ZG95b, ZG96, ZG98, Zo93, van93, Ano95b].
PVM-AMBER [SL95].
PVM-Based [WAS95b, FO94, PY95, Sut96, ZPLS96, LSQL02, TD98].
PVM-GRACE [YKI + 96].
PVM-Implementation [BJS97, Huc96].
PVM-RPC [KS97].
PVM/C [GTH96].
PVM/MPI [AD98, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DPK00, DLO03, Kra02, KKD04, LKD08, MTWD06, RWD09, ACG97, SN01].
PVM3/ AP1000 [IM94].
PVM-Maple [Pet00a, Pet00b, Pet01].
PVM-Neumann [BR95c, BR95b].
PVM-Geant [DZDR95].
PVMPI [FD96, FG97a, FG97b].
PyCUDA [KPL + 12].
PyOpenCL [KPL + 12].
Python [BL97, DPS05, DPSD08, Di 14, GFB + 14, SSH08].
PyTrilinos [SSH08].

Q [KMH + 14, LM13, MV17].
QAPs [Tsu12].
QCD [BLPP13, GM18, SVC + 11].
QCG [ACH + 11].
QCG-OMPI [ACH + 11].
QCMPI [TJD09].
QR [GKK09, LC97b].
QSATS [Hin11].
Quadratics [YSP + 05, LCW + 03].
Quadrantree [HS95b, PGBF + 07, SCC96, Sur95b].
Qualitative [BLP93].
Quality [Boi97, RFG + 00, WHDB05, Ano94i, Lan09, Boi97].
Quality-of-Service [RFG + 00].
Quantifying [AKE00, LDC97].
Quantitative [BLP93, BB + 15].
Quantization [HIE15].
Quantum [BCGL97, BCL00, GRTZ10, Hin11, MGG05, NMW93, SK00, SGSF00, TJD09].
Quantum-Asynchronous [DDYM99].
Quasi-Newton [ZB97].
Queensland [ACDR94].
Query [AR01].
Quest [MWG97].
Queues [NSS12, CG99b, PT + 16, Sep93, ZA14].
quicksort [MMO + 16, MMO + 16].
R [BBH12, JPOJ12, LR01].
R&D [Str94].
R&D-100 [Str94].
Race [CMR95, KSJ14, DFK94a].
Races [PPJ01, SAL + 17, DFK94b, LLL12, ZRQA11, EPP + 17].
Radial [RB01, KR17].
Radiance [GCBM97, KMG99, RC97].
Radiology [GA96].
Raejeev [Ano00a].
Raleigh [Agr95a].
Ramesh [Stp02].
Random [HT08, LTDD14, Lan09].
Randomized [Tra98]. Range [KBM97, MH01, BMPZ94a, PARB14, She95].
range-join [She95]. Rank [Hat98].
Ranking [Tra98]. Rapid [FWS+17].
RASC [YCL14]. rate [BBG+14, YPA94].
rationale [BBH+13b]. Ray [CG93, DP94, KGB+09, FWS+17, SGS95, FFB99].
Ray-Tracing [DP94]. Rayleigh [TVV96].
Rayleigh-Benard [TVV96]. rCUDA [PRS16, RSC+15, SIRP17].
RDMA [GSY+13, LWP04, Pan14, RA09].
RDMA-Based [LWP04].
RDMA-Enabled [GSY+13, Pan14, RA09].
Re [MCP17]. Re-Vectorization [MCP17].
Reaching [BHS+02]. Reaction [HF14a, HF14b].
reactor [ANS95]. readability [SM12].
Reading [HK95]. Ready [Bri02, DZ98b].
Ready-Mode [Bri02]. Real [LHLK10, NSLV16, Tho94, UP01, YGH+14, Ano94f, Fer04, FLB+05, JR10, ZWZ+95, SKD+04].
Real-Time [UP01, YGH+14, LHLK10, Fer04, ZWZ+95, SKD+04]. Real-World [NSLV16].
Realistic [YMYI11, ZShH01, CKP+93]. Reality [KM06a, Ano93e, NM95, Wit16].
realizing [YZ14]. rebooting [GJLT11]. Receive [Bri02].
Receiver [ZG95b]. receptor [ESB13]. Rechnen [Ano94e, BL94, MS04].
Recognition [CC17]. recomputation [RKBA+13]. Reconfigurable [MFC98, SPM+10, NYNT12].
Reconfiguration [CS14, MSMC15].
Reconstruction [BM97, DYN+06, GA96, LSSZ15, OH10, RAGJ95]. Record [UALK17, CRD99]. Record&Replay [KSV01].
record/replay [CRD99].
Recovery [SBF+04, BBH+13b, BDB+13, LFS93a, LFS93b, SSSC95, ZW05].
Rectangle [CSW99]. rectified [WBBD15].
Recurrences [ACGR97]. Recursive [DSS00, PWP+16, SD99]. Red [van93].
redesign [HL17]. Redistribution [DDPR97, HC06, WO95, WO96, HC08, KN95]. Reduce [PSM+14]. Reduced [SW12].
Reducing [CRGM16, JE95, BCM11]. Reduction [FKH02, MFPP03, SG12, HL17, Jes93a, MLVS16, Pan95a, PQ07].
Redundancy [TS12a]. redundant [KJJ+16]. Reference [GHLL+98, Nag05, SOHL+98, YML97, Ano99a, Ano99c, Ano99b, Ano99d, SOHL+96, Per97, Ano96a].
Refinement [MBR17, Ran05, CLSP07, DLR94]. regions [LFL11]. regression [RAI17]. Regular [HL11, NHT02, NHT06].
Relationship [Dan12]. relativistic [BHS18]. relaxation [OKW95].
Reliability [CGZQ13]. Reliable [SE02, Arn95]. Remark [SWH15].
remedies [ALW+15]. Remo [IEE95b].
Remote [BMR01, HDT+15, IFA+16, OCY+15, Tsu07, WBBD15, AGLy6, FHC+95, GBH14, GBH18, HGMW12, RSC+15, SIRP17, SH96].
Remote-Scope [OCY+15, WBBD15].
Remotely [GCG99]. Remoting [MGL+17].
removal [ZZZ+15]. Removing [ZJDW18].
Rendering [GCBM97, LSZL02, SU96, UCW95].
Rendezvous [RA09]. Reordering [Hat98].
Reparallelization [KBG+09]. Repeated [WH94, Shi94].
Replacement [GHD12].
Replacing [CFMR95, HLOC96, UALK17, CRD99, MT96, NBK99, XLW+09].
replica-based [MT96]. Replication [WC09, KJI+16, ZJDW18].
Representation [BMR01, KD12, MDM17, SML17, CCM12].
reproduce [AVA+16]. Reproducible [GL99, HCA16, XLW+09]. Requirements [GSHL02, GT07, Ber96, KBG16, LCVD94a].
Research [Ano96d, BR02, MC94, SL94a].
SGHL01, Ara95, BPG94, LP00, Oed93].

Reservoir
[OWSA95, ZAFAM16, ZZ95, Ano95d].

Resident
[JDB+14]. Resilient [CGH+14, Gua16, LCMG17, LMG17, MLVS16].

Resolution
[MAB05, Str94, BADC07, KN17]. Resolving [Str97].

Resource
[BGR97b, BSH15, KK98, SIS17, YSS+17, DZ96, FLD96, NEM17, ZA14].

Resource-conscious [ZA14]. Resource-restricted [NEM17]. Resources [LSB15, NAW+96, Kos95b, R+92].

Response
[BBC+00]. Restart [SSB+05, LMG17]. Restarted [dH94].

Restarting
[BR95c, DZ96, FLD96, NEM17].

Recovery
[BD97, LSB15, LM+94, Kos95b, R+92].

RC
[NEM17].

RC/6000
[CDM93].

RSA
[RLV12].

RUBIS
[BR95c]. Ruby [Ong02].

Run-Time
[FBK01, GOM+01, OP98, SS96, DL94, SBW91, KPL+12, RRS+99, Str94, TCBV10].

Running
[BZ97, CCM+06, YKI+96, CRE01, ZLZ+11].

Runtimes
[AHHP17].

Russia
[Mal95].

RWA
[RLV12].

S
[AHHP17, Roh00]. S-Caffe [AHHP17].

S-language
[Röhl00]. S [GLT00b]. S3D [LSG12]. Safe [Pla02, GCC99, LFS92, LFS93a, LFS93b, NYNT12]. safety [GT07].

salesman
[GM94]. Salt [Hol12].

San
[ACM97b, Ano95d, BBG+95, GE95, GE96, Has95, IEE93a, IEE94g, IEE95h, IEE95g, IEE97c, LF+93a, NM95]. Sanders [Che10].

Sandy
[VDL+15].

Satiability
[IKM+01, IKM+02].

Saturday
[B+05]. Saturday-Wednesday [B+05].

Save
[KFL05, FKL08]. SBS [MSB97, WWZ+96]. SBS-Type [MSB97].
SC'11 [LCK11]. SC2000 [ACM00].
SC2001 [ACM01]. SC2002 [IEE02].
SC2003 [ACM03]. SC97
[ACM97b, ACM97b]. SC98
[ACM98b, ACM98b]. SC'99 [ACM99].

Scalability [BS07, FSC+11, KBS04, LL01, LKYS04, LSK04]. Scalable
[Add01, AHHP17, BHW+17, BBC+02, BHNW01, BGL00, CGS15, CDPM03, EFR+05, GFB+14, GSG94, HGMW12, IEE92, IEE94f, IEE95j, IBC+10, KK98, kLCC+06, MFP03, NBGS08, NPP+00d, NCKB12, NSM12, OLG01, PPJ01, PR94b, PBK00, SDJ17, SBF+04, Skj93, SSK96, TPD15, UP01, VBLvdG08, VY02, ZLGS99, BBB+94, Bri95, CLSP07, FWS+17, GBH14, GBH18, GM13, GKL95, HRR+11, HAJK01, KRC17, KRG13, LM99, LTL94, MMB+94, MRRP11, PWG+12, SPK+12, Trä12a]. ScaLAPACK
[BV99, BRR99, DHP97]. Scale
[AKE00, BHW+17, BZ97, BHNW01, FFP03, MFPP03, SM03, TGM09, WT12, AASB08, BCA+06, BJS99, BCH+08, Cie99, DZZY94, FME+12, Gua16, Kos95b, LS10, MLA+14, PTL+16, PD11, RMN+12, SLSL99, TBB12, WLN06, WT11, ZKRA14, ZA14].

SCALEA [TFGM02]. Scaling
[CC17, KFL05, SLJ+14, FKL08, Gao03, LFL11, PDY14]. scan [AAA16, YLZ13].

can line [CT13]. scans [NAJ99]. SCASH
[SHH01]. SCATCI [ART17]. scatter
[BCD96, MTK16]. Scattering
[BCL00, NZZ94, OMK99]. SCF [MM95].
schedule [NAAL01]. scheduler
[ADDR95, TCBV10, WRSY16]. schedulers
[NP12]. Scheduling [BBH+06, BSH15, CML04, DMB16, EGR15, GDDM17, GSHL02, GHL97, HCO6, JW96, MJ85, NIO+02, NIO+03, TJPF12, APB+16, DZ98a, JKN+13, LHCT96, MKBM12, NSBR07, OPW+12, Sml93b, SKK+12, SKB+14, WYLC12, WLYC12, YWCI11].

Scheme [CTK01, LNLE00, MW98, SBF+04, BBGL96, Bjo95, MRRP11, OKM12, SCC96, YPZC95, FM90]. Schemes
[PPJ01, WYLC12, WLYC12, ZAT+07].
Schmidt [CBYG18]. School [VV95].
Schrödinger [DM12, ON12]. SCI
[FS97, HH15, HS94, ZL96, ERS95]. Scientific
[AGH+95, APJ+16, BBG+95, Dquí+92, DT94, Gat95, GL97a, HJ98, KK02a, LKLC+03, Mar06, Nag05, Sin93, SSB+17, VY02, WN10, BF94, SBG+12, TBB12, Ano97, Bra97]. scientists
[HW11, Str94]. SciPAL [KH15]. SCIPVM
[ZHS99]. Scope
[OCY+15, BBD+15]. scoping
[RLQ12, WC15]. Scottsdale [IEE95b].
 Scratchpad [JAK17, MB12]. Scripting
[Ong02, KPL+12, Nob08]. scripting-based
[KPL+12]. SCTP [KWW05, ZPI06].

SDKM [TK16]. SDSM [CCM+06]. Seamless
[KK02a]. Search
[BSH15, Cza13, IKM+01, Wal01b, FMS15, IKM+02, Wal01a, ZSK15, CB11]. Searches
[BSC05]. Searching
[JPT14, MM01, BA06, Wal01b]. Seattle
[ACM05, BS94, LCK11, Osd94]. Second
[Ano00b, BL95, DT94, DE91, IEE94d, IEE96d, IEE96i, LHHM96, Tou96, Vol93, WPH94, ACM97a, Ano99a, Ano99b, BFMR96, DMW96, FR95, KN17, Li96]. Second-Order
[BL95, KN17]. Secondary
[WHDB05, SEC15, ZAT+07]. section
[Ano93b, DKD08]. segment [FJZ+14].
segment-based [FJZ+14]. Segmentation
[KBA02, AD95, CCU95]. Seidel
[BG95, LM99, Ols95]. seismic
[AMBG93, KL95, KEGM10, LM13, QHCC17, RMNN+12, SSS99, WCVR96]. Seismograms
[DP94]. Select [KDV93].
Selected [DHS96, MTW07, OL05, TB14, CHD09, Cha05, DKD07, JC17]. selecting
LSK04, MS99c, PGK+10, GBH14. SIGCSE [ACM06a]. Signal [IEE95e]. signals [Uhl95c]. Signatures [Gro00]. significance [AMHC11]. silent [FME+12]. silicon [Ano03, Goe02]. SIMD [BvdB94, HS95b, KDT+12, LL16, Sur95b, VSW+13]. Simple [MSF00, Mul01, SC04, ITT99, JH97, Nes10, PNV01]. simulate [Heb93]. Simulated [BHM94, BHM96, FH97, RSST95]. Simulating [DLM+17, KDL+95b, KDL+95a, NFG+10]. Simulation [CDMS15, CCBPGA15, DMMV97, DZDR95, GS97, GM95, GJK97, Ham95a, JML01, KBM97, KMK16, LLRS02, MTFB95, MPD04, MANR99, PCY14, PKYW95, PZKK02, RR00, RDMB99, SSAS12, Str97, Ten95, UZC+12, ZZ04, ZWJK05, dAMAC11, Ano95d, ADR+05, BJ95, BCM+16, BH95, BMPZ94b, CwCW+11, CSPM+96, DSO11, FHS099, FO94, FFFC99, GRTZ10, JAT97, JLS+14, KTJT03, KMC96, KMC97, LCVD94b, LCVD94a, LYZ13, MMW96, MALM95, NB96, NF94, OKM12, PARB14, PY95, RFH+95, SWYC94, SSF+94, SKM15, Str96, Syd94, Tho94, YPA94, YEG+13, YSL+12, Eng00]. Simulation-Based [ZWJK05]. Simulations [CGS15, CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KTH02, Kha13, NH95, RTRG+07, SM02, YPAE09, ADT14, ABG+96, BHS18, BADC07, CFF19, GM18, Hin11, JMS14, LS10, LSVMW08, RMNM+12, SU96, WWFT11]. Simulator [CAM12, MRV00, UT02, WPC07, AMV94, LS10, PWD+12, WZWS08, ZAFAM16, ZZ95, KTJT03, Nak03, Nak05a, Nak05b]. Simulators [SB95, AVA+16]. Singapore [IEE96d]. Single [BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KILL11]. Single-Chip [URKG12]. Single-sided [BM00]. single/multigrid [AGIS94]. singleton [TVCB18]. Sinks [JPT14]. Sites [Ano98]. Sixth [HK95, IEE96c, MMH93, SW91]. size [GKCF13]. sized [JLS+14]. Sizes [DLD18, ZSH01]. SkMPC [KRS99, RSPM02, RH01, Ren01, RST02, Ren03]. SkeLL [BG98, HI04, RJDH14]. Skeletons [Ser97]. Skjellum [Ano95c, Ano99b]. Slack [KFL05, FKL08]. SLAE [ADRE91, AK99]. Slave [LRR00, HP05]. SLEPc [DR18]. SLLC [KBHA94]. Slices [GSHL02]. Small [HLPL11, TS12b, Ano94h]. small-footprint [TS12b]. Small-World [HLPL11]. Smith [KDS01]. Smithsonian [Str94]. smoking [YS11+12]. SMPI [Add01, CRE99, CRE01, CCBPGA15, HD02a, DK01, GMdMBD+07, HD02b, Hus00, HIP02, JKHK08, KOI01, KKH03, KM99, KAC02, NOO2b, NO2a, ST02a, TOTH99, Tri02b, YWC11, bT01a]. SMPCkpt [DCH02]. SMPI [DLM+17]. SMPs [HLCZ00, NU05, SvL99]. SMPS [MLAV10]. SMPSSuperscalar [GCBL12]. SMT [PAdS+17]. SMT-based [PAdS+17]. snake [JPP95]. snake-in-the-box [JPP95]. Snir [Ano96a, Ano99a, Ano99c, Ano99b, Ano99d, Nag05]. SnuCL [Lee12]. soccer [YMYI11]. socket [LS10]. Softshell [SKK+12]. Software [Ano94i, BME02, BPG94, BDG+xx, CZ95b, ESB13, FP03, GB95, GRe95, HPR+95, HS94, HHA95, IEE95l, IE96b, SIS95, KS15a, KC94, KAMAMA17, KG93, LB16, MBE03, NPS12, Ost94, PZ12, Si96, TDBEE11, VdS00, Wis01, Wol92, Ano97, BSC99, Boi97, Bra97, BR94, CMV+94, CBPP02, DPZ97, Hum95, JH97, JB96, LM94, MK94, Neu94, Old02, PHA10, PK05, PGK+10, RAS16, SHH01, Sch94, Sci99, SPH95, Str94, ZGN94, Ano94i, KG93, Si96]. Software-Managed [LB16]. Solar [CGB+10]. Solaris [Ano01a]. solidification [JLS+14]. solids [Hin11]. Solution [DWL+10, FBS01, HO14, RPM+08, SEF+06, Tsu12, VRS00, DWL+12, IM95].
JK10, LSR95, MALM95, ÖN12, PRS+14, SC96a]. solutions [AGIS94, LMG17]. Solve [Hog13, Riz17, BAV08, Che99, GGGC99].

