Title word cross-reference

+ [BDV03, Cha02, HDB+13, Lee12]. 0 [ICC02]. 1 [ICC02, LRQ01, VDL+15]. 2 [Bha98, BAS13, CGU12, ES11, KRKS11, KO14]. 3 [And98, BCL00, BAS13, CP15, DYN+06, EFR+05, GCN+13, HF14a, HF14b, JR10, KO14, KD13, KHS01, NSM12, SSS99, SH14, WR01, YSL+12]. 3D [KA13].

- 3 [PBC+01]. $Ax = b$ [BG95]. D [UZC+12]. H^2/H^∞ [GWC95]. k [She95]. M^3 [JSH+05].

PVM+ [Wil94]. N

[IHM05, Per99, Rol08b, SP99, SRK+12]. SU(3) [BW12]. τ [RGDM15]. XY [KO14].

- [ICC02]. -body

[IHM05, Per99, SP99, SRK+12]. -D

[DYN+06, SSS99, SH14, Bha98, ES11, KHS01, NSM12]. -Dimensional [LRQ01].

-Lop [RGDM15]. -Queens [Rol08b]. -set [She95].

. [Wil94].

/ [Boi97, IEE92, IEE93b, IEE93f, IEE94d, IEE95c, IEE95e, IEE95f, IEE95g, Sie94, Sie92b, ST02b]. / [PPT96a]. /Fortran [TBG+02]. /many [KSG13]. /OpenMP [VDL+15].

1 [HMKV94, SOHL+98]. 10-Gigabit [HcF05]. 100 [Str94]. 10th [DLO03, IEE96c].

KM10, Sai10, iSYS12, SKM15.

Accelerating [HF14a, HF14b, HKOO11, JK10, JLS+14, JNL+15, LSSZ15, LSMW08, LSMW11, TS12b, UZC+12, YEG+13, vdLJR11, HWX+13]. **acceleration** [HE13, SWS+12]. **Accelerator** [SSAS12].

Accelerators [SHM+10, UGT09]. **Access** [Bri10, HDT+15, LB98, SGH12, WTR03, CG99b, GBH14, HGMW12, LOHA01, MN91, SFL+94, accesses [TGL02].

accessible [BHW+12]. **Accident** [Smi93a, SBR95]. **According** [LGM00].

ACCT [FVD00]. **Accumulative** [IH04]. **Accurate** [HD00, MLA+14, RSPM98]. **Accurately** [BGdS09]. **Achieving** [ACM90, ACM95a, ACM95b, ACM97b, ACM98b, ACM05].

ACM [ACM97b, ACM98b, ACM05]. **ACO** [Tsu12]. **ACPC** [Bos96, Vol93]. **Across** [NE98, AL96, CZ95b].

ACSCI [Van95]. **Active** [CSAGR98, Pla96, SKH96]. **Activities** [MSS97, CMV+94].

Ad [IBC+10, ITT02]. **Ad-Hoc** [IBC+10]. **Ada** [Tan96, KP96, Tan96].

Adaptation [WST95]. **Adapted** [Uhl95a].

Adapting [VFD02]. **Adaptive** [Ano94b,BCM900, BKdSH01, Bir94, Cko+94, FSC+11, HWX+13, KK98, KT02, LFIL11, MKC+12, MBES94, MAGR01, OKW95, Ran05, RA09, SHM+12, SGZ00, STY99, Sta95a, ZSG12, BDP+10, CLSP07, DLR94, EASS95, LCL+12, SLGZ99, TCBV10, Was95a, Wil94, FSC+11].

Adaptive-CoMPI [FSC+11]. **Adding** [CB00, GRV01, PSM+14].

Address [SS01, DO96]. **addresses** [CGL+93].

ADDT [SR96]. **ADI** [Sch01]. **adjacent** [Kan12]. **adjoining** [RMM+12]. **Adjusting** [GSHL02]. **ADOL** [BGK08]. **ADOL-C** [BGK08].

Adoption [CMV+94]. **Adsmith** [LKL96]. **Advanced** [Ano98, D+95, Gei96, Gei97, GLT99, GLT00b, GLT00a, GLT12, KG93, SSAS12, TG94, Ben95]. **Advances** [Bha93, BBH+08, CHD07, CDND11, KGRD10, KKD03, KKD04, KKD05, LKD08, LKD10, MTWD06, RW09, TBD12, AD08, BC14, BDW97, CD01, DKK05, DLM99, DKP00, DLO03, HPS+12, Kra02, HPS+13, IEE97a].

Advection [AKK+94, CT94a, CT94b]. **Advection-Chemistry** [AKK+94].

Affordable [RM05]. **Again** [Har94]. **Age** [MdSC90, Ano94f, GJLT11, HK95]. **Ageing** [LRBG15]. **Ageing-Aware** [LRBG15].

AI [Yan94]. **Air** [AKK+94, BZ97, MADL04, MSML10, SH94, Syd94]. **airspace** [TCP15]. **Aix** [GA96, Ano91a]. **Aix-les-Bains** [GA96]. **Alamos** [Old92].

Albuquerque [IEE91, IEE95d].

ALE [GS96]. **ALE** [HAA+11]. **Algebra** [BHT08, CDD+13, Coo95b, GMHM97, Neuh94, van97, BKvH+14, Cal94, Coo95a, dCH93].

Algorithm [CGPR98, Lev95].

Algorithm-based [PKD95]. **Algorithm-Dependent** [BP99].

Algorithmic [RJDH14]. **Algorithms** [ACMR14, BST+13, BP99, BT01b, DYN+06, FJBB+00, HA10, HD02b, ITT02, MW98, PKD95, PB12, RMD99, SAS01, Sch96a, SWH15, Sta95b, WHDB05, ARL+94, AD95, BB05, BAOV, BY12, CC95, CT13, CSW99, GM94, GCN+13, GGL+08, GKK09, GP95, HWS09, IM95, JR13, KDS012, KY10, Kan12, KO14, LLYZ13, MM92, MK00, NB96, NAJ99, OKW95, OMK09, PGBF+07, PSL99, Ram07, RJC95, RAG95, Sch96b, SOA11, Sur95a, Was95a, ZSK15, dH94, van93, HWS09, LTDD14, SMSW06].

Algorithm-based [PKD95]. **Algorithm-Dependent** [BP99]. **algorithmic** [RJDH14]. **Algorithms** [ACM95b, ATC94, ADRC198, ASA97, CCNN17, DAK98, DK06, FB94, GMMR00, GK10, HHHK94, IEE96d, KKK2a, LHH96,
Li96, MTSS94, MGMH97, Nar95, Pet97, PBK90, SG15, VRS00, AK99, AL92, BHJ96, BID95, DDLM95, FR95, FFP92, GWC95, HPLT99, HKOO11, HS95b, Jour94, JRM+94, KL95, KRG13, LFL11, LNW+12, MJG+12, NP12, Ols95, Pan95b, PBK99, PD11, PCS94, RHG+96, SPE95, Sur95b, TSZC94, WCVR96, YLZ13, alias [SOA11].

alignment [AMHC11].

All-to-all [Trä02b].

Allocation [AGIS94].

Amazon [ZLZ+11].

American [Ara95].

Ant [Ano93].

Antenna [DSOF11].

Application [AB39b, AB93a].

Application-Level [CRGM14, LMRG14].

Applications [AGS97, Ano89, Ano96b, BCLN97, BHV12, BBH+06, BRU05, BFMT96b, BFBW01, CBL10, CGLD01, Cha05, CJNW95, CRGM14, Cot98, CTK00, Cot04, Cza02, Cza03, DW02, DERC01, DHK97, DGF97, DGMJ93, EV01, EMM00, FLD08, FDD00, FGRD01, Fer92, FK95, Fin00, FC05, FM09, GKP97, GKI09, Hmk09, IEE95l, ITT02, Jes93b, KB98, KBS04, MG9+03, KKP01, KKP02b, Kuhr95, LAdS15, LRG14, kLCCW07, LMRG14, cLR04, MSGR01, MS02a, Mat02, MAB05, MC98, MG15, MAN09, PSM+14, Re01, RPM+08, RBB15, RDB15, SPL+12, SR12, SC04, TTSY00, TFGM02, VdS00, VY02, Vos03, Wal96a, WC09, Wis96a, WSN99, WBH97, WM01, dGJM94, ACH+11, ACJ12, Ano93a, Ano94f, Ano03, Aro95, Arn95, AGMJ06, BKH+13, BR04, BDV03, BFM96,
BFMT96a, CDMS15, CLSP07, CBM+08].

Applications
[CIJ+10, CPFS95, CCHW03, CCM+06, DZ98a, DSZ94, D+95, DCH02, EKTB99, EGH99, EDV09, FNSW99, FCS+12, Fin94, Fin95, FF95, GBR15, GS02, GHD12, GS96, GHH+93, HZ99, HAJK01, JPTE94, LS08, MA09, MBKM12, MLC04, MSMC15, MS96b, NSBR07, NCB+12, NFG+10, PK05, Rab99, RS95, SJLM14, SPE95, SB+12, SGH12, SG05, SLG95, WLS09, YZ14, ZLZ+11, BP93, TDBEE11, ATC94].

Applied
[FGRD01, HC06, KaM10, HMKV94, MM92, NF94, PGK+10, DMW96, Was96].

Approach
[BHM94, BJ93, BHNW01, CRGM14, CD98, FFP03, GCBL12, HD00, KBA02, KK02a, LGM00, Mar06, PPR01, Pet00a, Pet00b, RGD13, Ros13, TJPF12, BK11, Bis04, CDP99, DiN96, HDB+13, JS13, KPL+12, KSSS07, KJEM12, LSG12, MGG05, MS99b, OW92, SVC+11, SEC15, TWFO09, WO09].

Approaches
[JCH+08, Ney00, SWHP05, SM02, BFL99, CB11, PS00b].

Approximate
[Huc96, MM02, GGC+07, GG09, MM03].

Approximation
[SLJ+14, SJLM14].

Area
[ANS95, AH95, Ano93g, Ano94h, CH96, DR94, HCL05, RBS94].

Area-based
[Qu95].

arbitrary
[HB93, RSS95, CDP99, HAM95b, IEE94g, IEE95k, IEE95l, IEE96f, LF+93a, Ost94, PSB+94, PBG+95, Reec96].

Architectures
[ACM95b, BDT08, BFG+10, CHPP01, HD02a, HD02b, HHH94, IEE96d, KDT+12, LHHM96, Li96, MS02b, MTSS94, MCB00, NO02b, Nar95, PZ12, TSCAm12, BDP+10, BN00, BKML95, CLM+95, CDZ+98, DM93, DZZY94, GP95, HOS12, LCL+12, LDKJ13, MLCO4, NO02a, PY95, RFH+95, RMNM+12, SPL99, TDG13, TSC94, Uhl95a, VDL+15, WST95, diAMC11].

Area-based
[Qu95].

Aristotle
[FSV14].

AQUAgpusph
[CP15].

Arbitrary
[HB93, RSS95, CDP99, HAM95b, IEE94g, IEE95k, IEE95l, IEE96f, LF+93a, Ost94, PSB+94, PBG+95, Reec96].

Assessing
[ARvW03].

Assessment
[dLR04, MABG96, TSCAm12, CMV+94].

Assignment
[Cza13, CK99].

assist
[Kik93].

Assisted
[GTH96, GM13, MBBD13].

Asynchronous
[Ada97, Can93, CZ95a, CDP99, HE02, BBDH14, BCK+09, CZ95b, DDYM99, Sch99].

Athapascan
[CP98].

Atlanta
[AGH+95, Ara95, USE00, UCW95].

ATM
[GFV99, HBT95, Jon96, LHD+94, LHD+95].

Atmospheric
[BS93].

atom
[MGG05].

Atomic
[LRT07, SYF96, DS13, Hin11, SY95, XF95].

atoms
[JLS+14].

Attacks
[PV97, GHD12].

Attraction
[GB96].

audio
[BJ13].

August
[ATC94, Agr95a, BFMR96, DMW96, GT94, HAM95b, IEE94g, IEE95a, IEE95l, IEE96f, LF+93a, Ost94, PSB+94, PBG+95, Reec96].
VV95, Was96. Austin [IEE94b].
Australasian [Bil95]. Australia [GN95, Nar95, ACDR94, Bil95]. Australian [ACDR94, GN95].
Austria [Bos96, BH95, Kra02, TBD12, Vol93].
Austrian [Ber92, FK95].
Austrian-Hungarian [Ber92, FK95].
Author [Ano01b, hsd01].
Auto [DWM12, DBLG11, RDLQ12, SH14, TWFO09].
Auto-generation [DWM12].
auto-parallelization [TWFO09].
Auto-scoping [RDLQ12].
Auto-tuning [DBLG11, SH14].
AutoLink [GMPD98].
AutoMap [GMPD98].
Automata [Car07, BKdSH01, DBA97, DI02, DK06, GCBL12, MM02, PT01, Pus95, ST97, Wal01a, Bri94, BS05, DZ96, DLR94, DvdLVS94, DR95, FMBM96, FH97, Hum95, JH97, MM03, NP94, SGS95, SY95].
Automaton [NCB+12]. banded [DG95]. Bandwidth [NE01, RK01]. Bangalore [Kum94, PBPT95].
Barbara [ACM95b, AH95, IEE95f].
Basic [PGC02, BKvH+14, BR94]. basierte [Gra97].
Basis [OMK09, RB01]. Bath [BP93]. Bayesian [Ber10]. BC [IEE95].
BCS [FFP03]. BCS-MPI [FFP03]. be [CB00]. Beach [IEE93b]. beam [OIH10, RCFS96]. bearings [NF94].
Behavior [BFM97, DeP01, Ros13, LLG12, PPF89, YMYI11]. behaviour [EPML99].
Beijing [CZG+08, LHHM96, Li96].
Beitrage [Ano94c]. Belgium [LCHS96].
Benard [TVV96]. Benchmark
[BWV+12, HC10, Luo99, Mül02, MBB+12, RSPM98, RTH00, SGJ+03, Trä+12b, UTY02, Ano03, BKML95, DWM12, DH95, DHS96, Mül03, MyWL+10, PJHM11, Reu01, RST02, Wor96, YSWY14]. **Benchmarking** [GC05, LCY96, MMU99, MCS00, WRA02, RST02].

Benchmarks [CRE99, KS96, KAC02, MM07, NA01, RK01, TSB02, TS03, WAS95b, ZsnH01, CDD+96, MMH09, Ste94, WT11, CE00, WT12].

Beneficial [CB00].

Benefits [PSM+14].

Benutzerprofile [Wil94].

Benutzer treffens [Ano94c].

Beowulf [CMM03, Ste00, UP01].

Beowulf-Class [Ste00].

Berlin [PW95].

Bessel [KT10].

Betriebssystemkern [Sei99].

Better [Str94].

Between [BS07, AKE00, BID95, GFV99, JAT97, LDCZ97, MSP93].

Beverly [IEE93f].

Beyond [Gei93a, GKPS97, Gei98, Gro12, Olu14, Gei93b, LSG12, Sch93, SHM+10].

Biconjugate [GFPG12].

bidirectional [HE15].

Big [GTS+15, LK14, Str94].

Biharmonic [RB01].

billion [KTJT03].

binary [CG93, SGS95, TCBV10].

binary-splitting [TCBV10].

Binding [CLL03, Coo95b, MG97, Coo95a].

Bindings [Ano98].

Bioinformatics [BBH12].

Biological [CNM11, BA06].

Biomolecular [BCGL97, PZKK02].

BIP [CDP99, Tou00].

BIP-Myrinet [Tou00].

BIP/Myrinet [CDP99].

bit [Wil93].

bitonic [PSH11].

Black [Kha13, van93].

BLACS [DSW96, DS96a, Wl95].

BLAS [Add01, ArvW03, FMFM15].

BLASTP [LSMW11].

Block [DDPR97, WO95, ZB97, ADDR95, GP95, HKMCS94, HC08, WO96].

Block-Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96].

Blocking [FH98, BCH+08, HK+12, Nak03, HTA08].

Blood [Pat93].

Blue [KMH+14, AAC+05, BGH+05, EFR+05, LM13, MSW+05].

blurred [Wil94].

BMMC [CC99].

bodies [AGIS94, LHLK10].

Body [RB01, RTRG+07, IHM05, Per99, SP99, SRK+12, ABD94].

BOF [Mat00a].

Boltzmann [MS95, Pri14].

Bonn [MTWD06].

Book [Che10, Mar06, Nag05, Per97, Vog13, Vre04, YM97].

books [YM97, Nov95].

Boosting [LRG14, SFO95].

Boston [IEE94e].

Bound [ASA97, ADMV05].

boundaries [KGB+09].

Boundary [PTT94, SBQZ14, SD99].

Box [JR13, JPP95].

Box-counting [JR13].

Braga [IEE96g].

Branch [ASA97, ADMV05].

Breasting [OS97].

breast [Str94].

Brest [IEE94c].

Bridge [VDL+15].

Bridges [DSS00].

Bringing [FKK96].

Bristol [MC94].

British [IEE95a, IEE95e].

Broadband [OIS+06, CLLASPD99].

Broadcast [PSM+14, YSP+05].

Broadcasts [SE02].

Brownian [SKM15].

Brussels [LCHS96].

BSGP [HZG08].

BSP [Mar06, Bis04, GRRM99, Mar09, Röhn00].

BSP2OMP [Mar09].

BT [WT11, WT12].

Budapest [FK95, KKD04].

buffers [MR96].

Build [HRA97].

Building [FD04, Gei01, Gro02a, LB+96, LVP04, WADC99, Arn95, HS95b, MSL12, PW95, Sur95b, Kos95b].

Bulk [Cer99, DRLL99, HZG08].

bulk-synchronous [HZG08].

BUS [ITT99].

BUSTER [XWZS96].

C [Gal97, Pri14, SSL97, TGB+02, VDL+15, Vre04, BGK08, BB00, CNC10, CCHW03, DARG13, Don06, FHK01, GSI97, Göö01, KKO2a, KPO00, Qui03, SC95, UZC+12].

C# [WLR05].

C-to-CUDA [UZC+12].

C/C [KPO00].

CA [ACM95b, Ano89, BBG+95].

Cache [MM07, NIO+02, NIO+03, SS01, SVC+11].

Cache-Coherent [SS01].

cache-friendly
[SVC+11]. Caching [kLCCW07, DO96].
CAE [KDL+95a, KDL+95b]. CAF
[GBR15, Mar05]. calculating [KD12].
Calculation [QRMG96, MM95, SR11].
Calculations [RB01, Sta95b, WH96].
calculus [PQ07]. Calif [IEE93f]. California
[ACM97b, Gat95, IEE93a, NM95, USE94,
AH95, GE95, GE96, Has95, IEE93f,
IEE94g, IEE95c, IEE95f, LF+93a]. Call
[DW02]. Call-Graph [DW02]. Calls
[FHK01, AGLv96]. CALPHAD [TKP15].
CAMeL [KDL+95a, KDL+95b]. CAMeL/
PVM [KDL+95a, KDL+95b]. CAMP
[CLM+95]. Can [Gro02a, SBG+12].
Canada [BG91, GGK+93, IEE95a, IEE95i,
Vos03, IEE95e, Lev95]. Cancellation
[TBS12]. cancer [Str94]. CAP
[GGK96, MGM97]. CAP-Specified
[MGM97]. Capabilities [Ge97, CG99a].
capability [BBH+13b]. capable [KYL03].
capacity [RCG95]. Capture [DW02].
Capturing [FM09]. card [SR11]. Cardiac
[ORA12]. cards [KY10, KME99]. Carlo
[ADRCT98, AK99, DAK98, HJBB14, RR00,
RP95, SK00, SKM15, WH96, Z200].
Carnegie [IEE94d]. Carolina [ACM95a].
cars [Str94]. CASCON [GGK+93]. Case
[AIM97, BF01, BW+12, BD94,
BHL+95, CML04, DARG13, DHP97,
GL97a, GMDMB+07, RRBL01, SCL01,
Tha98, BJ13, BS99, Bri00, FO94, MS96b,
PGK+10, Pri14, Wal01b, ZSK15, LP+11].
casting [KGB+09]. CATCH [DW02].
Cavanaugh [IEE93c]. CANCE [BBH+15].
CAVE-CL [BBH+15]. cavities [BBH+15].
Cavity [PKYW95, RM99]. CBFEM
[OMK09]. CC [GB96, KYL03]. CC-COMA
[GB96]. cCNUMA
[CHP01, CBPP02, MCS00, SSGF00].
CEBAF [DZDR95]. Cell [DBK+09, JMS14,
VDL+15, OOS+08, OIS+06]. Cellular
[Car07]. Cenju [GPL+96, KSHS01].
Cenju-3 [GPL+96]. Cenju-4 [KSHS01].
Center [ACM98b, ACM99, ACM00, Hol12, IEE94b].
centered [JPOJ12]. Centers [ERGR15].
Centre [IEE95c]. centric [SFSV13].
century [IEE95a]. CERN [VV95]. Cesena
[CH96]. Cetraro [D+95, KG93]. CFD
[SPE95, AMS94, ADT14, CF97, HAJK01,
HT01, JR10, DK02, PBK00, YPAE09].
CFD-DEM [ADT14]. Ch [CNC10]. Chain
[FK01]. Challenge [DGMJ93, LB96].
Challenges [Agr95a, Gro01a, Gro12, Ree96,
Ten95, BDG+92c, GSCF13]. Chamfer
[YPZC95]. Chandra [Stp02]. Channel
[KG97, LBD+96, SG05]. CHAOS [BLW98].
Characteristic [OMK09]. Characteristics
[WR01, WT12, BN00, GL99, WT11].
Characterization [KB98, MM07, Wor96].
Characterizing
[BMC11, BGdS09, GSCF13, OdSSP12].
Charge [BL95]. Charm [ZH06]. Charts
[DSS00]. CHECK [LCC+03].
checkerboard [BW12]. Checking
[CGZQ13, Gro00, HMK90, LCC+03,
SMAC08, YYW+12]. Checkpoint
[SSB+05, SBF+04, CRM14, ZWZ05, ZH06,
BDB+13]. checkpoint-based
[CRM14, ZH06]. Checkpoint-on-Failure
[BDB+13]. Checkpoint-Recovery
[SBF+04]. Checkpoint/Restart [SSB+05].
Checkpointing [DCH02, LMRG14,
SSB+05, TSS00b, BMS03, BCH+08, CG96,
PKD95, SSCC95, Ste96]. chemical
[NMW93]. Chemistry
[AKK+94, BR95a, DMW96, SSGF00].
Chemkin [Ano97, Bra97]. CHEMII
[RR01]. Chicago [CGKM1]. China
[CGZ+08, IEE97a, LHHM96, L96]. Chip
[JS93b, URKG12, TDG13, dCZG06].
Cholesky [DG95, LC97b]. Chromosome
[BM97]. CICADA [MK94]. Circuit
[WPC07, BJ95]. Circuits [GJ97].
Circulation [GAM+02, Nes10, RSST95].
CIS [AH00]. citation [Squ03]. City [Hol12].
civil [PW95]. CL
[BHW+12, BBH+15, LW95]. CL-PVM
CLAS [DZDR95]. Classical [BFGL97].

Classes [DePo3, GG09, Ott93]. Classical [DFN12, Ste00, Dem96, MSL96, RFH+95].

Client [Ano93e, FSLS98, KSN97, kLCCW07, Mat01b, Sch93, Sto98, Vis95].

Client-Agent-Server [Mat01b].

Client-Server [FSLS98, Sto98, Vis95].

Client-Side [kLCCW07].

Client/server [Sch93].

Client/Server [Ano93e].

climate [Str94].

CLIPS [Ano95a, Ano95c].

clMAGMA [CDD+13].

clock [NB96].

CLOMP [BGdS09].

Closure [CGPR98, KH15, PPR01].

Cloud [URKG12, ZLZ+11, GHZ12, GWVP+14].

Cluster [AUR01, BKGS02, BL95, BM97, CRE99, CMM03, HD02a, ES11, GGGC99, Gec94, Gei00, GSN+01, GT01, GC05, HD02b, IKT00, KKKH03, KS96, KS01, KHS01, LR01, MFTB95, MM01, NO02a, OF00, PFC97, RB01, RST06, RLL01, SCR92, SHH01, SHTS01, ST02a, TOTH99, Trå92b, tT01a, AL93, BLP93, BALU95, BID95, CCF+94, Cou93, ED94, G97, GMU95, Heb93, KEGM10, K014, LC07, Li95, MW93, MM03, NO02a, PDL12, RJDH14, SS94, SR95, ST02b, SLS96, SY95, SNN94, Tho94, THM+94, Tsu95, UH96, YW905, ZLZ+11, MS04].

cluster-based [SL96]. Cluster-enabled [SHH01]. clustered [KBH+99]. Clustering [BBH12, HA10, RJ95, GGL+08, YCL14].

Clustring [MS04]. Clusters [AH00, BD9+95, BD9+97, BWV+12, CSC96, DK06, GMdMBD+07, GSY+13, HPP02, HSMW94, Hus00, JNL+15, LC97a, LH95, LV04, MS98, MF03, MAN+14, PK01, PT01, PS00a, Pu95, Rei01, SFG98, SVL99, Ste00, Tout0, UP01, WL03, WT12, YK1+96, AB95, ALR94, ADB94, ABG+96, ADMV05, BWT96, BDV03, Bru95, CRE01, EKT99, GBF95, HCL05, Hus99, JKH08, Jon96, JR10, JRM+94, KLY03, KYL05, KSL+12, KJEM12, LBD+96, Lee12, LLC13, LL95, LKS04, NMW93, NN95, PS07, PRS+14, PM95, PR94c, PL96, RCF96, Sbo05, SC96a, SL95, TFZZ12, WLN06, WLYC12, YS08, YL09, YHL11, YWC11, ZHS99, dCH93].

Co [AC91, HJ98].

Co-Array [AC91].

Co-processed [HJ98].

Coarray [GRES01].

coarrays [SMC06].

Coarse [ADB94, ADH94, ADH96, ADMV05, BWT96, BID96, BKL05, BPR04, BS95, BS96, BT95, CBB00, CCK12, CRK12, CT95, CTH95, DDL00, DZDR95, EKD02, KaM10, KHS01, LD01, MS02b, MM07, PBC+01, RGD13, SM03, SZBS95a, Sta95b, TGB05, AMS94, ADB94, AST95, BCD06, BAD07, BW12, Bha98, Bri95, Cou93, DLR94, FMM15, Heb93, IJM+05, KPL+12, KH10, MRH+96, MWO95, PKE+10, PSK+10, RP95, SZBS95b, SK00, SMSW06, TDB96, VBLvdG08, VDL+15, Wor96, YL09].

codebooks [PMM95].

Codes [JF90, SW91, HSW90, HA93, P00, JPB95, KKB+09, LRW01, Mal01, WB96].

Coding [UHL94, UHL95b, SCC96].

Coefficients [MW98].

cognitive [PWD+12]. Coherence [MM07].

Coherent [SS01]. Collaborative [DCPJ12, DCPJ14]. Collapse [PKY95].

Collecting [BMR01]. Collection [LTRA02, DH95].

Collectives [CSW12, SVL99, ZAH12].
Collector [GTS+15, WK08a, WK08c, WK08b].
College [AGH+95, Ano94b]. Collision [QRMG96, Sta95b, FFFC99, LHLK10].
Collocative [MKW11]. Colony [ITT02]. Colorado [R+92, IEE05]. Colt [WN10].
Columbia [IEE95a, IEE95e, MAB05]. column [HSP+13]. column-stores [HSP+13]. COMA [GB96]. Combined [CBHH94, TJPF12]. Combining [DP94, Rab98, SCB14, Sch96a, SMAC08, YPAE09, Bor99, Sch96b]. comes [Ano94f]. Coming [HK95]. Commands [OLG01]. comments [Str94]. commerce [Ano94f]. commercial [Ano93g]. commodity [GGL+08]. Common [HEH98, DK13, WLR05]. Communicating [FKK+96b, GMPD98, FKK96a]. Communication [BCG+10, BIL99, BIC05, DCPJ12, DZZY94, EM02, FST98a, FGKT97, FBNS01, GFD03, GFB+03, GGS99, GFV99, GLB00, GC05, HB96b, HC10, HDB+12, HC06, HIP02, KB98, KV98, LRT07, LC93, LCV94a, MH01, MMH98, MR96, Nit00, RK01, RRRG97, RsT06, SWHP05, SCP97, SG12, SBC+02, SJ02, ST02b, SGL+00, SKH96, Sum12, TRG05, TGT05, TRH00, Träö02b, UMK97, WB97, XH96, YC98, ZSG12, FH98, BH96, BVML12, BBH+13b, BS94, BMG07, CGL+93, Dem96, DWM12, DCPJ14, DGB+14, DS96b, GK97, GM13, Gra97, GL94, GB94, HB96a, HXW+13, Hus99, HWW97, KH96, KB01, KYL03, KLY05, KHB+99, LR06b, LFL11, MLAV10, MMU99, MAB96, Pan95b, Par93, PGK+10, PM95, PKE+10, PSK+10, PS96b, SH14, SC95, TG09, Träö12a, Vet02, Wu99, WMP14]. communication-based [PGK+10]. Communication-buffers [MR96]. Communication/Computation [HIP02]. Communications [BPS01, CP98, CDHL95, CDH+95, FVD00, FST98b, GT01, GBS+07, GMDMB+07, IEE95b, IEE95e, MB00, VFD02, YTH+12, bT01a, ADLL03a, ADLL03b, CDP99, HS12, KBHA94, MBBD13, McR92, MN91, MS99c, SCB14, TD99, WLYC12]. Communicators [DFK01, GFD03, GFD05, FKS96, KH96, MJG+12]. communities [ACM04]. Community [FCP+01]. Como [CLM+95]. COMOPS [Luo99]. Compact [Uhl94, Uhl95b, Wor96]. compaction [YV+13, WK08a, WK08b, WK08c]. Comparative [KB98, PSK08, SN01, AGR+95b, ED94, YCL14]. Comparing [BF01, Fin97, GBR15, HVSH95, ICC02, LKI03, ORA12, SSG95]. Comparison [BvdB94, BS07, HC10, KB01, KY99, Mat94, Mat95, Neg00, OP10, OF00, PPJ01, Pok96, RS93, REB97a, SS01, SHH94b, VS00, Wal02, Zd12, Ahn97, AB93b, BLF93, BID95, GMU95, Har94, Har95, JS13, KDSO12, KC06, MSP93, OS95, PS07, PSHL11, Pri14, SD10, SY+09, SWS+12, SHH94a, TSZ94]. comparison-based [PGK+10]. Comparison [GGS99, PGC+02]. Compass [PWD+12]. Compatible [MM14, LBH12, OIH10]. Compcon [IEE93a]. CoMPI [FSC+11, FCS+12]. Compilation [HKMCS94, LRBG15, SBW91, Coe94, FM90, PGS+13, SHM+12]. Compile [GB94, TS99, JE95]. Compile-time [GB94]. Compile/run [TS99]. Compile/run-time [TS99]. compiled [KLY03, KLY05]. Compiler [Ano98, Dan12, IOK00, KSS00, KSHS01, MB12, Mar09, MKW11, SKE12, SKS01, TJPF12, TGB+02, TGBS05, HEHC09, LME09, LHC+07, MA09, Mi03, RKBA+13, SHH01, THH+05]. Compilers [An01a, CFF+94, LZ97, MKV+01, SBT04, S96, Hos12, PBG+95]. Compiling [Hos12, CGK11]. Complete [BdS07, GHL++98, Nag05, Per97, SOH++98, YM97, PRS+14, SOH++96]. Completed [PTT94]. Complex [BCG97, GMPD98]. Complexity [NPS12]. component [HLP10, KRKS11, Squ03]. Components
[BT01b, CT02, Fin00, Gro02a, Lus00, Wis01, LRW01]. Composed [Wel94]. Composing [PHA10]. composite [MALM95, YPA94]. Composition [CTK00, Cot04, DLB07, FC05, KH15, CFP96]. compound [LLC13]. comprehensive [RST02]. Compression [FSC†+11, KBS04, HE15, UH96, Wu99]. COMPSAC [IEE95]. Compton [BCD96]. Computation [BKGS02, B+05, Cer99, DMM94, EMO+93, ESM+94, Fer10, FF95, GS91b, IEE94a, IEE96c, Mar06, MR12, MSCW95, Nag05, PPR01, Sie92a, Sie92b, SMOE93, ACM97a, ABDP15, Bis04, BALU95, BHKR95, CL93, CKP+93, DZZY94, HK94, KB01, KG93, Lev95, MALV10, Neu94, NZZ94, NCKB12, PF05, PKE+10, Roh00, Sh94a, SH14, TBB12, TW12, Vol93, Wan97, Was96, SM07].

Computationally [DFN12].

Computations [AGH+95, ACRG97, CGU12, CGPR98, HI04, PBK00, PMdVG+13, W12, ANS95, AASB08, BL99, CG93, DMW96, EGDK92, HJYC10, KD13, MRRP11, MR96, Smi93b, TS12b].

