Last update:
Thu Apr 11 09:00:17 MDT 2024
J. Williamson Determinants whose elements are $0$ and
$1$ . . . . . . . . . . . . . . . . . . 427--434
Bernard Jacobson On the mean value theorem for integrals 300--301
D. H. Lehmer Coloring the Platonic solids . . . . . . 288--292
Arthur Benjamin The bisection method: which root . . . . 861--863
John Beebee Examples of infinite, incongruent exact
covers . . . . . . . . . . . . . . . . . 121--123
Barry Hayes and
Donald E. Knuth and
Carlos Subi Elementary problem E3267, a solitaire
game . . . . . . . . . . . . . . . . . . 456--457
David W. Boyd The Diophantine equation $ x^2 + y^m =
z^{2n} $ . . . . . . . . . . . . . . . . 544--547
Donald E. Knuth and
Ilan Vardi Advanced problem 6581, the asymptotic
expansion of the middle binomial
coefficient . . . . . . . . . . . . . . 774
K. D. Magill, Jr. Universal topological spaces . . . . . . 942--946
Donald E. Knuth Elementary problem E3303, a binary
summation . . . . . . . . . . . . . . . 54--54
Donald E. Knuth Elementary problem E3309, a binomial
coefficient inequality . . . . . . . . . 154--154
Donald E. Knuth Elementary problem E3335, a deranged
recurrence . . . . . . . . . . . . . . . 525--525
George E. Andrews and
R. J. Baxter A motivated proof of the
Rogers--Ramanujan identities . . . . . . 401--409
Donald E. Knuth Solution to Elementary problem E3303, a
binary summation . . . . . . . . . . . . 348--349
Donald E. Knuth Solution to Elementary problem E3309, a
binomial coefficient inequality . . . . 614
Donald E. Knuth Solution to Elementary problem E3335, a
deranged recurrence . . . . . . . . . . 927
Henry L. Alder and
Ivan Niven Award for Distinguished Service to Leon
Henkin . . . . . . . . . . . . . . . . . 3--4
Peter J. Giblin and
Donal B. O'Shea The bitangent sphere problem . . . . . . 5--23
Klaus Sutner The $ \sigma $-game and cellular
automata . . . . . . . . . . . . . . . . 24--34
Robert Weinstock Elementary evaluations of $
\int^\infty_0 e^{-x^2} \, d x $ and $
\int^\infty_0 \cos x^2 \, d x, $ and $
\int^\infty_0 \sin x^2 \, d x $ . . . . 39--42
Donald J. Newman and
J. S. Byrnes The $ L^4 $ norm of a polynomial with
coefficients $ \pm 1 $ . . . . . . . . . 42--45
Johannes C. C. Nitsche Isoptic characterization of a circle
(proof of a conjecture of M. S. Klamkin) 45--47
Roy Mathias Two theorems on singular values and
eigenvalues . . . . . . . . . . . . . . 47--50
Teresa L. Santa Coloma and
Ralph P. Tucci A decomposition theorem for finite
automata . . . . . . . . . . . . . . . . 51--54
Thomas W. Hungerford A counterexample in Galois theory . . . 54--57
Tyre A. Newton A simple algorithm for finding
eigenvalues and eigenvectors for $ 2
\times 2 $ matrices . . . . . . . . . . 57--60
Arno van den Essen Magic squares and linear algebra . . . . 60--62
Donald G. Saari A visit to the Newtonian $N$-body
problem via elementary complex variables 105--119
W. S. Anglin The square pyramid puzzle . . . . . . . 120--124
Stan Wagon Editor's corner: the Euclidean algorithm
strikes again . . . . . . . . . . . . . 125--129
Kurt Girstmair A theorem on the numerators of the
Bernoulli numbers . . . . . . . . . . . 136--138
Richard G. Swan Another proof of the quadratic
reciprocity theorem . . . . . . . . . . 138--139
Edward A. Bender and
Fred Kochman and
Douglas B. West Adding up to powers . . . . . . . . . . 139--143
D. Zagier A one-sentence proof that every prime $
p \equiv 1 \pmod 4 $ is a sum of two
squares . . . . . . . . . . . . . . . . 144--144
Stephen H. Friedberg Extending the principal axis theorem to
fields other than $ {\bf R} $ . . . . . 147--149
F. Beukers and
J.-P. Bézivin and
P. Robba An alternative proof of the
Lindemann-Weierstrass theorem . . . . . 193--197
Richard C. Bollinger and
Charles L. Burchard Lucas's theorem and some related results
for extended Pascal triangles . . . . . 198--204
Esteban I. Poffald The remainder in Taylor's formula . . . 205--213
Raphael M. Robinson Comment to: ``A motivated proof of the
Rogers--Ramanujan identities'' [Amer.
Math. Monthly \bf 96 (1989), no. 5,
401--409, MR 90e:11147] by G. E. Andrews
and R. J. Baxter. With a reply by
Andrews . . . . . . . . . . . . . . . . 214--215
Carsten Thomassen A link between the Jordan curve theorem
and the Kuratowski planarity criterion 216--218
John A. Ewell A new series representation for $ \zeta
(3) $ . . . . . . . . . . . . . . . . . 219--220
David Minda The Dirichlet problem for a disk . . . . 220--223
R. Bruce Richter and
William P. Wardlaw Diagonalization over commutative rings 223--227
Joe Whittaker Random triangles . . . . . . . . . . . . 228--230
Daniel Kopel and
Michael Schramm A new extension of the derivative . . . 230--233
G. B. Folland Remainder estimates in Taylor's theorem 233--235
Donald E. Knuth Solution to problem 6575, an identity
involving sums and products . . . . . . 256
Anatole Beck Greed is (sometimes) not enough . . . . 289--294
Dragan Jankovi\'c and
T. R. Hamlett New topologies from old via ideals . . . 295--310
Calixto P. Calderón Letter to the editor . . . . . . . . . . 311--312
Betty Garrison Polynomials with large numbers of prime
values . . . . . . . . . . . . . . . . . 316--317
F. B. Cannonito On inequivalent group extensions . . . . 317--319
A. Vince A rearrangement inequality and the
permutahedron . . . . . . . . . . . . . 319--323
Patrick Morton Musings on the prime divisors of
arithmetic sequences . . . . . . . . . . 323--328
Marjorie Senechal Finding the finite groups of symmetries
of the sphere . . . . . . . . . . . . . 329--335
C. E. Burgess Continuous functions and connected
graphs . . . . . . . . . . . . . . . . . 337--339
Robert A. Leslie The $ l_2 $ matrix norm and the spectral
radius . . . . . . . . . . . . . . . . . 339--341
Peter D. Lax The ergodic character of sequences of
pedal triangles . . . . . . . . . . . . 377--381
H. Groemer Stability properties of geometric
inequalities . . . . . . . . . . . . . . 382--394
Fred Richman Separable extensions and
diagonalizability . . . . . . . . . . . 395--398
M. D. Hirschhorn A birthday present for Ramanujan . . . . 398--400
Yaakov S. Kupitz and
Micha A. Perles A condition for flatness of curves in $
{\bf R}^n $ . . . . . . . . . . . . . . 401--405
Pieter P. N. de Groen A counterexample on vector norms and the
subordinate matrix norms . . . . . . . . 406--407
Marko Petkov\vsek Ambiguous numbers are dense . . . . . . 408--411
David W. Boyd Addendum: ``The Diophantine equation $
x^2 + y^m = z^{2n \, } $'' [Amer. Math.
Monthly 95 (1988), no. 6, 544--547, MR
89f:11046] . . . . . . . . . . . . . . . 411--412
John Beebee Errata: ``Examples of infinite,
incongruent exact covers'' [Amer. Math.
Monthly \bf 95 (1988), no. 2, 121--123,
MR 89g:11013] . . . . . . . . . . . . . 412--412
Arthur T. Benjamin Errata: ``The bisection method: which
root?'' [Amer. Math. Monthly \bf 94
(1987), no. 9, 861--863, MR 89c:26016] 412--412
Hans-J. Kleiner Errata: ``Coloring the Platonic solids''
[Amer. Math. Monthly \bf 93 (1986), no.
4, 288--292, MR 87e:05072] by D. H.
Lehmer . . . . . . . . . . . . . . . . . 412--412
K. D. Magill, Jr. Errata: ``Universal topological spaces''
[Amer. Math. Monthly \bf 95 (1988), no.
10, 942--946, MR 89m:54018] . . . . . . 412--412
Jingcheng Wong Errata: ``On the mean value theorem for
integrals'' [Amer. Math. Monthly \bf 89
(1982), no. 5, 300--301, MR 83g:26002]
by B. Jacobson . . . . . . . . . . . . . 412--412
K. Hoechsmann Singular values and the spectral theorem 413--414
Robert Bartoszy\'nski and
Wai Chan A remark on the shortest confidence
interval of a normal mean . . . . . . . 415--417
François Dubeau Cauchy-Bunyakowski-Schwarz inequality
revisited . . . . . . . . . . . . . . . 419--421
Mary Embry-Wardrop An old max-min problem revisited . . . . 421--423
J. Aczél Functional equations and L'Hôpital's rule
in an exact Poisson derivation . . . . . 423--426
Kenneth R. Meyer The geometry of harmonic oscillators . . 457--465
P. Eisele and
K. P. Hadeler Game of cards, dynamical systems, and a
characterization of the floor and
ceiling functions . . . . . . . . . . . 466--477
R. R. London and
H. P. Rogosinski Decomposition theory in the teaching of
elementary linear algebra . . . . . . . 478--485
Andrew Granville and
Yiliang Zhu Representing binomial coefficients as
sums of squares . . . . . . . . . . . . 486--493
Tim Robertson and
Carolyn Pillers A geometric regularity from
order-restricted statistical inference 496--498
Bertram Ross and
Baldev K. Sachdeva The solution of certain integral
equations by means of operators of
arbitrary order . . . . . . . . . . . . 498--503
Armel Mercier Relations between $ \omega (n) $ and $
\Omega (n) $ . . . . . . . . . . . . . . 503--505
Jerold Mathews Gear trains and continued fractions . . 505--510
Paul R. Halmos Has progress in mathematics slowed down 561--588
Helaman Ferguson Two theorems, two sculptures, two
posters . . . . . . . . . . . . . . . . 589--610
Donald E. Knuth Solution to Advanced problem 6581, the
asymptotic expansion of the middle
binomial coefficient . . . . . . . . . . 629--630
Marcel Berger Convexity . . . . . . . . . . . . . . . 650--678
Shiing Shen Chern What is geometry . . . . . . . . . . . . 679--686
Ron Graham and
Frances Yao A whirlwind tour of computational
geometry . . . . . . . . . . . . . . . . 687--701
David Hoffman and
William H. Meeks, III Minimal surfaces based on the catenoid 702--730
Robert Osserman Curvature in the eighties . . . . . . . 731--756
William P. Thurston Conway's tiling groups . . . . . . . . . 757--773
Tomás Feder Toetjes . . . . . . . . . . . . . . . . 785--794
Regina B. Cohen Set isometries and their extensions in
the max metric . . . . . . . . . . . . . 795--808
A. C. M. Ran and
L. Rodman On stability of invariant subspaces of
matrices . . . . . . . . . . . . . . . . 809--823
George Marsaglia and
John C. W. Marsaglia A new derivation of Stirling's
approximation to $ n! $ . . . . . . . . 826--829
M. J. Jamieson Fibonacci numbers and Aitken sequences
revisited . . . . . . . . . . . . . . . 829--831
Stephen L. Bloom and
Zoltán Ésik and
Ernest G. Manes A Cayley theorem for Boolean algebras 831--833
Michael Filaseta Rouché's theorem for polynomials . . . . 834--835
Branko Grünbaum and
Jan Mycielski Some models of plane geometries . . . . 839--846
Joyce Justicz and
Edward R. Scheinerman and
Peter M. Winkler Random intervals . . . . . . . . . . . . 881--889
Gideon E. Schwarz The dark side of the Moebius strip . . . 890--897
Peter Ungar Mixing property of the pedal mapping . . 898--900
R. E. Mirollo and
S. H. Strogatz Integral representation of a finite
spike . . . . . . . . . . . . . . . . . 901--903
D. Desbrow On the irrationality of $ \pi^2 $ . . . 903--906
Donald E. Knuth and
Boris Pittel Elementary problem E3411, two sums over
compositions . . . . . . . . . . . . . . 916--917
Donald E. Knuth Advanced problem 6649, a generalized
gamma function with independent branches 168
Donald E. Knuth and
John McCarthy Elementary problem E3429, small pills 264
Donald E. Knuth Elementary problem E3463, points in a
circle . . . . . . . . . . . . . . . . . 852
Colin L. Mallows Conway's challenge sequence . . . . . . 5--20
Henri Darmon and
John McKay A continued fraction and permutations
with fixed points . . . . . . . . . . . 25--27
Vítor Neves Smoothness from finite points . . . . . 27--31
Godfried Toussaint Anthropomorphic polygons . . . . . . . . 31--35
W. A. Day Inequalities for areas associated with
conics . . . . . . . . . . . . . . . . . 36--39
Stephen Kuhn The derivative \`a la Carathéodory . . . 40--44
George T. Gilbert Positive definite matrices and
Sylvester's criterion . . . . . . . . . 44--46
J. Foster and
F. B. Richards The Gibbs phenomenon for
piecewise-linear approximation . . . . . 47--49
Philippe Flajolet and
Donald E. Knuth Elementary problem E3415, a
hypergenerating function . . . . . . . . 54
Duane W. DeTemple Carlyle circles and the Lemoine
simplicity of polygon constructions . . 97--108
H. S. Bear Part metric and hyperbolic metric . . . 109--123
Timothy Lance and
Edward Thomas Arcs with positive measure and a
space-filling curve . . . . . . . . . . 124--127
K. P. S. Bhaskara Rao and
A. Ramachandra Rao Unions and common complements of
subspaces . . . . . . . . . . . . . . . 127--131
Hans Liebeck and
Anthony Osborne The generation of all rational
orthogonal matrices . . . . . . . . . . 131--133
Norman Richert Hypocycloids, continued fractions, and
distribution modulo one . . . . . . . . 133--139
James P. Butler The perimeter of a rose . . . . . . . . 139--143
A. R. Meijer A tree among the stepping stones . . . . 144--146
Wen Liu An analytic technique to prove Borel's
strong law of large numbers . . . . . . 146--148
Ira Rosenholtz A topological mean value theorem for the
plane . . . . . . . . . . . . . . . . . 149--154
Walter Carlip Disks and shells revisited . . . . . . . 154--156
Donald Hartig L'Hôpital's rule via integration . . . . 156--157
E. N. Gilbert How things float . . . . . . . . . . . . 201--216
Robert L. Devaney and
Marilyn B. Durkin The exploding exponential and other
chaotic bursts in complex dynamics . . . 217--233
M. V. Deshpande and
Sudhir R. Ghorpade Algebraic characterization of compact
abelian groups . . . . . . . . . . . . . 235--237
G. Myerson First-class functions . . . . . . . . . 237--240
P. D. Barry and
D. J. Hurley On series of partial fractions . . . . . 240--242
Peter A. Loeb A note on Dixon's proof of Cauchy's
integral theorem . . . . . . . . . . . . 242--244
Daniel Goffinet Number systems with a complex base: a
fractal tool for teaching topology . . . 249--255
Donald R. Chalice A characterization of the Cantor
function . . . . . . . . . . . . . . . . 255--258
L. R. Bragg Parametric differentiation revisited . . 259--262
C. W. H. Lam The search for a finite projective plane
of order $ 10 $ . . . . . . . . . . . . 305--318
N. Metropolis and
Gian-Carlo Rota Symmetry classes: functions of three
variables . . . . . . . . . . . . . . . 328--332
Richard Beigel Irrationality without number theory . . 332--335
J. I. Hall Another elementary approach to the