Solver [Ben01, BP98, CF01, HSMW94, IDD94, LZ97, SJK+17a, SJK+17b, WJB14, YKW+18, AMS94, CP15, CFF19, DM12, JR10, LM99, Lou95, OGM+16, RM99, SRK+12, SCC95, THM+94, ZSG+14].

Solvers [DFN12, DLDAL1, GKI0, MS97, N0O2h, Na03, NHT02, NLRH07, QRMG96, RS97, WR01, AFB+17, ADLL03a, ADLL03b, ADD95, BRR99, CL93, DR18, MRP+96, MS95, N0O2a, Na05a, NaO5b, NHT06, PR94c, QRG95, SSO8].

Solving [ADRCT98, BH94M, BHM96, BV99, BG95, BDG+92c, BSH15, DAL98, GFG12, Huc96, LLY93, MS02a, NF94, SAS01, SP11, SD99, BB95, DSM94, HHA95, LBB+16, LYSS+16, MM11, SSB+16, SMSW06, YSV+16, YSMA+17]. SOM [GKlyCY97].

Some [BDT08, MI01, PE97, AL92, NN95, RSB95]. Sopron [VV95]. Sorrento [DKD05, DKD07]. sort [KVHI11, PSHL11].

sort [BJ96, PSH11]. Sound [SG12].

Source [BBG+15, MM07, AC17, AVA+16, NCB+17, NOB08, PSX+10].

Source-Code-Correlated [MM07]. source-to-source [AC17]. Sources [ZDR01, KM10]. South [ACM95a].

southeast [ACM95a]. Sowing [GL97a]. SP [BBP01, CE90, HMKV94, LC97b, WT11, WT12]. SP-1 [HMKV94]. SP-2 [LC97b].

SP1 [BR95c, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95].

SP1/SP2 [FHP+94, Fra95, FWR+95]. SP2 [BR95b, FHP+94, Fra95, FWR+95, HWW97, JF95, KB98, KHS01, MABG96, XH96].

SPAA [ACM95b]. Space [CML04, CB16, HO14, MSF00, OFA+15, SAS01, SSO1, TA14, SRK+12].


Spanish [VP00]. spanning [NCKB12]. Spark [KWEF18]. Sparse [AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADLL03a, ADLL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XXL13].

SPEC [An03, MM96+10, MB+12, NA01, SGJ+03, TS03]. Special [AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DKK08, GSA08, MP98, Bos96, Mar02, PNV01, RO01, OD02]. Specific [DM95b, DM95a, OH14].


Speculation [AELGE16, SHLM14]. Speculative [RA09, dOSMM+16]. Speed [CDH95, Ton00, AH95, AN003, BWT96, BID95, KMK16, CDH+95].

Speeding [CSV12]. Speedup [VPS17]. SPH [CP15, OLG+16, PBC+01, WMRR17].

Sphere [CT94a, CT94b]. spherical [KT10].

SPICE3 [WPC07]. Spiking [CAM12]. Spin [HLP11, KO14, Kom15]. splitting [TCB10].

SPMD [BST+13, Da01, KAC02, Wal01, Wal02].

SPMD-Like [BST+13]. Spoke [IEE93c].

Sponge [HSM+12]. spontaneous [EZA16]. Spring [AN094g, IEE93a].

SPTH ETIO [Sat96]. SPY [SSG95]. Squares [PWP+16, VRS00]. SR [YWC15, ZLP17].

SR-IOV [YWC15]. SR8000 [NN000, TSB02, TSB03]. SS7 [LTL19].

SSGM [HPS+96]. SSS [MHH98].

SSS-CORE [MHH98]. St [Mal95].

Stability [DSS00]. stable [JMDV+17]. Stage [FSZ14]. staggered [GM18].

Stampi [TUK01]. Standard [DM98, GS97, GLP+00, GL95c, Hem94, MP98, NH95, SKD+04, SGS10, Wer95, YKL17, AN014d, BDB+13, Bor99, Cla98,
CG99b, DHHW93b, DOSW96, FB95, GKV97, GL92, Hem96, Sti94, VM95, Wal94a, Wal94b, WD96, Ano97, Bra97, CGH94, DOSW95, GLDS96. **Standards** [FKKC96, Th99]. **Star** [CDM93, Coo95a, Coo95b]. **STAR/MPI** [Coo95a, Coo95b]. **Start** [Gro02b, Hus98]. **Startup** [PS07]. **State** [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, BTC+17, LF93b]. **state-to-state** [BTC+17]. **states** [NS16]. **Static** [NIO+02, NIO+03, RLVRGP12, SCB15, SCB14]. **Static/dynamic** [SCB15]. **Statics** [TG94, TG94]. **Stationary** [MW98]. **Statistical** [LR01, SNMP10, AMHC11, KKM15, Roh00, SL94a, Vet02]. **Status** [BF96, Mar06, MRB17, NLRH07, Ran05, Bis04, CLSP07, FR95, GBR15, JAT97, Smi93b]. **Structures** [GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94]. **Studies** [DHP97]. **Study** [AIM97, BF01, BPLS+95, DARG13, EGC02, FPY08, GL97a, HHC+18, KCR+17, LSV15, MM02, NSL16, NA01, PK05, RBL01, SCL01, TG94, AGR+95b, BJ13, BfDA94, BJS99, BY12, Bri00, CBM+08, DGBK96, ED94, FO94, JR13, KGB10, LPD+11, L2H+14, MS96b, PSK08, PGK+10, PSHL11, RSBT95, RJC95, TP1D15, Wal01b, ZSK15]. **Stuttgart** [KGRD10, WPH94]. **style** [JPOJ12]. **sub** [MJG+12]. **sub-communicators** [MJG+12]. **subcircuit** [HLO+16]. **subdomain** [CEGS16]. **subdomains** [SHHC18]. **subgroup** [XLW+09]. **Submitting** [NSS12]. **Subrange** [SDD97]. **Subroutine** [Saa94]. **subroutines** [dCH93]. **subsurface** [ED94]. **subsystem** [BMG07, MAB96]. **Subsystems** [STMK97]. **Subtle** [SAL+17]. **Success** [Gro01b, LF+93a]. **Successes** [Gro01a]. **Successful** [Gro12]. **suffix** [DK13]. **suitability** [MSD01]. **suitable** [MAS06]. **Suite** [ACMR14, AKE00, BWV+12, MB+12, Riz17, Ano03, BO01, MvWL+10, TG09, YSWY14, NMP10]. **Suites** [MCS00, SGJ+03]. **summation** [IHM05]. **Sums** [ST17, MB16]. **SUN** [BM00, SJ02, WSN99]. **Sunderam** [Ano93b]. **Super** [Gu16, YX95]. **Super-Object** [YX95]. **Supercomputer** [Ano93a, CLP+99, Str94, AAC+05, BGM+05, EFR+05, GL96, GL97c, KMH+14, NSM12, Ste94, GSR91b, MAB05]. **Supercomputers** [BP93, BDG+92c, EKTB99, KN17, WT11]. **Supercomputing** [ACM96b, ACM04, ACM05, BDG+91b, HK93, IEE91, IEE93e, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano93f, BG91]. **superlattice** [PRL14]. **superscalar** [ACJ12]. **Supersonic** [CCBPGA15]. **Support**
[Ano98, BBG+10, BFBW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRSA97, LMRG14, MK04, OP98, PSM+14, RR02, SDN99, SBT04, TW01, Wis98, Wis01, YSP+05, BBH...13a, BL99, CC10, CZ95b, DLR94, Hos12, Maf94, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG+15]. Supported [KLR16, CDD+96].

Supporting [FD00, FMSG17, GAML01, Gua16, MMS07, OOS+08, WLNL03, WLNL06, WCS99, YWCF15, FLD96, GAM+00]. Supports [AELGE16, CLL03, DGMS93].

Suppression [WWZ+96]. Surface [KS15b, PKYW95, BHW+12, DCD+14, RAGJ95, TSP95]. Survey [Sap97]. Survive [ABB+10]. sustainable [CGBS+15]. SVD [CMH99]. Swan [HD11]. Swapping [SC04]. Sweden [Eng00, HAM95b, FF95]. Swendsen [KO14, Kom15]. Switch [SCL01, TBD96]. Switched [LC93, KYL03, KYL05].

SWITCHES [DT17]. Switzerland [GT94, Ano94i, IEE97b]. SX [HRZ97, TRH00]. SX-4 [HRZ97]. SX-5 [TRH00]. Sydney [Bil95]. Sylvester [KCL+90]. Sylvester-Type [GK10]. Symbolic [CCK12, Coo95b, Ste00, YYV+12, ACM97a, BHHK95, Coo95a, Lev95, LGKQ10, LL12, SMAC08].

Symmetric [BDV03, MDM17, YKW+18, BAV08, DHC02, GG99]. Symposium [ACM95b, ACM96a, Ano94a, Ano95d, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94c, IEE95c, IEE95d, IEE95k, IEE95f, IEE95g, IEE96c, IEEE96f, IEEE96c, IEEE97b, IEEE97c, IEEE95, LHMM96, Li96, NM95, Ost94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Ten96, USE94, UCW95, ACM97a, ACM96a, Ano93a, Ano94b, Lev95, Old02]. synchronisation [SDB+16].

Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13].


System [Ada97, AJ97, AH00, BG95, BDG+xx, BL95, BFZ97, BGD12, CAM12, CGC+02, DBA97, DALLD18, ERS95, ERS96, EK97, FBD01a, FBVD02, FFP03, Fis01, Gal97, GCBM97, GS91b, GS92, GSxx, GM95, Gre95, HS94, KBA02, LLSR02, LTR00, LLY93, Ma94, MRV00, MM02, MSF00, MM98, MMS07, MM93, NPP+00d, NMS+14, Oed93, PPT96a, RGD97, SGJ+03, SCP97, SA93, ST02b, Sun93, TSS00b, Tsn07, UP01, Wil93, ARS89, AS92, AL92, BB94, Bri95, BBH+15, DL10, FNSW99, FK94, GS91a, GS93, GS96, GMU95, GkLyCY97, HDDG09, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+96, LKL96, LL95, MA90, MMR99, MMB+94, MAS06, MM11, MS99b, MAL95, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RTL99, SHH01, SL94b, Sei99, SPL99]. system [SGDM94, Sun96, Sur95b, VSR94, VSRC95, WCC+07, WZWS98, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ+95, dCZG06, AL93, NM93, Yan94]. System-Initiated [SSB+05]. system-on-a-chip [dCZG06]. System/6000 [AL93, NM93]. Systeme [GBR97, GEW98]. Systems [ABB+17, Ano94b, Att96, BCGL97, BGBP01, BME02, BPG94, Bha93, CDJ95, CAWL17, EFF+94, CS97, CJNW95, Coo95b, FD96, FGKT97, Fos98, Gua16, HS94, IEE93d, IEE94d, IEE95a, IEE95i, IEE96b, KKH03, KP96, KDL+95b, KCR+17, KS97, LY93, LW97, MWG97, MB90, MJ95, MBR+12, SM03, SGS10, SS96, TPS16, THN00, USE94, YGH+14, YH96, ZB97, dGJM94, AGR+95b, ACMZ11, ATL+12, Ano94c, BBB+94, BAV08, CKO+94, CLYC16, CBPP02, Coo95a, CPR+95, DF17, DR94, DBVF01,
DvdLV94, FHB+13, GBR97, GCN+10, GEW98, GKK09, GKF13, Gra09, GFGP12, GH+E93, HAA95, IM95, JB96, JLM+11, KSG13, KHM+E99, KLV15, KDL+E95a, KFIS94, LR06b, LH98, LCGV94b, LLH+14, MSL12, MvWL+10, Old02, OPW+12, Pan95b, Par93, QBB94, SPH95, SVC+11, Sni93b, SG14, SMSW06, SLN+12, Sum94b, TBB12. systems [TMW17, TVCB18, TSP95, WCS+13, WWZ+96, WADC99, WYLC12, ZL96, ZGC94, dH94, dHAMC11, dHAMCFN12, JWB96].

Systemsoftware [Sei99]. systolic [BSC99].

T3D [AZ95, AFST95, CCM97, HWW97, MP95, MWO90, Oed93, Sch96a, Sch96b, SCC95]. T3E [BBBS99, Boo01, Che99, GRRM99]. T3E-512 [RBB97c]. T3E-600 [LSK04]. T9000 [BRS94].


targeting [JKM+E17]. Task [AHD12, AAB+E17, FKKC96, GDDM17, GPC+E17, IO900, KO101, LHC976, Mar03, MJB15, NIO+E02, NIO+E03, NSZS13, NJO1, OP10, OS97, SGZ00, SPL+E12, TBS12, TSI2a, YKW+E18, APB+F16, ABF+E17, BGHE05, GKF13, OdSSP12, OPW+E12, OPP00, RRFH96, RFRH96, SKB+E14, WC15].

Task-Based [AHD12, AAB+E17, SPL+E12, SKB+E14].

Task-Overlapped [GPC+E17].

Task-Parallel [NSZS13, APB+F16, ABF+E17]. Taskers [FLD96]. Tasking [DFA+E09, Ka10, SHM+E10, TCM18, TSCA12, WC15]. Tasks [ACD+E09, DT17, DFA+E09, JW96, OP98, RR02, RDLQ12, YSS+E17, BS01, DDYM99, DR95, FKK+E96, FKK96a, IvdLH+E00, PKE+E10]. TAU [MMSO7]. taxonomy [SPH96]. TBSCM [BP98]. TC2 [Boi97]. TC2/WG2.5 [Boi97]. TCGMSG [GB96, Mat94, Mat95]. TCP [KPW05]. TD [And98]. Teaching [MK00, JY95, MK97, PKB06]. Technical [ANO93c, Ano98, MC94, USE95, ACM06a, Snl81].

Technique [BCD+E15, HCOE, HAA+E11, HC08, Nes10, RBB17, MAVACH14]. Techniques [CP97, GS92, MIL10, SAL+E17, SPL+E12, TGBS95, Wis01, BPG94, Fer04, FCS+E12, HKMCS94, JKN+E13, KMG+E09, NFG+E10, PF05, SSKS01, WST95]. technologies [Mal95].