Computed [SSS99]. Computer [ACMo06a, Ano94a, GTH96, IEE95l, IEE96h, IEE97c, Neu94, Old02, PSB+94, ST92a, Sum12, Ten95, URGK12, YTH+12, BN00, BS94, BKML95, BFM96, Cal94, CLM+95, GRTZ10, JWB96, Str94].

Computer-Assisted [GTH96]. Computers [Ano89, BP99, BCL00, DGM93, FFP03, GC05, IEE95b, IEE95e, ITKT00, LF+93a, MFTB95, PSZÉ00, SPM+10, SS96, BvdB94, BB93, BBK+94, DLR94, Duv92, ESB13, GBF95, KOS+95a, LR06a, MMB+94, NF94, POL99, PBK99, Wal94a, Wal94b]. Computing [ACM97b, ACM98b, ACM00, ACM01, ACM06b, ACDR94, AIM97, BJ09, BBG+95, BDG+93a, BGR97a, BL95, BCP+97, BRST94, BDH+95, BDH+97, BHNW01, BBH12, C95a, CGB+10, CLL03, CNC10, DSS+94, DERC01, DPF01, DCM+92, DGS93, DT94, FTVB00, Fer98b, FGKT97, Fos98, FS93, GLN+08, GS92, Geo93a, GBD+94, GSxx, Gei00, GN95, GL97a, GT94, Hol12, HT01, IEE92, IEE93d, IEE93e, IEE94g, IEE95c, IEE95k, IEE96a, IEE96f, IFI95, KK02a, KS97, LCK11, LCRG14, LC93, LR01, Lus00, dFMBdFM02, Mat94, Mat95, MS04, Nov95, PKYW95, PR94b, SHTS01, SCSL12, Sin93, SSSS97, Ste00, SGS10, SW91, Sun90a, Sun90b, Sun92, Sun93, Sun94a, Ten95, VV95, VW92, WN10, YH96, YG96, ACGdT02, AL92, AH95, ASCS95, Ano93g, Ano94e, Ano94h, Ano03, ADDR95, AMV94, BPG94, BDG+92a, BDG+94].

Concept
LFL11, OFA+15, PDY14, Pri14]. CPU/GPU [KSL+12, Lee12, LLC13, OFA+15].

CPUs [KH12, ON12, SFSV13, YSWY14].

CPVM [CG96], Cracow [BDW97].

Crane [NAJ99].

CRANIUM [MBES94].

Crash [LCVD94b]. Crash-simulation [LCVD94b].

Crashworthiness [LCVD94a].

Cray [BL94, GRRM99, MP95, Sch96a, Sch96b, ABG+96, AZ95, AFST95, CCSM97, LKJ03, LSK04, MWO95, Oed03, RBB97c, SWS+12, SCC95].

CRAY-T3D [Sch96a, Sch96b].

Creation [Hat98, MFC98, PS00a].

Crew [GHL97].

CRI [MSCW95]. CRI-MAP [MSCW95].

Critical [SLN+12]. cross [JR13].

cross-platform [JR13]. cryptanalysis [BSN95]. Cryptographic [PV97, ABDP15].

cryptosystem [WLC07]. CS [FST98a, FST98b, Joo96].

CUDA [Pri14, AMuHK15, ACMZR11, Ana12, BY12, BSH15, BBH12, CAM12, CGU12, CNM11, CBM+08, CSV12, CB11, Cz13, DCD+14, DS13, DAR13, DWL+10, DWL+12, DM12, ER12, FJZ+14, Fer10, FMFM15, FFMI11, Fuj08, GScFM13, GLN+08, GFPG12, GWVP+14, GRTZ10, HE13, HJB14, HD11, HLPI10, HP11, HLP11, Hgog13, HF14a, HF14b, HKO011, HT08, JK10, JLS+14, JGRF12, KRKS11, KD12, KhA13, KS13, KnWH10, KVGH11, KME09, KO14, KH15, KD13, KA13, Lan09, LRG14, LGKQ10, LLG12, LSZ15, LBH12, LSMVW08, LSM11, LYZ13, MR12, MSML10, MM+14, NBG08, OIH10, ORA12, PSG+13, PRS+14, PSHL11, Ros13, SSE12, SK10, sISy12, STK08, SS09, Seg10, SKM15, SR11, TS12b, TA14, TCP15, Tsvu12, UZC+12, WJ12, WWFT11, WJB14, XXL13, YHL11, YZ14, YMYI11, ZSK15, ZZG+14, ZBd12, ZLS+15, dAMC11].

CUDA [dIAMCFN12, vdLJR11, Che10, Vog13]. CUDABLASTP [LSMW11].

CUDA-compatible [LBH12].

CUDA-Enabled [LSMW11, DS13, SR11, ZLS+15].

CUDA-NP [YZ14]. CUDA-sharing [PRS+14]. CUDA-to-OpenCL [GScFM13].

cudaBayesreg [Fer10]. CUDAEASY [Sai10]. CUDAlign [SaiM10].

culling [LHLK10]. CUMULVS [GAP97].

CURLAND [Ano12]. Current [Bak98, GFD05, IFI95, BDG93b, FK94, FHP+95].

Curse [OS97]. Customization [GSY+13].

cut [CG99a, CBX+12]. cut-through [CBX+12]. CVL [Har94].

Cybernetics [IEE95a]. cycles [PL96].

Cyclic [DDPR97, WO95, HKMCS94, HC08, WO96].

Cyclosp [dCGZ06]. Cyclosp-64 [dCGZ06].

D [And98, DYN+06, SSS99, SH14, VDL+15, Bha98, BCL00, HD11, HLPI10, HP11, HLP11, Hgog13, HF14a, HF14b, HKO011, HT08, JK10, JLS+14, JGRF12, KRKS11, KD12, KhA13, KS13, KnWH10, KVGH11, KME09, KO14, KH15, KD13, KA13, Lan09, LRG14, LGKQ10, LLG12, LSZ15, LBH12, LSMVW08, LSM11, LYZ13, MR12, MSML10, MM+14, NBG08, OIH10, ORA12, PSG+13, PRS+14, PSHL11, Ros13, SSE12, SK10, sISy12, STK08, SS09, Seg10, SKM15, SR11, TS12b, TA14, TCP15, Tsvu12, UZC+12, WJ12, WWFT11, WJB14, XXL13, YHL11, YZ14, YMYI11, ZSK15, ZZG+14, ZBd12, ZLS+15, dAMC11].

CUDA [dIAMCFN12, vdLJR11, Che10, Vog13]. CUDABLASTP [LSMW11].
TW12, WO96, YCL14, YWO95, ZRQA11. data-centered [JPOJ12]. data-driven [NCO+12]. Data-Intensive [Rei01]. Data-Parallel [GB98, SPK96, CGL+93, FKK+96b, MMB+94, MR96, SK92]. data-parallelism [BR12]. data-privatization [KRG13]. Data-Structures [GMPD98]. Databank [FCP+01]. Database [AR01, BFZ97, EK97, MWG97, MM14, PPT96a, MM91, PPT96b, PPT96c]. databases [BA06, Bos96, ZWL13]. dataflow [CSPM+96]. datasets [KGB+09]. Datatype [Gro00, SWHP05, KHS12]. Datatypes [JDB+14, RTH00, SWHP05, Tha98, Jou94, THRZ99]. December [Bil95, Eng00, HHK94, IEE96a, Kum94, NM95, BPB95, Y+93]. Decimation [PCY14]. Decomposition [BJS97, CP97, DBVF01, ET94, OMK09]. decompositions [NZ94]. defcon [TCP15]. Dedicated [WLNL03, Hus99, WLNL06]. deep [SEC15]. Defining [GAML01]. Deformable [STK08]. Deforming [GAP97]. degree [CT13]. degrees [KTJT03]. Delegation [YTH+12]. Delegation-Based [YTH+12]. Delft [DSZ94]. Delivering [Hus98]. Delphi [ACGDt02]. Demand [CTK00]. Denmark [DW94, DMW96, Was96]. Dense [BDT08, CDD+13, Fu08, Hog13, PMvdG+13, ZBd12, BR99]. Densities [MW98]. Density [BL95, CBHH94, ZWH95]. Denver [ACMO1, IEE05, R+92]. Dependable [GM95]. Dependant [BP99]. Dependence [LAdS+15]. Dependency [PPR01]. Dependent [DFA+09, MFTB95, DM12, ON12, TVV96, YPA94]. DEPICT [HM01]. Deploying [PKB01, CLLASPPD99]. depth [SSS99]. Derivation [GB98]. Derived [JDB+14, RTH00, SWHP05, Tha98, Jou94, THRZ99]. Descent [Sch01]. descriptor [TKP15]. descriptors [LNW+12]. Design [AS92, AAC+05, Ano01c, ACD+09, BCD+15, BBH+13b, BS96b, BMR02, BRM03, CLP+99, ETWaM12, FD02a, FP03, GG09, HWMO2, JSH+95, KVGH11, kLCC+06, kL11, LVP04, Man94, MMSW02, NPS12, OFA+15, Pan14, PCS94, SBG+02, SWYC94, SSL97, SPK+12, Sum12, THM+94, URE94, BR91, CARB10, CSS95, DS96b, FD02b, GL94, GLyCY97, KA95, LC07, MAS06, PKG+10, PTW99, SL94b, Sep93, Sill96, SSD+94, SWL+01, Wal94a, Wal94b]. design-pattern [MAS06]. designed [BSh15]. Designing [GKZ12, SWHP05, SH14, WYLc12, DSOF11, Pan95b]. designs [Shi94]. desktop [Mar07]. Detailed [RSPM98, LR06b]. detect [Str94]. Detecting [AGG+95, PPJ01, ZRQA11]. Detection [CSW12, CBL10, CFMR95, DMMV97, EML98, FME+12, KSJ14, SG12, ZDD97, BBH+15, DFK94a, HDDG09, HGMW12, HPS+12, HPS+13, LHC+02, RAGJ95, TCP15, TDG13, TWFO09, WFO14]. Detector [DZDR95]. Determine [BP99]. Deterministic [CFMR95, DK02, ZL+12]. Develop [PD98]. Developer [IEE96i]. developers [Str94]. Developing [BFZ97, CCSM97, Cot98, DLDM95, Reu03]. Development [Ano01a, BDG+11b, BR95c, CHPP01, Cha02, Cot97, Cza02, DeP03, PS01a, SK00, SB01, TBD96, TDBEE11,
Developments [Mat00a]. device [KKLL11, LS10, SBQZ14]. Devices [GJN97].

Diagnosis [AP96, LAdS+15]. diagnostic [RSBT95]. dictionary [LSSZ15].

Diego [Has95, LF+93a, NM95]. Difference [UZC+12, GFPG12, HE13, NZZ94, NB96, Pri14, Ram07, Str94, VM94]. Differences [AKE00, LDCZ97].

Different [AIM97, GL97b, JCH+08, Ney00, Rab98, RBB97a, BN00, PY95]. Differential [MFTB95, JK10, NF94, RBB15].

Differentiating [Cer99]. Differentiation [BBH+08, BGK08, CAG96]. Diffusion [HF14a, HF14b, MW98, CEGS07, DM93, MM92].

Digest [IEE93a, IEE95c]. Dijon [YH96]. Dimemas [GLB00].

Dimensions [HAS01, Ano93g, HP11].

Directives [BBG+01, BKO00, JFY00, LOHA01, VGS14]. directory [JCP15]. discovery [BK11, GWVP+14]. diskless [PKD95].

Disks [dIFMbdFM02]. Dispersion [RSV+05]. Displacement [BJS97, PSS01].

Dissemination [GL97a]. Distance [MR12].

Distributed [AGS97, Ano95c, BME02, BGR97a, BL95, Bha93, BJ95, BRST94, BT01b, BHKR95, CGB+10, CLLU03, CSW97, CC99, DBA97, DFMD94, DGF97, DHWW92, DHWW93a, EMO+93, ESM+94, FH95, Fan98, FTVB00, FK01, Fos98, FS93, FFFC99, GGCM99, GGCGO01, GCGS98, GCBM97, GWC95, GM95, HJ98, HC10, HRS97, IEE93d, IEE93e, IEE94d, IEE94g, IEE95h, IEE95k, IEE95i, IEE95j, IEE96b, IEE96g, IEE96i, IE05, JML01, KBA02, KP96, KDL+95b, KL95, KK02b, KSHS01, LC93, LHD+94, LHD+95, MZK93, MB12, MFTB95, MSCW95, Mat95, MB03, NSBR07, NZZ94, NH95, Pen95, PKYW95, Pet00a, Pet00b, PTT94, PMM95, PK00, PD98, PMvdG+13, RGD97, Sch94, SA93, SMOE93, SW91, Sun90a, Sun90b, TSS00b, THN00, W193, WO97, WCSS99, YH96, ZDD97, ZDR01, AMBG93, AGR+95b, AB95, Ano94e, Arn95, ADMV05].

distributed [BSC99, BB95, Bir94, BMPZ94a, CBPP02, CH94, CEF+95, CBHH94, CLASPD99, CPR+95, CK99, DLR94, DR94, DHWH93b, DR95, EGH99, FB97, FS95, FS98, FHB+13, GBR97, GCK+10, GKK09, GkLyCy97, GP95, HPY+93, HHA95, IEE97a, JW96, KN95, KSG13, KDL+95a, LR06b, LFS93a, LFS93b, LH98, LKL96, Lin95, Maf94, MVTP96, Man98, MLC04, NAJ99, PK05, POL99, Par93, PR94e, RAGJ95, RFH+95, RJMC93, Wil94].

Distributions [WO95, HKMCS94, WO96, vHKS94].

Divergence [SdSCP13, VSW+13]. Divide [CTK01, Cza02, Cza03].

Divide-and-Conquer [CTK01, Cza02, Cza03]. DMI [HWM02, ZLL+12]. DNAml [CDZ+98].

Early [CD96, LV12, SLG95, EFR+05, KJA+93].

Earth [KTJT03, Nak03, Nak05a, Nak05b, UTY02].

Earthquake [UZC+12, KTJT03, KME09].

Easily [PKB01]. Easy [TDG13, SBF94].

EasyGrid [BR04]. EASYPVM [Sa94].

ECMWF [HK93, HK95]. Ed [Nag05].

EDEM [Tsu95]. Edge [ZDD97, Gra97, RAGJ95]. Editors [AM07, GSA08]. education [ACM06a].

EDV [Ano94c]. EDV-Benutzertreffens [Ano94c]. Edward [Che10]. Effect [DK06].

Effective [MLAV10, RK01, TM09, Tsu95, Cza13, JH97, KS15]. Effects [SSE12].

efficacy [GScFM13]. Efficiency [KS96, CZ96, MUM99, RS95]. Efficient [ADT14, Att96, BGBP01, BCK+09, BILS+95, BFG+10, BGD12, Bru95, BDH+95, BDH+97, BMPZ94b, CFP96, DZ98a, DGG+12, FHP94a, FHP94b, HBT95, HKT+12, HT08, HC06, KGK+03, KD13, MB12, NBK99, PGS+13, RJMC93, RRL01, TGB50, WSN99, WWFT11, YPZ95, ZWHS95, BDA94, BHW+12, CGH+14, FM90, FNSW99, FHB+13, HCL05, KVGH11, LKL96, LA06, Pan95b, PRS+14, RR01, SOA11, TDG13, dCZG06, CRD99, THRZ99]. Efficiently [CC99, CCM+06, PAA10].

effortless [ITT99]. eigenproblem [BV99, GG99].

Eigenvalue [DAK89, BSC99, THM+94].

Eighth [ERS95, Sie94, IE96b]. Eilean [CSS95]. einen [BL94]. Einfluss [Gra97].

Einführung [MIS04]. elastic [PTG13].

elasticity [PTT94]. Elastodynamic [MAVAH14].

electric [BALU95, Ano03].

electrical [Sil96]. electroabsorption [WWZ+96]. electromagnetic [DSOF11, NZZ94, OMK09].

Electronic
[GJN97]. Electronics [IEE95d].
Electrosoft [Sil96]. electrostatic
[VDL+t15]. Element
[MS02b, OD01, OMK09, SM02, VRS00, BB93, Gra09, HMKV94, KME90, KEGM10, Nak05a, Nak05b, PTT94]. Elemental
[PMvdG+t13]. elimination [ACMR11].
[VDL+t15]. Elliptic
[AGIS94, PR94c]. ELLPACK
[BBH12, MKP+t96]. ELLPACK-R
[BBH12]. Else [Gei00]. elucidation
[MK94]. Elemental
[PMvdG+t13]. elimination
[ACMR11].
elliptic
[AGIS94, PR94c]. ELLPACK
[BBH12, MKP+t96]. ELLPACK-R
[BBH12]. Else [Gei00]. elucidation
[MK94]. Embedded
[YP94+14, ACJ12, CGK11, WCS+t13]. Embodiment
[FS97, MS96a]. Embodiment
[Ser97]. emerging
[RMNN+t12]. Emission
[Pat93]. emphasis
[Bos96]. eMPI
[MS96a]. Empirical
[SS94, VY02]. Employing
[AGM06]. emulation
[MS99b]. emulator
[LTLC94]. Enable
[Fos98, GSY+t13, LSW11, Pan14, DS13, GLM+t08, HJBB14, KTF03, RA90, SHHI01, SR11, ZLS+t15]. Enabling
[BGG+t15, CLSP07, DGB+t14, GBH14, HJYC10, NPS12, TY14, ZPI06, BR04, MA09]. Environment
[BDGS93, BFG+t10, BFM97, BGL00, CHPP01, CTKO1, DLB07, DI02, DHHW92, DHHW93a, DDL00, FTVB00, FWR+t95, GJN97, GL97a, HSA97, KBA02, KKH03, KDL+t95b, KWH97, LCR93, Lus00, MSOR01, MM02, MFG+t08, MS97, NJ01, Ong02, ROL94, SDN99, SGL+t00, SHGL01, TTP97, WL66a, ABG+t06, BDG+t92b, BDG+t94, BK96, BT96, CEF+t95, CLASPD99, DZ96, DL10, DHHW93b, EASS95, FMBM96, FB95, Fan98, Fra95, GBR97, GGH99, GPL+t96, GkLyCY97, HZ94, IJM+t05, IvdLH+t00, KVH97, LK94, MK97, NP94, PES99, PVKE01, PQ07, RNPM13, SSKF95, Sch93, SP96, SBF94, SWY94, Skj93, SSG95, TJD09, Th094, WCC+t07, WL96b, WLC07, ZPLS96]. environmental
[ANS95]. Environments
[Ano95c, Ano01a, Bak98, BF98, DT94, GFB+t03, Laf01, Mat94, Mat95, MFC98, PS01a, RB01, SH94b, SSS97, SCI00, TA01, ACGt02, ARL+t94, ALR94, ADR95, AMV94, BFMM99, CDH+t94, CK99, DR94, DR95, HS93, HVSH95, LC07, MSP93, SS94, SHH94a, TSS98, VB09, YS93, ZL96]. environment-the
[CDH+t94]. EPS
[GT94]. EPS-APS
[GT94]. Epstein
[BL95]. Epstein-Nesbet
[BL95]. Equation
[ES11, LZ97, SAS01, VRS00, DM12, MS95, NP94, ON12, Ols95, Pri14, iSYS12]. Equations
[And98, BG95, GK10, Huc96, LLY93, MFTB95, ORA12, ZB97, BHW+t12, Che99, IM95, JK10, Jou94, NF94, RBB15, SMSW06, ZSG+t14, dH94]. Equi
[LTRA02]. Equi-Join
[LTRA02]. equivalencing
[LLG12]. Error
[ABB+t10, CZG+t08, CGK911, EdS08]. ERRatum
[Ano01c, HF14b, Wal94b].
[DFC +07, HPS +12, HPS +13]. *Errors*
[FCLG07]. *Erweiterung* [GBR97]. Espoo
[RWD09]. ESPRIT [CDH +94]. Estimation
[GK10, AMHC11, CCU95, GB94, KS13, ZWHS95]. Estuarine [LRQ01]. Ethernet
[CC00a, Fin97, HeF05, KYL03, KYL05, OF00, PFG97]. EU [Ano03]. Eugene
[MCdS +08]. Euler [DLR94, IDD94]. Euler/
[Navier [DLR94, IDD94]. EURO
[HAM95b, BFMR96, HAM95b, BFMR96].
Euro-Par [BFMR96, HAM95b, BFMR96].
Euromicro [IEE95b, IEE96g]. EuroMPI
[CDND11, KGRD10, TBD12, TB14].
EUROPE [LCHS96, Ano02, Ano03e,
Ano03f, Ano04g, Tou96]. European
[AD98, Ano94i, BR95a, BDL96, BC00,
BDW97, CHD07, CHD09, CD01, CDN11,
DKD05, DLM99, DKP00, DLO03, KGRD10,
Kra02, KKD04, LKD08, MTW06, RWD09,
TBD12, WPH94, DHK97]. EuroPVM
[BDLS96, OL05, DKO07, MTW07].
EUROVFM/MIPL
[OL05, DKO07, MTW07]. EuroPVM MPI
[KKD03]. EUROSIM
[BH95, DSZ94, BH95]. Eurospace [Tou96].
Eurospace-Ada-Europe [Tou96].
Evaluate [MW98]. Evaluating [BWV +12,
FST98a, GFD03, GFD05, GGC001, GB96,
HWW97, LH95, SSS979, ZSnH01, GScFM13,
LTLC94, TG09, ZLLZ +11]. Evaluation
[ATM01, BF98, BIC +10, BFMR97, BEG +10,
CLP +99, DI02, FST98b, Han98, JCH +08,
KS96, KK02b, KS00, LGCH99, LZ07, KL11,
LVP04, MH01, MGCD12, NNNO00, OM96,
Pan14, Par93, RB01, SWHP05, SCP97,
SBF +04, SM02, Sou01, TOTH99, TSB02,
TSB03, TTSY00, UM07, VY02, AB13,
BBG +14, BBH...13a, BMM07, CB11,
HPR +95, HAsnPO0, HPS95, IM04, LV12,
LNW +12, MKP +96, MM03, MT96, MHH99,
NN95, PSK08, SL94b, SWS +12, SWY94,
SFSV13, TSP95, THM +94, TMPJ01, Wor96,
YWO95, YSH93, ZHK06]. Evaluations
[MM14]. Event [KKV01, WM01].

everything [CCM +06]. everything-shared
[CCM +06]. Evolution [Mat01a, PS01a,
SSL97, SGDM94, GS93, SSD +94].
Evolutionary [B +05, DSM94, RAG96].
evolving [ER12, MDS09]. EWOMP'99
[BC00]. Example
[Che10, NB96, Pat93, SK10]. exascale
[LV12, LSG12]. exchange
[MM13, Pan95a]. excluded [BHW +12].
eventable [WMP14]. Execution
[AHD12, BME02, FC05, FM09, GR07,
KGK +03, Mar05, MFG +08, MAGR01,
Ney00, STY99, EPML99, Mor95, SMAC08,
TSY99, TSY00, UGT09]. Executions
[GAML01]. Exhibition
[HS95a, GH94, LCHS96]. Existing [CB00].
EXOCHI [WCC +07]. Expand [CGC +02].
Expanding [LA02]. Experience
[BCP +97, BT96, CP08, PS01a, Tou00,
AM94, CARB91, KJA +93, RSC +15].
Experiences [AHP01, BFZ97, CMV +94,
CLASPD99, GLN +08, GS91a, GS97,
GB96, GL95d, ITT02, JR10, KS97, Mar02,
TGEM09, ZPLS96, ZKRA14, AL22,
CCF +94, Sch94, SGDM94, BDG +93b].
Experiment [Luo99]. Experimental
[BIL99, BIC05, EGC02, Ser97, UM97].
Experiments [BPMN97, Cee94, LGPL00,
OS97, RR00, ZB97, RH +96, HAJK01].
Expert [BPG94]. ExpEther [NMS +14].
Explicit
[BHV12, GFPG12, SGHL01, LC97b].
Explicitly [Mai12, SYR +09]. exploit
[ZP106]. Exploitation
[GGL +08, GAM +02, BK11, GAM +00].
Exploiting
[Add01, Bri10, FKL08, HEH09, KFL05,
NAAL01, Noh08, THH +05]. Exploration
[AMuHK15, OHA +15, ABDP15, GE95,
GE96, PDY14]. Explorations [BGG +15].
Exploring [MBKM12]. Exposition
[IES95d, LF +93a]. EXPRESS [KS96,
An97, FK94, LH95, SH94a, SH94b].
Expression [BN12, KH15, Sur95a].
expressive [Trä12a]. Extend [DFA+09]. Extended [BR02, HTA08, SS99].
Extending [ABB+10, BCC+00a, BCC+00b, BDB+13, CS96, CG99a, KDT+12, LMRG14,
Mar03, OFA+15, SDV+95, TMTP96, CG96, GGHL+96]. Extensible [BL97, GS94].
Extension [BGR97a, CSAGR98, VAT95, Hum95, JH97, SG14, SC95, GBR97].
Extensions [Fis01, GOM+01, GLH+98, HE15, DPSD08, HP05, Ka93]. Extent
[kL11]. Extent-Based [kL11]. exterior [HMKV94]. external [BBB+94].
Extraction [CBL10]. Extreme
[MdSC09, ZKRA14]. Extreme-scale
[ZKRA14]. eyes [Str94].

F [FHPS94b, FHP+94]. F90 [DP94]. face
[HDDG09]. Faces [Gro12]. facilitate
[PKB06]. Facilitating
[MC99, ZLL+12, ESB13]. Facilities
[MHH09, MN91]. Facility
[KG96, SHTS01, KZCS96, LHCT96].
facilitation
[AZ95, BvdG91, BRS92, DG95, WLC07].
Factorizations [TD98, LC97b]. Fail
[LS92, LFS93a, LFS93b]. Fail-safe
[LS92, LFS93a, LFS93b]. Failure
[BBH...13a, CRGM14, BBH+13b, CGH+14, BDB+13]. failure-aware [CGH+14].
failures [JS13]. Fail [Gra97]. false [JE95].

Farming [Str94]. Fast
[Ben01, BHS+02, BBH12, CS14, DFN12, EM02, Hog13,
JFGRF12, PSH11, PR94c, PBC+01, RB01,
SE02, SS99, STY99, SR11, UP01, WTR03,
Lam09, LCL+12, NYNT12, TDG13, YLZ13,
YBZL03, ZA14, DLBL11, PFG97]. Faster
[Tsu12, ZG95a, ZG96]. Fat [Zah12].

Fat-tree [Zah12]. FATCOP [CF01]. Fault
[BBC+02, BCH+03, BHK+06, CF01,
CFDL01, FBD01a, FBVD02, FD02a, FD04,
GF+03, GKP97, GJR09, GL04, IEE95c,
JSH+05, LMRG14, LNEE00, dLR04, MSF00,
RPM+08, TS12a, WC09, Wl93, BCH+08,
FBD01b, FD02b, HG12, LS08, PKD95,
SG05, ZHK06, FD00]. Fault-Management
[GJR09]. Fault-Tolerant
[BHK+06, FD04, GF+03, IEE95c, JSH+05, LS08]. Faults
[LdS+15]. FCRC
[ACM96b]. FD [And98].
FD-TD [And98]. FDDI [LC93]. FD-TD
[DSOF11, VM94]. Fe [Old02, BJS99].
Feature [Qu95]. Feature-driven [Qu95].
Features
[GLT99, GLT00b, GLT00a, GLT12,
KAHS96, CRD99, WKS96, ZKRA14]. February
[Ano95b, GE95, GE96, IEE93a,
IEE94a, IEE97c]. FEM [GE98].
FEM-Systeme [GE98]. Fermi [WKP11].
FFT [GB98, NSM12, SH14, WJB14].
FFT-Based [WJB14]. FFTs [EFR+05].
FFT-W [KT10]. FHP [BMS94a]. Field
[KNT02, Goe02, TPK15]. fields
[BAL95, RSBT95]. Fifth
[DKM+92, HK93, IEE96f, SM07, IEE95c].
filamentary [YPA94]. File
[BIC+10, CGC+02, LRT07, KLCCW07,
kL11, PLR02, RK01, TSS00b, WTR03,
DL10, LL95, SBQ14, iSYS12]. File-I
[PLR02, RK01]. File-I/O [PLR02, RK01].
filter [BY12, CCU95]. Finding
[FCLG07, PCS94]. Fine
[BBG+10, JCP15, SFL+94, BK11, KW14].
Fine-grain [JCP15, SFL+94, BK11, KW14].
Fine-Grained [BBG+10]. Finite
[DFN12, MS02b, MAIVAH14, OD01,
OMK09, Pri14, SM02, UZC+12, VM94,
VR500, BB93, Gra09, GFPG12, HE13,
HMKV94, KME90, KEGM10, Nak05a,
Nak05b, NZZ94, NB96, Rami07].
Finite-Difference
[UZC+12, VM94, HE13, NZZ94, Ram07].
Finite-Element
[MS02b, BB93, KME09,
KEGM10, Nak05a, Nak05b]. Finland
[RWD09]. Fire [JML01, SJ02]. First
[AGH+95, BCD06, BC00, CH96, Dem96,
DFN12, DW94, Gat95, HAM95b, Kun94,
Nar95, PBPT95, SSP+94, USE94, AH95,
BS94, PBPT95]. FLAME [VBLvdG08]. flat
[Nak05b]. Flattening [THRZ99].
Flexibility [KK02b]. Flexible [CS14, GR95, GBS+07, SHPT00, CARB10, DGB+14, GAM+00, HC08]. flip [KO14].
Florida [ACM98b]. Flow [BGD12, CGZQ13, FM09, Pat93, AMS94, AFST95, EP96, ED94, HK94, HTTH99, JAT97, MBKM12, OB95, PTT94, RM99, SCC95, SU96, TS12b]. Flows [GAP97, Heb93, LLG12].
Fluid [DFMD94, GAP97, JFY00, SZBS95a, TDBEE11, TGEM09, ALR94, HG94, HVSC11, MRRP11, PBK99, SPE95, SZBS95b, WPH94]. fluid-particulate [ATL+12, fluids [HK94, WB96]]. Flux [QRMG96, QRG95]. fly [KSJ14, THRZ99, BCAD06, BADC07].
FM [LC97a]. FMA [LO96]. Fock [CBHH94]. Focus [Cla98]. foolish [Rol08a]. footprint [TS12b]. force [Goe02]. Forecast [AHP01]. forecasting [Bjo95, KOS+95a]. Forecasting [FGRT00]. Format [BBH12]. Forschung [Ano94c]. Fortran [Ano97, Ben95, Bra97, GBR15, Ano98, AS14, BW12, DZ98b, Don06, HE13, HH14, HZ99, KaM10, Ku98, LC97b, LCC+03, MWO95, iSYS12, SM03, SMCH15, Wal02, YBMCM14, vHKS94]. Fortran/PVM [MWO95].
Forum [Str94]. Forward [RMNM+12, BDB+13]. forwarding [CXB+12]. Foundation [Gei01]. four [MG05]. four-atom [MG05]. Fourier [DBLG11]. Fourteenth [IE95b]. Fourth [Ano89, IEE93d, IEE95k, Sie92a, Sie92b, Ano94, IEE96g]. FPFGAs [OFA+15, FGS+13, ROh00]. fractal [Wu99]. fragment [KS15]. Framework [DGMS93, FC05, GGCGO01, GR07, NSZS13, PMvdG+13, SSB+05, SSAS12, Sun90a, Sun90b, Ano93c, BA06, BR04, EFR+05, GM13, KKM15, KKJ+08, KH10, LME09, LS08, RSC+15, TDB00].
Frameworks [PO10, KDS012]. France [ACM90, BR95a, BFMR96, CHD07, DE91, FR95, JPT94, McDS+08, VW92, YH96, GA96, IEE94c]. Francisco [BBG+95, IEE93a, IEE94g]. Frankfurt [Tou96]. Frankfurt/Main [Tou96].
G [OPM06]. G2 [Cot04, KTF03, OPM06]. GA [Ara95]. Gains [CMM03]. Gallipoli [Ano93b]. GAMMA [C00a]. Garbage [GTS+15]. Gas [BMS94b, BBK+94, BMS94a]. gauge [BW12]. Gauss [BG95, LM99, OB95]. GCel [SHH94a, SHH94b]. GECCO [B+05].
Gemini [SWS+12]. gems [Fer04, mH12, Ngu08, PF05]. gene [PCS94, AAC+05, BGG+05, EFR+05, KM+14, LM13, MSW+05]. gene-finding [PCS94]. Gene/L [AAC+05, BGG+05, EFR+05, MSW+05]. Gene/Q [KM+14, LM13]. General
[Che10, IH04, MW98, SZBS95a, Sun94a, ABDP15, ADLL03a, ADLL03b, CBM+08, FLD96, PF05, RSBT95, SK10, SZBS95b, SMSW06, YAP94]. General-Purpose
[Che10, ABDP15, CBM+08, PF05, SK10].

Generalized
[DFKS01, FKS96, BSC99, SD99, van93].

Generation
[DFKS01, FKS96, BSC99, SD99, van93].

Generating
[CGL+93, ER12, IJM+05].

Generation
[AB93a, Gei98, GTH96, HT08, JFY00, LTDD14, RGD13, TGBS05, AB93b, CPR+95, DCD+14, DWM12, KHS12, KPL+12, KH10, WKS96, WMP14, ZKRA14].

generational
[WK08a, WK08b, WK08c].

generative
[MAS06].

generator
[Lan09, YL09].

