Table of contents for issues of Lecture Notes in Mathematics

Last update: Fri Mar 1 06:15:55 MST 2019                Valid HTML 3.2!

Volume 1, 1964
Volume 2, 1964
Volume 3, 1964
Volume 4, 1964
Volume 5, 1965
Volume 6, 1965
Volume 7, 1965
Volume 8, 1965
Volume 9, 1965
Volume 10, 1965
Volume 3, 1966
Volume 12, 1966
Volume 13, 1966
Volume 14, 1966
Volume 15, 1966
Volume 16, 1966
Volume 17, 1966
Volume 18, 1966
Volume 19, 1966
Volume 20, 1966
Volume 21, 1966
Volume 22, 1966
Volume 23, 1966
Volume 24, 1966
Volume 25, 1966
Volume 27, 1966
Volume 28, 1966
Volume 29, 1966
Volume 30, 1966
Volume 4, 1967
Volume 26, 1967
Volume 31, 1967
Volume 32, 1967
Volume 33, 1967
Volume 34, 1967
Volume 35, 1967
Volume 36, 1967
Volume 37, 1967
Volume 38, 1967
Volume 39, 1967
Volume 40, 1967
Volume 41, 1967
Volume 42, 1967
Volume 43, 1967
Volume 44, 1967
Volume 45, 1967
Volume 46, 1967
Volume 47, 1967
Volume 48, 1967
Volume 49, 1967
Volume 50, 1968
Volume 51, 1968
Volume 52, 1968
Volume 53, 1968
Volume 54, 1968
Volume 55, 1968
Volume 56, 1968
Volume 57, 1968
Volume 58, 1968
Volume 59, 1968
Volume 60, 1968
Volume 61, 1968
Volume 62, 1968
Volume 63, 1968
Volume 64, 1968
Volume 65, 1968
Volume 66, 1968
Volume 67, 1968
Volume 68, 1968
Volume 69, 1968
Volume 70, 1968
Volume 71, 1968
Volume 72, 1968
Volume 73, 1968
Volume 74, 1968
Volume 75, 1968
Volume 76, 1968
Volume 77, 1968
Volume 78, 1968
Volume 79, 1968
Volume 3, 1969
Volume 80, 1969
Volume 81, 1969
Volume 82, 1969
Volume 83, 1969
Volume 84, 1969
Volume 85, 1969
Volume 86, 1969
Volume 87, 1969
Volume 88, 1969
Volume 89, 1969
Volume 90, 1969
Volume 91, 1969
Volume 92, 1969
Volume 93, 1969
Volume 94, 1969
Volume 95, 1969
Volume 96, 1969
Volume 97, 1969
Volume 98, 1969
Volume 99, 1969
Volume 100, 1969
Volume 101, 1969
Volume 102, 1969
Volume 103, 1969
Volume 104, 1969
Volume 105, 1969
Volume 106, 1969
Volume 107, 1969
Volume 108, 1969
Volume 109, 1969
Volume 110, 1969
Volume 111, 1969
Volume 118, 1969
Volume 191, 1971


Lecture Notes in Mathematics
Volume 1, 1964

                    John Wermer   Einführung. (German) [Introduction] . . . 1--3
                    John Wermer   Lebesguesche Zerlegung von Massen aus $
                                  A^\perp $. (German) [Lebesgue
                                  decomposition of dimensions of $ A^\perp
                                  $] . . . . . . . . . . . . . . . . . . . 4--8
                    John Wermer   Die Räume $ H^P(\lambda) $. (German) [The
                                  space $ H^P(\lambda) $]  . . . . . . . . 9--12
                    John Wermer   Eine Formel für Masse in $ A^\perp $.
                                  (German) [A formula for the dimension in
                                  $ A^\perp $] . . . . . . . . . . . . . . 13--15
                    John Wermer   Die Algebren $ P(X) $. (German) [The $
                                  P(X) $ algebras] . . . . . . . . . . . . 16--20
                    John Wermer   Der Satz von Mergelyan. (German) [The
                                  Mergelyan set] . . . . . . . . . . . . . 21--22
                    John Wermer   Die Klassen für $ P(X) $. (German) [The
                                  classes for $ P(X) $]  . . . . . . . . . 23--25
                    John Wermer   Beschränkte analytische Funktionen.
                                  (German) [Restricted analytic functions] 26--28
                    John Wermer   Literatur. (German) [References] . . . . 29--30


Lecture Notes in Mathematics
Volume 2, 1964

                   Armand Borel   Notions algébriques. (French) [Algebraic
                                  concepts]  . . . . . . . . . . . . . . . I-1--I-8
                   Armand Borel   Les complexes. (French) [The complexes]  II-1--II-14
                   Armand Borel   Le théor\`eme fondamental. (French) [The
                                  basic theorem] . . . . . . . . . . . . . III-1--III-9
                   Armand Borel   Applications et compléments. (French)
                                  [Applications and complements] . . . . . IV-1--IV-12
                   Armand Borel   Les faisceaux $k$. (French) [The $k$
                                  sheaves] . . . . . . . . . . . . . . . . V-1--V-12
                   Armand Borel   L'algébre spectrale. (French) [Spectral
                                  algebra] . . . . . . . . . . . . . . . . VI-1--VI-12
                   Armand Borel   Alg\`ebre spectrale d'une application
                                  continue. (French) [Spectral algebra of
                                  a continuous function] . . . . . . . . . VII-1--VII-8
                   Armand Borel   Alg\`ebre spectrale des espaces fibres.
                                  (French) [Spectral algebra of fiber
                                  spaces]  . . . . . . . . . . . . . . . . VIII-1--VIII-8
                   Armand Borel   Applications aux espaces fibres.
                                  (French) [Applications to fiber spaces]  IX-1--IX-10


Lecture Notes in Mathematics
Volume 3, 1964

                 J. Frank Adams   Front Matter . . . . . . . . . . . . . . N2--iii
                 J. Frank Adams   Introduction . . . . . . . . . . . . . . 1--3
                 J. Frank Adams   Primary operations . . . . . . . . . . . 4--21
                 J. Frank Adams   Stable Homotopy Theory . . . . . . . . . 22--37
                 J. Frank Adams   Applications of Homological Algebra to
                                  Stable Homotopy Theory . . . . . . . . . 38--57
                 J. Frank Adams   Theorems of periodicity and
                                  approximation in homological algebra . . 58--68
                 J. Frank Adams   Comments on prospective applications of
                                  (5), work in progress, etc.  . . . . . . 69--73
                 J. Frank Adams   Back Matter  . . . . . . . . . . . . . . 74--77


Lecture Notes in Mathematics
Volume 4, 1964

                M. Arkowitz and   
                   C. R. Curjel   Front Matter . . . . . . . . . . . . . . N2--iii
                M. Arkowitz and   
                   C. R. Curjel   Introduction . . . . . . . . . . . . . . 1--2
                M. Arkowitz and   
                   C. R. Curjel   Groups of finite rank  . . . . . . . . . 3--9
                M. Arkowitz and   
                   C. R. Curjel   The Groups $ [A, \Omega X] $ and Their
                                  Homomorphisms  . . . . . . . . . . . . . 10--19
                M. Arkowitz and   
                   C. R. Curjel   Commutativity and Homotopy-Commutativity 20--26
                M. Arkowitz and   
                   C. R. Curjel   The Rank of the Group of Homotopy
                                  Equivalences . . . . . . . . . . . . . . 27--34
                M. Arkowitz and   
                   C. R. Curjel   Back Matter  . . . . . . . . . . . . . . 35--37


Lecture Notes in Mathematics
Volume 5, 1965

              Jean-Pierre Serre   Front Matter . . . . . . . . . . . . . . N2--vii
              Jean-Pierre Serre   Cohomologie des Groupes Profinis.
                                  (French) [Cohomology of profinite
                                  groups]  . . . . . . . . . . . . . . . . 1--86
              Jean-Pierre Serre   Cohomologie Galoisienne --- Cas
                                  Commutatif. (French) [Galois cohomology
                                  --- commutative case]  . . . . . . . . . 87--136
              Jean-Pierre Serre   Cohomologie Galoisienne non Commutative.
                                  (French) [Noncommutative Galois
                                  cohomology]  . . . . . . . . . . . . . . 137--181
             Jean-Louis Verdier   Dualité dans la Cohomologie des Groupes
                                  Profinis. (French) [Duality in the
                                  cohomology of profinite groups]  . . . . 183--206
              Jean-Pierre Serre   Erratum to: Cohomologie des Groupes
                                  Profinis. (French) [Erratum to:
                                  Cohomology of profinite groups]  . . . . 218--218
              Jean-Pierre Serre   Erratum to: Cohomologie Galoisienne ---
                                  Cas Commutatif. (French) [Erratum to:
                                  Noncommutative Galois cohomology]  . . . 218--218
              Jean-Pierre Serre   Erratum to: Cohomologie Galoisienne non
                                  Commutative. (French) [Noncommutative
                                  Galois cohomology] . . . . . . . . . . . 218--218
              Jean-Pierre Serre   Erratum to: Dualité dans la Cohomologie
                                  des Groupes Profinis. (French) [Erratum
                                  to: Duality in the cohomology of
                                  profinite groups]  . . . . . . . . . . . 218--218
              Jean-Pierre Serre   Erratum  . . . . . . . . . . . . . . . . 218--218
              Jean-Pierre Serre   Back Matter  . . . . . . . . . . . . . . 207--217


Lecture Notes in Mathematics
Volume 6, 1965

                    Hans Hermes   Front Matter . . . . . . . . . . . . . . i--iii
                    Hans Hermes   Einleitung. (German) [Introduction]  . . 1--3
                    Hans Hermes   Prädikatenlogik mit Auswahloperator.
                                  (German) [Predicate logic with selection
                                  operator]  . . . . . . . . . . . . . . . 4--6
                    Hans Hermes   Termlogik mit Auswahloperator. (German)
                                  [Term logic with selection operator] . . 7--9
                    Hans Hermes   Zusammenhang zwischen der Prädikatenlogik
                                  und der Termlogik. (German) [Relation
                                  between the predicate logic and term
                                  logic] . . . . . . . . . . . . . . . . . 10--14
                    Hans Hermes   Rang, freies Vorkommen einer Variablen,
                                  Substitution. (German) [Rank, free
                                  occurrences of a variable, substitution] 15--16
                    Hans Hermes   Ein Kalkül für die Termlogik. (German) [A
                                  calculus for term togic] . . . . . . . . 17--20
                    Hans Hermes   Gleichwertigkeit von $ \Vdash $ und $
                                  \vdash $. Korrektheit der Regeln.
                                  (German) [Equivalence of $ \Vdash $ and
                                  $ \vdash $. Correctness of the rules]    21--22
                    Hans Hermes   Übersicht über den Vollständigkeitsbeweis.
                                  (German) [Overview of the completeness
                                  proof] . . . . . . . . . . . . . . . . . 23--23
                    Hans Hermes   Termisomorphismen. (German) [Term
                                  isomorphism] . . . . . . . . . . . . . . 24--25
                    Hans Hermes   Maximalisierung von $ M^\varphi $.
                                  (German) [Maximization of $ M^\varphi $] 26--27
                    Hans Hermes   Verallgemeinerte Substitution. (German)
                                  [Generalized substitution] . . . . . . . 28--34
                    Hans Hermes   Erfüllbarkeit von $ M^* $. (German)
                                  [Satisfiability of $ M^* $]  . . . . . . 35--39
                    Hans Hermes   Erfüllbarkeit von $ M* $. Die Terme $s$
                                  und $t$ sollen (relativ zu $ M*$).
                                  (German) [Satisfiability of $ M * $. The
                                  terms $s$ and $t$ are (relative to $ M *
                                  $)]  . . . . . . . . . . . . . . . . . . 35--39
                    Hans Hermes   Survey of the proof of the Theorem on
                                  satisfiability . . . . . . . . . . . . . 42--46
                    Hans Hermes   Details of the proof . . . . . . . . . . 47--51
                    Hans Hermes   Completeness of restricted term calculus 52--52
                    Hans Hermes   Back Matter  . . . . . . . . . . . . . . 40--42


Lecture Notes in Mathematics
Volume 7, 1965

               Philippe Tondeur   $G$-objects  . . . . . . . . . . . . . . 1--27
               Philippe Tondeur   $G$-spaces . . . . . . . . . . . . . . . 28--33
               Philippe Tondeur   $G$-manifolds  . . . . . . . . . . . . . 34--39
               Philippe Tondeur   Vectorfields . . . . . . . . . . . . . . 40--65
               Philippe Tondeur   Vectorfields and $1$-parameter groups of
                                  transformations  . . . . . . . . . . . . 66--102
               Philippe Tondeur   The exponential map of a Lie group . . . 103--127
               Philippe Tondeur   Subgroups and subalgebras  . . . . . . . 128--159
               Philippe Tondeur   Groups of automorphisms  . . . . . . . . 160--169


Lecture Notes in Mathematics
Volume 8, 1965

                Gaetano Fichera   ``Well posed'' boundary value problems   1--10
                Gaetano Fichera   Existence principle  . . . . . . . . . . 11--16
                Gaetano Fichera   The function spaces and $ H_m $  . . . . 17--23
                Gaetano Fichera   The trace operator. Sobolev and Ehrling
                                  lemmas . . . . . . . . . . . . . . . . . 24--29
                Gaetano Fichera   Elliptic linear systems. Interior
                                  regularity . . . . . . . . . . . . . . . 30--38
                Gaetano Fichera   Existence of local solutions for
                                  elliptic systems . . . . . . . . . . . . 39--43
                Gaetano Fichera   Semiweak solutions of BVP for elliptic
                                  systems  . . . . . . . . . . . . . . . . 44--51
                Gaetano Fichera   Regularity at the boundary: preliminary
                                  lemmas . . . . . . . . . . . . . . . . . 52--60
                Gaetano Fichera   Regularity at the boundary: tangential
                                  derivatives  . . . . . . . . . . . . . . 61--68
                Gaetano Fichera   Regularity at the boundary: final
                                  results  . . . . . . . . . . . . . . . . 69--79
                Gaetano Fichera   The classical elliptic BVP of
                                  Mathematical physics: 2nd order linear
                                  PDE  . . . . . . . . . . . . . . . . . . 80--87
                Gaetano Fichera   The classical elliptic BVP of
                                  Mathematical Physics: Linear
                                  Elastostatics  . . . . . . . . . . . . . 88--94
                Gaetano Fichera   The classical elliptic BVP of
                                  Mathematical Physics: Equilibrium of
                                  thin plates  . . . . . . . . . . . . . . 95--100
                Gaetano Fichera   Strongly elliptic operators. G\"aarding
                                  inequality. Eigenvalue problems  . . . . 101--111
                Gaetano Fichera   Eigenvalue problems. The Rayleigh--Ritz
                                  method . . . . . . . . . . . . . . . . . 112--119
                Gaetano Fichera   The Weinstein--Aronszajn method  . . . . 120--129
                Gaetano Fichera   Construction of the intermediate
                                  operators  . . . . . . . . . . . . . . . 130--138
                Gaetano Fichera   Orthogonal invariants of positive
                                  compact operators  . . . . . . . . . . . 139--151
                Gaetano Fichera   Upper approximation of the eigenvalues
                                  of a PCO. Representation of orthogonal
                                  invariants . . . . . . . . . . . . . . . 152--163
                Gaetano Fichera   Explicit construction of the Green's
                                  matrix for an elliptic system  . . . . . 164--174


Lecture Notes in Mathematics
Volume 9, 1965

            Petru L. Iv\uanescu   Introduction . . . . . . . . . . . . . . 1--2
            Petru L. Iv\uanescu   Notations and terminology  . . . . . . . 3--7
            Petru L. Iv\uanescu   Minimization of pseudo-Boolean functions 7--13
            Petru L. Iv\uanescu   Systems of pseudo-Boolean equations and
                                  inequalities . . . . . . . . . . . . . . 13--18
            Petru L. Iv\uanescu   Pseudo-Boolean programming . . . . . . . 18--20
            Petru L. Iv\uanescu   Discrete polynomial-logical programming  20--23
            Petru L. Iv\uanescu   Application to the theory of graphs  . . 23--27
            Petru L. Iv\uanescu   Applications to the theory of flows in
                                  networks . . . . . . . . . . . . . . . . 27--30
            Petru L. Iv\uanescu   Applications to the transportation
                                  problem  . . . . . . . . . . . . . . . . 30--32
            Petru L. Iv\uanescu   Applications to switching algebra  . . . 32--34
            Petru L. Iv\uanescu   Minimal decomposition of finite
                                  partially ordered sets in chains . . . . 34--37


Lecture Notes in Mathematics
Volume 10, 1965

            Heinz Lüneburg   Die Gruppen $G$. (German) [The group
                                  $G$] . . . . . . . . . . . . . . . . . . 1--10
            Heinz Lüneburg   Die Einfacheit der Suzukigruppen.
                                  (German) [The plainness of the Suzuki
                                  group] . . . . . . . . . . . . . . . . . 11--16
            Heinz Lüneburg   Eine Kennzeichnung der ($ Z T$)-Gruppen.
                                  (German) [A marking of ($ Z T$)-groups]  17--25
            Heinz Lüneburg   Die Untergruppen der Suzukigruppen.
                                  (German) [The subgroups of the Suzuki
                                  group] . . . . . . . . . . . . . . . . . 26--38
            Heinz Lüneburg   Inzidenzstrukturen. (German) [Incidence
                                  structures]  . . . . . . . . . . . . . . 39--46
            Heinz Lüneburg   Affine und projektive Ebenen. (German)
                                  [Affine and projective planes] . . . . . 47--52
            Heinz Lüneburg   Perspektivitäten von projektiven Ebenen.
                                  (German) [Perspectives on the projective
                                  plane] . . . . . . . . . . . . . . . . . 53--58
            Heinz Lüneburg   Möbiusebenen. (German) [The Möbius plane]  59--67
            Heinz Lüneburg   Die zu den Suzukigruppen gehörigen
                                  Möbiusebenen. (German) [The Möbius planes
                                  belonging to the Suzuki group] . . . . . 68--71
            Heinz Lüneburg   $ S(q) $ als kollineationsgruppe des
                                  $3$-dimensionalen projektiven Raumes über
                                  $ {\rm GF}(q)$. (German) [$ S (q) $ as a
                                  collineation group of $3$-dimensional
                                  projective space over $ {\rm GF} (q) $]  72--79
            Heinz Lüneburg   Translationsebenen. (German)
                                  [Translation planes] . . . . . . . . . . 80--85
            Heinz Lüneburg   Die zu den Suzukigruppen gehörigen
                                  Translationsebenen. (German) [The
                                  translation planes belonging to the
                                  Suzuki group]  . . . . . . . . . . . . . 86--90
            Heinz Lüneburg   Die explizite Bestimmung der Kongruenz.
                                  (German) [The explicit determination of
                                  the congruence]  . . . . . . . . . . . . 91--95
            Heinz Lüneburg   $ S(q) $ als Kollineationsgruppe einer
                                  Ebene der Ordnung $ q^2 $. (German) [$ S
                                  (q) $ as a collineation group of a plane
                                  of order $ q^2 $]  . . . . . . . . . . . 96--108