Technology [Ano97, Bra97, CGB+E10, CSV12, Dan12, GN95, HSS94, PWP+E16, SBTO4, TBB+E02, Ano93a, Ano93c, D+E95, DMI12, IEE94c, NS16, ZAT+E07]. Tekniska [Eng00].


Testbed [Mat01b, EGH99, PY95]. Testing [CCK12, DKS94b, Ost94, VdS600, CMV+E94, DKS93]. Testsuite [WCC12]. Texas [ACM06a, IEE94b, IEE951, IEE95g, IEE97c, Y+E93].

Text [LH10, MM01, RLL01, RTL99]. Textbook [Ano98].

textual [WKS96]. texture [HEI5]. TFETI [SHHC18]. TH [CFD01].

TH-MPI [CFD01]. Thakur [Ano00a]. Their [Bru12, GOMG+01, RG18, GSMK17]. theorem [Sut96]. Theory [GK10, BW12, CBHH94]. Thera [CD01].

Think [HCA16].

Third [BPG94, Bos96, DMS94, GA96, IEE94g, Sli96, Was96, BDLS96, Mal95, IEE97c].

Thirty [Y+E93]. Thirty-seventh [Y+E93].

Thousands [PZKK02, BMS+E17]. Thread [AELGE16, ETW91, GOMG+01, GT07, NBO00, Pla02, STY99, HK09, IDS16, JKN+E13, SPH96, SLN+E12, YZ14].

Thread-Level [AELGE16, HK09, YZ14].
Thread-Safe [Pla02]. Thread-safety [GT07]. Threaded [BBG+10, MG15, Ada98, EBKGO1, SCB15, SVC+11, TSY99, TSY00].

threaded-MPI [SVC+11]. Threading [BH12, MLGW18, SBT04, TBG+02, KPO00, KRG13, QB12, ZAT+07]. Threads [CP98, LD01, Lee06, BS01, MTVF96, ALW+15].

Thread [Car07, GA96, Nak05b, Ram07, SAS01, GSMK17, LSSZ15, Mar05, PR94c]. three-[GSMK17]. Three-Dimensional [GA96, LSSZ15, PR94c]. Three-level [Nak05b]. Throughput [Ts07, ESB13, PP16]. Tightly [SS01].

Tightly-Coupled [SS01]. Tilewise [KS15b]. Time [BCL00, FHK01, FSSD17, GSHL02, GOM+01, HO14, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGI+14, AL96, CDMS15, DLR94, DM12, Fer04, FLB+05, FKLBO8, GB94, HE13, JE95, KC94, KPL+12, LHKL10, LBB+16, LYSS+16, LM13, MMW96, NZZ94, ON12, OiSSP12, PTMF18, QHCC17, Ram07, SBW91, SSB+16, SK92, SRK+12, TSY99, Tho94, TV96, TCBV10, Uhl95c, VM94, YSV+16, YSM+17, ZWZ+95, SKD+04].

time-dependent [DM12, LBB+16, LYSS+16, ON12, SSB+16, YSV+16, YSM+17]. time-domain [HE13, NZZ94, Ram07, VM94].

time-independent [CDMS15].


Tolerant [BBC+02, BCH+03, BHK+06, CF01, CFDL01, FD00, FBDO1a, FBVD02, FD02a, FD04, GBF+03, IEE95c, JSH+05, MSF00, BCH+08, FBDO1b, FD02b, HG12, LMG17, LS08, NCB+12, NCB+17, PKD95].

Tomographic [Pat93]. tomography [FWS+17, RCFS96]. tomorrow [IEE94c].

Tool [ANO01b, Beg93b, BFMT96b, DW02, GSN+01, KAMAMA17, KSJ14, KKP01, LMRG14, MMSW02, MK04, NE98, SR96, SGL+00, Tra12b, WL96a, AOG+95]. BDP+10, Beg92, Beg93c, Beg93a, BDY99, BFMT96a, BHW+12, CPR+95, DKF94a, FSTG99, HPR+95, HD11, LCC+03, MdSAS+18, TSS98, WL96b, WL96b].

Tool-Set [WL96a]. Toolbox [ANO97, Bra97]. Toolkit [ANO12, LC07, LL13, SLS96].

Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BoFBW00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, WAN97, AVA+16, BDG+92a, BFIM99, Fan98, GBF95, LH98, MSW+05, MHC94a, ZL96].

Tools-supported [CDD+96]. Top [AHP01, Gal97, Hus01, Man01, PTH+01b, Ser97, BBCR99, PTH+01a, SSC96, SCL97, CCHW03]. TOP-C [CCHW03]. ToPe [JKM+17]. topologies [BCM+16, MK00].

Topology [DK06, HAT98, HM01, Tra02a, GJM18, HRR+11, MBB13, SPK+12]. topology-aware [MBBD13].

Topology-Based [HM01]. TOPPER [KKP01]. Toronto [GGK+93, Vos03].

Torus [SG15]. Townsend [DT94]. TPVM [FS95, FS98]. Trace [Ney00]. Traceback [dOSMM+16]. Tracefiles [FCP+01]. Traces [CC17, MANR09, WM01, CDMS15, DWM12].

Training [CSV12]. Transactional [BBW+12, MFG+08, SBG+12].

Transactions [BBW+12]. Transfer [BKGS02]. Transfers [THS+15].

Transform [YULMT+17, KT10, DBLG11].

Transformation
the transformations [JE95, TG94]. Transforms [ACMR14, KLR16, HP11, Uh95c, Zem94].

Transient [SIS17]. transistor [Ano03]. transistors [Ano03]. Translation [MRV00].

Transitive [CGPR98, PPR01]. Translating [Mar99, NCB+12]. Translation [DDL00, SSE12, HCL05, LME09, NCB+17]. Translator [KMK16, UZC+12, CHKK15, GSFM13]. transmitters [WWZ+96]. Transparent [CCK+95, IFJ+16, NPP+06c, SLGZ99, LFS93a, LFS93b, LFL11, NPP+00a, SOA11].

Transparently [CB16]. Transport [KSH01, RS97, VRS00, WR01, ZO04, Pri14, SH94, WH96]. Transporter [Fer92]. transpose [Bha98]. Transposition [HD02b]. Transputer [Ara95, ACDR94, CJNW95, FK95, FF95, GN95, GHH+93, MC94, dGM94, ZPLS96, Ara95, CJNW95, GHH+93, dGM94].


traversing [BDG+92b]. TreadMarks [LDCZ97]. Tree [GPC+17]. AD94, AB13, BCAD06, CG93, SG93, ZH92. Trees [CDPM03]. Trends [Duv92, IEE93d, MB15, JPT94, SGD94, Sun96].

Triangle [SL94a, SOA11]. Triangular [Hog13, MRB17]. tricks [Fe04, LK14].

Tri-diagonal [DALD18, DR18]. Trioloet [RJDH14]. Trivandrum [IEE96a]. Troy [SS96]. Truncated [ZB97]. truncating [Ram07]. TSMC [Ano03]. TSUBAME [MNS912].

Tsukuba [SHM+10]. TTIG [RRL01]. Tucson [JB96]. Tuning [Cza02, Cza03, NPP+00d, SLJ+14, WG17, DBLG11, FE17, LG216, SH14, Yan94, FVD00].

tuple [MYB16]. tuple-based [MYB16]. Turbulence [Str97, MRRP11, Str96]. turbulent [BCM+16, CBYG18]. Tutorial [EM00a, EM00b, GBD+94, GLT00b, Nov95, Per96, Ano95b].

TV [CJ+10]. Twenty [ERS95, ERS96, HS94, IEE95c, MMH93]. Twenty-Eighth [ERS95]. Twenty-fifth [IEE95c]. Twenty-Ninth [ERS96].

Twenty-Seventh [HS94]. Twenty-Sixth [MMH93]. Two [CM98, ST99, SJK+17a, SJK+17b, YG97, AGR+95b, AL93].

ADL03a, ADL03b, CB11, ED94, HAJK01, MSP93, dAMCFN12]. Two-Dimensional [SJK+17a, SJK+17b, AL93]. two-layer [dAMCFN12]. Two-level [ST99].

two-phase [ED94]. TX [ACM00, Chat05, DKM+92, Ano95a, Ano95d]. Type [GK10, MSB97, FVL15, GPG12]. Types [We94, NYNT12]. typy [OA17].


BP93, CJNW95, MC94]. UKMO [RSBT95]. ULFM [LCM17]. Ultra [SJ02]. UltraHigh [SJ02]. Ultrafast [KRC17, FWS+17]. Umgebung [GBR97].

UML [RGD13]. UML/MARTE [RGD13]. Umpire [VdS00]. Unbalanced [OP10].

Uncertainty [MB15]. Understand [DeP03]. Understanding [CRE01]. Unibus [KSS97]. UNICOM [Ano93g]. unified [GKZ12, JC17, KSL15, AL93].

up to [GKZ12, JC17, KSL15, AL93]. унификация [VSR94, VSR95].

unifying [CCM12]. Unintended [SAL+17].

unit [VL+15, MSML10]. United [Bo97].

Units [KS15b, LSV08, ABDP15, BHS18, HHLK11, WFT11, HJBB14].

Universal [LW97, DLIM5]. University [CGB+10, IE94d, IE95j, R+92]. Unix [OLG01, RBS94]. Unleashing [TC18].

unscrambler [Wil94]. Unstructured [AB93a, NO02b, SM02, SM03, AB93b, NO02a, TP15]. unveils [Ano03]. UPC [EGC02, MTK16, Mar05, SJK+17a].
Update [KT10, GSMK17].

Updates [ESB13, KS15a, ZDR01, HSE+17].

UPM [NPP+04d].

ups [Ano03].

USA [ACM96b, ACM98b, ACM00, ACM06a, AGH+95, BBG+95, BS94, Cha05, CGKM11, DT94, EV01, EdS08, ERS06, Gat95, Ham95a, Ho12, IE05b, IE95d, IE96f, IEE96i, McdS+08, Old02, PBG+95, Rec96, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, B95, DKM92, HS94, IEE94e, IEE95k, IEE02, Ost94, SL94a, SS96, USE94, USE95, USE00].

Usage [FD02a, FCLG07, FD02b, FVLS15].

Use [FJBB+00, Gro02a, HK03, HK95, MB12, PSZÉ0, Shi94, AB95, GE98].

USESIX [USE94, USE95].

User [AD98, AC99, BB95, BS93, BB97, C97, CRG96, CT94a, CT94b, CT94c, D94, D95, D99, DBH92, DH92, DHHW93a, DLM99, DKP00, DK03, FCLG07, GB+94, GN95, KGRD90, KC94b, KOW97, Kr02, KKD04, LKD08, M94, MTWD06, NPP+00c, Nov95, Per96, RWD09, TBD12, XF95, ZW95, Ano95b, BBB+94, BB97, KCP+94a, RSC+15, Reu01, Wi94, BBH...13a].

User-Level [DHHW92, DHHW93a, KCP+94b, KOW97, NPP+00c, XF95, ZW95, KCP+94a, BBH...13a].

Users [Ara95, CHD09].

uses [SH96].

Using [AR01, AD02, AH01, And98, AP96, Ano95e, AE00, AZG17, AB93a, BST+13, BPN97, BG95, BS93, BKGS02, BM97, Bon96, BBC+00, BBH12, GC+11, CRE99, CMM03, CP97, CSP+96, CC17, Che99, CCSM97, CD93, CWH03, CRGM14, CT94a, CCBP15, CD98, De03, DAR13, DAK98, DGM93, EM02, EMO+93, ESM+94, EK97, FAFD15, FD04, FTVB00, FS93, GCM99, CGS98, GTH06, GM95, GK97, GS96, GMPD08, GHL97, GJ97, GLS94, GLT99, GLS99, GLT00b, GLT00a, HB96b, HSMW94, HJ98, HLP11, HT08, HRS97, HT01, IOK00, ID94, IKM+01, JFGRF12, JPP95, KB98, KOI01, KKV01, KS96, KA13, LLR02, LTR00, LRT07, LTRA02, LY93, LZY93, LZ97, LAF15, MTSS94, MPD04, MR12, MSCW95, MANR09, MBB+12, MS97, NO02b, NIO+02, NIO+03, Neu94, NH95, NA01, OM96].

Using [OCY+15, OWSA95, PWP+16, PK98, PPT96c, P09, P01, Per99, Pet97, PBK00, PD98, PGF18, Pus95, QRGM96, QMGR00, RR00, Reu03, RRBL01, RLVGP12, RLL01, RRG+99, SAS01, Sev98, SSAS12, SP99, SA93, Sni93a, SBR95, STV97, SME93, Sta95b, ST17, SKH96, SCL01, SJK+17a, SJK+17b, TS12a, TS02, TS03, TK16, TBB12, Tha98, Tra98, Tsu07, VLO+08, WO95, Wal01a, WJ12, WLR05, Wis97, Wis01, WLYC12, YK+18, Zbd12, van97, vdLRJ11, AMHC11, AK99, ABF+17, AL96, ADT14, ABG+96, AB93b, AGIS94, AGG+95, BV99, BFLL99, BSC99, BB95c, Bi95, Bi04, BCM+16, BTC+17, BCD96, BID95, BAG17, BSH15, BMG07, CG93, CBM+08, CBY18, CDGM96, CS14, CT94b, CC00b, DG95, DS13, DRUC12, DSO11, DHC02, DM12, ED9K92, FB96, FSV14, FSC+11, Fin94, Fin95, FHC+95].

Using [FWS+17, GGCG99, GSMK17, GG09, Goe02, GFB+14, GMU95, GM18, GRT10, HB96a, HDG09, HTJ+16, HPI11, HPS+96, HPLT99, HSNp00, HLO+16, HAA+11, IM+05, IM95, IM+02, JL18, JF95, JKH08, JLS+14, JXY+03, JIM+11, JPT14, JR10, JMDV+17, KFA96, KRKS11, KY10, Kat93, KJ+16, KR09, KMK16, KME09, KMC96, KMC97, KRC17, KD13, KPK13, LP00, LG12, LSS95, LCY96, LSMW08, LCMG17, LO96, MMR99, MP95, Mar06, MSMC15, MAB05, Me94, MM11, Mic93, Mic95, MRH+96, MMM13, MSML10, MS95, MM14, MC99, MvWL+10, NO02a, Nak05a, NZ94, NB96, NAJ99, NU05, OKM12, OIJH0, Ols95, Pat93, PDU14, PGCJ+18, PV01, PKE+10, QR95, RJC95, RAS16, RCF96, RBA17, RM99, RCG95, SHLM14, SdM10, SLGZ99, SGS95, SSS99, SMS00,
SOA11, SVC+11, SSGF00, SFLD15. using [SSN94, SU96, SP11, TC94, TPLY18, Tsz95, Uhl94, Uhl95b, UH96, VM94, VB99, VGS14, VM95, WO96, Wa01b, WCS+13, WCVR96, WST95, WMRR17, WADC99, War96, WYLC12, XF95, YULMTS+17, YWC11, YWC15, ZHS95, ZSK15, ZAT+07, ZZ95, Ano95c, Ano00a, Ano00b. UT [Hol12]. UTE [JF95]. Utilising [SC96a]. Utilities [CC95]. UV2 [TW12]. UVM [NSLV16].