Generic
[ARS89, AKL99, GB98, BAS13, GM13].

Genetic
[FTVB00, MTSS94, MSCW95, PB12, WKS96, Wal01a, WHD05, AB13, BB95, FSTG99, HPLT99, RJC95, Wal01b, B+05].

genetics
[LM99].

Geneva
[IEE97b].

genomic
[SdM10].

GeoComputation
[Abr96, Abr96].

GeoFEM
[NO02b, NO02a, Nak03].

genealogical
[BSG00, DSS00, Pan95a, Ros11, SHTS01, STK08, SWH15, TTP97, HWS09, HCL05, HEHC09, LF+93a, Str94, Wan02, YLZ13, Zah12, ZWHS95].

Globally
[BHS+02].

GLUE
[Rab98].

GMRES
[dH94].

Gmunden
[Vol93].

go [KC94].

good
[Mat03].

Göttingen
[Ano94c].

GP
[LRBG15].

GP-GPUs
[LRBG15].

GPFs
[AHP01, BIC+10, PTH+01b].

GPGPU
[BGG+15, HAI11, JKN+13, LME09, LBY12, LYZ12, MBKM12, PTG13, TY14, YZ14, YEG+13].

gprof
[GJLT11].

GPU
[ABG10, BDP+15, BCD+12, BCD+15, BWV+12, BBH12, DK13, DOSF11, DWL+10, DWL+12, ER12, Fer04, FFM11, GCN+13, HK09, HK10, HZG08, mH12, JLS+14, JRL13, JNL+15, JPT14, KDSO12, Khah13, KPL+12, KEGM10, KO14, LV12, LRG14, Ngu08, NMS+14, NSM12, Pan14, PDY14, PF05, Pri14, RSC+15, RMNM+12, Sali10, SK10, SdM10, iSYS12, SS09, SCSL12, SKM15, SKB+14, SG14, TBB12, TS12b, WKPI11, YHL11, YCL14, ZRQA11, ZZG+14].

GPU-Accelerated
[KA13, SCSL12].

GPU-Aware
[Pan14].

GPU-based
[SS09].

GPU-Resident
[JDB+14].

GPUMP
[ZC10].

GPUs
[BY12, DS13, FPGG12, HLP10, HP11, HLP11, Hos12, KGB+09, KKM15, KKLL11, KVGH11, LBH12, LRG15, MA09, ON12, OIH10, PB12, SHL14, SKK+12, Tsu12, WJ12, WJB14, YHL11, YCL14, ZRQA11, ZZG+14].

GPUVerify
[BCD+12].

GQ
[RFG+00].

GRACE
[YKI+96, ZRQA11].

GRADE
[DDL00].

Gradient
[BG95, FPGG12, MM92, Ols95].

Grain
[IOK00, KOL01, NIO+02, NIO+03, BK11, JCP15, KW14, SFL+94].

Grained
[ADRCT98, BBG+10, LGM00, Heb93, RJ95].

Grand
[DGMJ93, Ten95, BDG+92c].

Graph
[DBW02, MM14, NPS12, PPR01, STV97, HLP10, HKOO11, PB12, SHL14, YHSY14, ZC10].

Graph-Based
[NPS12].

Graph-Partitioning
[STV97].

Graphical
[HJBB14].

Graphics
[LSVMW08, LSMW11, SLJ+14, vdLJR11, ...]
ABDP15, CBM+08, DBLG11, Fer04, GKL95, HTA08, HSW+12, KFA96, KY10, KME09, LHLK10, PF05, SHM+12, SR11, WWFT11, ZLS+15, MSML10.

graphics-scalable [GKL95]. Graphs [LGM00, OP10, EP96, MC99].

Gravitational [ZSK15, KM10]. Greece [CD01, CDND11, SM07, TG94]. Grenoble [JPTE94]. Grid [AB93a, CGB+10, CLL03, DPP01, Fos98, KT02, Laf01, Liv00, Rei01, TGM09, AB93b, Eng00, GLM+08, KRKS11, WYLC12, AASB08, BR04, CCHW03, DKD08, Fos98, GLM+08, KTF03, KGK+03, KSSS07, LC07, LS08, NSBR07, RPM+08, RTRG+07, SHTS01].

Grid-Adaptive [KT02]. Grid-Enabled [Fos98, GLM+08, KTF03]. Grids [NO02b, ACH+11, CC10, KBG+09, NO02a, NB96, BBH+06, GR07, Ram07, SN01].

GROMACS [BvdSvD95].

Ground [HTHD99]. groundwater [AFST95, EGDK92]. Group [AD98, Ano98, Ara95, ACDR94, CHD07, CHD09, CD01, CDND11, DKD05, DLM99, DKF00, GN95, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TBD12, UMK97, BDW97, DLO03, MMU99].

Grouping [WPL95]. Groups [GOM+01].

Hague [Ano93e]. Halide [RKBA+13].

Hamburg [PSB+04]. Handling [DFC+07, LGM00, RC97, FFFC99, LN+12, THRZ99]. hands [KMWH10].

hands-on [KMWH10]. Harbor [BBC+00].

Hardware [BGG+15, BWW+12, Brü12, BCKP00, CDPM03, DW02, HSP+13, LSMW11, MFC98, PSM+14, vdLJR11, ER12, GGL+08, Rab99, SBG+12, SH94, SWS+12, YÁJG+15, ZLS+15]. Hardware-Based [CDPM03]. Hardware-oblivious [HSP+13]. Harness [EBKG01, MS99b, PL96, FDB01a, FDB01b, FBVD02, FD02a, FD02b, MSF00, Gei98].

Harrogate [CJNW95]. Hartree [CBHH94]. Haskell [WO97]. Hate [Dan12]. Hawaii [ERS95, ERS96, HS94, MMH93, ZL96].

HDL [Kat93]. HDMR [KD12]. Heading [Sch99]. Heat [SAS01, NP94, iSYS12].

Hector [RFRH96, RRG+99]. Heijen [Van95]. held [AGH+95, GA96, JB96, KG93, MMH93, Old02, R+92, SPH95, TG94].

Helios [SPK96]. Helmholtz [HMKV94].

Helps [Stp02]. HeNCE [BG+92a, BDG+92b, BDG+93a, BDG+94].

HeSSE [MRV00]. Heterogeneous [ABB+10, BDG+93a, BDGS93, BL95, BCP+97, BGR97b, BCP00, CMMR12, DGMS93, DGMJ93, FDG97a, FDG97b, FLD98, Fos98, GS91b, IEE93f, KR09, LC93, MRV00, MM01, MM02, PD98, SMS00, SGS10, TQDL01, VLO+08, ACGR92, ADB94, ADDR95, AMY94, BDG+92c, BDG+94, BALU95, BRR99, CCM12, CFPS95, FMBM96, GAZ12, GCN+10, GKF13, HK94, KSG13, KSL+12, Kos95b, LCL+12, LR06a, Lec12, Mai12, MSL12, MM03, NP94, Pen95, RCF96, Skj93, Smi93b, Sun94b, Sun95, TBB12, TKP15, TDG13, VB99, WCC+07, YST08, YSL+12].

HeteroMPI [LR06a, VLO+08]. Heuristic [BHM96, STV97, WH94].

Hierarchical [BR04, ADMV05, BDV05, OKM12, YPZC95].

Hierarchies [SYR+09]. High [ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, BPG94, BRST94, BS07, EK97].
CDD+13, CNM11, CDHL95, CS14, DPO01, DDL00, DE91, FGKT97, GSHL02, GBH99, GBS+07, GLDS06, HA11, Hol12, IEE92, IEE93c, IEE94g, IEE95k, IEE96a, IEE96f, IEE97c, IFI95, JMJ+11, Kha13, KEAGMA10, KH15, Lai01, LCK11, LC97a, LkLc+03, LB12, LWP04, MW98, MPD04, MAB05, NU05, OIH10, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, SJ02, So05, SVC+11, SSSS97, Ton00, VW92, WN10, YCL14, YSP+05, AH95, Ano03, BADC07, Ber96, BWT96, BID95, CHKK15, DL10, DuV92, ESBI3, FME+12, GS02, GCG+07, GL96, GL97c, HDDD09, HW11, Hos12, KME09, Lai09, LBD+96, MLS12, NS91, NFG+10, Oih02, PGS+13, PGK+10, PF05, PTF99, Rer03, RJDH14, SG14, ZSK15, ZW13, CDH+95, DZ98b]. **High** [D+95, DE91, GH94, HS95a, KD12, LCHS96, LC97b, SSH08, Ten95]. **High-Dimensional** [MW98]. **High-Level** [CS14, DDL00, HA11, Hos12, SG14]. **High-order** [KEAGMA10, KME09]. **High-Performance** [ACM98a, FGKT97, IEE97c, LkLC+03, OLG01, PKB01, PR94b, PTH+01b, Rab98, RH01, SPM+10, SCSL12, WN10, GLDS96, OIH10, SVC+11, Ano03, ESBI3, FME+12, GL96, GL97c, HDDD09, LB+96, Old02, PGS+13, PGK+10, PF05, Rer03, RJDH14, ZSK15, HS95a, GH94, LCHS96, SSH08]. **High-Precision** [Kha13]. **High-Scalability** [BS07]. **High-Speed** [CDHL95, AH95, BWT96, CDH+95]. **high-throughput** [ESB13]. **higher** [wL94]. **highly** [MM95, PV97, CARB10, GBH14, VM95]. **highly-scalable** [GBH14]. **Hills** [IEE93f]. **HiNet** [AH95]. **HIRLAM** [Bjo95, HE02, KOS+95a]. **History** [OWSA91]. **Hitachi** [Ano03, NN0000, TSB02, TSB03]. **HLA** [RTRG+07]. **Hoc** [IBC+10, ITT02]. **Högskolan** [Eng90]. **Hole** [Kha13]. **holistic** [TWFO09]. **homotopy** [GWC95, SMSW06]. **Honolulu** [IEE96c]. **honor** [Str94]. **Host** [Ano95c, LLRS02]. **Host-Parasite** [LLRS02]. **Hotel** [IEE94e]. **Hotel-Coley** [IEE94e]. **house** [ZLZ+11]. **Houston** [ACM06a, Ano95a, Cha05, DKM+92, Y+93]. **HP** [CGB+10]. **HPC** [GK99, LCVD94b, PRR+14]. **HPC2002** [Ano03]. **HPCIN** [LCHS96]. **HPF** [BP98, BF01, BID95, Bri00, BDV03, CM98, CDD+96, Coe94, FKK+96b, FKKC96, FKK96a, LZ97, OP98, OPP00, SM02, Str94]. **HPF-MPI** [BP98]. **HPL** [Lee12]. **HPVM** [BCKP00, CLP+99]. **HPVM-Based** [CLP+99]. **hull** [GCN+13]. **Hungarian** [Fer92, FK95]. **Hungary** [DPK00, KKD04, VV95, FK95]. **hunting** [JPP95]. **Huss** [Na95g]. **Hybrid** [BBG+10, BBH+06, CGC+11, CNM11, Cha02, DR97, HVSC11, KS15, LLRS02, LRG14, MS02b, NO02b, PZ12, WT12, YHL11, YPAE09, YTH+12, ADR+05, BBG+14, CSPM+96, GKK99, HDB+13, JR10, JMS14, KRG13, KJEM12, LLC13, LLH+14, MLAV10, MRRP11, NO02a, Nak05a, Nak05b, PARB41, PHJN11, SVC+11, WT11, WYL12, WLYC12, YWW11, ZWL13]. **hybrid-core** [BBG+14]. **Hybridizing** [LSG12]. **HYDRA_MPI** [PBC+01]. **Hyper** [CSW99, SBT04, TBG+02, ZAT+07]. **Hyper-Rectangle** [CSW99]. **Hyper-Threading** [SBT04, TBG+02, ZAT+07]. **hypercube** [HS95b, Sur95b]. **Hypercubes** [Ano89, RJMC93, She95]. **Hypercubic** [HP11]. **hyperelastic** [OKW95]. **Hyperspectral** [VLO+08]. **I-SPAN** [LHHM96, Li96]. **I-WAY** [FGT96]. **I/O** [Bos96, CFF+96, DRUC12, IRU01, IBC+10, LkLc+03, lLCC+06, MGC12, MG15, PSK08, PRL02, RK01, SBQZ14, Tha98, WSN99]. **IASTED** [Ham95a]. **IBM**
improvements [DPSD08]. Improving [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SCL0, XF95, CZ96, JKN+13]. in-house [ZLZ+11]. In-memory [CRM14, HSP+13]. in-place [PSHL11]. Improving [CGZQ13, DZ96, DCPJ12, DCPJ14, GSY+13, HE02, IRU01, KH12, KK02b, LB98, MK97, PTG13, RSC+15, SCL0, XF95, CZ96, JKN+13]. in-house [ZLZ+11]. In-memory [CRM14, HSP+13]. in-place [PSHL11].
GLT00a, GL04, Han98, IBC+10, KTF03. Interface
[KKD05, LK10, MSL96, RRFH96, SWHP05, SLG95, SWL+01, TGT05, YGH+14]. Interface Architecture [Sei99]. Interfaces [Lus00, PL96, internal [BBH+15].

International [ACM94, ACM96b, ANS95, Abr96, ATC94, AGH+95, Ano92a, Ano94a, Ano94c, BPG94, Bos96, BFMR96, Cha05, CZG+08, CGKM11, CMMR12, CGB+10, CH96, DSM94, DW94, EV01, Ed508, ERS95, ERS96, EJL92, Gat95, GA96, GT94, Ham95a, HAM95b, HS94, Holl2, IEE93c, IEE93b, IEE94d, IEE94e, IEE95b, IEE95c, IEE95a, IEE95i, IEE95j, IEE95k, IEE95l, IEE96a, IEE96b, IEE96e, IEE96f, IEE97b, IEE97c, IEE05, KUM94, LCK11, LF+93a, Lev95, LHHM96, Li96, MMH03, MCD+08, MDC09, Nar95, Ost94, PW95, PBB+95, PBP795, RE96, R+92, SM+10, Sie94, SI96, SM07, TOUT96, VW92, Vo93, Vos03, Was96, YH96, ACM97a, AS95, BSR94, DMW96, FR95, GH94, JPT+94, LCHS96, MAL95, ZL96, Ano93b, HHK94, Sch93].

Internet [NE98]. Interoperabilität [GBR97]. Interoperability [BoFBW00, Don06, PLR02, GBR97].

Interoperable [Rab98, MSL12, YBCM14].

Interoperation [FDG97a, FDG97b, FL998]. Interpolants [RB01]. interpolation [BAS13].

Interprocessor [DS96b]. interrupts [CXT+12, SH96]. intra [GM13, VSW+13].

Intra-node [GM13]. intra-warp [VSW+13].

Introducción [VP00]. Introducing [TBS12]. Introduction [AM07, BDB+13, BC00, GSA08, CHD09, DKD07, Mar02, Old02]. Issues [BDT08, FD02a, KGK+03, MW98, Pan95b, PS01b, ZDD97, ARvW03, EGH99, FD02b, HHA95, PBK99]. Italy [CMMR12, CH96, DKD05, DKD07, D+95, DLO03, HS95a, IEE95h, KG93, OL05, ACM06b, Ano93b, CLM+95, DR94, SI96].

Iteration [HF14a, HF14b]. iterations [Lou95, YST08]. Iterative [CCSM97, DK06, NO02a, Nak03, SC04, ADR95, EDSV09, LSR95, MGG05, NO02a, Nak05a, Nak05b, OMK90, dH94]. Ithaca [PBG+95, RE96]. IV [SPH95]. IWOMP [CZG+08, CGKM11, CMMR12, Ed508, MCdS+08, MDC09, SHM+10]. IWPP [Kum94, PBPT95]. IWPP-94 [Kum94, PBPT95]. IWPP [Kum94]. IX [R+92].

Jack [Nag05]. Jacobi [BBDH14, CGU12, LM99]. JaMP [KBVP07]. January [ERS96, GE96, HS94, IEE95h, IEE96g, MMH93, USE95]. Janus
Japan
[SHM95, SPE95, HHK94, IFI95]. Jason
[Che10]. Java
[ACM98a, Ano97, BCFK99, BHY99, Bra97, BKO00, CGJ+00, CFKL00, CLL03, DeP03, Fer98b, Fer98a, GGS99, KOB01, KBVP07, LWR01, MSS98, MG97, NE98, SMS00, SZ99, TDB00, VGS14, WN10, WSC99, YC98, YHLG01]. Java-based
[WCS99]. Java-MPI
[GGS99]. Java/CORBALRWO1. JavaNOW[TDB00]. Jaypee
[CBG+10]. Jersey
[Bha93]. Jerusalem
[DSM94]. Job
[NSS12]. Jobs
[BGD12, LTRA02, She95]. Joint
[GT94, Ano93c]. Jose
[ACM97b, GE95, GE96]. JPEG
[NU05]. JPT
[BDY99]. JPVM
[Fer98b, Fer98a, LGCH99]. Jr
[ACM99]. July
[ACM95b, ACM97a, Boi97, EV01, GA96, Has95, IEE93c, IEE96i, Lev95, PW95, TG94]. Jumpshot
[ZLGS99]. June
[ACM90, Ano94f, B+05, BG91, CZG+08, CGMK11, CMMR12, DSB94, DW94, D+95, IEE94c, IEE95c, IEE95i, IEE96d, IEE96h, KG93, LHHM96, L96, MCdS+09, MdSC09, R+92, SL94a, SHM+10, TG94, Vos03]. Jupiter
[Str94]. Just
[FKLB08, KFL05, FK94]. Just-in-time
[FKLB08]. JVMPI[DeP03].

k-ary
[Pan95a]. Kalman
[BY12]. Kanazawa
[HHK94]. Kandrot
[Che10]. Karlsruhe
[Cal94, Sch93]. Karlsruher
[Ren01]. Katsevich
[DYN+06]. Keele
[Ano93c]. KENO
[RF95]. KENO-Va
[RPF95]. Kernel
[CFDL01, EBGK01, HKT+12, MBBD13, TY14, FFMF15, GM13, MMW96, YBZL03, AKL99]. Kernel-assisted
[MBBD13, GM13]. Kernel-based
[TY14].

kernel-independent
[YBZL03]. Kernel-Level
[HKT+12]. Kernels
[BCD+12, KAC02, Pet01, Ros13, ARS89, BCD+12, FSV14, FFMI11, KKM15, PTG13, PGS+13, TBB12]. Kerr
[Kha13]. key
[LF+93a]. Kinect
[KPK13]. Kinetics
[LD01]. King
[ACM99]. Kingdom
[Boi97]. Kirchhoff
[SSS99]. Klagenfurt
[Ros96]. Knapsack
[CC02]. KNEM
[GM13]. knowledge
[FNSW99]. knowledge-based
[FNSW99]. Knoxville
[PR94b]. Kohr
[Stp02]. Kolmogorov
[Str97]. KOP3D
[AR90]. Koppelrandkommunikation
[Gr97]. Kpi
[EML00]. KPN2GPU
[BK11]. Kremlin
[JG11]. Kronecker
[LW+12]. KSIX
[AUR01]. KSR1
[BL94]. KU
[IM94]. Kungl
[Eng00]. Kyoto
[IFI95, SPE95, IFI95].

L
[AAC+05, BGH+05, EFR+05, MSW+05]. LA-MPI
[YS+05]. Lab
[Str94]. Labeling
[PPJ01, KRKS11]. labelling
[HP10]. laboratory
[JJ95]. Lafayette
[EV01, EdS08]. Lagrangian
[CT94a, CT94b, RSV+05, TC94]. Lahey
[Ano98]. Lake
[Hol12]. LAM
[OF00, RsT06, SSB+05, Squ03, ZWZ05]. LAM/MPI
[OF00, RsT06, SSB+05, Squ03, ZWZ05]. lambda
[PO97]. lambda-calculus
[PO97]. LAMGAC
[MS02a]. LAN
[CCU95, CDH+95, MSOGR01, MTSS94, TSZC94, ZGCR94]. LAN-based
[TSZC94]. LAN-Message
[MTSS94]. Lanczos
[GP95, Sch96a, Sch96b]. Landing
d[CZG06]. Landsat
[GCGS99, GCGS98]. Landsat-TM
[GCGS99, GCGS98]. Language
[ACM96a, NM95, PD98, TA14, WLR05, Ben95, CGK11, Hos12, Nob08, RKBA+13, Röh00]. Languages
[CF+94, CH96, Mar05, Oh14, SWS+12, PBG+95, SS96]. LANs
[Fin97]. LAPACK
[Add01, ARvW03]. LAPI
[BGBP01]. Laplace
[ACM14]. Large
[AKE00, BZ97, BJS99, BHNW01, CGC+11, FFPP03, Huc96, JFGRF12, LLY93, MCK+12, MFPP03, PCY14, SGJ+03, SM03, SvL99,
Large-Scale [AKE00, BZ97, FFP03, SC96a, TBB12, WT11, ZWL13, ZA14].

Latency-tolerant [NCB94, LFL11, BW12, BMS94a, SSV96, LV94, BM96, GLM96, GL94, GB96, MBKM12].

Library [Ada97, Boo01, BLW98, Coo95b, DHP97, EM02, FHK01, For95, GFB+03, GSI97, Gro02a, HB96b, ITKT00, JPT14, Odo1, PS01a, RR02, Saa94, SBG+02, Sta95b, SKH96, TD98, UTY92, WN10, ZC10, Ada98, AMHC11, Arn95, CSS95, CG10, Coo95a, DRUC12, DXB96, FBB97, Fan98, FKK+96b, GLM+08, GL94, HB96a, Har94, Har95, JC96, KNS95, KR06a, MSL96, PKB06, PS00b, RFH+95, SSS95, SH96, CC95, MC96, Sum12].

Life [PZ12, Str94]. Lifting [vdLJ11].

Lightweight [FLB+05, F595, OT93]. Like [BST+13, BKO01, CGJ+00, VGS14, CSS95].

Likelihoods [MSCW95]. LIEM [DRUC12].

 Limits [GB96, MBKM12].

Linda [Mat94, KS96, MSP93, BLP93, CSS95, Gal97, Mat95, TDB00].

Linda-like [CSS95].

Line [BoFBW00, Wis98, Bor99].

Linear [ASA97, BDT08, BG95, CDD+13, Gao03, Huc96, LLY93, LZ97, MGHH97, MSB97, van97, BSN95, BKv94, BRR99, CEGS07, Gra99, GFGP12, Jou94, MW98, OKW95, SSS95, SW96, dCH93, dH94].

Linear-scaling [Gao03]. Lines [NE01].

Link [BGR97b, SJ02].

Linköping [FF95].

LINPACK [JNL+15].

Linux

[Sci99, SMTW96, USE00, SSSS97, Ano01a, GSN+01, MK04, OF00, PS07, PKB01, RST96, Sci99, Sla05, SGT+00, YLO9].

Linz

[Kra02].

Liquid

[DS00, JLS+14].

Lisbon [IEE93d].

LISP

[ACM90].

List [Tra98, WJ12].

Lithose [PHA10].

Lithography [RDM99].

Liverpool [AD98].

Load

[Ano94b, BKS01, BS05, DIO2, DR95, DK06, GCB12, HE02, MM02, NP94, PT01, Pus95, SSS95, ST97, Wd01a, BIR94, COK+94, DZ96, DLR94, DvdLVS94].

Leveraging

[HDB+12, NPP+00c, STH14, LFL11].

LIB

[NPP+00d].

libVp [KS15].

libOMP

[BDG12].

Libraries

[BHLS+95, BWV+12, CGZQ13, DARGL13, GFD05, IEE94f, IEE95j, MM14, ARW03, BCM11, BfADA94, CRD99, GS94, PS07, Skj93, SDB94, SSS95, DHK97].
Maryland [IEE96c, SPH95]. MasPar [ARL+94]. Massachusetts [IEE94e].
masses [Cla98]. Massive [Sie92a, MALM95]. Massively [BJ93, BBH12, DSZ94, IEE94a, IEE96c, Oed93, Sie92b, Sta95b, CS96, DR94, HVSC11, KnW10, LCL+12, SRK+12, DSZ94].
Master [FH98, EML00, LTR00, HP05].
naster-slave [HP05].
Master-Workerproblem [FH98]. Master/Slave [LTR00]. Master/Worker [EML00].
Matching [GGC+07, KS01, MM02, OWSA95, WH94, MM03, Qu95, YPZC95, YZPC95].
Materials [Y+93, SSP+94]. mathematical [Wan97, Has95]. Mathematics [Whi04, ANS95].
MATLAB [BKGS02, Whi04, BKGS02]. MATLABMPI [KA04, Kep05]. matrices [GG99, Kan12].
Matrix [BvdG91, Cha96, DS13, Fuj08, GK10, PMvdG+13, TQDL01, TD98, CMH99, ER12, FJZ+14, PKD95, XL13].
Matrix-Vector [DS13, Fuj08, XXL13].
Maui [ACM97a]. Max [Ano94c].
Max-Planck-Gesellschaft [Ano94c].
maximisation [CCU95]. maximum [HKOO11]. Maxwell [And98]. May [ACM96b, ACM96a, AGH+95, BR95a, BS94, Cha05, DT94, EdS08, Gat95, HS95a, IEE95e, IEE95d, EI95i, PR94b, SPE95, SW91, SS96, Van95].
Maydan [Stp02]. MCA [WCS+13]. McDonald [Stp02]. MCHF [SF96].
McLean [IEE94a, Sie92a, Sie92b].
MCNP [MW93, McK94, WH96]. MD [IEE02, TMPJ01]. mdb [DFK94a]. MDE [RGD13].
Measurement [BFBW01, BFIM99, KRS99, Shi94, TMC09].
Measurements [IhV+00, EFR+05, GL99].
mechanics [Bi95, MGG05, SL95].
Mechanism [CGLD01, KSV01, MH01, TSS00b, Tra02a, HWX+13, ZQA11, ZA14].
Mechanisms [Wal01a, Ott93, TMTP96].
Mechatronic [KDL+95b, KDL+95a].

mEDA [VAT95]. mEDA-2 [VAT95]. media [MAIVA94]. Medicine [GA96]. medium [WLNL06]. medium-scale [WLNL06].
Meeting [AD98, Ano93e, CHD07, CD01, CDND11, DDD05, DLM99, DMR00, DLO03, GA96, KGRD10, Kra02, KKD04, LKD08, MC94, MTWD06, RWD09, TB012, BDW97, JB96, SPH95, Ano92, CHD09]. megabase [SlD10].
Meiko [FST98a, FST98b, Jia96].
Memory [Att96, BME02, BW+12, Bri10, BdS07, BTO1b, CSW97, CC99, DM98, DR97, DHWW92, DHWW93a, FB94, GCBM97, GB96, GSN+01, GSHL02, GLRS01, HC01, HDB+12, HDT+15, HT01, KB98, KS13, KSHS01, Loo99, MB12, MBE03, MM98, MCdS+08, Mil02, NPP+00d, PBK00, Pok96, PMvdG+13, Ros13, SYT99, ST02b, SW91, Thr99, VS00, VT97, ARS89, ABC95a, ABC95b, ADMV05, BCA+06, BVML12, BSC99, BMG07, CBP02, Cha05, Cha96, CBHH94, CRM14, CC00b, DLR94, DBV01, DS96b, DHWW93b, DPZ97, EV01, FSV+14, FHB+13, GCM+10, GBH14, GKK09, GL96, GL97c, GP95, HSP+13, HGMW12, HDB+13, HK09, JES95, KN95, KJA+93, KO6, LKL96, MLC04, NAJ99, NAAL01, PK05, PS00b, RGDM15, SSH08, STHI01, SL94b, SBG+12, SYR+09, SLF+94, SSC96, SPL99, TS99, TSY00, UH95a, Vos03]. memory [Wa94a, Wa94b, WPL95, WK08a, WK08b, WK08c, YX95, LBD+96, GK97, SG05].
Memory-Based [MM98]. memory-level [HK09]. Memory/Message [ST02].
MemTo [GYN+01]. Menon [Stp02]. Mesh [HAA+11, Ran05, BAS13, CLSP07, Cou93, GBR15]. mesh-particle [BA13]. Message [AKL99, Att96, BZ97, BCH+03, BBG+01, BDH+97, BGR97b, FM97, CHD07, Cer99, CGQ13, CGH94, Cot97, Cot98, CTK00, CDN11, DFKS01, DHWW92, DHWW93a, DDL00, FFH96, Fos98, FB94, GR07, GB96, Gle93, GLRS01, GLS94, GL95c, GLT00b, Hem94, KGRD10, KS97, KSV01,
KKDV03, KKD04, LKD08, Luo99, MP98, MP95, MS98, MBES94, MG97, MTWD06, MSS97, NW98, PBK00, Pok66, RC97, RRBL01, RWD09, RFG+00, TBD12, WD96, Wer95, Wis97, YHGL01, ZWL13, ZG96, ZL+12, Ada98, AD98, AAC+05, Ano93d, Ano94d, BBG14, BL97, BvdSvD95, Bjo95, Bru95, BDW97, BFIM99, CGJ00, CDZ98, CRD99, CD01, CG99b, DKF93, DM93, DKD05, DS96b, DHHW93b, DOSW96, DLM99, DKP00, DLO03, FK94, GL92, HP+93, Hem96, KJA+93, Kra02, LR06a, LBD96].