Jordan form . . . . . . . . . . . . . . 336--340
Bernt Lindström and
Hans-Olov Zetterström Borromean circles are impossible . . . . 340--341
A. G. Miamee The inclusion $ L^p(\mu) \subseteq
L^q(\nu) $ . . . . . . . . . . . . . . . 342--345
Lee Rudolph The structure of orthogonal
transformations . . . . . . . . . . . . 349--352
Jonathan Lewin A simple proof of Zorn's lemma . . . . . 353--354
Richard Grant The converse of Liouville's theorem . . 354--354
Albert A. Cuoco Visualizing the $p$-adic integers . . . 355--364
Calvin H. Wilcox The Cauchy problem for the wave equation
with distribution data: an elementary
approach . . . . . . . . . . . . . . . . 401--410
Hidefumi Katsuura Continuous nowhere-differentiable
functions --- an application of
contraction mappings . . . . . . . . . . 411--416
Daniel Bienstock and
Fan Chung and
Michael L. Fredman and
Alejandro A. Schäffer and
Peter W. Shor and
Subhash Suri A note on finding a strict saddlepoint 418--419
Robert Osserman Circumscribed circles . . . . . . . . . 419--422
Elias Y. Deeba and
Dennis M. Rodriguez Stirling's series and Bernoulli numbers 423--426
J. H. Lindsey, II A simple proof of the Weierstrass
approximation theorem . . . . . . . . . 429--430
Christopher J. Henrich Magic squares and linear algebra . . . . 481--488
James V. Whittaker An analytical description of some simple
cases of chaotic behaviour . . . . . . . 489--504
Albert Fässler Multiple Pythagorean number triples . . 505--517
Jean-Pierre Rosay A very elementary proof of the
Malgrange-Ehrenpreis theorem . . . . . . 518--523
Li-Chien Shen On the zeros of $ \tan^{(k)}z $ . . . . 524--527
John B. Kelly Two equal sums of three squares with
equal products . . . . . . . . . . . . . 527--529
Ira M. Gessel A coloring problem . . . . . . . . . . . 530--533
Man Kam Kwong and
A. Zettl Norm inequalities for the powers of a
matrix . . . . . . . . . . . . . . . . . 533--538
B. Mazur Number theory as gadfly . . . . . . . . 593--610
Lawrence H. Riddle An occurrence of the ballot numbers in
operator theory . . . . . . . . . . . . 613--617
Stephen G. Penrice Derangements, permanents, and Christmas
presents . . . . . . . . . . . . . . . . 617--620
Fred Galvin and
S. D. Shore Distance functions and topologies . . . 620--623
Dragan Jankovi\'c and
Maximilian Ganster and
Ivan Reilly A characterization of Baire spaces . . . 624--625
Man Keung Siu Which Latin squares are Cayley tables 625--627
Marysia T. Weiss An early introduction to dynamics . . . 635--641
Alan Gluchoff A simple interpretation of the complex
contour integral . . . . . . . . . . . . 641--644
J. P. Jones and
Y. V. Matijasevi\vc Proof of recursive unsolvability of
Hilbert's tenth problem . . . . . . . . 689--709
Jerome A. Goldstein and
Mel Levy Linear algebra and quantum chemistry . . 710--718
F. M. Dekking Branching processes that grow faster
than binary splitting . . . . . . . . . 728--731
Robert A. Leslie How not to repeatedly differentiate a
reciprocal . . . . . . . . . . . . . . . 732--735
Jonathan M. Borwein and
G. de Barra Nested radicals . . . . . . . . . . . . 735--739
M. A. Berger and
A. Felzenbaum and
A. S. Fraenkel and
R. Holzman On infinite and finite covering systems 739--742
Lajos Takács A moment convergence theorem . . . . . . 742--746
Clay C. Ross, Jr. Why the method of undetermined
coefficients works . . . . . . . . . . . 747--749
Carl de Boor and
Klaus Höllig Box-spline tilings . . . . . . . . . . . 793--802
Steve Alpern and
Anatole Beck Hex games and twist maps on the annulus 803--811
Dan Flath and
Stan Wagon How to pick out the integers in the
rationals: an application of number
theory to logic . . . . . . . . . . . . 812--823
P. R. Garabedian A simple proof of a simple version of
the Riemann mapping theorem by simple
functional analysis . . . . . . . . . . 824--826
Alfonso Villani On the equality $ L^1 (\mu) = L^1_{\rm
loc}(\mu) $ . . . . . . . . . . . . . . 826--828
D. de Caen The ranks of tournament matrices . . . . 829--831
Arthur Smith Convergence-preserving functions: an
alternative discussion . . . . . . . . . 831--833
R. J. Duffin Lines of best fit by graphics and the
Wald line . . . . . . . . . . . . . . . 835--839
M. Furi and
M. Martelli On the mean value theorem, inequality,
and inclusion . . . . . . . . . . . . . 840--846
C. W. Groetsch Differentiation of approximately
specified functions . . . . . . . . . . 847--850
Paul Binding More on cross products . . . . . . . . . 850--851
Kenneth B. Stolarsky From Wythoff's Nim to Chebyshev's
inequality . . . . . . . . . . . . . . . 889--900
T. Yung Kong and
Ralph Kopperman and
Paul R. Meyer A topological approach to digital
topology . . . . . . . . . . . . . . . . 901--917
Scott H. Hochwald Linear algebra by analogy . . . . . . . 918--926
Kenneth P. Bogart An obvious proof of Burnside's lemma . . 927--928
J. Král and
W. F. Pfeffer Poisson integrals of Riemann integrable
functions . . . . . . . . . . . . . . . 929--931
James Chew and
Jing Cheng Tong Some remarks on weak continuity . . . . 931--934
Dragomir \vZ. \Dbarokovi\'c On the product of two alternating
matrices . . . . . . . . . . . . . . . . 935--936
M. J. Knight An ``oceans of zeros'' proof that a
certain non-Liouville number is
transcendental . . . . . . . . . . . . . 947--949
Donald E. Knuth Solution to Elementary problem E3463,
points in a circle . . . . . . . . . . . 693--694
Donald E. Knuth and
John McCarthy Solution to Elementary problem E3429,
small pills . . . . . . . . . . . . . . 684
Mark Lynch A continuous, nowhere differentiable
function . . . . . . . . . . . . . . . . 8--9
Robert M. Gethner Two relatives of Picard's theorem on
entire functions . . . . . . . . . . . . 13--19
Nathaniel A. Friedman Replication and stacking in ergodic
theory . . . . . . . . . . . . . . . . . 31--41
J. Segercrantz Improving the Cayley--Hamilton equation
for low-rank transformations . . . . . . 42--44
Peter Colwell Bessel functions and Kepler's equation 45--48
Richard J. Libera and
Eligiusz J. Z\lotkiewicz Löwner's inverse coefficients theorem for
starlike functions . . . . . . . . . . . 49--50
Sheldon Axler and
Paul Bourdon and
Wade Ramey Bôcher's theorem . . . . . . . . . . . . 51--55
Ruben Mera On the determination of the intermediate
point in Taylor's theorem . . . . . . . 56--58
Kenneth M. Hoffman and
James R. C. Leitzel Award for distinguished service to Dr.
Lynn Arthur Steen . . . . . . . . . . . 99--100
Norman Richert Strang's strange figures . . . . . . . . 101--107
Jean E. Taylor Zonohedra and generalized zonohedra . . 108--111
John A. Velling The uniformization of rectangles, an
exercise in Schwarz's lemma . . . . . . 112--115
Carsten Thomassen The Jordan-Schönflies theorem and the
classification of surfaces . . . . . . . 116--130
Ira Rosenholtz A pigeonhole proof of Kaplansky's
theorem . . . . . . . . . . . . . . . . 132--133
A. M. Bruckner and
J. Ma\vrík and
C. E. Weil Some aspects of products of derivatives 134--145
Chris Brink and
Jan Pretorius Boolean circulants, groups, and relation
algebras . . . . . . . . . . . . . . . . 146--152
Brigitte Servatius and
Peter R. Christopher Construction of self-dual graphs . . . . 153--158
Pawe\l Góra and
Abraham Boyarsky On functions of bounded variation in
higher dimensions . . . . . . . . . . . 159--160
R. M. Corless Continued fractions and chaos . . . . . 203--215
A. F. Beardon and
T. K. Carne A strengthening of the Schwarz-Pick
inequality . . . . . . . . . . . . . . . 216--217
Jerzy Dydak and
Nathan Feldman Major theorems on compactness: a unified
exposition . . . . . . . . . . . . . . . 220--227
R. A. Brualdi and
J. Csima Butterfly embedding proof of a theorem
of König . . . . . . . . . . . . . . . . 228--230
Richard J. McIntosh A generalization of a congruential
property of Lucas . . . . . . . . . . . 231--238
Barthel W. Huff Mixtures and order statistics . . . . . 239--242
Michael J. Beeson Triangles with vertices on lattice
points . . . . . . . . . . . . . . . . . 243--252
Karl R. Stromberg Universally nonmeasurable subgroups of $
{\bf R} $ . . . . . . . . . . . . . . . 253--255
Ömer E\ugecio\uglu A combinatorial generalization of a
Putnam problem . . . . . . . . . . . . . 256--258
David C. Kurtz A sufficient condition for all the roots
of a polynomial to be real . . . . . . . 259--263
Daniel Shanks Improving an approximation for pi . . . 263--263
Paul R. Halmos Large intersections of large sets . . . 307--312
Andrew Granville Zaphod Beeblebrox's brain and the
fifty-ninth row of Pascal's triangle . . 318--331
J. Banks and
J. Brooks and
G. Cairns and
G. Davis and
P. Stacey On Devaney's definition of chaos . . . . 332--334
Jonathan L. King Dilemma of the sleeping stockbroker . . 335--338
John E. Wetzel Converses of Napoleon's theorem . . . . 339--351
I. M. Isaacs and
G. R. Robinson On a theorem of Frobenius: solutions of
$ x^n = 1 $ in finite groups . . . . . . 352--354
Charles Vanden Eynden On a problem of Stein concerning
infinite covers . . . . . . . . . . . . 355--358
James H. Cliborn and
Blake Jordan Minimal surfaces . . . . . . . . . . . . 376--376
Donald E. Knuth Two notes on notation . . . . . . . . . 403--422
Blair K. Spearman and
Kenneth S. Williams Representing primes by binary quadratic
forms . . . . . . . . . . . . . . . . . 423--426
Enrique A. González-Velasco Connections in mathematical analysis:
the case of Fourier series . . . . . . . 427--441
Chandler Fulton Tessellations . . . . . . . . . . . . . 442--445
J. L. Leavitt and
G. J. Sherman and
M. E. Walker Rewriteability in finite groups . . . . 446--452
Blake Temple and
Craig A. Tracy From Newton to Einstein . . . . . . . . 507--521
Michael D. Boshernitzan Billiards and rational periodic
directions in polygons . . . . . . . . . 522--529
Edgar M. E. Wermuth Some elementary properties of infinite
products . . . . . . . . . . . . . . . . 530--537
Andreas M. Hinz Pascal's triangle and the Tower of Hanoi 538--544
Dieter Jungnickel On the uniqueness of the cyclic group of
order $n$ . . . . . . . . . . . . . . . 545--547
Robin Forman Sequences with many primes . . . . . . . 548--557
Mohsen Maesumi Parabolic mirrors, elliptic and
hyperbolic lenses . . . . . . . . . . . 558--560
Richard Strong Solution to Elementary problem E3411,
two sums over compositions . . . . . . . 578--579
Freeman J. Dyson and
Harold Falk Period of a discrete cat mapping . . . . 603--614
David M. Bressoud Why do we teach calculus . . . . . . . . 615--617
J. M. Borwein and
P. B. Borwein Strange series and high precision fraud 622--640
Steven Roman The logarithmic binomial formula . . . . 641--648
Bart Braden Calculating sums of infinite series . . 649--655
Sergio A. Alvarez $ {L}^p $ arithmetic . . . . . . . . . . 656--662
David Fowler Dedekind's theorem: $ \sqrt 2 \times
\sqrt 3 = \sqrt 6 $ . . . . . . . . . . 725--733
Ronald J. Knill A modified Babylonian algorithm . . . . 734--737
E. A. Marchisotto Lines without order . . . . . . . . . . 738--745
Solomon W. Golomb An identity for $ \binom {2n}n $ . . . . 746--748
D. G. Mead Newton's identities . . . . . . . . . . 749--751
John A. Ewell On sums of triangular numbers and sums
of squares . . . . . . . . . . . . . . . 752--757
Marco Vianello and
Renato Zanovello On the superlinear convergence of the
secant method . . . . . . . . . . . . . 758--761
T. N. Subramaniam and
Donald E. G. Malm How to integrate rational functions . . 762--772
Cathleen S. Morawetz Giants . . . . . . . . . . . . . . . . . 819--828
R. B. Eggleton and
C. B. Lacampagne and
J. L. Selfridge Euclidean quadratic fields . . . . . . . 829--837
K. H. Kim and
F. W. Roush and
M. D. Intriligator Overview of mathematical social sciences 838--844
Mark F. Schilling Sequential partitioning . . . . . . . . 846--855
Jun Wang Goldbach's problem in the ring $
M_n({\bf Z}) $ . . . . . . . . . . . . . 856--857
J.-Cl. Evard and
F. Jafari A complex Rolle's theorem . . . . . . . 858--861
Kenneth A. Brakke The opaque cube problem . . . . . . . . 866--871
Louis M. Rotando and
Edward O. Thorp The Kelly criterion and the stock market 922--931
Paul R. Chernoff A simple proof of Tychonoff's theorem
via nets . . . . . . . . . . . . . . . . 932--934
David C. Fisher and
Jennifer Ryan Optimal strategies for a generalized
``scissors, paper, and stone'' game . . 935--942
Scott T. Chapman A simple example of nonunique
factorization in integral domains . . . 943--945
John Beebee Bernoulli numbers and exact covering
systems . . . . . . . . . . . . . . . . 946--948
Károly Bezdek Hadwiger's covering conjecture and its
relatives . . . . . . . . . . . . . . . 954--956
Donald E. Knuth Problem 10280, a random binary operation 76
Donald E. Knuth Problem 10298, a divisibility property
of Stirling numbers . . . . . . . . . . 400
G. Baley Price The seventy-fifth anniversary
celebration . . . . . . . . . . . . . . 4--15
Leonard Gillman An axiomatic approach to the integral 16--25
István Szalkai and
Dan Velleman Versatile coins . . . . . . . . . . . . 26--33
R. J. Duffin On seeing progressions of constant cross
ratio . . . . . . . . . . . . . . . . . 38--47
Anonymous 100 years of Monthly editors . . . . . . 48--49
David Hobby and
D. M. Silberger Quotients of primes . . . . . . . . . . 50--52
George C. Donovan and
Arnold R. Miller and
Timothy J. Moreland Pathological functions for Newton's
method . . . . . . . . . . . . . . . . . 53--58
André Avez A short proof of a theorem of Erd\Hos
and Mordell . . . . . . . . . . . . . . 60--62
Evan G. Houston A linear algebra approach to cyclic
extensions in Galois theory . . . . . . 64--66
Dean Alvis Solution to Elementary problem E3415, a
hypergenerating function . . . . . . . . 84--85
Ramanathan Gnanadesikan and
Henry J. Landau Yueh-Gin Gung and Dr. Charles Y. Hu
award for distinguished service to Henry
O. Pollak . . . . . . . . . . . . . . . 115--116
John D. Maxwell John Marvin Colaw: and the American
Mathematical Monthly . . . . . . . . . . 117--118
Tristan Needham Newton and the transmutation of force 119--137
Christoph Baxa A note on Diophantine representations 138--143
Terence R. Shore and
Douglas B. Tyler Recurrence of simple random walk in the