V [JB96, BBC+02, BHK+06]. V2 [BCH+03]. VA [Sin93, RP95]. Vacancy [HD02b]. Vaidy [Ano95b]. Validation [BDV03], GLB00, WC12, CMV+94, SCB14, SCB15]. Value [vHKS94, AL96, LSR95, SP11, SD99]. Value-based [vHKS94]. valued [Str12]. VAMPIR [BHNW01, NAW+96]. Vancouver [IEE95a, IEE95i]. Vapour [PKYW95]. Variable [Ano98, ZZG+14]. Variables [FKH02]. Various [LH95]. varying [Uhl95c]. VCMON [Wib94]. vCUDA [SCSL12]. Vector [AKL16, DS13, Fuj08, KDT+12, LL16, Uhl95c, ER12, FVLS15, FJZ+14, GL96, GL97c, Har94, Har95, HE15, PMZM16, XLL13]. Vectorization [IKM+01, MCP17, IKM+02]. Vectorized [KB13]. vectors [AAA16]. Vegas [Ano94e]. Vehicle [BHM94, BHM96, WH94, BKvH+14]. Vendor [Rab08, Bor99]. Venice [DLO03, OL05]. venture [Ano03]. Verification [BCD+15, RAS16, Trä12b, LMM+15, SZ11, VVD+09]. verified [WBBD15]. verifier [BCD+12, LGKQ10]. verify [MdsA8+18, SMAC08]. Verilog [Kat93, KMK16]. Versatile [KJS14]. Virtual [BCGL97, CCK+95, MHSK16, Bjo95, BHW+12, BBH+15, Man94, Str94, Wa95]. versioned [SSB+17]. Versions [Ano98]. Versus [RTRG+07, Ahm97, CE00, KPW05, KAC02, KPO00, LMG17, LC97b, MFTB95, NSLV16, NHT02, NHT06, RS95, SZ99, Wal00, ZLZ+11]. verteilter [GBR97]. VGRIDS [AB93a]. VIA [Sei99, FKKC96, BHW+12, CGZQ13, DS96b, GB96, Hos12, HCL05, LA45+15, LSSZ15, NPP+00c, QHCC17, SL1+14, St94, VLvdG08, YPZC95, ZJDW18, ZLL+12, EM02, RR01]. VIA/SCI [RR01]. viable [Ano03]. Victoria [IEE95c]. Video [KJS95, KJS96]. videogames [YMY11]. Vienna [BH95, TB12, Ben95]. View [ZDR01, ZDR04]. ViMPIOS [Sto98]. VinaMPI [ESB13]. ViPIOS [Sto98]. Virginia [IEE92, IEE94a, Sie92a, Sie92b]. VirtCL [YWTC15]. Virtual [ACM96a, AS92, ARL+94, BJ93, BP99, BS93, BG94b, CHD07, D+S1, EGR15, Fis01, GBD+94, Ge01, Gre94, ITT99, JPP95, KNT02, KKD03, KKD05, KDD08, LK10, MTWD06, NM95, Nov95, Pat93, Per96, QRG95, RWD09, SSS96, Sei99, CSL12, TY14, Tsu07, Wel94, YC98, ARS90, AD98, AL92, Ano95b, BR91, BDG+91a, BPC94, BBCR99, Bir94, BDL96, BCM+16, BFM96, BDW97, CARB10, Cav93, Cha96, CD01, CXB+12, DDS+94, DM93, DKD05, DLM99, DPK00, DLO03, DPZ97, ESB13, FM90, KMC97, Krao2, LG93, MN91, MRH+96, NB96, PRS16, Sch94, SK92, SCC96, SL00, WK08a, WK08b, WK08c, AGIS94, Sei99]. virtual-time [SK92]. Virtualization [FC05, MGL+17, Ott94, YSS+17, ZLP17, RSC+15, SIRP17]. Virtualized [EGR15, YWC15, RNP13]. viruses [Str94]. viscoelastic [HK94, MAIVA14]. viscosity [ZZG+14]. viscous [RM99]. Vision [KCR+17, JRM+94]. VISPAT [HPS95]. Visual [BPMN97, FNSW99, PDY14, Ros13, ACGdT02, LC07, GE95, GE96]. Visualization [BDGS93, GKP96, GKP97, HJ98, KA13, MVY95, NAW+96, PK98, PCY14, Wis96a, ZLGS99, Bor99, Eng00, FHC+95, HPS95, KFA96, TSS98, WST95, Wis96b].
Visualizer [HKN+01]. VLSI [Jes93a]. VM
[GHDM2, MR92, Whi94]. VM-protected
[GHDM2]. VM/EAS [Whi94]. VMPP
[LG93]. VOBLA [BKvH+14]. Vol
[ATC94, HS94, Nag05]. Volatile
[BBC+02, BCH+03]. Voltage
[KFL05, FKLBM08]. Volume
[Ano99a, Ano99c, Ano99b, Ano99d, DFN12,
GHLL+98, SOHL+98, BHW+12, WST95].
Volumes [GAP97, SOA11]. Volumetric
[KA13, KGB+09]. Voodoo [PMZM16].
VOOM [BR91]. VORD [KSJ14]. VR
[DBA97]. VRML
[ACM96a, NM95, KSJ95, KSJ96].
VRML-Based [KSJ95, KSJ96], vs
[FH98, BCI+08, Loo99, Naka05b]. VTC
[NU05]. VTDIRECT95 [HWS09, SWH15].
VxWorks [YGH+14].

WA [ACM05, LCK11]. Wailea
[ERS96, HS94, MMH93]. Waknagh	at
[GCB+10]. Walker
[Amo99a, Ano99a, Ano99b, Nag05]. wall
[RB96]. wall-clock [RB96]. walls [JAT97].
WAMM [BCN97]. Wang	[KO14, Kom15].
Warehousing [DERC01]. Warp
[SCL01, HKOO11, MMW96, VSW+13].
WARPED [MMW96]. WARPmemory
[SF905]. Washington [B+05, BS94,
IEE93c, IEE94h, IEE95k, Ost94]. water
[HTHD99, R+92, diAMC11, diAMCFN12].
Waterman [KDSO12]. watershed [NAJ99].
Wave
[BBC+00, EMO+93, ESM+94, 
NSLV16, SMOE93, Get94, KM10, KEGM10,
Mal01, NB96, RNM+12]. Wave-Particle
[NSLV16]. Waveform [LSR95].
Wavelet
[Uhl94, Uhl95b, Zem94, vdLJR11, Uhl95a,
Uhl95c]. Way [Vog13, FTG96], ways
[CZ96]. weak [SD16]. Weather
[AHP01, HE02, Bjo95, KOS+95a, Mal01].
web
[CHKK15, AASB08, NE01, PES99, Wal01b].
Web-Based [NE01, PES99]. WebCL
[CHKK15]. WebCom [OPM06].

WebCom-G [OPM06]. Wednesday [B+05].
Weicheng [Ano95b]. weight [KA95].
welcomes [Str94]. West [EV01, EdS08].
Westin [IEE94e]. We've [GKPS97].
WG10.3 [DR94]. WG2.5 [Boi97]. Wheeler
[NTR16], where [KC94]. which [SH96].
Whippletree [SB+14]. Wide
[FGG+98, DOSMM+16, FGT96, KHB+99].
Wide-area [FGG+98, FGT96]. WIEN
[Gao03]. Will [CB00]. William
[Ano95c, Ano99c, Ano99d, Ano00a, Ano00b].
Williamsburg [IEE92]. Win32 [MS98].
windows [QB12, Ana01a, CLP+99, FD97,
GGGC99, Pso1a, SFG98, SS0S97, TAH+01].
Windows95 [SS0S96]. Winona [Ano94].
wireless [Bon96]. wissenschaftliche
[MS04]. wissenschaftliches [Ano94c].
without [BW12, Pla02, YLZ13]. WLAN
[MSOGR01]. WMPI [BPS01, MS98,
MSS98, MSS99, Pso1a, SM000]. WOMPAT
[Cha05, EV01, Vos03]. Woollongong
[GN95]. Work [HRSA97, Pot00a, Pet00b,
OdSSP12, TCBV10]. work-stealing
[TCBV10]. Worker [EML00, YG96].
Worker-Based [YG96]. Workerproblem
[FH98]. Workflow [LYZ13]. Workforce
[Liv00]. workgroup [SDB+16]. Working
[Ano98, Boi97, MCS00, Pet01, DR94].
Workload [AGS97, DBV01]. Workloads
[CC17, APBcF16, AAV+16, SKB+14].
WorkPlace [Ano97, Bra97]. workqueueing
[VBLaG08]. Workshop [ACM98a, Agr95a,
BPG94, Bhaa3, BC00, Cha05, CZG+08,
CGKM11, CMRR12, DW94, DT94, EV01,
EdS08, Fer92, FK95, FF95, HK93, HK95,
IEE93d, IEE93f, IEE94d, IEE95h, IEE96g,
IFI95, KG93, Kuh98, Kum94, MdSC09,
PG9+95, PBPT95, SCR92, SHM+10, Sch93,
Vos03, Was96, AH95, BS94, Cal94, D+95,
DMW96, FR95, GL95b, IEE93f].
Workshops [MC9+08]. Workstation
[GHM97, HSMW94, KS96, LC97a, MFTB95,
Pus95, YKI+96, AB95, ALR94, BL93,
BSvdG91, BR95, BALU95, BWT96, CUC95,
REFERENCES

DG95, ED94, GBF95, Heb93, JRM+94, 
LJ95, NMW93, NN95, PM95, PL96, RBS94, 
RCFS96, SC96a, SSN94, SL95, THM+94, 
Tsu95, UH96, YWO95, ZHS99, MS04].

workstation-cluster [Heb93].
Workstation-Clustern [MS04].

References

AlQuraishi:2016:CBP

Eman AlQuraishi, Eman AlDwaisan, Alaa AlSaqa, 
and Intiaz Ahmad. A 
CUDA-based parallel implementation of a test vectors encoding algorithm in 
compression-based scan designs. International Jour-
nal of Parallel, Emer-
gent and Distributed Sys-
tems: IJPEDS, 31(3):280–
293, 2016. CODEN ???? 
ISSN 1744-5760 (print), 
1744-5779 (electronic).

Agullo:2017:BGB

Emmanuel Agullo, Olivier Aumage, Berenger Bramas, Olivier Coulaud, and 
Samuel Pitoiset. Bridging 
the gap between OpenMP 
and task-based runtime sys-
tems for the Fast Multipole 
Method. IEEE Transac-
tions on Parallel and Dis-
tributed Systems, 28(10):
2794–2807, October 2017. 
CODEN ITDSEO. ISSN 
1045-9219 (print), 1558-2183 
(electronic). URL https:/
/www.computer.org/csdl/
trans/td/2017/10/07912335-
abs.html.

Almasi:2005:DIM

G. Almási, C. Archer, J. G. 
Castaños, J. A. Gunnels,

Akzhalova:2008:WPL


Arthur:1993:CUA


Arthur:1993:PIU


Augusto:2013:APG

Ayguade:2010:EOS


Adhianto:2000:TOA


Appiani:1995:PSI


Appiani:1995:PSM


Agosta:2015:OPP


REFERENCES

10558, Burke, VA 2209-0558, USA, 1994. ISBN 90-5199-149-5. LCCN ????


Andersch:2012:PPE


REFERENCES

ACM:1998:AWJ


ACM:1998:SHP


ACM:1999:SPO


ACM:2000:SHP


ACM:2001:SHP


[ADB94] V. Antonuccio-Delogu and U. Becciani. A parallel tree N-body code for heterogeneous clusters. In Dongarra and Wasniewski [DW94],
REFERENCES


REFERENCES


Alexandro:1998:CGP


Amritkar:2014:EPC


Aldea:2016:OES


Ashby:1995:PPG


Ayguade:1995:DUA


Aityan:1995:PFI


Averbuch:1994:PES


Arbenz:1996:SRP


Ayguade:2006:ENO


Agrawal:1995:PIW


Almeida:1995:CST


Alfaro:1997:FDW

Alnuweiri:1995:PHF


Astalos:2000:CMS


Agathos:2012:TBE


Awan:2017:CCD


Ahmad:1997:EVP


Allsopp:2001:EUM

REFERENCES


Asai:1999:MIF


Abdelfattah:2016:KOL


Alfano:1992:DNA

M. Alfano and G. Lo Re. Distributing numerical algorithms: some experiences with network computing system (NCS) and parallel virtual machine (PVM). In SCRI WCC’92 [SCR92], page ?? ISBN ?? LCCN ?? Proceedings available via anonymous ftp from ftp.scri.fsu.edu

Altevogt:1993:PTD


Alt:1996:PIA


Alund:1994:CFD


Amer:2015:MRC

Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan


Mayez Al-Mouhamed and Ayaz ul Hassan Khan. Exploration of automatic optimisation for CUDA


REFERENCES

Anonymous:1993:MMP

Anonymous:1993:PSE

Anonymous:1993:SEC

Anonymous:1993:CDP

Anonymous:1994:ICS

Anonymous:1994:ALM

Anonymous:1994:FWR

Anonymous:1994:MMP

Anonymous:1994:PDC
Anonymous, editor. Parallel and distributed comput-
REFERENCES


Anonymous:1994:PPC


Anonymous:1995:BRPb


Anonymous:1996:IPP


Anonymous:1996:PPA


Anonymous:1996:RP


Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. ACM Fortran Forum, 17(3):1–2, December 1998. CODEN ????:ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:1999:BRMa


Anonymous:1999:BRMb


Anonymous:1999:BRMc

Anonymous. Book review: MPI — The complete reference: Volume 2, the MPI-2 extensions: By
REFERENCES


Anonymous:2003:MNIc


Anonymous:2012:CTC


ANS:1995:MCR


Anglano:1996:PMB


Aji:2016:MEA


Aji:2016:MAA


Addison:2003:OIA


Al-Refaie:2017:PCT


Al-Salman:1992:DIP


Awile:2014:PWF


Alonso:1997:PBB


Alves:1995:WPC


Anderson:2017:BGB

REFERENCES

April 2017. CODEN ????. ISSN 2150-8097.

Agrawal:1994:PIC


Amritkar:2012:OPF


Al-Tawil:2001:PME


Attiya:1996:ERS


Angskun:2001:DPM


Andujar:2016:OSF

Francisco J. Andújar, Juan A.
References


Asenjo:1995:SLF


Arteaga:2017:GFG


Beyer:2005:GEC


Bader:2016:EMT


Becciani:2007:FMH

(electronic). URL http://
/www.sciencedirect.com/
/science/article/pii/S0010465506003687

[BAG17] Pedro Bruel, Marcos Amarís, and Alfredo Goldman. Auto-
tuning CUDA compiler pa-
rameters for heterogeneous
applications using the Open-
Tuner framework. Con-
currency and Computation:
Practice and Experience, 29
(22):??, November 25, 2017.
CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).

current status and perform-
ance of the available envi-
ronments. Lecture Notes in
Computer Science, 1497:63–
ISSN 0302-9743 (print),
1611-3349 (electronic).

P. Levin, and A. Ustundag.
Parallel computation of elec-
tric fields in a heteroge-
neous workstation cluster.
In Hertzberger and Ser-
azzi [HS95a], pages 606–611.
ISBN 3-540-59393-4. ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.88
J57 1995.

finite-element analysis on
MIMD/DMMP parallel com-
puters. In Yelon et al. [Y+93],
pages 6772–6777.
CODEN JAPIAU. ISBN
1-56396-212-8. ISSN 0021-
8979 (print), 1089-7550
LCCN QC753 .C748 1990. Two vol-
umes.
REFERENCES


[Bertozzi:1999:MIT] M. Bertozzi, F. Boselli, G. Conte, and M. Reggiani. An MPI implementation on the top of the vir-

Bethune:2014:PAA


Bailey:1995:PSS


Bova:2001:PPM


Balaji:2010:FGM


Balaji:2011:MMC

Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Torsten Hoefer, Sameer Kumar, Ewing Lusk,


[BH12] Alhadi Bustamam, Kevin Burrage, and Nicholas A. Hamilton. Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse for-

**Bland:2013:EUL**


**Bland:2013:PFR**


**Busa:2015:CCO**


**Boryczko:1994:LGA**


**Barnard:1999:MIS**

Brorsson:2000:SIE


Blas:2014:RAM


Barton:2006:SMP


Becciani:2006:FMP


Bircsak:2000:EONa


Bircsak:2000:EONb

REFERENCES


REFERENCES

a fault tolerant MPI for volatile nodes based on pes-
simistic sender based mes-
sage logging. In ACM
[ACM03], page ?? ISBN
1-58113-695-1. LCCN
???? URL http://
www.sc-conference.org/
sc2003/inter_cal/inter_
cal_detail.php?eventid=
10696#1; http://www.sc-
conference.org/sc2003/
paperpdfs/pap209.pdf.

[BCH+08] Darius Buntinas, Camille
Coti, Thomas Herault,
Pierre Lemarinier, Laurence
Pilard, Ala Rezmerita, Eric
Rodriguez, and Franck Cappel-
lo. Blocking vs. non-
blocking coordinated check-
pointing for large-scale fault
tolerant MPI protocols. Fu-
ture Generation Computer
Systems, 24(1):73–84, Jan-
uary 2008. CODEN FG-
SEVI. ISSN 0167-739X
(print), 1872-7115 (elec-
tronic).

[BCL00] Alessandro Bolloni, Ste-
fano Crocchianti, and An-
tonio Laganà. Time inde-
pendent 3D quantum reac-
tive scattering on MIMD
parallel computers. Lecture
Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080338.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080338.
pdf.