message [wL94, LCY96, LC97b, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SWJ95, SDV+95, SZ99, SSG95, Sti94, TSZC94, VM95, Wal94a, Wal94b, ZKRA14, ZA14, AMH11, BC14, BBH+06, BRU05, BDI+95, Cot04, DKD05, DiN96, FKS96, FGT96, FGG+98, GGHL+96, GLDS96, GLT99, GLS99, GLT00a, Han98, IBC+10, KTF03, KKD05, LK10, MTS95a, MSL96, PS01b, RRFH96, SWHP05, SLG95, SWL+01, TG05, TDB00, Wer95, YGH+14]. Message-Passing [Att96, Cot97, Cot98, DHHW92, DDL00, GLS94, GL95c, GT00b, MP98, PBK00, Pok96, RRBL01, AAC+05, Ano94d, BvdSvD95, CDZ+98, GL92, Hem96, KJA+93, LR06a, LBD+96, wL94, PS00b, SSG95, Sti94, DiN96, GGHL+96, Han98, RRFH96, SLG95, Wer95, YGH+14]. Message-Passing-Interface [Wer95]. Message-Passing [Sei99]. Messages [KBS04, SKH96]. Messaging [HE98, KC94]. Meta [BCLN97, FBDO1, FGRD01]. Meta-Applications [BCLN97]. Meta-computing [FBDO1, FGRD01]. Metacomputer [OS97]. Metacomputer [OS97]. Metacomputing [FBDO1, FGRD01]. MetaHaskell [Mai12]. metaheuristics [ZSK15]. metal [JLS+14]. MetaMP [OW92]. metaprogramming [Mai12]. meteorological [RSBT95]. Meteorology [HK93, HK95]. Method [ACMR14, BP99, BJS97, CGU12, FCLG07, GIS97, HC06, OKM09, TSS00a, BBDH14, DSOF11, ET94, HE13, HMKV94, HJBB14, HPLT99, JMS14, KS15, KD12, LCL+12, Nak05b, PTT94, Pri14, Qu95, TKP15, YBZL03, dIAMCFN12]. Methodologies [Sun94b]. Methodology [MOL05, HPR+95, LM94, WMP14]. Methods [BCMR00, CMK00, DFN12, FGKT97, GFPG12, kl11, NA01, Sch01, SM07, TDBEE11, Whi04, ZB97, CEGS07, D+95, Gra09, Has95, LSR95, Nak05a, PKG+10, R+92, SL94a, SGS95]. Metrics [DW02, PARB14]. Metropolis [HSBB14]. Mexico [IEE91, Sie94]. MGCG [TSS00a]. MGF [GL+08]. MIAOW [BGG+15]. MICE [Bk96]. Micro [Ano03, BWV+12, SGL12, YSWY14]. Micro-applications [SGH12]. Micro-Benchmark [BWV+12, YSWY14]. microbenchmark [Bo01]. microtask [OIS+06]. MIDAS [BFZ97]. Middleware [AUR01, CLL03, CC10]. Middleware [DPP01]. Midpoint [JMS14]. Migol [LS08]. Migratable [KOW97]. Migrating [VSR94, VSR95, IvdlH+00, KBG+09]. Migration [Ano94b, CkK+95, CLLO3, CLOM04, CTK01, NPP+00c, NLHR07, Ott94, OS97, ST97, AMBG93, BBGL96, COK+04, CRM14, CK99, DDYM09, HZ99, LCVD94b, LM13, RRFH96, SSS99, SCL97, Ste96]. Million [HS95a]. million [LHLK10]. Millions [BBG+11]. MIMD [BvdBH94, BB93, BCL00, Uhl95a, WST95]. MIMD/DMMP [BB93]. MiMPI [GCC99]. minimization [POL99]. Minimum [KA95, Wuf99, NCKB12]. mining [MA09]. Mississippi [IEE94f, IEE95j, IEE94f, IEE95j]. mitigating [OdSSP12]. Mitigation [BBH...13a]. Mitsubishi [Ano03]. mittels [Wu94]. Mixed [ASA97, BEG+10, CF01, OPP00, ST02a, MRH+96, SK00, SB01].
Mixed-Mode [BEG+10]. Mixing
[CP98, GAP97]. MK [NS91], mm_par2.0
[OKM12]. MN [Ano94], Mob [STV97].
Mobile [ITT02]. Mode [BGK08, Br02],
BEG+10, LRT07, SB01, YX95]. Model
[AP96, BGG+94, BSS07, Cha02, CZZ+08,
Dar01, DFA+09, FBSN01, GLB00, GLRS01,
HLT11, KD12, LA02, LRQ01, MKW11,
NO02a, Ran05, RSV+05, RRBL01, SPM+10,
SB95, TBN00, VT97, Wati01a, AL93, BSC99,
Bir94, BG94b, BDV03, CMV+94, CL93,
CKP+93, ED94, GKZ12, GCN+10,
GlLyc+97, GWVP+14, GRTZ10, HPLT99,
HK09, HK10, KOA+95a, KSL+12, LR06b,
LA06, LLH+14, Mar05, NO02a, Nak05a,
RCG95, Sh69, Sh94, Sh95, SMAC08,
Str94, VBldG08, Vis95, Wan02, WC15,
WYLC12, YX95, TA14]. Model-Based
[AP96]. Modeling
[ACM96a, ATM01, BS07, CSH06, CDM93,
FST98a, GAM+02, MOL05, NM95, RGD115,
TD99, VFD02, XH06, BDP+10, Bic95, KM10,
KME01, KEG10, MS99, XXL13, YMY11].
Modelling
[FST98b, GC05, Ham95a, KDL+95b, BJS99,
HTHD99, KD1+95a, MSML10]. Models
[AKK+94, BS93, BZ97, CMK00, Cer99,
CNM11, DK06, EMO+93, ESM+94, GJN97,
PPF89, SS01, SMEO93, Whi04, BB95,
CH95, Duv96, KOR14, LV12, MCB05, Nes10,
RST05, SY+09, Wal00]. moderate
[Uhi95a]. Modern
[DARG13, KTD+12, SM07, HH14]. modes
[WZWS08]. modified [GP95, KD12].
Modular [CT02, HPP02]. modulator
[WWZ+96]. modulator/DBF [WWZ+96].
Module [Ano98]. Modules
[AKK+94, DS96a]. modules-design
[DS96b]. Molecular
[ABG+96, BST+13, BCG97, BL95, BS07,
DR97, DI02, KBM97, MH01, SA93, ZB94,
BvdSvD95, BBK+94, BMPZ94b, BMPZ94a,
CC06b, DCD+14, FHSO99, JAT97, JMS14,
KA69, KRG13, LSVW08, OKM12,
PARB14, SL95, ZWL13]. Møller [BL95].
Monito [SGL+00]. Monitor
[KRS99, Whi94]. Monitoring
[AH00, BCLN97, Beg93b, BFM06,
BFMT96b, CD98, DBK+09, GSN+01, LY93,
LW97, MWG97, MV95, SGL+00, UP01,
Wisi98, Wis01, Yano4, Beg92, Beg93c, Beg93a,
BB94, BS96a, BFMT96a, FLB+05, LC07].
Monodomain [ORA12]. Monte
[HJJ14, RP95, WH96, ADRC98, AK99,
DAK98, RR00, SK00, SKM15, ZZ04].
Monterey [Ano89, Gat95, USE94].
Montpellier [DE91]. Montréal [Lef95].
MOPS [GJN97]. Morehouse [AGH+95].
MOSIX [BBGL96]. motors [SKM15].
Moving [HAA+11, LSG12]. MPE
[GKL95, KFA96]. MPEG [NU05].
MPEG-4 [NU05]. MPI
[CDND11, DKK05, GBR97, GEW98, IEE96i,
JMS14, KGRD10, KDD04, Nag05, Per97,
PS01b, RLVRGP12, ST02a, TDB00, TDB12,
Vre04, WSN99, YM97, ST02b, ACDG02,
Ada97, Ada98, ACH+11, AASB08, ATM01,
AK99, AHP01, ACMZ11, ADL03a,
ADL03b, And98, FH98, Ano93d, Ano94d,
Ano98, Ano01a, Ano03, AKE00, AKL99,
AIM97, ADT+95, BV99, BCMR00, Bak98,
BF98, BFCK99, BBG+10, BCC+10,
BBG+11, BGBP01, BBSS99, BBG+14, BA06,
BCAD06, BADC07, BGR97, BKG02,
Ben01, BW12, BH12, BHK+13, BIL99,
BIC05, BP98, BF01, BCR99, BBD14,
BK96, BKdSH01, Bha98, BDIA94, BHL+95,
BHS+02, Bis04, BBH+13a, BBH+13b,
BDB+03, BIC+10, BR04, BM00, Boc01,
BBC+02, BHC+03, BHK+06, BBC+00,
BS96b, BM02, BR02, BM03, Br10,
BMP03, BS07, BDL96, Br10, BDH+95].
MPI [BDD+97, Brü12, BLW98, BFBB901,
BCH+08, BWV+12, CGC+02, CSW12,
CGC+11, CwCW+11, CRE99, CE00, CRE01,
CC10, CP98, CGJ+00, CFKL00, CSS95,
CGG10, CB00, CDMS15, CBL10, Ch02,
CEGS07, CDP99, CCA00, CFDL10, CL103,
CGZQ13, CSAGR98, CNC10, CCO0a, CGH94, CCSM95, CFMR95, CDD+96, CFF+96, CRMG14, CRM14, CCM99, CT02, CD96, CG99b, DPS05, DP05, Dan12, DZ96, D298a, DW02, D298b, Dem96, DPP01, DL07, DS96W, D96a, DRUC12, D102, DL10, DCFJ12, DCFJ14, DAK98, DG+12, DGB+14, HD02a, DX96, D0SW95, DCH02, DBK+09, EGH99, EDSV09, ES11, F97, FD96, FD97a, FD97b, FLD98, FD00, FBD01a, FBD01b, FGRD01, FBVD02, FD02a, FD02b, FD04, FCLG07, FB95, FB96, FB97, Fun98, FPY08, FF99, FNSW99, FTV800, FFP03, FHK01, FHK02, FSC+11, F997, Fin94, M993.

MPI [Fin95, FWNK96, Fin00, FBL+05, FC05, FST98a, FST98b, FKK+96b, FKK96a, FGT96, Fos98, FHPS94a, FHPS94b, FH+94, FHP+95, Fra95, FWR+95, FKL08, FBSN01, FSL98, GBR97, GFD03, GFD05, GGC99, GCCM09, Gao03, GBR15, GCGS08, GCC99, GCB12, GGLH+96, Gei00, GR07, GGL+08, GJR90, GSR97, GBB14, GGS99, GR95, GLB00, Gle93, GM13, GT01, GBB99, GH12, GRSM99, GMR00, GKS+11, GB98, GMFD98, GL9+96, Gra97, GEW98, GBS+07, GLM+08, GL92, GL94, GL95a, GL95b, GFL95, GL95c, GL96, GLD96, GL97c, GL97b, GGLH+98, GL99, GLLT99, GLLS99, Gro00, GLT00b, GLT00a, Gro01a, Gro01b, Gro02a, GL02, Gro02b, GT07, GLT12, Gro12, GC05, GSY+13, H98, HC10, Har94, Har95, Hat98, HD90b, HE02, Hem94, HZ96, Hem96, HR97, HZ99, HE98, HG12W1, HMK09, HPS+12];

MPI [HPS+13, Hin11, HRR+11, HDB+12, HDB+13, HDT+15, HK+01, HLOC96, HKT+12, HVSC11, HWX+13, HM01, HG12, HcF05, Hs98, Hs00, Hs01, HW97, IR01, IKT0, ICC02, JF95, JDB+14, Jes93b, JMM+11, JS13, JNL+15, Jon96, JR10, JSH+05, KB01, KFA96, KS15, KWP05, KW14, KD12, Kan12, KFL05, KB98, KK02a, KL94, KLY03, KLY05, KSJ95, KSJ96, KBS04, KGK+03, KHB+99, KMB97, KR09, KMG99, KEGM10, KV98, KAC02, KCO6, KMH+14, KRG13, LK14, LaDS+15, LLRS02, LTDD14, LGM00, LRT07, LC97a, LR06b, LTRA02, Lec12, LZ97, LW01, LPD+11, kLCC+06, kLCCW07, KL11, LFL11, LS10, LC96, LCW+03, LVP04, LWP04, LB96, LNL00, LA96, dLR04, LS08, LL01, LCC02, LKJ03, LCC+03, LKYS04, LSK04, LLH+14, MMDD13, MMR19, MS02a, MS02b, Man01, Man98, MLA10, MKP+96, MSCM15, MSL12, MH01];

[MSL96, MS96a, MC98, MAS06, MM02, MM03, MLO05, MCS00, MANR09, MRRP11, MG97, MMM13, MK04, MCLD01, MMH98, MHH99, MS99c, MB00, MvWL10, NAW+96, Nak05b, NSB07, NE98, NE10, NES12, NH95, NCB+12, NA99, NW98, Nie00, NHT02, NHT06, NFG+10, NN95, OM96, OKM12, OIS+06, OD01, Ong02, OP98, OMK09, Pace97, PARB14, Pan14, PK98, PES99, PSK08, PDY14, PS00a, PS01a, PHMJ11, Per99, PZ12, PGK+10, PFG97, PLR02, PGB+05, PGBF+07, PGAB+07, Pla02, PD11, PSSS01, PSK+10, PTH+01a, PTH+01b, PS00b, PTW99, QB12, Qui03, Rab98, Rab99, RDM199, RR01, Ram07, RSBD95, Ran05, RA09, RCFS96, RBB97a, RBB97b, RBB97c, RSPM98, RTH00, RH01, Reu01, RST02, Reu03, RGM15, RNP13, RPM+08, Rb00, Rolo08b];

[RFHR96, RR+99, RTRG+07, SE02, SCB14, SPM+10, Sap97, SGH12, SBF+04, SW12, SBG+02, SG05, Ser97, SS01, SWS+12, SG12, STY99, SM02, SM03, SP99, SZ11, SC04, SSC96, SS99, SBN95a, SBN95b, SDN99, SRL99, SJ02, SW95, SMTW96, SH96, SDB94, SLG05, SVD+95, SPH96, Slo05, SVC+11, SB01, SOH+96, SOH+98, SSL97, Ste96, ST97, Sto08, SU96, Str96, Sum12, TOOT99, TAH+01, TSY99, TSY00, TKP15, Tha98, TGL02, TG09, TV01, TD99, Tra98, THRZ99, TRH00, Tra02b, Tra02a,
Allgather, Connect, TFZZ12, UTY02, URKG12, VFD02, VS00, VSR94, VSR95, VdS00, VP00, VVD+09, VHZ96, Wal95, WO95, Wal96a, WD96, WO96, Wal01a, Wal01b, Wal00, WC09, WNL03, WNL06, Wer95, WST95, Wli04, WLR05, WZZ+96, Wis98, WB96, WM01, WADC99. MPI [Wor96, WRA02, WCS99, WT11, WYLCl2, WT12, WLYC12, WMP14, XH96, XLW+09, YM97, YL09, YHL11, YWC11, YCL14, YBMBC14, YPAE09, YTH+12, YSP+05, Zah12, ZZ04, ZLZ+11, ZLL+12, ZZ95, ZSnH01, ZKRA14, ZA14, bT01a, diAMCFN12, KH96, Mar06, YM97].

MPI-1 [SOHL+98]. MPI-2 [AKL99, BCDAD06, BHS+02, CwCW+11, CD96, DPSD08, GF03, GGH+96, GT01, GSHL+98, GLT99, GLTT00, GLT00a, HGMW12, LSK04, MS02a, MK04, PS00a, SS99, SSL97, TRH00, bT01a, BADC07].

MPI-Based [Ada97, FSC+11, RDMB99, SM03, Ada98, GKS+11, Gra97, LRR01, OP98, SZ11, TMPJ01]. MPI-basierte [Gra97]. MPI-benchmark [Reu01].

MPI-CHECK [LCC+03]. MPI-CUDA [dIAMCFN12]. MPI-DDL [FBK97].

MPI-Delphi [ACGdT02]. MPI-driven [Hin11]. MPI-F [FHP94b, FHP94].

MPI-FT [LC97a]. MPI-FT [LNE00].

MPI-GLUE [Rab08]. MPI-Hybrid [CGC+11].

MPI-I [IRU01]. MPI-I/O [IRU01]. MPI-interoperable [YBMBC14].

MPI-IO [BIC+10, CGC+02, CFF+96], DL10, FWNK96, FSLS98, LRT07, PK08, PTH+01a, SW12, St09, TLG02, ZZ04].

MPI-IO/GPFS [PTH+01a]. MPI-LAPI [BGP01]. MPI-Level [LV04]. MPI-like [CGJ+00]. MPI-only [LS01].

MPI-OpenCL [JNL+15]. MPI-OpenMP [MS02b]. MPI-parallelized [KMG99].

MPI-StartT [Hus98]. MPI-Umbgebung [GBR97]. MPI/CUDA [PHJ11]. MPI/GAMMA [CC00a]. MPI/MBCF [MMH99]. MPI/OpenMP [ADR+05, HKN+01, JR10, KS15, KRG13, LRRS02, PZ12, SB01, WT11, WT12]. MPI/V [ES11].

MPI/RT [SKD+04]. MPI/RT-1.1 [SKD+04]. MPI/SMPs [MLAV10]. MPI1 [Sti94]. MPI2 [MI08, Wal96b]. MPI2007 [MvWL+10]. MPI_Allgather [GMDMB+07].

MPI_Connect [FG901]. MPICH [BBC+02, BICH+03, BHK+06, Cot98, Cot04, GL97a, KTF03, LKJ03, OPM06, OF00, RFG+00, RsT06, SBG+02, TR05].

MPICH-CM [SBG+02]. MPICH-G2 [Coyt04, KTF03, OPM06]. MPICH-GQ [RFG+00]. MPICH-V [BBC+02, BHK+06].

MPICH-V2 [BICH+03]. MPICH2 [BMG07, GRO02b, ZSG12]. MPIConnect [FHPS94b, FHP94]. mpiMicroscope [Trä12b]. mpiJava [BCHF99]. MPI-E [Sout01]. MPI-PIV [BB99]. MPIT [HIP02]. MPIWiz [XLW+09]. MPJ [CGJ+00]. MPL [XH96].

MPLO* [CRD99].

MPP [CDJ95, DOSW96, GBR97].

MPP-Systeme [GBR97]. MPPs [BGR97a, RBB97a]. MPSoC [KKJ+08, KH10, PSI+14]. MPSoCs [MB12]. MPVM [CC+95, MI].

LSSZ15] MRO-MPI [MMM13]. MRO-MPI [MMM13]. Muli [Ada98, ABB+10, Bri01, BCKP00, CCG+08, DLW+10, EBKG01, HD02b, HRZ97, JCH+08, JNL+15, KBA02, KT02, LM13, MG15, MB00, NMS+14, PZ12, RR02, Sn09a, ST02a, ST02b, WBB97, YGH+14, ACMZ11, AGM06, BCG+09, DCH02, DLW+12, Fin94, Fin95, FHB+13, HFA08, HE15, JR13, JMM+11, JR10, KS13, KO14, LGS12, LS10, LLH+14, MALM95, NMS12, SFSV13, SVC+11, Str12, TS12b, TFSZ12, WCC+07, WO09, WADC99, WLYC12, ZW+95, SG14].

Multi- [ACMZR11, KSG13]. multi-/many-core [KSG13]. multi-agent [ZW+95]. Multi-agents [KBA02]. Multi-cluster [ST02b, KO14]. Multi-Core

NB [BG91]. NC [Agr95a, SL94a]. NCS [AL92]. nCUBE2 [BL94]. Near [PKYW95]. Nearest [DI02]. Nearest-Neighbor [DI02]. Nebelung [MFG+98]. NEC [GPL+96, HRZ97, TRH00]. Necessary [NPP+00b]. Needed [Gei00]. Neighbor [DI02]. neighborhood [HS12]. Nemesis [BMG+97]. Nesbet [BL95]. Nested [AHD12, BR12, BS01, DLRR99, GLP+00, HA10, MMS07, TTS00, aST07, AGM06, BS05, THH+05, YZ14]. Net [CNM11, NE98, NEO1, PES99]. Net-Console [PES99]. Net-dbx [NE98, NE01]. netCDF [LkLC+03]. Netherlands [DSZ94, Ano93e, Van95]. Nets [Sou01, Str94]. Network [ACM98a, AR01, BDG+91b, BDG+93a, BCKP00, CZ95a, CDHL95, CSC96, DM95b, DM95a, DBA97, DFM94, DGM93, DGMJ93, Ek97, Fer98b, FIs01, GS91b, GS92, Gei93a, GSxx, Hus98, ITT02, LB98, LH95, MSCW95, MAN90, OF00, OWSA95, TW01, AL92, AH95, BDG+92a, BDG+92c, BDG+94, BSvdG91, BJ95, Bon96, BBK+94, BID95, BFM96, Coe94, Cllaspdp99, Fer98a, GS91a, Gei93b, Gk97, GHZ12, HBT95, HK94, HH95, IM95, KMC96, KMC97, KA95, LH94, LHD+94, LHD+95, MK94, MRH+96, POL99, Pr94c, PTV99, Rag96, SEC15, SPK+12, TSS98, YS93, ZPLS96, GK97]. Network-Balancing [DBA97]. Network-Based [BDG+91b, GS92, BDG+92a, IM95]. Network-Specific [DM95b, DM95a]. network-topology-aware [SPK+12]. Worked [FGKT97, GBD+97, Nov95, Per96, BMPZ94b, BMS94a, BMP94a, GM94, HS93, RRG99]. Networking [ACM97b, ACM98b, ACM00, ACM01, ACM04, Ha12, LCK11, CXB+12, GH94, HS95a, ITT99, LCHS96, MZK93]. Networks [CSV12, CDM93, DDPR97, GFV99, GHL97, Hhk94, HLCZ00, HIP02, LHHM96, Li96, LH98, MBES94, QMGR00, SG15, TQDL01, Tou00, VLO+08, WAS95b, BK11, BR92, CZ95b, CFPS95, DG95, DZ98a, Jon94, LR06a, LTL94, LHD+94, LHD+95, NFG+10, Pan95a, TDB00, ZGN94]. Neural [AGH+95, CAM12, CSV12, QMGR00, Str94, GkLyCy97, Rag96]. Neurocomputing [PSZE00]. Neuron [LD01, RS97, VRS00, WR01, MM92]. Nevada [Ano94e]. never [Har94]. Neville [ACMZR11]. Newport [IEE93b]. News [Ano97, Ano03, Bn97, ESB13, KS15, Str94]. Newton [ZB97]. Next [GKPS97, Gei98, Gei01, ZKR14]. next-generation [ZKR14]. NFS [CGC+02]. NHPDCC [BRST94]. NIC [MFPP03]. NIC-based [MFPP03]. Nice [ACM90]. nineteenth [IEE95i]. Ninth [ERS96, R+92]. NIST [SNMP10]. NLP [VB99]. NM [IEE95a]. NoC [HWX+13]. NoC-based [HWX+13]. Node [HRZ97, KFL05, FKL08, GM13, JR10, LFL11, Zah12]. Nodes [BBC+10, CDB+03, DBK+09, JNL+15, MKC+12]. Non [BCG+10, CCG+97, HTA08, MW98, Man01, WLN03, WTR03, FH98, BCG+08, OKW95, OMK09, WLN06]. Non-blocking [HTA08, FH98, BCG+08]. Non-Contiguous [WTR03]. Non-Data-Communication [BCG+10]. non-dedicated [WLN06]. non-iterative [OMK09]. Non-linear [MW98, OKW95]. Non-Local [CCSM97]. Non-persistent [Man01]. nonaligned [AGIS94]. Non-continuous [JDB+14, TGL02]. Nondeterminacy [DKF93]. Nondeterminism [Obe96]. Nondeterministic [KSV01, CRD99]. Nonlinear [Nak03, Was95a, ZB97, CEGS07, Jon94]. nonsymmetric [dH94]. Nordic [FF95]. Norfolk [Sin93]. normalized [Gra09]. North [CJNW95]. Note [BR02, SGHL01]. Notre [IEE96]. novel [DDYM99, GKK09, MSL12]. November
37

Ocean [BS93, GAM+02, Bic95, Mal01, Nes10, Sch99, Wal00]. Oceans
[IEE94c, IEE94c]. OCM [BoFBW00].

OCM-Based [BoFBW00]. October
[Ano93e, Ano94e, Ano94i, Ara95, BPG94, Bha93, BDLS96, CHD07, CGB+10, DSM94, DLO03, DE91, FK95, GGK+93, IEE94f, IEE95a, IEE95g, IEE95j, IEE96b, IEE96c, IFI95, JB96, Kra02, Lod02, OL05, Sch93, Sie92a, Sie92b, Tou96, USE00, UCW95, Vol93]. ODE [Ano97, Bra97]. ODEs
[Pet97]. OdinMP [BB00]. OdinMP/CCp [BB00]. Offering [EK97]. Official [Ano98].

Offload [BRU05], oft [Ro08a]. OKs [Ano03]. old [LK14]. OMB [BWV+12].

OMB-GPU [BWV+12]. OMIS [LW97].

Omni [KSS00, KSHS01]. OmniRPC
[SHTS01]. OMP [SGJ+03]. OMP2001
[TB03]. OMP2012 [MBB+12].OMPI
[ACh+11, OM96]. OmpSs [YAJC+15]. on-chip [TDG13]. On-Demand [CTK00].

On-Line [BoFBW00, Wis98]. On-the-fly
[KSJ14]. ONC [RS93]. One
[BPS01, GFD03, GFD05, GBH14, GT01, HDR+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, LSK04, MS99c, Ols95, PGK+10, diAMC11]. one-dimensional
[Ols95]. one-layer [diAMC11]. One-Sided
[BPS01, GFD03, GFD05, GT01, HDR+12, LRT07, MH01, TGT05, TRH00, ZSG12, bT01a, LSK04, MS99c, PGK+10]. only
[LS10, Squ03]. Ontario [GGK+93]. onto
[OFA+15]. OOMPI [MSL96]. OOPS
[RFH+95]. OPAL [CwCW+15, NW98].

OPAL-MPI [NW98]. opaque [SOA11].

Open [BGG+15, KDL+95b, KDL+95a, Nob08, GB+07]. Open-Source
[BGG+15, Nob08]. OpenACC
[JCP15, LSG12]. OpenCL
[ABDP15, AB13, BLPP13, BN12, BW+12, BB+15, BAS13, CDD+13, CP15, CIJ+10, CHKK15, CCK12, CS14, DARG13, Di 14, DWL+10, DWL+12, FSV14, GScFM13, HD11, HE15, JSS+15, JR13, JNL+15,
KKM15, KH12, KM10, KLL11, KSL12, KPK13, Lee12, MAIHAV14, ÖN12, ORA12, PCY14, PHW13, PB12, RGD13, RBB15, SFSV13, SG14, SGS10, Str12, TKP15, TY14, YSWY14, YSL12. **OpenCL-to-WebCL** [CHKK15]. **OpenGL** [Ano98, LHZ97, ORA12]. **openMosix** [Slo05]. **OpenMP** [Cha05, CZG08, CGKM11, CMMR12, EV01, JMS14, MdSC09, SHM10, Vos03, OKM12, ST02a, ST02b, Add01, ARvW03, ABC00, AHD12, ACMZR11, ATL12, ADT14, ACJ12, Ano97, Ano01c, Ano03, AKE00, ADMV05, AGMJ06, AM07, ACD09, ABB10, BST13, BR02, BHP03, BME02, BN00, BF01, BBH14, BWW12, BCC00a, BCG00b, BGK08, BGG02, BS01, BS05, BB00, Bra97, Bri00, BDV03, BdS07, BGdS09, BFG10, BC00, BS07, BB00, BK00, BO01, BFG10, CRE09, CE00, Car07, CB00, CGLD01, CDK01, CM08, CHP01, CBPP02, Cha02, CM05, CGKM11, CMMR12, Cla98, CCM06, CC00b, DM98, DW02, DBVF01, HD02a, DFC07, DFA09, ETW12, EM00a, EM00b, EV01, EdS08, FGR10, FM09, GSA08, GP01, GG09, Goe02, GAM00, GAML01, GOM01, GAM02, Gra09]. **OpenMP** [HPP02, HP05, HDDD09, HA10, HD02b, HM09, HAS00, HAJ01, HVSC11, HLCZ00, HT01, HCL05, HEHC09, HIJC10, HAA11, IJM05, ICC02, IOK00, ITT02, JCP15, JKH08, JPOJ12, JFY00, JFY03, JCH08, JMM11, KB01, KOB01, KaM10, KOI01, KKH03, KT02, KSJ14, KBVP07, KBC09, KK10, KT10, HH15, KAC02, KC06, Kuh98, KPO00, KSS00, KSSH01, KJEM12, LOHA01, LP00, LD01, LME09, LCC13, LHC07, LNW12, LA02, LA06, LMRG14, LHZ98, LL01, LLH14, MKC12, MS02b, Mal01, MM07, MB12, Mar02, Mar03, MLC04, Mar05, Mar09, MPD04, MCB05, Mat00a, Mat00b, Mat01a, Mat03, MGG05, MGC12, MG15, MFG08, MKV01, MBE03, MRRP11, MMSW02, MKW11, MM14, MCS08, Mi01, Mi02, Mi03, MBB12, NO02b, Nao05a, NIO02, NIO03, NPP00b, NPP00c, NPP00a, NPP00d, NAAL01]. **OpenMP** [NA01, NNON00, Nob08, NU05, NHT02, NHT06, OOS08, OP10, OPW12, PARB14, PPJ01, PVKE01, PK05, PG02, PKE10, Qui03, Ran05, SDLQ12, RLVRG12, RBA05, SSKH01, SHTS01, SSK01, SLGZ99, SGZ00, SPL12, SHPT00, SSAS12, SK00, Stp02, TBS12, TS12a, TS02, TTS00, TSS01a, TSCA12, TJP12, Thr99, TBG12, THT05, TGB05, VG14, Vos03, Vre04, Wal00, Wal02, Wan02, WC12, WC15, WPC07, WYLC12, WL12, YHL11, YWC11, YL14, YPA09, YYW12, ZAT07, ZSH01, aMST07, dCZ06, RM09, SSGF00, WCSS13]. **OpenMP** [KDT12]. **OpenMP-based** [LNW12]. **OpenMP-like** [BKO00, KOB01, VGS14]. **OpenMP-oriented** [MLC04]. **OpenMP-style** [JPOJ12]. **OpenMP/MPI** [BEG10, HM09, LL13, MGG05, NO02b, Nak05a, SK00]. **OpenUH** [HEHC09, LHC07]. **Operating** [MMH98, RGD97, USE94, Wil93, ARS89, Sei99]. **Operational** [KOS95a]. **Operations** [BIL99, BIC05, CAA00, FCR07, FPY08, GDF05, GL00, PSSS01, SM03, SV99, TFZZ12]. **Operators** [NHT02, NHT06]. **opportunistic** [CC10]. **optical** [MRH96]. **Optimal** [BP99, GARM00, ZGN94, BB95, ER12, PQ07, Sur95a]. **optimiertes** [Sei99]. **optimisation** [AMuHK15]. **Optimising** [Boo01, FKH02]. **Optimistic** [SCL00, CXB12, PY95]. **Optimization** [BSG00, BHNW01, DBA97, Goe02, HS12, Hus00, ITT02, KG03, KMH14, Mi01, NIO02, NIO03, PSSS01, SM03, SVL99].
Fis91, For95, FP94, FS93, FF95].

Parallel [GCBM97, GLN+08, GBD+94, GKP97, GR07, GSI97, GB98, GHL97, GK10, GFPG12, GJN97, Gre94, GLS94, GL97a, GLS99, GlkLYC97, HJ98, HLP10, HK94, HK93, HHH94, HT01, HA+11, IEE93b, IEE94a, IEE94f, IEE95h, IEE95f, IEE95g, IE96a, IE96c, IE96g, IE96d, IE97b, IEE05, IIKTT00, IBC+10, ID49, IH04, ILM05, JAT97, JML01, Jou94, JRM+94, KFA96, Kan12, KKL02a, KOI01, KNT02, Kat93, KBS04, Kep05, KRO9, KOK00, KPK01, KMC96, KMC97, KS96, KKD03, KKD04, KS01, KV97, KHS01, Kuh98, Kum94, Lad04, LTRD14, LTR00, LSKL02, LTRA02, LHHM96, LTR00, LHZ97, kLCC+06, LOS0, MSOGR01, MS02b, MM92, MWG97, dMBdF02, Mar06, Mar07, MFTB95, MSCW95, Mat94, Mat95, MGC12, MG15, Mic93, Mic95, MTW06, MCLD01]. Parallel

[MS95, MCAS+08, MB+12, MS97, NO02b, NO02a, NOk03, Nok05a, Nok05b, NSZS12, Nar95, NSS12, NAJ99, NJ01, Nov95, Oed93, OP10, OLG01, Ong02, Ott93, OWAS95, PRC97, PPT96a, PVKE01, Pat93, PZL00, PV97, Per99, Per96, PLR02, PBC+01, Quo03, RR00, RDMB99, RBS94, Rec96, RS95, RC97, RSV+05, Ro94, RVD90, RTL99, RLL01, SCP97, SPE95, SG00, SCH01, Sch96a, Sch96b, Seg10, Ser97, Sev98, She95, SM03, SP99, Sie94, Sie92a, Sie92b, Sm93, STV97, SWH15, Sou91, Sta95b, Ste94, SSN94, SGSS0, Str96, Str97, Str04, SNM90, Sun90a, Sun94a, Syd94, TSS90b, TTP97, TC94, TCP15, TQDL01, TTH00, TDBEE11, TV94, Uhl94, Uhl95b, UHL96, UC95, VLO+08, VR00, VB99, WH06, Wal01a, Wae94, WAS95b, WHDB05, WO97]. Parallel

[WSN99, WTR03, WT12, Y97, YHL01, YH96, YPA94, YG96, YTH+12, YZPC95, YSL+12, ZB94, ZO4, ZD04, ZWJK05, ZAT+07, ZLS+15, ZGC94, ZB97, van97, ACM97a, ARvW03, AD98, AL92, ASCS95, ADT14, AD95, ACJ12, Ano93g, ADB94, ADD95, AB93b, AFST95, AB13, AGIS94, ADMV05, BHJ96, BB+94, BR91, BA06, BB95, BCAD06, BB93, BDG+92b, BB94, BFC94, Ben95, BvdSvD95, BKH+13, BAV08, BN00, Bir94, BKML95, Bos96, BFM96, BI95, Bri95, Bru95, BDW97, BSH15, CARB10, CL93, CGK11, Cav93, CLSP07, CT13, Cha05, Cha96, CGL+93, CE057, CH94, C96, Che99, Clj+10, CS96, CS99, Cla05, CE95, CDF95, CDgM96, CB99, Coo95a, CCH03, CLAPDP09, CFF+96, CPR+95, CD01, CDH+94, CKP+93, CB11, DK93, DFK94b, DLR94, DLRR99, DDS+94]. Parallel

[DR94, DSZ94, DM93, DRUC12, DBVF01, DK05, DvL94, DMW96, DLM99, DLO03, Dv92, DZZY94, EASS95, EV01, FB96, FFB99, FM90, FOR94, FST99, Fer98a, FC+12, FK+96b, FFM11, FHC+95, GG99, GGN+10, GLG+98, GB95, GG09, GFB+14, GKS+11, GE98, GKK09, GCF13, Gau90, GP95, HAM95b, HPY+93, HWS09, He93, H+96, HZ94, HZ99, HPLT99, Hund95, H95, HLOC96, HVSC11, IEE97a, IM95, JW96, J95, J+11, J96, K+97, KBO01, KOS+95, KmWN10, KL95, Kos95b, KG93, KF94, Kra02, KJ+08, KH01, L99, LCL+12, LH98, LS10, LCV94a, L95, LG93, LM13, LL95, LC97b, LSR95, MMR99, MB+94, MK39, MM95, Mar05, MSP93, MK00, MN91, MHC94a, MRPP11, MAL95, MLA+14, MRH+96, MMM99, Mor95, MC99, MR96, MVYL+10, NSBR07]. Parallel

[Neu94, NB96, NBS08, NC92b, NF94, OdSSP12, Ols95, Oh94, OW92, PHA10, PPT96b, PPT96c, PK96, PBG+95, PBK99, PPF89, PY95, PBPT95, PSLT99, PCS04, Ram07, RCJ95, RB15, Ro08b, SLMJ14, SSKF95, SH94, Sch94, Sch99, SP96, BFB94, SWY94, SC92, SCC96, SMAC08, SZ11, SPL99, SMS00, SVC+11,
Smi93b, STT94, SRK+12, SLS96, Sta95a, Sti94, SMSW06, Sun95, Sur95a, Sut96, SL95, TJD09, TDB00, TMPJ01, Uhl95a, Uhl95c, VM95, Vis95, Vos03, Wan97, Was96, Was95a, WK08a, WK08b, WK08c, Wol92, WT11, WYL12, WLYC12, WMP14, YHL11, YWC11, YYY+12, ZL96, ZWH95, ZWL13, dH94, ARL+94, Ano94c, Ano94f, ACDR94, BDLS96, BS94, BG94b, Bos96, CC95, Cza13, DMM94, DHK97, DW94, EJL92, FR95, FF95, GN95, JPTE94, JPP95, KKKD05, Kum94, Parallel [LK10, LkLC+03, Mal95, MKP+96, OKW95, PQ07, QR95, SSSS96, SPE95, Stp02, TDBEE11, TGEM09, Vol93, Vre04, WN10, YC98, ZPLS96, ZDR01, ZHS99].