Lecture Notes in Mathematics
Volume 3, 1966

                 J. Frank Adams   Front Matter . . . . . . . . . . . . . . ii--v
                 J. Frank Adams   Introduction . . . . . . . . . . . . . . 1--3
                 J. Frank Adams   Primary operations . . . . . . . . . . . 4--21
                 J. Frank Adams   Stable Homotopy Theory . . . . . . . . . 22--37
                 J. Frank Adams   Applications of Homological Algebra to
                                  Stable Homotopy Theory . . . . . . . . . 38--57
                 J. Frank Adams   Theorems of periodicity and
                                  approximation in homological algebra . . 58--68
                 J. Frank Adams   Comments on prospective applications of
                                  (5), work in progress, etc.  . . . . . . 69--73
                 J. Frank Adams   Back Matter  . . . . . . . . . . . . . . 74--81


Lecture Notes in Mathematics
Volume 12, 1966

                  Albrecht Dold   Einleitung. (German) [Introduction]  . . 0.1--0.3
                  Albrecht Dold   Darstellbare Funktoren. (German)
                                  [Displayable functors] . . . . . . . . . 1.1--1.9
                  Albrecht Dold   Multiplikative Strukturen. (German)
                                  [Multiplicative structures]  . . . . . . 2.1--2.7
                  Albrecht Dold   Die Homotopieerweiterungseigenschaft
                                  ($=$ HEE). (German) [The homotopy
                                  extension property (= HEP)]  . . . . . . 3.1--3.9
                  Albrecht Dold   Die Rolle des Grundpunktes. (German)
                                  [The role of the base point] . . . . . . 4.1--4.7
                  Albrecht Dold   Halbexakte Homotopiefunktoren. (German)
                                  [Half-exact homotopy functors] . . . . . 5.1--5.11
                  Albrecht Dold   Beispiele von halbexakten Funktoren.
                                  (German) [Examples of semi-exact
                                  functors]  . . . . . . . . . . . . . . . 6.1--6.7
                  Albrecht Dold   Vergleich halbexakter Funktoren.
                                  (German) [Comparison of half-exact
                                  functors]  . . . . . . . . . . . . . . . 7.1--7.3
                  Albrecht Dold   Anwendung: Halbexakte Funktoren $t$ mit
                                  Monoidstruktur I. (German) [Application:
                                  Semi-exact functors $t$ with monoid
                                  structure I] . . . . . . . . . . . . . . 8.1--8.12
                  Albrecht Dold   Funktoren mit Monoidstruktur II.
                                  (German) [Functors with monoid structure
                                  II]  . . . . . . . . . . . . . . . . . . 9.1--9.6
                  Albrecht Dold   Funktoren mit Monoidstruktur (III) und
                                  rationalen Koeffizienten. (German)
                                  [Functors with monoid structure III and
                                  rational coefficients] . . . . . . . . . 10.1--10.11
                  Albrecht Dold   Postnikov-Faktoren. (German) [Postnikov
                                  factors] . . . . . . . . . . . . . . . . 11.1--11.8
                  Albrecht Dold   Postnikov-Invarianten. (German)
                                  [Postnikov invariants] . . . . . . . . . 12.1--12.11
                  Albrecht Dold   Anwendungen; Hindernistheorie. (German)
                                  [Applications; obstruction theory] . . . 13.1--13.9
                  Albrecht Dold   Die Spektralsequenz halbexakter
                                  Monoidfunktoren. (German) [The spectral
                                  sequence of semi-exact monoid functors]  14.1--14.8
                  Albrecht Dold   Produkte in der Spektralsequenz.
                                  (German) [Products in the spectral
                                  sequence]  . . . . . . . . . . . . . . . 15.1--15.10
                  Albrecht Dold   Darstellbarkeit halbexakter Funktoren.
                                  (German) [Displayability of half-exact
                                  functors]  . . . . . . . . . . . . . . . 16.1--16.8


Lecture Notes in Mathematics
Volume 13, 1966

                   Emery Thomas   Introduction . . . . . . . . . . . . . . 1--6
                   Emery Thomas   Principal fiber spaces . . . . . . . . . 7--11
                   Emery Thomas   The ``classical'' (Moore--Postnikov)
                                  method of decomposing a fibration  . . . 12--18
                   Emery Thomas   Oriented sphere bundles  . . . . . . . . 19--22
                   Emery Thomas   Killing homotopy groups  . . . . . . . . 23--28
                   Emery Thomas   An illustration  . . . . . . . . . . . . 29--34
                   Emery Thomas   Computing Postnikov invariants . . . . . 35--44


Lecture Notes in Mathematics
Volume 14, 1966

                  Helmut Werner   Front Matter . . . . . . . . . . . . . . i--iv
                  Helmut Werner   Einführung und Beispiele. (German)
                                  [Introduction and examples]  . . . . . . 1--6
                  Helmut Werner   Definition des linearen, normierten
                                  Raumes, Beispiele. (German) [Definition
                                  of the linear normed space, examples]    7--15
                  Helmut Werner   Das Approximationsproblem. (German) [The
                                  approximation problem] . . . . . . . . . 16--18
                  Helmut Werner   Approximation mit rationalen Funktionen.
                                  (German) [Approximation with rational
                                  functions] . . . . . . . . . . . . . . . 19--29
                  Helmut Werner   Strikt konvexe Normen und Eindeutigkeit
                                  des linearen Approximationsproblems.
                                  (German) [Strictly convex norms and
                                  uniqueness of the linear approximation
                                  problem] . . . . . . . . . . . . . . . . 30--37
                  Helmut Werner   Charakterisierung der Approximierenden
                                  in der $ L_\gamma $-Norm bei linearem
                                  Ansatz. (German) [Characterization of
                                  the approximating in the $ L_\gamma
                                  $-norm with linear shape]  . . . . . . . 38--55
                  Helmut Werner   Tschebyscheff-Systeme. (German)
                                  [Chebyshev systems]  . . . . . . . . . . 56--64
                  Helmut Werner   Eindeutigkeit bei $ L_1$-Approximation.
                                  (German) [Uniqueness in $ L_1 $
                                  approximation] . . . . . . . . . . . . . 65--71
                  Helmut Werner   Differenzenquotient. (German)
                                  [Difference quotient]  . . . . . . . . . 72--84
                  Helmut Werner   Charakterisierung der
                                  Tschebyscheff-Approximation. (German)
                                  [Characterization of the Chebyshev
                                  approximation] . . . . . . . . . . . . . 85--94
                  Helmut Werner   Beispiele. (German) [Examples] . . . . . 95--101
                  Helmut Werner   Normalität. (German) [Normality]  . . . . 102--105
                  Helmut Werner   Stetige Abhängigkeit der
                                  Tschebyscheff-Approximation von der
                                  Funktion. (German) [Continuous
                                  dependence of the Chebyshev
                                  approximation of functions]  . . . . . . 106--120
                  Helmut Werner   Quantitative Fassung der Stetigkeit der
                                  Tschebyscheff-Approximation $ T[f] $.
                                  (German) [Quantitative version of the
                                  continuity of the Chebyshev
                                  approximation $ T[f] $]  . . . . . . . . 121--125
                  Helmut Werner   Diskretisierung und Konvergenz. (German)
                                  [Discretization and convergence] . . . . 126--131
                  Helmut Werner   Das Problem von Haar. (German) [The Haar
                                  problem] . . . . . . . . . . . . . . . . 132--138
                  Helmut Werner   Die Tschebyscheff-Approximation bei
                                  mehreren Veränderlichen. (German) [The
                                  Chebyshev approximation on several
                                  variables] . . . . . . . . . . . . . . . 139--145
                  Helmut Werner   Tschebyscheff-Approximation und lineare
                                  (konvexe) Programmierung. (German)
                                  [Chebyshev approximation and linear
                                  (convex) programming]  . . . . . . . . . 146--148
                  Helmut Werner   Asymptotische Untersuchungen. (German)
                                  [Asymptotic studies] . . . . . . . . . . 149--155
                  Helmut Werner   Das asymptotische Verhalten der
                                  Approximationen analytischer Funktionen.
                                  (German) [The asymptotic behavior of the
                                  approximation of analytic functions] . . 156--162


Lecture Notes in Mathematics
Volume 15, 1966

                        F. Oort   Preliminaries  . . . . . . . . . . . . . 1--30
                        F. Oort   Algebraic group schemes  . . . . . . . . 31--97
                        F. Oort   Duality theorems for Abelian schemes . . 98--130


Lecture Notes in Mathematics
Volume 16, 1966

                J. Pfanzagl and   
                      W. Pierlo   Introduction . . . . . . . . . . . . . . 1--1
                J. Pfanzagl and   
                      W. Pierlo   Compact systems of sets  . . . . . . . . 2--4
                J. Pfanzagl and   
                      W. Pierlo   Approximation  . . . . . . . . . . . . . 5--9
                J. Pfanzagl and   
                      W. Pierlo   Compact approximation  . . . . . . . . . 10--12
                J. Pfanzagl and   
                      W. Pierlo   Compact approximation in topological
                                  spaces . . . . . . . . . . . . . . . . . 13--21
                J. Pfanzagl and   
                      W. Pierlo   Perfect measures . . . . . . . . . . . . 22--24
                J. Pfanzagl and   
                      W. Pierlo   Existence of product measures  . . . . . 25--33
                J. Pfanzagl and   
                      W. Pierlo   Existence of regular conditional
                                  probability measures . . . . . . . . . . 34--41


Lecture Notes in Mathematics
Volume 17, 1966

              Claus Müller   General background and notation  . . . . 1--5
              Claus Müller   Orthogonal transformations . . . . . . . 5--7
              Claus Müller   Legendre functions . . . . . . . . . . . 7--9
              Claus Müller   Addition theorem . . . . . . . . . . . . 9--11
              Claus Müller   Reprensentation theorem  . . . . . . . . 11--13
              Claus Müller   Applications of the addition theorem . . 14--15
              Claus Müller   Rodrigues' formula . . . . . . . . . . . 16--18
              Claus Müller   Funk--Hecke formula  . . . . . . . . . . 18--20
              Claus Müller   Integral representations of spherical
                                  harmonics  . . . . . . . . . . . . . . . 21--22
              Claus Müller   Associated Legendre functions  . . . . . 22--29
              Claus Müller   Properties of the Legendre functions . . 29--37
              Claus Müller   Differential equations . . . . . . . . . 37--39
              Claus Müller   Expansions in spherical harmonics  . . . 40--44


Lecture Notes in Mathematics
Volume 18, 1966

            H.-B. Brinkmann and   
                       D. Puppe   Kategorien und Funktoren. (German)
                                  [Categories and functors]  . . . . . . . 1--5
            H.-B. Brinkmann and   
                       D. Puppe   Logik und Mengenlehre. (German) [Logic
                                  and set theory]  . . . . . . . . . . . . 6--17
            H.-B. Brinkmann and   
                       D. Puppe   Kategorien, Dualität, Funktoren,
                                  Natürlichkeit. (German) [Categories,
                                  duality functors, naturalness] . . . . . 18--32
            H.-B. Brinkmann and   
                       D. Puppe   Darstellbare Funktoren. (German)
                                  [Displayable functors] . . . . . . . . . 33--37
            H.-B. Brinkmann and   
                       D. Puppe   Einbettungen und Identifizierungen.
                                  (German) [Embeddings and
                                  identifications] . . . . . . . . . . . . 38--53
            H.-B. Brinkmann and   
                       D. Puppe   Produkte und Coprodukte. (German)
                                  [Products and coproducts]  . . . . . . . 54--65
            H.-B. Brinkmann and   
                       D. Puppe   Nullmorphismen. (German) [Null
                                  morphisms] . . . . . . . . . . . . . . . 66--70
            H.-B. Brinkmann and   
                       D. Puppe   Addition und Coaddition. (German)
                                  [Addition and coaddition]  . . . . . . . 71--91
            H.-B. Brinkmann and   
                       D. Puppe   Additive Kategorien. (German) [Additive
                                  categories]  . . . . . . . . . . . . . . 92--100


Lecture Notes in Mathematics
Volume 19, 1966

            Gabriel Stolzenberg   Introduction . . . . . . . . . . . . . . 1--5
            Gabriel Stolzenberg   Analytic varieties minimize volume . . . 6--15
            Gabriel Stolzenberg   A local lower bound for the volume of an
                                  analytic variety . . . . . . . . . . . . 16--20
                       Q. E. D.   Hausdorff measure and the Hausdorff
                                  metric . . . . . . . . . . . . . . . . . 21--29
                       Q. E. D.   The use of the proper mapping  . . . . . 30--37


Lecture Notes in Mathematics
Volume 20, 1966

               Robin Hartshorne   Introduction . . . . . . . . . . . . . . 1--18
               Robin Hartshorne   The derived category . . . . . . . . . . 19--84
               Robin Hartshorne   Application to preschemes  . . . . . . . 85--136
               Robin Hartshorne   Duality for projective morphisms . . . . 137--214
               Robin Hartshorne   Local cohomology . . . . . . . . . . . . 215--251
               Robin Hartshorne   Dualizing complexes and local duality    252--301
               Robin Hartshorne   Residual complexes . . . . . . . . . . . 302--356
               Robin Hartshorne   The duality theorem  . . . . . . . . . . 357--393


Lecture Notes in Mathematics
Volume 21, 1966

                    J.-P. Serre   Statement of results . . . . . . . . . . I-1--I-8
                    J.-P. Serre   Modular forms  . . . . . . . . . . . . . II-1--II-16
                       A. Borel   Class invariants I . . . . . . . . . . . III-1--III-8
                       A. Borel   Class invariants II  . . . . . . . . . . IV-1--IV-10
                     K. Iwasawa   Class fields . . . . . . . . . . . . . . V-1--V-13
                      S. Chowla   Remarks on class-invariants and related
                                  topics . . . . . . . . . . . . . . . . . VI-1--VII-15
                   Carl S. Herz   Construction of class fields . . . . . . VII-1--VII-21
                        C. Herz   Computation of singular $j$-invariants   VIII-1--VIII-11


Lecture Notes in Mathematics
Volume 22, 1966

                    Heinz Bauer   Front Matter . . . . . . . . . . . . . . i--iv
                    Heinz Bauer   Einleitung. (German) [Introduction]  . . 1--2
                    Heinz Bauer   Vorbereitungen und Bezeichnungen.
                                  (German) [Preparations and designations] 3--8
                    Heinz Bauer   Harmonische Räume. (German) [Harmonic
                                  spaces]  . . . . . . . . . . . . . . . . 9--44
                    Heinz Bauer   Superharmonische Funktionen und
                                  Potentiale. (German) [Superharmonic
                                  functions and potentials]  . . . . . . . 45--87
                    Heinz Bauer   Balayage-theorie. (German) [Scan theory] 88--119
                    Heinz Bauer   Dirichletsches Problem. (German)
                                  [Dirichlet's problems] . . . . . . . . . 120--151
                    Heinz Bauer   Zerlegungs- und Fortsetzungssatz.
                                  (German) [Separation and extension
                                  theorem] . . . . . . . . . . . . . . . . 152--164
                    Heinz Bauer   Back Matter  . . . . . . . . . . . . . . 165--176


Lecture Notes in Mathematics
Volume 23, 1966

           P. L. Iv\uanescu and   
                     S. Rudeanu   Front Matter . . . . . . . . . . . . . . ??
           P. L. Iv\uanescu and   
                     S. Rudeanu   Linear pseudo-Boolean equations and
                                  inequalities . . . . . . . . . . . . . . 7--56
           P. L. Iv\uanescu and   
                     S. Rudeanu   Nonlinear pseudo-Boolean equations and
                                  inequalities . . . . . . . . . . . . . . 57--84
           P. L. Iv\uanescu and   
                     S. Rudeanu   Minimization of pseudo-Boolean functions 85--114
           P. L. Iv\uanescu and   
                     S. Rudeanu   Fractional bivalent programming  . . . . 115--120


Lecture Notes in Mathematics
Volume 24, 1966

                 Joachim Lambek   Introduction . . . . . . . . . . . . . . 2--5
                 Joachim Lambek   Terminology  . . . . . . . . . . . . . . 6--9
                 Joachim Lambek   Generating and sup-dense subcategories   10--16
                 Joachim Lambek   Limit preserving functors  . . . . . . . 17--23
                 Joachim Lambek   A sup-complete sup-dense, sup-preserving
                                  extension  . . . . . . . . . . . . . . . 24--26
                 Joachim Lambek   The completion when $A$ is not small . . 27--34
                 Joachim Lambek   The relationship between different forms
                                  of completeness  . . . . . . . . . . . . 35--41
                 Joachim Lambek   Theorems without properness conditions   42--50
                 Joachim Lambek   Completions of groups  . . . . . . . . . 51--54
                 Joachim Lambek   Completions of categories of algebras    55--57
                 Joachim Lambek   Completions of categories of modules . . 58--68


Lecture Notes in Mathematics
Volume 25, 1966

            Raghavan Narasimhan   Preliminaries  . . . . . . . . . . . . . 2--8
            Raghavan Narasimhan   The Weierstrass preparation theorem  . . 9--30
            Raghavan Narasimhan   Local properties of analytic sets  . . . 31--63
            Raghavan Narasimhan   Coherence theorems . . . . . . . . . . . 64--90
            Raghavan Narasimhan   Real analytic sets . . . . . . . . . . . 91--109
            Raghavan Narasimhan   The normalization theorem  . . . . . . . 110--122
            Raghavan Narasimhan   Holomorphic mappings of complex spaces   123--136


Lecture Notes in Mathematics
Volume 27, 1966

           H. P. Künzi and   
                      S. T. Tan   Mathematische Grundlagen zur
                                  Optimierungstheorie. (German)
                                  [Mathematical foundation of optimization
                                  theory]  . . . . . . . . . . . . . . . . 1--23
           H. P. Künzi and   
                      S. T. Tan   Die revidierten Simplexverfahren und das
                                  duale Simplexverfahren. (German) [The
                                  revised simplex method and the dual
                                  simplex method]  . . . . . . . . . . . . 24--42
           H. P. Künzi and   
                      S. T. Tan   Mehrphasen- und Duoplexmethode. (German)
                                  [Multiphase and Duoplex method]  . . . . 43--70
           H. P. Künzi and   
                      S. T. Tan   Dekompositionsmethoden. (German)
                                  [Decomposition methods]  . . . . . . . . 71--101