[BCLN97] R. Baraglia, M. Cosso,
D. Laforenza, and M. Nicosia.
Integrating PVaniM into
WAMM for monitoring
meta-applications. Lecture

[BKFL09] Ganesh Bikshandi, Jose G.
Castanos, Sreedhar B. Ko-
dali, V. Krishna Nandiv-
ada, Igor Peshansky, Vi-
jay A. Saraswat, Savan-
tan Sur, Pradeep Varma,
and Tong Wen. Effi-
cient, portable implementa-
tion of asynchronous multi-
place programs. ACM SIG-
PLAN Notices, 44(4):271–
282, April 2009. CODEN
SINODQ. ISSN 0362-1340
(print), 1523-2867 (print),
1558-1160 (electronic).

[BKFL09] G. Bruno, A. A. Chien,
M. J. Katz, and P. M. Pa-
padopoulos. Performance
enhancements for HPVM in
multi-network and heteroge-
nous hardware. In Engquist
[Eng00], pages 17–32. ISBN
3-540-67264-8. ISSN 1439-
7358. LCCN QA76.9.C65

[BKFL09] Alessandro Bolloni, Ste-
fano Crocchianti, and An-
tonio Laganà. Time inde-
pendent 3D quantum reac-
tive scattering on MIMD
parallel computers. Lecture
Notes in Computer Sci-
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic). URL http:
//link.springer-ny.com/
link/service/series/0558/
bibs/1908/19080338.htm;
http://link.springer-
ny.com/link/service/series/
0558/papers/1908/19080338.
pdf.

[BKFL09] R. Baraglia, M. Cosso,
D. Laforenza, and M. Nicosia.
Integrating PVaniM into
WAMM for monitoring
meta-applications. Lecture

**Bhattacharjee:2011:PLC**


**Bolis:2016:APA**


**Bland:2013:SIP**

REFERENCES


status and future direction.

Beguelin:1994:HHN


Beguelin:1995:REP


Beguelin:19xx:PSS

[BDG+xx] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. PVM software system and documentation. Email to netlib@ornl.gov, ???. 19xx.

Beguelin:1993:VDH


Bruck:1995:EMPb


Bruck:1997:EMP

REFERENCES

Browne:1998:RPA

Bode:1996:PVM

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Baboulin:2008:SID

Briguglio:2003:PPM
Sergio Briguglio, Beniamino Di Martino, and Gregorio Vlad. A performance prediction model for PIC applications on clusters of
REFERENCES


[Beg93c] Adam L. Beguelin. Xab: a tool for monitoring PVM programs. Research paper CMU-CS-93-164, School of...
REFERENCES


REFERENCES


REFERENCES


Borger:1994:AMP


Borger:1994:FSP


Barbour:1995:PIG


Banikazemi:2001:MLE


Broquedis:2012:LEO


Bronevetsky:2009:CAC

REFERENCES


[Blanco:2002:PMA]

[Balasubramanian:2015:EGL]

[Bhanot:2005:OTL]

[Bischof:2008:PRM]

[Butler:2000:SPM]
REFERENCES


Beisel:1997:EMD

Brune:1997:HMP

Breitenecker:1995:ESC

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP
A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. MPICH-V project: a multiprotocol automatic fault-tolerant MPI. The International Journal
REFERENCES


Bisseling:2002:FMF


Bazow:2018:MPS


Berk:2012:PET


Busa:2012:ACO


Bae:2017:SEF

Seung-Hee Bae, Daniel Halperin, Jevin D. West, Martin Rosvall, and Bill Howe. Scalable and efficient flow-based community detection for large-scale graph


in computer science, Department of Computer Science, College of Engineering, Lamar University, Beaumont, TX, USA, 1994. viii + 44 pp.


REFERENCES


Baraglia:1993:PWC


Bach:2013:LQB


Bubak:1998:PCL


Bhandarkar:1997:CRP


Booth:2000:SSM


Basumallik:2002:TOE

Buntinas:2007:IES


Bronevetsky:2003:AAL


Bubak:1994:PDS


Bubak:1994:EMD


Baiardi:2001:CRD


Brightwell:2002:DIM

REFERENCES


REFERENCES


REFERENCES


REFERENCES


Balou:1991:DIV


Burrer:1994:RRB


Bernardi:1995:CCE


Bernaschi:1995:PEI


Bernaschi:1995:DRP


Bane:2002:EOA

Boeres:2004:ETF


Bergstrom:2012:NDP


Briscolini:1995:PID


Brieger:2000:HOO


Ragnhild Blikberg and Tor Sorevik. Nested parallelism: Allocation of threads to

**Blikberg:2005:LBO**

**Brown:2007:HSP**

**Bassomo:1999:PGE**

**Bolton:2000:MPL**

**Bukata:2015:SRC**
Libor Bukata, Premysl Sucha, and Zdenek Hanzašek. Solving the resource constrained project scheduling problem using the parallel tabu search designed for
REFERENCES


**Blaszczyk:1996:EPI**


**Bai:2013:SLA**


**Bu:2001:PAC**


**Bakhtiari:1995:APL**


**Benzoni:1991:MFR**


**Biewski:2001:MOS**

REFERENCES


REFERENCES

Blum:1996:PIP


Bureddy:2012:OGM


Bihari:2012:CIT


Blattner:2012:PSC


Bendtsen:1997:RLS


Carpen-Amarie:2017:EOC

REFERENCES


Czapinski:2011:TST


Creec:2016:TSS


Cooper:1994:CHF


Chapman:2002:APU


Casas:2010:APD


Che:2008:PSG

REFERENCES


REFERENCES


**REFERENCES**

*Casano':1995:PPM*

http://www.netlib.org/utk/papers/pvmpp/pvmpp.html;

*Chandra:2001:PPO*


*Colombet:1993:SMI*


*Cownie:1994:PPP*


*Chang:1995:EPCb*


*Chang:1995:EPCA*


*CDH*94*


*CDH*95*


*CDK*01*


*CDM*93*

REFERENCES

IEEE catalog no. 93TH0550-4.

[Casmoa:2015:SMA]

[Cotonna:2011:RAM]

[Chaussumier:1999:ACM]

[Colla:2003:SHB]

[Cerone:1998:PID]
REFERENCES


[Choudhary:1994:LCR] Alok Choudhary, Ian Foster, Geoffrey Fox, Ken Kennedy, Carl Kesselman, Charles Koelbel, Joel Saltz, and Marc Snir. Languages, compilers, and runtime systems

Corbett:1996:OMP


Clauser:2019:FFO


Cletonis:1996:ECP


Clematis:1995:PPH

REFERENCES


REFERENCES


Catanzaro:2011:CCE


Calore:2016:PPA


Chapman:2011:OPE


Chatterjee:1993:GLA


Caubet:2001:DTM

REFERENCES


B. Charny. Matrix partition-
REFERENCES


Franck Cappello, Thomas Herault, and Jack Dongarra. Foreword: Special issue: selected papers from the 14th European PVM/
REFERENCES


REFERENCES

0018-8646 (print), 2151-8556 (electronic).


Chabbi:2015:BEP


Chen:2003:GMD


Corbacho-Lozano:1999:EDD


Cantoni:1995:CCA


Chien:1999:DEH


Chandra:2007:ESP

Sumir Chandra, Xiaolin Li, Taher Saif, and Manish

Chang:2016:APC


Chapman:1998:OHI


Chapman:2005:O


Claver:1999:PCS


Cahir:2000:PMM


Corbalan:2004:PMD

Carson:2003:CGU


Chapman:2012:OHW


Chalkidis:2011:HPH


Coelho:1994:EHC

F. Coelho. Experiments with HPF compilation for

Campanai:1994:EAS


Chou:2010:CMI

REFERENCES


Cooperman:1995:SBP


Cooperman:1995:SMB


Cotronis:1997:MPP


Cotronis:1998:DMP


Cotronis:2004:CMP


Coussement:1993:PMO

G. Coussement. Parallelization of a mesh optimization code on a RS/ 6000 cluster. In Anonymous [Ano93e], pages 185–212. ISBN ?????? ISSN 0254-6213. LCCN ??????

Carvalho:1997:PCC


Carissimi:1998:AEM

A. Carissimi and M. Pasin. Athapascan: An experience
REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Cercos-Pita:2015:ANF]

[Corno:1995:PTA]

[ChassindeKergommeaux:1999:MER]
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

[Cappello:1999:PNB]
CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic). URL http://www.elsevier.com/gej-ng/10/19/19/45/33/30/abstract.html.

[Cores:2014:FAM]

[Cappello:2001:UPS]
REFERENCES


[CORES:2016:ROM]


[CORES:2014:MAL]


[CS96]


[CRGM16]


[CSAGR98]


[CS96]


[CORES:2014:MAL]


[CSAGR98]


[CS14]


[CS14]


[CS14]


[CS14]


[CS14]


[CS14]


[CS14]


[CS14]


[CS14]


[CS14]

REFERENCES


[BDLS96]

Carreira:1995:DEL


[IEE95j]

Chevitarese:2012:STN


[CSW12]

Ciegis:1997:NID


[LSW97]

Ciegis:1999:HDA


[CT94a]

Calotoiu:2012:PID


[CSW12]

Cote:1994:PSA


[CwCW+11] Chao Cao, Yun wen Chen, Yuning Wu, Erik Deumens, and Hai-Ping Cheng. OPAL: a multiscale multicenter simulation package based on MPI-2 protocol. Interna-
REFERENCES

Cui:2012:OOB

Cavender:1995:APN

Cavender:1995:SSA

Chengqing:1996:WIP

Czarnul:2002:DTI

Czarnul:2003:PTA

Czapinski:2013:EPM
Michal Czapiński. An effective Parallel Multistart

**Czech:2016:IPC**


**Chapman:2008:PPM**


**Dongarra:1991:UGP**


**Dongarra:1995:HPC**


**Dimov:1998:IMC**


**Dieguez:2018:SLP**

Adrián Pérez Diéguez, Margarita Amor, Jacobo Lobeiras.

**[Danalis:2012:MCT]**


**[Dan12]**


**[Dar01]**


**[DARG13]**


**[Demidov:2013:PCO]**


**[dAT17]**


**[Demuynck:1997:DOD]**
REFERENCES


stations. In Grebe et al. [GHH+93], pages 660–667. ISBN 90-5199-140-1. LCCN ???.


REFERENCES

1995. IEEE catalog number 95TB8131.


REFERENCES


REFERENCES


**Deo:2013:PSA**


**DiMartino:2005:RAP**


**DiMartino:2007:SIS**


**DiMartino:2008:SSG**


**Damodaran-Kamal:1993:NTD**

REFERENCES

CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Damo\-dan-Kamal:1994:MSR


Damo\-dan-Kamal:1994:TRP


Dongarra:2000:RAP


Dickens:2010:HPI


delaAsuncion:2011:SOL

Marc de la Asunci\-on, Jos\-e M. Mantas, and Manuel J. Castro. Simulation of one-layer shallow water systems on multicore and CUDA architectures. The Journal of
REFERENCES


Marcos:2002:DDP

Dongarra:1999:RAP

Degomme:2017:SMA
Augustin Degomme, Arnaud Legrand, George S. Markmanolis, Martin Quinnson, Mark Stillwell, and Frederic Suter. Simulating MPI applications: The...

**Dongarra:2003:RAP**


**Lu:2004:AFS**


**DeSande:1999:NBS**


**DiPietro:2016:CLD**


**Despons:1993:CCP**

R. Despons and T. Muntean. Constructing correct protocols for a diffusion virtual
REFERENCES

machine in message passing parallel architectures. In Grebe et al. [GHH+93], pages 465–480. ISBN 90-5199-140-1. LCCN ???.


REFERENCES


REFERENCES


REFERENCES


Dowaji:1995:LBS

DiMartino:1997:MDH

Davina:2018:MCP

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES
REFERENCES


Gábor Domokos, Imre Széberényi, and Paul H. Steen.

**Deshpande:1996:MIBa**


**[DSW96]**

**[DSZ94]**

D. Duval. Trends in parallel programming models for high performance computers. In Ferenczi [Fer92], page 33. ISBN ???? LCCN ????

**[Duv92]**

**Dikken:1994:DDL**


**[DvdLVS94]**

**Diavastos:2017:SLR**


REFERENCES

1994. IEEE catalog no. 94CH34819.


[M. Eleftheriou, B. G. Fitch, A. Rayshubskiy, T. J. C. Ward, and R. S. Germain. Scalable framework for 3D FFTs on the Blue Gene/L

REFERENCES


El-Ghazawi:2002:UPP


Eppstein:1992:PGC


Eickermann:1999:PID


Erhel:2014:DDM


Roberto Espenica and Pedro Medeiros. Porting PVM to


REFERENCES


REFERENCES


Niandong Fang and H. Burkhart. PEMPI — from MPI stan-

[Fang:1996:SPP]

[Fang:1997:MDD]

[FBD01b]

[FBD01a]

[Friedel:2001:HMC]
Fagg:2002:FTM


Floros:2005:TGS


Falzone:2007:PMF


Ferschweiler:2001:CDP


Filgueira:2012:DCD


Fagg:1996:PIP

[FD96] Graham Fagg and Jack
REFERENCES


[Fischer:1997:AAP]

[Fagg:2000:FMF]

[Fagg:2002:HFTa]

[Fagg:2002:HFTb]

[Fagg:2004:BUF]
REFERENCES

[FDG97a] G. Fagg, J. Dongarra, and A. Geist. Heterogeneous MPI application interop-
eration and process management under PV MPI. Technical report CS-97-
???, University of Tennessee, Knoxville, Knoxville, TN 37996, USA, June

MPI application interop-
eration and process manage-
ment under PV MPI. Technical report CS-97-
???, University of Ten-
nessee, Knoxville, Knoxville, TN 37996, USA, June
sagepub.com/content/18/

[FDG97b] G. E. Fagg, J. J. Don-
garra, and A. Geist. Het-
erogeneous MPI application
interoperation and process
management under PV MPI.
Lecture Notes in Computer
CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349
(electronic).

[Ferr98a] Adam Ferrari. JPVM: network parallel computing in Java. Concur-
rency: practice and experience, 10(11–13):985–992, September 1998. CO-
DEN CPEXEI. ISSN 1040-
3108. URL http://www3.
interscience.wiley.com/
cgi-bin/abstract?ID=10050413;
http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=10050413&PLACEBO=IE.
pdf. Special Issue: Java for
High-performance Network
Computing.

[ACM98a], page ?? ISBN
???? LCCN ????.
Possibly unpublished, except
electronically.

Applications. Proceedings. Hungarian Acad.of Sci, Bud-

rency: practice and experience, 10(11–13):985–992, September 1998. CO-
DEN CPEXEI. ISSN 1040-
3108. URL http://www3.
interscience.wiley.com/
cgi-bin/abstract?ID=10050413;
http://www3.interscience.
wiley.com/cgi-bin/fulltext?
ID=10050413&PLACEBO=IE.
pdf. Special Issue: Java for
High-performance Network
Computing.

[ACM98a], page ?? ISBN
???? LCCN ????.
Possibly unpublished, except
electronically.

tuning for enhanced performance portability of OpenCL applications. Concurrency
and Computation: Practice and Experience, 29(8): ??, April 25, 2017. CO-
DEN CCPEBO. ISSN
1532-0626 (print), 1532-0634
(electronic).
REFERENCES


[FFP03] Juan Fernandez, Eitan Frachtenberg, and Fabrizio Petrini. BCS-MPI: a new approach in the system software design for


<table>
<thead>
<tr>
<th>REFERENCES</th>
<th>194</th>
</tr>
</thead>
</table>
REFERENCES


[Fin94] S. A. Fineberg. Implementing multidisciplinary and...
REFERENCES


[Forejt:2017:PPA] Vojtěch Forejt, Saurabh...

Feng:2014:SBS


Ferenczi:1995:PAH


Fischer:2001:DNM


Field:2002:OSR

REFERENCES


Computer Society Press Order Number: RS00126.


Computer Society Press Order Number: RS00126.