Parallel-programming [KKJ+08].
parallel/distributed [FHC+95, Wan97].
parallele [GEW98].
Parallelisation [WCVR96, LF93b].
Parallelism [CGC+11, EdS08, EK97, FKKK96, GLP+00, GAM+02, DK02, KT02, Mar03, MMS07, MdsC09, RBAA05, SHM+10, SGZ200, TSY90, Thr99, YPAE09, ATL+12, BK11, BR12, BS01, BS05, CCM12, GAM+00, HSP+13, HK09, JPOJ12, Kos95b, OPP00, RKBA+13, SLGZ99, SHPT00, THH+05, TWFO99, W009, WFTO14, YZ14].

Parallelization [AL93, And98, AIM97, BCM11, BS07, CRE99, CP97, Cot93, Cza03, ETV94, HA10, JR10, Kik93, LP00, OD01, Pok96, QMRGR00, Rag96, RP95, RM99, RS97, SAS01, WPL95, WZWS08, WR01, aMST07, AGMJ06, BW12, BDY99, BJS99, CDD+96, Gao03, Goe02, IJM+05, JIY+05, JMS14, KS15, KD12, KRG13, MCB05, MG050, Ns10, TWFO09, VLBvdG08].

Parallelized [FBS01, OMK09, KM99, OKM12]. parallizing [BHRS08]. Parallelizing [BST+13, Car07, GGH99, IOK00, IKM+01, IKM+02, SR95, ZZ95, AMS94, BY12]. Parallelldatorcentrum [Eng00].
Passing
[CD01, DSK93, DM93, DSD05, DS96b, DHH99b, DOSW96, DLM99, DOKP00, DLO03, FK94, FHB+13, GL92, HP05, HPY+93, Hem96, KJA+93, Kra02, LR06a, LBD+96, wL94, LCY96, LC97b, MP95, NS91, PS07, PKB06, Pie94, PR94a, PS00b, Sei99, SW95, SDV+95, SZ99, SSG95, Sti94, TSZC94, VM95, Wal94a, Wal94b, ZWL13, ZKRA14, DiN96, GGHL+96, Han98, Hem94, RRFH96, SLG95, Wer95, YGH+14]. Past
[Dar01]. Path
[CGP98, GAMR00, SLN+12, Ze95]. path-based [SLN+12]. Pathway [CNM11].
PATOP [BFWB01]. Pattern
[CSW12, RDMB99, MA06, SJLM14]. pattern-based [SJLM14].
Pattern-Independent [CSW12]. Patterns
[DDMV97, FPY08, KB98, RRAGM97, SGH12, DZZY94, HGMW12, PM95, PKS+10]. PC
[AH00, EKTB99, KS01, LKYS04, RLO1, Ste00, WLYC12, YST08, YL09, MMB+94]. PC-Cluster [RLO1]. PCAT
[ACDR94, GN95]. PCAT-93 [ACDR94].
PCAT-94 [GN95]. PCG [BJ97]. PCI
[GG97]. PCI-based [GG97]. PCRCW
[BS94]. PCs [CRE99]. PCSC [LM94].
PCTE [HZ94]. PTRAN [KHS01]. PDCS
[YY96]. PDE
[GBR15, NHT02, NHT06, NPS12]. PDES
[PT01, SCL00, SCL01, HHA95]. PDGC
[CG+10]. PDP [IEE96g]. Peer
[GR97]. Peer-to-Peer [GR97]. PELCR
[PG07]. PEMPI [FB95]. PEMPIs [MOL05].
[PPT96a, Cou93, He93, MW93, SMTW96].
6000 [BGBP01, AL93, NMW93]. ACM
[ACM04]. AP1000 [IM94]. C
[GTH96, KPO00]. CCp [BB00].
Computation
[HI02]. CORBA
[LRW01].

cost [GWVP+14]. Crawler
[Wal01a].
CRAV-T3E
[Che99]. CUDA
[PHJM11].
DAC
[Cza02, Cza03]. DFB
[WWZ+96].
distributed
[FHC+95, Wan97]. DMMMP
[BB93]. DVP
[HHvA+00]. eMICH
[MS96a]. ESA
[Wh94]. Fortran
[TBG+02].
GAMMA
[CC00a]. GPFS
[PTH+01a].
GPU
[KS12, Lee12, LCI13, WIA15].
IEEE
[ACM97b, ACM98b, ACM05]. Main
[Tou96]. many-core
[KSG13, MBBD13].
MARTE
[RGD13]. MBCF
[MMH99]. Message
[ST02b]. MPI
[AD98, BDW97, CHD07, CHD09, CD01, DLM99, DPKP00, DLO03, Kra02, LKDO8, MTDW06, RWD09, NO02a, AGRG97, BEG+10, Coo95a, Coo95b, DDK07, HMK09, LLC13, MGG05, MTW07, NO02b, Nak05a, OF00, OL05, RsT06, SS05, SK00, Squ03, SN01, ZWZ05].
multigrid
[AGIS94].
Myrinet
[CPP99]. Navigator
[DLR94, ID94].
NT
[FD97]. OpenMP
[ADR+05, KHN+01, JR10, KS15, KRG13, LRRS02, PZ12, SB01, VDL+15, WT11, WT12]. output
[JWB96].
PVM
[ESI1, KDL+95a, KDL+95b, MWO95, PPT96b, PPT96c].
replay
[CR99]. Restart
[SB+05]. RT-1.1
[SKD+04]. run-time
[TSY99]. SCI
[RR01]. server
[Sch93]. Slave
[LTR00]. SMPs
[MLAV10]. SP2
[FHP+95, Fra95, FWR+95].
Thera
[CD01]. Worker
[EML00].
Pennsylvania
[ACM96b, IEE94d].
pentadiagonal
[Kan12]. Pentium
[An03].
Pentium(R)
[SBT04]. PENTRAN
[KHS01]. people
[ASC95, An04].
per-triangle
[SA91]. perception
[CLM+95]. perceptual
[WPL95].
Performance
[ACM97b, ACM98a, ACM98b, ACM00, ACM01, ACM04, ATM01, AR01, An01a, An01b].
ADR+05, Bak98, BBGL96, BN00, BBDH14, BGG+02, BY12, BRM03, BRST94, BS07, BDL98, BCKP00, BHNW01, BFMT96b, BFBW01, BEG+10, CDD+13, CRE99, CDJ95, CGLD01, CNM11, Che99, CSC96, DPSD08, DM95b, DWO2,
Performance-aware [MSMC15].
Performance-based [YWC11].
Performance-Portable [JSS+15, DWL+10, DWL+12].
performance-prediction [BDV03].
performance/cost [GWVP+14].
Performances [GFV99, DS96b, IM94].
Performing [CC99].
Permutations [CC99, LTDD14].
Persistent [Man01, SG12].
Persistent-Sets [SG12].
Personal [SSSS97].
personalized [BHJ96].
Perverse [Rol08a].
PES [MK94].
Pessimistic [BCH+03].
petaflops [LSG12].
Petascale [CGKM11, ZWL13, Gei01].
Petersburg [Mal95].
Petri [CNM11].
PFSLib [DHK97].
Pinhole [NH95].
Pipeline [ACM00].
Pipelined [GAML01].
Pipelines [MAGR01, RKBA+13].
Pisa [Sil96].
Pittsburgh [ACM96c, ACM04, Ham95a, IEE94d].
Place [IEE94e, BCK+09, PSHL11].
placement [SLN+12, SPK+12].
Planck [Ano94c].
Planning [GAMR00].
plant [FO94].
PLAPACK [van97].
Plasmafusionsforschung [BL94].
Platform [BKGS02, NO02b, BSH15, CB11, Cza13, DWL+10, DWL+12, HHA95, JR13, NO02a, XLL13, YSL+12]. Platforms [AIM97, HD00, JML01, ZB97, GGC+07, GFB+14, MBBD13, TKP15, TS12b].
POLSYGLP [SMSW06]. polygonization [TSP95]. polygons [CT13]. polyhedral [BHRS08, KGB+09]. polymers [JAT97]. polynomial [SMSW06]. port [CCHW03, Har94, RRM93]. Portability [KaM10, R95, RH01, ABDP15, PHW+13, Reu03]. Portable [BHV12, BHL+95, CDH+94, DHHK97, Di 14, FCLG07, FLS98, GLS94, GLS9a, GLS99, JSS+15, LNEE00, Man98, MKV+01, MG97, PPT96a, PBC+01, SSCC95, Sti94, Tra98, WCS+13, YBMCB14, Arn95, BCK+09, BfDA94, BB00, BL99, BAS13, CH94, CEF+95, DWL+10, DWL+12, FWNK96, GR95, GL94, G94, GLDS96, HZ94, HSW+12, JC96, KN95, LFS93a, LFS93b, LHC+07, MMB+04, PPT96b, PPT96c, Sto98, VM95]. portal [AASB08]. portals [BS96b, BMRO2, BRM03]. Porting [AAS06b, BSC99, BLW98, EM02, Har94, Har95, HASP00, KGC+03, KME09, SR96, dCH93, BvdB94, HD11, MWO95, ZPL96].
Portland [ACM99, ANS95, IE93e, SW91]. Portugal [IE93d, IE96g]. Positron [Pat93]. POSIX [LD01]. Post [BBH+13b, ABC+00]. Post-failure [BBH+13b]. POSYBL [Mat94]. Potential [EGC02, Gro01a, KS15]. Potts [KO14].
Precedence [EGR15]. Precedence-Constrained [EGR15].
Precision [Ano98, Kha13, ZC10, JPT14]. Preconditioned [GFPG12, MM92].
Prediction [MOL05, WHD05, ZWJK05, ADR+05, BDV03, CMV+94, HHA95, SEC15, SC96b, SSN94, Was95a, ZAT+07].
Preemptive [BBH+06, BBGL96]. Preface [DKD07, OL05]. Prefetching [BI+10].
Prefix [WJ12, DK13]. Preliminary [BF98, Wal01a, RJC95, SWS+12].
Preprocessors [Ano01a]. prescription [MRH+96]. Present [Dar01]. presented [ACM90]. preservation [IEE94c].
Preserving [RNPM13]. Pricing [RR00].
Primitives [DDL00, FST98a, ABDP15, CIJ+10].
Princeton [Bha93]. principles [BSC99, HS12, SSP+04]. printing [YM97].
priority [DR95, Man98]. Prism [SDN99].
private [Str94]. privatization [KRG13].
Probabilistic [LAD+15]. Probability [QRMG96, Sta95b]. Problem [BHS15, DAK98, GAMR00, ICC02, Lee06, MTSS94, RLVRGP12, ZSNH01, AB93b, DSM94, GM94, GCKF13, HMK94, IHH05, MM92, Cza13]. Problems
[ASA97, BHM94, BHM96, BMR01, BPMN97, CGPR98, EML98, HAA+11, DK02, Nak03, AL96, CEGS07, FR95, LSR95, NZZ94, OMG90, SC96a, SD99]. procedure [AGLv96]. Proceedings [ACM94, ACM96c, ACM97a, ACM97b, ACM98b, ACM94, ACDC94, CJNW95, GN95, Ho11, IEE93f, IEE95d, IEE95, LCK11, MC94, R+92, SM07, Ten95, TG94, dGM94, ACM96b, Ano94e, Ano94i, BPG94, Boll97, BH95, CLM+95, DSS94, DE91, EJL92, FF95, GHH+93, HK95, HHK94, IEE94a, IEE94b, IEE94c, IEE95b, IEE95e, IEE96a, IEE97c, IEE05, JPT94, Kemp94, LF+93a, Li96, PSB+94, PBPT95, SPE95, SW91, WPH94, ACM90, ACM95a, ACM05, ACM06b, ACM06a, ATC94, Agr95a, AGH+95, AH95, Ano89, Ano92, Ano94a, BBG+95, Bha93, CHD07, C2G+08, CGKM11, CMMR12, CGB+10, CNDN11, DTM+92, DT94, DLO93, EV01, EdS08, ERS95, ERS96, Fer92, FK95, Gat95, GGK+93, GA96, GT94, Ham95a, HS94, HK93, IEE91, IEE92, IEE93d, IEE93c, IEE93b, IEE93e, IEE94e, IEE94d, IEE94f, IEE94b, IEE94g, IEE95h, IEE95k]. Proceedings [IEE95i, IEE95f, IEE95i, IEE95g, IEE95j, IEE96g, IEE96f, IEE96e, IEE96d, IEE96h, KGRD10, LKDO8, MTWD06, MHH93, MCAS+08, MoSC09, Ost94, PR94b, Rec96, RWD90, SCR92, SHM+10, Sie94, TBD12, USE94, USE95, USE00, VW92, Vos83, Y+93, YH96, AD98, BC91, BDL96, BS94, Bos96, BFM+96, BDW97, CH96, CD01, DSM49, DDK05, DW94, DMW96, DLM99, DKP10, Eng00, FR95, GH94, HAM95b, HSS95, IEE96c, IEE97a, KRA02, KKKD04, LCHS96, Mal95, PBG+95, Sch03, Tou96, VV95, Vo93, Was96]. Proceedings [Ano93e, Ano94g, IEE96i, IEE97b, LHHM96]. Process [AUR01, BGL00, CLI03, DeP03, DK06, FDG97a, FDG97b, FLD98, FP08, KCP+94b, KOW97, PS00a, SC04, ST97, Tra02a, BK11, BBGL96, CK99, FLD96, GL95a, HRR+11, HG12, JLS+14, KCP+94a, MK00, Ste96]. Process-Management [BGL00]. processed [HJ98]. Processes [MW98, Pet00a, Pet00b, FS95, SPK+12]. Processing [ACT94, Agr95a, AR01, BBG+95, DKM+92, GGC+99, GGCG01, HJBB14, IEE93b, IEE93f, IEE95e, IEE95h, IEE95f, IEE95g, IEE96b, IEE96g, IEE96e, IEE96d, IEE97b, IEE05, IOK00, JDB+14, KOI01, LSVWM08, MSM10, Nar95, NH95, Nj01, PLR92, PD98, Rec96, RRBL01, Rol94,SCP97, Srv98, Sie94, Sin93, VLO+08, WN10, AB95, Ano94f, BJ13, BFMR96, CFPS95, CCLASDP99, DSZ94, GGGC99, Gre94, HAM95b, HPS+96, JC96, Kat93, Krum94, LHLK10, LG93, PSB+94, PBPT95, RKB+13, Roh00, RCG95, SSS99, SLS96, VDL+15, Wol92, WWFT11]. Processor [HC06, Oed93, Ott94, RR02, Smi93a, SBT04, ABDP15, DCH02, HC08, LL01, OIS+06, RNPM13]. Processors [AJ97, Bri10, HK93, HK95, OLGO1, PZKK02, BBG+14, CBM+08, DBL11, HTA08, HWX+13, KnWh10]. Producing [HAJK01]. product [CMH99, ER12, SMSW06]. productive [LV12]. Productivity [BS07, KaM10]. products [Ano97, Bra97]. profile [TWFO09, WTFO14]. profile-driven [TWFO09, WTFO14]. profiler [AS92]. profiles [Wil94]. profiling [GPL+96, Rab99, Vet02]. Program [Ano96c, AB93a, BMS94b, CHPPP01, Cot97, EML98, MM95, MRV00, Ney00, PS01b, TS00, THN00, UT02, CDZ+98, FJ95, LP00, LLC13, OKM12, PPF98, Sai10, TMP01, JL96]. programación [VP00]. Programmcode [BL94]. programmers [CGG10]. Programming [ACM90, Ada97, ACG97, ASA97, ACJ12, Ano96a, BBG+10, BLP93, BHV12, BF01, BBG+01, BKO00, CMK00, CDK+01, Cha02, CZG+08, CF01, Cza03, DM98, DARG13,
DDL00, DK06, DWL+10, EM00a, EM00b, FTVB00, FWR+95, GLRS01, GLS94, GLS99, HA11, HDB+12, HDT+15, KKHH03, Kep05, KP96, KmWHI0, KVVH07, Lad04, Ldf01, LLRS02, MSOGR01, Mat94, Mat95, MCis+08, NO02b, SPM+10, SS01, SDN99, SHH94b, ST02a, ST02b, SGS10, Sp02, TTP97, VT97, Vrt04, Wal01a, Wal02, W097, YM07, YHGL01, ACGdT02, AMuHK15, AB13, BCA+06, BB94, BS96a, BKH+13, Cha05, CEF+95, CDH+94, CGH+14, DWL+12, Duv92, EASS95, EV01, FB95, FB96, Fan98, FSTG99, Fer04, Fra95, FHB+13, FF95, GKZ12, Ge06, GBH14, GRTZ10, HTA08, HS93, HZ94, HDB+13, HVSH95, HSW+12, HZG08). programming

KDD012, KOB01, KSG13, KSL+12, KFSS94, KKJ+08, LV12, LFS93a, LFS93b, LH98, LPD+11, LLH+14, MMB94, MVTP96, MSP93, MC99, NO02a, Nak05a, NYNT12, NGBS08, OIS+06, Oh14, OW92, Pae97, PKVE01, PF05, Qui03, RJDH14, SK10, iSYS12, SSKF95, SYR+09, Seg10, SPK96, SBF94, SLP99, SHH94a, SD99, VP90, Vos03, Wal01b, Wan02, WCC+07, WADC99, WYLC12, YHL11, YWC11, YX95, YS93, ZGC94, DR94, Che10). Programs

Beg93b, BkdsH01, BGK08, BGG+02, BDL98, BGL00, CSW12, CRE09, CHP01, CD98, DLB07, DMMV97, Di 14, FKH02, GR07, GTH96, GL04, GC05, HC10, HKN+01, HM01, KFL05, KL94, KSJ14, KKVV01, KSV01, Mar09, MVTP95, MOL05, MBE03, MKW11, MCLD01, NSZS13, NE98, NE01, NPP+04d, OM96, PPJ01, RH01, RGF+00, SG02, SF96, TGBS05, Wel94, Wis07, ZLL+12, Beg92, Beg93c, Beg93a, BCK+09, BMbps03, CRE01, CGL+93, CH94, CRM14, CFP96, DKF93, DFK94b, EP96, FLB+05, FKL08, GGH99, GRRM99, GKS+11, GB94, HD11, HZ94, HLOC96, HEHC09, KCD+97, KS13, KO14, LGKQ10, LLG12, LCC+02, LCC+03, MT96, Mor95, NBK99, Obe96, OdSsp12, PES99, Reu03, RRG+99, SKS01, SMAC08, SZ11, SR95, SY95, SC96b, THH+05, UGT09, VVD+09, YYW+12, ZRQA11). Progress

KRU05, LAdS+15, MLA+14, MC94). Progress-Dependence

LAdS+15). Project

BHK+06, BSH15, DHK97, MRY00, ABC+00, CDH+94). Promise

Ano93e). Promotion

OCY+15). Propagation

EMO+93, ESM+94, JML01, SMOE93, KEGM10, RMNM+12). Properties

FGRT00, MS96b, SSP+94). Proposal

DHHW92, DHHW93a, DFC+07, DFA+09, ZKRA14). Proposals

Wal96b). protected

GHD12). protein

SEC15, ZAT+07). proteins

BHW+12, BBH+15). Protocol

CSY+13, kL11, RA09, XF95, BDB+13, CwCW+11, DDYM99, MN91, MB00, ZP106). Protocols

BCH+08, DM93, LH98). Protoplanetary

dlFMBdlFM02). Prototype

Ano01c, FHP+94, MMSW02, BK96, CCF+94, KLY03, KLY05). prover

Sur96). Provide

Add01, LMRG14). Provides

Ano98, Nel93). Providing

GKP97, Zah12). Proving

MS96b). PRS

UCW95). PS

AMV94). Pseudo

Wal01a, Lan09). Pseudo-search

Wal01a). Pseudorandom

WHDB05). Pseudospectra

BKG02). pseudospectral

Bri95, MRRP11). PSPVM

BWT96). Pthreads

AS14, TS12b). PTX

iSYS12). Public

Str94, GWVP+14, Nel93, RST02). Public-private

Str94). Puma

BS96b). Purpose

BDT08, Che10, SZBS95a, Sun94a, ABDP15, CBM+08, PF05, SK10, SZBS95b). PVaniM

BCLN97, TSS98). PVFS

IRU01). PVM

AD98, BL94, BDL06, BDW97, CHD07, CHD09, CD01, DKD05, DLM99, DKP00, DLO03, Kra02, KKD04, LKD08, McD96, MTWD06, RWD09, Wli94, AJ97, Ahm97, AS92, ACRG97, ADRCT98, AL92, AGR+95b, AB95, ASA97, AL96, ARL+94, AKK+94, AP96, Ano94b, Ano95c, Ano96a, Ano96b, ABI95a, ABI95b, ABG+96,
HGMW12, RSC+15, SH96. Remote-Scope [OCY+15]. Remotely [GGCM99, GGCGO01, GCGS98, VLO+08, GGGC99]. Rendering [GCBM97, LSLZ02, SU96, UCW95].
Representation [BMR01, KD12, CCM12]. Reproducible [GL99, XLW+09]. Requirements [GSHL02, GT07, Ber96, LCVD94a].
Research [Ano96c, BR02, MC94, SL94a, SGHL01, Ara95, BPG94, LP00, Oed93]. Reservoir [OWSA95, ZZ95, Ano95b].
Resident [JDB+14]. Resilient [CGH+14]. Resolving [Str97]. Resource [BGGR97b, BSH15, KK98, DZ96, FLDS96].
resource-conscious [ZA14]. Resources [NAW+96, Kos95b, R+92]. Response [BBC+00]. restarted [dH94]. Restoration [FJB01].
Results [BIL99, BIC05, HMSW94, Wal01a, BR95c, DHH96, VDL+15]. retargetable [KKJ+08]. rethinking [GLT01].
Review [BDL98, Che10, Mar06, MCLD01, Nag05, Per96, Per97, Vre04, Stp02, Vog13]. Reviews [Ano97, Bra97, YM97]. Revised [Cha05].
Rim [REE95e]. RISC [AL93, NMW93, BVGG91]. RNA [WHDB05]. RnaPredict [WHDB05]. robotic [ZWZ+95]. Robust
routed [Pan95b, RJMC93, ZGN94]. routers [Jes93a]. Routines [Add01, Sch96a, LSK04, Sch06b]. Routing [BHM94, BHM96, MTSS94, MBES94, WH94, BS94, Zah12]. RPC [KZCS96, KS97, RS93, SHTS01]. RPVM [CMRR03, LR01].
RS [BBGP01, Con93, Heb93, MW93]. RS/ [Con93, Heb93, MW93]. RS/6000 [BBGP01].
RS6000 [CDM93]. RSA [WLC07]. RTL [BGG+15]. RUBIS [BR94]. Ruby [Ong02]. Run [DLR94, DGMJ93, FH01, GOM+01, OP98, SBW91, SS96, KPL+12, RR+99, Str94, TCBV10].
Run-Time [FH01, GOM+01, OP98, SS96, DLR94, KPL+12, TCBV10]. Running [BZ97, CCM+06, YK+96, CRE01, ZLZ+11].
Runtime [BGD12, CFF+94, Gro00, KBS04, NPP+00d, TJPF12, BL99, BR94, HPS+12, HPS+13, KW14, MA09, NPP+00a, TSY00, YAJG+15]. Russia [Mal95]. RWA [RLVRGP12].
S [Roh00]. S-language [Roh00]. S1 [GLT00b]. S3D [LSG12]. Safe [Pla02, GCC99, LFSS92, LFS93a, LFS93b, NYNT12].
safety [GT07]. salesman [GM94]. Salt [Hol12]. Sand [ACM97b, Ano95b, BBG+95, GE95, GE96, Has95, IE93a, IE94g, IE95h, IE95g, IE97c, LF+93a, NM95].
Sanders [Che10]. Sandy [VDL+15]. Santa [ACM95b, AH95, IE95f, Old02]. Santorini/Thera [CD01, CDND11]. Santorini/Thera [CD01]. SAR [AB95]. Satellite [Uhl94, Uhl95b, SSNS94]. Satisfiability [KRM+01, KRM+02]. Saturday [B+05].
Saturday-Wednesday [B+05]. Save [KFL05, FKLB08]. SBS [MSB97, WWZ+96]. SBS-Type [MSB97]. SC+11 [LCK11].
SC2000 [ACM00]. SC2001 [ACM01].
[Add01, BBC+04, BHNW01, BGL00, CDP03, EFR+05, GFB+14, GS94, HGMW12, IEE92, IEE94f, IEE95, IBC+10, KK08, kLCC+06, MFPP03, NBS08, NPP+00d, NCKB12, NSM12, OLG01, PPJ01, PR94b, PBK00, SBF+04, Skj93, SS96, UP01, VBLvdG08, VY02, ZLGS99, BBB+94, Br95, CLSP07, GBH14, GM13, GKL95, HRR+11, HAJK01, KRG13, LM09, LTLG94, MMB+94, MRPP11, PWD+12, SPK+12, Trä12a].

ScalAPACK [BV99, BR99, DHP97].

Scale [AHE00, BZK07, BHNW01, FFP03, MFPP03, SM03, TGM09, WT12, AASB08, BCA+06, BS99, BCB+08, Che99, DZZY94, FME+12, Kos95b, LS10, MLA+14, PD11, RMNN+12, Svl99, TBB12, WNLN06, WT11, ZKRA14, ZA14]. SCALEA
[TFGM02]. Scaling [KFL05, SLJ+14, FKL08, Gao03, LFL11, PDY14]. scan [YLZ13]. scanline [CT13]. scans [NAJ99].

SCASH [SHHI01]. scatter [BCD96].

Scattering [BCL00, NZZ94, OMK09]. SCF [MM95]. schedule [NAAL01]. scheduler [ADDR95, TCBV10]. schedulers [NP12].

Scheduling [BBH+06, BSH15, CML04, EGR15, GSHL02, GHLO7, HC06, JY96, NIO+02, NIO+03, TJPF12, DZ98a, JKn+13, LHCT96, MBKM12, NSRB07, OPW+12, SM13b, SKK+12, SKB+14, WYL12, WLYC12, YWC11]. Scheme [CTK01, LNL00, M98, SBF+04, BBGL6, BJ95, MRPP11, OKM12, SANC96, YPZC95, FM90].

Schemes
[PPJ01, WYL12, WLYC12, ZAT+07].

School [VV95]. Schrödinger
[DM12, ON12]. SCI
[FS97, HEH98, Hus00, ZHS99]. SCIDDLER
[ABG+96, AGLv96]. SCIDDLER-PVM
[ABG+96]. Science [IEE95d, MMH93, Old02, SM07, ACM06a, DMW96, HK93].

Sciences [ERS96, HS94, ZL96, ERS95].

Scientific
[AGH+95, BBG+95, DKM+92, DT94, Gat95, GL97a, HJ98, KK02a, LkLC+03, MR06, Nag05, Sin93, VY02, WN10, Bis94, DW94, SBF+12, TBB12, Ano97, Brä97]. scientists [HW11, Str94].

SciPAL [KH15].

SCIPVM [ZHS99]. Scope [OY+15, DBB+13].

scoping [RLDJ12, WIC15]. Scottsdale
[IEE95b]. Scratchpad [MB12]. Scripting
[Ong02, KPL+12, No908]. scripting-based
[KPL+12]. SCTP [KPV05, ZP106].

SDSM [CCM+06]. Seamless [KK02a]. Search
[BHS15, Cza13, IKM+01, Wao10b, IKM+02, Wao10a, ZSK15, CB11]. Searches [BSG00].

Searching [JPT14, MM10, BA06, Wao10b].

Seattle [ACM05, BS94, LCK11, Ost94].

Second
[BL95, DT94, DE91, IEE94d, IEE96, IEE96i, LHHM96, Toul96, Vo93, WPH94, ACM97a, BFM96, DMW96, FR95, L996].

Second-Order [BL95]. Secondary
[WHDB05, SEC15, ZAT+07].

section [AN93b, DKD08]. segment [FJZ+14].

segment-based [FJZ+14]. Segmentation
[KBA02, AD95, CCU95]. Seidel
[BG95, LM09, Ols95]. seismic
[AMG93, KL95, KEG10, LM13, RMNN+12, SSS99, VCV96].

Seismograms [DP94]. Select [KKDV03].

Selected [DHS96, MTW07, OLO5, TB14, CHD09, Cha05, DKO10]. selection
[PGBF+07, WKS96]. Selective [Nak03].

Self [NSS12, SLJ+14, TGT10, VFD02, NSBR07, WYL12, WLYC12, YW11].

Self-Consistent [TGT10]. self-scheduling
[NSBR07, WYL12, WLYC12, YWC11].

Self-Submitting [NSS12]. Self-Tuning
[SLJ+14]. semantic [DKF94a].

Semantically [MKW11]. semantics
[RPNP13]. Semaphores [soon].