Lecture Notes in Mathematics
Volume 28, 1966

               P. E. Conner and   
                    E. E. Floyd   The Thom isomorphism in $K$-theory . . . 1--37
               P. E. Conner and   
                    E. E. Floyd   Cobordism characteristic classes . . . . 38--68
               P. E. Conner and   
                    E. E. Floyd   $U$-manifolds with framed boundaries . . 69--110


Lecture Notes in Mathematics
Volume 29, 1966

             K. Chandrasekharan   Front Matter . . . . . . . . . . . . . . ??
             K. Chandrasekharan   Der Fundamentalsatz der elementaren
                                  Zahlentheorie. (German) [The fundamental
                                  theorem of elementary number theory] . . 1--13
             K. Chandrasekharan   Kongruenzen. (German) [Congruences]  . . 14--22
             K. Chandrasekharan   Die rationale Approximation einer
                                  irrationalen Zahl. Der Satz von Hurwitz.
                                  (German) [The rational approximation of
                                  an irrational number. The Hurwitz
                                  theorem] . . . . . . . . . . . . . . . . 23--37
             K. Chandrasekharan   Quadratische Reste, und die
                                  Darstellbarkeit einer positiven ganzen
                                  Zahl als Summe von vier Quadraten.
                                  (German) [Quadratic residues and the
                                  representability of a positive integer
                                  as a sum of four squares]  . . . . . . . 38--47
             K. Chandrasekharan   Das quadratische Reziprozitätsgesetz.
                                  (German) [The law of quadratic
                                  reciprocity] . . . . . . . . . . . . . . 48--71
             K. Chandrasekharan   Zahlentheoretische Funktionen und
                                  Gitterpunkte. (German) [Number theoretic
                                  functions and lattice points]  . . . . . 72--98
             K. Chandrasekharan   Der Satz von Chebychev über die
                                  Verteilung der Primzahlen. (German) [The
                                  Chebyshev theorem on the distribution of
                                  primes]  . . . . . . . . . . . . . . . . 99--130
             K. Chandrasekharan   Die Weylsche ``Gleichverteilung von
                                  Zahlen $ \bmod 1 $'' und der Satz von
                                  Kronecker. (German) [The Weyl ``Equal
                                  distribution of numbers $ \bmod 1 $''
                                  and the Kronecker theorem] . . . . . . . 131--146
             K. Chandrasekharan   Der Satz von Minkowski über Gitterpunkte
                                  in konvexen Bereichen. (German) [The
                                  Minkowski theorem on lattice points in
                                  convex regions]  . . . . . . . . . . . . 147--159
             K. Chandrasekharan   Der Dirichletsche Satz von den
                                  Primzahlen in einer arithmetischen
                                  Progression. (German) [The Dirichlet set
                                  of prime numbers in an arithmetic
                                  progression] . . . . . . . . . . . . . . 160--187
             K. Chandrasekharan   Der Primzahlsatz. (German) [The prime
                                  number theorem]  . . . . . . . . . . . . 188--199
             K. Chandrasekharan   Back Matter  . . . . . . . . . . . . . . ??


Lecture Notes in Mathematics
Volume 30, 1966

          A. Frölicher and   
                      W. Bucher   Elementary properties of filters . . . . 1--5
          A. Frölicher and   
                      W. Bucher   Pseudo-topological vector spaces . . . . 6--31
          A. Frölicher and   
                      W. Bucher   Differentiability and derivatives  . . . 32--41
          A. Frölicher and   
                      W. Bucher   Examples and special cases . . . . . . . 42--49
          A. Frölicher and   
                      W. Bucher   Fundamental theorem of calculus  . . . . 50--64
          A. Frölicher and   
                      W. Bucher   Pseudo-topologies on some function
                                  spaces . . . . . . . . . . . . . . . . . 65--81
          A. Frölicher and   
                      W. Bucher   The class of admissible vector spaces    82--89
          A. Frölicher and   
                      W. Bucher   Partial derivatives and
                                  differentiability  . . . . . . . . . . . 90--92
          A. Frölicher and   
                      W. Bucher   Higher derivatives . . . . . . . . . . . 93--98
          A. Frölicher and   
                      W. Bucher   $ C_k $-mappings . . . . . . . . . . . . 99--109
          A. Frölicher and   
                      W. Bucher   The composition of $ C_k $-mappings  . . 110--130
          A. Frölicher and   
                      W. Bucher   Differentiable deformation of
                                  differentiable mappings  . . . . . . . . 131--136


Lecture Notes in Mathematics
Volume 4, 1967

                M. Arkowitz and   
                   C. R. Curjel   Introduction . . . . . . . . . . . . . . 1--2
                M. Arkowitz and   
                   C. R. Curjel   Groups of finite rank  . . . . . . . . . 3--10
                M. Arkowitz and   
                   C. R. Curjel   The groups $ [A, \Omega X] $ and their
                                  homomorphisms  . . . . . . . . . . . . . 10--18
                M. Arkowitz and   
                   C. R. Curjel   Commutativity and homotopy-commutativity 19--25
                M. Arkowitz and   
                   C. R. Curjel   The rank of the group of homotopy
                                  equivalences . . . . . . . . . . . . . . 26--33


Lecture Notes in Mathematics
Volume 26, 1967

        Paul-André Meyer   Front Matter . . . . . . . . . . . . . . ??
        Paul-André Meyer   Théorie élémentaire des processus de
                                  Markov. (French) [Elementary theory of
                                  Markov processes]  . . . . . . . . . . . 1--23
        Paul-André Meyer   Semi-groupes de Feller. (French) [Feller
                                  semigroups]  . . . . . . . . . . . . . . 24--77
        Paul-André Meyer   Processus de Hunt, processus standard.
                                  (French) [Hunt processes, standard
                                  processes] . . . . . . . . . . . . . . . 78--124
        Paul-André Meyer   Réduites, mesures harmoniques. (French)
                                  [Harmonic measures reduced]  . . . . . . 125--188
        Paul-André Meyer   Back Matter  . . . . . . . . . . . . . . ??


Lecture Notes in Mathematics
Volume 31, 1967

                   A. Badrikian   Remarques sur les théor\`emes de Bochner
                                  et P. Lévy. (French) [Remarks on the
                                  theorems of Bochner and P. Lévy]  . . . . 1--19
                    Heinz Bauer   Recent developments in axiomatic
                                  potential theory . . . . . . . . . . . . 20--27
                    D. Bierlein   Über wesentlich indefinite Spiele.
                                  (German) [On very indefinite games]  . . 28--35
                  Marcel Brelot   La Topologie fine en Théorie du
                                  Potentiel. (French) [Fine topology in
                                  potential theory]  . . . . . . . . . . . 36--47
             J. Bretagnolle and   
        D. Dacunha-Castelle and   
                  J. L. Krivine   Lois Stables et Espaces $ L^p $.
                                  (French) [Stable laws and $ L^p $
                                  spaces]  . . . . . . . . . . . . . . . . 48--54
                S. D. Chatterji   Comments on the Martingale Convergence
                                  Theorem  . . . . . . . . . . . . . . . . 55--61
                 Hermann Dinges   Faktorisierung von
                                  Differentialoperatoren. (German)
                                  [Factorization of differential
                                  operators] . . . . . . . . . . . . . . . 62--62
                  Werner Fieger   Die Anzahl der Niveaudurchgänge und der
                                  lokalen Maximalstellen von Gaußschen
                                  Prozessen. (German) [The number of level
                                  crossings and the local maximum points
                                  of Gaussian processes] . . . . . . . . . 63--68
                  Paul Georgiou   Vektorwertige Masse und Zufallsvariable
                                  auf Booleschen Algebren und der Satz von
                                  Radon-Nikodym. (German) [Vector-valued
                                  dimension and random variable on Boolean
                                  algebras and the Radon--Nikodym theorem] 69--78
                  Ulf Grenander   Toward a theory of patterns  . . . . . . 79--111
                Siegfried Guber   On the potential theory of linear,
                                  homogeneous parabolic partial
                                  differential equations of second order   112--117
                  Konrad Jacobs   Invariant and non-invariant measures . . 118--135
            Demetrios A. Kappos   Representation of abstract $L$-spaces    136--145
               Hans G. Kellerer   Extension of stationary processes  . . . 146--146
              David. G. Kendall   Renewal sequences and their arithmetic   147--175
             Eustratios Kounias   Optimal bounded control with linear
                                  stochastic equations and quadratic cost  176--186
            Povl Kristensen and   
                Lars Mejlbo and   
              Ebbe Thue Poulsen   On a Fourier transform in infinitely
                                  many dimensions  . . . . . . . . . . . . 187--196
                   R. M. Loynes   Some problems arising from spectral
                                  analysis . . . . . . . . . . . . . . . . 197--207
                  Eugene Lukacs   Analytical methods in probability theory 208--238
         Michel Métivier   Martingales \`a Valeurs Vectorielles
                                  Application \`a la dérivation. (French)
                                  [Vector-valued martingales: application
                                  to differentiation]  . . . . . . . . . . 239--255


Lecture Notes in Mathematics
Volume 32, 1967

            Michel André   Alg\`ebre homologique. (French)
                                  [Homologic algebra]  . . . . . . . . . . 1--58
            Michel André   Alg\`ebre commutative. (French)
                                  [Commutative algebra]  . . . . . . . . . 59--119


Lecture Notes in Mathematics
Volume 33, 1967

       György I. Targonski   Introduction and summary . . . . . . . . 1--4
       György I. Targonski   Multiplication theorems and square
                                  theorems; Bourlet operators  . . . . . . 5--20
       György I. Targonski   Substitution operators. The Schröder
                                  equation . . . . . . . . . . . . . . . . 21--30
       György I. Targonski   Continuous iteration. Commuting
                                  substitution operators . . . . . . . . . 31--44
       György I. Targonski   Relations between Bourlet operators of
                                  the specific form  . . . . . . . . . . . 45--55
       György I. Targonski   Superposition of substitution operators  56--60
       György I. Targonski   Integral operators: Remarks and
                                  definitions  . . . . . . . . . . . . . . 61--69
       György I. Targonski   The theorems of Weyl and von Neumann on
                                  Hermitean Carleman operators . . . . . . 70--74
       György I. Targonski   Recent results on Carleman operators . . 75--85
       György I. Targonski   Strong Carleman operators  . . . . . . . 86--91
       György I. Targonski   Convergence theorems . . . . . . . . . . 92--98
       György I. Targonski   Transformation of strong kernels . . . . 99--101
       György I. Targonski   Operators of locally bounded range . . . 102--103
       György I. Targonski   Concluding remarks. Open questions . . . 104--107


Lecture Notes in Mathematics
Volume 34, 1967

                 Glen E. Bredon   Equivariant classical cohomology . . . . I.1--I.27
                 Glen E. Bredon   Equivariant obstruction theory . . . . . II.1--II.18
                 Glen E. Bredon   Function spaces, fibrations and spectra  III.1--III.8
                 Glen E. Bredon   Generalized equivariant cohomology . . . IV.1--IV.11


Lecture Notes in Mathematics
Volume 35, 1967

               N. P. Bhatia and   
                  G. P. Szeg\Ho   Notation, terminology and preliminary
                                  lemmas . . . . . . . . . . . . . . . . . 1--8
               N. P. Bhatia and   
                  G. P. Szeg\Ho   Dynamical systems in a Euclidean space   9--113
               N. P. Bhatia and   
                  G. P. Szeg\Ho   Dynamical systems in metric spaces . . . 114--245
               N. P. Bhatia and   
                  G. P. Szeg\Ho   The second method of Liapunov for
                                  ordinary differential equations  . . . . 246--367


Lecture Notes in Mathematics
Volume 36, 1967

                   Armand Borel   The homological properties of $H$-spaces 1--25
                   Armand Borel   Spectral sequence of a fibre bundle  . . 26--51
                   Armand Borel   Universal bundles and classifying spaces 52--70
                   Armand Borel   Classifying spaces of the classical
                                  groups . . . . . . . . . . . . . . . . . 71--92


Lecture Notes in Mathematics
Volume 37, 1967

       Ronald Björn Jensen   Das System $ Z F $ Die Formale Sprache.
                                  (German) [The $ Z F $ system: The formal
                                  language]  . . . . . . . . . . . . . . . 1--15
       Ronald Björn Jensen   Die Metasprache. (German) [The
                                  metalanguage]  . . . . . . . . . . . . . 16--18
       Ronald Björn Jensen   Modelle. (German) [Models] . . . . . . . 19--23
       Ronald Björn Jensen   Absolutheit und Definierbarkeit.
                                  (German) [Absoluteness and definability] 24--44
       Ronald Björn Jensen   Innere Modelle. (German) [Inner models]  45--66
       Ronald Björn Jensen   Das konstruktible Modell. (German) [The
                                  constructible model] . . . . . . . . . . 67--82
       Ronald Björn Jensen   Die Cohensche Erzwingungsmethode.
                                  (German) [The Cohen enforcement method]  83--96
       Ronald Björn Jensen   Lösung der Frage von Addison. (German)
                                  [Solution to the question of Addison]    97--99
       Ronald Björn Jensen   Die Erzwingungsbeziehung als
                                  Booleschwertige Wahrheitsdefinition.
                                  (German) [The enforcement relationship
                                  as Boolean valued truth definition]  . . 100--103
       Ronald Björn Jensen   $B$-wertige Modelle. (German)
                                  [$B$-valued models]  . . . . . . . . . . 104--110
       Ronald Björn Jensen   Generische Modelle. (German) [Generic
                                  models]  . . . . . . . . . . . . . . . . 111--117
       Ronald Björn Jensen   Maximale innere IB-Modelle. (German)
                                  [Maximal internal IB models] . . . . . . 118--133
       Ronald Björn Jensen   Unabhängigkeit von $ V = L $. (German)
                                  [Independence of $ V = L $]  . . . . . . 134--144
       Ronald Björn Jensen   Unabhängigkeit der Kontinuum-Hypothese.
                                  (German) [Independence of the continuum
                                  hypothesis]  . . . . . . . . . . . . . . 145--154
       Ronald Björn Jensen   Einbettungssatz für $ Z F$-Modelle.
                                  (German) [Embedding theorem for $ Z F$
                                  models]  . . . . . . . . . . . . . . . . 155--158
       Ronald Björn Jensen   Unabhängigkeit des Auswahlaxioms.
                                  (German) [Independence of the axiom of
                                  choice]  . . . . . . . . . . . . . . . . 159--167


Lecture Notes in Mathematics
Volume 38, 1967

    Professor Dr. R. Berger and   
               Dr. R. Kiehl and   
                Dr. E. Kunz and   
    Professor Dr. H.-J. Nastold   Einleitung. (German) [Introduction]  . . 1--11
    Professor Dr. R. Berger and   
               Dr. R. Kiehl and   
                Dr. E. Kunz and   
    Professor Dr. H.-J. Nastold   Kategorien von Rigen in der analytischen
                                  Geometrie. (German) [Rigen categories in
                                  analytic geometry] . . . . . . . . . . . 12--40
    Professor Dr. R. Berger and   
               Dr. R. Kiehl and   
                Dr. E. Kunz and   
    Professor Dr. H.-J. Nastold   Differentialmoduln. (German)
                                  [Differential modules] . . . . . . . . . 41--82
    Professor Dr. R. Berger and   
               Dr. R. Kiehl and   
                Dr. E. Kunz and   
    Professor Dr. H.-J. Nastold   Regularitätskriterien. Anwendungen.
                                  (German) [Regularity criteria. Examples] 83--109
    Professor Dr. R. Berger and   
               Dr. R. Kiehl and   
                Dr. E. Kunz and   
    Professor Dr. H.-J. Nastold   Absolute Regularität. (German) [Absolute
                                  regularity]  . . . . . . . . . . . . . . 110--131


Lecture Notes in Mathematics
Volume 39, 1967

                  V. Avanissian   Sur l'harmonicité des fonctions séparément
                                  harmoniques. (French) [On the
                                  harmonicity of separately-harmonic
                                  functions] . . . . . . . . . . . . . . . 3--17
                  R. de Cairoli   Semi-groupes de transition et fonctions
                                  excessives. (French) [Transition
                                  semigroups and excessive functions]  . . 18--33
                  R. de Cairoli   Séminaire de probabilités. (French)
                                  [Probability seminar]  . . . . . . . . . 34--51
                  R. de Cairoli   Un complément au théor\`eme de
                                  Weierstrass--Stone par Claude
                                  Dellacherie. (French) [A complement to
                                  the Weierstrass--Stone theorem by Claude
                                  Dellacherie] . . . . . . . . . . . . . . 52--53
                    X. Fernique   Séries de distributions aléatoires
                                  indépendantes. (French) [Series of
                                  independent random distributions]  . . . 54--64
                    X. Fernique   Séries de distributions aléatoires
                                  indépendantes. (French) [Series of
                                  independent random distributions]  . . . 65--71
                    P.-A. Meyer   Intégrales stochastiques I. (French)
                                  [Stochastic integrals I] . . . . . . . . 72--87
                    P.-A. Meyer   Appendice: Construction des deux
                                  processus croissants associés \`a une
                                  martingale de carré intégrable. (French)
                                  [Appendix: Construction of two
                                  increasing processes associated with a
                                  square integrable martingale]  . . . . . 88--94
                    P.-A. Meyer   Intégrales stochastiques II. (French)
                                  [Stochastic integrals II]  . . . . . . . 95--117
                    P.-A. Meyer   Intégrales stochastiques III. (French)
                                  [Stochastic integrals III] . . . . . . . 118--141
                    P.-A. Meyer   Intégrales stochastiques IV. (French)
                                  [Stochastic integrals IV]  . . . . . . . 142--162
                    P.-A. Meyer   Sur un théor\`eme de Deny. (French) [On a
                                  theorem of Deny] . . . . . . . . . . . . 163--165
                        M. Weil   Retournement du temps dans les processus
                                  markoviens. (French) [Turnaround time in
                                  th Markov processes] . . . . . . . . . . 166--176
                        M. Weil   Résolvantes en dualité. (French)
                                  [Resolvents in duality]  . . . . . . . . 177--189


Lecture Notes in Mathematics
Volume 40, 1967

                   Jacques Tits   Komplex-analytische Gruppen. (German)
                                  [Complex-analytic groups]  . . . . . . . 1--13
                   Jacques Tits   Reell-analytische gruppen. (German)
                                  [Real analytical groups] . . . . . . . . 13--22
                   Jacques Tits   Bezeichnungen. (German) [Designations]   23--51