Fagg:1998:MMH


Fachada:2017:CCF


Feeley:1990:PVM


Furlinger:2009:CAE


Fabero:1996:DLB


Fiala:2012:DCS

REFERENCES


REFERENCES

Foster:1998:GEM


Freeman:1992:PNA


Faraj:2008:SPA


Ferreira:1995:PAI


Frank:1995:MPEa


Fritscher:1993:PDC


Ferrari:1995:TDC


Fischer:1997:ESP

M. Fischer and J. Simon. Embedding SCI into PVM.
REFERENCES

Ferrari:1998:MDC


Filgueira:2011:ACE


Fuerle:1998:IPC


Fumero:2017:JTG


Folino:1998:EMC


Folino:1998:PEM

203

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Fernandez:1999:PGP
programming tool based on PVM. In Dongarra et al. [DLM99], pages 241–248.
ISBN 3-540-66549-8 (soft-cover). ISSN 0302-9743 (print), 1611-3349 (elec-

Fang:2014:API
Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. Aristotle: A performance
impact indicator for the OpenCL kernels using local memory. Scientific Pro-
gramming, 22(3):239–257, 2014. CODEN SCIPEV. ISSN 1058-9244 (print),
1875-919X (electronic).

Feng:2014:MSP
Chunsheng Feng, Shi Shu, Jinchao Xu, and Chen-Song Zhang. A multi-stage pre-
conditioner for the black oil model and its OpenMP implementation. In Er-
hel et al. [EGH+14], pages 141–153. ISBN 3-319-05788-X (paperback), 3-319-
05789-8 (e-book). ISSN 1439-7358 (print), 2197-7100 (electronic). LCCN QA71-
90. URL http://link.springer.com/chapter/10.1007/978-3-319-05789-7_11/.

Fernandez:2000:DCE
Francisco Fernández, Marco Tomassini, Leonardo Vasqueschi, and Laurent Bucher.
A distributed computing environment for genetic programming using MPI. Lecture
Notes in Computer Science, 1908:322–329, 2000. CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349 (electronic). URL http://link.springer-
y.com/link/service/series/0558/
bibs/1908/19080322.htm;
http://link.springer-

Fujimoto:2008:DMV
Noriyuki Fujimoto. Dense matrix-vector multiplication on the CUDA archi-
PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

Fagg:2000:AAC
Graham E. Fagg, Sathish S. Vadhiyar, and Jack J. Dongarra. ACCT: Automatic
Collective Communications Tuning. Lecture Notes in Computer Science, 1908:354–360,
2000.
REFERENCES


[LCCN ???? IEEE catalog number 95CH35784.]


References

Gonzalez:2000:NSF

Gonzalez:2002:DLP

Gonzalez:2001:DSP

Gonzalez:2000:PAM

Gao:2003:LSP
Shiwu Gao. Linear-scaling parallelization of the WIEN

Galaktionov:1997:MST

Gates:1995:PFI

Gonzalez-Alvarez:2017:HMO

Gupta:1994:CTE

Ghosh:1996:ELM

Gorlatch:1998:GMI
REFERENCES


**Graham:2007:OMH**


**Grove:2005:CBP**


**Garcia:2012:DLB**


**GarciaSalcines:1997:PRR**


**Garcia:1999:MMI**

Garcia-Consuegra:1998:DGR


Geist:1993:PTW


Gelado:2010:ADS


Galizia:2015:MCL


Gao:2013:GGA


Ghose:2017:FOT

REFERENCES

Grinstein:1995:VDE


Grinstein:1996:VDE


Geist:1993:PBN


Geist:1993:ILP


Geist:1994:CCW


Geist:1996:APP


Geist:1997:ACP

[Gei97] G. A. Geist. Advanced capabilities in PVM 3.4. *Lec-
REFERENCES


REFERENCES


REFERENCES


Godlevsky:1999:PSA


Geist:1996:MEM


Gawman:1993:PCT


Genaud:2008:EPC


Getov:1999:MJM

Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

Gentzsch:1994:HPC

Wolfgang Gentzsch and Uwe Harms, editors. High-performance computing and networking: international conference and exhibition, Munich, Germany, April 18–20, 1994: proceedings,

Ghosh:2012:RAA


Grebe:1993:TAS


Goumopoulos:1997:PCS


Gropp:1998:MCR


Gong:2012:OCN


Garcia:2011:KRR

Saturnino Garcia, Donghyun Jeon, Christopher M.

Goglin:2018:HTM


Goglin:2018:HTM


Grecki:1997:MPE


Gerlach:2001:IOJ

Granat:2010:PSS


Grasso:2013:APS


Granat:2009:NPQ


Gropp:1995:MGX


Guan:1997:PDI


Geist:1996:VDP


Geist:1997:CPF

G. A. Geist, II, James Arthur Kohl, and Philip M. Papadopoulos. CUMULVS: Providing fault tolerance, visualization, and steering of parallel applications. *International Journal of Super-
REFERENCES


Geist:1997:BPW


Gopalakrishnan:2011:FAM


Garland:2012:DUP


Gropp:1992:TIM


Gropp:1994:MCL


Gropp:1995:DPM


Gropp:1995:IMM

REFERENCES


REFERENCES

Gropp:2004:FTM


Girona:2000:VDC


Gropp:1996:HPP


Glendinning:1993:MMP


Gregoretti:2008:MGE


Garland:2008:PCE

[GLN^+08] Michael Garland, Scott Le Grand, John Nickolls,

**Gonzalez:2000:TSN**


**Gonzalez:2001:MIM**


**Gropp:1994:UMP**


**Gropp:1999:UMP**


**Gropp:1999:UMA**

William Gropp, Ewing Lusk, and Rajeev Thakur. *Using MPI-2: Advanced Features of the Message Pass-
REFERENCES


**Goedecker:2002:OPF**


**Gonzalez:2001:OET**


**Gorzig:2001:CCP**


**Guarracino:1995:PMB**


**Grosset:2017:TTT**


**Govindan:1996:OMP**

V. Govindan, Y. Park, X. Li,

Gillich:1995:FPP


Genaud:2007:PMP


Gropp:2000:RCD


Grengbondai:1994:CPU


Greenfield:1995:OPS


Gropp:2000:RCD

REFERENCES


Gropp:2001:CSA


Gropp:2001:LSM


Gropp:2002:BLC


Gropp:2002:MNS


Gropp:2012:MBW

REFERENCES


Gonzalez:1999:PPM


Gutierrez:2010:QCS


Gaito:2001:ADC


Geist:1991:ENB


Geist:1991:PSS


Geist:1992:NBC

REFERENCES


[GSN+01]}
REFERENCES

Gropp:1994:PJE


Golbiewski:2001:MOS


Gropp:2007:TSM


Gennart:1996:CAG


Gidra:2015:NGC


Guang:2016:NMM

Suo Guang. NR-MPI: A non-stop and fault resilient MPI supporting programmer defined data backup and restore for E-scale super computing systems. *Supercomputing Frontiers and Innovations*, 3(1):4–21, ????. 2016. CODEN ????. ISSN
REFERENCES

Ge:1995:DHA


Guerrero:2014:PCM


Hadjidoukas:2010:NOP


Han:2011:HHL


Hussain:2011:PIA


Hoeflinger:2001:PSP

REFERENCES

DEN PACOEJ. ISSN 0167-8191 (print), 1872-7336 (electronic). URL


REFERENCES


Hisley:2000:PPE


Hatazaki:1998:RRS


Hachler:1996:IA


Huang:2006:ECS

Huang, Jiw-Woei; Chu, Chih-Ping. An efficient communication scheduling method for the processor mapping technique applied data redistribution. The Journal of Supercomputing, 37(3):297–318, September 2006. CODEN JO-SUED. ISSN 0920-8542


[He:2000:PAA]

[Ding:2002:MOP]

[He:2002:MOP]

[Harvey:2011:STP]

[Hoeffer:2012:LMO]

[Hoeffer:2013:MMN]
REFERENCES


Herland:1998:CML


Huang:2009:EGO


Hempel:1994:MSM


Hempel:1996:SMM


Holmen:2014:ASI


Holmen:2014:EAS


Hursey:2012:AFA


REFERENCES


REFERENCES


Hasanov:2017:HRC


Haque:2017:CCL

Che-Lun Hung, Chun-Yuan Lin, Chia-Shin Ou, Yuan-Hong Tseng, Po-Yen Hung,

Hong:1996:RDM


Hawick:2010:PGC


Hawick:2011:RLS


Huband:2001:DTB


Hilbrich:2009:MCC


Hakula:1994:FEM


Haynes:2014:MOA


Hogg:2013:FDT


Hollingsworth:2012:SPI


Hosking:2012:CHL


Hadjidoukas:2005:OEM


Hawick:2011:HSL

K. A. Hawick and D. P. Playne. Hypercubic storage layout and transforms in arbitrary dimensions using GPUs and CUDA. Concurrency and Computation:
REFERENCES


**Hidalgo:1999:MMP**


**Hadjidoukas:2002:MOI**


**Hariri:1995:STE**


**Hondroudakis:1995:PEV**


**Heckathorn:1996:SSP**


**Hilbrich:2012:MRE**


REFERENCES


REFERENCES


Houzeaux:2011:HMO


Hoekstra:1995:CPP


Hager:2011:IHP


Huang:2002:DDD


He:2009:AVS

Hwang:1997:EMC


Huang:2013:ACM


Hellberg:1994:PPP


Hempel:1996:AMP


Hou:2008:BBS


Isaila:2010:SMP

[IBC+10] Florin Isaila, Francisco Javier Garcia Blas, Jesús Carretero, Wei keng Liao,


[IDS16] Dan Ibanez, Ian Dunn, and Mark S. Shephard. Hybrid MPI-thread parallelization of adaptive mesh operations.


[IEE93a] IEEE, editor. *Digest of papers: Comcon spring
IEEE:1993:PSI


IEEE:1993:PIS


IEEE:1993:WHP

REFERENCES


IEEE, editor. *Proceedings of the Scalable Parallel Li-
REFERENCES

IEEE:1994:PTI

IEEE:1994:PSW

IEEE:1995:IIC

IEEE:1995:CP1

IEEE:1995:DPT


IEEE:1995:PSP


IEEE:1995:PFI


IEEE:1995:PNA


IEEE:1996:ICH


IEEE:1996:EIS


IEEE:1996:FSS

IEEE, editor. Frontiers’96, the Sixth Symposium on the Frontiers of Massively

IEEE:1996:PIS


IEEE:1996:PFE


IEEE:1996:PSI


IEEE:1996:PSII

REFERENCES


[IEEE:1996:PSM]


[IEEE:1997:APD]


[IEEE:1997:PIP]


[IEEE:1997:TIS]


[IEEE:2002:STI]

REFERENCES


IFIP:1995:KWC


Iwasaki:2004:NPS


Ierotheou:2005:GOC

C. S. Ierotheou, H. Jin, G. Matthews, S. P. Johnson, and R. Hood. Generating OpenMP code using an in-

Izaguirre:2005:PMS


Iskra:2000:PMD


Ilie:2016:AEC


Satak:2012:OGA


Imamura:2000:ASM


Ishihara:1999:VBS


Islam:2002:IA

Mohammad Towhidul Islam, Purimala Thulasiram, and Ruppa K. Thulasiram. Implementation of ant colony optimization algorithm for mobile ad hoc network applications: OpenMP experiences. *Parallel and Distributed Computing Prac*
REFERENCES


Iskra:2000:IDE


Jatala:2017:SSG


Jabbarzadeh:1997:PSS


Jacoby:1996:ADA


Juhasz:1996:PIP


Jarzabek:2017:PEU


REFERENCES


Jin:2003:AMP


Januszewski:2010:ANS


Jeun:2008:OPB


Jan:2017:ITF


Jog:2013:OCT


Jambunathan:2018:COB

Jie:2014:ASP


Julian-Moreno:2017:FPA


Jorba:2001:SFF


Jung:2014:MCM


Jo:2015:ALM

[Jon96] Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.


Jimenez:2013:BCA


Judd:1994:PIV


Jin:2013:PCU


Jung:2005:DIM

Hyungsoo Jung, Dongin Shin, Hyuck Han, Jai W. Kim, Heon Y. Yeom, and Jongsuk Lee. Design and implementation of multiple fault-tolerant MPI over Myrinet ($M^3$). In ACM [ACM05], page 32. ISBN 1-59593-061-2. LCCN ????

Jasskelainen:2015:PPP


Ju:1996:SPT


Jain:1996:IOP

Ravi Jain, John Werth, and James C. Browne, edi-


[KAHS96] O. Krone, M. Aguilar, B. Hirsbrunner, and V. Sunderam. Integrating coordination features in PVM. In Ciancarini and Hankin [CH96], pages 432–435. ISBN 3-540-61052-9. ISSN 0302-9743 (print), 1611-
Kapinos:2010:PPP


Kan12


Kanal:2012:PAI


Khan:2017:RCS


KAMAMA17


Kat93


Karlsson:1998:CCC


Kaiser:2001:OCC

Kruzel:2013:VOI

Kabir:2002:DIS

Klemm:2009:RTM

Kulkarni:2016:HAP

Knies:1994:SLL

Kitowski:1997:CPM
J. Kitowski, K. Boryczko, and J. Moscinski. Compari-

**Kannan:2016:HPP**


**Ke:2004:RCM**


**Klemm:2007:JIO**


**Karamcheti:1994:SOM**


**Krawezik:2006:PCM**


**Kacsuk:1997:GDD**

REFERENCES


Konuru:1994:ULP


Konuru:1994:UPP


Kotselidis:2017:HMR


Kanal:2012:MMC


Krotkiewski:2013:ESC


Klingebiel:1995:COD

REFERENCES


Klingebiel:1995:CPO


Kakimoto:2012:PCG


Klemm:2012:EOV


Komatitsch:2010:HO


Kepner:2005:PPM


Kale:1996:PMD

Nandini Kappiah, Vincent W. Freeh, and David K. Lowenthal. Just in time dynamic voltage scaling: Exploiting inter-node slack to

Kappiah:2005:JTD
save energy in MPI programs. In ACM [ACM05], page 33. ISBN 1-59593-061-2. LCCN ????.


[D. Kafura and L. Huang. Collective communication and communicators in mpi++.
In IEEE [IEE96i], pages 79–86. ISBN 0-8186-7533-0. LCCN QA76.642 .M67 1996.][KH96]


**Kallenborn:2019:MPC**


**Kucukboyaci:2001:PPT**


**Kjolstad:2012:ADG**


**Kojima:2017:HLG**


**Kikuchi:1993:PAS**

REFERENCES

Kranz:1993:IMP


Kwon:2012:HAO


Kim:2016:DOF


Kemelmakher:1998:SAR


Karniadakis:2002:PSC


Krysztop:2002:IFP

REFERENCES


Kwon:2008:RPP


Kim:2011:ASC


Karami:2015:SPA


Konstantinou:2001:TTO


Kobler:2001:DOP


Karrels:1994:PAM

E. Karrels and E. Lusk. Performance analysis of MPI programs. In Dongarra and
REFERENCES


Kofakis:1995:DPI


Liao:2011:DEM


Liao:2006:SDI


Liao:2007:CCS


Klawonn:2015:HMO


Kutyniok:2016:SFD

Kim:2015:OBU


Khanna:2010:NMG


Komatitsch:2009:PHO


Koholk:1999:MPR

R. Koholk, H. Mayer, and A. Goller. MPI-parallelized radiance on SGI CoW and
REFERENCES


[KNT02] Leszek Kasprzyk, Ryszard Nawrowski, and Andrzej Tomczewski. Application of a parallel virtual machine for the analysis of a luminous field. Lecture Notes in Computer Sci-
REFERENCES


REFERENCES


**Kauranne:1995:OHM**


**Koski:1995:STL**


**Konuru:1997:MUL**


**Kermarrec:1996:PDS**


**Kuckuk:2013:IPD**


**Klocckner:2012:PPS**

REFERENCES

Kolesnichenko:2016:CBG


Kuhn:2000:OVT


Kamal:2005:SVT


Klimach:2009:PCH


Kranzlmuller:2002:RAP


Kouetcha:2017:USP


[KS97] Yooseong Kim and Avi-

Kaliman:2015:SNU


Kovanen:2015:TAC


Kegel:2013:DTU


Kusano:2001:OOC


Katkere:1995:VBW

REFERENCES

Katkere:1996:VWI

MPI video. In ACM [ACM96a], pages 25–31, 137.
ISBN 0-89791-818-5. LCCN
???? URL http://www.
acm.org/pubs/contents/
proceedings/graph/217306/.

Kim:2014:VVF

[KSJ14] Young-Joo Kim, Sejun Song, and Yong-Kee Jun. VORD: A versatile on-the-fly race
detection tool in OpenMP programs. International
CODEN IJPFE5. ISSN 0885-7458 (print), 1573-7640 (electronic).