Semi-Coarsening [PSL10]. semi-implicit
Semi-Lagrangian [CT94a, TC94, CT94b]. Semiconductor [GJN97, Ano03, LS10].
Seminar [Ano94f, Ano93g]. Sender [BCH +03].
Sensed [GGCM99, GGCQ01, GCS98, VLO +08, GGC99]. sensitive [GKCF13].
Sensitivity [dLR04]. Separable [Ben01, CdGM96]. September [Abr96, AD98, Ano93a, Ano93b, Ano95a, Bos96, BP93, BH95, CML +95, CHD07, CWN95, CD01, CND11, DKD05, DKD07, DLM99, DP90, DLO03, EJL92, FK95, FR95, GHH +93, IEE93d, JPT94, KGRD10, Kra02, KDK04, LDK08, MA95, MTWD06, OL05, PSB +94, RWD09, SPH95, SM07, TBD12, VV95, VW92, WPH94, YH96].
Sequence [GM95, AMHC11, TSZC94]. sequences [SdM10]. Sequential [EK97, RPM +08, GGH99, SR95, TSZC94]. Serial [SWH15, HPS +96, HWS09]. serialization [CFKL00]. Serialized [KH10]. Serielles [BL94]. Series [NAG05, BR94]. Server [Ano93e, FSL98, KS97, Mat01b, Sto98, Vis95]. Servers [CGC +02, GK97]. Service [RFG +00, LS08, SPK +12]. Services [FC05, AAC +05, ZKRA14].
Session [NYNT12, ZL96]. Set [SW12, WL96a, She95, WL96b]. Sets [SG12, CGL +03]. setting [GL95a]. Seventh [BBG +95, HS94, IEE93b, IEE95g, IEE96h, Eng00, Y +03]. several [GRB15]. SGI [Che99, CML04, KMG99, LB96, LL01, LK03, LS04, TW12, ZSh01]. SGI/CRAY [Che99]. SGI/CRAY-T3E [Che99]. Shadow [SOA11]. shallow [dIAMC11, dIAMCFN12]. Shanghai [IEE97a]. SHARE [Ano92, Ano93c, Ano94g]. Shared [BCA +06, BME02, BRL00, DM98, FHK02, FB94, GB96, GLRS01, HC10, HBD +12, HT01, KB98, KSHS01, LRT07, Lou99, MBE03, MCD +08, Ml02, NPP +00d, PBK00, Pok96, PS00b, Ros13, SS01, STY99, ST02b, Thr99, VS00, VTD97, ABC95a, ABC95b, ADMV05, BMG07, CBPP02, Cha96, CCM +06, CCO00b, DBVF01, DS96b, DPZ97, EV01, GCN +10, GL96, GL97c, HS93, HBD +13, JE95, KJA +93, KC06, LKL96, ML04, PK05, RGDM15, SHHI01, SL94b, SFL +94, SSC96, TSY99, TSY00, Vos03, WYO95, YX95, Cha05].
Shared-Memory [DM98, HBD +12, NPP +00d, Pok96, Thr99, PS00b, ABC95a, ABC95b, BMG07, GL96, GL97c, KJA +93, PK05, TSY00]. Sharing [Att96, CML04, DiN96, IEE93a, JE95, Ott93, PRS +14]. shear [JAT97]. SHMEM [BBD14, HUS01, LS04, Sch96a, Sch96b, SS01]. Short [KBM97, MH01, BMP94a, PARB14].
Short-Range [KBM97, MH01, BMP94a, PARB14]. shorter [NB96]. Showcase [USE00].
SHPCC [IEE92]. SHPCC-92 [IEE92]. SIAM [BBG +95, DKM +92, Sin93]. Side [kLCCW07]. Sided [BPS01, GFD03, GFD05, GT01, HBD +12, LRT07, MH01, MB00, TG00, TRH00, ZSG12, bT01a, BM00, LS04, MS99c, PKG +10, GBH14]. SIGCSE [ACM06a]. Signal [IEE95c].
signals [Uhl95c]. Signatures [Gro00]. significance [AMHC11]. silent [FME +12].
silicon [Ano03, Goec02]. SIMD [BvdB94, HS95b, KDT +12, Sur95b, VSW +13]. Simple [MS00, Ml01, SC04, ITT99, HJ97, Nes10].
simulate [Heb93]. Simulated [BHM94, BH96, FH97, RSJT95]. Simulating [KDL +95b, KDL+95a, NFG +10].
Simulation [CDMS15, DMV97, DZDR95, GS97, GM95, GJN97, Ham95a, JML01, KBF97, LLRS02, MFTB95, MPD04, MANR09, PCY14, PKYW95, PKZK02, RR00, RDNB99, SSAS12, Str97, Ten95, UCC +12, ZZ04, ZWJK05, dIAMC11, Ano95b, AD +05, B95, BH95, BMP94b, CwCW +11, CSPM +96, DOSF11, FHS09, FO94].
Simulation-Based [ZWJK05].
Simulations [CNM11, DFMD94, DI02, GAP97, HLP11, HF14a, HF14b, KT02, Kha13, NH95, RTRG07, SM02, YPAE09, ADT14, ABG96, BADC07, Hin11, JMS14, LS10, LSVMW08, RMNM12, SU96, WWFT11].
Simulator [CAM12, MRV00, UTY02, WPC07, AMV94, PWD12, WZWS08, ZZ95, KTJT03, Nak03, Nak05a, Nak05b].
Simulators [SB95].
Singapore [IEE96d].
Single [BM00, HF14a, HF14b, MB00, URKG12, AGIS94, KKL11].
Single-Chip [URKG12].
Single-sided [BM00].
single/multigrid [AGIS94].
Sinks [JPT14].
Sites [Ano98].
Sixth [HK95, IEE96c, MMH93, SW91].
size [GKCF13].
sized [JLS14].
Sizes [ZSnH01].
SKaMPI [KRS99, RSPM98, RH01, Reu01, RST02, Reu03].
SkelCL [SG14].
Skeleton [GB98, IH04, RJDH14].
Skeletons [Ser97].
Slack [KFLO5, FKLB08].
SLAE [ADRCT98, AK99].
slave [HP05].
SLICC [KBH94].
Slices [GSHL02].
Small [HLP11, TS12b, Ano94h].
small-footprint [TS12b].
Small-World [HLP11].
Smith [KDSO12].
Smithsonian [Str94].
smoking [YSL12].
SMP [Add01, CRE99, CRE01, HD02a, DK06, GT01, GMMBD+07, HD02b, Hus00, HIP02, JHKH08, KO10, KKH03, KMG99, KAC02, NOO2b, NOO2a, ST02a, TOTH99, Trä02b, YWC11, bT01a].
SMPCKpt [DCH02].
SMPs [HLCZ00, NU05, SwL99].
SMPSuperscalar [GCBL12].
snake [JPP95].
snake-in-the-box [JPP95].
Snir [Nag05].
SnuCL [Lee12].
soccer [YMY111].
socket [LS10].
Softshell [SKK+12].
Software [Ano94i, BME02, BPG94, BDG+xx, CZ95b, ESB13, FFP03, GBF95, Gre95, HPR+95, HS94, HHA95, IEE95l, IEE96h, IFI95, KS15, KC94, KRG93, MBE03, NPS12, Ost94, PZ12, Si96, TDBEE11, VdS00, Wis01, Wal92, Ano97, BSC99, Boi97, Bra97, BR94, CMV+94, CBPP02, DPZ97, Hum95, JH97, JB96, LM94, MK94, Neu94, Oli02, PHA10, PK05, PGK+10, SHH01, Sch94, Se99, SPH95, Str94, ZGN94, Ano94i, KRG93, Si96].
Solaran [CGB+10].
Solaris [Ano01a].
solidification [JLS14].
solids [Hin11].
Solution [DWL+10, FBSN01, RPM+08, Ts12u, VRS00, DWL+12, IM95, JK10, LSR95, MALM95, ON12, PRS+14, SC96a].
solutions [AGIS94].
Solve [Hog13, BAV08, Che99, GGGC99].
Solver [Ben01, BP98, CF01, HSMW94, ID994, L297, WJB14, AMS94, CP15, DM12, JR10, LM99, Lou95, RM99, SRK+12, SCC95, THM+94, ZZG+14].
Solvers [DFN12, GK10, MSB97, NO02b, Nak03, NHT02, NLRH07, QRMG96, RS97, WR01, ADLLO3a, ADLLO3b, ADDR95, BRR99, CL93, MKP+96, MS95, NO02a, Nak05a, Nak05b, NHT06, PR94c, QRG95, SSH08].
Solving [ADRCT98, BHM94, BHM96, BV99, BG95, BDG+92e, BSH15, GFGP12, Hue96, LLY93, MS02a, NF94, SAS01, SD99, BB95, DSM94, HHA95, SMW96].
SOM [GkLyCY97].
Some [BDT08, Mül01, Pet97, AL92, NN95, RSBT95].
Sopron [VV95].
Sorrento [DKD05, DKD07].
sort [KVGH11, PSHL11].
sorting [BHJ96, PSHL11].
Sound [SG12].
Source [BBG+15, MM07, Nob08, PSK+10].
Source-Code-Correlated [MM07].
Sources [ZDR01, KM10].
South [ACM95a].
southeast [ACM95a].
Sowing [GL97a].
SP [BGBP01, CE00, HMKV94, LC97b, WT11, WT12].
SP-1 [HMKV94].
SP-2 [LC97b].
SP1 [BR95c, FHP94b, FHP+94, FHP+95, Fra95, FWR+95, GL95d, HSMW94, MP95].
SP1/SP2 [FHP+95, Fra95, FWR+95].
SP2
Space-sharing [CML04], space-time [SRK+12].

STANdard
[BR95b, HWW97, JF95, KB98, KHS01, MABG96, XH96].

SSP A [ACM95b].

Spanish-shar ing [CML04], Spanish [DLM99].

SSPAI [BB99].

Spain [DLM99], SPAN [LHHM96, Li96].

Spanish [DLM99], spanning [BBS99].

Span [DLM99], spanning [NCKB12].

Sparse [AZ95, BBH12, DS13, Huc96, NHT02, TD98, ZB97, AK99, ADLL03a, ADLL03b, ER12, FJZ+14, GG99, Gra09, NHT06, XXL13].

SPEC [Ano03, MvWL+10, MBB+12, NA01, SGJ+03, TSBO3].

Specific [AM07, BDT08, BDB+13, BC00, CHD09, DKD07, DKD08, GSA08, MIP98, Bos96, Mar02, Reu01, Old02].

Specificat ion [BG94a, BdS07, MGC12, BG94c, LPD+11].

Specifications [OFA+15, WMP14].

Specified [MGMH97].

specifying [LPD+11].

specimen [Rol08b].

SPECT [BCD96].

spherica l [KT10].

SPICE3 [WPC07].

SPICE3-Like [BST+13].

SPINE [HLP11, KO14].

SPMD
[BST+13, Dar01, KAC02, Wal00, Wal02].

SPMD-Like [BST+13].

Sponge [HSW+12].

Sponge [HSP+13].

SSPARE [SHLM14].

Spectra [ACM04, Hol12, LCK11, HP11, NFG+10].

Spectra [ACM11, IEE94f, IEE95j, Wis96a, Wis96b, LF93b].

Spectra [AT94, AT94].

Spectra [BG94c, LPD+11].

Spectra [OFA+15, WMP14].

Specifying [LPD+11].

Specimen [Rol08b].

SPECT [BCD96].

Spectator [YMYI11].

Spectral [MW98].

Spectra [ACM04, Hol12, LCK11, HP11, NFG+10].

Storage [ACM04, Hol12, LCK11, HP11, NFG+10].

Strategies [MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, TSZC94, VB99].

Strategies [MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, TSZC94, VB99].

Strategies [MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, TSZC94, VB99].

Strategies [MM02, BVML12, CG99a, DBVF01, MM03, OPW+12, PSK08, TSZC94, VB99].

Structured [CBL10, SY95, SEC15, SY95, ZAT+07].

Structured [FB96, Mar06, NLRH07, Ran05, Bis04, CLSP07, FR95, GB95, JAT97, Sn93b].

Structures [GMPD98, JY95, KA95, OKW95, SHPT00, WB96, YPA94].

String [MM02, MM03].

Strongly [GAP97, ZG+14].

Study [AIM97, BFI01, BIHLS+95, DAR13, EGCG02, FPY08, GL97a, MM02, NA01, PK05, RRBL01, SCL01, TG94, SHLM14].

Speculative [RA09].

Speculative [RA09].

Spiking [CAM12].

Sph erical [KT10].

Spheres [CT94a, CT94b].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].

Speed [CDHL95, Tou00, AH95, Ano97, Bra97, CGH94, DOSW95, GLDS96].
AGR+95b, BJ13, BfDA94, BJS99, BY12, Bri00, CBM+08, DXP96, ED94, FO94, JR13, LPD+11, LLH+14, MS96b, PSK08, PGK+10, PSLH11, RSBT95, RJC95, Wao11b, ZSK15.

Stuttgart [KGRD10, WPH94]. style [JPOJ12]. sub [MJG+12].

sub-communicators [MJG+12].
subdomain [CEGS07]. subgroup [XLW+09]. Submitting [NSS12]. Subrange [Str97]. Subroutine [Saa94]. subroutines [dCH93]. subsurface [ED94]. subsystem [BMG07, MABG96]. Subsystems [STMK97]. Success [Gro01b, LF+93a]. Support [Ano98, BBG+10, BFBW01, CFF+94, DMMV97, FGRD01, GRV01, GOM+01, HRS97, LMRG14, MK04, OP98, PSM+14, RR02, SDN99, STB04, TW01, Wis98, Wis01, YSP+05, BBH+13a, BL99, CC10, CZ95b, DLHR94, Hos12, Mafr94, TSY99, TSY00, TY14, WK08a, WK08b, WK08c, YAJG+15].
supplied [CDD+96]. Supporting [FD00, GAML01, MMS07, OOS+08, WLNL03, WLNL06, WCS99, FLD96, GAM+00].

Supported [CDD+96]. Supported [FD00, GAML01, MMS07, OOS+08, WLNL03, WLNL06, WCS99, FLD96, GAM+00].

Symbolic [CC10, Coo95b, Ste00, YYW+12, ACM97a, BHKR95, Coo95a, Lev95, LKQ10, LLG12, SAMC08]. Symmetric [BDV03, BAV08, DCH02, GG99]. Symposium [ACM95b, ACM96a, Ano94a, Ano95b, BG91, DE91, HHK94, IEE93c, IEE93b, IEE94a, IEE94d, IEE95c, IEE95d, IEE95k, IEE95m, IEE96b, IEE96c, IEE96f, IEE97b, IEE97c, IEE95k, LHHM96, L96, NM95, Od94, SL94a, Sie94, Sie92a, Sie92b, Ten95, Tou96, USE94, UCW95, ACM97a, ACM06a, Ano93a, Ano94h, Lev95, Old02]. Synchronization [LA02, OCY+15, TGT05, BMG07, LA06, TMTP96, YLZ13]. Synchronizing [VT97].

Synchronous [Ada97, BJ13, Cer99, DLRR99, HZG98].

Synergy [SSAS12]. Synergistic [UGT09]. Synthesis [CS14, GWC95]. Synthesizing [NP12]. Synthetic [DP94]. Syracuse [IEE96f]. SYMOSO [MM95]. System [Ada97, AJ97, AH90, BG95, BDG+91b, HK93, IEE91, IEE93c, IEE94h, Liu95, Sch94, ACM94, ACM96c, Ano93a, BG91].

superlattice [Pri14]. supercalar [ACJ12].
GMU95, GkLyCY97, HDDG09, Hum95, HS95b, IBC+10, ITT99, JH97, JLS+14, KW14, Kik93, LBD+06, LKL96, LL95, MA09, MMR99, MMF+94, MAS06, MS99b, MALM95, NAJ99, PPT96b, PPT96c, PK05, RJDH14, RTL99, SHHI01, SL94b, Sei99, SPL99, SGDM94, Sun96, Sur95b. system [VSR94, VSR95, WCC+07, WZWS08, YPZC95, YZPC95, ZL96, ZPLS96, ZWZ+95, dCGZ06, AL93, NMW93, Yau94].

System-Initiated [SSB+05].

system-on-a-chip [dCGZ06]. System/6000 [AL93, NMW93]. Systeme [GBR97, GEW98]. Systems [ANO94b, Att96, BCGL97, BGBP01, BME02, BPG94, Bha93, CDJ95, CJS+94, CSW97, Coo95b, FD96, FGKT97, FoS98, HRS97, IEE93, IE99a, IEE95a, IEE96a, KHH93, KP96, KDL+95b, KS97, LW97, MWG97, MBE03, MB+12, SM93, SGS10, SN96, TH00, USE94, YGH+94, YH96, ZB97, dCGZ06, AG+95b, ACMZ11, AT+12, AN04c, BBB+94, BAV08, CKO+94, CBPP02, Coo95a, CPR+95, DR94, DBVF01, DvLVS94, FH+13, GBR97, GCN+10, GEW98, GKK90, GKF+13, Gra90, GFG12, GHF+93, HHA95, IM95, JB96, JMJ+11, KSG13, KHB99, KDL+95a, KFS994, LR06b, LH98, LCV94b, LLH+14, MSL2, MyWL+10, Old02, OPW+12, Pan95b, Par93, QB12, SSKF95, SPH95, SVC+11, Smi93b, SG14, SSMW96, SLN+12, Sun94b, TBB12, TSP95, WSC+13, WWZ+96, WADC99, WYL12, ZL96, ZGC94, dH94, dIAMC11, dIAMCFN12]. systems [JWB96]. Systemsoftware [SEI99]. systolic [BSC99].

T3D

[TZ95, AFST95, CCSM97, HW97, MP95, MWO95, Oed93, Sch96a, Sch96b, SCC95]. T3E [BBS99, Boo01, Che99, GRRM99, LSK04, RBB97c]. T3E-600 [LSK04]. T9000 [BR94]. table [BJ13]. Tabu [BHS95, Cza13, CB11]. Tags [Wis97]. Tails [Kha13]. takes [GDB+93]. Talbot [ACMR14]. Task [AH12, FKKC96, IO00, KO10, LHCT96, MAR93, NIO+02, NIO+03, NSZS13, NJ01, OP10, OS97, SGZ00, SPL+12, TBS12, TS12a, BHG+05, GKFC13, ODSP12, OPW+12, OPP00, RRFH96, RFRH96, SKB+14, WC15]. Task-Based [AH12, SPL+12, SKB+14]. Task-Parallel [NSZS13]. Taskers [FLD96]. Tasking [DFA+09, KaM10, SHM+10, TSCAM12, WC15].

Tales [Kha13].

Taxonomy [SPH96].

Taxonomy [SPH96].

Taxonomy [SPH96].

Task-Based [AH12, SPL+12, SKB+14].

Task-Parallel [NSZS13].

Taskers [FLD96].

Tasking [DFA+09, KaM10, SHM+10, TSCAM12, WC15].

Tasks [ACD+09, DAF+09, JW96, OP98, RR02, RDLQ12, BS01, DDYM99, DR95, FKK+96b, FKK96a, IvdlH+00, PKE+10].

TAU [MMS07].

Taxonomy [SPH96].

TBS [BP98].

TC2 [BOI97].

TC2/WG2.5 [BOI97].

TCGMSG [GB96, Mat94, Mat95]. TCP [KPW05].

TELMAT [BR94].

Temperatures [Hi11].

Technique [BCD+15, HC06, HAA+11, HC08, Nes10, MAIHA14].

Techniques [CP97, GS02, Miil01, SPL+12, TGBS05, Wis01, BPG94, Fer04, FCS+12, HKMCS94, JKN+13, KBC+09, NFG+10, PF05, SSK01, WST95].

Technologies [Mal95].

Technology [ANO93c, An98, MC94, USE95, ACM06a].

Technical [ANO93c, An98].

Techniques [CP97, GS02, Miil01, SPL+12, TGBS05, Wis01, BPG94, Fer04, FCS+12, HKMCS94, JKN+13, KBC+09, NFG+10, PF05, SSK01, WST95].

Technologies [Mal95].

Technology [ANO93c, An98].

Technology [ANO93c, An98].

Technologies [Mal95].

Technology [ANO93c, An98].

Technology [ANO93c, An98].

Technology [ANO93c, An98].
Textbook [Ano98]. textural [WKS96]. texture [HE15]. TH [CFDL01]. TH-MPI [CFDL01]. Their [Briü12, GOM+01].

theorem [Sut96]. Theory [GK10, BW12, CBHH94]. Third [BPG94, Bos96, DSM94, GA96, IEE94g, SIl96, Was96, BDL96, Mal95, IEE97c]. Thirty [Y+93]. Thirty-seventh [Y+93].

Thousands [PZKK02]. Thread [ETWaM12, GOM+01, GT07, Nit00, Pla02, STY99, HK09, JKN+13, SPH96, SLN+12, YZ14]. thread-level [HK09, YZ14].

Thread-Safe [Pla02]. Thread-safety [GT07]. Threaded [BBG+10, MG15, Ada98, EBKG01, SVC+11, TSY99, TSY00].

threaded-MPI [SVC+11]. Threading [BHV12, SBT04, TBG+02, KPO00, KRG13, QB12, ZAT+07].

Threads [CP98, LD01, Lee06, BS01, MVTP96]. Three [Car07, GA96, Nak05b, Ram07, SAS01, LSSZ15, Mar05, PR94c].

Three-Dimensional [GA96, LSSZ15, PR94c]. Three-level [Nak05b]. throughput [ESB13]. Tightly-Coupled [SS01]. Time [BCL00, FHK01, GSHL02, GOM+01, KFL05, MFTB95, OP98, SCL01, SS96, TSP95, UP01, YGH+14, AL96, CDMS15, DLR94, DM12, Fer04, FLB+05, FLB08, GB94, HE13, JE95, KC94, KPL+12, LHLK10, LM13, MMW96, NZZ94, ÖN12, OdSSP12, Ram07, SBW91, SK92, SRK+12, TSY99, Tho94, TV96, TCBV10, Uh95c, VM94, ZWZ+95, SKD+04].

time-dependent [DM12, ÖN12].

time-domain [HE13, NZZ94, Ram07, VM94].

time-independent [CDMS15].

time-varying [Uh95c]. times [NB96, SSS99]. timing [Ols95]. tips [Fer04].

Tolerance [GKP97, GL04, LMRG14, LNLE00, RPM+08, TS12a, WC09, Wil93, SG05, ZHK06].

Tolerant [BBC+02, BCH+03, BHK+06, CF01, CFDL01, FD00, FBD01a, FBVD02, FD02a, FD04, GFB+03, IEE95c, JSH+05, MSF00, BCH+08, FBD01b, FD02b, HG12, LS08, NCB+12, PKD95].

Tomographic [Pat93]. tomography [RCFS96]. tomorrow [IEE94c]. Tool [Ano01c, Beg93b, BEG+01]. Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BFBV00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, Wan07, BDG+92a, BFIM99, Fan98, GBF95, LH98, MSW+05, MHC94a, ZL96]. Tools-supported [CDD+96].

Tool-Set [WL96a]. Toolbox [Ano97, Bra97]. Toolkit [Ano12, LC07, LLCC13, SLS96].

Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BFBV00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, Wan07, BDG+92a, BFIM99, Fan98, GBF95, LH98, MSW+05, MHC94a, ZL96]. Tools-supported [CDD+96].

Tool [Ano01c, Beg93b, BEG+01]. Tools [ABC+00, BDG+91b, BDG+93a, BS96a, BDL98, BFBV00, Cha05, CDD+96, DT94, EV01, GMPD98, MHC94b, MCLD01, PKB01, STMK97, Vos03, Wan07, BDG+92a, BFIM99, Fan98, GBF95, LH98, MSW+05, MHC94a, ZL96]. Tools-supported [CDD+96].

Top [AH01, Gal97, Has01, Man01, PTH+01a, Ser97, BCR99, PTH+01a, SCS96, SHL97, CHW03].

TOP-C [CCHW03]. topologies [MK00].

Topology [DK06, Hat98, HM10, Tra02a, HRR+11, MBB13, SPK+12].

topology-aware [MBBD13].

Topology-Based [HKP01]. TOPPER [KKP01].

Toronto [GGK+93, Vos03].

Torus [SG15].

TPVM [FS95, FS98]. Trace [Ney00].

Transaction [CSV12].

Transactions [BWW+12].

Training [CSV12].

Transfer [BKGS02]. transform [KT01, DBLG11].
[EP96, NSZS13, HZ96, TSY00].
transformations [JE95, TG94].
transformed [BY12]. Transforming
[PSK+10]. Transforms
[ACMR14, HP11, Uhl95c, Zen94].
transistor [Ano03], transistors [Ano03].
Transition [MRV00]. Transitive
[CGPR98, PPR01]. Translating
[Mar09, NCB+12]. Translation
[DDL00, SSE12, HCL05, LME09].
Translator [UZC+12, CHKK15, GScFM13].
transmitters [WWZ+96]. Transparent
[CKK+95, NPP+00c, SLGZ99, LFS93a, LFS93b, LFL11, NPP+00a, SOA11].
Transport [KHS01, RS97, VRS00, WR01, ZZ04, Pri14, SH94, WH96]. Transporter
[Fer92]. transpose [Bha98]. Transposition
[HD02b]. Transputer
[Ara95, ACDR94, CJNW95, FK95, FF95, FN95, GH95, MC94, dGJM94, ZPL96, Ara95, CJNW95, GH95, MC94, dGJM94].
Transputers [ACDR94, AGR+95b, dCH93].
TransTech [Ste94]. TRAPPER
[KFSS94, SSKF95]. travel [SSS99].
travel-times [SSS99]. traveling [GM94].
traversing [BDG+92b]. TreadMarks
[LDCZ97]. tree [ADB94, AB13, BCAD06, CG93, SGS95, Zah92]. Trees [CDP90].
Trends
[Du92, IE93d, JPTE94, GD94, Sun96].
Triangle [SL94a, SOA11]. Triangular
[Hog13]. tricks [Fer04, LK14]. Triplet
[RJ94]. Trivandrum [IE96a]. Troy
[SS96]. Truncated [ZB97]. truncating
[Ram07]. TSMC [Ano03]. TSUBAME
[NM92]. Tsukuba [SHM+10]. TTIG
[RRL01]. Tucson [JBD96]. Tuning
[Cza02, Cza03, NPP+00d, SLJ14, DBL91, SH14, Yan94, FVD90]. Turbulence
[Str97, MRRP11, Str96]. Tutorial [EM00a, EM00b, GBD+94, GLT00b, Nov95, Per96].
TV [CLJ+10]. Twenty
[ERS95, ERS96, HS94, IE95c, MM93]. Twenty-Eighth
[ERS95]. Twenty-fifth
[IE95c]. Twenty-Ninth
[ERS96]. Twenty-Seventh
[HS94]. Twenty-Sixth
[MM93]. Two
[CM98, STY99, YM97, AG9+95b, AL93].
ADLL03a, ADLL03b, CB11, ED94, HAI91, MSP93, dIAMCFN12. two-dimensional
[AL93]. two-layer [dIAMCFN12].
Two-level [STY99]. two-phase [ED94].
TX
[ACM00, Cha05, DKB+92, Ano95a, Ano95b].
Type [GK10, MS97, GF912]. Types
[Wei94, NYNT12].

[Wer95]. UK [Abr96, AD98, EJL92, HK95, BP93, CJNW95, MC94]. UKMO [RSBT95].
Ultra [SJS]. Ultra-High [SJS].
Umgebung [GBR97]. UML [RGD13].
UML/MARTE [RGD13]. Umpire
[VdS00]. Unbalanced [OP10]. Understand
[DeP03]. Understanding [CRE01]. Unibus
[KSS07]. UNICOM [Ano93g]. unified
[GKZ12, KSL+12]. unifies [RJH14].
uniform [KSG13]. uniformly [Trä12a].
Unify [VSRC94, VSR95]. unifying
[CRC12]. unit [VDL+15, MSML10].
United [Boi97]. Units [LSVW08, ABP15, LHLK10, WWFT11, HJBB14].
Universal [LW97, DLM95]. University
[CG9+10, IE94d, IE95]. R+92. Unix
[OLG01, RBS94]. unscharfer [Wil94].
Unstructured [AB93a, NO02b, SM02, SM03, AB93b, NO02a]. unveils [Ano03].
UPC [EGC02, Mar05]. Update [KT10].
Updates [ESB13, KS15, ZDR01]. UPM
[NPP+00d]. ups [Ano03]. USA
[ACM96b, ACM98b, ACM00, ACM06a, AG9+95, BBG+95, BS94, Cha05, CGKM11, DT94, EV01, EdS08, ERS96, Gat95, Ham95a, Hol12, IE95b, IE95d, IE96f, IE96e, IE96f, MCD+08, Old02, PBF+95, Ruc96, Sin93, Ten95, ACM95b, ACM97b, Agr95a, Ano89, B+05, DKB+92, HS94, IE94e, IE95k, IE02, Ost94, SL94a, SS96,
USE94, USE95, USE00]. **Usage**

[FD02a, FCLG07, FD02b]. **Use**

[FJBB+00, Gro02a, HK93, HK95, MB12, PSZÉ00, Shi94, AB95, GEW98]. **USENIX**

[USE94, USE95]. **User**

[AD98, ACDR94, BDG+91a, CHD07, CD01, CDND11, DKD05, D+91, DHHW92, DHHW93a, DLM99, DKP00, DLO03, FCLG07, GBD+94, GN95, KGRD10, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTWD06, NPP+00c, Nov95, Per96, RWD09, TBD12, XF95, ZWZ05, BBB+94, BDW97, KCP+94a, RSC+15, Reu01, Wil94, BBI...13a]. **User-Level**

[AD98, ACDR94, BDG+91a, CHD07, CD01, CDND11, DKD05, D+91, DHHW92, DHHW93a, KCP+94b, KOW97, Kra02, KKD04, LKD08, MC94, MTWD06, NPP+00c, Nov95, Per96, RWD09, TBD12, XF95, ZWZ05, BBB+94, BDW97, KCP+94a, RSC+15, Reu01, Wil94, BBI...13a]. **Users**

[AR95, CHD09]. **uses** [SH96]. **Using**

[AR01, ADRCT98, AHP01, And98, AP96, Ano95c, AKE00, AB93a, BST+13, BPMN97, BG95, BS93, BKG02, BM97, Bon96, BBC+99, BBB12, BHH12, CC95]. **Utilising** [SC96a]. **Utilities** [CC95]. **UV2** [TW12].

V [JB96, BBC+02, BHK+06]. **V2**

[BACH+03]. **VA** [Sia93, RP95]. **Vacancy**

[HD02b]. **Validation**

[BDV03, GLB00, WCC12, CMV+94, SCB14]. **Value** [vHKS94, AL96, LSR95, SD99]. **Value-based** [vHKS94]. **valued** [Str12]. **VAMPIR** [BHNW01, NAW+96]. **Vancouver** [IEE95a, IEE95j]. **Vapour** [PKYW95]. **Variable** [An98, ZZG+14]. **Variables** [FKH02]. **Various** [LH95]. **varying** [Uhl95c]. **VCMON** [Whi94].
NB96, RMNM+12. Waveform [LSR95].
Wavelet [Uhl94, Uhl95b, Zem94, vdLJR11, Uhl95a, Uhl95c]. Way [Vog13, FG96].
ways [CZ96]. Weather
[AHP01, HE02, Bjo95, KOS+95a, Mal01].
web [CHKK15, AASB08, NE01, PES99, Wal01b].
Web-Based [NE01, PES99]. WebCL [CHKK15].
WebCom [OPM06]. WebCom-G [OPM06].
WebCL [CHKK15]. Wednesday [B+05]. weight [KA95]. welcomes [Str94].
West [EV01, EdS08]. Westin [IEE94e].
We've [GKPS97]. WG10.3 [DR94].
WG2.5 [B+05]. which [SH96]. Whippletree [SKB+14]. Wide
[FGG+98, FGT96, KHB+99]. Wide-area
[FGG+98, FGT96]. WIEN [Gao03]. Will
[CB00]. Williamsburg [IEE92]. Win32
[MS98]. windows
[QB12, Ano1a, CLP+99, FD97, GGGC99, PS01a, SFG98, SS99, TA+01].
Windows95 [SSSS96]. Winona [An04h].
wireless [Bon96]. wissenschaftlich [An04c].
without [BW12, Pla12, YLZ13]. WLAN
[MSOGR01]. WMPI [BPS01, MS98, MS98, MS99c, PS01a, SMS00]. WOMPAT
[Cha05, EV01, Ves03]. Woollongong
[GN95]. Work [HSA97, Pet00a, Pet00b, OdSSP12, TCBV10]. work-stealing
[TCBV10]. Worker [Y996].
Worker-Based [Y996]. Workerproblem
[FH98]. Workflow [LYZ13]. Workforce
[Liv00]. Working
[Ano98, Boi97, MCS00, Pet01, DR94].
Workload [AGS97, DBVF01]. workloads
[SKB+14]. WorkPlace [Ano97, Bra97].
workqueuing [VLvdG08]. Workshop
[ACM98a, Agr95a, BPG94, Bh93, BC00, Cha05, CZ+98, CGM11, CMMR12, DW94, DT94, EV01, EdS08, Fer92, FK95, FF95, HK93, HK95, IEE93d, IEE93f, IEE94d, IEE95b, IEE96g, IF95, KG93, Kuh98, Kum94, MdSC09, PBG+95, PBPT95, SCR92, SH+95, Sch93, Vs93, Was96, AH95, BS94, Cal94, D+95, DMW96, FR95, GL95b, IEE93f]. Workshops
[McD+08]. Workstation
[GL97, HSMW94, KS96, LC97a, MFTB95, Pus95, YK+96, AB95, ALR94, BLP93, BSvdG91, BRS92, BALU95, BWT96, CCU95, DG95, ED94, GBF95, He93, JRM+94, LL95, NMW93, NN95, PM95, PL96, RBS94, RCFS96, SC96a, SS94, SL95, THM+94, Tsu95, UH96, YWO95, ZHS99, MS04].
Workstation-Cluster [Heb93].
Workstation-Clusters [MS04].
Workstations
[AR01, BL94, BL95, BM97, BDH+95, BDH+97, BMS94b, DDRP97, EK97, GS91b, HIP02, ID94, Lu95, LH98, MSC95, MM01, OW95, PFG97, TQD01, VLO+08, AL93, BJ95, BD95, Br95, BMP94, BMS94a, BMS94b, BMS94c, CCF+94, CO94, D98a, DOS96, GM94, GMU95, HK94, Hus99, KMC96, KMC97, KA95, MK94, MM03, RR+99, SFO95, SR95, TDB00, dCH93].
World [CMMM12, CJMW95, FD00, GHH+93, HLP11, MC94, P+94, dGJM94, GDB+93, JR10]. Worlds [Rab98].
wormhole
[Pan95a, Pan95b, RJMC93, ZGN94].
wormhole-routed
[Pan95b, RJMC93, ZGN94]. worms
[Pan95a]. WoTUG [MC94]. WoTUG-17
[MC94]. WPVM [ASCS95, BPMN97].
Wrapper [AS14]. Wrapping [LW01].
Write [B+10]. Write-Back [B+10].
Writing [SDB94, FNSW99]. Written
[KaM10]. WWW [KSJ95, KSJ96].
X10 [CGH+14]. X11 [GLK95]. Xab
[Beg92, Beg93b, Beg93c, Beg93a]. XPVM
[KG96].
YLC [Gal97]. YMP [BL94]. Yorkshire
[CJNW95].
REFERENCES

References

REFERENCES

Augusto:2013:APG

Ayguade:2010:EOS

Adhianto:2000:TOA

APPiani:1995:PSI

APPiani:1995:PSM

Agosta:2015:OPP

Giovanni Agosta, Alessandro Bareghi, Alessandro

[DiF15]

Arbenz:1996:MDS

[Arb96]

Abrahart:1996:GIC

[Abr96]

Ayguade:2009:DOT

[AYG10]

Arnold:1994:PCT

[ACD+94]

Acacio:2002:MDM

REFERENCES

REFERENCES

REFERENCES

ACM Supercomputing 2004
Conference, Pittsburgh, PA,
November 6–12, 2004. ACM
Press and IEEE Computer
Society Press, New York,
NY 10036, USA and 1109
Spring Street, Suite 300, Sil-
ver Spring, MD 20910, USA,
LCCN ????

ACM:2005:PAI

[ACM05] ACM, editor. Proceedings
of the 2005 ACM/IEEE con-
ference on Supercomputing
2005, Seattle, WA, Novem-
er 12–18 2005. ACM Press
and IEEE Computer Society
Press, New York, NY 10036,
USA and 1109 Spring Street,
Suite 300, Silver Spring, MD

ACM:2006:PST

[ACM06a] ACM, editor. Proceedings
of the 37th SIGCSE tech-
cal symposium on Computer
science education 2006,
Houston, Texas, USA,
March 03–05, 2006. ACM
Press, New York, NY 10036,
USA, 2006. ISBN 1-59593-
259-3. ACM order number
457060.