Lecture Notes in Mathematics
Volume 41, 1967

               Robin Hartshorne   Definition and elementary properties of
                                  the local cohomology groups  . . . . . . 1--15
               Robin Hartshorne   Application of local cohomology to
                                  preschemes . . . . . . . . . . . . . . . 16--35
               Robin Hartshorne   Relation to depth  . . . . . . . . . . . 36--47
               Robin Hartshorne   Functors on $a$-modules  . . . . . . . . 48--68
               Robin Hartshorne   Some applications  . . . . . . . . . . . 69--80
               Robin Hartshorne   Local duality  . . . . . . . . . . . . . 81--104


Lecture Notes in Mathematics
Volume 42, 1967

           John F. Berglund and   
          Karl Heinrich Hofmann   Introduction . . . . . . . . . . . . . . 1--11
           John F. Berglund and   
          Karl Heinrich Hofmann   Preliminaries  . . . . . . . . . . . . . 12--43
           John F. Berglund and   
          Karl Heinrich Hofmann   Compact semitopological semigroups . . . 44--111
           John F. Berglund and   
          Karl Heinrich Hofmann   Almost periodic and weakly almost
                                  periodic functions on semitopological
                                  semigroups . . . . . . . . . . . . . . . 112--145
           John F. Berglund and   
          Karl Heinrich Hofmann   Examples . . . . . . . . . . . . . . . . 146--157


Lecture Notes in Mathematics
Volume 43, 1967

              Daniel G. Quillen   Axiomatic homotopy theory  . . . . . . . 1--64
              Daniel G. Quillen   Examples of simplicial homotopy theories 65--155


Lecture Notes in Mathematics
Volume 44, 1967

                     K. Urbanik   Positive definite sequences  . . . . . . 1--2
                     K. Urbanik   Herglotz' theorem  . . . . . . . . . . . 2--6
                     K. Urbanik   Vector valued measures . . . . . . . . . 6--9
                     K. Urbanik   Spectral decomposition and ergodic
                                  theorem  . . . . . . . . . . . . . . . . 9--11
                     K. Urbanik   Series representation  . . . . . . . . . 11--17
                     K. Urbanik   Wold decomposition . . . . . . . . . . . 17--24
                     K. Urbanik   The Szeg\Ho--Krein--Kolmogorov theorem   24--36
                     K. Urbanik   Predictors for completely indetermined
                                  sequences  . . . . . . . . . . . . . . . 36--40
                     K. Urbanik   Prediction problems  . . . . . . . . . . 40--50


Lecture Notes in Mathematics
Volume 45, 1967

                Albert Wilansky   Comparison of topologies . . . . . . . . 1--23
                Albert Wilansky   Inductive limits . . . . . . . . . . . . 24--43
                Albert Wilansky   Some properties of linear topological
                                  spaces . . . . . . . . . . . . . . . . . 44--61
                Albert Wilansky   FH and BH spaces . . . . . . . . . . . . 62--76
                Albert Wilansky   Garling's completeness theorem . . . . . 77--82
                Albert Wilansky   Mixed topologies and two norm spaces . . 83--88
                Albert Wilansky   Coregular and conull $ F K $ spaces  . . 89--100


Lecture Notes in Mathematics
Volume 46, 1967

                   P. E. Conner   Introduction . . . . . . . . . . . . . . 1--18
                   P. E. Conner   The index  . . . . . . . . . . . . . . . 19--24
                   P. E. Conner   Real representations . . . . . . . . . . 25--29
                   P. E. Conner   Extension and reduction  . . . . . . . . 30--32
                   P. E. Conner   The functor $ O_*(H; F, F) $ . . . . . . 33--35
                   P. E. Conner   Index as a bordism invariant . . . . . . 36--40
                   P. E. Conner   The trace invariant  . . . . . . . . . . 41--43
                   P. E. Conner   The local invariant  . . . . . . . . . . 44--49
                   P. E. Conner   Periodic maps on a Riemann surface . . . 50--59
                   P. E. Conner   The Atiyah--Bott formula . . . . . . . . 60--61
                   P. E. Conner   Weakly complex involutions . . . . . . . 62--67
                   P. E. Conner   The ring $F$ . . . . . . . . . . . . . . 68--79
                   P. E. Conner   The ring $ R(Z_2) $  . . . . . . . . . . 80--91
                   P. E. Conner   The ring $ C(Z_2) $ of constructions . . 92--99
                   P. E. Conner   Applications . . . . . . . . . . . . . . 100--102
                   P. E. Conner   Dimension of the fixed point set . . . . 103--106
                   P. E. Conner   A local invariant for $ O_*^U(Z_2) $ . . 107--115


Lecture Notes in Mathematics
Volume 47, 1967

            Jean Bénabou   Introduction to bicategories . . . . . . 1--77
                    A. Dold and   
                S. Mac Lane and   
                      U. Oberst   Projective classes and acyclic models    78--91
                   Robert Davis   Equational systems of functors . . . . . 92--109
                 John R. Isbell   Normal completions of categories . . . . 110--155
                  Jan-Erik Roos   Locally distributive spectral categories
                                  and strongly regular rings . . . . . . . 156--181


Lecture Notes in Mathematics
Volume 48, 1967

                     G. de Rham   Propri\`etés des sommes de Gauss et des
                                  séries de Dirichlet théor\`eme de Franz.
                                  (French) [Properties of Gauss sums and
                                  Dirichlet series [by the] theorem of
                                  Franz] . . . . . . . . . . . . . . . . . 1--12
                     G. de Rham   Torsion d'un complexe \`a
                                  automorphismes. (French) [Torsion of a
                                  complex of automorphisms]  . . . . . . . 13--36
                     S. Maumary   Type simple d'homotopie (théorie
                                  algébrique). (French) [Simple homotopy
                                  type (algebraic theory)] . . . . . . . . 37--54
                     S. Maumary   Type simple d'homotopie (Théorie
                                  géométrique). (French) [Simple homotopy
                                  type (geometric theory)] . . . . . . . . 55--64
                     S. Maumary   théor\`eme de Mazur. (French) [Mazur's
                                  theorem] . . . . . . . . . . . . . . . . 65--73
                     G. de Rham   théor\`eme de dualité pour la torsion et
                                  applications aux noeuds. (French)
                                  [Duality theorem for torsion and
                                  applications to knots] . . . . . . . . . 74--82
                    M. Kervaire   Le théor\`eme de
                                  Barden--Mazur--Stallings. (French) [The
                                  Barden--Mazur--Stallings theorem]  . . . 83--95
                     G. de Rham   Type d'homotopie des rotations et des
                                  espaces lenticulaires. (French)
                                  [Homotopy type of rotations and lens
                                  spaces]  . . . . . . . . . . . . . . . . 96--101


Lecture Notes in Mathematics
Volume 49, 1967

                     Carl Faith   Injective modules  . . . . . . . . . . . 1--12
                     Carl Faith   Essential extensions and the injective
                                  hull . . . . . . . . . . . . . . . . . . 13--21
                     Carl Faith   Quasi-Injective modules  . . . . . . . . 22--34
                     Carl Faith   Radical and semiprimitivity in rings . . 35--43
                     Carl Faith   The endomorphism ring of a
                                  quasi-injective module . . . . . . . . . 44--50
                     Carl Faith   Noetherian, Artinian, and semisimple
                                  modules and rings  . . . . . . . . . . . 51--57
                     Carl Faith   Rational extensions and lattices of
                                  closed submodules  . . . . . . . . . . . 58--63
                     Carl Faith   Maximal quotient rings . . . . . . . . . 64--75
                     Carl Faith   Semiprime rings with maximum condition   76--81
                     Carl Faith   Nil and singular ideals under maximum
                                  conditions . . . . . . . . . . . . . . . 82--85
                     Carl Faith   Structure of Noetherian prime rings  . . 86--95
                     Carl Faith   Maximal quotient rings . . . . . . . . . 96--104
                     Carl Faith   Quotient rings and direct products of
                                  full linear rings  . . . . . . . . . . . 105--122
                     Carl Faith   Johnson rings  . . . . . . . . . . . . . 123--126
                     Carl Faith   Open problems  . . . . . . . . . . . . . 127--131


Lecture Notes in Mathematics
Volume 50, 1968

               Lawrence Zalcman   Introduction . . . . . . . . . . . . . . 1--3
               Lawrence Zalcman   Peak points  . . . . . . . . . . . . . . 4--10
               Lawrence Zalcman   Analytic capacity  . . . . . . . . . . . 11--22
               Lawrence Zalcman   Some useful facts  . . . . . . . . . . . 23--26
               Lawrence Zalcman   Estimates for integrals  . . . . . . . . 27--44
               Lawrence Zalcman   Melnikov's theorem . . . . . . . . . . . 45--51
               Lawrence Zalcman   Further results  . . . . . . . . . . . . 52--56
               Lawrence Zalcman   Applications . . . . . . . . . . . . . . 57--64
               Lawrence Zalcman   The problem of rational approximation    65--76
               Lawrence Zalcman   AC capacity  . . . . . . . . . . . . . . 77--85
               Lawrence Zalcman   A scheme for approximation . . . . . . . 86--99
               Lawrence Zalcman   Vitushkin's theorem  . . . . . . . . . . 100--107
               Lawrence Zalcman   Applications of Vitushkin's theorem  . . 108--111
               Lawrence Zalcman   Geometric conditions . . . . . . . . . . 112--116
               Lawrence Zalcman   Function algebra methods . . . . . . . . 117--129
               Lawrence Zalcman   Some open questions  . . . . . . . . . . 130--131


Lecture Notes in Mathematics
Volume 51, 1968

            J. Azéma and   
            M. Kaplan-Duflo and   
                       D. Revuz   Classes récurrentes d'un processus de
                                  Markov. (French) [Recurrent classes of
                                  Markov processes]  . . . . . . . . . . . 1--21
                 P. Cartier and   
                P.-A. Meyer and   
                        M. Weil   Le retournement du temps: Compléments \`a
                                  l'exposé de M. Weil. (French) [The
                                  turnaround time: Additions to the
                                  presentation by Mr. Weil]  . . . . . . . 22--33
              Catherine Doleans   Fonctionnelles additives parfaites.
                                  (French) [Perfect functional additives]  34--42
       Catherine Doléans   Espaces $ H^m $ sur les variétés, et
                                  applications aux équations aux derivées
                                  partielles sur une variété compacte.
                                  (French) [$ H^m $ spaces on manifolds
                                  and applications to partial differential
                                  equations on a compact variety]  . . . . 43--74
                      G. Giroux   Théorie des fronti\`eres dans les
                                  cha\^\ines de Markov. (French) [Boundary
                                  theory in Markov chains] . . . . . . . . 75--110
                     J. P. Igot   Un théor\`eme de Linnik. (French) [A
                                  theorem of Linnik] . . . . . . . . . . . 111--122
      José de Sam Lazaro   Sur les moments spectraux d'ordre
                                  superieur. (French) [On higher order
                                  spectral moments]  . . . . . . . . . . . 123--139
                    P.-A. Meyer   Guide détaillé de la théorie `générale' des
                                  processus. (French) [Detailed guide of
                                  the `general' theory of processes] . . . 140--165
                    P.-A. Meyer   Une majoration du processus croissant
                                  naturel associé \`a une surmartingale.
                                  (French) [An increase in the natural
                                  growing process associated with a
                                  supermartingale] . . . . . . . . . . . . 166--170
                    P.-A. Meyer   Les résolvantes fortement fellériennes
                                  d'apr\`es Mokobodzki. (French) [Highly
                                  Fellerian resolvents according to
                                  Mokobodzki]  . . . . . . . . . . . . . . 171--174
                    P.-A. Meyer   Compactifications associées \`a une
                                  résolvante. (French) [Compactifications
                                  associated with a resolvent] . . . . . . 175--199


Lecture Notes in Mathematics
Volume 52, 1968

                    D. J. Simms   Relativistic invariance  . . . . . . . . 1--8
                    D. J. Simms   Lifting projective representations . . . 9--16
                    D. J. Simms   The relativistic free particle . . . . . 17--19
                    D. J. Simms   Lie algebras and physical observables    20--25
                    D. J. Simms   Universal enveloping algebra . . . . . . 26--41
                    D. J. Simms   Induced representations  . . . . . . . . 42--47
                    D. J. Simms   Representations of semi-direct products  48--55
                    D. J. Simms   Classification of the relativistic free
                                  particles  . . . . . . . . . . . . . . . 56--71
                    D. J. Simms   The Dirac equation . . . . . . . . . . . 72--75
                    D. J. Simms   $ {\rm SU}(3) $: Charge and isospin  . . 76--85


Lecture Notes in Mathematics
Volume 53, 1968

                      Jean Cerf   La nullité de $ \Gamma_4 $, généralisation
                                  du théor\`eme de Schönflies pour $ S^2 $.
                                  (French) [The nullity of $ \Gamma_4 $,
                                  generalization of the Schönflies theorem
                                  for $ S^2 $] . . . . . . . . . . . . . . 1--10
                      Jean Cerf   Singularités de codimension $1$ des
                                  fonctions différentiables réelles définies
                                  sur une $2$-variété. Application:
                                  Subdivision cocellulaire de l'espace des
                                  $2$-sph\`eres de $ R^3$. (French)
                                  [Singularities of codimension $1$ of
                                  functions defined on a real
                                  differentiable $2$-manifold.
                                  Application: Cocellular subdivision of
                                  space of $ 2$-spheres in $ R^3 $]  . . . 11--38
                      Jean Cerf   Le théor\`eme de Schönflies pour $ S^2 $.
                                  (French) [The Schönflies theorem for $
                                  S^2 $] . . . . . . . . . . . . . . . . . 39--50
                      Jean Cerf   Espaces fonctionnels liés aux doubles
                                  décompositions d'une sph\`ere plongée dans
                                  $ R^3 $. (French) [Functional spaces
                                  related to double decompositions of a
                                  sphere immersed in $ R^3 $]  . . . . . . 51--75
                      Jean Cerf   Les sous-variétés de petite complexité.
                                  (French) [Subvarieties of small
                                  complexity]  . . . . . . . . . . . . . . 76--93
                      Jean Cerf   Construction d'une section additive pour
                                  le revêtement $ \mathfrak {R} $. (French)
                                  [Construction of an additive section to
                                  the covering $ \mathfrak {R} $]  . . . . 94--112


Lecture Notes in Mathematics
Volume 54, 1968

                   Goro Shimura   Introduction . . . . . . . . . . . . . . 1--2
                   Goro Shimura   Automorphic functions on the upper half
                                  plane, especially modular functions  . . 2--8
                   Goro Shimura   Elliptic curves and the fundamental
                                  theorems of the classical theory of
                                  complex multiplication . . . . . . . . . 8--13
                   Goro Shimura   Relation between the points of finite
                                  order on an elliptic curve and the
                                  modular functions of higher level  . . . 13--16
                   Goro Shimura   Abelian varieties and Siegel modular
                                  functions  . . . . . . . . . . . . . . . 16--25
                   Goro Shimura   The endomorphism-ring of an Abelian
                                  variety; the field of moduli of an
                                  Abelian variety with many complex
                                  multiplications  . . . . . . . . . . . . 26--32
                   Goro Shimura   The class-field-theoretical
                                  characterization of $ K'(\phi (z)) $ . . 33--39
                   Goro Shimura   A further method of constructing class
                                  fields . . . . . . . . . . . . . . . . . 39--47
                   Goro Shimura   The Hasse zeta function of an algebraic
                                  curve  . . . . . . . . . . . . . . . . . 48--54
                   Goro Shimura   Infinite Galois extensions with $l$-adic
                                  representations  . . . . . . . . . . . . 55--62
                   Goro Shimura   Further generalization and concluding
                                  remarks  . . . . . . . . . . . . . . . . 62--65


Lecture Notes in Mathematics
Volume 55, 1968

         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Front Matter . . . . . . . . . . . . . . I--VI
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Differenzierbare Mannigfaltigkeiten und
                                  Abbildungen. (German) [Differentiable
                                  manifolds and maps]  . . . . . . . . . . 1--34
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Lineare Zusammenhänge. (German) [Linear
                                  correlations]  . . . . . . . . . . . . . 35--68
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Riemannsche Mannigfaltigkeiten. (German)
                                  [Riemannian manifolds] . . . . . . . . . 69--120
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Extremaleigenschaften von Geodätischen.
                                  (German) [Extremal properties of
                                  geodesics] . . . . . . . . . . . . . . . 121--155
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Riemannsche Mannigfaltigkeiten als
                                  metrische Räume. (German) [Riemannian
                                  manifolds as metric spaces]  . . . . . . 156--173
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Vergleichssätze. (German) [Comparative
                                  theorems]  . . . . . . . . . . . . . . . 174--196
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Beziehungen zwischen Krümmung und
                                  topologischer Gestalt. (German)
                                  [Relations between curvature and
                                  topological shape] . . . . . . . . . . . 197--271
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Anhang. (German) [Appendix]  . . . . . . 272--282
         Dr. Detlef Gromoll and   
Professor Dr. Wilhelm Klingenberg and   
             Dr. Wolfgang Meyer   Back Matter  . . . . . . . . . . . . . . 283--290


Lecture Notes in Mathematics
Volume 56, 1968

               Klaus Floret and   
                   Joseph Wloka   Topologische Grundbegriffe. (German)
                                  [Topological basic concepts] . . . . . . 1--6
               Klaus Floret and   
                   Joseph Wloka   Der Satz von Baire. (German) [The Baire
                                  set] . . . . . . . . . . . . . . . . . . 6--10
               Klaus Floret and   
                   Joseph Wloka   Topologische Vektorräume. (German)
                                  [Topological vector spaces]  . . . . . . 11--19
               Klaus Floret and   
                   Joseph Wloka   Lokalkonvexe Räume. (German) [Local
                                  convex spaces] . . . . . . . . . . . . . 19--27
               Klaus Floret and   
                   Joseph Wloka   Lineare Abbildungen und der Satz von
                                  Hahn--Banach. (German) [Linear maps and
                                  the Hahn--Banach theorem]  . . . . . . . 27--34
               Klaus Floret and   
                   Joseph Wloka   Der projektive Limes. (German) [The
                                  projective limit]  . . . . . . . . . . . 34--39
               Klaus Floret and   
                   Joseph Wloka   Offene und Graphen-abgeschlossene
                                  Abbildungen. (German) [Open and
                                  closed-graph maps] . . . . . . . . . . . 39--43
               Klaus Floret and   
                   Joseph Wloka   Beschränkte Mengen. (German) [Limited
                                  measures]  . . . . . . . . . . . . . . . 43--46
               Klaus Floret and   
                   Joseph Wloka   Gelfandräume. (German) [Gelfand spaces]   46--49
               Klaus Floret and   
                   Joseph Wloka   Tonnelierte Räume. (German) [???? spaces] 49--54
               Klaus Floret and   
                   Joseph Wloka   Beschränkte Abbildungen und bornologische
                                  Räume. (German) [Restricted maps and
                                  bornological spaces] . . . . . . . . . . 54--57
               Klaus Floret and   
                   Joseph Wloka   Der Dualraum. (German) [The dual space]  57--61
               Klaus Floret and   
                   Joseph Wloka   Die starke Topologie. (German) [Strong
                                  topology]  . . . . . . . . . . . . . . . 61--66
               Klaus Floret and   
                   Joseph Wloka   Die schwache Topologie und der
                                  Bipolarensatz. (German) [Weak topology
                                  and the bipolar theorem] . . . . . . . . 66--72
               Klaus Floret and   
                   Joseph Wloka   Der Satz von Mackey. (German) [The
                                  Mackey theorem]  . . . . . . . . . . . . 72--74
               Klaus Floret and   
                   Joseph Wloka   Kompaktheit. (German) [Compactness]  . . 74--77
               Klaus Floret and   
                   Joseph Wloka   Spezielle Kompaktheitskriterien.
                                  (German) [Special compactness criteria]  78--81
               Klaus Floret and   
                   Joseph Wloka   Duale Abbildungen. (French) [Dual maps]  81--85
               Klaus Floret and   
                   Joseph Wloka   Kompakte Abbildungen. (German) [Compact
                                  maps]  . . . . . . . . . . . . . . . . . 85--93
               Klaus Floret and   
                   Joseph Wloka   Hilbert--Schmidt-Abbildungen. (German)
                                  [Hilbert--Schmidt maps]  . . . . . . . . 93--99