plane . . . . . . . . . . . . . . . . . 144--149
Branko Grünbaum and
G. C. Shephard Pick's theorem . . . . . . . . . . . . . 150--161
Ulrich Abel and
Hartmut Siebert Sequences with large numbers of prime
values . . . . . . . . . . . . . . . . . 167--169
Horst Martini Regular simplices in spaces of constant
curvature . . . . . . . . . . . . . . . 169--171
John K. Williams A simple example of little big set . . . 172--174
Edgar R. Lorch Szeged in 1934 . . . . . . . . . . . . . 219--230
Stanley Burris and
Simon Lee Tarski's high school identities . . . . 231--236
Steven N. MacEachern and
L. Mark Berliner Aperiodic chaotic orbits . . . . . . . . 237--241
William J. Gilbert Bricklaying and the Hermite normal form 242--245
Neil Falkner A characterization of inner product
spaces . . . . . . . . . . . . . . . . . 246--249
Gilbert Strang Polar area is the average of strip areas 250--254
Alan Durfee and
Nathan Kronenfeld and
Heidi Munson and
Jeff Roy and
Ina Westby Counting critical points of real
polynomials in two variables . . . . . . 255--271
Peter Walker Separation of the zeros of polynomials 272--273
George E. Andrews and
Shalosh B. Ekhad and
Doron Zeilberger A short proof of Jacobi's formula for
the number of representations of an
integer as a sum of four squares . . . . 274--276
Krzysztof Oleszkiewicz An elementary proof of Hilbert's
inequality . . . . . . . . . . . . . . . 276--280
Camille Debi\`eve A note on Fubini's theorem . . . . . . . 281--281
Albert Nijenhuis Solution to Elementary problem E3267, a
solitaire game . . . . . . . . . . . . . 292--294
Joseph H. Silverman Taxicabs and sums of two cubes . . . . . 331--340
Raymond Ayoub What is a Napierian logarithm . . . . . 351--364
J. W. Bruce A really trivial proof of the
Lucas-Lehmer test . . . . . . . . . . . 370--371
Gregory S. Call and
Daniel J. Velleman Pascal's matrices . . . . . . . . . . . 372--376
Thomas A. Fournelle Symmetries of the cube and outer
automorphisms of $ S_6 $ . . . . . . . . 377--380
Timothy A. Murdoch Isogonal configurations . . . . . . . . 381--384
J. Helen Gardner and
Robin J. Wilson Thomas Archer Hirst---mathematician
xtravagant. I. A Yorkshire surveyor . . 435--441
William F. Reynolds Hyperbolic geometry on a hyperboloid . . 442--455
Michael Rubinstein A simple heuristic proof of Hardy and
Littlewood's conjecture B . . . . . . . 456--460
H. Turner Laquer The Pompeiu problem . . . . . . . . . . 461--467
Duane W. DeTemple A quicker convergence to Euler's
constant . . . . . . . . . . . . . . . . 468--470
William Watkins and
Joel Zeitlin The minimal polynomial of $ \cos (2 \pi
/ n) $ . . . . . . . . . . . . . . . . . 471--474
B. Richmond and
T. Richmond The equal area zones property . . . . . 475--477
Mark Copper Graph theory and the game of sprouts . . 478--482
Borislav Bojanov Elementary proof of the Remez inequality 483--485
T. S. Nanjundiah A note on an identity of Ramanujan . . . 485--487
Doron Zeilberger On an identity of Daubechies . . . . . . 487--487
Catherine C. McGeoch Data compression . . . . . . . . . . . . 493--497
J. Helen Gardner and
Robin J. Wilson Thomas Archer Hirst---mathematician
xtravagant. II. Student days in Germany 531--538
Robert S. Strichartz How to make wavelets . . . . . . . . . . 539--556
William C. Waterhouse A matrix maximum . . . . . . . . . . . . 557--562
S. P. Hastings and
J. B. McLeod Chaotic motion of a pendulum with
oscillatory forcing . . . . . . . . . . 563--572
David A. Wagstaff and
Theodore A. Norman and
Douglas M. Campbell An application for the curiosity $
(\log_x N)' $ . . . . . . . . . . . . . 573--574
Miriam Schapiro Grosof and
Geraldine Taiani Vandermonde strikes again . . . . . . . 575--577
Fred Galvin Embedding countable groups in
$2$-generator groups . . . . . . . . . . 578--580
Joseph A. Gallian and
Michael Reid Abelian forcing sets . . . . . . . . . . 580--582
J. Helen Gardner and
Robin J. Wilson Thomas Archer Hirst---mathematician
xtravagant. III. Göttingen and Berlin . . 619--625
W. A. Beyer and
Blair Swartz Bisectors of triangles and tetrahedra 626--640
D. G. Mead and
S. K. Stein More on rectangles tiled by rectangles 641--643
Bruce C. Berndt and
S. Bhargava Ramanujan --- for lowbrows . . . . . . . 644--656
D. Y. Savio and
E. R. Suryanarayan Chebychev polynomials and regular
polygons . . . . . . . . . . . . . . . . 657--661
Ren Ding and
Krzysztof Ko\lodziejczyk and
Grattan Murphy and
John Reay A fast Pick-type approximation for areas
of $H$-polygons . . . . . . . . . . . . 669--673
J. Helen Gardner and
Robin J. Wilson Thomas Archer Hirst---mathematician
xtravagant. IV. Queenwood, France and
Italy . . . . . . . . . . . . . . . . . 723--731
David Mornhinweg and
Daniel B. Shapiro and
K. G. Valente The principal axis theorem over
arbitrary fields . . . . . . . . . . . . 749--754
Tristan Needham A visual explanation of Jensen's
inequality . . . . . . . . . . . . . . . 768--771
Catherine Hassell and
Elmer Rees The index of a constrained critical
point . . . . . . . . . . . . . . . . . 772--778
Norbert Hegyvári On some irrational decimal fractions . . 779--780
Louis Brickman The symmetry principle for Möbius
transformations . . . . . . . . . . . . 781--782
T. von Petersdorff A short proof for Romberg integration 783--785
Ollie Nanyes An elementary proof that the Borromean
rings are nonsplittable . . . . . . . . 786--789
J. Helen Gardner and
Robin J. Wilson Thomas Archer Hirst---mathematician
xtravagant. V. London in the 1860s . . . 827--834
Iris Lee Anshel and
Michael Anshel From the Post-Markov theorem through
decision problems to public-key
cryptography . . . . . . . . . . . . . . 835--844
Gilbert Strang The fundamental theorem of linear
algebra . . . . . . . . . . . . . . . . 848--855
Albrecht Dold A simple proof of the Jordan-Alexander
complement theorem . . . . . . . . . . . 856--857
Hansklaus Rummler Squaring the circle with holes . . . . . 858--860
Paul Monsky Simplifying the proof of Dirichlet's
theorem . . . . . . . . . . . . . . . . 861--862
Hiroshi Maehara Why is $ {\bf P}^2 $ not embeddable in $
{\bf R}^3 $ . . . . . . . . . . . . . . 862--864
Bruce Anderson Polynomial root dragging . . . . . . . . 864--866
J. Helen Gardner and
Robin J. Wilson Thomas Archer Hirst---mathematician
xtravagant. VI. Years of decline . . . . 907--915
Hans Melissen Densest packings of congruent circles in
an equilateral triangle . . . . . . . . 916--925
Jan van Yzeren A simple proof of Pascal's hexagon
theorem . . . . . . . . . . . . . . . . 930--931
Andrew T. Hyman The mathematical relationship between
Kepler's laws and Newton's laws . . . . 932--936
R\uazvan Gelca A short proof of a result on polynomials 936--937
Robert A. Proctor Two amusing Dynkin diagram graph
classifications . . . . . . . . . . . . 937--941
Paul Halmos Postcards from Max . . . . . . . . . . . 942--944
Donald E. Knuth Solution to problem E3062, A versatile
identity . . . . . . . . . . . . . . . . 376--377
Donald E. Knuth Problem 103xx, a knight's surprise . . . (to appear)
Donald E. Knuth Solution to Advanced problem 6649, a
generalized gamma function with
independent branches . . . . . . . . . . (to appear)
Donald E. Knuth Solution to Advanced problem 6649, a
generalized gamma function with
independent branches . . . . . . . . . . 77--78
David A. Cox Introduction to Fermat's last theorem 3--14
John Stillwell Galois theory for beginners . . . . . . 22--27
E. Bruce Pitman Into the hourglass: reflections on the
forces acting on a granular material . . 28--35
John Dewey Jones Orderly currencies . . . . . . . . . . . 36--38
Robert F. Brown and
Robert E. Greene An interior fixed point property of the
disc . . . . . . . . . . . . . . . . . . 39--47
J. Michael Steele Le Cam's inequality and Poisson
approximations . . . . . . . . . . . . . 48--54
Dorina Mitrea and
Marius Mitrea A generalization of a theorem of Euler 55--58
Petru Mironescu and
Lauren\ctiu Panaitopol The existence of a triangle with
prescribed angle bisector lengths . . . 58--60
A. Shenitzer and
J. Stepr\=ans The evolution of integration . . . . . . 66--72
David W. Ballew Yueh-Gin Gung and Dr. Charles Y. Hu
Award for Distinguished Service to J.
Sutherland Frame . . . . . . . . . . . . 107--108
Branko Grünbaum and
G. C. Shephard A new look at Euler's theorem for
polyhedra . . . . . . . . . . . . . . . 109--128
Philip J. Davis Otto Neugebauer: reminiscences and
appreciation . . . . . . . . . . . . . . 129--131
Richard Kavinoky Correction to: ``From Newton to
Einstein'' [Amer. Math. Monthly \bf 99
(1992), no. 6, 507--521, MR 93c:01001]
by B. Temple and C. A. Tracy . . . . . . 131--131
Elias Wegert and
Lloyd N. Trefethen From the Buffon needle problem to the
Kreiss matrix theorem . . . . . . . . . 132--139
William C. Waterhouse A counterexample for Germain . . . . . . 140--150
H. B. Griffiths and
A. E. Hirst Cubic equations, or Where did the
examination question come from? . . . . 151--161
Hellmuth Stachel On the identity of polyhedra . . . . . . 162--165
David C. Ullrich More on the Pompeiu problem . . . . . . 165--168
Richard K. Guy Every number is expressible as the sum
of how many polygonal numbers . . . . . 169--172
Fernando Q. Gouvêa A marvelous proof . . . . . . . . . . . 203--222
David Aldous Triangulating the circle, at random . . 223--233
Michael A. B. Deakin Hypatia and her mathematics . . . . . . 234--243
Richard Barshinger Calculus II and Euler also (with a nod
to series integral remainder bounds) . . 244--249
Marc Frantz A focusing property of the ellipse . . . 250--258
Roberto Peirone Reflections can be trapped . . . . . . . 259--260
Katherine Heinrich and
Peter Horák Euler's theorem . . . . . . . . . . . . 260--261
Joan Feigenbaum and
Nick Reingold Universal traversal sequences . . . . . 262--265
John Stillwell What are algebraic integers and what are
they for . . . . . . . . . . . . . . . . 266--270
Edward A. Bender and
Oren Patashnik and
Howard Rumsey, Jr. Pizza slicing, phi's, and the Riemann
hypothesis . . . . . . . . . . . . . . . 307--317
Ralph Walde and
Paula Russo Rational periodic points of the
quadratic function $ Q_c(x) = x^2 + c $ 318--331
Ernesto Acosta G. and
Cesar Delgado G. Fréchet vs. Carathéodory . . . . . . . . . 332--338
A. C. Thompson Odd magic powers . . . . . . . . . . . . 339--342
Frank Morgan Mathematicians, including
undergraduates, look at soap bubbles . . 343--351
Fred Galvin A proof of Dilworth's chain
decomposition theorem . . . . . . . . . 352--353
Michel Vellekoop and
Raoul Berglund On intervals, transitivity = chaos . . . 353--355
Kiran Kedlaya Proof of a mixed arithmetic-mean,
geometric-mean inequality . . . . . . . 355--357
Thomas Banchoff and
Peter Giblin On the geometry of piecewise circular
curves . . . . . . . . . . . . . . . . . 403--416
Elliot Linzer The two envelope paradox . . . . . . . . 417--419
Stephen B. Maurer Comment: ``Orderly currencies'' [Amer.
Math. Monthly \bf 101 (1994), no. 1,
36--38] by J. D. Jones . . . . . . . . . 419--419
Alain Robert Fourier series of polygons . . . . . . . 420--428
Richard P. Savage, Jr. The paradox of nontransitive dice . . . 429--436
Laurent Beeckmans Squares expressible as sum of
consecutive squares . . . . . . . . . . 437--442
Stephen M. Turner Square roots mod $p$ . . . . . . . . . . 443--449
Jing Cheng Tong Kummer's test gives characterizations
for convergence or divergence of all
positive series . . . . . . . . . . . . 450--452
Chi-Kwong Li and
Wasin So Isometries of $ l_p$-norm . . . . . . . 452--453
Bo Ying Wang and
Fu Zhen Zhang A trace inequality for unitary matrices 453--455
Loukas Grafakos An elementary proof of the square
summability of the discrete Hilbert
transform . . . . . . . . . . . . . . . 456--458
Abe Shenitzer How hyperbolic geometry became
respectable . . . . . . . . . . . . . . 464--470
Joe Buhler and
David Eisenbud and
Ron Graham and
Colin Wright Juggling drops and descents . . . . . . 507--519
Gary Gordon Workable gears, Archimedian solids and
planar bipartite graphs . . . . . . . . 527--534
Reese T. Prosser On the Kummer solutions of the
hypergeometric equation . . . . . . . . 535--543
John W. Emert and
Kay I. Meeks and
Roger B. Nelson Reflections on a Mira . . . . . . . . . 544--549
Ed Waymire Buffon noodles . . . . . . . . . . . . . 550--559
Victor Bronstein and
Aviezri S. Fraenkel On a curious property of counting
sequences . . . . . . . . . . . . . . . 560--563
Carsten Knudsen Chaos without nonperiodicity . . . . . . 563--565
Josip Pe\vcari\'c A reverse Stolarsky's inequality . . . . 565--567
A. McD. Mercer A note on some irrational decimal
fractions . . . . . . . . . . . . . . . 567--568
David Callan A possible permanent formula . . . . . . 571--573
Jonathan L. King Three problems in search of a measure 609--628
Igor Rivin and
Ilan Vardi and
Paul Zimmermann The $n$-queens problem . . . . . . . . . 629--639
Roger L. Kraft What's the difference between Cantor
sets . . . . . . . . . . . . . . . . . . 640--650
Jean-Paul Allouche and
Dan Astoorian and
Jim Randall and
Jeffrey Shallit Morphisms, squarefree strings, and the
Tower of Hanoi puzzle . . . . . . . . . 651--658
A. A. Ageev Sierpi\'nski's theorem is deducible from
Euler and Dirichlet . . . . . . . . . . 659--660
F. Matú\vs On nonnegativity of symmetric
polynomials . . . . . . . . . . . . . . 661--664
N. Graham and
R. C. Entringer and
L. A. Székely New tricks for old trees: maps and the
pigeonhole principle . . . . . . . . . . 664--667
Jeffrey Ondich Do you know the way to vertex $A$ . . . 668--673
Erwin Kreyszig On the calculus of variations and its
major influences on the mathematics of
the first half of our century. I . . . . 674--678
Maria S. Terrell and
Robert E. Terrell Behind the scenes of a random dot
stereogram . . . . . . . . . . . . . . . 715--724
Goro Shimura Fractional and trigonometric expressions
for matrices . . . . . . . . . . . . . . 744--758
Barbara L. Osofsky Noether Lasker primary decomposition
revisited . . . . . . . . . . . . . . . 759--768
S. Stein and
S. Szabó Elementary infinite sources of
non-unique factorization rings . . . . . 769--770
Antal E. Fekete Apropos ``Two notes on notation'' [Amer.