ACM:2006:PCC

[ACM06b] ACM, editor. Proceedings
of the 3rd conference on Com-
puting Frontiers, May 3–5,
2006, Ischia, Italy. ACM
Press, New York, NY 10036,
USA, 2006. ISBN 1-59593-
302-6. ACM order number
104060.

ACM:2011:SSP

Laura Antonelli, Stefania
corsaro, Zelda Marino, and
Mariarosaria Rizzardi. Al-
gorithm 944: Talbot suite:
Parallel implementations of
Talbot's method for the nu-
merical inversion of Laplace
transforms. ACM Transac-
tions on Mathematical Soft-
ware, 40(4):29:1–29:??, June
2014. CODEN ACMSCU.
ISSN 0098-3500 (print),
1557-7295 (electronic).

Antonelli:2014:ATS

P. Alonso, R. Cortina,
F. J. Martínez-Zaldívar, and
J. Ranilla. Neville elimina-
tion on multi- and many-core
systems: OpenMP, MPI
and CUDA. The Journal
of Supercomputing, 58(2):
CODEN JOSUED. ISSN
0920-8542 (print), 1573-0484
(electronic). URL http:
//www.springerlink.com/
openurl.asp?genre=article&
issn=0920-8542&volume=
58&issue=2&spage=215.
REFERENCES

Arioli:1995:PSB

Amestoy:2003:IIMa

Amestoy:2003:IIMb

Aversa:2005:HDS

Aversa:2005:PPT

Alexandrov:1998:CGP

Amritkar:2014:EPC

Ashby:1995:PPG

Ayguade:2006:ENO

[AGMJ06] Eduard Ayguade, Marc

Aityan:1995:PFI

Averbuch:1994:PES

Arbenz:1996:SRP

Ayguade:2006:ENO

Spiros N. Agathos, Panagiotis E. Hadjidoukas, and Vasillios V. Dimakopoulos. Task-based execution of nested OpenMP
Ahmad:1997:EVP

Aversa:1997:MDP

Aguilar:1997:PMS

Alexandrov:1999:PMC

Armstrong:2000:QDB

REFERENCES

Andersen:1994:PIA

Asai:1999:MIF

Altevogt:1993:PTD

Alt:1996:PIA

Alund:1994:CFD

Ayguade:2007:SIO

Almasi:1993:PDS

Agrawal:2011:PPS

Amato:1994:PEP

anMey:2007:NPO

Al-Mouhamed:2015:EAO

REFERENCES

doi/abs/10.1080/17445760.2014.953158.

Anonymous:1993:PSE

Anonymous:1993:SEC

Anonymous:1993:CDP

Anonymous:1993:ICS

Anonymous:1994:ALM

Anonymous:1994:FWR

Anonymous:1994:MMP

Anonymous:1994:PDC

REFERENCES

Anonymous, editor. 3rd CLIPS conference — September 1994, Houston, TX, NASA Publications N N95-19625-647, N95-19747-768.

National Aeronautics and Space Administration, Washington, DC, USA, 1995. ISBN ?? LCCN ??

[Anonymous:1996:IPP]

[Anonymous:1996:PPA]

Anonymous. Research program. World-Wide Web,

Anonymous:1997:TNR

Anonymous:1998:ANO

Anonymous. Announcements: New official Fortran technical reports; working group 5 documents; OpenGL Fortran 95 bindings; MPI module provides enhanced Fortran support; variable precision arithmetic; Fortran information sites; new Fortran compiler versions from Lahey and Fujitsu; downloadable advanced Fortran textbook; Fortran engineering textbook. *ACM Fortran Forum, 17*(3):1–2, December 1998. CODEN ????. ISSN 1061-7264 (print), 1931-1311 (electronic).

Anonymous:2001:AAL

Anonymous:2001:AI

Anonymous:2001:EDP

Anonymous:2003:MNIc

Anonymous. Micro news: IBM ups the ante in sili-

Anonymous:2012:CTC

ANS:1995:MCR

Arangano:1996:PMB

Arabnia:1995:TRA

Altas:1994:NIE

Agrawal:1994:PIC

Amritkar:2012:OPF

Al-Tawil:2001:PME

Attiya:1996:ERS

Angskun:2001:DPM

Asenjo:1995:SLF

[AZ95] R. Asenjo and E. L. Zapata. Sparse LU factorization of the Cray T3D.
REFERENCES

References

[BBC+00] Steve W. Bova, Clay P. Breshears, Christine E. Cucchi, Zeki Demirbilek, and Henry A. Gabb. Dual-level parallel analysis of harbor wave response using MPI and OpenMP. The Interna-
REFERENCES

Bosilca:2002:MVT

Bertozzi:1999:MIT

Bethune:2014:PAA

Bailey:1995:PSS

Bova:2001:PPM

Balaji:2010:FGM

Balaji:2011:MMC

Barrett:2014:EMM

Barak:1996:PPM

Bouteiller:2006:HPS

Bischof:2008:AAD

Christian H. Bischof, H. Martin Bücker, Paul Hovland,

REFERENCES

Boryczko:1994:LGA

Barnard:1999:MIS

Brorsson:2000:SIE

Blas:2014:RAM

Barton:2006:SMP

Becciani:2006:FMP

REFERENCES

Bircsak:2000:EONa

Bircsak:2000:EONb

Bouchard:1996:FCS

Betts:2012:GVG

Betts:2015:DIV

Baker:1999:MOO

Balaji:2010:IND
Pavan Balaji, Anthony Chan, William Gropp, Rajeev Thakur, and Ewing Lusk. The importance of non-data-communication overheads in MPI. *The
REFERENCES

Bland:2013:SIP

Beguelin:1991:UGP

Beguelin:1991:GDT

Beguelin:1992:HGD

Beguelin:1992:PHT

Beguelin:1992:SCG

K. Moore, and V. Sunderam. PVM and HeNCE:
Tools for heterogeneous network computing. In Kowal-
lik and Grandinetti [KG93], page ?? ISBN 3-540-56451-
9 (Berlin), 0-387-56451-9 (New York). LCCN QA76.58

Beguelin:1993:PEC

[BDG+93b] A. Beguelin, J. Dongarra, A.
Geist, R. Manchek, S.
Otto, and J. Walpole.
PVM: Experiences, current
status and future direction.
In IEEE [IEE93e], pages
765–766. ISBN 0-8186-4340-
4 (paperback), 0-8186-4341-
2 (microfiche), 0-8186-4342-
0 (hardback), 0-8186-4346-
3 (CD-ROM). ISSN 1063-
9535. LCCN QA76.5 .S96
1993.

Beguelin:1994:HHN

[BDG+94] A. Beguelin, J. J. Dongarra, G.
Al Geist, R. Manchek,
and K. Moore. HeNCE: a
heterogeneous network com-
puting environment. Scien-
tific Programming, 3(1):49–-
60, Spring 1994. CODEN
SCIPEV. ISSN 1058-9244
(print), 1875-919X (elec-
tronic).

Beguelin:1995:REP

[BDG+95] Adam Beguelin, Jack Don-
garra, Al Geist, Robert
Manchek, and Vaidy Sun-
deram. Recent enhance-
ments to PVM. Interna-
tional Journal of Supercom-
puter Applications and High
Performance Computing, 9
CODEN IJSCFG. ISSN
1078-3482.

Beguelin:19xx:PSS

[BDG+xx] A. Beguelin, J. J. Dongarra,
G. A. Geist, R. Manchek,
and V. S. Sunderam. PVM
software system and doc-
umentation. Email to
netlib@ornl.gov, ???? 19xx

Beguelin:1993:VDH

[BDG+93] Adam Beguelin, Jack Don-
garra, Al Geist, and V. Sun-
deram. Visualization and de-
bugging in a heterogeneous
environment. Computer, 26
(6):88–95, June 1993. CO-
DEN CPTRB4. ISSN
0018-9162 (print), 1558-0814
(electronic).

Bruck:1995:EMPb

[BDH+95] Jehoshua Bruck, Danny
Dolev, Ching-Tien Ho,
Marcel-Catalin Rosu, and
Ray Strong. Efficient Mes-
 sage Passing Interface (MPI)
for parallel computing on
clusters of workstations. In
ACM [ACM95b], pages 64–
73. ISBN 0-89791-717-0.

Bruck:1997:EMP

Browne:1998:RPA

Bode:1996:PVM

Baghsorkhi:2010:APM

Bronevetsky:2007:CFS

Baboulin:2008:SID

Marc Baboulin, Jack J. Dongarra, and Stanimire Tomov. Some issues in dense linear algebra for multicore and special purpose architectures. *LAPACK Working Note 200*, Department of
REFERENCES

[Beg93c] Adam L. Beguelin. Xab: a tool for monitoring PVM programs. Research paper CMU-CS-93-164, School of
REFERENCES

Bull:2010:PEM

Benkner:1995:VFA

Bencheva:2001:MPI

Bernauchi:1996:RHP

Baker:1998:MNP

Berthou:2001:COH

REFERENCES

REFERENCES

REFERENCES

Blanco:2002:PMA

Balasubramanian:2015:EGL

Bhanot:2005:OTL

Bischof:2008:PRM

Butler:2000:SPM

REFERENCES

Beisel:1997:EMD

Brune:1997:HMP

Breitenecker:1995:ESC

Bhargava:1993:PIW

Bhanot:1998:DTM

Bader:1996:PPA

Bouteiller:2006:MVP
A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello. MPICH-V project: a multiprotocol automatic fault-tolerant MPI. The International Journal
REFERENCES

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A

Bisseling:2002:FMF

Berka:2012:POM

Busa:2012:ACO

Bickham:1995:POM

Bernaschi:2005:ERA

Blas:2010:IEF

[BIC+10] Javier Garcia Blas, Florin Isaila, Jesus Carretero, David Singh, and Felix

[Bir94]

Branca:1995:CBH

[Bis04]

Bilger:1995:AFM

[BJ93]

Bernaschi:1999:ERA

[Biradar:1994:ADL]

[Bisseling:2004:PSC]

[Baiardi:1993:PVM]

DEN PCPADL. ISSN 0190-3918.

Boianov:1995:DLC

Barkati:2013:SPA

Bjorge:1995:ISS

Blaheta:1997:PIP

Blaheta:1999:LFM

Bhandarkar:1996:MPM

Balevic:2011:KAD

Bhandarkar:2001:ALB

[BKdSH01] Milind Bhandarkar, L. V. Kald, Eric de Sturler, and Jay Hoeflinger. Adaptive load balancing for MPI programs. Lecture
REFERENCES

Bekas:2002:PCP

Bull:2000:PPJ

Beaugnon:2014:VVO

REFERENCES

M. Bubak, P. Luszczek, and A. Wierzbowska. Porting CHAOS library to MPI.
Bhandarkar:1997:CRP

Booth:2000:SSM

Basumallik:2002:TOE

Buntinas:2007:IES

Bronevetsky:2003:AAL

Bubak:1994:PDS

M. Bubak, J. Mosciniski, M. Pogda, and W. Zdechlikiewicz. Parallel distributed 2-D short-range
REFERENCES

Bubak:1994:EMD

Bubak:1994:FLG

Bubak:1994:IPL

Bubak:1994:EMD

Baiardi:2001:CRD

Bubak:2002:DIM

[Berrendorf:2000:PCO] Rudolf Berrendorf and Guido Nieken. Performance characteristics for OpenMP constructs on different par-
REFERENCES

Bawidamann:2012:ETO

Bull:2001:MSO

Bubak:2000:IOB

Boisvert:1997:QNS

Bonnet:1996:UPW

Booth:2001:OML

REFERENCES

REFERENCES

Becks:1994:NCT

Barbosa:1997:EUW

Baptista:2001:IOS

Balou:1991:DIV

Burrer:1994:RRB

C. Burrer and P. Remy. RUBIS: a runtime basic interface software on TELMAT T9000 TN series. In de Gloria et al. [dGJM94], pages 63–78. ISBN ???? LCCN ????

Bernardi:1995:CCE

REFERENCES

[Bernaschi:1995:PEI]

[Bernaschi:1995:DRP]

[Boeres:2004:ETF]

[Bergstrom:2012:NDP]

[Brame:1997:TNR]
REFERENCES

[Boudet:1999:PIH] V. Boudet, F. Rastello, and

Benzoni:1992:CLF

Briley:1994:NNH

Bruck:1995:EMPa

Brightwell:2005:AIO

Bruning:2012:MFT

Barth:1993:CNM

REFERENCES

REFERENCES

[BSC99]

[Bolton:2000:MPL]

[BST+13]

[SBN95]

[Bukata:2015:SRC]

[BSvdG91]

[Bai:2013:SLA]

[Benzoni:1991:MFR]

Issn=0885-7458&volume=35&issue=5&page=441.

REFERENCES

[BVML12] Muthu Manikandan Baskaran, Nicolas Vasilache, Benoit
REFERENCES

REFERENCES

[CB11] Michal Czapinski and Stuart Barnes. Tabu Search with two approaches to parallel flowshop evaluation on
REFERENCES

Cooper:1994:CHF

Casas:2010:APD

Che:2008:PSG

Chapman:2002:APU

Chapple:1995:PUL

Cormen:1999:PBP

Thomas H. Cormen and

[CC00a]

[CCA00]

[CC10]

[CCF+94]

K. Castagnera, D. Cheng, R. Fatooli, E. Hook, B. Kramer, C. Manning, J. Musch, C. Niggley,
REFERENCES

Cooperman:2003:UTC

Casas:1995:MMT

Collingbourne:2012:STO

Costa:2006:ROA

Chen:2012:PUA

Clematis:1997:DNL

A. Clematis, A. Coda, M. Spagnuolo, and M. Mineter. Developing non-local iterative parallel algorithms for GIS on Cray T3D using MPI. Lecture Notes in
REFERENCES

Chamaret:1995:PFE

Coulaud:1996:EIP

Cunha:1998:MPP

Cotronis:2001:RAP

Clemencon:1996:THM

Cao:2013:CHP
Chongxiao Cao, Jack Dongarra, Peng Du, Mark Gates, Piotr Luszczek, and Stanimire Tomov. cLAPACK: High performance dense linear algebra with OpenCL. LAPACK Working Note 275, Department of Computer Science, University
REFERENCES

[124]

Conforti:1996:PIA

Chownie:1994:PPP

Chang:1995:EPCa

Chang:1995:EPCb

Casanova:1995:PPM

Chandra:2001:PPO

REFERENCES

REFERENCES

Choudhary:1994:LCR

Corbett:1996:OMP

Carpenter:2000:OSM
Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object serialization for marshaling data in a Java interface to MPI. Concurrency: practice and experience, 12(7): 539–553, May 2000. CO-

Clemencon:1995:IRD

Cotronis:1996:ECP

Clematis:1995:PPH

REFERENCES

Camp:2011:SIU

Clarke:1994:MMP

Carpenter:2010:PLN

Cunningham:2014:RXE

Carter:2010:PLN

Clarke:1994:MMP

Catanzaro:2011:CCE

Chapman:2011:OPE

Chatterjee:1993:GLA

Caubet:2001:DTM

Jordi Caubet, Judit Gimenez, Jesus Labarta, and Luiz DeRose. A dynamic tracing mechanism for performance analysis of OpenMP applications. Lecture Notes in Computer Science, 2104:

Chatterjee:1993:GLA

Caubet:2001:DTM

Jordi Caubet, Judit Gimenez, Jesus Labarta, and Luiz DeRose. A dynamic tracing mechanism for performance analysis of OpenMP applications. Lecture Notes in Computer Science, 2104:

Chan:1998:PCT

Cecilia:2012:CSC

Chen:2013:IRM

Zhezhe Chen, Qi Gao, Wenbin Zhang, and Feng Qin. Improving the reliability of

REFERENCES

openurl.asp?genre=issue&
issn=0302-9743&volume=
3349; http://www.springerlink.
com/openurl.asp?genre=
volume&id=doi:10.1007/
b105895.

[Cappello:2007:RAP]
Franck Cappello, Thomas
Herault, and Jack Dongarra,
editors. Recent Advances
in Parallel Virtual Machine
and Message Passing Inter-
face: 14th European PVM/
MPI User’s Group Meet-
ing, Paris, France, September
Proceedings, volume 4757
of Lecture Notes in Com-
puter Science. Springer-Ver-
lag, Berlin, Germany / Hei-
delberg, Germany / Lon-
don, UK / etc., 2007. CO-
DEN LNCSD9. ISBN 3-
540-75415-6 (print), 3-540-
75416-4 (e-book). ISSN
0302-9743 (print), 1611-
3349 (electronic). LCCN
???? URL http://
www.springerlink.com/
content/978-3-540-75416-
9.

[Cappello:2009:FSI]
Franck Cappello, Thomas
Herault, and Jack Dongar-
na. Foreword: Special
issue: selected papers from
the 14th European PVM/
MPI Users Group Meet-
ing. Parallel Computing,
35(12):571, 2009. CO-
DEN PA-COEJ. ISSN
0167-8191 (print), 1872-7336
(elec-
tronic). Held in Paris,
September 30—October 3,
2007.

[Che99]
J. Chergui. Using PMD
to parallel solve large-scale
Navier-Stokes equations.
performance analysis on
SGI/CRAY-T3E machine.
In Dongarra et al. [DLM99],
pages 341–348. ISBN 3-540-
66549-8 (softcover). ISSN
0302-9743 (print), 1611-3349
(electronic). LCCN QA76.58
E973 1999.

[Che10]
Jie Cheng. Book re-
view: CUDA by Exam-
ple: An Introduction to
General-Purpose GPU Pro-
gramming, by Jason Sanders
and Edward Kandrot, ISBN-
13 978-0-13-138768-3. Scal-
able Computing: Prac-
tice and Experience, 11
CODEN ???? ISSN
1895-1767. URL http://
www.scpe.org/index.php/
scpe/article/view/663.
See [SK10].

[CHKK15]
Myeongjin Cho, Youngsun
Han, Minseong Kim, and
Seon Wook Kim. O2WebCL:
an automatic OpenCL-to-
WebCL translator for high
performance web comput-
ing. The Journal of Su-
percomputing, 71(6):2050–
2065, June 2015. CODEN

REFERENCES

[CKP93] David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E. Schauser, Eunice Santos,
REFERENCES

Castro-Leon:1993:MCP

Clark:1998:FOP

Chen:2003:GMD

Corbacho-Lozano:1999:EDD

Cantoni:1995:CCA

Chien:1999:DEH

REFERENCES

Chandra:2007:ESP

Chapman:1998:OHI

Chapman:2005:O

Claver:1999:PCS

Cahir:2000:PMM

Corbalan:2004:PMD

[REFERENCES]

Carson:2003:CGU

Brett Carson, Robert Muri

Chapman:2012:OHW

Campanai:1994:EAS

M. Campanai, O. Morales, S. Viti, R. Trotta, P. Vil-

iani, and M. Lo Moro. Experiences assessing software testing activities: the adoption of PVM, a prediction and validation model. In Anonymous [Ano94i], pages 491–500. ISBN 3-7281-2153-3. LCCN ????.

Chou:2010:CMI

Chalkidis:2011:HPH

Coelho:1994:EHC

REFERENCES

Cooperman:1995:SBP

Cooperman:1995:SMB

Cotronis:1997:MPP

Cotronis:1998:DMP

Cotronis:2004:CMP

Coussement:1993:PMO

G. Coussement. Parallelization of a mesh optimization code on a RS/6000 cluster. In Anonymous [Ano93e], pages 185–212. ISBN ???. ISSN 0254-6213. LCCN ???.

Carvalho:1997:PCC

Carissimi:1998:AEM

Cercos-Pita:2015:ANF

Corno:1995:PTA

ChassindeKergommeaux:1999:MER

Cappello:1999:PNB

Cappello:2001:UPS

Cores:2014:FAM

REFERENCES

REFERENCES

Chevitarese:2012:STN

Ciegis:1997:NID

Ciegis:1999:HDA

Calotoiu:2012:PID

Cote:1994:PSA

Cote:1994:PSL

Cotronis:2002:MMP

REFERENCES

[CZG+08] Barbara Chapman, Weiming Zheng, Guang R. Gao, Mitsuhisa Sato, Eduard Ayguadé, and Dongsheng Wang, editors. A Practi-
REFERENCES

REFERENCES

Demidov:2013:PCO

Demuynck:1997:DOD

Dursun:2009:MPM

Dotsenko:2011:ATF

DiMartino:2001:WDS

DAgostino:2014:CAM

Daniele D’Agostino, Andrea Clematis, Sergio Decherchi, Walter Rocchia, Luciano Milanesi, and Ivan Merelli. CUDA accelerated molecular surface generation. *Concurrency and Computation:
REFERENCES

REFERENCES

REFERENCES

REFERENCES

CODEN SJOCE3. ISSN 1064-8275 (print), 1095-7197 (electronic).

DAmbra:1995:CBC

Dinan:2014:ECC

DiNapoli:1997:DCA

Dinan:2012:EMC

deGloria:1994:TAS

Dongarra:1993:UPR

Dongarra:1993:IPF

[DGMS93] Jack Dongarra, G. A. Geist, Robert Manchek, and V. S. Sunderam. Integrated PVM

daCunha:1994:PIR

Dongarra:1995:PBC

Dongarra:1992:PUL

Dongarra:1993:PUM

Dongarra:1993:DSM

Derakhshan:1997:PEP

Dongarra:1997:CSD

J. J. Dongarra, S. Hammarling, and A. Petitet. Case studies on the development of ScalAPACK and the NAG numerical PVM library. In
REFERENCES

Dongarra:1996:SRP

DiPierro:2014:PPP

DiSerio:2002:ENN

DroSinos:2006:EPT

REFERENCES

Deo:2013:PSA

DiMartino:2005:RAP

DiMartino:2007:SIS

DiMartino:2008:SSG

Damodaran-Kamal:1993:NTD

REFERENCES

DeKeyser:1994:RTL

Lu:2004:AFS

Despons:1993:CCP

Davies:1995:NSP

Davies:1995:NPE

Dagum:1998:OIS

REFERENCES

REFERENCES

DeRoeck:1994:CFP

Denis:2001:THP

Dou:1997:ISV

Decker:1994:PEM

Dowaji:1995:LBS

DiMartino:1997:MDH

Deuzeman:2012:LMP

Deshpande:1996:MIBb

Djordjevic:1996:ICI

Dang:2013:CES

REFERENCES

REFERENCES

[DWL+10] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack Dongarra. From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming. LAPACK Working Note 228, Department of Computer Science, University of Tennessee, Knoxville, Knoxville,
REFERENCES

Du:2012:COT

Deshpande:2012:AGC

Dong:1996:SPL

Dantas:1996:ILB

Dantas:1998:ESM

Delves:1998:HPF

Dragovitsch:1995:PPS

Dykes:1994:CCP

Edjlali:1995:DPP

[EdS08] Rudolf Eigenmann and Bronis R. de Supinski, editors. OpenMP in a New Era of Parallelism: 4th International Workshop, IWOMP 2008 West Lafayette, IN,

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Volume</th>
<th>Pages</th>
<th>Publisher</th>
<th>ISBN</th>
<th>LCCN</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

8. ISSN 1439-7358. LCCN QA76.9.C65 S535 2000. [ERS95]

Ellingson:2013:SNU

Ewing:1994:DCW

Escaig:1994:PMD

Eichenberger:2012:DOT

Eigenmann:2001:OSM

REFERENCES

Fang:1998:DDL

Fan98

[FB94]

Freeman:1994:SMM

Fang:1995:PMS

Fang:1995:PMS

Fang:1996:SPP

Fang:1997:MDD

Fang:1997:MDD

Fagg:2001:FTM

Fagg:2001:FTM

Fagg:2001:HFT

Graham E. Fagg, Antonin Bukovsky, and Jack J. Dongarra. HARNESS and fault tolerant MPI. Parallel Computing, 27(11):1479–1495, October 2001. CODEN PA-COEJ. ISSN 0167-8191 (print), 1872-7336 (elec-
REFERENCES

[168]

REFERENCES

Figueira:2012:DCD

Fagg:1996:PIP

Fischer:1997:AAP

Fagg:2000:FMF

Fagg:2002:HFTa
Graham E. Fagg and Jack J. Dongarra. HARNESS fault tolerant MPI design, usage and performance issues. Technical report ?, University of Tennessee, Knoxville, Knoxville,
REFERENCES

Fagg:2002:HFTb

Fagg:1997:HMAAb

Ferenczi:1992:AHW

Ferrari:1998:JNPa
REFERENCES

High-performance Network Computing.

REFERENCES

Fahringer:2000:FOP

Foster:1996:MIW

Fan:1995:DMP

Fachat:1997:IEB

Andre:1998:BVN

Friedley:2013:OPE

REFERENCES

tronic). PPoPP ’13 Conference proceedings.

REFERENCES

Fineberg:1994:IMM

Fineberg:1995:IMM

Fin:1997:CPM

Fink:2000:IMC

Fischer:2001:SAN

Fernandez:2000:UPM

[GJFBB00] Gustavo J. Fernández, Julio Jacobo-Berlles, Patricia Borenstejn, Marisa Bazuá, and Marta Mejail. Use of PVM for MAP image restoration: a parallel implementation of the ARTUR algorithm. Lecture Notes in Computer
Feng:2014:SBS

Flower:1994:EJM

Ferenczi:1995:PAH

Fischer:2001:DNM

Field:2002:OSR

REFERENCES

Foster:1996:MCL

Foster:1996:CDT

Foster:1996:DSB

Freh:2008:JTD

Foster:1996:GCM

Florez:2005:LMM

Fagg:1996:TGR

[G. E. Fagg, K. S. London, and J. J. Dongarra. Taskers and general resource

REFERENCES

[Ferreira:1995:PAI] Afonso Ferreira and Jose

PPLTEE. ISSN 0129-6264 (print), 1793-642X (electronic).

REFERENCES

0302-9743 (print), 1611-3349 (electronic).

Gates:1995:PFI

[184]

Gupta:1994:CTE

[184]

Ghosh:1996:ELM

[184]

Gorlatch:1998:GMI

[184]

Geist:1994:PPV

[184]

Gentzsch:1995:STP

[184]

Golebiewski:1999:HP1

[184]

M. Golebiewski, M. Baum, and R. Hempel. High performance implementation of

[GCBL12] Marta Garcia, Julita Cor-

GarciaSalcines:1997:PRR

Garcia:1999:MMI

Garcia-Consuegra:1998:DGR

Gelado:2010:ADS

Gao:2013:GGA

Geist:1993:PTW

A. Geist, J. Dongarra, A. Beguelin, B. Manchek, and Weicheng Jiang. PVM takes over the world. In IEEE [IEE93e], page 618. ISBN 0-8186-4340-4 (paper-
REFERENCES

[Gei93a]

[Gei93b]

[Gei94]

[Gei96]

[BDLS96] G. A. Geist. Advanced programming in PVM. In Bode et al. [BDLS96], pages 1–7. ISBN 3-540-61779-5. ISSN
REFERENCES

[GEW98] Lothar Grabowsky, Thomas Ermer, and Jörg Werner. Nutzung von MPI für parallele FEM-Systeme. (German) [Use of MPI for parallel FEM systems]. Preprintreihe des Chemnitzer SFB 393 Sonderforschungsbereich Numerische Simulation auf Massiv parallelen Rechnern 97,08; RA-TR 02-97, Universität Chemnitz-Zwickau, Chemnitz, Germany, 1998.

Gabriel:2003:FTC

M. Giordano, M. M. Furnari, and F. Vitobello. Interaction between PVM parameters and communication performances on ATM networks.
REFERENCES

Garzon:1999:PIE

Giannoutakis:2009:DIP

Giannoutakis:2007:MHP

Gallud:2001:EDF

Gallud:1999:DPR

REFERENCES

Gallud:1999:CCU

Godlevsky:1999:Psa

Geist:1996:MEM

Getov:1999:MJM

[GGS99] Vladimir Getov, Paul Gray, and Vaidy Sunderam. MPI and Java-MPI: Contrasts and comparisons of low-level communication performance. In ACM [ACM99], page ??

Gentzsch:1994:HPC

[GH94] Wolfgang Gentzsch and Uwe...

REFERENCES

193

Robert Granat and Bo Kagstrom. Parallel solvers for Sylvester-type matrix equations with applications in condition estimation, part I: Theory and algorithms. *ACM Transactions on Mathema-
REFERENCES

[Geist:1997:BPW] G. A. Geist, J. A. Kohl, P. M. Papadopoulos, and
REFERENCES

Gopalakrishnan:2011:FAM

Garland:2012:DUP

Gropp:1992:TIM

Gropp:1994:MCL

Gropp:1995:DPM

Gropp:1995:IMM

Gropp:1995:MMI

W. Gropp and E. Lusk. The MPI message-passing interface standard: Overview and status. In Dongarra et al. [D+95], pages 265–270. ISBN 0-444-8216-
5. ISSN 0927-5452. LCCN QA76.88.H55 1995.

REFERENCES

//link.springer.de/link/
//service/series/0558/papers/
2474/24740012.pdf.

William Gropp:2004:FTM

Sergi Girona:2000:VDC

William Gropp:1996:HPP

I. Glendinning:1993:MMP

REFERENCES

0272-1732 (print), 1937-4143 (electronic).

REFERENCES

Goujon:1998:AAT

Guan:1995:SCC

Gray:1995:PCT

Goedecker:2002:OPF

Gonzalez:2001:OET

REFERENCES

REFERENCES

Grengbondai:1994:CPU

Greenfield:1995:OPS

Gropp:2000:RCD

Gropp:2001:CSA

Gropp:2001:LSM

Gropp:2002:BLC

REFERENCES

REFERENCES

REFERENCES

Gao:2008:GEI

Gardner:2013:CCE

Gine:2001:MMM

Gerlach:1997:ECS

Gine:2002:ALT
REFERENCES

Gu:2013:PCI

Gruber:1994:PJE

Gidra:2015:NGC

Gropp:2007:TSM

Gennart:1996:CAG

Golbiewski:2001:MOS
CANED2. ISSN 0163-5964 (print), 1943-5851 (electronic).

Ge:1995:DHA

Guerrero:2014:PCM

Hadjidoukas:2010:NOP

Han:2011:HHL

Hussain:2011:PIA

Hoeflinger:2001:PSP
REFERENCES

Hamza:1995:PII

Haridi:1995:EPP

Hansen:1998:EMP

Hardwick:1994:PVL

Hardwick:1995:PVL

Hassanzadeh:1995:MMG

REFERENCES

Huang:2008:FPM

Hamid:2010:CMB

Hurwitz:2005:AMP

He:2000:PAA

Ding:2002:MOP
REFERENCEs

REFERENCES

[HG95] Lin Hong and Chen Huaping. PVM and network parallel computing. Mini-Micro Systems, 16(2):53–58,
REFERENCES

February 1995. CODEN XWJXEH. ISSN 1000-1220.

Hall:2014:MMC

Huang:2010:ELA

Hoffmann:1993:PFE

Henriksen:1994:PCF

Hoffmann:1995:CAP

Hong:2009:AMG

REFERENCES

0163-5964 (ACM), 0884-7495 (IEEE).