Lecture Notes in Mathematics
Volume 57, 1968

              F. Hirzebruch and   
                    K. H. Mayer   $G$-Mannigfaltigkeiten. (German)
                                  [$G$-manifolds]  . . . . . . . . . . . . 1--9
              F. Hirzebruch and   
                    K. H. Mayer   Spezielle $G$-Mannigfaltigkeiten.
                                  (German) [Special $G$ manifolds] . . . . 10--14
              F. Hirzebruch and   
                    K. H. Mayer   Der Klassifikationssatz für spezielle
                                  $G$-Mannigfaltigkeiten. (German) [The
                                  classification theorem for special
                                  $G$-manifolds] . . . . . . . . . . . . . 15--21
              F. Hirzebruch and   
                    K. H. Mayer   Spezielle $ O(n)$-Mannigfaltigkeiten über
                                  $ D^2$. (German) [Special $
                                  O(n)$-manifolds on $ D^2$] . . . . . . . 22--28
              F. Hirzebruch and   
                    K. H. Mayer   Die Mannigfaltigkeiten $ W^{2n - 1}(d)
                                  $. (German) [The manifold $ W^{2n -
                                  1}(d) $] . . . . . . . . . . . . . . . . 29--36
              F. Hirzebruch and   
                    K. H. Mayer   Die Vielfachen des Tangentialbündels von
                                  $ S^n $. (German) [The multiples of the
                                  tangent sheaf of $ S^n $]  . . . . . . . 37--41
              F. Hirzebruch and   
                    K. H. Mayer   Äquivariantes Verkleben. (German)
                                  [Equivariant adhesion] . . . . . . . . . 42--48
              F. Hirzebruch and   
                    K. H. Mayer   Die Homologie von
                                  Baummannigfaltigkeiten. (German) [The
                                  homology of tree manifolds]  . . . . . . 49--59
              F. Hirzebruch and   
                    K. H. Mayer   Quadratische Formen, ARFsche Invariante.
                                  (German) [Quadratic forms, ARF
                                  invariants]  . . . . . . . . . . . . . . 60--66
              F. Hirzebruch and   
                    K. H. Mayer   Bericht über Sphären. (German) [Report on
                                  spheres] . . . . . . . . . . . . . . . . 67--75
              F. Hirzebruch and   
                    K. H. Mayer   Sphären als Umgebungsränder von
                                  Singularitäten I. (German) [Spheres as
                                  environmental edges of singularities I]  76--78
              F. Hirzebruch and   
                    K. H. Mayer   Die ganzzahlige homologie gewisser affin
                                  algebraischer Mannigfaltigkeiten.
                                  (German) [The integer homology of
                                  certain affine algebraic manifolds]  . . 79--88
              F. Hirzebruch and   
                    K. H. Mayer   Ganzzahlige quadratische Formen.
                                  (German) [Integer quadratic forms] . . . 89--101
              F. Hirzebruch and   
                    K. H. Mayer   Sphären als Umgebungsränder von
                                  Singularitäten II. (German) [Spheres as
                                  environmental edges of singularities II] 102--112
              F. Hirzebruch and   
                    K. H. Mayer   Periodische Abbildungen von Sphären.
                                  (German) [Periodic maps on spheres]  . . 113--127


Lecture Notes in Mathematics
Volume 58, 1968

                Fumi-Yuki Maeda   Introduction to the Kuramochi boundary   1--9
                Fumi-Yuki Maeda   On full-superharmonic functions  . . . . 10--29
                 Hiroshi Tanaka   Riemann surfaces with Martin and
                                  Kuramochi boundary points  . . . . . . . 30--42
              Zenjiro Kuramochi   On Beurling's and Fatou's theorems . . . 43--69
                 Makoto Ohtsuka   On Kuramochi's paper ``Potentials on
                                  Riemann surfaces'' . . . . . . . . . . . 70--87
               Kikuji Matsumoto   A condition for each point of the
                                  Kuramochi boundary to be of harmonic
                                  measure zero . . . . . . . . . . . . . . 88--96
                Tatsuo Fuji'i'e   Extremal length and Kuramochi boundary
                                  of a subregion of a Riemann surface  . . 97--102


Lecture Notes in Mathematics
Volume 59, 1968

              Klaus Jänich   Die Grundbegriffe. (German) [The basic
                                  concepts]  . . . . . . . . . . . . . . . 1--9
              Klaus Jänich   Hauptorbits, singuläre Orbits und
                                  Ausnahmeorbits. (German) [Main orbits,
                                  singular orbits and exceptional orbits]  9--13
              Klaus Jänich   Der Einbettungssatz. (German) [The
                                  embedding theorem] . . . . . . . . . . . 13--20
              Klaus Jänich   Scheibendiagramme. (German) [Disk
                                  graphs]  . . . . . . . . . . . . . . . . 21--25
              Klaus Jänich   Klassifikation der ``speziellen''
                                  $G$-Mannigfaltigkeiten. (German)
                                  [Classification of ``special''
                                  $G$-manifolds] . . . . . . . . . . . . . 26--35
              Klaus Jänich   Beispiele spezieller
                                  $G$-Mannigfaltigkeiten. (German)
                                  [Examples of specific $G$-manifolds] . . 36--43
              Klaus Jänich   Bericht über Knoten-Mannigfaltigkeiten.
                                  (German) [Report on knot manifolds]  . . 43--47
              Klaus Jänich   Musterbeispiel eines Linearitätsbeweises:
                                  Der Satz von Montgomery, Samelson, Yang
                                  und Zippin über Aktionen auf $ {\rm IR}^n
                                  $ mit zweidimensionalem Orbitraum.
                                  (German) [Paradigm of linearity proof:
                                  The set of Montgomery, Samelson, Yang
                                  and Zippin on actions on $ {\ rm IR}^n $
                                  with a two-dimensional orbit space]  . . 48--59
              Klaus Jänich   Weitere Linearitätssätze und Beispiele
                                  nichtlinearer Aktionen. (German) [More
                                  linearity sets and examples of nonlinear
                                  actions] . . . . . . . . . . . . . . . . 60--65
              Klaus Jänich   Lücken in den Dimensionen der
                                  Transformationsgruppen (nach L. N.
                                  Mann). (German) [Gaps in the dimensions
                                  of the transformation groups (after L.
                                  N. Mann)]  . . . . . . . . . . . . . . . 66--72
              Klaus Jänich   Der Symmetriegrad der exotischen Sphären
                                  (Bericht über Resultate von Wu-chung
                                  Hsiang und Wu-yi Hsiang). (German) [The
                                  degree of symmetry of exotic spheres
                                  (report on results of Wu-chung Hsiang
                                  and Wu-yi Hsiang)] . . . . . . . . . . . 72--84


Lecture Notes in Mathematics
Volume 60, 1968

                  Aaron Strauss   Recent results in perturbation theory    1--6
               G. Stephen Jones   The existence of critical points in
                                  generalized dynamical systems  . . . . . 7--19
                 Taro Yoshizawa   Stability and existence of periodic and
                                  almost periodic solutions  . . . . . . . 20--25
                     Junji Kato   Asymptotic equivalence . . . . . . . . . 26--30
                 James A. Yorke   Extending Liapunov's second method to
                                  non-Lipschitz Liapunov functions . . . . 31--36
                 Arrigo Cellina   Characterizing solutions of the
                                  Pontriagin maximum principle . . . . . . 37--47
                 James A. Yorke   Liapunov functions and the existence of
                                  solutions tending to $0$ . . . . . . . . 48--54
                     Junji Kato   Fundamental matrix in linear functional
                                  differential equations . . . . . . . . . 55--64
                 James A. Yorke   Asymptotic stability for functional
                                  differential equations . . . . . . . . . 65--75
                  Aaron Strauss   The use of Liapunov functions for global
                                  existence  . . . . . . . . . . . . . . . 76--82
                     Junji Kato   A remark on a result of Strauss  . . . . 83--91
                 Gregory Dunkel   Single species model for population
                                  growth depending on past history . . . . 92--99
                 James A. Yorke   An extension of Chetaev's instability
                                  theorem using invariant sets and an
                                  example  . . . . . . . . . . . . . . . . 100--106


Lecture Notes in Mathematics
Volume 61, 1968

            Michel André   On the vanishing of the second
                                  cohomology group of a commutative
                                  algebra  . . . . . . . . . . . . . . . . 1--27
             David A. Buchsbaum   Homology and universality relative to a
                                  functor  . . . . . . . . . . . . . . . . 28--40
             F. William Lawvere   Some algebraic problems in the context
                                  of functorial semantics of algebraic
                                  theories . . . . . . . . . . . . . . . . 41--61
                 R. L. Knighten   An application of categories of
                                  fractions to homotopy theory . . . . . . 62--68
                  Eduardo Dubuc   Adjoint triangles  . . . . . . . . . . . 69--91


Lecture Notes in Mathematics
Volume 62, 1968

                 Harish-Chandra   Chapter I  . . . . . . . . . . . . . . . 1--23
                 Harish-Chandra   Chapter II . . . . . . . . . . . . . . . 24--53
                 Harish-Chandra   Chapter III  . . . . . . . . . . . . . . 54--68
                 Harish-Chandra   Chapter IV . . . . . . . . . . . . . . . 69--108
                 Harish-Chandra   Chapter V  . . . . . . . . . . . . . . . 109--138


Lecture Notes in Mathematics
Volume 63, 1968

                 Felix Albrecht   Preliminaries  . . . . . . . . . . . . . 1--26
                 Felix Albrecht   Controls and attainability. The space $
                                  D^1 (U, I) $ . . . . . . . . . . . . . . 27--45
                 Felix Albrecht   Boundary points of sets of attainability 46--64


Lecture Notes in Mathematics
Volume 64, 1968

                  Hubert Berens   Front Matter . . . . . . . . . . . . . . I--V
                  Hubert Berens   Einführung. (German) [Introduction] . . . 1--5
                  Hubert Berens   Vorbereitender Abschnitt. (German)
                                  [Preparatory section]  . . . . . . . . . 6--21
                  Hubert Berens   Approximationsprozesse auf Banachräumen.
                                  (German) [Approximation processes on
                                  Banach spaces] . . . . . . . . . . . . . 22--36
                  Hubert Berens   Approximation und Halbgruppen von
                                  Operatoren. (German) [Approximation and
                                  operator semi-groups]  . . . . . . . . . 37--55
                  Hubert Berens   Das Singuläre integral von de la Vallée
                                  Poussin. (German) [The de la Vallée
                                  Poussin singular integral] . . . . . . . 56--65
                  Hubert Berens   Die Rieszschen mittel des
                                  Fourierumkehrintegrals. (German) [The
                                  Riesz medium of the Fourier inversion
                                  integral]  . . . . . . . . . . . . . . . 66--84
                  Hubert Berens   Back Matter  . . . . . . . . . . . . . . 85--90


Lecture Notes in Mathematics
Volume 65, 1968

           Dietrich Kölzow   Front Matter . . . . . . . . . . . . . . I--XII
           Dietrich Kölzow   Bezeichnungen und Grundbegriffe.
                                  (German) [Terms and basic concepts]  . . 1--2
           Dietrich Kölzow   Differentiation und Liftings. (German)
                                  [Differentiation and liftings] . . . . . 3--64
           Dietrich Kölzow   Verschärfungen des Ableitungsbegriffs.
                                  (German) [Tightening of the derivative
                                  term]  . . . . . . . . . . . . . . . . . 65--69
           Dietrich Kölzow   Sonderfälle. (German) [Special cases] . . 70--98
           Dietrich Kölzow   Back Matter  . . . . . . . . . . . . . . 99--104


Lecture Notes in Mathematics
Volume 66, 1968

                     Dirk Ferus   Zur Differentialgeometrie gewisser
                                  Bündel. (German) [On the differential
                                  geometry of certain sheaves] . . . . . . 1--8
                     Dirk Ferus   Die totale Absolutkrümmung. (German)
                                  [Total absolute curvature] . . . . . . . 9--22
                     Dirk Ferus   Immersionen in den euklidischen Raum.
                                  (German) [Immersion in Euclidean space]  23--37
                     Dirk Ferus   Beziehungen zwischen $ \tau (f \colon M
                                  \to R^n) $ und der Geometrie von $M$.
                                  (German) [Relationships between $ \tau
                                  (f \colon M \to R^n)$ and the geometry
                                  of $M$]  . . . . . . . . . . . . . . . . 38--39
                     Dirk Ferus   Beziehungen zwischen $ \tau (f \colon M
                                  \to R^n) $ und der Geometrie von $ f(M)
                                  $ in $ R^n $. (German) [Relationships
                                  between $ \tau (f \colon M \to R^n) $
                                  and the geometry of $ f (M) $ in $ R^n
                                  $] . . . . . . . . . . . . . . . . . . . 40--58
                     Dirk Ferus   Kompakte Hyperflächen. (German) [Compact
                                  hypersurfaces] . . . . . . . . . . . . . 59--70


Lecture Notes in Mathematics
Volume 67, 1968

               Franz Kamber and   
               Philippe Tondeur   Introduction . . . . . . . . . . . . . . 1--1
               Franz Kamber and   
               Philippe Tondeur   Flat manifolds . . . . . . . . . . . . . 2--4
               Franz Kamber and   
               Philippe Tondeur   Flat manifolds with parallel torsion . . 4--9
               Franz Kamber and   
               Philippe Tondeur   Flat bundles . . . . . . . . . . . . . . 9--13
               Franz Kamber and   
               Philippe Tondeur   Characteristic classes of flat bundles   14--24
               Franz Kamber and   
               Philippe Tondeur   Stably flat vector bundles on complexes
                                  covered by a homotopy sphere . . . . . . 24--37
               Franz Kamber and   
               Philippe Tondeur   Flat $G$-structures on manifolds and the
                                  Euler characteristic . . . . . . . . . . 37--42
               Franz Kamber and   
               Philippe Tondeur   The Chern character of elliptic symbols
                                  associated to a flat $G$-structure . . . 42--45
               Franz Kamber and   
               Philippe Tondeur   The index of elliptic complexes
                                  associated to a flat $G$-structure . . . 45--47
               Franz Kamber and   
               Philippe Tondeur   Problems . . . . . . . . . . . . . . . . 47--47


Lecture Notes in Mathematics
Volume 68, 1968

                   N. Boboc and   
                 P. Musta\ct\ua   Espaces harmoniques. (French) [Harmonic
                                  spaces]  . . . . . . . . . . . . . . . . 1--13
                   N. Boboc and   
                 P. Musta\ct\ua   Espaces de Banach des fonctions
                                  hölderiennes. (French) [Banach spaces of
                                  Hölder functions] . . . . . . . . . . . . 14--35
                   N. Boboc and   
                 P. Musta\ct\ua   Opérateurs différentiels elliptiques du
                                  second ordre. (French) [Elliptic
                                  differential operators of second order]  36--75
                   N. Boboc and   
                 P. Musta\ct\ua   Potentiels \`a support ponctuel et
                                  l'inégalité de Harnack. (French)
                                  [Potential at point support and the
                                  Harnack inequality]  . . . . . . . . . . 76--94


Lecture Notes in Mathematics
Volume 69, 1968

             Johannes Köhn   Harmonische Räume mit einer Basis
                                  semiregulärer Mengen. (German) [Harmonic
                                  space with a basis of semiregular
                                  measures]  . . . . . . . . . . . . . . . 1--12
                Malte Sieveking   Integraldarstellung superharmonischer
                                  Funktionen mit Anwendung auf
                                  parabolische Differentialgleichungen.
                                  (German) [Super integral representation
                                  of harmonic functions with application
                                  to parabolic differential equations] . . 13--68
      Jürgen von Bliedtner   Harmonische Gruppen und Huntsche
                                  Faltungskerne. (German) [Harmonic groups
                                  and Hunt convolution kernels]  . . . . . 69--102
            Wolfhard von Hansen   Potentialtheorie harmonischer Kerne.
                                  (German) [Potential theory of harmonic
                                  kernels] . . . . . . . . . . . . . . . . 103--159
          C. Constantinescu and   
                      A. Cornea   Examples in the theory of harmonic
                                  spaces . . . . . . . . . . . . . . . . . 161--171
                   Aurel Cornea   Weak compact sets in vector lattices and
                                  convergence theorems in harmonic spaces  173--180


Lecture Notes in Mathematics
Volume 70, 1968

               Solomon Feferman   Lectures on proof theory . . . . . . . . 1--107
                 Michael Morley   Partitions and models  . . . . . . . . . 109--158
                D. Rödding   Klassen rekursiver funktionen. (German)
                                  [Classes of recursive functions] . . . . 159--222
                   J. P. Cleave   Hyperarithmetic ultrafilters . . . . . . 223--240
               John N. Crossley   Recursive equivalence: a survey  . . . . 241--251
                    A. S. Davis   Half-ring morphologies . . . . . . . . . 253--268
                      Alan Rose   Formalisations of some $ \aleph $$_0$
                                  \Lukasiewicz propositional calculi . . . 269--271
           Joseph G. Rosenstein   Theories which are not $
                                  \chi_o$-categorical  . . . . . . . . . . 273--278
                     A. Slomson   The monadic fragment of predicate
                                  calculus with the Chang quantifier and
                                  equality . . . . . . . . . . . . . . . . 279--301
                  Gaisi Takeuti   The $ \Pi_1^1 $-comprehension schema and
                                  $ \omega $-rules . . . . . . . . . . . . 303--331