Math. Monthly \bf 99 (1992), no. 5,
403--422, MR 93f:05001] by D. E. Knuth 771--778
Lyle Ramshaw Erratum: ``On the geometry of piecewise
circular curves'' [Amer. Math. Monthly
\bf 101 (1994), no. 5, 403--416, MR
95k:51030a] by T. Banchoff and P. Giblin 778--778
Leonard Gillman Congruence of triangles . . . . . . . . 782--783
Norbert Hungerbühler A short elementary proof of the
Mohr-Mascheroni theorem . . . . . . . . 784--787
Folke Eriksson Which triangles are plane sections of
regular tetrahedra . . . . . . . . . . . 788--789
Edward C. Waymire Addendum: ``Buffon noodles'' . . . . . . 791--791
Robert Gray Georg Cantor and transcendental numbers 819--832
Milton Sobel and
Krzysztof Frankowski The 500th anniversary of the sharing
problem (the oldest problem in the
theory of probability) . . . . . . . . . 833--847
Hugh Thurston What is wrong with the definition of $ d
y / d x $ . . . . . . . . . . . . . . . 855--857
Louis Gordon A stochastic approach to the gamma
function . . . . . . . . . . . . . . . . 858--865
Jacob E. Goodman and
Richard Pollack and
Rephael Wenger and
Tudor Zamfirescu Arrangements and topological planes . . 866--878
Jeff Boyle An application of Fourier series to the
most significant digit problem . . . . . 879--886
Andrew Dittmer Cross product identities in arbitrary
dimension . . . . . . . . . . . . . . . 887--891
D. H. Armitage A non-constant continuous function on
the plane whose integral on every line
is zero . . . . . . . . . . . . . . . . 892--894
Doron Zeilberger Chu's 1303 identity implies Bombieri's
1990 norm-inequality (via an identity of
Beauzamy and Dégot) . . . . . . . . . . . 894--896
Catherine C. McGeoch How to stay competitive . . . . . . . . 897--901
Erwin Kreyszig On the calculus of variations and its
major influences on the mathematics of
the first half of our century. II . . . 902--908
Edward R. Scheinerman and
Herbert S. Wilf The rectilinear crossing number of a
complete graph and Sylvester's ``four
point problem'' of geometric probability 939--943
Ora E. Percus and
Jerome K. Percus String matching for the novice . . . . . 944--947
Don Rawlings Bernoulli trials and number theory . . . 948--952
William H. Paulsen What is the shape of a mylar balloon . . 953--958
Peter Hilton and
Jean Pedersen Euler's theorem for polyhedra: a
topologist and geometer respond. Comment
to: ``A new look at Euler's theorem for
polyhedra'' [Amer. Math. Monthly \bf 101
(1994), no. 2, 109--128, MR 95c:52032]
by B. Grünbaum and G. C. Shephard. With a
response by Grünbaum and Shephard . . . . 959--962
I. Kleiner and
N. Movshovitz-Hadar The role of paradoxes in the evolution
of mathematics . . . . . . . . . . . . . 963--974
Richard A. Brualdi and
Stephen Mellendorf Regions in the complex plane containing
the eigenvalues of a matrix . . . . . . 975--985
Blair K. Spearman and
Kenneth S. Williams Characterization of solvable quintics $
x^5 + a x + b $ . . . . . . . . . . . . 986--992
John B. Cosgrave A Halmos problem and a related problem 993--996
Kurt Girstmair A ``popular'' class number formula . . . 997--1001
Emre Alkan Variations on Wolstenholme's theorem . . 1001--1004
Leonard Gillman The second-partials test for local
extrema of $ f(x, y) $ . . . . . . . . . 1004--1006
Michael Orkin and
Richard Kakigi What is the worth of free casino credit 3--8
Steven J. Brams and
Alan D. Taylor An envy-free cake division protocol . . 9--18
Michael E. Hoffman Derivative polynomials for tangent and
secant . . . . . . . . . . . . . . . . . 23--30
Thomas M. Liggett and
Peter Petersen The law of large numbers and $ \sqrt {2}
$ . . . . . . . . . . . . . . . . . . . 31--35
R. H. Redfield Exponentiation in rings . . . . . . . . 36--40
Blake E. Peterson and
James H. Jordan Integer hexahedra equivalent to perfect
boxes . . . . . . . . . . . . . . . . . 41--45
Richard J. Bagby Calculating normal probabilities . . . . 46--48
Paul Shutler Constrained critical points . . . . . . 49--52
S. Tabachnikov A cone eversion . . . . . . . . . . . . 52--56
Ran Libeskind-Hadas Approximation algorithms: good solutions
to hard problems . . . . . . . . . . . . 57--61
Stefan Mykytiuk and
Abe Shenitzer Four significant axiomatic systems and
some of the issues associated with them 62--67
Deborah Tepper Haimo Experimentation and conjecture are not
enough . . . . . . . . . . . . . . . . . 102--112
Fan Chung and
Ron Graham and
John Morrison and
Andrew Odlyzko Pebbling a chessboard . . . . . . . . . 113--123
S. J. Chapman Drums that sound the same . . . . . . . 124--138
Sheldon Axler Down with determinants . . . . . . . . . 139--154
Peter Andrews Where not to find the critical points of
a polynomial---variation on a Putnam
theme . . . . . . . . . . . . . . . . . 155--158
Peter D. Lax A short path to the shortest path . . . 158--159
Dmitry Khavinson A note on entire solutions of the
eiconal [eikonal] equation . . . . . . . 159--161
David B. Surowski The uniqueness aspect of the fundamental
theorem of finite abelian groups . . . . 162--163
Stanley Rabinowitz and
Stan Wagon A spigot algorithm for the digits of $
\pi $ . . . . . . . . . . . . . . . . . 195--203
Philip J. Davis The rise, fall, and possible
transfiguration of triangle geometry: a
mini-history . . . . . . . . . . . . . . 204--214
David Auckly and
John Cleveland Totally real origami and impossible
paper folding . . . . . . . . . . . . . 215--226
Massimo Furi and
Mario Martelli A multidimensional version of Rolle's
theorem . . . . . . . . . . . . . . . . 243--249
Noga Alon and
Melvyn B. Nathanson and
Imre Ruzsa Adding distinct congruence classes
modulo a prime . . . . . . . . . . . . . 250--255
Lech Maligranda A simple proof of the Hölder and the
Minkowski inequality . . . . . . . . . . 256--259
Irving Kaplansky Never too late. Addendum to:
``Determinants whose elements are $0$
and $1$'' [Amer. Math. Monthly 53
(1946), 427--434, MR 8, 128] by J.
Williamson . . . . . . . . . . . . . . . 259--259
I. G. Bashmakova and
A. N. Rudakov The evolution of algebra 1800--1870 . . 266--270
Alan Hausrath and
Bradley Jackson and
John Mitchem and
Edward Schmeichel Gale's round-trip jeep problem . . . . . 299--309
Steven H. Weintraub Count-wheels: a mathematical problem
arising in horology . . . . . . . . . . 310--316
Donald R. Chalice How to teach a class by the modified
Moore method . . . . . . . . . . . . . . 317--321
Theodore P. Hill The significant-digit phenomenon . . . . 322--327
LaDawn Haws and
Terry Kiser Exploring the brachistochrone problem 328--336
William Derrick and
Jack Eidswick Continued fractions, Chebychev
polynomials, and chaos . . . . . . . . . 337--344
Zheng Bing Wang and
Robert Fokkink and
Wan Fokkink A relation between partitions and the
number of divisors . . . . . . . . . . . 345--346
Paolo Starni Answers to two questions concerning
quotients of primes . . . . . . . . . . 347--349
James W. M. Ford Avoiding the exchange lemma . . . . . . 350--351
Stephen Silverman Intervals contained in arithmetic
combinations of sets . . . . . . . . . . 351--353
D. Flath and
A. Zulauf Does the Möbius function determine
multiplicative arithmetic . . . . . . . 354--356
I. Grattan-Guinness Why did George Green write his essay of
1828 on electricity and magnetism . . . 387--396
Susan Bassein Order and chaos on your desk . . . . . . 409--416
T. R. Scavo and
J. B. Thoo On the geometry of Halley's method . . . 417--426
A. R. Meijer The binary expansion of $ 1 / p $ . . . 427--430
Ricardo Diaz and
Sinai Robins Pick's formula via the Weierstrass $ \wp
$-function . . . . . . . . . . . . . . . 431--437
George Mackiw Permutations as products of
transpositions . . . . . . . . . . . . . 438--440
Bjorn Poonen Congruences relating the order of a
group to the number of conjugacy classes 440--442
Peter Andersson The color invariant for knots and links 442--448
Hermann Weyl Topology and abstract algebra as two
roads of mathematical comprehension. I.
Translated from the German by Abe
Shenitzer . . . . . . . . . . . . . . . 453--460
S. L. Zabell Alan Turing and the central limit
theorem . . . . . . . . . . . . . . . . 483--494
Michael I. Rosen Niels Hendrik Abel and equations of the
fifth degree . . . . . . . . . . . . . . 495--505
John Oprea Geometry and the Foucault pendulum . . . 515--522
David P. Robbins Areas of polygons inscribed in a circle 523--530
Paul D. Scofield Curves of constant precession . . . . . 531--537
Jeffery C. Allen Matrix expansion by orthogonal Kronecker
products . . . . . . . . . . . . . . . . 538--540
Walter Rudin Injective polynomial maps are
automorphisms . . . . . . . . . . . . . 540--543
Robin J. Chapman An elementary proof of the simplicity of
the Mathieu groups $ M_{11} $ and $
M_{23} $ . . . . . . . . . . . . . . . . 544--545
Heikki Hämäläinen and
Iiro Honkala and
Simon Litsyn and
Patric Östergård Football pools --- a game for
mathematicians . . . . . . . . . . . . . 579--588
Reuben Hersh Fresh breezes in the philosophy of
mathematics . . . . . . . . . . . . . . 589--594
Nigel Boston and
Marshall L. Greenwood Quadratics representing primes . . . . . 595--599
Leslie Lamport How to write a proof . . . . . . . . . . 600--608
Kenneth B. Stolarsky Searching for common generalizations:
the case of hyperbolic functions . . . . 609--619
P. Sabinin and
M. G. Stone Transforming $n$-gons by folding the
plane . . . . . . . . . . . . . . . . . 620--627
David A. Singer Isometries of the plane . . . . . . . . 628--631
V. A. Geyler One more construction which is
impossible . . . . . . . . . . . . . . . 632--634
Takashi Matsuda An inductive proof of a mixed
arithmetic-geometric mean inequality . . 634--637
T. S. Michael The ranks of tournament matrices . . . . 637--639
David L. Ranum On some applications of Fibonacci
numbers . . . . . . . . . . . . . . . . 640--645
Hermann Weyl Topology and abstract algebra as two
roads of mathematical comprehension. II.
Translated from the German by Abe
Shenitzer . . . . . . . . . . . . . . . 646--651
G. Myerson and
A. J. van der Poorten Some problems concerning recurrence
sequences . . . . . . . . . . . . . . . 698--705
Dana Mackenzie A hyperbolic plane coloring and the
simple group of order $ 168 $ . . . . . 706--715
Kent E. Morrison Cosine products, Fourier transforms, and
random sums . . . . . . . . . . . . . . 716--724
Geza Schay How to add fast --- on average . . . . . 725--730
H. R. Morton Fibonacci-like sequences and greatest
common divisors . . . . . . . . . . . . 731--734
I. M. Isaacs and
Thilo Zieschang Generating symmetric groups . . . . . . 734--739
Lutz G. Lucht On the arithmetic-geometric mean
inequality . . . . . . . . . . . . . . . 739--740
Richard K. Guy My favorite elliptic curve: a tale of
two types of triangles . . . . . . . . . 771--781
Keith M. Kendig Stalking the wild ellipse . . . . . . . 782--787
Annalisa Crannell The role of transitivity in Devaney's
definition of chaos . . . . . . . . . . 788--797
David G. Poole The stochastic group . . . . . . . . . . 798--801
J. W. Sander A story of binomial coefficients and
primes . . . . . . . . . . . . . . . . . 802--807
Martin Aigner Turán's graph theorem . . . . . . . . . . 808--816
Hans Samelson More on Kummer's test . . . . . . . . . 817--818
G. M. Tuynman The derivation of the exponential map of
matrices . . . . . . . . . . . . . . . . 818--820
Vlastimil Pták The Kantorovich inequality . . . . . . . 820--821
Robert Kalaba and
Rong Xu On the generalized inverse form of the
equations of constrained motion . . . . 821--825
John Stillwell Elliptic curves . . . . . . . . . . . . 831--837
George W. Tokarsky Polygonal rooms not illuminable from
every point . . . . . . . . . . . . . . 867--879
Gunnar Blom and
Lars Holst and
Dennis Sandell Three SING-SING problems . . . . . . . . 880--887
John E. Morrill A Nobel Prize in mathematics . . . . . . 888--891
Richard Blecksmith and
Purushottam W. Laud Some exact number theory computations
via probability mechanisms . . . . . . . 893--903
Ilse C. F. Ipsen and
Carl D. Meyer The angle between complementary
subspaces . . . . . . . . . . . . . . . 904--911
Serge Tabachnikov The four-vertex theorem revisited ---
two variations on the old theme . . . . 912--916
R. B. Burckel Entire functions which vanish at
infinity . . . . . . . . . . . . . . . . 916--918
D. Zagier A converse to Cauchy's inequality . . . 919--920
Richard K. Guy and
Richard J. Nowakowski Monthly unsolved problems, 1969--1995 921--926
David Fowler The binomial coefficient function . . . 1--17
Jim Henle Classical mathematics. Baroque
mathematics. Romantic mathematics?
Mathematics jazz! Also atonal, New Age,
minimalist, and punk mathematics . . . . 18--29
Bruce Solomon Tantrices of spherical curves . . . . . 30--39
D. Borwein and
J. M. Borwein and
P. B. Borwein and
R. Girgensohn Giuga's conjecture on primality . . . . 40--50
William M. Faucette A geometric interpretation of the
solution of the general quartic
polynomial . . . . . . . . . . . . . . . 51--57
Bruno Codenotti and
Luciano Margara Transitive cellular automata are
sensitive . . . . . . . . . . . . . . . 58--62
Ray Redheffer Use of a differential inequality in
combinatorics . . . . . . . . . . . . . 62--64
V. M. Tikhomirov The evolution of methods of convex
optimization . . . . . . . . . . . . . . 65--71
H. O. Pollak Yueh-Gin Gung and Dr. Charles Y. Hu
Award for Distinguished Service to
Andrew Gleason . . . . . . . . . . . . . 105--106
James T. Sandefur Using self-similarity to find length,
area, and dimension . . . . . . . . . . 107--120
Peter Hilton and
Jean Pedersen The Euler characteristic and Pólya's
dream . . . . . . . . . . . . . . . . . 121--131
Benno Artmann A Roman icosahedron discovered . . . . . 132--133
Manuel Barros and
Oscar J. Garay Free elastic parallels in a surface of
revolution . . . . . . . . . . . . . . . 149--156
Israel Gohberg and
Seymour Goldberg A simple proof of the Jordan
decomposition theorem for matrices . . . 157--159
A. Caruth A concise proof of Hilbert's basis
theorem . . . . . . . . . . . . . . . . 160--161
Jesús Ferrer Rolle's theorem fails in $ l_2 $ . . . . 161--165
Gheorghe P\uaun and
Arto Salomaa Self-reading sequences . . . . . . . . . 166--168
A. F. Beardon Sums of powers of integers . . . . . . . 201--213
Reinhold Remmert Wielandt's theorem about the $ \Gamma
$-function . . . . . . . . . . . . . . . 214--220
Louis Zulli Charting the $3$-sphere --- an
exposition for undergraduates . . . . . 221--229
Doron Zeilberger The method of undetermined
generalization and specialization.