Kusano:2000:PEO

[KSS00] Kazuhiro Kusano, Shigehisa Satoh, and Mitsuhisa Sato. Performance evaluation of
the omni OpenMP compiler. Lecture Notes in Computer
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/
link/service/series/0558/
ibib/1940/19400403.htm;

Kurzyniec:2007:UCA

[KSSS07] Dawid Kurzyniec, Magdalena Slawińska, Jaroslaw
Slawiński, and Vaidy Sunderam. Unibus: a contrarian approach to Grid
computing. The Journal of Supercomputing, 42
CODEN JOSUED. ISSN 0920-8542 (print), 1573-0484 (electronic).
URL http://www.springerlink.com/
openurl.asp?genre=article&
issn=0920-8542&volume=
42&issue=1&spage=125.

Kranzlmuller:2001:IRM

[KSV01] Dieter Kranzlmueller, Christian Schubenschläger, and
Jens Volkert. An integrated record&replay mechanism for nondeterministic
message passing programs. Lecture Notes in Computer
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/
link/service/series/0558/
ibib/1940/19400403.htm;

[SL+12] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah,
Gangwon Jo, and Jaejin Lee. OpenCL as a unified programming model for hetero-
geogeneous CPU/GPU clusters. ACM SIGPLAN Notices, 47
CODEN SINODQ. ISSN
0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).
PPOPP ’12 conference proceedings.

Kranzlmuller:2001:IRM

[KSV01] Dieter Kranzlmueller, Christian Schubenschläger, and
Jens Volkert. An integrated record&replay mechanism for nondeterministic
message passing programs. Lecture Notes in Computer
REFERENCES

Keppens:2002:OPM


Koval:2010:USB


Karonis:2003:MGG


Komatitsch:2003:BDF


Kuhn:1998:FFW

REFERENCES


REFERENCES

ISBN 1-4244-7675-5. LCCN ????


Laguna:2015:DPF


Laforenza:2001:PHP


Lorenz:2015:AMS


Langdon:2009:FHQ


Loos:1996:MPS


Lavi:1998:IPD

R. Lavi and A. Barak. Improving the PVM daemon

**Lashgar:2016:ESM**


**Loncar:2016:CPS**


**Lawton:1996:BHP**


**Ling:2012:HPP**


**Lewis:1993:PCP**

Lauria:1997:MFH


Luecke:1997:HPF


Li:2007:DIV


Luecke:2003:MCT


Liddell:1996:HPC


Lathrop:2011:SPI

Scott Lathrop, Jim Costa, and William Kramer, editors. *SC’11: Proceed-

Liu:1996:BMP

Liu:2013:DLO

Lee:2006:PT

Lee:2012:SMO

Lu:1997:QPD


Lec:2001:APT

Lee:2012:SMO

Lee:2001:APT

Lee:2006:PT

Lee:2012:SMO


Lim:2011:ATC


Leon:1992:FP


Leon:1993:FPA


Leon:1993:FPP

Juan Leon, Allan L. Fisher, and Alfons Steenkiste. Fail-safe PVM: a portable

Loyot:1993:VVM


Lee:1999:PEJ


Liu:2016:MBM


Li:2010:SVC


Lassous:2000:HGA


Leung:1995:EPE


Leung:1998:PAN

Ka-Cheong Leung and Mounir Hamdi. Performance assessment of network protocols and parallel programming

Liao:2007:OOP


Lee:1996:TSF


Lin:1994:DNC


Li:1996:PSI


Liu:2010:RTC

Fuchang Liu, Takahiro Harada, Youngun Lee, and Young J. Kim. Real-time collision culling of a million bodies on graphics processing units. *ACM Transactions on Graphics*, 29

Li:1997:PIO


Lu:1998:ONW


Liu:1995:WCD


Li:1996:SIS


Glenn R. Luecke, Marina Kraeva, Jing Yuan, and

Ludwig:1995:PPF


Luecke:2001:SPO


Lidbury:2015:MCC


Luo:2014:ISM


Langlais:2002:SSM


Li:1993:SLL


Loh:1994:ISR


Larsen:1999:SPG


Lu:2013:MLP

Ligang Lu and Karen Magerlein. Multi-level parallel computing of reverse time migration for seismic imaging on Blue Gene/Q. ACM SIGPLAN Notices, 48(8):291–292, August 2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (elec-
Lee:2009:OGC


Losada:2014:EAL


Lee:2015:OPE


Lop e:2015:PBV


Louca:2000:MFP

REFERENCES


Li:2001:PCS

Lastovetsky:2006:HTM

Le:2006:DMC

Luo:2001:PDE

Lotfi:2015:AAC

Lee:2014:BCA

Latham:2007:IMI
[LRTO7] Robert Latham, Robert Ross, and Rajeev Thakur. Implementing MPI-IO atomic mode and shared file pointers using MPI one-sided
REFERENCES


**Li:2001:WMB**


**Luckow:2008:MFT**


**Levetesque:2012:HEA**


**Lashgar:2015:CSR**


**Lin:2010:TLS**


**Luecke:2004:PSS**

[LSK04] Glenn R. Luecke, Silvia Spanoyannis, and Marina

Liu:2011:CBA


Lumsdaine:1995:WIM


Li:2015:AMR


Liu:2008:AMD


Lazzarino:2002:PBP

Langr:2014:APP


Lazar:1994:SRE


Laohawee:2000:PDT


Lee:2002:IPC


Luo:1999:SMV


Lusk:2000:IIC

[Lus00] Ewing Lusk. Isolating and interfacing the com-


REFERENCES

Loncar:2016:OOM


Lu:2013:WGA


Luecke:2002:DDM


Li:2017:PCO


Li:2018:COM

[LYZ18] Shigang Li, Yunquan Zhang,

Lu:2019:PMM


Ma:2009:CRS


Mavriplis:2005:HRAa

[MAB05] Dimitri J. Mavriplis, Michael J. Aftosmis, and Marsha Berger.


Miguel:1996:APN


Maffei:1994:SSD


Moreno:2001:AEP

REFERENCES

Mainland:2012:EHM


Molero-Armenta:2014:OOI


Malyshkin:1995:PCT


Malfetti:2001:AO


Mirvis:1995:HML


Manchek:1994:DIP

Robert J. Manchek. De-

[Mans:1998:PDP]


[Manis:2001:PNP]


[Miguel-Alonso:2009:INS]


[Marowka:2002:ISI]


[Marowka:2003:EOT]


[Marowka:2005:EMT]

Marowka:2006:BRP  

Marowka:2007:PCD  

Marowka:2009:BCT  

Mehta:2006:MSG  

Mattson:1994:PEP  

Mattson:1995:PEP  

Mattson:2000:BOF  

Mattson:2000:IO  
REFERENCES

Mattson:2001:EO


Mattson:2003:HGO


Matuszek:2001:APS


Mourao:2000:SSC


Marongiu:2012:OCE


Muller:2012:SOA

Matthias S. Müller, John Baron, William C. Brantley, Huiyu Feng, and
REFERENCES


Ma:2013:KAT


Min:2003:OOP


McKenzie:1994:CIM


Malits:2012:ELG


Mehl:2015:RTC

Miriam Mehl, Manfred Bischoff, and Michael Schäfer, editors. Recent Trends in Computational Engineering — CE2014: Optimization,
REFERENCES


Miles:1994:PTO


Medeiros:1998:IPM


Morrison:1999:FPP


Maier:2017:OLD


Massaioli:2005:OP


McDonald:1996:NNP

K. McDonald. The NAG Numerical PVM Library. In Dongarra et al. [DMW96], pages 419–428. ISBN 3-540-60902-4. ISSN 0302-9743
REFERENCES

Mueller:2008:OSM


McKinney:1994:PGU


Moore:2001:RPA


Moreira:2017:FCR


McRae:1992:VC


Mierendorff:2000:WMB


[MFC98] G. M. Megson, R. S. Fish, and D. N. J. Clarke. Creation of reconfigurable hardware objects in PVM environments. Lecture Notes

Milovanovic:2008:NEE


Moo:2003:SNB


Martin:1995:DPC


Mintchev:1997:TPM


Mehta:2015:MTP


Mendonca:2017:DAA


Meh:2012:SPE


Muralidharan:2015:COP


Medvedev:2005:OMA


Montella:2017:VCB


Mazzariol:1997:PCS


Markidis:2015:OAN

Stefano Markidis, Jing

Matthey:2001:EMO


Hwu:2012:GCG


Miller:1994:PPP


Miller:1994:PPT


Munshi:2016:OCS


Michielse:1993:PMU

REFERENCES


[MK00] Chris McDonald and Kamran Kazemi. Teaching parallel algorithm with process

Mohror:2004:PTS


Maheo:2012:AOL


Markus:1996:PEM


Min:2001:PCO


Mokbel:2011:ASR


Mitra:2014:AAP

Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz, and Todd Gamblin. Accurate application progress analysis for large-scale paral-

**Marjanovic:2010:ECC**


**Marowka:2004:OOA**


**Malakhov:2018:CMT**


**Marendic:2016:NMR**


**Majumdar:1992:PPC**


**Mantovani:1995:HPS**

REFERENCES


Morishima:2014:PEG


Malony:1994:PAP


Mudge:1993:PTS


Morimoto:1998:IMM


Morimoto:1999:PEM


Mohamed:2013:MMM


Manca:2016:CQI

Emanuele Manca, Andrea Manconi, Alessandro Orro,


A. Muller and R. Ruhl. Communication-buffers for data-parallel, irregular computations. In Szymanski and
REFERENCES


Martins:2012:PDC

Meister:2017:PME

Mo:1996:IOP

Mininni:2011:HMO

Mazzocca:2000:TPP

Morinishi:1995:PIB
K. Morinishi and N. Sato-fuka. Parallel implemen-
REFERENCES

333
tation of the Boltzmann equation solvers using PVM. In Satofuka et al. [SPE95],
1994.

[MS96a] T. P. McMahon and A. Skjellum. eMPI/eMPICH: embedding MPI. In IEEE

[MS96b] J. Menden and G. Stellner. Proving properties of PVM applications — a case study
with CoCheck. In Bode et al. [BDLS96], pages 134–?? ISBN 3-540-61779-5. ISSN

Lecture Notes in Computer Science, 1497:113–??, 1998. CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349 (electronic).

[MS99a] H. Mierendorff and H. Schwamborn. Performance modeling based on PVM. In Dongarra
et al. [DLM99], pages 75–82. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743

[MS99b] M. Migliardi and V. Sunderam. PVM emulation in the harness metacomputing system: a plug-in
based approach. In Dongarra et al. [DLM99], pages 117–124. ISBN 3-540-
66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (electronic). LCCN QA76.58
E973 1999.

[MS99c] F. E. Mourao and J. G. Silva. Implementing MPI’s one-sided communications for WMPI. In Dongarra
et al. [DLM99], pages 231–240. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743

[MS02a] Elsa M. Macías and Alvaro Suárez. Solving engineering applications with LAMGAC over MPI-2. Lecture
Notes in Computer Science, 2474:130–??, 2002. CODEN LNCSD9. ISSN
0302-9743 (print), 1611-3349 (electronic). URL http://link.springer.de/link/
service/series/0558/bibs/2474/24740130.htm; http://link.springer.de/link/
Mahinthakumar:2002:HMO


Mertens:2004:CCP


Mysliwiec:1997:IPS


Matise:1995:PCG


Migliardi:2000:SFT


McCandless:1996:OOM

Massetto:2012:NSB


Martin:2015:EPM


Molnar:2010:APM


Macias:2001:PP


Matrone:1993:LPC


Mysliwiec:1997:CAM

G. Mysliwiec, J. Sipowicz, and R. Schaefer. Control activities in message passing environment. *Lec-
REFERENCES

Martins:1998:JIW

Martorell:2005:BGP

Mossaiby:2017:OIH

Mieh:1996:IER

Mallon:2016:MUB

Marin:1994:GAL
F. J. Marin, O. Trelles-Salazar, and F. Sandoval. Genetic algorithms on LAN-Message passing architectures using PVM: Application to the routing problem. In Davidor et al. [DSM94], pages 534–545 (or 534–543??). ISBN 3-540-58484-6. ISSN 0302-9743 (print), 1611-3349 (elec-


REFERENCES

CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).

Manegold:1997:QBM

Morton:1995:LLP

Maleki:2016:HOT

Maly:1993:DCP

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM
REFERENCES


C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–?? ISBN ???? LCCN ????.


REFERENCES

CODEN FGSEVI. ISSN 0167-739X (print), 1872-7115 (electronic).

Nakano:2002:SCG


Nakano:2003:SCG


Nitsche:2000:TCM


Nicolescu:2001:DTP


Norden:2007:DDM

[Markus Nordén, Henrik Löf, Jarno Rantakokko, and]


Kengo Nakajima and Hiroshi Okuda. Parallel itera-


REFERENCES


Nandivada:2013:TFO


Nogueira:2016:BBW


Norcen:2005:HPJ


Nitsche:1998:FMP


Ng:2012:STT


Nguyen:1994:DCE


Omar:2017:PSF

Cyrus Omar and Jonathan Aldrich. Programmable se-

**Oberhuber:1996:MNP**


**Orr:2015:SUR**


**Okulicka-Dluzewska:2001:PFE**


**Olivier:2012:CMW**


**Oed:1993:CRM**


**Ong:2000:PCL**


Luke Olszewski. A timing comparison of the conjugate gradient and Gauss–Seidel parallel algorithms in
REFERENCES

a one-dimensional flow equation using PVM. In ACM [ACM95a], pages 205–212. ISBN 0-89791-747-2. LCCN ????


Kevin ÓBrien, Kathryn ÓBrien, Zehra Sura, Tong


[OPM06] Rafael Sachetto Oliveira, Bernardo Martins Rocha, and Ronan Mendonça Amorim. Comparing CUDA, OpenCL

**Overeinder:1997:BCD**


**Ostrand:1994:PIS**


**Obrecht:2015:PEO**


**Otto:1993:PAC**


**Otto:1994:PVM**


**Otto:1992:MAP**


**Ouenes:1995:PRA**

tomatic history matching using a network of workstations and PVM. In Anonymous [Ano95d], pages 125–134. ISBN ????. LCCN ????.


[PBK00] Joanna Plazek, Krzysztof

Prasanna:1995:FIP


Puthukattukaran:1994:DIP


Peng:2014:IDI


Poggi:1998:UPD


Plimpton:2011:MML


Pawliczek:2014:VED

Piotr Pawliczek, Witold Dzwinel, and David A. Yuen. Visual exploration of data by using multidimensional

[Pennington:1995:DHC]

[Pen95]

[Pernice:1996:RPP]

[Per96]

[Petcu:1997:ISM]

[Pet97]

[Petcu:2000:PDAa]
Dana Petcu. PVMaple: a distributed approach to cooperative work of Maple processes. Technical report, Westers University of


Papakonstantinou:2013:ECC


Pan:2010:CPS


Pennycook:2013:IPP


Pierce:1994:NMP


Papadopoulos:1998:DVS


Park:2005:SOA

Inho Park and Seon Wook Kim. Study of OpenMP applications on the InfiniBand-based software distributed shared-memory system. *Par-

Papadopoulos:2001:NRC


Paul:2006:TLF


Prabhakar:2016:GCH


Plank:1995:ADC


Preissl:2010:OCC


Periyathamby:1995:NSG

computing through PVM. In Bilger [Bil95], pages 815–818. ISBN 0-89693-034-4. LCCN ???.


Pruynne:1996:ICP

PL96

PLR02

PMM95

Piscaglia:1995:DOC

Piscaglia, B. Macq, and
REFERENCES


**Poulson:2013:ENF**


**Pirk:2016:VVA**


**Plagianakos:2001:LCP**


**Pokorny:1996:CMP**


**Parrilia:1999:UPD**


**Pai:2016:CTO**

REFERENCES


Pierce:1994:PIN


Pierce:1994:PSH


Pozo:1994:FTE


Priimak:2014:FDN


Pena:2014:CEC


Prades:2016:CAX

Javier Prades, Carlos Reaño, and Federico Silla. CUDA acceleration for Xen virtual

[Pedroso:2000:MPC]

Pedroso:2000:MPC


[PS00a]

Protopopov:2000:SMC


[PS00b]

Pedroso:2001:WLE


[PS01a]

Protopopov:2001:MMP

Pandey:2007:SCM


Pehrson:1994:IPP


Peters:2011:FPC


Patrick:2008:CEO


Preissl:2010:TMS


Prieto:1999:PRM


REFERENCES

2013. CODEN SINODQ. ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).


[PTW99] L. Prylli, B. Tourancheau, and R. Westrelin. The design for a high performance MPI implementation on the Myrinet network. In

[Prylli:1999:DHP]
REFERENCES


Puskas:1995:LBW


Peinado:1997:HPC


Park:2001:PPE


Pahl:1995:CCB


Preissl:2012:CSS


Pang:2016:MKR

DEN ???  ISSN 1936-7406 (print), 1936-7414 (electronic).