Hong:1996:RDM

Hawick:2010:PGC

Hawick:2011:RLS

Huband:2001:DTB

Hilbrich:2009:MCC

REFERENCES

Hakula:1994:FEM

Hogg:2013:FDT

Hollingsworth:2012:SPI

Hosking:2012:CHL

REFERENCES

[Hadjidoukas:2002:MOI]

[HPR+95]

[HPS95]

[HPS+96]

[Hilbrich:2012:MRE]

[Hilbrich:2013:MRE]

[Hariri:1993:MPI]
S. Hariri, J. B. Park, F.-K. Yu, M. Parashar, and
REFERENCES

Hoefler:2011:SPT

Hoyos-Rivera:1997:UPB

Hempel:1997:IMN

Hartley:1993:CPS

Hesham:1994:PTS

Hertzberger:1995:HPM

Hungenahally:1995:PIQ

Hoefler:2012:OPC

Hu:2001:PCC

REFERENCES

link/service/series/0558/ | [Huc96]
bibs/2073/20731137.htm; | Howes:2008:U
y.com/link/service/series/ | Efficient random number
e0558/papers/2073/20731137. | generation and application
pdf. | using CUDA. In Nguyen

[HT08] | [Hum95]
generation and application | www.loc.gov/catdir/toc/
using CUDA. In Nguyen | eicp0720/2007023985.html
[Ng08], chapter 37, pages | [HTA08] | Phuong Hoai Ha, Philippas
| 805–830. | Tsigas, and Otto J. Anshus. | Non-blocking programming
| www.loc.gov/catdir/toc/ | ACM SIGARCH Computer

[Hum98] | [Hus98] | Parry J. Husbands. MPI-
| Christopher Wade Humphres | StarT: Delivering network
| A load balancing extension | performance to numerical
| for the PVM software system. | applications. In ACM | [ACM98b], page ??
| University of Alabama, | | www.supercomp.org/sc98/
| Tuscaloosa, AL, USA, 1995. | papers/.
| viii + 98 pp. | [Huse:1999:CCD]

[HTHD99] | L. P. Huse. Collective | L. Halada, and M. Dobrucky. | communication on dedicated
| Ground water flow | clusters of workstations. In | modelling in PVM. In | Dongarra et al. [DLM99],
REFERENCES

[HWM02] Wei Huang, Zhe Wang, and Jie Ma. Design of DMPI
REFERENCES

He:2009:AVS

Hwang:1997:EMC

Huang:2013:ACM

Hellberg:1994:PPP

Hempel:1996:APT

Hempel:1999:AMP

Hou:2008:BBS

Isaila:2010:SMP

Isabel:2002:CMO

Issman:1994:PME

IEEE:1991:PSA

IEEE:1992:PSH

REFERENCES

REFERENCES

REFERENCES

[IEEE:1996:FSS]

[IEEE:1996:PIS]

[IEEE:1996:FPI]

[IEEE:1996:PFE]

REFERENCES

1. LCCN QA76.58 .E97 1996. IEEE order number PR07376.

IEEE:1996:PSI

IEEE:1996:PSM

IEEE:1997:APD

IEEE:1997:TIS

IEEE:2005:IPD

IFI:1995:KWC

Iwasaki:2004:NPS

Izaguirre:2005:PMS

Iskra:2000:PMD

Ierotheou:2005:GOC

C. S. Ierotheou, H. Jin, G. Matthews, S. P. Johnson, and R. Hood. Generating OpenMP code using an in-

Iwama:2001:PLS

Iwama:2002:PLS

Iwashita:1994:IPE

Ingle:1995:MAS

Ishizaka:2000:CGT

Ilroy:2001:IMP

REFERENCES

Jabbarzadeh:1997:PSS

Jacoby:1996:ADA

Juhasz:1996:PIP

Jin:2008:PEM

Jaeger:2015:FGD

Jenkins:2014:PMD

John Jenkins, James Dinan, Pavan Balaji, Tom Peterka, Nagiza F. Sama-

Jackson:1997:SYE

Jin:2011:HPC

Jin:2003:AMP

Januszewski:2010:ANS

Jeun:2008:OPB

Jog:2013:OCT

Jie:2014:ASP

Jorba:2001:SFF

Jung:2014:MCM

Jo:2015:ALM

Jones:1996:LLM

Chris R. Jones. Low latency MPI for Meiko CS/2 and ATM clusters. Thesis (m.a.), Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, USA, 1996.

Joubert:1994:PAL

A. Joubert. Parallel algorithms for linear and nonlinear equations derived from networks. In Joubert et al.

REFERENCES

REFERENCES

Katamneni:1993:PPE

[Sreevenu Katamneni. Parallel processing extensions to Verilog HDL using the PVM environment. M.s.e.e. thesis, Department of Electrical Engineering, University of Alabama, Tuscaloosa, AL, USA, 1993. viii + 108 pp.]

Karlsson:1998:CCC

Kaiser:2001:OCC

Klemm:2009:RTM

KNIES:1994:SLL

KITOWSKI:1997:CPM

KE:2004:RCM

KLEMm:2007:JIO

KARAMCHETI:1994:SOM

KRAWEZIK:2006:PCM

KACSUK:1997:GDD

[Peter Kacsuk, Jose C. Cunha, Gabor Dozza, Joao Lourenco, Tibor Fadgyas, and Tiago Antao. A graphical development and debugging environment for parallel programs. Paral-
REFERENCES

Kakimoto:2012:PCG

Klemm:2012:EOV

Komatitsch:2010:HOF

Kepner:2005:PPM

Kale:1996:PMD

Kappiah:2005:JTD

Kramer-Fuhrmann:1994:TGP

O. Kramer-Fuhrmann, L. Schafers, and C. Scheidler. TRAPPER — a graphical programming environment for parallel systems. In Becks and Perret-Gallix [BPG94],
REFERENCES

3349 (electronic). LCCN ????. URL http://www.springerlink.com/content/978-3-642-15646-5.

REFERENCES

Kucukboyaci:2001:PPT

Kjolstad:2012:ADG

Kikuchi:1993:PAS

Kranz:1993:IMP

Kwon:2012:HAO

Kemelmakher:1998:SAR

Karniadakis:2002:PSC

George Em Karniadakis and Robert M. Kirby. *Parallel...*

Krysztop:2002:IFP

Kranzlmüller:2004:RAP

Kranzlmüller:2005:RAP

Kranzlmüller:2003:RAP

[KKD03] Dieter Kranzlmüller, Peter Kacsuk, Jack Dongarra, and

Kee:2003:POP

Kwon:2008:RPP

Kim:2011:ASC

Karami:2015:SPA

Konstantinou:2001:TTO

Kobler:2001:DOP

Karrels:1994:PAM

Kofakis:1995:DP1

Liao:2011:DEM

Liao:2006:SDI

Liao:2007:CCS

REFERENCES

Khanna:2010:NMG

Kormicki:1996:PLS

Komatitsch:2009:PHO

Koholka:1999:MPR

Kumar:2014:OMC

Sameer Kumar, Anith Mamidala, Philip Heidelberger, Dong Chen, and

Kirk:2010:PMP

Kalns:1995:DPD

Kasprzyk:2002:APV

Komura:2014:CPG

Kambites:2001:OLI

REFERENCES

Kasahara:2001:ACG

Koniges:2000:ISP

Kauranne:1995:OHM

Koski:1995:STL

Konuru:1997:MUL

Kermarrec:1996:PDS
Y. Kermarrec and L. Pautet. Programming distributed systems with both Ada 95 and PVM. In Toussaint

Kim:2013:MPE

Kaliman:2015:SNU

Kegel:2013:DTU

Kusano:2001:OOC

Katkere:1995:VBW

Katkere:1996:VWI

REFERENCES

REFERENCES

Kranzlmueller:1998:DPP

Kolonias:2011:DIE

Krotz-Vogel:1997:PPP

Kamal:2010:EIN

Karwande:2003:CMC

Karwande:2005:MPC

[Langdon:2009:FHQ] W. B. Langdon. A fast high quality pseudo random number generator for nVidia CUDA. In Franz Roth-
 REFERENCES

Loos:1996:MPS

Lavi:1998:IPD

Lawton:1996:BHP

Ling:2012:HPP

Lewis:1993:PCP

Lauria:1997:MFH

Lashuk:2012:MPA

Lonsdale:1994:CRP

Lonsdale:1994:CMH

Liu:2003:PCM

Liu:1996:BMP

Lee:2001:APT
REFERENCES

Lu:1997:QPD

Liu:2013:DLO

Lee:2006:PT

Lee:2012:SMO

Levelt:1995:IIS

Law:1993:EDM
REFERENCES

Levesque:1993:SAA

Lim:2011:ATC

Leon:1992:FP

Leon:1993:FPA

Leon:1993:FPP

Loyot:1993:VVM

Lee:1999:PEJ

Li:2010:SVC

Lassous:2000:HGA

Leung:1995:EPE

Leung:1998:PAN

Liao:2007:OOP

Lee:1996:TSF

Lin:1994:DNC

Lin:1995:DNC

Li:1996:PSI

Liu:2010:RTC

Li:1997:PIO

Lu:1998:ONW

Li:1996:SIS

[Guo-Jie Li, editor. Second International Symposium on]

REFERENCES

Luecke:2003:CPM

Liang:1996:AEO

Li:2003:PNH

Luecke:2004:PSM

Ludwig:1995:PPF

Luecke:2001:SPO

REFERENCES

li:2013:com

Li:2012:PFA

Luo:2014:ISM

Langlais:2002:SSM

Li:1993:SLL

Loh:1994:ISR
B. C. Loh and G. A. Manson. Incorporating software reuse into the PCSC methodology. In de Gloria et al. [dGJM94],
REFERENCES

Landman:2000:PLR

Lu:1996:PIF

Li:2011:FSM

Li:2001:PCS

Lastovetsky:2006:HTM

Alexey Lastovetsky and Ravi Reddy. HeteroMPI: Towards a message-passing library for heterogeneous networks of computers. Jour-
REFERENCES

Le:2006:DMC

Lotfi:2015:AAC

Lee:2014:BCA

Luo:2001:PDE

Latham:2007:IMI

Li:2001:WMB

Maozhen Li, Omer F. Rana, and David W. Walker. Wrapping MPI-based legacy codes as Java/CORBA com-

Luckow:2008:MFT

Lin:2010:TLS

Luecke:2004:PSS

Liu:2011:CBA

Lumsdaine:1995:WIM

A. Lumsdaine, J. M. Squyres, and M. W. Reichelt. Waveform iterative methods for parallel solution of in-

Li:2015:AMR

Liu:2008:AMD

Lazzarino:2002:PBP

[LSZL02] Oscar Lazzarino, Andrea Sanna, Claudio Zunino, and Fabrizio Lamberti. A PVM-based parallel implementation of the REYES image rendering architecture.

Lazar:1994:SRE

Laohawee:2000:PDT

[P. Laohawee, A. Tangpong, and A. Rungsawang] Parallel DSIR text indexing sys-

Li:1995:CPP

LW95

Ludwig:1997:OUI

LW97

Liu:2004:HPR

LY93

LY713

Lu:2013:WGA

LZ97

Li:1997:EHC

REFERENCES

Mainland:2012:EHM

Molero-Armenta:2014:OOI

Malyshkin:1995:PCT

Malfetti:2001:AOW

Mirvis:1995:HML

Manchek:1994:DIP

Mans:1998:PDP

Manis:2001:PNP

Miguel-Alonso:2009:INS

Marowka:2002:ISI

Marowka:2003:EOT

Marowka:2005:EMT

Marowka:2006:BRP

Marowka:2007:PCD

Marowka:2009:BCT

Mehta:2006:MSG

Mattson:1994:PEP

Mattson:1995:PEP

Mattson:2000:BOF

Mattson:2000:IO
Mattson:2001:EO

Matuszek:2001:APS

Mattson:2003:HGO

Mourao:2000:SSC

Marongiu:2012:OCE

Muller:2012:SOA

REFERENCES

Medeiros:1998:IPM

Morrison:1999:FPP

Massaioli:2005:OPA

McDonald:1996:NNP

Mueller:2008:OSM

McKinney:1994:PGU

Moore:2001:RPA

Shirley Moore, David Cronk, Kevin London, and Jack...
REFERENCES

McRae:1992:VC

Mierendorff:2000:WMB

Muller:2009:EOA

Megson:1998:CRH

Milovanovic:2008:NEE
Moody:2003:SNB

Martin:1995:DPC

Mintchev:1997:TPM

Mehta:2015:MTP

Mehta:2012:SPE

Medvedev:2005:OMA

Mazzariol:1997:PCS

Matthey:2001:EMO

Hwu:2012:GCG

Miller:1994:PPP

Miller:1994:PPT

Michielse:1993:PMU

Michielse:1995:PMU

REFERENCES

REFERENCES

REFERENCES

[MM14] Shin Morishima and Hiroki Matsutani. Performance evaluations of graph database using CUDA and OpenMP compatible libraries. ACM SIGARCH
REFERENCES

Malony:1994:PAP

Mudge:1993:PTS

Morimoto:1998:IMM

[MMH98] K. Morimoto, T. Matsumoto, and K. Hiraki. Implementing MPI with the memory-based communication facilities on the SSS-CORE operating system.

Lecture Notes in Computer Science, 1497:223–??, 1998. CODEN LNCSBD. ISSN 0302-9743 (print), 1611-3349 (electronic).

Morimoto:1999:PEM

Mohamed:2013:MMM

MacFarlane:1999:PPI

[MMR99] A. MacFarlane, J. A. McCann, and S. E. Robertson. PLIERS: a parallel information retrieval system using MPI. In Dongarra et al. [DLM99], pages 317–324. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349 (elec-

[MOL05] Edson Toshimi Midorikawa, Helio Marci Oliveira, and Jean Marcos Laine. PEM-PIs: a new methodology for modeling and prediction of

Mork:1995:DPP

Manke:1995:MPP

Martin:2004:HPA

MPIForum:1998:SIM

Muller:1996:CDI

Martins:2012:PDC

Mo:1996:IOP

REFERENCES

Mininni:2011:HMO

Mazzocca:2000:TPP

Morinishi:1995:PIB

McMahon:1996:EEE

Menden:1996:PPP

Marinho:1998:WMP

Mierendorff:1999:PMB

H. Mierendorff and H. Schwamborn. Performance modeling based
REFERENCES

Migliardi:1999:PEH

Mourao:1999:IMO

Macias:2002:SEA

Mahinthakumar:2002:HMO

Mertens:2004:CCP

Mysliwiec:1997:IPS

REFERENCES

Matise:1995:PCG

Migliardi:2000:SFT

McCandless:1996:OOM

Massetto:2012:NSB

Martin:2015:EPM

Molnar:2010:APM

Macias:2001:PPA

Martins:1998:JIW

Martorell:2005:BGP

Miei:1996:IER

July 1996. CODEN JS-GRD5. ISSN 0387-5806.

REFERENCES

REFERENCES

Morton:1995:LLP

Maly:1993:DCP

Nikolopoulos:2001:SID

Nikolopoulos:2001:EMA

Nagle:2005:BRM

Nicolescu:1999:PWA
C. Nicolescu, B. Albers, and P. Jonker. Parallel watershed algorithm on images from cranial CT-scans using PVM and MPI on a distributed memory system. In Dongarra et al. [DLM99], pages 418–425. ISBN 3-540-66549-8 (softcover). ISSN 0302-9743 (print), 1611-3349

Nakajima:2003:PIS

Nakajima:2005:PIS

Nakajima:2005:TLH

Narashimhan:1995:IIF

Nagel:1996:VVA

NicCanna:1996:LGS

[NB96] C. Nic Canna and C. J. Bean. Larger grids and shorter wall-clock times on a parallel virtual machine (PVM) — an example using a finite difference wave simulation algorithm. In Abrahart [Abr96], pages 2–??. ISBN ???? LCCN ????

Nesterov:2010:SPT

Neun:1994:UPB

Neyman:2000:CDA

Nunez:2010:NTS

Nguyen:2008:GG

Nguyen:1995:SPI

D. Nguyen and B. Hillberg. Simulations of pinhole imaging for AXAF: Distributed processing using the...

Norden:2002:OVM

Norden:2006:OVM

Nakano:2002:SCG

Nakano:2003:SCG

Nitsche:2000:TCM

Thomas Nitsche. Thread communication over MPI.
REFERENCES

Nadeau:1995:SVR

REFERENCES

Nupairoj:1995:PES

Nishitani:2000:IEO

Nakajima:2002:PISb

Noble:2008:GMY
REFERENCES

Nikolopoulos:2000:ULR

Notz:2012:GBS

Nascimento:2007:DDS

Nukada:2012:SMG

Neuberger:2012:MIS

Nandivada:2013:TFO

Norcen:2005:HPJ

Nitsche:1998:FMP

Ng:2012:STT

Nguyen:1994:DCE

Oberhuber:1996:MNP

Orr:2015:SUR

REFERENCES

Okulicka-Dluzewska:2001:PFE

Ong:2000:PCL

Owaida:2015:EDS

Okitsu:2010:HPC

Yusuke Okitsu, Fumihiko Ino, and Kenichi Hagiwara. High-performance cone beam reconstruction using CUDA compatible GPUs. *Parallel Comput-
REFERENCES

Ohara:2006:MMP

Oh:2012:MOO

Oakley:1995:ADR

Orlando:2005:PSP

Oldehoeft:2002:SIS

REFERENCES

Ong:2002:MRS

O'Brien:2008:SOC

Orlando:1998:MBR

S. Orlando and R. Perego. An MPI-based run-time sup-

Olivier:2010:COO

ODowd:2006:WGM

Orlando:2000:MDT

S. Orlando, P. Palmerini, and R. Perego. Mixed data and task parallelism with
REFERENCES

S. W. Otto and M. Wolfe. The MetaMP approach to

References

Patterson:1993:PPE

Puzniakowski:2012:TOI

Pringle:2001:TPF

Pingali:1995:LCP

Plazek:1999:IIC

Plazek:2000:SCC
Joanna Plazek, Krzysztof Banas, and Jacek Kitowski. Scalable CFD computations using message-passing and

REFERENCES

Pennington:1995:DHC

Pernice:1996:RPP

Pernice:1997:BRM

Pereira:1999:PBI

Papagapiou:1999:NWD

Petcu:1997:ISM

Petcu:2000:PDAa

http://www.risc.uni-linz.ac.at/software/distmaple/misc/PVMaple.ps.gz.

Petcu:2000:PDAb

Petcu:2001:WMM

Pharr:2005:GDP

Pjesivac-Grbovic:2005:PAM

Pjesivac-Grbovic:2007:PAM

Pennycook:2013:IPP

Pierce:1994:NMP

Papadopoulos:1998:DVS

Papadopoulos:2001:NRC

Paul:2006:TLF

Jerome L. Paul, Michal Kouril, and Kenneth A. Berman. A template library to facilitate teaching message passing parallel computing. In ACM [ACM06a], pages 464–468. ISBN 1-
REFERENCES

59593-259-3. ACM order number 457060.

Plank:1995:ADC

Preissl:2010:OCC

Periyathamby:1995:NSG

Pruyne:1996:ICP

Plachetka:2002:QTS

Piriyakumar:2002:EFI

service/series/0558/papers/2474/24740174.pdf.

Pfenning:1995:OCP

Piscaglia:1995:DOC

Parrilia:1999:UPD

Poplawski:1989:MPP

Park:2001:CSL

Papourtzis:2001:PCT

Papakostas:1996:PSP

Papakostas:1996:PPP

Papakostas:1996:UPI

Pedicini:2007:PPE

Pierce:1994:PIN

REFERENCES

Pierce:1994:PSH

Pozo:1994:FTE

Priimak:2014:FDN

Pena:2014:CEC

Pedroso:2000:MPC

Protopopov:2000:SMC

[PS00b] Boris V. Protopopov and Anthony Skjellum. Shared-memory communication ap-

Pedroso:2001:WLE [PS01a]

Protopopov:2001:MMP [PS01b]

Pandey:2007:SCM

Pehrson:1994:IPP

REFERENCES

Phan-Thien:1994:CDL

Phan-Thien:1994:CDL

Prylli:1999:DHP

Prylli:1999:DHP

Puskas:1995:LBW

Puskas:1995:LBW

Peinado:1997:HPC

Peinado:1997:HPC

Park:2001:PPE

Park:2001:PPE

Pahl:1995:CCB

Pahl:1995:CCB

Preissl:2012:CSS
Robert Preissl, Theodore M. Wong, Pallab Datta, Myron Flickner, Raghavendra

Prasad:1995:PPB

Perla:2012:PAH

Phillips:2002:NBS

Qiu:2012:PWM

Quoy:2000:PNN

Qaddouri:1995:MFS

A. Qaddouri, R. Roy, and B. Goulard. Multigroup flux...

Qaddouri:1996:CPC

Qu:1995:FAS

Quinn:2003:PPC

Russell:1992:CMW

Rashti:2009:SAM

REFERENCES

REFERENCES

Reimann:1996:CBT

Ross:1995:DCM

Royuela:2012:ASO

Radhakrishna:1999:MBP

Reeves:1996:PIC

Reinefeld:2001:CDI

Reussner:2001:SSK

Ralf H. Reussner. SKaMPI: the special Karlsruher MPI-
REFERENCES

Rico-Gallego:2015:ILM

Reussner:2001:APP

Roda:1996:PEI

Ratha:1995:CUC

Rath:2001:APP

Robinson:1993:ECD

Robens:2001:ECF

Rolf Robens and Alice E. Koniges. Effective communication and file-

Rodriguez:2008:FTS

Rabaea:2000:EPM

Rageb:2001:CEM

Rauber:2002:LSH

Roda:1997:PP1

Roig:2001:EMM

REFERENCES

Robinson:1996:TMI

Russ:1999:UHR

Rabenseifner:1993:CDR

Reinefeld:1995:PVE

Roy:1997:PNT

Rambu:1995:DSS

Reano:2015:IUE
Carlos Reaño, Federico Silla, Adrián Castelló, Antonio J. Peña, Rafael Mayo, Enrique S. Quintana-Ortí, and

Reussner:1998:SDA

Reussner:2002:SCB

Reussner:2000:BMD

Reussner:2002:SCB

Rozman:2006:CPL

REFERENCES

Rungsawang:1999:PDT

Ryczew:2007:IBS

Ropo:2009:RAP

Simonsen:1993:DMD

Saarinen:1994:EES

Sainio:2010:CGA

[Sai10] J. Sainio. CUDA-EASY — a GPU accelerated cosmological lattice program. Computer Physics Com-
REFERENCES

Saphir:1997:SMI

Sahimi:2001:AAS

Schuster:1995:CSM

Smith:2001:DMM

Seyfarth:1994:GEE

Schulz:2004:IES

Smith:1996:UWC

Steed:1996:PPP

Sievert:2004:SMP

Saillard:2014:PCS

Stagg:1995:IPN

Shyu:1996:ILQ

Schill:1993:DOD

[Alexander Schill, editor. DCE — the OSF distributed computing environ-
REFERENCES

Schneenman:1994:DSS

Schuel:1996:PLA

Schue:1999:HAP

Schevtschenko:2001:PAS

Song:1997:ALL
Jianjian Song, Heng Kek Choo, and Kuok Ming Lee. Application-level load migration and its implementation on top of PVM. Concurrency: practice and experience, 9(1):1–19, January...
1997. CODEN CPEXEI. ISSN 1040-3108.

Suppi:2000:IOP

Remo Suppi, Fernando Cores, and Emilio Luque.
Improving optimistic PDES in PVM environments. Lecture Notes in Computer Science, 1908:304–??, 2000. [SCR92]
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/1908/19080304.htm;

Suppi:2001:PCS

Remo Suppi, Fernando Cores, and Emilio Luque. [SCS12]
CODEN LNCSD9. ISSN 0302-9743 (print), 1611-3349 (electronic).
URL http://link.springer-ny.com/link/service/series/0558/bibs/2131/21310327.htm;

Santos:1997:ECP

CODEN LNCS9. ISSN 0302-9743 (print), 1611-3349 (electronic).

SCI:1992:PWC

Shi:2012:VGA

Szeberenyi:1999:SGB

Skjellum:1994:WLM

Sandes:2010:CUG

Sistare:1999:MSP

Steve Sistare, Erica Dorenkamp, and Nick Nevin. MPI support in the Prism programming environment. In ACM [ACM99], page ??

Sampaio:2013:DA

Sack:2002:FMB

Spencer:2015:DLN

REFERENCES

V. S. Sunderam, G. A.
REFERENCES

Schneider:2012:MAC

Solsona:2001:IEI

Saito:2003:LSP

Solsona:2000:MCM

Sukhyun Song and Jeffrey K. Hollingsworth. Designing and auto-tuning parallel 3-D FFT for computation-communication overlap. ACM
Shen:1995:PSM

Sloot:1994:CIO

Sloot:1994:CIP

Sato:2001:CEO

Shing:1994:UPC

Samadi:2014:LGU

REFERENCES

REFERENCES

[SKH96] Krishnan R. Subramaniam, Suraj C. Kothari, and Don Heller. A communication library using active messages to improve performance of PVM. Journal of Parallel and Dis-
REFERENCES

[J. Spiechowicz, M. Kostur, and L. Machura. GPU accelerated Monte Carlo simulation of Brownian motors dynamics with CUDA.

REFERENCES

Scales:1994:DES

Swanson:1995:PAP

Skjellum:1995:EAM

Scherer:1999:TAP

Samadi:2014:SPS

Su:2012:CPB

Sloan:2005:HPL

Joseph D. (Joseph Donald) Sloan. *High performance Linux clusters with OSCAR, Rocks, openMosix,*

Squyres:1996:CBP

Shires:2002:EHM

Shires:2003:OPF

Simos:2007:CMS

Siegel:2008:CSE

Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A. Clarke. Combining symbolic execution with model checking

REFERENCES

REFERENCES

SousaPinto:2001:PEI [SPH95]

Sidonio:1999:PBI [SP99]

Satofuka:1995:PCF [SPK96]

Shaw:1995:ADA

Skjellum:1996:TTM [SPH96]

Sener:1996:DPP [YH96]

[Siv96] H. Sivaraman and C. S. Raghavendra. ADDT: Au-

Szalay:2011:FCD

Speck:2012:MST

Schmidt:1994:EAO

Szymanski:1996:LCR

Silva:1999:IME

Shan:2001:CMS

Schwarz:2009:GFG

Shan:2012:OAA

Sankaran:2005:LMC

Silva:1996:IDS

Silva:1997:IPD

Silva:1995:PCR

Skjellum:1994:DEZ
[SSD+94] A. Skjellum, S. G. Smith, N. E. Doss, A. P. Leung, and M. Morari. The de-

REFERENCEs

Smyk:2002:OMP

Stals:1995:AMP

Stankovski:1995:MPA

Stephens:1994:PBT

Stellner:1996:CCP

Sterling:2000:SCB

REFERENCES

Still:1994:PPC

Schmitz:2008:IIG

Sunderam:1997:TAS

Stockinger:1998:VPC

Stpiczynski:2002:PPO

Strok:1994:NJI

REFERENCES

REFERENCES

[SvL99] Steve Sistare, Rolf vande-Vaart, and Eugene Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In ACM [ACM99], page ??

Stathopoulos:1995:DLB

Sydow:1994:PSA

Stathopoulos:1996:PIM

Schneider:2009:CPM

Stankovic:1999:NVJ

Siegel:2011:AFV

Simmunovic:1995:MIP

REFERENCES

[Simunovic:1995:MIP]

[Thompson:2014:CIC]

[Takahashi:2001:AME]

[Takahashi:2001:AME]

[Tao:2014:UGA]

[Takeda:2001:AME]

[Takahashi:2001:AME]
REFERENCES

Tourino:1998:PBL

Tourino:1999:MMC

Thiruvathukal:2000:JNW

Tromeur-Dervout:2011:PCF

Totoni:2013:EFE

REFERENCES

[Tentner:1995:HPC]

[Truong:2002:PAM]

[TFZZ12]

[Turchi:1994:SDA]

[Thakur:2009:TSE]

[Tian:2005:PCT]
Xinmin Tian, Milind Girkar, Aart Bik, and Hideki Saito. Practical compiler techniques on efficient multithreaded code generation for OpenMP programs. The
REFERENCES

Tuncer:2009:PCF

Thakur:2002:ONA

Thakur:2005:OSO

Traff:2010:SCM

Thakur:1998:CUM

Rajeev S. Thakur. A

Tabakin:2009:QPE

Thoman:2012:AOL

Tennyson:2015:MOI

Tallent:2009:EPM

Trobec:2001:IEM

REFERENCES

Tourancheau:2000:HSN

Tinetti:2001:HNW

Traeff:1998:PRL

J. L. Traeff. Portable randomized list ranking on

Tahan:2012:UDT

Thibault:2012:AIF

Takahashi:2002:PEH

Takahashi:2003:PEH

Terboven:2012:AOT

Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey. Assessing OpenMP tasking implementations on NUMA architectures. Lecture Notes
REFERENCES

[Tsutsui:2012:AMG] Shigeyoshi Tsutsui. ACO
REFERENCES

Tang:1999:CRT

Tang:2000:PTR

Trelles-Salazar:1994:MSS

Theodoropoulos:1997:GSP

Tanaka:2000:PEO

REFERENCES

Twerda:1996:PIT

Tourancheau:2001:SMN

Thorson:2012:SUF

Tournavitis:2009:THA

Tien:2014:EOS

Uselton:1995:PRS
Udupa:2009:SES

Uhl:1995:PCC

Uhl:1995:PIC

Uhl:1995:VPW

Uminski:1997:EEP

Uthayopas:2001:FSR
REFERENCES

REFERENCES

vanderPas:1993:PIG

VanKatwijk:1995:AAC

vandeGeijn:1997:UPP

Vlassov:1995:MEP

Vazquez:1999:PNS

VanZee:2008:SPF

Vapirev:2015:IRC

REFERENCES

QA76.88.I57 1994. DM96.00.
Two volumes.

[Michael J. Voss, editor.]
REFERENCES

VidalMacia:2000:IPM

Vrenios:2004:PPC

Varin:2000:PAL

VanVoorst:2000:CMI

REFERENCES

[VV95] Vaidya:2013:SDO

REFERENCES

[Wal96b] David W. Walker. MPI2 proposals. World-Wide Web,

Wallcraft:2000:SOV

Wallcraft:2002:CCA

Walker:2001:DLB

Walker:2001:SEC

Wang:1997:TPD

Wang:2002:OPG

Ping Wang. OpenMP programming for a global inverse model. Scientific Programming, 10(3):253–261,
REFERENCES

2002. CODEN SCIPEV. ISSN 1058-9244 (print), 1875-919X (electronic).

References

Jörg Werner. Überblick zum Message-Passing-Interface Standard, MPI. (German) [Overview of the Message-Passing Interface Standard, MPI]. Parlab-Mitteilungen 04/95, Technische Universität Chemnitz-Zwickau, Chemnitz, Germany, 1995. 35 pp.

P. Wark and J. Holt. PVM implementation of a repeated matching heuristic for vehicle routing. In Arnold et al. [ACDR94], pages 207–216 (or 207–214??). ISBN 90-5199-149-5. LCCN ????

R. White. VCMON — the VM/ESA Connectivity Monitor. In Anonymous [Ano94g], pages 783–792. ISBN ???? LCCN ????

REFERENCES

Wu:2014:OFB

Wegiel:2008:MCVa

Wegiel:2008:MCVb

Wegiel:2008:MCVc

Wittenbrink:2011:FGG

Wagner:1996:GSG

Lehman:1994:IZP

REFERENCES

Wolf:2001:APA

Wu:2014:MAG

Wendykier:2010:PCH

Walker:1995:RBD

Walker:1996:RBC

Winstanley:1997:PDP
Wang:2009:MPM

Wolbers:1992:SPP

Worley:1996:MPE

Weng:2007:OIS

Wagner:1994:CFD

Wang:1995:PPG

Wu:2001:PCS
Worsch:2002:BCM

Wisniewski:1999:SME

Len Wisniewski, Brad Smitllof, and Nils Nieuwejaar. Sun MPI I/O: Efficient I/O for parallel applications. In ACM [ACM99], page ??

West:1995:AVV

Wu:2011:PCH

Wu:2012:PCH

Wang:2014:IPD

Worringen:2003:FPN

Wu:1999:MCC

Wong:2011:EMS

Wilson:1996:SMS

Wu:2012:DPL

Wang:2008:PIM

Kun Wang, Yu Zhang, Huayong Wang, and Xiaowei Shen. Parallelization of IBM Mambo system simulator in functional modes. Operating
REFERENCES

Xiong:1996:BID

Xu:1995:IPP

Xu:1996:MCO

Xue:2009:MSR

Xu:1996:BID

Xu:2013:PMO

Yelon:1993:PTS

Yazdanpanah:2015:PHR

Yan:1994:PTA

Yang:2014:PMI

Yang:2014:HPD

Yalamanchilli:1998:CPJ

Yu:2013:AGA

Yoon:1996:WBP

Yang:2014:IMP

Yetongnon:1996:PII

Yero:2001:JOO

Yang:2011:HCO

Chao-Tung Yang, Chih-Lin
REFERENCES

Yuasa:1996:RPG

Yang:2009:DBM

Yan:2013:SFS

Yalamov:1997:BRT

Yilmaz:2011:RMS

Yi:1994:PID

Yilmaz:2009:HPC

You:1995:EIM

Young:1993:PEN

Yuan:2012:PCS

Yu:2005:HPB

Yang:2008:DPL

Yang:2011:PBP

Yonezawa:1995:IED

Yong:1995:SOM

REFERENCES

Yu:2012:SCC

Yang:2014:CNR

You:1995:PIM

Zounmevo:2014:FRC

Zahavi:2012:FTR

Zhong:2007:PPS

[XZ01] Xin Zhang, Lingli Ding, and Elke A. Rundensteiner.

REFERENCES

[multicitation]

Zielinski:1994:PPS

[ZHS99]

Zu:1994:OSM

[ZKRA14]

Zheng:2006:PEA

[ZL96]

Zoraja:1999:SPD

[ZKRA14]

Zounmevo:2014:ESC

[ZL96]

Zaky:1996:PDT

Amr Zaky and Ted Lewis, editors. Program develop-

Zaki:1999:TSP

Zhou:2012:DFD

Zhu:2015:PIM

Zhai:2011:CVH

Zollweg:1993:OP
J. A. Zollweg. Overview of PVM. In Anonymous [Ano93e], pages 981–986. ISBN ???. ISSN 0254-6213. LCCN ???.

Zarrelli:2006:EPE
REFERENCES

CODEN JPDCER. ISSN 0743-7315 (print), 1096-0848 (electronic).

Zambonelli:1996:EPP

Zheng:2011:GLO

Zhao:2012:ASO

Zarrabi:2015:GSA

Zoltani:2001:EPO

Zareski:1995:EPG

REFERENCES

Zheng:2005:SBP

Zhang:2005:ULC

Zhu:1995:RTC

Zhang:2004:AMI

Zhang:2014:IMS

Liang Zheng, Huai Zhang, Taras Gerya, Matthew Knepley, David A. Yuen, and