Illustrated with Fred Galvin's amazing
proof of the Dinitz conjecture . . . . . 233--239
Thomas Hull A note on ``impossible'' paper folding 240--241
Gary Lawlor A new minimization proof for the
brachistochrone . . . . . . . . . . . . 242--249
Richard Mansfield Strategies for the Shannon switching
game . . . . . . . . . . . . . . . . . . 250--252
Gerald J. Porter $k$-volume in $ {\bf R}^n$ and the
generalized Pythagorean theorem . . . . 252--256
Abe Shenitzer A few expository mini-essays . . . . . . 257--263
Richard Askey and
Deborah Tepper Haimo Similarities between Fourier and power
series . . . . . . . . . . . . . . . . . 297--304
Richard H. Warren Disks on a chessboard . . . . . . . . . 305--307
Bennett Eisenberg and
Rosemary Sullivan Random triangles in $n$ dimensions . . . 308--318
Adrian Oldknow The Euler-Gergonne-Soddy triangle of a
triangle . . . . . . . . . . . . . . . . 319--329
Robert E. Hartwig Roth's removal rule and the rational
canonical form . . . . . . . . . . . . . 332--335
Manfred Krause A simple proof of the Gale-Ryser theorem 335--337
Yves Martinez-Maure A note on the tennis ball theorem . . . 338--340
Frank Morgan What is a surface . . . . . . . . . . . 369--376
Ron Perline Non-Euclidean flashlights . . . . . . . 377--385
Saber Elaydi On a converse of Sharkovsky's theorem 386--392
Kimmo Eriksson Splitting a polygon into two congruent
pieces . . . . . . . . . . . . . . . . . 393--400
John Hannah A geometric approach to determinants . . 401--409
Darrell Desbrow On zero derivatives . . . . . . . . . . 410--411
Peter Duren and
Walter Hengartner and
Richard S. Laugesen The argument principle for harmonic
functions . . . . . . . . . . . . . . . 411--415
Richard B. Darst and
Gerald D. Taylor Differentiating powers of an old friend 415--416
Israel Kleiner The genesis of the abstract ring concept 417--424
Daniel Henry Gottlieb All the way with Gauss--Bonnet and the
sociology of mathematics . . . . . . . . 457--469
Roger A. Horn and
Ingram Olkin When does $ A^*A = B^*B $ and why does
one want to know . . . . . . . . . . . . 470--482
Susan Bassein A sampler of randomness . . . . . . . . 483--490
Don Fallis Mathematical proof and the reliability
of DNA evidence . . . . . . . . . . . . 491--497
Charles H. Jepsen Equidissections of trapezoids . . . . . 498--500
Paul Monsky Calculating a trapezoidal spectrum . . . 500--501
Doron Zeilberger Reverend Charles to the aid of Major
Percy and Fields medalist Enrico . . . . 501--502
József Bukor and
János T. Tóth On accumulation points of ratio sets of
positive integers . . . . . . . . . . . 502--504
Paulo Ribenboim Catalan's conjecture . . . . . . . . . . 529--538
Roger S. Pinkham Mathematics and modern technology . . . 539--545
C. W. Groetsch Tartaglia's Inverse Problem in a
Resistive Medium . . . . . . . . . . . . 546--551
Donald P. Minassian The current state of actuarial science 552--561
T. Y. Lam and
K. H. Leung On the cyclotomic polynomial $
\Phi_{pq}(X) $ . . . . . . . . . . . . . 562--564
Edward B. Burger and
Thomas Struppeck Does $ \sum^\infty_{n = 0}{1} / {n!} $
really converge? Infinite series and
$p$-adic analysis or ``You can sum some
of the series some of the time and some
of the series none of the time$ \ldots $
but can you sum some of the series all
of the time?'' . . . . . . . . . . . . . 565--577
Charles R. Johnson and
Erik A. Schreiner The relationship between $ A B $ and $ B
A $ . . . . . . . . . . . . . . . . . . 578--582
Hajrudin Fejzi\'c On thin sets of circles . . . . . . . . 582--585
Horst Alzer A proof of the arithmetic mean-geometric
mean inequality . . . . . . . . . . . . 585--585
Joseph L. Doob The development of rigor in mathematical
probability (1900--1950) [in \it
Development of mathematics 1900--1950
(Luxembourg, 1992), 157--170, Birkhäuser,
Basel, 1994, MR 95i:60001] . . . . . . . 586--595
Robert G. Bartle Return to the Riemann integral . . . . . 625--632
Richard D. Neidinger and
R. John Annen, III The road to chaos is filled with
polynomial curves . . . . . . . . . . . 640--653
Stephen Bedding and
Keith Briggs Iteration of quaternion functions . . . 654--664
Patrick Ahern and
Walter Rudin Geometric properties of the gamma
function . . . . . . . . . . . . . . . . 678--681
Sadahiro Saeki A proof of the existence of infinite
product probability measures . . . . . . 682--683
Leo S. Gurin A problem . . . . . . . . . . . . . . . 683--686
Paul T. Bateman and
Harold G. Diamond A hundred years of prime numbers . . . . 729--741
Thomas Burger and
Peter Gritzmann and
Victor Klee Polytope projection and projection
polytopes . . . . . . . . . . . . . . . 742--755
Aleksandar Juri\vsi\'c The Mercedes knot problem . . . . . . . 756--770
Arthur T. White Fabian Stedman: the first group theorist 771--778
Herbert I. Brown and
James W. Burgmeier and
David S. Dummit Functions whose successive tangent lines
enclose proportional areas . . . . . . . 779--787
M. H. Eggar On the discriminant criterion and a
generalization . . . . . . . . . . . . . 788--792
Ernst Snapper Expressing primes as quadratic forms of
integers . . . . . . . . . . . . . . . . 793--794
Richard J. Bagby Volumes of cones . . . . . . . . . . . . 794--796
Edward Bertram and
Marcel Herzog On regular bases of finite groups . . . 796--799
Freeman Dyson The scientist as rebel . . . . . . . . . 800--805
Shawnee L. McMurran and
James J. Tattersall The mathematical collaboration of M. L.
Cartwright and J. E. Littlewood . . . . 833--845
Roman Kossak What are infinitesimals and why they
cannot be seen . . . . . . . . . . . . . 846--853
John Brillhart and
Patrick Morton A case study in mathematical research:
the Golay--Rudin--Shapiro sequence . . . 854--869
Edward Aboufadel A mathematician catches a baseball . . . 870--878
Victoria Powers Hilbert's 17th problem and the champagne
problem . . . . . . . . . . . . . . . . 879--887
W. McCune and
A. D. Sands Computer and human reasoning: single
implicative axioms for groups and for
abelian groups . . . . . . . . . . . . . 888--892
Roger Webster An elementary proof of Horn's theorem 892--894
James Angelos and
George Grossman and
Yury Ionin and
Edwin Kaufman and
Terry Lenker and
Leela Rakesh Packability of five spheres on a sphere
implies packability of six . . . . . . . 894--896
Bruce Pourciau Reading the master: Newton and the birth
of celestial mechanics . . . . . . . . . 1--19
Jack W. Rogers, Jr. Applications of linear algebra in
calculus . . . . . . . . . . . . . . . . 20--26
A. Vince Periodicity, quasiperiodicity, and
Bieberbach's theorem on crystallographic
groups . . . . . . . . . . . . . . . . . 27--35
John A. Baker Integration over spheres and the
divergence theorem for balls . . . . . . 36--47
R. B. Burckel Three secrets about harmonic functions 52--56
Vilmos Komornik A short proof of the Erd\Hos--Mordell
theorem . . . . . . . . . . . . . . . . 57--60
Don Buckholtz Inverting the difference of Hilbert
space projections . . . . . . . . . . . 60--61
I. G. Bashmakova and
E. I. Slavutin Glimpses of algebraic geometry.
Introduction to: \booktitleA History of
Diophantine analysis (Russian)
[``Nauka'', Moscow, 1984; MR 85m:01004].
Translated by Abe Shenitzer . . . . . . 62--67
Carole B. Lacampagne Yueh-Gin Gung and Dr. Charles Y. Hu
award for distinguished service to
Deborah Tepper Haimo . . . . . . . . . . 97--98
Bryan L. Shader and
Chanyoung Lee Shader Scheduling conflict-free parties for a
dating service . . . . . . . . . . . . . 99--106
Ralph H. Buchholz and
Randall L. Rathbun An infinite set of Heron triangles with
two rational medians . . . . . . . . . . 107--115
T. K. Lam Connected Sprouts . . . . . . . . . . . 116--119
Ronald E. Prather Regular expressions for program
computations . . . . . . . . . . . . . . 120--130
R. Bruce Richter and
Carsten Thomassen Relations between crossing numbers of
complete and complete bipartite graphs 131--137
John M. Holte Carries, combinatorics, and an amazing
matrix . . . . . . . . . . . . . . . . . 138--149
Walter Nef A new look at Euler's theorem for
polyhedra: a comment . . . . . . . . . . 150--151
Tadashi F. Tokieda The hopping hoop . . . . . . . . . . . . 152--154
John Greene Principal ideal domains are almost
Euclidean . . . . . . . . . . . . . . . 154--156
Shmuel Onn A colorful determinantal identity, a
conjecture of Rota, and Latin squares 156--159
W. K. Nicholson Very semisimple modules . . . . . . . . 159--162
Jim Pitman Some probabilistic aspects of set
partitions . . . . . . . . . . . . . . . 201--209
Karen Hunger Parshall and
Eugene Seneta Building an international reputation:
the case of J. J. Sylvester (1814--1897) 210--222
Geoffrey R. Goodson The inverse-similarity problem for real
orthogonal matrices . . . . . . . . . . 223--230
Thomas W. Tucker Rethinking rigor in calculus: the role
of the mean value theorem . . . . . . . 231--240
Howard Swann Commentary on rethinking rigor in
calculus: the role of the mean value
theorem . . . . . . . . . . . . . . . . 241--245
Edward B. Burger and
Frank Morgan Fermat's Last Theorem, the Four Color
Conjecture, and Bill Clinton for April
Fools' Day . . . . . . . . . . . . . . . 246--255
D. J. Newman Euler's $ \phi $ function on arithmetic
progressions . . . . . . . . . . . . . . 256--257
Steve Fisk A note on Weyl's inequality . . . . . . 257--258
Ming-chang Kang Minimal polynomials over cyclotomic
fields . . . . . . . . . . . . . . . . . 258--260
Wilhelm Magnus The significance of mathematics: the
mathematicians' share in the general
human condition . . . . . . . . . . . . 261--269
Eric H. Mason and
Stephen M. Gagola, Jr. and
John Todd and
Theodore J. Rivlin and
David Callan Polynomialrecurrencology: 10300 . . . . 272--273
A. J. Berrick and
M. E. Keating Rectangular invertible matrices . . . . 297--302
Maarten C. Boerlijst and
Martin A. Nowak and
Karl Sigmund Equal pay for all prisoners . . . . . . 303--305
Jim Sauerberg and
Linghsueh Shu The long and the short on counting
sequences . . . . . . . . . . . . . . . 306--317
Daniel J. Velleman Characterizing continuity . . . . . . . 318--322
A. M. Bruckstein and
C. L. Mallows and
I. A. Wagner Probabilistic pursuits on the grid . . . 323--343
Richard P. Stanley Hipparchus, Plutarch, Schröder, and Hough 344--350
Gert Almkvist Many correct digits of $ \pi $,
revisited . . . . . . . . . . . . . . . 351--353
Martin L. Jones A note on a cake cutting algorithm of
Banach and Knaster . . . . . . . . . . . 353--355
Hassan Sedaghat The impossibility of unstable, globally
attracting fixed points for continuous
mappings of the line . . . . . . . . . . 356--358
Hardy Grant Reviews: \em Vita Mathematica:
Historical Research and Integration with
Teaching, edited by Ronald Calinger . . ??
Andre Toom Reviews: \em Mathematical Circles
(Russian Experience), by Dmitri Fomin,
Sergey Genkin, and Ilia Itenberg . . . . ??
Judith V. Grabiner Was Newton's calculus a dead end? The
continental influence of Maclaurin's
treatise of fluxions . . . . . . . . . . 393--410
Pat Touhey Yet another definition of chaos . . . . 411--414
Scott A. McCullough and
Leiba Rodman Hereditary classes of operators and
matrices . . . . . . . . . . . . . . . . 415--430
Clark Kimberling Major centers of triangles . . . . . . . 431--438
M. Laczkovich On Lambert's proof of the irrationality
of $ \pi $ . . . . . . . . . . . . . . . 439--443
Winfried Kohnen A simple congruence modulo $p$ . . . . . 444--445
Marcelo Polezzi A geometrical method for finding an
explicit formula for the greatest common
divisor . . . . . . . . . . . . . . . . 445--446
Detlef Laugwitz The Evolution of \ldots: On the
historical development of infinitesimal
mathematics . . . . . . . . . . . . . . 447--455
Sheldon Axler Reviews: \em The Life of Stefan Banach,
by Roman Kaluza . . . . . . . . . . . . ??
J. Kevin Colligan Reviews: \em 101 Careers in Mathematics,
edited by Andrew Sterrett . . . . . . . ??
J. Dénes Unsolved Problems: When Is There a Latin
Power Set? . . . . . . . . . . . . . . . ??
Melanie A. King Lecturing at the `Bored' . . . . . . . . ??
Rajendra Bhatia and
Peter \vSemrl Approximate isometries on Euclidean
spaces . . . . . . . . . . . . . . . . . 497--504
István Nemes and
Marko Petkov\vsek and
Herbert S. Wilf and
Doron Zeilberger How to do Monthly problems with your
computer . . . . . . . . . . . . . . . . 505--519
Lawrence W. Baggett and
Herbert A. Medina and
Kathy D. Merrill Simultaneously symmetric functions . . . 520--528
R. A. Mollin Prime-producing quadratics . . . . . . . 529--544
Wladyslaw Kulpa The Poincaré-Miranda theorem . . . . . . 545--550
M. Bayat A generalization of Wolstenholme's
theorem . . . . . . . . . . . . . . . . 557--560
Bao-lin Zhang A note on the mean value theorem for
integrals . . . . . . . . . . . . . . . 561--562
J. N. Anthony Danby Reviews: \em The Sheer Joy of Celestial
Mechanics, by Nathaniel Grossman . . . . ??
Jennifer R. Galovich Reviews: \em Strength in Numbers:
Discovering the Joy and Power of
Mathematics in Everyday Life, by Sherman
K. Stein . . . . . . . . . . . . . . . . ??
Kent G. Merryfield and
Ngo Viet and
Saleem Wats Notes: The Wallet Paradox . . . . . . . ??