Lecture Notes in Mathematics
Volume 71, 1968

                   Thomas Bloom   Opérateurs différentiels sur un espace
                                  analytique complexe. (French)
                                  [Differential operators on a complex
                                  analytic space]  . . . . . . . . . . . . 1--20
                   Jozef Siciak   Separately analytic functions and
                                  envelopes of holomorphy of some lower
                                  dimensional subsets of $ C^n $ . . . . . 21--32
                     C. Sunyach   Sur le théor\`eme du graphe fermé.
                                  (French) [The closed graph theorem]  . . 33--37
                Pierre Schapira   Équations aux dérivées partielles dans
                                  l'espace des hyperfonctions. (French)
                                  [Partial differential equations in the
                                  space of hyperfunctions] . . . . . . . . 38--45
             Madame F. Exbrayat   Sur certains espaces de fonctions
                                  continues associés á des poids. (French)
                                  [On some spaces of continuous functions
                                  associated with weight]  . . . . . . . . 46--56
                 Claude Servien   Espaces de fonctions enti\`eres et
                                  fonctionnelles analytiques. (French)
                                  [Spaces of entire functions and analytic
                                  functionals] . . . . . . . . . . . . . . 57--71
                     J.-B. Poly   $ d^{\prime \prime }$-Cohomologie \`a
                                  croissance: Un théor\`eme de décomposition
                                  sur un ouvert pseudo-convexe. (French)
                                  [$ d^{\prime \prime } $-cohomology to
                                  growth: A decomposition theorem on a
                                  pseudo-convex opening] . . . . . . . . . 72--80
              Walter Hengartner   Famille de traces sur les sous-espaces
                                  d'une fonction plurisousharmonique ou
                                  enti\`ere dans $ C^n $. (French) [Trace
                                  families on the subspaces of a
                                  plurisubharmonic or complete function on
                                  $ C^n $] . . . . . . . . . . . . . . . . 81--93
        François Norguet   Variétés algébriques strictement
                                  $Q$-pseudoconvexes. (French) [Strictly
                                  $Q$-pseudoconvex algebraic varieties]    94--98
              J.-L. Cathelineau   Sur les modules topologiques. (French)
                                  [On topological modules] . . . . . . . . 99--112
                   Ph. Noverraz   Generators for some rings of analytic
                                  functions d'apr\`es L. Hörmander [0]  . . 113--117
                 C. O. Kiselman   Supports des fonctionnelles sur un
                                  espace de solutions d'une équation aux
                                  dérivées partielles \`a coefficients
                                  constants. (French) [Supports of
                                  functionals on a space of solutions of a
                                  partial differential equations with
                                  constant coefficients] . . . . . . . . . 118--126
                       Guy Roos   L'image d'une application holomorphe
                                  d'une variété dans l'espace projectif
                                  (d'apr\`es W. Stoll). (French) [The
                                  image of a holomorphic map of a variety
                                  in projective space (after W. Stoll)]    127--139
                    J.-P. Ramis   Sous-ensembles analytiques d'une variété
                                  analytique banachique. (French)
                                  [Analytic subsets of a Banach analytic
                                  manifold]  . . . . . . . . . . . . . . . 140--164
                    John Wermer   Approximation uniforme dans $ C^n $.
                                  (French) [Uniform approximation in $ C^n
                                  $] . . . . . . . . . . . . . . . . . . . 165--166
                  Pierre Lelong   Fonctions plurisousharmoniques dans les
                                  espaces vectoriels topologiques.
                                  (French) [Plurisubharmonic functions in
                                  topological vector spaces] . . . . . . . 167--190


Lecture Notes in Mathematics
Volume 72, 1968

                    Jon Barwise   Implicit definability and compactness in
                                  infinitary languages . . . . . . . . . . 1--35
                    C. C. Chang   Some remarks on the model theory of
                                  infinitary languages . . . . . . . . . . 36--63
                  Erwin Engeler   Remarks on the theory of geometrical
                                  constructions  . . . . . . . . . . . . . 64--76
            Harvey Friedman and   
                  Ronald Jensen   Note on admissible ordinals  . . . . . . 77--79
                     Carol Karp   An algebraic proof of the barwise
                                  compactness theorem  . . . . . . . . . . 80--95
                  H. J. Keisler   Formulas with linearly ordered
                                  quantifiers  . . . . . . . . . . . . . . 96--130
            R. D. Kopperman and   
               A. R. D. Mathias   Some problems in group theory  . . . . . 131--138
                     G. Kreisel   Choice of infinitary languages by means
                                  of definability criteria; Generalized
                                  recursion theory . . . . . . . . . . . . 139--151
                David W. Kueker   Definability, automorphisms, and
                                  infinitary languages . . . . . . . . . . 152--165
                  Jerome Malitz   The Hanf number for complete $
                                  L_{\omega_1, \omega } $ sentences  . . . 166--181
                     A. Preller   Quantified algebras  . . . . . . . . . . 182--203
                     W. W. Tait   Normal derivability in classical logic   204--236
                  Gaisi Takeuti   A determinate logic  . . . . . . . . . . 237--264
               Joseph Weinstein   $ (\omega_1, \omega) $ properties of
                                  unions of models . . . . . . . . . . . . 265--268


Lecture Notes in Mathematics
Volume 73, 1968

               Pierre E. Conner   Introduction . . . . . . . . . . . . . . 1--18
               Pierre E. Conner   Line bundles with operators  . . . . . . 19--81
               Pierre E. Conner   Orientation preserving involutions . . . 82--122


Lecture Notes in Mathematics
Volume 74, 1968

               A. Fröhlich   Preliminaries  . . . . . . . . . . . . . 1--28
               A. Fröhlich   Lie theory . . . . . . . . . . . . . . . 29--56
               A. Fröhlich   Commutative formal groups of dimension
                                  one  . . . . . . . . . . . . . . . . . . 57--95
               A. Fröhlich   Commutative formal groups of dimension
                                  one over a discrete valuation ring . . . 96--138


Lecture Notes in Mathematics
Volume 75, 1968

                       G. Lumer   Alg\`ebres de fonctions. (French)
                                  [Function algebra] . . . . . . . . . . . 1--6
                       G. Lumer   Théorie de la mesure par rapport \`a un
                                  syst\`eme. (French) [Measurement theory
                                  with respect to a system]  . . . . . . . 7--16
                       G. Lumer   Espaces de Hardy: théor\`eme de
                                  modification de convergence. (French)
                                  [Hardy spaces: convergence-change
                                  theorem] . . . . . . . . . . . . . . . . 17--27
                       G. Lumer   Espaces de Hardy: Conjugués abstraits.
                                  (French) [Hardy spaces: Abstract
                                  conjugates]  . . . . . . . . . . . . . . 28--34
                       G. Lumer   Théorie de la prediction (processus
                                  discr\`ets simplement stationnaires).
                                  (French) [Prediction theory
                                  (simple-stationary discrete processes)]  35--42
                       G. Lumer   Étude de $E$ et $ D(*)$. (French) [Study
                                  of $E$ and $ D(*)$]  . . . . . . . . . . 43--46
                       G. Lumer   Mesures orthogonales. (French)
                                  [Orthogonal measures]  . . . . . . . . . 47--50
                       G. Lumer   Unicité de measure representative.
                                  Alg\`ebres de Dirichlet et
                                  logmodulaires. (French) [Uniqueness of
                                  representative measure. Algebras of
                                  Dirichlet and log modulars]  . . . . . . 51--56
                       G. Lumer   Étude du cas o\`u $ M_\gamma $ poss\`ede
                                  un nombre fini de générateurs. (French)
                                  [Case study where $ M_\gamma $ has a
                                  finite number of generators] . . . . . . 57--64


Lecture Notes in Mathematics
Volume 76, 1968

                     R. G. Swan   Category Theory  . . . . . . . . . . . . 1--40
                     R. G. Swan   Quotient categories  . . . . . . . . . . 40--64
                     R. G. Swan   Definition of $ K_O(A) $ and some
                                  examples . . . . . . . . . . . . . . . . 65--75
                     R. G. Swan   Krull--Schmidt theorems and applications 75--92
                     R. G. Swan   Definition of $ G(R) $ and examples  . . 92--100
                     R. G. Swan   The connection between $ K_O(R) $ and $
                                  G_O(R) $ . . . . . . . . . . . . . . . . 100--109
                     R. G. Swan   Localization and relation between $
                                  G_O(R) $ and $ G_O(R_S) $  . . . . . . . 109--124
                     R. G. Swan   $ K_O $ of graded rings  . . . . . . . . 124--131
                     R. G. Swan   $ {\rm Spec} (R) $ and $ H(R) $  . . . . 132--145
                     R. G. Swan   Picard group and the determinant . . . . 146--155
                     R. G. Swan   Basic topological remarks  . . . . . . . 155--160
                     R. G. Swan   Chain complexes and the nilpotence of $
                                  \widetilde {K_0 (R)} $ . . . . . . . . . 161--169
                     R. G. Swan   Serre's theorem  . . . . . . . . . . . . 170--183
                     R. G. Swan   Cancellation theorems  . . . . . . . . . 183--193
                     R. G. Swan   $ K_1 (A) $  . . . . . . . . . . . . . . 193--204
                     R. G. Swan   $ K_2 (R) $  . . . . . . . . . . . . . . 204--211
                     R. G. Swan   The exact sequence of $ K_i $'s  . . . . 211--223
                     R. G. Swan   Further results on $ K_1 $ and $ K_0 $   224--247
                     R. G. Swan   Relations between algebraic and
                                  topological $K$ theory . . . . . . . . . 247--256


Lecture Notes in Mathematics
Volume 77, 1968

        Paul-André Meyer   Processus de Markov [\`a]la fronti\`ere
                                  de Martin. (French) [Markov process on
                                  the Martin boundary] . . . . . . . . . . 1--1
        Paul-André Meyer   Compléments sur les fonctions excessives.
                                  (French) [Complements on excessive
                                  functions] . . . . . . . . . . . . . . . 2--47
        Paul-André Meyer   L'hypoth\`ese K-W. Quelques conséquences.
                                  (French) [The K-W hypothesis. Some
                                  consequences]  . . . . . . . . . . . . . 48--61
        Paul-André Meyer   Potentiels de Green, applications.
                                  (French) [Green potentials,
                                  applications]  . . . . . . . . . . . . . 62--71
        Paul-André Meyer   Compactifications de Martin. (French)
                                  [Martin compactifications] . . . . . . . 72--94
        Paul-André Meyer   Processus sur un compactifié de Martin.
                                  (French) [Processes on a Martin
                                  compactification]  . . . . . . . . . . . 95--120


Lecture Notes in Mathematics
Volume 78, 1968

                 Horst Herrlich   Vollständig Reguläre, Kompakte und
                                  Reellkompakte Räume. (German) [Completely
                                  regular, compact and real compact
                                  spaces]  . . . . . . . . . . . . . . . . 1--31
                 Horst Herrlich   Kategorieller Hintergrund. (German)
                                  [Categorial background]  . . . . . . . . 32--75
                 Horst Herrlich   Reflexionen und Coreflexionen. (German)
                                  [Reflections and coreflections]  . . . . 76--113
                 Horst Herrlich   Topologische Epireflexionen und (Mono-)
                                  Coreflexionen. (German) [Topological
                                  epireflections and (mono-) core
                                  reflections] . . . . . . . . . . . . . . 114--152


Lecture Notes in Mathematics
Volume 79, 1968

                A. Grothendieck   Catégories cofibrées additives. (French)
                                  [Cofibrous additive categories]  . . . . 5--14
                A. Grothendieck   Catégories cofibrées exactes \`a gauche.
                                  (French) [Left-exact cofibrous
                                  categories]  . . . . . . . . . . . . . . 14--26
                A. Grothendieck   Complexe typique $ L^X $ d'un objet de
                                  $E$. Procomplexe typique $ L^E$ de $E$.
                                  (French) [Typical complex $ L^X $ of an
                                  object $E$. Typical procomplexe $ L^E $
                                  of $E$]  . . . . . . . . . . . . . . . . 27--36
                A. Grothendieck   Le proobjet $ N_E $ et l'homorphisme
                                  caractéristique d'un objet de $E$.
                                  (French) [The proobjet $ N_E$ and the
                                  characteristic homomorphism of an object
                                  $E$] . . . . . . . . . . . . . . . . . . 36--40
                A. Grothendieck   Cas d'une catégorie cofibrée exacte \`a
                                  gauche. (French) [Case of a left-exact
                                  cofibrous category]  . . . . . . . . . . 40--48
                A. Grothendieck   Catégories cofibrées définies par des
                                  complexes de cha\^\ines, et théor\`emes
                                  de représentabilité. (French) [Cofibrous
                                  defined categories of chain complexes,
                                  and representability theorems] . . . . . 48--68
                A. Grothendieck   Application aux extensions de faisceaux
                                  d'anneaux. (French) [Application to
                                  extensions of ring sheaves]  . . . . . . 69--85
                A. Grothendieck   Application aux ``variations
                                  infinitésimales'' de faisceaux
                                  d'alg\`ebres. (French) [Application to
                                  ``infinitesimal'' variations of algebra
                                  sheaves] . . . . . . . . . . . . . . . . 85--92
                A. Grothendieck   Propriétés générales du complexe cotangent
                                  relatif. (French) [General properties of
                                  the relative cotangent complex]  . . . . 93--111
                A. Grothendieck   Suites exactes de transitivité. (French)
                                  [Exact sequences of transitivity]  . . . 112--128
                A. Grothendieck   Complexe cotangent relatif et
                                  rel\`evement infinitésimal de morphismes
                                  de topos annelés. Application aux
                                  morphismes formellement nets. (French)
                                  [Relative cotangent complex and
                                  infinitesimal increase of morphisms of
                                  ringed topos. Application to
                                  formally-clean morphisms]  . . . . . . . 128--154
                A. Grothendieck   Applications du complexe cotangent
                                  relatif, et probl\`emes ouverts.
                                  (French) [Applications of tge relative
                                  cotangent complex, and open problems]    154--164


Lecture Notes in Mathematics
Volume 3, 1969

                 J. Frank Adams   Introduction . . . . . . . . . . . . . . 1--3
                 J. Frank Adams   Primary operations . . . . . . . . . . . 4--21
                 J. Frank Adams   Stable homotopy theory . . . . . . . . . 22--37
                 J. Frank Adams   Applications of homological algebra to
                                  stable homotopy theory . . . . . . . . . 38--57
                 J. Frank Adams   Theorems of periodicity and
                                  approximation in homological algebra . . 58--68
                 J. Frank Adams   Comments on prospective applications of
                                  (5), work in progress, etc.  . . . . . . 69--73


Lecture Notes in Mathematics
Volume 80, 1969

               H. Appelgate and   
                    M. Barr and   
                    J. Beck and   
              F. W. Lawvere and   
            F. E. J. Linton and   
                   E. Manes and   
                 M. Tierney and   
                       F. Ulmer   Introduction . . . . . . . . . . . . . . 1--6A
                F. E. J. Linton   An outline of functorial semantics . . . 7--52
                F. E. J. Linton   Applied functorial semantics, II . . . . 53--74
                F. E. J. Linton   Coequalizers in categories of algebras   75--90
                   Ernest Manes   A triple theoretic construction of
                                  compact algebras . . . . . . . . . . . . 91--118
                       Jon Beck   Distributive laws  . . . . . . . . . . . 119--140
             F. William Lawvere   Ordinal sums and equational doctrines    141--155
               H. Appelgate and   
                     M. Tierney   Categories with models . . . . . . . . . 156--244
               Michael Barr and   
                       Jon Beck   Homology and standard constructions  . . 245--335
                   Michael Barr   Composite cotriples and derived functors 336--356
                   Michael Barr   Cohomology and obstructions: Commutative
                                  algebras . . . . . . . . . . . . . . . . 357--375
                Friedrich Ulmer   On cotriple and André (co)homology, their
                                  relationship with classical homological
                                  algebra  . . . . . . . . . . . . . . . . 376--398


Lecture Notes in Mathematics
Volume 81, 1969

              J.-P. Eckmann and   
                      M. Guenin   Introduction. (French) [Introduction]    1--1
              J.-P. Eckmann and   
                      M. Guenin   Introduction mathématique. (French)
                                  [Mathematical introduction]  . . . . . . 2--44
              J.-P. Eckmann and   
                      M. Guenin   Structures fondamentales de la
                                  m\`ecanique statistique. (French)
                                  [Fundamental structures of statistical
                                  mechanics] . . . . . . . . . . . . . . . 45--84
              J.-P. Eckmann and   
                      M. Guenin   Mod\`eles. (French) [Models] . . . . . . 85--117


Lecture Notes in Mathematics
Volume 82, 1969

                   Joseph Wloka   Die Einbettungstheoreme. (German) [The
                                  embedding theorem] . . . . . . . . . . . 1--34
                   Joseph Wloka   Operationen auf den $W$-, $A$- und
                                  $S$-Räumen. (German) [Operations on the
                                  $W$-, $A$- and $S$-spaces] . . . . . . . 34--51
                   Joseph Wloka   Projektive Grundräume. (German)
                                  [Projective basis spaces]  . . . . . . . 51--57
                   Joseph Wloka   Projektive $W$-Räume. (German)
                                  [Projective $W$ spaces]  . . . . . . . . 57--75
                   Joseph Wloka   Projektive $A$-Räume. (German)
                                  [Projective $A$ spaces]  . . . . . . . . 76--89
                   Joseph Wloka   Projektive $ S(m)$-Räume. (German)
                                  [Projective $ S(m)$ spaces]  . . . . . . 89--96
                   Joseph Wloka   Induktive $A$-Räume. (German) [Inductive
                                  $A$ spaces]  . . . . . . . . . . . . . . 97--124
                   Joseph Wloka   Induktive $ S(m)$-Räume. (German)
                                  [Inductive $ S(m)$ spaces] . . . . . . . 124--129