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS

Qiu:2012:PWM

Qawasmeh:2017:PPR

Quoy:2000:PNN


REFERENCES


Roussos:2001:BMB


Rufai:2005:MPO


Rejitha:2017:EPC


Resch:1997:PMC


Resch:1997:PM


**Russo:2017:MPG**


**RBS94**


**Reale:1994:PCU**

**RC97**


**Reinhard:1997:MHP**


**Reimann:1996:CBT**


**Ross:1995:DCM**


**Royuela:2012:ASO**

H. Radhakrishna, S. Divakar, N. Magotra, and

**Reeves:1996:PIC**


**Reinefeld:2001:CDI**


**Reussner:2001:SSK**


**Roy:2000:MGQ**


**Reynders:1995:OOO**

REFERENCES

212–224, May 2, 1995. CO-
DEN CPHCBZ. ISSN
0010-4655 (print), 1879-2944
(electronic). URL http://
/www.sciencedirect.com/
science/article/pii/001046559400172X


/www.sciencedirect.com/
science/article/pii/S0167819115000447

/www.sciencedirect.com/
science/article/pii/S0167739X16300346
References


Rietmann:2012:FAS

Rodrigues:2013:POM

Rohrl:2000:PPS

Rolfe:1994:PAP

Rolfe:2008:PFO

Rolfe:2008:SMA
REFERENCES

Rosen:2013:PVA


Ramon:1995:PKV


Rodriguez:2008:FTS


Rabaea:2000:EPM


Rageb:2001:CEM


Rauber:2002:LSH


Roda:1997:PPI

REFERENCES


**Roig:2001:EMM**


**Robinson:1996:TMI**


**Russ:1999:UHR**


**Rabenseifner:1993:CDR**


**Reinefeld:1995:PVE**


**Roy:1997:PNT**


[RST02] Reussner:2002:SCB


[RSBT95] Rambu:1995:DSS


[RST06] Rozman:2006:CPL

[RSV+05] Roberti:2005:PIL

Reussner:2000:BMD


Rungsawang:1999:PDT


Ryczerset:2007:IBS


Ropo:2009:RAP


Simonsen:1993:DMD

H. H. Simonsen and J. Amundsen. Distributed molecular dynamics using the PVM system. In Sincock [Sin93],
REFERENCES

[102x681]Saarinen:1994:EES


[102x681]Sato:2017:NIT

REFERENCES


REFERENCES


Saillard:2014:PCS
Emmanuelle Saillard, Patrick Carribault, and Denis Barthou.

Saillard:2015:SDV
Emmanuelle Saillard, Patrick Carribault, and Denis Barthou.

Stagg:1995:IPN

Shyu:1996:ILQ

Schill:1993:DOD

Schneenman:1994:DSS
Richard D. Schneenman. Distributed supercomputing software: experiences with the parallel virtual machine — PVM. Technical Report NISTIR 5381, U.S. Dept. of
Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA, 1994. vi + 18 pp.


Tyler Sorensen and Alastair F. Donaldson. Exposing errors related to weak memory in GPU applications.
REFERENCES


[SDN99] Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??.


Serot:1997:EPF


Sevenich:1998:PPU


Scott:1998:PWN


Schoinas:1994:FGA


Steuwer:2015:GPP


Siegelin:1995:BPW


Shen:2013:ACE

REFERENCES


Stone:2010:OPP


Scherer:2000:APO


Schmidt:1994:IAP


Sitsky:1996:MLW


Song:2014:DAT


Shen:1995:PSM


Sloot:1994:CIO

P. M. A. Sloot, A. G. Hoekstra, and L. O. Hertzberger. A comparison of the Iserv-Occam, Parix, Express, and PVM programming environments on a Parsytec GCel. In Gentzsch and

[Sloot:1994:CIP]

[SHH94b]

[SHHC18]

[Shi94]

[SHLM14]

[Sato:2001:CEO]
Mitsuhisa Sato, Toshihiro Hanawa, Matthias S. Müller, Barbara M. Chapman, and Bronis R. de Supinski, ed-


IEEE catalog no. 92CH3185-6.


REFERENCES


REFERENCES

Sanders:2010:CEI


Steinberger:2014:WTB


Skjellum:2004:RTM


Subramaniam:1996:CLU


Skjellum:1993:SLH


Steinberger:2012:SDS

REFERENCES


**Skjellum:1995:EAM**


**Scherer:1999:TAP**


**Samadi:2014:SPS**


**Su:2012:CPB**


**Sloan:2005:HPL**


**Squyres:1996:CBP**


**Shires:2002:EHM**


**Shires:2003:OPF**


**Simos:2007:CMS**


**Santos:2012:ICC**


**Siegel:2008:CSE**

REFERENCES

Shterenlikht:2015:FC

Shterenlikht:2015:F

Smith:1993:MBA

Smith:1993:DSI

Schardl:2017:TEF

Sandes:2016:MMA

Sochacki:1993:DCW

Silva:2000:HPC
REFERENCES


REFERENCES


Hongzhang Shan, Erich Strohmaier, James Amundson, and Eric G. Stern. Optimizing the advanced accelerator simulation framework
Sankaran:2005:LMC


Satarić:2016:HOM


Sotomayor:2017:ACG


Silva:1996:IDS


Silva:1997:IPD

REFERENCES

Silva:1995:PCR


Skjellum:1994:DEZ


Sabne:2012:ECO


Stellner:1995:CMP


Sosa:2000:IQC


Sala:2008:PHP


Schafers:1995:TGP

REFERENCES

Squyres:1997:DEM


Stone:1994:PSO


Shelton:1994:FPS


Sen:1999:PBD


Santana:1996:PVM


Souza:1997:EPH

Stellner:1997:LBB


Smyk:2002:AMM


Smyk:2002:OMP


Stellner:1997:LBB


Stals:1995:AMP


Stankovski:1995:MPA


Stephens:1994:PBT

R. Stephens. Parallel benchmarks on the Transtech Paramid supercomputer. In de Gloria et al. [dGJM94], pages 136–146. ISBN ????. LCCN ???
REFERENCES

**Stellner:1996:CCP**


**Sterling:2000:SCB**


**Still:1994:PPC**


**Schmitz:2008:IIG**

Arne Schmitz, Markus Tavenrath, and Leif Kobbelt.

**Sunderam:1997:TAS**


**Stockinger:1998:VPC**


**Stpiczynski:2002:PPO**


REFERENCES

Sunderam:1995:RIH


Sunderam:1996:PSS


Suresh:1995:IOP


Suresh:1995:PIQ


Suttner:1996:SPB


Smelyanskiy:2011:HPL


Sistare:1999:OMC

Steve Sistare, Rolf van de Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Stout:1991:SDM


**Schrish:2012:RFS**


**Sosonkina:2015:RAV**


**Santhanaraman:2005:DZC**


**Sitsky:1995:IPM**


**Skjellum:2001:OOA**

REFERENCES

Sydow:1994:PSA

Stathopoulos:1995:DLB

Stankovic:1999:NVJ
N. Stankovic and K. Zhang. Native versus Java message passing. In Dongarra

Shan:2012:PEH

Shee:1994:DMA

Stathopoulos:1996:PIM

Schneider:2009:CPM

[102x681]REFERENCES

ID=78502300&PLACEBO=IE.

pdf.


Simunovic:1995:MIP


Simunovic:1995:MIP


Thompson:2014:CIC


Takeda:2001:AME


Tao:2012:UGA

[Jian Tao, Marek Blazewicz, and Steven R. Brandt. Using GPU’s to accelerate stencil-based computation kernels for the development of large


[TBD96]


REFERENCES


Tourino1998:PBL


Tourino1999:MMC


Thiruvathukal2000:JNW

REFERENCES


Thakur:2002:ONA


Thakur:1998:CUM


Thakur:2005:OSO


Tian:2005:CEN


Treffitz:1994:DPE


Treffitz:2010:SCM


REFERENCES


OpenCL programs on embedded heterogeneous systems. ACM SIGPLAN Notices, 52(4):11–20, May
2017. CODEN SINODQ, ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Daisuke Takafuji, Koji Nakano, Yasuaki Ito, and Jacir Bordim. C2CU: a
CUDA-C program generator for bulk execution of a sequential algorithm. Concurrency and
Computation: Practice and Experience, 29(17), September 10, 2017. CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634 (electronic).

T. Takahashi, F. O’Carroll, H. Tezuka, and A. Hori. Implementation and evaluation of

OpenCL programs on embedded heterogeneous systems. ACM SIGPLAN Notices, 52(4):11–20, May
2017. CODEN SINODQ, ISSN 0362-1340 (print), 1523-2867 (print), 1558-1160 (electronic).

Daisuke Takafuji, Koji Nakano, Yasuaki Ito, and Jacir Bordim. C2CU: a
CUDA-C program generator for bulk execution of a sequential algorithm. Concurrency and
Computation: Practice and Experience, 29(17), September 10, 2017. CODEN CCPEBO. ISSN
1532-0626 (print), 1532-0634 (electronic).

Takahashi:1999:IEM

Europe Symposium, Frankfurt/Main, Germany, October 2–6, 1995: proceedings,
number 1031 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany / Hei-
delberg, Germany / London, UK / etc., 1996. ISBN 3-540-60757-9. ISSN 0302-9743 (print), 1611-

Toussaint:1996:AES

Bernard Tourancheau. High speed networks for clusters, the BIP-Myrinet experience.
Lecture Notes in Computer Science, 1908:9–??, 2000. CODEN LNCD9. ISSN
REFERENCES


Thebault:2015:SEI


Tong:2018:FCM


Tinetti:2001:HNW


Traeff:1998:PRL


Traff:2002:IMP


Traff:2002:IMA

Jesper Larsson Traff. Improved MPI all-to-all communication on a Giganet SMP cluster. Lecture Notes in Computer Science, 2474:392–??, 2002. CODEN
REFERENCES


[TS12b] Julien C. Thibault and Inanc Senocak. Accelerating incompressible flow computations with a Pthreads--


REFERENCES

Tang:1999:CRT

[TSY99]

Tang:2000:PTR

[TSY00]

Trelles-Salazar:1994:MSS

Theodoropoulos:1997:GSP

[TTP97]

Tanaka:2000:PEO

[TTSY00]

Tellez-Velazquez:2018:CSI
Arturo Tellez-Velazquez and Raúl Cruz-Barbosa. A

**Twerda:1996:PIT**


**Tourancheau:2001:SMN**


**Thorson:2012:SUF**


**Tournavitis:2009:THA**


**Tien:2014:EOS**


**Utterback:2017:POR**

REFERENCES


Uselton:1995:PRS

Udupa:2009:SES

Uhl:1994:PCC

Uhl:1995:AWE

Uhl:1995:PCC

Uhl:1995:VPW

Umanski:1997:EEP


REFERENCES


Vapirev:2015:IRC


Vetter:2000:DST


Vetter:2002:DSP


Vadhiyar:2002:PMS


Vega-Gisbert:2016:DIJ

Oscar Vega-Gisbert, Jose E. Roman, and Jeffrey M. Squyres. Design and im-


REFERENCES


REFERENCES


Vaidya:2013:SDO


Vlassov:1997:SSM


Vandoni:1995:CSC


Vo:2009:FVP


Verkerk:1992:PIC


Vetter:2002:EPE


Verschelde:2015:PHC

REFERENCES


[White95b] S. White, A. Alund, and V. S. Sunderam. Performance of the NAS parallel benchmarks on PVM-Based


Wang:2015:AST


Wang:2007:EAP


Wang:2012:OVT


Wu:1999:JBD


Wang:2013:PMO


Wedemeijer:1996:PSA

REFERENCES


Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI. (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.


P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ???


R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous
REFERENCES

[Ano94g], pages 783–792. ISBN ???? LCCN ????

White:2004:CMM


Wilkinson:1993:IFT


Wilhelms:1994:DAL


Wismueller:1996:SBV


Wismueller:1997:DMP


Wismueller:1998:LMS


Wismueller:2001:UMT

Roland Wismüller. Using monitoring techniques to support the cooperation of software components. Lecture Notes in Computer Science, 2131:183–??, 2001. CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349

**Witchel:2016:PPW**


**Wei:2012:OLL**


**Wu:2014:OFB**


**Wegiel:2008:MCVa**


**Wegiel:2008:MCVb**


**Wegiel:2008:MCVc**


[Weatherly:2006:DMS] D. Brent Weatherly, David K. Lowenthal, Mario Nakazawa,

**Wolf:2001:APA**


**Wu:2012:UHM**


**Winkler:2017:GSM**

Daniel Winkler, Michael Meister, Massoud Razavand, and Wolfgang Rauch. gpuSPHASE — a shared memory caching implementation for 2D SPH using CUDA. *Computer Physics Communications*, 213(?):
REFERENCES


Wendykier:2010:PCH


Walk:er:1995:RBD


Walk:er:1996:RBC


Winstanley:1997:PDP


Wang:2009:MPM


Wolbers:1992:SPP


Worley:1996:MPE

Weng:2007:OIS


Wagner:1994:CFD


Wang:1995:PPG


Wu:2001:PCS


Worsch:2002:BCM


Wang:2016:LLA

Wisniewski:1999:SME

Len Wisniewski, Brad Smislof, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??

West:1995:AVV


Wu:2011:PCH


Wu:2012:PCH

Xingfu Wu and Valerie Taylor. Performance characteristics of hybrid MPI/OpenMP implementations of NAS Parallel Benchmarks [WTTH17]

### Wu:1999:MCC


### [WWFT11]


### Wilson:1996:SMS


### Wu:2012:DPL


### Wang:2016:MMF

REFERENCES


Yelon:1993:PTS


Yazdanpanah:2015:PHR


Ying:2003:NPK


Yalamanchilli:1998:CPJ


Yang:2014:HPD

YCL14


Yu:2013:AGA

YEG+13


Yoon:1996:WBP

YG96


Yetongnon:1996:PII

YH96


Yero:2001:JOO

YG96

REFERENCES


Yang:2011:HCO


Yuasa:1996:RPG


YarKhan:2017:PPN


Yamazaki:2018:SIL


Yang:2009:DBM


Yang:2016:HTM

Fan Yang, Jinfeng Li, and


REFERENCES

You:1995:EIM


Young:1993:PEN


Yuan:2012:PCS


Young-S:2017:OGI


Yu:2005:HPB


Yeh:2017:PFG


YANG:2011:PBP


YOUNG:2015:SHP


YONEZAWA:1995:IED


YOU:2012:SCC


YANG:2014:CNR

Yi Yang and Huiyang Zhou. CUDA-NP: realizing nested thread-level parallelism in GPGPU applications. *ACM
REFERENCES


You:1995:PIM


Zounmevo:2014:FRC


Zaza:2016:CBP


Zahavi:2012:FTR


Zhong:2007:PPS


Zdetsis:1994:PMD

[ZB94] A. D. Zdetsis and R. Biswas. A parallel molecular dynam-


REFERENCES

[469]


[ZGC94] K. Zielinski, M. Gajecik, and G. Czajkowski. Parallel programming systems for LAN distributed computing. In IEEE [IEE94b],
REFERENCES

Zu:1994:OSM

Zheng:2006:PEA

Zoraja:1999:SPD

Zounmevo:2014:ESC
REFERENCES

Zaky:1996:PDT


Zaki:1999:TSP


Zhou:2012:DFD


Zhang:2017:DLN


Zhu:2015:PIM


Zhai:2011:CVH

Yan Zhai, Mingliang Liu, Jidong Zhai, Xiaosong Ma, and Wenguang Chen. Cloud versus in-house cluster: evaluating Amazon cluster compute instances for running MPI applications. In ACM


REFERENCES


REFERENCES

1532-0626 (print), 1532-0634 (electronic).

Zhu:1995:RTC

Zhang:2005:ULC

Zhuang:1995:PRS

Zeyao:2004:AMI

Zheng:2014:IMS

Zhu:2015:PML