S. C. Coutinho The many avatars of a simple algebra . . 593--604
Tiberiu Trif Multiple integrals of symmetric
functions . . . . . . . . . . . . . . . 605--608
John Chollet Some inequalities for principal
submatrices . . . . . . . . . . . . . . 609--617
Eugene Gutkin Two applications of calculus to
triangular billiards . . . . . . . . . . 618--622
Steven H. Weintraub Early transcendentals . . . . . . . . . 623--631
Keith Devlin The logical structure of computer-aided
mathematical reasoning . . . . . . . . . 632--646
Henryk Gzyl and
José Luis Palacios Notes: The Weierstrass approximation
theorem and large deviations . . . . . . 651--653
Detlef Laugwitz The Evolution of \ldots: On the
historical development of infinitesimal
mathematics. II. The conceptual thinking
of Cauchy. Translated from the German by
Abe Shenitzer with the editorial
assistance of Hardy Grant . . . . . . . 654--663
Norbert Peyerimhoff Areas and Intersections in Convex
Domains . . . . . . . . . . . . . . . . 697--704
D. Zagier Newman's Short Proof of the Prime Number
Theorem . . . . . . . . . . . . . . . . 705--708
David Callan An Exploratory Approach to Kaplansky's
Lemma Leads to a Generalized Resultant 709--712
Bettina Richmond and
Thomas Richmond Metric Spaces in Which All Triangles Are
Degenerate . . . . . . . . . . . . . . . 713--719
Albert Fathi Partitions of Unity for Countable Covers 720--723
Jeff Knisley Calculus: a Modern Perspective . . . . . 724
Paul Zorn and
Arnold Ostebee Pro Choice . . . . . . . . . . . . . . . 728
James J. Kaput Rethinking Calculus: Learning and
Thinking . . . . . . . . . . . . . . . . 731
Richard Askey What Do We Do About Calculus? First, Do
No Harm . . . . . . . . . . . . . . . . 738
Gerald L. Alexanderson and
Leonard F. Klosinski and
Loren C. Larson The Fifty-Seventh William Lowell Putnam
Mathematical Competition . . . . . . . . 744
Joseph Kupka Notes: a Quadratic Trio . . . . . . . . 755--757
Apoloniusz Tyszka Notes: a Discrete Form of the
Beckman-Quarles Theorem . . . . . . . . 757--761
J. Daniel Christensen and
Mark Tilford Unsolved Problems: David Gale's Subset
Take-Away Game . . . . . . . . . . . . . 762
Ronald E. Mickens Reviews: \em An Introduction to
Difference Equations, by Saber Elyadi 777
Wayne Roberts Reviews: \em Calculus Lite, by Frank
Morgan . . . . . . . . . . . . . . . . . 780
George W. Cobb and
David S. Moore Mathematics, Statistics, and Teaching 801
Marco Abate When is a Linear Operator
Diagonalizable? . . . . . . . . . . . . 824--830
Eric Bach Energy Arguments in the Theory of
Algorithms . . . . . . . . . . . . . . . 831--837
Thomas Forster Quine's $ {\rm NF} $---60 years on . . . 838--845
Micha\l Misiurewicz Remarks on Sharkovsky's Theorem . . . . 846--847
Andrew Granville Correction to: ``Zaphod Beeblebrox's
brain and the fifty-ninth row of
Pascal's triangle'' [Amer. Math. Monthly
\bf 99 (1992), no. 4, 318--331; MR
93a:05008] . . . . . . . . . . . . . . . 848--851
Victor Adamchik and
Stan Wagon A Simple Formula for $ \pi $ . . . . . . 852--855
Francis Edward Su Borsuk--Ulam Implies Brouwer: a Direct
Construction . . . . . . . . . . . . . . 855--859
Zdzis\law Pogoda and
Leszek M. Soko\lowski The Evolution of\ldots: Does mathematics
distinguish certain dimensions of
spaces? Translated by Abe Shenitzer . . 860--869
William D. Dunbar Reviews: \em Knots and Surfaces: A Guide
to Discovering Mathematics, by David W.
Farmer and Theodore Stanford & \em Knots
and Surfaces, by N. D. Gilbert and T.
Porter . . . . . . . . . . . . . . . . . 882
Andrew Bremner Reviews: \em The Book of Numbers, by
John Horton Conway and Richard K. Guy 884
Bruce C. Berndt and
Heng Huat Chan and
Liang-Cheng Zhang Ramanujan's Association with Radicals in
India . . . . . . . . . . . . . . . . . 905--911
Ken Ono Ramanujan, Taxicabs, Birthdates, ZIP
Codes, and Twists . . . . . . . . . . . 912--917
George E. Andrews Simplicity and Surprise in Ramanujan's
``Lost'' Notebook . . . . . . . . . . . 918--925
Lou Shapiro and
D. G. Rogers and
Wen-Jin Woan The Catalan Numbers, the Lebesgue
Integral, and $ 4^n - 2 $ . . . . . . . 926--931
R. Bruce Richter and
William P. Wardlaw Good Matrices: Matrices that Preserve
Ideals . . . . . . . . . . . . . . . . . 932--938
Peter A. Braza and
Jingcheng Tong A Converse of the Mean Value Theorem . . 939--942
Andrew Granville and
Takashi Agoh and
Paul Erd\Hos Primes at a (Somewhat Lengthy) Glance 943--945
H. Wu The Mathematics Education Reform: Why
You Should be Concerned and What You Can
Do . . . . . . . . . . . . . . . . . . . 946
Jeremy Kilpatrick Confronting Reform . . . . . . . . . . . 955
John L. Drost A Shorter Proof of the Ramanujan
Congruence Modulo 5 . . . . . . . . . . 963--964
Scott Ahlgren and
Lars English and
Ron Winters An Amusing Representation of $ x / (\sin
x) $ . . . . . . . . . . . . . . . . . . 964--966
Richard J. Nowakowski and
Richard K. Guy Monthly Unsolved Problems, 1969--1997 967
Saunders Mac Lane \em Conceptual Mathematics: A First
Introduction to Categories, by F.
William Lawvere and Steven Schanuel . . 985
Ezra Brown \em Early Astronomy, by Hugh Thurston 988
Jerry L. Kazdan Solving Equations, an Elegant Legacy . . 1--21
Donald W. Robinson Separation of Subspaces by Volume . . . 22--27
Kai Lai Chung Probability and Doob . . . . . . . . . . 28--35
George E. Andrews The Geometric Series in Calculus . . . . 36--40
Timothy Y. Chow The Surprise Examination or Unexpected
Hanging Paradox . . . . . . . . . . . . 41--51
Michael David Hirschhorn Notes: Two or Three Identities of
Ramanujan . . . . . . . . . . . . . . . 52--55
Michael E. Hoffman The Bull and the Silo: An Application of
Curvature . . . . . . . . . . . . . . . 55--58
N. Luzin The Evolution of \ldots Function: Part I 59--67
John Troutman Reviews: \em Analysis by its History, by
E. Hairer and G. Wanner . . . . . . . . 79
Anthony Ralston Reviews: \em Principles and Practices of
Mathematics, by COMAP . . . . . . . . . 81
Andre Toom Reviews: \em A Mathematical Mosaic:
Patterns & Problem Solving, by Ravi Vakil 86
Linda R. Sons Yueh-Gin Gung and Dr. Charles Y. Hu
Award for Distinguished Service to Alice
Turner Schafer . . . . . . . . . . . . . 105
Russell A. Gordon The Use of Tagged Partitions in
Elementary Real Analysis . . . . . . . . 107--117
Susan Bassein The Dynamics of a Family of
One-Dimensional Maps . . . . . . . . . . 118--130
Hunter S. Snevily and
Douglas B. West The Bricklayer Problem and the Strong
Cycle Lemma . . . . . . . . . . . . . . 131--143
Craig M. Johnson A Computer Search for Free Actions on
Surfaces . . . . . . . . . . . . . . . . 144--153
John C. McConnell Division Algebras --- Beyond the
Quaternions . . . . . . . . . . . . . . 154--162
Brian Gerard and
Lawrence Roberts Graphical Discovery of a New Identity
for Jacobi Polynomials . . . . . . . . . 163--166
Philippe Revoy The Generalized Level of a Non Prime
Finite Field is Two . . . . . . . . . . 167--168
Wolfgang Kühn and
Zuzana Kühn Cutting High-Dimensional Cakes . . . . . 168--169
Joan Hutchinson and
Stan Wagon Kempe Revisited . . . . . . . . . . . . 170--174
Jean Pedersen and
Gerald L. Alexanderson Reviews: \em ``Invertible'' Polyhedron
Models, distributed by Snyder
Engineering . . . . . . . . . . . . . . 186
William Goldman Reviews: \em Topology and Geometry, by
Glen E. Bredon . . . . . . . . . . . . . 192
Béla Bollobás To Prove and Conjecture: Paul Erd\Hos
and His Mathematics . . . . . . . . . . 209--237
Ran Libeskind-Hadas Sorting in Parallel . . . . . . . . . . 238--245
Murray Schechter Integration Over a Polyhedron: An
Application of the Fourier-Motzkin
Elimination Method . . . . . . . . . . . 246--251
Kenneth A. Ross Doing and Proving: The Place of
Algorithms and Proofs in School
Mathematics . . . . . . . . . . . . . . 252--255
David Beckwith Legendre Polynomials and Polygon
Dissections? . . . . . . . . . . . . . . 256--257
Takayuki Furuta and
Masahiro Yanagida Generalized Means and Convexity of
Inversion for Positive Operators . . . . 258--259
Mohammad Saleh and
Hasan Yousef The Number of Ring Homomorphisms from $
{Z}_{m_1} \times \cdots \times {Z}_{m_r}
i n t o {Z}_{k_1} \times \cdots \times
{Z}_{k_s} $ . . . . . . . . . . . . . . 259--260
M. Mirzakhani A Simple Proof of a Theorem of Schur . . 260--262
N. Luzin The Evolution of \ldots Function: Part
II . . . . . . . . . . . . . . . . . . . 263--270
Anonymous Problems and Solutions . . . . . . . . . 271--283
Roger Cooke \em Évariste Galois 1811--1832, by Laura
Toti Rigatelli. Translated from the
Italian by John Denton. Birkhäuser, 1996,
168pp., \$29.50 . . . . . . . . . . . . 284--288
Jet Wimp Reviews: \em The Fast Fourier Transform
Workshop, by Richard and Sandra McPeak 289--292
Daniel H. Ullman Reviews: \em Which Way Did the Bicycle
Go?, by Joseph D. E. Konhauser, Dan
Velleman, and Stan Wagon and \em
Problems and Solutions from the
Mathematical Visitor, edited by Stanley
Rabinowitz . . . . . . . . . . . . . . . 292--296
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 297--301
Ilan Vardi Archimedes' Cattle Problem . . . . . . . 305--319
C. W. Groetsch Lanczos' Generalized Derivative . . . . 320--326
Ellen Gethner and
Stan Wagon and
Brian Wick A Stroll Through the Gaussian Primes . . 327--337
Herman Erlichson Galileo's Work on Swiftest Descent from
a Circle and How He Almost Proved the
Circle Itself Was the Minimum Time Path 338--347
Michael Sheard Induction the Hard Way . . . . . . . . . 348--353
C. Douglas Howard Good Paths Don't Double Back . . . . . . 354--357
Xianfu Wang A Note on the Clarke Subdifferential . . 357--359
Michael Reid The Number of Conjugacy Classes . . . . 359--361
Branko Grünbaum Which Coronas Are Simple? . . . . . . . 362--365
Anonymous Problems and Solutions . . . . . . . . . 366--376
David A. Sánchez Ordinary Differential Equations Texts 377--383
Owen Thomas \em The Schools We Need, by E. D.
Hirsch, Jr. . . . . . . . . . . . . . . 384--386
Victor J. Katz \em Force and Geometry in Newton's
Principia, by François De Gandt,
translated by Curtis Wilson . . . . . . 386--392
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 393--397
James Case The Modeling and Analysis of Financial
Time Series . . . . . . . . . . . . . . 401--411
Franklin Lowenthal and
Arnold Langsen and
Clark T. Benson Merton's Partial Differential Equation
and Fixed Point Theory . . . . . . . . . 412--420
Wilbur R. Knorr ``Rational Diameters'' and the Discovery
of Incommensurability . . . . . . . . . 421--429
Michel Balinski and
Guillaume Ratier Graphs and Marriages . . . . . . . . . . 430--445
Laurent Habsieger and
Maxim Kazarian and
Sergei Lando On the Second Number of Plutarch . . . . 446--446
Bruce Anderson and
Jeffrey Jackson and
Meera Sitharam Descartes' Rule of Signs Revisited . . . 447--451
Ralph Faudree A Conjecture of Erd\Hos . . . . . . . . 451--453
R. D. Driver Toricelli's Law --- An Ideal Example of
an Elementary ODE . . . . . . . . . . . 453--455
Zdzis\law Pogoda and
Leszek M. Soko\lowski Does Mathematics Distinguish Certain
Dimensions of Spaces? Part II . . . . . 456--463
Anonymous Problems and Solutions . . . . . . . . . 464--476
Daniel Schwalbe and
Hal R. Varian Computational Economics and Finance:
Modeling and Analysis with Mathematica 477--481
Peter Hilton and
T. W. Korner The Pleasures of Counting . . . . . . . 481--485
Leonard Gillman and
Richard Courant and
Herbert Robbins and
Ian Stewart What is Mathematics? . . . . . . . . . . 485--488
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 489--493
Roger A. Horn Editor's Endnotes . . . . . . . . . . . 494--494
Guershon Harel Two Dual Assertions: The First on
Learning and the Second on Teaching (Or
Vice Versa) . . . . . . . . . . . . . . 497
Alan Gluchoff and
Frederick Hartmann Univalent polynomials and non-negative
trigonometric sums . . . . . . . . . . . 508--522
Peter M. Neumann Reflections on reflection in a spherical
mirror . . . . . . . . . . . . . . . . . 523--528
Richard Blecksmith and
Michael McCallum and
J. L. Selfridge $3$-smooth representations of integers 529--543
C. W. Groetsch Aristotle's fall . . . . . . . . . . . . 544--547
B. Banaschewski On proving the existence of complete
ordered fields . . . . . . . . . . . . . 548--551
Charles Kicey and
Sudhir Goel A Series for $ \ln k $ . . . . . . . . . 552--554
Gerd Herzog $ C^1 $-solutions of $ x = f(x') $ are
convex or concave . . . . . . . . . . . 554--555
Douglas E. Lampert and
Peter J. Slater Parallel knockouts in the complete graph 556--558
Frank A. Farris \em Visual Complex Analysis, by Tristan
Needham . . . . . . . . . . . . . . . . 570
Robert Messer \em Linear Algebra Problem Book, by Paul
R. Halmos . . . . . . . . . . . . . . . 577
David Singmaster \em After Math. Puzzles and
Brainteasers, by Ed Barbeau; \em The
Chicken from Minsk, by Yuri B. Chernyak
and Robert M. Rose; \em New Mathematical
Diversions, revised edition, by Martin
Gardner . . . . . . . . . . . . . . . . 579
Robert A. Bosch and
Jason A. Smith Separating hyperplanes and the
authorship of the disputed Federalist
papers . . . . . . . . . . . . . . . . . 601--608
Marc Frantz Two functions whose powers make fractals 609--617
M. H. Eggar Pinhole cameras, perspective, and
projective geometry . . . . . . . . . . 618--630
Kosta Do\vsen Functions redefined . . . . . . . . . . 631--635
Vilmos Komornik and
Paola Loreti Unique developments in non-integer bases 636--639
R. W. Hamming Mathematics on a distant planet . . . . 640--650
T. Y. Lam A theorem of Burnside on matrix rings 651--653
Peter Dierolf and
Volker Schmidt A proof of the change of variable
formula for $d$-dimensional integrals 654--656
Hong Bing Yu On the Diophantine Equation $ (x + 1)^y
- x^z = 1 $ . . . . . . . . . . . . . . 656--657
Ira M. Gessel Wolstenholme revisited . . . . . . . . . 657--658
F. A. Medvedev Nonstandard analysis and the history of
classical analysis . . . . . . . . . . . 659--664
Steven G. Krantz \em Introduction to Calculus and
Classical Analysis, by Omar Hijab; \em
Introduction to Mathematical Structures
and Proofs, by Larry J. Gerstein . . . . 677
Joby Milo Anthony \em Mathematical Reflections: In a Room
with Many Mirrors, by Peter Hilton,
Derek Holton, and Jean Pedersen . . . . 682
Robert L. Devaney \em Interactive Differential Equations,
by Beverly West, Steven Strogatz, Jean
Marie McDill, and John Cantwell;
software designer Hubert Hohn . . . . . 687
Tadashi F. Tokieda Mechanical Ideas in Geometry . . . . . . 697--703
R. Cheng and
A. Dasgupta and
B. R. Ebanks and
L. F. Kinch and
L. M. Larson and
R. B. McFadden When Does $ f - 1 = 1 / f $ ? . . . . . 704--717
Roger L. Kraft A Golden Cantor Set . . . . . . . . . . 718--725
Darrell Desbrow On evaluating $ \int^{+ \infty }_{-
\infty }e^{ax(x - 2b)}d x $ by contour
integration round a parallelogram . . . 726--731
C. Groß and
T.-K. Strempel On Generalizations of Conics and on a
Generalization of the Fermat--Torricelli
Problem . . . . . . . . . . . . . . . . 732--743
Leonard F. Klosinski and
Gerald L. Alexanderson and
Loren C. Larson The Fifty-Eighth William Lowell Putnam
Mathematical Competition . . . . . . . . 744
T. W. Körner Butterfly Hunting and the Symmetry of
Mixed Partial Derivatives . . . . . . . 756--758
Stephen M. Gagola, Jr. A Note on the Non-existence of Regular
Bases for Finite Groups . . . . . . . . 759--761
Joseph Amal Nathan The Irrationality of $ e^x $ for Nonzero
Rational $x$ . . . . . . . . . . . . . . 762--763
Giles Warrack A Note on Variable Replacement Rates in
Urn Models . . . . . . . . . . . . . . . 764--765
Richard K. Guy and
John L. Selfridge Factoring Factorial $n$ . . . . . . . . 766
Gerald B. Folland \em Handbook of Writing for the
Mathematical Sciences, by Nicholas J.