Lecture Notes in Mathematics
Volume 83, 1969

                  Oscar Zariski   Homogeneous and non-homogeneous point
                                  coordinates  . . . . . . . . . . . . . . 1--3
                  Oscar Zariski   Coordinate rings of irreducible
                                  varieties  . . . . . . . . . . . . . . . 3--4
                  Oscar Zariski   Normal varieties . . . . . . . . . . . . 4--5
                  Oscar Zariski   Divisorial cycles on a normal projective
                                  variety $ V / k (\dim (V) = r \geq 1) $  6--11
                  Oscar Zariski   Linear systems . . . . . . . . . . . . . 11--15
                  Oscar Zariski   Divisors on an arbitrary variety $V$ . . 15--19
                  Oscar Zariski   Intersection theory on algebraic
                                  surfaces (k algebraically closed)  . . . 19--23
                  Oscar Zariski   Differentials  . . . . . . . . . . . . . 24--28
                  Oscar Zariski   The canonical system on a variety $V$    29--34
                  Oscar Zariski   Trace of a differential  . . . . . . . . 34--48
                  Oscar Zariski   The arithemetic genus  . . . . . . . . . 49--51
                  Oscar Zariski   Normalization and complete systems . . . 52--62
                  Oscar Zariski   The Hilbert characteristic function and
                                  the arithmetic genus of a variety  . . . 63--71
                  Oscar Zariski   The Riemann--Roch theorem  . . . . . . . 72--80
                  Oscar Zariski   Subadjoint polynomials . . . . . . . . . 80--95
                  Oscar Zariski   Proof of the fundamental lemma . . . . . 95--100


Lecture Notes in Mathematics
Volume 84, 1969

            Heinz Lüneburg   Inzidenzstrukturen. (German) [Incidence
                                  structures]  . . . . . . . . . . . . . . 1--9
            Heinz Lüneburg   Kollineationen und Kollineationsgruppen
                                  von endlichen projektiven und affinen
                                  Räumen. (German) [Collineations and
                                  collineation groups of finite projective
                                  and affine spaces] . . . . . . . . . . . 10--17
            Heinz Lüneburg   Erweiterungen von $t$-Blockplänen.
                                  (German) [Extensions of $t$-block
                                  planes]  . . . . . . . . . . . . . . . . 18--20
            Heinz Lüneburg   Transitive Erweiterungen von
                                  Automorphismengruppen von
                                  $t$-Blockplänen. (German) [Transitive
                                  extensions of automorphism groups of
                                  $t$-block planes]  . . . . . . . . . . . 21--24
            Heinz Lüneburg   Über die Nicht-Existenz transitiver
                                  Erweiterungen gewisser
                                  Kollineationsgruppen. (German) [On the
                                  nonexistence of transitive extensions of
                                  certain collineation groups] . . . . . . 25--26
            Heinz Lüneburg   Nichtexistenz transitiver Erweiterungen
                                  von Gruppen vom Suzuki-Typ. (German)
                                  [Nonexistence of transitive extensions
                                  of Suzuki-type groups] . . . . . . . . . 27--34
            Heinz Lüneburg   Die kleinen Mathieugruppen. (German)
                                  [The small Mathieu groups] . . . . . . . 35--43
            Heinz Lüneburg   Sätze von C. Jordan, Gorenstein--Hughes
                                  und M. Hall. (German) [Theorems of C.
                                  Jordan, Gorenstein--Hughes und M. Hall]  44--60
            Heinz Lüneburg   Zur geometrie der $ 21$-punkte ebene.
                                  (German) [Toward a geometry of the $
                                  21$-point plane] . . . . . . . . . . . . 61--68
            Heinz Lüneburg   Unitäre polaritäten endlicher projektiver
                                  Ebenen. (German) [Unitary polarities of
                                  finite projective planes]  . . . . . . . 69--80
            Heinz Lüneburg   Unitale in der projektiven ebene der
                                  ordnung $4$. (German) [Unitals in the
                                  projective plane of order $4$] . . . . . 81--85
            Heinz Lüneburg   Die großen Mathieu-gruppen. (German) [The
                                  large Mathieu groups]  . . . . . . . . . 86--92
            Heinz Lüneburg   Zur Struktur der Mathieurgruppen.
                                  (German) [On the structure of Mathieu
                                  groups]  . . . . . . . . . . . . . . . . 93--95
            Heinz Lüneburg   Weitere Eigenschaften von $ L_{22} $.
                                  (German) [Other properties of $ L_{22}
                                  $] . . . . . . . . . . . . . . . . . . . 96--103
            Heinz Lüneburg   Die Higman--Sims Gruppe. (German) [The
                                  Higman--Sims group]  . . . . . . . . . . 104--107
            Heinz Lüneburg   $t$-Homogene Permutationsgruppen.
                                  (German) [$t$-Homogeneous permutation
                                  groups]  . . . . . . . . . . . . . . . . 108--117


Lecture Notes in Mathematics
Volume 85, 1969

                  P. Carter and   
                       D. Foata   Introduction. (French) [Introduction]    1--7
                  P. Carter and   
                       D. Foata   Mono\"\ides définis par des relations de
                                  commutation. (French) [Monoids defined
                                  by commutation relations]  . . . . . . . 8--17
                  P. Carter and   
                       D. Foata   Fonction de Möbius d'un Mono\"\ide.
                                  (French) [Möbius function of a monoid]    18--23
                  P. Carter and   
                       D. Foata   Circuits dans un Graphe. (French)
                                  [Circuits in a graph]  . . . . . . . . . 24--38
                  P. Carter and   
                       D. Foata   Réarrangements de Suites. (French)
                                  [Rearrangements of sequences]  . . . . . 39--53
                  P. Carter and   
                       D. Foata   Sur le ``Master theorem'' de Macmahon.
                                  (French) [On the ``Master theorem'' of
                                  Macmahon]  . . . . . . . . . . . . . . . 54--60
                  P. Carter and   
                       D. Foata   Relations entre coefficients binomiaux   61--71
                  P. Carter and   
                       D. Foata   Applications probabilistes . . . . . . . 72--83


Lecture Notes in Mathematics
Volume 86, 1969

                   Michael Barr   Coalgebras in a category of algebras . . 1--12
                D. A. Buchsbaum   Lectures on regular local rings  . . . . 13--32
                 Dr. R. Fittler   Categories of models with initial
                                  objects  . . . . . . . . . . . . . . . . 33--45
                 J. F. Kennison   Coreflection maps which resemble
                                  universal coverings  . . . . . . . . . . 46--75
                 Joachim Lambek   Deductive systems and categories II.
                                  Standard constructions and closed
                                  categories . . . . . . . . . . . . . . . 76--122
              Saunders Mac Lane   Possible programs for categorists  . . . 123--131
             Robert Paré   Absolute coequalizers  . . . . . . . . . 132--145
               Stephen S. Shatz   Galois theory  . . . . . . . . . . . . . 146--158
                 H. B. Stauffer   Derived functors without injectives  . . 159--166
              Myles Tierney and   
                 Wolfgang Vogel   Simplicial derived functors  . . . . . . 167--180
                Friedrich Ulmer   Acyclic models and Kan extensions  . . . 181--204
                      M. Zisman   Derived category and Poincaré duality . . 205--216


Lecture Notes in Mathematics
Volume 87, 1969

                  Myles Tierney   Introduction . . . . . . . . . . . . . . 1--2
                  Myles Tierney   Inverting an Endomorphism  . . . . . . . 2--9
                  Myles Tierney   Adding directed colimits to a
                                  subcategory  . . . . . . . . . . . . . . 10--29
                  Myles Tierney   Simplicial spectra . . . . . . . . . . . 30--47
                  Myles Tierney   FD-spectra . . . . . . . . . . . . . . . 47--63


Lecture Notes in Mathematics
Volume 88, 1969

                    L. Schwartz   Extension du théor\`eme de
                                  Sazonov--Minlos. (French) [Extension of
                                  the Sazonov-- Minlos theorem]  . . . . . 1--23
            J. Azéma and   
                   M. Duflo and   
                       D. Revuz   Mesure invariante des processus de
                                  Markov r\`ecurrents. (French) [Invariant
                                  measure of the recurring Markov process] 24--33
                     R. Cairoli   Étude probabiliste d'un probl\`eme de
                                  Dirichlet. (French) [Probabilistic study
                                  of a problem of Dirichlet] . . . . . . . 34--92
             Claude Dellacherie   Une application aux fonctionnelles
                                  additives d'un théor\`eme de Mokobodzki.
                                  (French) [An application of a functional
                                  additive theorem of Mokobodzki]  . . . . 93--96
                 C. Dellacherie   Ensembles aléatoires I. (French) [Random
                                  sets I]  . . . . . . . . . . . . . . . . 97--114
                 C. Dellacherie   Ensembles aléatoires II. (French) [Random
                                  sets II] . . . . . . . . . . . . . . . . 115--136
                Catherine Huber   Un aspect de la loi du logarithme itéré
                                  pour des variables aléatoires
                                  indépendantes et équidistribuées. (French)
                                  [An aspect of the law of the iterated
                                  logarithm for independent random
                                  variables] . . . . . . . . . . . . . . . 137--142
                Catherine Huber   Un lemme de théorie des martingales.
                                  (French) [A lemma on martingale theory]  143--143
                    P.-A. Meyer   Un résultat de théorie du potentiel.
                                  (French) [A result of potentiel theory]  144--151
                    P.-A. Meyer   Un résultat élémentaire sur les temps
                                  d'arrêt. (French) [An elementary result
                                  on stopping time]  . . . . . . . . . . . 152--154
                    P.-A. Meyer   Une nouvelle démonstration des théor\`emes
                                  de section. (French) [A new proof of
                                  theorems of section] . . . . . . . . . . 155--159
                    P.-A. Meyer   Rectifications \`a des exposés antérieurs.
                                  (French) [Corrections to previous
                                  presentations] . . . . . . . . . . . . . 160--162
            d'apr\`es Gundy and   
                    P.-A. Meyer   Les inégalités de Burkolder en théorie des
                                  martingales. (French) [Burkolder
                                  inequalities in martingale theory] . . . 163--174
                    P.-A. Meyer   Processus \`a accroissements indépendants
                                  et positifs. (French) [Processes with
                                  independent and positive increments] . . 175--189
               Philippe Morando   Mesures aléatoires. (French) [Random
                                  measures]  . . . . . . . . . . . . . . . 190--191
               Philippe Morando   Prolongements des mesures al\`eatoires.
                                  (French) [Extensions of random measures] 192--216
               Philippe Morando   Representation des mesures aléatoires
                                  positives \`a accroissement
                                  independants. (French) [Representation
                                  of positive random measures to
                                  independent increase]  . . . . . . . . . 217--229


Lecture Notes in Mathematics
Volume 89, 1969

                       J. Aczel   On different characterizations of
                                  entropies  . . . . . . . . . . . . . . . 1--11
                R. Ahlswede and   
                   J. Wolfowitz   The structure of capacity functions for
                                  compound channels  . . . . . . . . . . . 12--54
             M. Barahamihir and   
                      D. Behara   Boolean algebraic methods in Markov
                                  chains . . . . . . . . . . . . . . . . . 55--63
            Patrick Billingsley   Maxima of partial sums . . . . . . . . . 64--76
                 L. L. Campbell   Series expansions for random processes   77--95
    Miklós Csörg\Ho   Glivenko--Cantelli type theorems for
                                  distance functions based on the modified
                                  empirical distribution function of M.
                                  Kac and for the empirical process with
                                  random sample size in general  . . . . . 96--98
                  Taqdir Husain   On the continuity of Markov processes    99--105
                         M. Kac   Some mathematical problems in
                                  statistical mechanics  . . . . . . . . . 106--124
                N. S. Kambo and   
                        S. Kotz   Asymptotic behaviour of the average
                                  probability of error for low rates of
                                  information transmission . . . . . . . . 125--125
             J. H. B. Kemperman   On the optimum rate of transmitting
                                  information  . . . . . . . . . . . . . . 126--169
                 Ulrich Krengel   A necessary and sufficient condition for
                                  the validity of the local ergodic
                                  theorem  . . . . . . . . . . . . . . . . 170--177
                  K. Krickeberg   Recent results on mixing in topological
                                  measure spaces . . . . . . . . . . . . . 178--185
              A. R. Padmanabhan   Convergence in probability and allied
                                  results  . . . . . . . . . . . . . . . . 186--186
                    Ronald Pyke   Applications of almost surely convergent
                                  constructions of weakly convergent
                                  processes  . . . . . . . . . . . . . . . 187--200
                  Frank Spitzer   Random processes defined through the
                                  interaction of an infinite particle
                                  system . . . . . . . . . . . . . . . . . 201--223
            Volker Strassen and   
                   R. M. Dudley   The central limit theorem and $ \epsilon
                                  $-entropy  . . . . . . . . . . . . . . . 224--231
                   L. Weiss and   
                   J. Wolfowitz   Maximum probability estimators with a
                                  general loss function  . . . . . . . . . 232--256


Lecture Notes in Mathematics
Volume 90, 1969

               N. P. Bhatia and   
                       O. Hajek   Introduction . . . . . . . . . . . . . . 2--11
               N. P. Bhatia and   
                       O. Hajek   Local semi-dynamical systems: Basic
                                  definitions and properties . . . . . . . 12--26
               N. P. Bhatia and   
                       O. Hajek   Solutions: Negative continuation . . . . 27--34
               N. P. Bhatia and   
                       O. Hajek   Invariance . . . . . . . . . . . . . . . 35--41
               N. P. Bhatia and   
                       O. Hajek   Compactness conditions . . . . . . . . . 42--48
               N. P. Bhatia and   
                       O. Hajek   Limit sets . . . . . . . . . . . . . . . 49--58
               N. P. Bhatia and   
                       O. Hajek   The positive prolongation  . . . . . . . 59--73
               N. P. Bhatia and   
                       O. Hajek   Stability and orbital stability  . . . . 74--78
               N. P. Bhatia and   
                       O. Hajek   Attraction . . . . . . . . . . . . . . . 79--93
               N. P. Bhatia and   
                       O. Hajek   Flow near an invariant set . . . . . . . 94--99
               N. P. Bhatia and   
                       O. Hajek   Liapunov functions . . . . . . . . . . . 100--119
               N. P. Bhatia and   
                       O. Hajek   The start point set  . . . . . . . . . . 120--131
               N. P. Bhatia and   
                       O. Hajek   Minimality; Characteristic $O$.  . . . . 132--140
               N. P. Bhatia and   
                       O. Hajek   Functional-differential equations  . . . 141--153


Lecture Notes in Mathematics
Volume 91, 1969

                  N. N. Janenko   Front Matter . . . . . . . . . . . . . . N2--VIII
                  N. N. Janenko   Homogene Schemata. (German) [Homogeneous
                                  schemata]  . . . . . . . . . . . . . . . 1--16
                  N. N. Janenko   Die einfachsten Schemata mit
                                  Zwischenschritten zur Integration
                                  parabolischer Gleichungen. (German) [The
                                  simplest schemes with intermediate steps
                                  for integration of parabolic equations]  16--45
                  N. N. Janenko   Die Anwendung der Zwischenschrittmethode
                                  auf hyperbolische Gleichungen. (German)
                                  [The application of the
                                  intermediate-step method to hyperbolic
                                  equations] . . . . . . . . . . . . . . . 45--59
                  N. N. Janenko   Anwendung der Zwischenschrittmethode auf
                                  Randwertaufgaben der Laplaceschen und
                                  Poissonschen Differentialgleichung.
                                  (German) [Application of the
                                  intermediate-step method to boundary
                                  value problems of the Laplace and
                                  Poisson differential equation] . . . . . 59--97
                  N. N. Janenko   Randwertaufgaben der Elastizitätstheorie.
                                  (German) [Boundary value problems of
                                  elasticity theory] . . . . . . . . . . . 97--110
                  N. N. Janenko   Schemata erhöhter Genauigkeit. (German)
                                  [Schemes of increased accuracy]  . . . . 110--119
                  N. N. Janenko   Integrodifferentialgleichungen,
                                  Integralgleichungen und algebraische
                                  Gleichungen. (German)
                                  [ntegrodifferential, integral equations,
                                  and algebraic equations] . . . . . . . . 119--123
                  N. N. Janenko   Einige hydrodynamische Aufgaben.
                                  (German) [Some hydrodynamic problems]    123--142
                  N. N. Janenko   Allgemeine Aussagen. (German) [General
                                  statements]  . . . . . . . . . . . . . . 142--161
                  N. N. Janenko   Die Methode der schwachen Approximation
                                  und die Konstruktion einer Lösung des
                                  Cauchyschen Anfangswertproblems im
                                  Banachraum. (German) [The method of weak
                                  approximation and the construction of a
                                  solution of the Cauchy initial value
                                  problem in Banach space] . . . . . . . . 161--183
                  N. N. Janenko   Back Matter  . . . . . . . . . . . . . . 184--197


Lecture Notes in Mathematics
Volume 92, 1969

          Hans-Berndt Brinkmann   Relations for groups and for exact
                                  categories . . . . . . . . . . . . . . . 1--9
               Stephen U. Chase   Galois objects and extensions of Hopf
                                  algebras . . . . . . . . . . . . . . . . 10--31
                  Paul Dedecker   Three dimensional non-Abelian cohomology
                                  for groups . . . . . . . . . . . . . . . 32--64
              R. R. Douglas and   
               P. J. Hilton and   
                     F. Sigrist   $H$-spaces . . . . . . . . . . . . . . . 65--73
              Charles Ehresmann   Construction de structures libres.
                                  (French) [Construction of free
                                  structures]  . . . . . . . . . . . . . . 74--104
                K. W. Gruenberg   Categories of group extensions . . . . . 105--116
                    Max A. Knus   Algebras graded by a group . . . . . . . 117--133
             F. William Lawvere   Diagonal arguments and Cartesian closed
                                  categories . . . . . . . . . . . . . . . 134--145
              Saunders Mac Lane   Foundations for categories and sets  . . 146--164
                 Barry Mitchell   On the dimension of objects and
                                  categories III Hochschild dimension  . . 165--196
                  Jan-Erik Roos   Locally Noetherian categories and
                                  generalized strictly linearly compact
                                  rings. Applications  . . . . . . . . . . 197--277
                Friedrich Ulmer   Kan extensions, cotriples and André (co)
                                  homology . . . . . . . . . . . . . . . . 278--308


Lecture Notes in Mathematics
Volume 93, 1969

            K. R. Parthasarathy   Introduction . . . . . . . . . . . . . . 1--3
            K. R. Parthasarathy   Standard groups with a right invariant
                                  measure  . . . . . . . . . . . . . . . . 3--11
            K. R. Parthasarathy   Borel multipliers on a locally compact
                                  group  . . . . . . . . . . . . . . . . . 11--21
            K. R. Parthasarathy   Multipliers on Lie groups  . . . . . . . 22--28
            K. R. Parthasarathy   Miltipliers on some special groups . . . 28--52


Lecture Notes in Mathematics
Volume 94, 1969

                    M. Machover   General introduction . . . . . . . . . . 1--47
                  J. Hirschfelt   Uniform structures . . . . . . . . . . . 48--79