Higham; \em A Primer of Mathematical
Writing, by Steven G. Krantz . . . . . . 779
Robert V. Hogg \em Leading Personalities in Statistical
Sciences, edited by Norman L. Johnson
and Samuel Kotz . . . . . . . . . . . . 782
Alfred B. Manaster Some Characteristics of Eighth Grade
Mathematics Classes in the TIMSS
Videotape Study . . . . . . . . . . . . 793
Lily Yau and
Adi Ben-Israel The Newton and Halley Methods for
Complex Roots . . . . . . . . . . . . . 806--818
Kiran S. Kedlaya and
Lenhard L. Ng The Rook on the Half-Chessboard, or How
Not to Diagonalize a Matrix . . . . . . 819--824
Jack Cassidy The Last Round of Betting in Poker . . . 825--831
Yoav Benyamini Applications of the Universal
Surjectivity of the Cantor Set . . . . . 832--839
Apostolos Thoma The Group $ {Z}_2 \times {Z}_n $ and
Regular Polygonal Paths . . . . . . . . 840--841
Busiso P. Chisala A Quick Cayley--Hamilton . . . . . . . . 842--844
J. Marshall Ash The Probability of a Tie in an $n$-Game
Match . . . . . . . . . . . . . . . . . 844--846
J. M. Borwein and
Xianfu Wang The Converse of the Mean Value Theorem
May Fail Generically . . . . . . . . . . 847--848
John A. Ewell A Trio of Triangular Number Theorems . . 848--849
John Stillwell Exceptional Objects . . . . . . . . . . 850--858
Dan Schnabel \em Goodbye, Descartes, by Keith Devlin 870
Jeffrey Nunemacher \em Fourier Analysis and Boundary Value
Problems, by Enrique A. González-Velasco 874
William F. Lucas \em Fair Division: From Cake-Cutting to
Dispute Resolution, by Steven J. Brams
and Alan D. Taylor . . . . . . . . . . . 877
Ilse C. F. Ipsen and
Carl D. Meyer The Idea Behind Krylov Methods . . . . . 889--899
Kiran S. Kedlaya Product-Free Subsets of Groups . . . . . 900--906
Bernd Sturmfels Polynomial Equations and Convex
Polytopes . . . . . . . . . . . . . . . 907--922
Aviezri S. Fraenkel Multivision: An Intractable Impartial
Game With a Linear Winning Strategy . . 923--928
Brian J. McCartin Seven Deadly Sins of Numerical
Computation . . . . . . . . . . . . . . 929--941
S. C. Woon Generating Integrals and an Elementary
Proof of the Finite Harmonic Series
Theorem by Fractional Calculus . . . . . 942--945
Raymond M. Redheffer Monotonicity of the Maxima . . . . . . . 945--948
Vilmos Komornik A Simple Proof of Farkas' Lemma . . . . 949--950
Richard K. Guy Nothing's New in Number Theory? . . . . 951--954
Lenore Blum \em Julia, A Life in Mathematics, by
Constance Reid . . . . . . . . . . . . . 964
Daniel P. Maki \em Would-be Worlds, by John L. Casti 972
Reuben Hersh \em The Number Sense: How the Mind
Creates Mathematics, by Stanislas
Dehaene . . . . . . . . . . . . . . . . 975
P. J. McKenna Large torsional oscillations in
suspension bridges revisited: fixing an
old approximation . . . . . . . . . . . 1--18
Geoffrey R. Goodson Inverse conjugacies and reversing
symmetry groups . . . . . . . . . . . . 19--26
Dmitry Fuchs and
Serge Tabachnikov More on paperfolding . . . . . . . . . . 27--35
L. R. Bragg Trigonometric integrals and Hadamard
products . . . . . . . . . . . . . . . . 36--42
Richard Blecksmith and
Paul Erd\Hos and
J. L. Selfridge Cluster primes . . . . . . . . . . . . . 43--48
John A. Zuehlke Fermat's last theorem for Gaussian
integer exponents . . . . . . . . . . . 49--49
M. J. Jamieson On rational function approximations to
square roots . . . . . . . . . . . . . . 50--52
A. J. van der Poorten and
P. G. Walsh A note on Jacobi symbols and continued
fractions . . . . . . . . . . . . . . . 52--56
I. G. Bashmakova and
G. S. Smirnova The birth of literal algebra. Translated
from the Russian and edited by Abe
Shenitzer . . . . . . . . . . . . . . . 57--66
Kenneth A. Ross Yueh-Gin Gung and Dr. Charles Y. Hu
Award for Distinguished Service to
Leonard Gillman . . . . . . . . . . . . 97--98
Solomon Feferman Does mathematics need new axioms . . . . 99--111
Gerald S. Goodman Statistical independence and normal
numbers: an aftermath to Mark Kac's
Carus Monograph . . . . . . . . . . . . 112--126
Lyle N. Long and
Howard Weiss The velocity dependence of aerodynamic
drag: a primer for mathematicians . . . 127--135
D. M. Cannell George Green: an enigmatic mathematician 136--151
Arthur T. Benjamin and
Kan Yasuda Magic ``squares'' indeed . . . . . . . . 152--156
Zoltán Sasvári An elementary proof of Binet's formula
for the gamma function . . . . . . . . . 156--158
Richard G. Swan A simple proof of Rankin's
campanological theorem . . . . . . . . . 159--161
Junpei Sekino $n$-ellipses and the minimum distance
sum problem . . . . . . . . . . . . . . 193--202
Arcadii Z. Grinshpan The Bieberbach conjecture and Milin's
functionals . . . . . . . . . . . . . . 203--214
Dimitris A. Sardelis and
Theodoros M. Valahas Decision making: a golden rule . . . . . 215--226
Vilmos Totik A tale of two integrals . . . . . . . . 227--240
Jaume Paradís and
Pelegrí Viader and
Lluís Bibiloni A mathematical excursion: from the
three-door problem to a Cantor-type set 241--251
Robert L. Devaney The Mandelbrot set, the Farey tree, and
the Fibonacci sequence . . . . . . . . . 289--302
Fred Richman Existence proofs . . . . . . . . . . . . 303--308
Paul Corazza Introduction to metric-preserving
functions . . . . . . . . . . . . . . . 309--323
Bernard D. Flury and
Robert Irving and
M. N. Goria Magic dice . . . . . . . . . . . . . . . 324--337
Andrew Granville and
Friedrich Roesler The set of differences of a given set 338--344
S. Anoulova and
J. Bennies and
J. Lenhard and
D. Metzler and
Y. Sung and
A. Weber Six ways of looking at Burtin's lemma 345--351
Hiroshi Maehara Lexell's Theorem via an Inscribed Angle
Theorem . . . . . . . . . . . . . . . . 352--353
Khristo Boyadzhiev A Characteristic Property of
Differentiation . . . . . . . . . . . . 353--355
Kiran S. Kedlaya A Weighted Mixed-Mean Inequality . . . . 355--358
Ian Caines and
Carrie Gates and
Richard K. Guy and
Richard J. Nowakowski Periods in Taking and Splitting Games 359--361
Vasile Mihai Problem 10725 . . . . . . . . . . . . . 362--362
Donald E. Knuth Problem 10726 . . . . . . . . . . . . . 362--362
Jean Anglesio Problem 10727 . . . . . . . . . . . . . 362--362
Titu Andreescu Problem 10728 . . . . . . . . . . . . . 362--362
David P. Bellamy and
Felix Lazebnik Problem 10729 . . . . . . . . . . . . . 362--362
Walther Janous Problem 10730 . . . . . . . . . . . . . 363--363
M. J. Pelling Problem 10731 . . . . . . . . . . . . . 363--363
Daniel Goffinet and
Kiran S. Kedlaya and
Kenneth Schilling and
Arlo W. Schurle and
Fredric D. Ancel and
Phil Bowers and
John Bryant Connected Sets of Periodic Functions:
10434 . . . . . . . . . . . . . . . . . 363--364
Marius Cavachi and
Sam Northshield and
Simeon T. Stefanov and
Victor Klee The Plane Covered by Disks: 10440 . . . 364--365
Joaquin Gomez Rey and
Jose Heber Nieto Random Perfect Matchings: 10587 . . . . 365--365
Marcin Mazur Characterizations of the Medial
Triangle: 10588 . . . . . . . . . . . . 365--366
Paul Bateman and
David Bradley and
David Callan and
Richard Stong Binary Expansions and $k$ th Powers:
10596 . . . . . . . . . . . . . . . . . 366--367
Joseph Rosenblatt and
Thomas Hermann and
John H. Lindsey, II A Supremum of Sine Differences: 10604 368--368
Jovan Vukmirovic and
Kenneth Schilling A Convergent Series: 10657 . . . . . . . 368--368
Tony Rothman Book Review: \booktitleThe French
Mathematician, by Tom Petsinis . . . . . 369--373
Bonnie Gold Book Review: \booktitleSocial
Constructivism as a Philosophy of
Mathematics, by Paul Ernest; What is
Mathematics, Really? by Reuben Hersh . . 373--380
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 381--384
Anonymous Back Matter . . . . . . . . . . . . . . ??
Anonymous Front Matter . . . . . . . . . . . . . . ??
George K. Francis and
Jeffrey R. Weeks Conway's ZIP Proof . . . . . . . . . . . 393--399
Roger L. Kraft Chaos, Cantor Sets, and Hyperbolicity
for the Logistic Maps . . . . . . . . . 400--408
Tom M. Apostol An Elementary View of Euler's Summation
Formula . . . . . . . . . . . . . . . . 409--418
David B. Leep and
Gerry Myerson Marriage, Magic, and Solitaire . . . . . 419--429
Hugh Howards and
Michael Hutchings and
Frank Morgan The Isoperimetric Problem on Surfaces 430--439
Timothy . Chow What is a Closed-Form Number? . . . . . 440--448
Greg Martin The Smallest Solution of $ \phi (30 n +
1) $ Is \ldots . . . . . . . . . . . . . 449--451
Frank K. Kenter A Matrix Representation for Euler's
Constant, $ \gamma $ . . . . . . . . . . 452--454
H. Fejzic and
D. Rinne More on a Mean Value Theorem Converse 454--455
L. J. Lange An Elegant Continued Fraction for $ \pi
$ . . . . . . . . . . . . . . . . . . . 456--458
Matthias Beck The Reciprocity Law for Dedekind Sums
via the Constant Ehrhart Coefficient . . 459--462
Detlef Laugwitz Riemann's Dissertation and Its Effect on
the Evolution of Mathematics . . . . . . 463--469
M. N. Deshpande Problems: 10732 . . . . . . . . . . . . 470--470
Sung Soo Kim Problems: 10733 . . . . . . . . . . . . 470--470
Floor van Lamoen Problems: 10734 . . . . . . . . . . . . 470--470
Gustavus J. Simmons Problems: 10735 . . . . . . . . . . . . 470--470
Mizan R. Khan Problems: 10736 . . . . . . . . . . . . 470--470
Hassan Ali Shah Ali Problems: 10737 . . . . . . . . . . . . 471--471
Radu Theodorescu Problems: 10738 . . . . . . . . . . . . 471--471
Fu-Chuen Chang and
Paul Deiermann and
Walter Van Assche and
Franz Peherstorfer and
Johannes Kepler Moments of Roots of Chebyshev
Polynomials: 10448 . . . . . . . . . . . 471--472
Tim Keller and
Gchq Problem Solving Group Indecomposable Numbers: 10589 . . . . . 473--473
Donald E. Knuth and
Gchq Problem Solving Group Negatively Correlated Vectors of Signs:
10593 . . . . . . . . . . . . . . . . . 473--474
David Cox and
Gchq Problem Solving Group $n$-Tuples Whose Elements Divide Their
Sum: 10597 . . . . . . . . . . . . . . . 474--475
Olaf Krafft and
Martin Schaefer and
Nora Thornber and
The National Security Agency Problems Group and
Ulrich Abel Binomial Ratios: 10625 . . . . . . . . . 475--476
Mihaly Bencze and
Gchq Problems Group A Triangle Inequality: 10644 . . . . . . 476--476
N. P. Bhatia Limit of a Recurrence: 10648 . . . . . . 476--477
Colin L. Mallows and
Kenneth Schilling Random Polynomials with Real Roots:
10660 . . . . . . . . . . . . . . . . . 477--477
Dan Schnabel Book Review: \booktitleLife's Other
Secret, by Ian Stewart; \booktitleThe
Magical Maze, by Ian Stewart . . . . . . 478--481
Cynthia Woodburn Book Review: \booktitleAn Introductory
Course in Commutative Algebra. by A. W.
Chatters, C. R. Hajarnavis;
\booktitleIntroduction to Algebra, by
Peter J. Cameron . . . . . . . . . . . . 481--483
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 484--487
Anonymous Back Matter . . . . . . . . . . . . . . ??
Anonymous Front Matter . . . . . . . . . . . . . . ??
Peter D. Lax Change of Variables in Multiple
Integrals . . . . . . . . . . . . . . . 497--501
Louis J. Billera and
Kenneth S. Brown and
Persi Diaconis Random Walks and Plane Arrangements in
Three Dimensions . . . . . . . . . . . . 502--524
Mizan R. Khan A Counting Formula for Primitive
Tetrahedra in $ Z^3 $ . . . . . . . . . 525--533
Adrian Rice What Makes a Great Mathematics Teacher?
The Case of Augustus De Morgan . . . . . 534--552
Frank Gerth III The TEAM Approach to Investing . . . . . 553--558
William J. Schwind and
Jun Ji and
Daniel E. Koditschek A Physically Motivated Further Note on
the Mean Value Theorem for Integrals . . 559--564
James P. Butler Hopping Hoops Don't Hop . . . . . . . . 565--568
Peter Mathe Approximation of Holder Continuous
Functions by Bernstein Polynomials . . . 568--574
Miguel de Guzman An Extension of the Wallace--Simson
Theorem: Projecting in Arbitrary
Directions . . . . . . . . . . . . . . . 574--580
Michael D. Hirschhorn Another Short Proof of Ramanujan's $
\bmod 5 $ Partition Congruence, and More 580--583
Hunter S. Snevily The Cayley Addition Table of $ Z_n $ . . 584--585
Oscar Ciaurri Problems: 10739 . . . . . . . . . . . . 586--586
Charles Vanden Eynden Problems: 10740 . . . . . . . . . . . . 586--586
Tim Keller Problems: 10741 . . . . . . . . . . . . 586--586
Emre Alkan Problems: 10742 . . . . . . . . . . . . 586--586
C\ualin Popescu Problems: 10743 . . . . . . . . . . . . 586--586
Peter Lindqvist Problems: 10744 . . . . . . . . . . . . 587--587
M. J. Pelling Problems: 10745 . . . . . . . . . . . . 587--587
Jordan Tabov and
Murray S. Klamkin Using the Walls to Find the Center:
10386 . . . . . . . . . . . . . . . . . 587--587
Seung-Jin Bang and
Jeremy E. Dawson and
A. N. 't Woord and
O. P. Lossers and
Victor Hernandez A Reciprocal Summation Identity: 10490 588--590
Yury J. Ionin and
Robin R. Lewis A Limit of Periods: 10603 . . . . . . . 590--590
Thomas Zaslavsky and
Stephen M. Gagola, Jr. Avoiding the Identity: 10606 . . . . . . 590--591
Brian Conolly and
Allen Stenger and
Thomas Hermann Some Sums Require Care: 10638 . . . . . 591--592
Ricardo Diaz Book Review: \booktitleAn Imaginary
Tale: The Story of $ \sqrt {-1} $, by
Paul J. Nahin . . . . . . . . . . . . . 593--594
John Beebee and
Karen Willmore Book Review: \booktitleLeaning towards
Infinity, by Sue Woolfe . . . . . . . . 594--596
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 597--600
Anonymous Back Matter . . . . . . . . . . . . . . ??
Anonymous Front Matter . . . . . . . . . . . . . . ??
Timothy Pritchett The Hopping Hoop Revisited . . . . . . . 609--617
Della Dumbaugh Fenster Why Dickson Left Quadratic Reciprocity
out of His History of the Theory of
Numbers . . . . . . . . . . . . . . . . 618--627
Mark Bridger and
Gabriel Stolzenberg Uniform Calculus and the Law of Bounded
Change . . . . . . . . . . . . . . . . . 628--635
Gary Gordon The Answer is $ 2^n. n! $ What's the
Question? . . . . . . . . . . . . . . . 636--645
William F. Trench Conditional Convergence of Infinite
Products . . . . . . . . . . . . . . . . 646--651
F. W. Clarke and
W. N. Everitt and
L. L. Littlejohn and
S. J. R. Vorster H. J. S. Smith and the Fermat Two
Squares Theorem . . . . . . . . . . . . 652--665
Melvyn B. Nathanson Number Theory and Semigroups of
Intermediate Growth . . . . . . . . . . 666--669
Randall McCutcheon The Gottschalk--Hedlund Theorem . . . . 670--672
Tadashi F. Tokieda A Mean Value Theorem . . . . . . . . . . 673--674
B. Sury On an Example of Jacobson . . . . . . . 675--676
Israel Kleiner Field Theory: From Equations to
Axiomatization . . . . . . . . . . . . . 677--684
C\ualin Popescu Problems: 10743 . . . . . . . . . . . . 685--685
Stepan Tersian Problems: 10746 . . . . . . . . . . . . 685--685
Athanasios Kalakos Problems: 10747 . . . . . . . . . . . . 685--685
Itshak Borosh and
Douglas A. Hensley and
Joel Zinn Problems: 10748 . . . . . . . . . . . . 685--685
Alain Grigis Problems: 10749 . . . . . . . . . . . . 685--685
Leonard Smiley Problems: 10750 . . . . . . . . . . . . 686--686
Emeric Deutsch Problems: 10751 . . . . . . . . . . . . 686--686
Gh. Costovici Problems: 10752 . . . . . . . . . . . . 686--686
Joseph H. Silverman and
David Bradley and
Donald A. Darling A Zeta Function over a Recurrent
Sequence: 10486 . . . . . . . . . . . . 686--688
Fred Galvin and
Frank Jelen and
Eberhard Triesch A Matrix of Inequalities: 10599 . . . . 688--688
Wen-Xiu Ma and
Robin J. Chapman and
Joseph J. Rushanan A Complex Determinant: 10601 . . . . . . 688--689
Donald E. Knuth and
David Callan On a Convolution of Eulerian Numbers:
10609 . . . . . . . . . . . . . . . . . 690--691
Richard Hall and
National Security Agency Problems Group and
Gchq Problems Group A Variation on Additive Bases: 10610 . . 691--692
Joaquin Gomez Rey and
Anchorage Math Solutions Group and
Gchq Problems Group An Identity Involving Rooted Trees:
10615 . . . . . . . . . . . . . . . . . 692--693
James G. Merickel and
John P. Robertson Divisors of Sums of Divisors: 10617 . . 693--693
Albert A. Mullin Book Review: \booktitleMy Brain is Open:
The Mathematical Journeys of Paul
Erd\Hos, by Bruce Schechter;
\booktitleThe Man Who Loved Only
Numbers: The Story of Paul Erd\Hos and
the Search for Mathematical Truth, by
Paul Hoffman . . . . . . . . . . . . . . 694--696
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 697--700
Anonymous Lester R. Ford Awards for 1998 . . . . . 701--702
Anonymous Back Matter . . . . . . . . . . . . . . ??
Anonymous Front Matter . . . . . . . . . . . . . . ??
William J. Terrell Some Fundamental Control Theory I:
Controllability, Observability, and
Duality . . . . . . . . . . . . . . . . 705--719
Bruce Pourciau The Education of a Pure Mathematician 720--732
Daniel J. Velleman Multivariable Calculus and the Plus
Topology . . . . . . . . . . . . . . . . 733--740
John H. Hubbard The Forced Damped Pendulum: Chaos,
Complication and Control . . . . . . . . 741--758
Abraham A. Ungar The Hyperbolic Pythagorean Theorem in
the Poincaré Disc Model of Hyperbolic
Geometry . . . . . . . . . . . . . . . . 759--763
Jitan Lu Is the Composite Function Integrable? 763--766
Jianhong Shen On the Generalized ''Lanczos'
Generalized Derivative'' . . . . . . . . 766--768
Walter Rudin A Stability Theorem . . . . . . . . . . 768--770
Roger C. Alperin Rationals and the Modular Group . . . . 771--773
Thomas J. Osler The Union of Vieta's and Wallis's
Products for Pi . . . . . . . . . . . . 774--776
Louis Shapiro Problems: 10753 . . . . . . . . . . . . 777--777
Paul Bracken Problems: 10754 . . . . . . . . . . . . 777--777
Jiro Fukuta Problems: 10755 . . . . . . . . . . . . 777--777
Douglas Iannucci Problems: 10756 . . . . . . . . . . . . 778--778
Mark Kidwell Problems: 10757 . . . . . . . . . . . . 778--778
Mark Sapir Problems: 10758 . . . . . . . . . . . . 778--778
C\ualin Popescu Problems: 10759 . . . . . . . . . . . . 778--778
Kiran S. Kedlaya and
Alain Tissier Common Eigenvector of Commuting
Matrices: 10633 . . . . . . . . . . . . 778--779
C. F. Parry and
Robert L. Young Reflected Concurrent Lines: 10637 . . . 779--780
Hassan Ali Shah Ali and
Patrick A. Staley A Constrained Maximization: 10646 . . . 780--781
Zoltan Sasvari and
William F. Trench A Pólya--Szeg\Ho Exercise Revisited:
10650 . . . . . . . . . . . . . . . . . 781--782
W. K. Hayman and
Tewodros Amdeberhan and
Irl C. Bivens Harmonic Products of Harmonic Functions:
10651 . . . . . . . . . . . . . . . . . 782--782
David P. Bellamy and
Felix Lazebnik and
Jeffrey Lagarias and
Stephen M. Gagola, Jr. Large Values of Tangent: 10656 . . . . . 782--784
Vasile A. Mihai and
J. Schaer The Ellipse in a Paper Cup: 10664 . . . 784--784
John A. Koch Book Review: \booktitleThe Four-Color
Theorem. by Rudolf Fritsch, Gerda
Fritsch, J. Peschke . . . . . . . . . . 785--787
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 788--791
Anonymous Back Matter . . . . . . . . . . . . . . ??
Anonymous Front Matter . . . . . . . . . . . . . . ??
Aaron F. Archer A Modern Treatment of the 15 Puzzle . . 793--799
James F. Hurley and
Uwe Koehn and
Susan L. Ganter Effects of Calculus Reform: Local and
National . . . . . . . . . . . . . . . . 800--811
William J. Terrell Some Fundamental Control Theory II:
Feedback Linearization of Single Input
Nonlinear Systems . . . . . . . . . . . 812--828
John A. Baker The Dirichlet Problem for Ellipsoids . . 829--834
David A. Singer Curves Whose Curvature Depends on
Distance from the Origin . . . . . . . . 835--841
Leonard F. Klosinski and
Gerald L. Alexanderson and
Loren C. Larson The Fifty-Ninth William Lowell Putnam
Mathematical Competition . . . . . . . . 842--849
Carsten Thomassen On the Nelson Unit Distance Coloring
Problem . . . . . . . . . . . . . . . . 850--853
David J. Grabiner Descartes' Rule of Signs: Another
Construction . . . . . . . . . . . . . . 854--856
Jonathan P. McCammond Integrating Polynomials in Secant and
Tangent . . . . . . . . . . . . . . . . 856--858
Israel Kleiner Field Theory: From Equations to
Axiomatization . . . . . . . . . . . . . 859--863
Bruce Reznick Problems: 10760 . . . . . . . . . . . . 864--864
Fred Galvin Problems: 10761 . . . . . . . . . . . . 864--864
Leroy Quet Problems: 10762 . . . . . . . . . . . . 864--864
Jean Anglesio Problems: 10763 . . . . . . . . . . . . 864--864
Ray Redheffer Problems: 10764 . . . . . . . . . . . . 864--864
Peter J. Ferraro Problems: 10765 . . . . . . . . . . . . 864--864
Szilard Andras Problems: 10766 . . . . . . . . . . . . 865--865
S. Lakshminarayanan and
S. L. Shah and
K. Nandakumar and
Gchq Problems Group Cramer's Rule for Non-Square Matrices:
10618 . . . . . . . . . . . . . . . . . 865--865
James Propp An Identity for Strongly Connected
Digraphs: 10620 . . . . . . . . . . . . 865--867
M. N. Deshpande and
Hansruedi Widmer and
Zachary Franco Simultaneous Squares from Arithmetic
Progressions: 10622 . . . . . . . . . . 867--868
Roy Barbara and
Nasha Komanda and
Robin J. Chapman The Divisibility Poset inside Itself:
10623 . . . . . . . . . . . . . . . . . 868--869
Florian Luca and
Nasha Komanda An Equation Involving the Totient: 10626 869--870
Jiro Fukuta and
Gchq Problems Group and
C\ualin Popescu Three Congruent Circles between Two
Triangles: 10659 . . . . . . . . . . . . 870--870
Harold G. Diamond and
Nathaniel Grossman Logarithmic Convexity of Stirling's
Ratio: 10680 . . . . . . . . . . . . . . 871--871
Joseph D. E. Konhauser and
Stan Wagon and
Con Amore Problems Group Quadrilateral Center of Gravity: 10662 871--871
James V. Rauff Book Review: \booktitleAfrican Fractals:
Modern Computing and Indigenous Design.
by Ron Eglash . . . . . . . . . . . . . 872--875
Arnold Ostebee Telegraphic Reviews . . . . . . . . . . 876--879
Anonymous Back Matter . . . . . . . . . . . . . . ??
Anonymous Front Matter . . . . . . . . . . . . . . ??
Jonathan M. Borwein and
Robert M. Corless Emerging Tools for Experimental
Mathematics . . . . . . . . . . . . . . 889--909
Thomas W. Tucker Reform, Tradition, and Synthesis . . . . 910--914
Steven G. Krantz You Don't Need a Weatherman to Know
Which Way the Wind Blows . . . . . . . . 915--918
Helene Shapiro The Weyr Characteristic . . . . . . . . 919--929
Francis Edward Su Rental Harmony: Sperner's Lemma in Fair
Division . . . . . . . . . . . . . . . . 930--942
Leonid G. Hanin Which Tanks Empty Faster? . . . . . . . 943--947
David Callan Two Uniformly Distributed Parameters
Defining Catalan Numbers . . . . . . . . 948--949
Istvan Kovacs and
Daniel S. Silver and
Susan G. Williams Determinants of Commuting-Block Matrices 950--952
Paul iu Mixtilinear Incircles . . . . . . . . . 952--955
David N. Etter The Area of the Medial Parallelogram of
a Tetrahedron . . . . . . . . . . . . . 956--958
Richard Nowakowski Unsolved Problems, 1969--1999 . . . . . 959--962
Bruce Dearden and
Jerry Metzger Problems: 10767 . . . . . . . . . . . . 963--963
Sung Soo Kim Problems: 10768 . . . . . . . . . . . . 963--963
Christian Blatter Problems: 10769 . . . . . . . . . . . . 963--963
C\ualin Popescu Problems: 10770 . . . . . . . . . . . . 963--963
Mowaffaq Hajja and
Peter Walker Problems: 10771 . . . . . . . . . . . . 963--963
William C. Waterhouse Problems: 10772 . . . . . . . . . . . . 963--963
Jean Anglesio Problems: 10773 . . . . . . . . . . . . 964--964
Greg Huber and
Gchq Problems Group Tracking the Incenters: 10631 . . . . . 964--965
William F. Trench and
Ronald A. Kopas An Appearance of the Beta Function:
10632 . . . . . . . . . . . . . . . . . 965--965
Nicholas R. Farnum and
Alain Tissier Apery's Constant: 10635 . . . . . . . . 965--966
Abram Kagan and
Larry Shepp and
Kenneth Schilling Essentially Discontinuous Functions:
10668 . . . . . . . . . . . . . . . . . 966--967
Salomon Benchimol and
Elliott Cohen and
Con Amore Problems Group Two Recurrence Relations, One Easy, One
Hard: 10670 . . . . . . . . . . . . . . 967--968
F. Rothe and
Sung Soo Kim The Number of Zeros of a Maclaurin
Polynomial: 10671 . . . . . . . . . . . 968--968
V. Anil Kumar and
John H. Lindsey, II An AM--GM Variation: 10672 . . . . . . . 969--969
Harry Tamvakis and
Gchq Problems Group Functions with a Polynomial Addition
Formula: 10675 . . . . . . . . . . . . . 969--969
Horst Alzer and
M. J. Pelling An Unsettled Inequality: 10337 . . . . . 970--970
Edward Aboufadel and
Matthew Boelkins and
Steven Schlicker Book Review: \booktitleWavelets: A
Primer. by Christian Blatter, A. K.
Peters; \booktitleWavelets in a Box, by
Charles K. Chui, Andrew K. Chan, C.
Steve Liu; \booktitleA Primer on
Wavelets for Scientists and Engineers,
by James S. Walker; \booktitleWavelet
Analysis: The Scalable Structure of
Information, by Howard L. Resnikoff,
Raymond O. Wells, Jr. . . . . . . . . . 971--977
Daniel Henry Gottlieb Book Review: \booktitlePoincaré and the
Three Body Problem. by June Barrow-Green 977--980
Anonymous Volume Information . . . . . . . . . . . 981--992
Anonymous Back Matter . . . . . . . . . . . . . . ??
Anonymous Front Matter . . . . . . . . . . . . . . ??
David Bailey and
Peter Borwein and
Simon Plouffe On the rapid computation of various
polylogarithmic constants . . . . . . . 903--913