Lecture Notes in Mathematics
Volume 95, 1969

                A. S. Troelstra   Introduction . . . . . . . . . . . . . . 2--4
                A. S. Troelstra   Logic  . . . . . . . . . . . . . . . . . 5--11
                A. S. Troelstra   Elementary arithmetic  . . . . . . . . . 12--13
                A. S. Troelstra   Species  . . . . . . . . . . . . . . . . 14--16
                A. S. Troelstra   Sequences and constructive (lawlike)
                                  objects  . . . . . . . . . . . . . . . . 16--21
                A. S. Troelstra   Elementary theory of real numbers  . . . 22--26
                A. S. Troelstra   Ordering relations and order on the real
                                  line . . . . . . . . . . . . . . . . . . 26--28
                A. S. Troelstra   Constructive or lawlike analysis . . . . 29--33
                A. S. Troelstra   Lawless sequences of natural numbers . . 34--43
                A. S. Troelstra   Choice sequences . . . . . . . . . . . . 44--56
                A. S. Troelstra   Spreads and a theory of real numbers . . 57--64
                A. S. Troelstra   Topology; separable metric spaces  . . . 64--70
                A. S. Troelstra   Applications of the continuity
                                  principles and the fan theorem . . . . . 71--75
                A. S. Troelstra   Well-orderings and ordinals  . . . . . . 76--90
                A. S. Troelstra   Species revisited; the role of the
                                  comprehension principle  . . . . . . . . 91--94
                A. S. Troelstra   Brouwer's theory of the creative subject 95--107


Lecture Notes in Mathematics
Volume 96, 1969

      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Kerne und Cokerne. (German) [Kernels and
                                  co-kernels]  . . . . . . . . . . . . . . 1--11
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Zerlegung von Morphismen. Exakte
                                  Kategorien. (German) [Decomposition of
                                  morphisms. Exact categories] . . . . . . 12--20
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Addition von morphismen. Abelsche
                                  Kategorien. (German) [Addition of
                                  morphisms. Abelian categories] . . . . . 21--26
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Kartesische und cokartesische Quadrate.
                                  (German) [Cartesian and co-Cartesian
                                  squares] . . . . . . . . . . . . . . . . 27--35
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Exakte Folgen und exakte Quadrate.
                                  (German) [Exact sequences and exact
                                  squares] . . . . . . . . . . . . . . . . 36--51
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Kategorien von Korrespondenzen. (German)
                                  [Categories of correspondences]  . . . . 52--70
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Vollkommutative Quadrate, Zerlegung von
                                  Korrespondenzen. (German)
                                  [Fully-commutative squares,
                                  decomposition of correspondences]  . . . 71--83
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Korrespondenzen über exakten Kategorien.
                                  (German) [Correspondences on exact
                                  categories]  . . . . . . . . . . . . . . 84--101
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Homoloqie. (German) [Homology] . . . . . 102--117
      Hans-Berndt Brinkmann and   
                   Dieter Puppe   Diagrammlemmata in exakten Kategorien.
                                  (German) [Diagram lemmas in precise
                                  categories]  . . . . . . . . . . . . . . 118--122


Lecture Notes in Mathematics
Volume 97, 1969

           Stephen U. Chase and   
               Moss E. Sweedler   Galois objects . . . . . . . . . . . . . 4--51
           Stephen U. Chase and   
               Moss E. Sweedler   Hopf algebras and Galois theory  . . . . 52--83
               Stephen U. Chase   Galois objects and extensions of Hopf
                                  algebras . . . . . . . . . . . . . . . . 84--126


Lecture Notes in Mathematics
Volume 98, 1969

                  Maurice Heins   General observations and preliminaries   2--12
                  Maurice Heins   The Theorem of Szeg\Ho--Solomentsev  . . 13--33
                  Maurice Heins   A classification problem for Riemann
                                  surfaces . . . . . . . . . . . . . . . . 34--51
                  Maurice Heins   Boundary problems  . . . . . . . . . . . 52--87
                  Maurice Heins   Vector-valued functions  . . . . . . . . 88--104


Lecture Notes in Mathematics
Volume 99, 1969

                    J. F. Adams   Lectures on generalised cohomology . . . 1--138
                       Jon Beck   On $H$-spaces and infinite loop spaces   139--153
           D. B. A. Epstein and   
                      M. Kneser   Functors between categories of vector
                                  spaces . . . . . . . . . . . . . . . . . 154--170
               D. B. A. Epstein   Natural vector bundles . . . . . . . . . 171--195
                    Peter Freyd   Several new concepts: Lucid and
                                  concordant functors, pre-limits,
                                  pre-completeness, the continuous and
                                  concordant completions of categories . . 196--241
                   John W. Gray   The categorical comprehension scheme . . 242--312
                  R. T. Hoobler   Non-Abelian sheaf cohomology by derived
                                  functors . . . . . . . . . . . . . . . . 313--364
                    Max Karoubi   Foncteurs d\`eriv\`es et $K$-th\`eorie.
                                  (French) [Derived functors and
                                  $K$-theory]  . . . . . . . . . . . . . . 365--383
                F. E. J. Linton   Relative functorial semantics:
                                  Adjointness results  . . . . . . . . . . 384--418
                   Ernest Manes   Minimal subalgebras for dynamic triples  419--447
                   J. Peter May   Categories of spectra and infinite loop
                                  spaces . . . . . . . . . . . . . . . . . 448--479
                      Paul Olum   Homology of squares and factoring of
                                  diagrams . . . . . . . . . . . . . . . . 480--489


Lecture Notes in Mathematics
Volume 100, 1969

                   M. Artin and   
                       B. Mazur   A glossary of the categories in which we
                                  shall work, and fibre resolutions  . . . 6--19
                   M. Artin and   
                       B. Mazur   Pro-objects in the homotopy category . . 20--24
                   M. Artin and   
                       B. Mazur   Completions  . . . . . . . . . . . . . . 25--34
                   M. Artin and   
                       B. Mazur   Cohomological criteria for $ \natural
                                  $-isomorphism  . . . . . . . . . . . . . 35--59
                   M. Artin and   
                       B. Mazur   Completions and fibrations . . . . . . . 60--69
                   M. Artin and   
                       B. Mazur   Homotopy groups of completions . . . . . 70--74
                   M. Artin and   
                       B. Mazur   Stable results . . . . . . . . . . . . . 75--92
                   M. Artin and   
                       B. Mazur   Hypercoverings . . . . . . . . . . . . . 93--110
                   M. Artin and   
                       B. Mazur   The Verdier functor  . . . . . . . . . . 111--116
                   M. Artin and   
                       B. Mazur   The fundamental group  . . . . . . . . . 117--123
                   M. Artin and   
                       B. Mazur   A profiniteness theorem  . . . . . . . . 124--128
                   M. Artin and   
                       B. Mazur   Comparison theorems  . . . . . . . . . . 129--146


Lecture Notes in Mathematics
Volume 101, 1969

              G. P. Szeg\Ho and   
                    G. Treccani   Introduzione. (Italian) [Introduction]   1--6
              G. P. Szeg\Ho and   
                    G. Treccani   I sistemi dinamici generati da
                                  un'equazione automoma. (Italian)
                                  [Dynamical systems generated by an
                                  autonomous equation] . . . . . . . . . . 7--11
              G. P. Szeg\Ho and   
                    G. Treccani   Sistemi dinamici ordinari. (Italian)
                                  [Ordinary dynamical systems] . . . . . . 12--19
              G. P. Szeg\Ho and   
                    G. Treccani   Semigruppi di trasformazioni multivoche
                                  o sistemi dinamici
                                  generalizzati-depinizioni. (Italian)
                                  [Semigroups of transformations or
                                  multi-vocal-depinizioni generalized
                                  dynamical systems] . . . . . . . . . . . 20--25
              G. P. Szeg\Ho and   
                    G. Treccani   Il cono di traiettorie e le traiettorie
                                  di un sistema dinamico generalizzato.
                                  (Italian) [The cone of trajectories and
                                  the trajectories of a generalized
                                  dynamic system]  . . . . . . . . . . . . 26--34
              G. P. Szeg\Ho and   
                    G. Treccani   Il sistema dinamico generalizzato
                                  generato dalla equazione autonoma $ \dot
                                  {x} $ = g(x). (Italian) [The generalized
                                  dynamical system generated by the
                                  autonomous equation $ \dot {x} = g(x)$]  35--39
              G. P. Szeg\Ho and   
                    G. Treccani   Invarianza. (Italian) [Invariance] . . . 40--45
              G. P. Szeg\Ho and   
                    G. Treccani   Insiemi limite. (Italian) [Limit sets]   46--62
              G. P. Szeg\Ho and   
                    G. Treccani   Prolongazioni ed insiemi limite
                                  prolongazionali. (Italian) [Prolongation
                                  and prolongated limit sets]  . . . . . . 63--74
              G. P. Szeg\Ho and   
                    G. Treccani   Insiemi minimi. (Italian) [Minimal sets] 75--75
              G. P. Szeg\Ho and   
                    G. Treccani   Stabilit\`a di insiemi compatti.
                                  (Italian) [Stability of compact sets]    76--80
              G. P. Szeg\Ho and   
                    G. Treccani   Attrazione degli insiemi compatti.
                                  (Italian) [Attraction of compact sets]   81--87
              G. P. Szeg\Ho and   
                    G. Treccani   Stabilit\`a asintotica degli insiemi
                                  compatti. (Italian) [Asymptotic
                                  stability of compact sets] . . . . . . . 88--92
              G. P. Szeg\Ho and   
                    G. Treccani   Classificazione del flusso nell'intorno
                                  di un insieme compatto fortemente
                                  invariante. (Italian) [Classification of
                                  the flow in the neighborhood of a
                                  strongly-invariant compact set]  . . . . 93--96
              G. P. Szeg\Ho and   
                    G. Treccani   Funzioni di Liapunov per flussi senza
                                  unicit\`a. (Italian) [Liapunov functions
                                  for flows without uniqueness]  . . . . . 97--105
              G. P. Szeg\Ho and   
                    G. Treccani   Risultati locali. (Italian) [Local
                                  results] . . . . . . . . . . . . . . . . 106--112
              G. P. Szeg\Ho and   
                    G. Treccani   Teoremi di estensione locale e globale.
                                  (Italian) [Local and global extension
                                  theorems]  . . . . . . . . . . . . . . . 113--121
              G. P. Szeg\Ho and   
                    G. Treccani   Struttura delle curve di livello.
                                  (Italian) [Structure of contour lines]   122--134
              G. P. Szeg\Ho and   
                    G. Treccani   Condizioni con le derivate semidefinite.
                                  (French) [Conditions with semidefinite
                                  derivatives] . . . . . . . . . . . . . . 135--148
              G. P. Szeg\Ho and   
                    G. Treccani   Teoremi tipo Rolle. (Italian)
                                  [Rolle-type theorems]  . . . . . . . . . 149--157


Lecture Notes in Mathematics
Volume 102, 1969

                     F. Stummel   Beschränkte Bilinearformen und
                                  Operatoren. (German) [Limited bilinear
                                  forms and operators] . . . . . . . . . . 1--28
                     F. Stummel   Vollstetige Bilinearformen und
                                  Operatoren. (German) [Completely
                                  continuous bilinear forms and operators] 29--51
                     F. Stummel   Allgemeine Theorie der Randwertaufgaben.
                                  (German) [General theory of boundary
                                  value problems]  . . . . . . . . . . . . 52--107
                     F. Stummel   Sobolewsche Räume. (German) [Sobolev
                                  spaces]  . . . . . . . . . . . . . . . . 108--133
                     F. Stummel   Bilinearformen, Operatoren und
                                  $V$-Elliptizität. (German) [Bilinear
                                  forms, operators, and $V$-ellipticity]   134--176
                     F. Stummel   Die Räume $ H^\infty $ und $ H_0^\infty
                                  $. (German) [The spaces $ H^\infty $ und
                                  $ H_0^\infty $]  . . . . . . . . . . . . 177--203
                     F. Stummel   Lineare stetige Funktionale auf dem
                                  Testraum $ H_0^\infty $. (German)
                                  [Linear continuous functionals on the
                                  test space $ H_0^\infty $] . . . . . . . 204--227
                     F. Stummel   Reguläre Randwertaufgaben bei gewöhnlichen
                                  Differentialgleichungen. (German)
                                  [Regular boundary value problems for
                                  ordinary differential equations] . . . . 228--256
                     F. Stummel   Elliptische Systeme partieller
                                  Differentialgleichungen für periodische
                                  Funktionen. (German) [Elliptic systems
                                  of partial differential equations for
                                  periodic functions]  . . . . . . . . . . 257--286
                     F. Stummel   Dirichletsche Randwertaufgaben,
                                  Sobolewsche Funktionenräume $ W^{m,
                                  2}(\Omega; p) $ und semielliptische
                                  Differentialoperatoren. (German)
                                  [Dirichlet boundary value problems,
                                  Sobolev function spaces $ P W^{m, 2}
                                  (\Omega, p) $ and semi-elliptic
                                  differential operators]  . . . . . . . . 287--338
         Rolf Dieter Grigorieff   Randwertaufgaben für elliptische
                                  Differentialoperatoren und
                                  Bilinearformen in den Sobolewschen Räumen
                                  W$^{m, 2}$ ($ \Omega $). (German)
                                  [Boundary value problems for elliptic
                                  differential operators and bilinear
                                  forms in the Sobolev spaces $ W^{m, 2}
                                  (\Omega)$] . . . . . . . . . . . . . . . 339--381


Lecture Notes in Mathematics
Volume 103, 1969

                Kenneth Hoffman   Bounded analytic functions in the unit
                                  disk . . . . . . . . . . . . . . . . . . 1--9
                     Hugo Rossi   Strongly pseudoconvex manifolds  . . . . 10--29
                    John Wermer   Banach algebras and uniform
                                  approximation  . . . . . . . . . . . . . 30--43
                  C. E. Rickart   Extension of results from several
                                  complex variables to general function
                                  algebras . . . . . . . . . . . . . . . . 44--59
            Lars Hörmander   The Cauchy problem for differential
                                  equations with constant coefficients . . 60--71
                      F. Treves   Local Cauchy problem for linear partial
                                  differential equations with analytic
                                  coefficients . . . . . . . . . . . . . . 72--100
                   M. F. Atiyah   Algebraic topology and operators in
                                  Hilbert space  . . . . . . . . . . . . . 101--121
          Clifford J. Earle and   
                    James Eells   Deformations of Riemann surfaces . . . . 122--149
                       S. Smale   Global stability questions in dynamical
                                  systems  . . . . . . . . . . . . . . . . 150--158


Lecture Notes in Mathematics
Volume 104, 1969

         George H. Pimbley, Jr.   An example . . . . . . . . . . . . . . . 4--10
         George H. Pimbley, Jr.   The extension of branches of solutions
                                  for nonlinear equations in Banach spaces 11--17
         George H. Pimbley, Jr.   Development of branches of solutions for
                                  nonlinear equations near an exceptional
                                  point. Bifurcation theory  . . . . . . . 18--28
         George H. Pimbley, Jr.   Solution of the bifurcation equation in
                                  the case $ n = 1 $; bifurcation at the
                                  origin . . . . . . . . . . . . . . . . . 29--42
         George H. Pimbley, Jr.   The eigenvalue problem; Hammerstein
                                  operators; sublinear and superlinear
                                  operators; oscillation kernels . . . . . 43--57
         George H. Pimbley, Jr.   On the extension of branches of
                                  eigenfunctions; conditions preventing
                                  secondary bifurcation of branches  . . . 58--79
         George H. Pimbley, Jr.   Extension of branches of eigenfunctions
                                  of Hammerstein operators . . . . . . . . 80--84
         George H. Pimbley, Jr.   The example of section 1, reconsidered   85--91
         George H. Pimbley, Jr.   A two-point boundary value problem . . . 92--101
         George H. Pimbley, Jr.   Summary; collection of hypotheses;
                                  unsettled questions  . . . . . . . . . . 102--113


Lecture Notes in Mathematics
Volume 105, 1969

                  Ronald Larsen   Prologue: The multipliers for $ L_1 (G)
                                  $  . . . . . . . . . . . . . . . . . . . 1--18
                  Ronald Larsen   The general theory of multipliers  . . . 19--105
                  Ronald Larsen   The multipliers for commutative
                                  H*-algebras  . . . . . . . . . . . . . . 106--116
                  Ronald Larsen   Multipliers for topological linear
                                  spaces of functions and measures . . . . 117--140
                  Ronald Larsen   The multipliers for $ L_p(G) $ . . . . . 141--170
                  Ronald Larsen   The multipliers for the pair $ (L_p (G),
                                  L_q (G)) (1 \leq p, q \leq \infty) $ . . 171--233
                  Ronald Larsen   The multipliers for functions with
                                  Fourier transforms in $ L_p (\hat {G}) $ 234--269


Lecture Notes in Mathematics
Volume 106, 1969

                   Michael Barr   What is the center?  . . . . . . . . . . 1--12
                  P. Berthiaume   The functor evaluation . . . . . . . . . 13--63
               R. F. C. Walters   An alternative approach to universal
                                  algebra  . . . . . . . . . . . . . . . . 64--73
                      J. Duskin   Variations on Beck's tripleability
                                  criterion  . . . . . . . . . . . . . . . 74--129
                  Myles Tierney   Autonomous categories with models  . . . 130--165
                    G. M. Kelly   Adjunction for enriched categories . . . 166--177
                  B. J. Day and   
                    G. M. Kelly   Enriched functor categories  . . . . . . 178--191
              Saunders Mac Lane   One universe as a foundation for
                                  category theory  . . . . . . . . . . . . 192--200
           Solomon Feferman and   
                     G. Kreisel   Set-Theoretical foundations of category
                                  theory . . . . . . . . . . . . . . . . . 201--247


Lecture Notes in Mathematics
Volume 107, 1969

                 A. Peyerimhoff   Introductory remarks . . . . . . . . . . 2--4
                 A. Peyerimhoff   Ces\`aro means . . . . . . . . . . . . . 4--10
                 A. Peyerimhoff   Matrix transformations . . . . . . . . . 10--63
                 A. Peyerimhoff   Tauberian theorems . . . . . . . . . . . 63--88
                 A. Peyerimhoff   Hausdorff and Nörlund summability . . . . 88--101


Lecture Notes in Mathematics
Volume 108, 1969

                     Hyman Bass   $ K_2 $ and symbols  . . . . . . . . . . 1--11
           A. Fröhlich and   
                  C. T. C. Wall   Foundations of equivariant algebraic
                                  $K$-theory . . . . . . . . . . . . . . . 12--27
                       I. Bucur   Triangulated categories and algebraic
                                  $K$-theory . . . . . . . . . . . . . . . 28--54
                    Anthony Bak   On modules with quadratic forms  . . . . 55--66
                  Martin Kneser   Normal subgroups of integral orthogonal
                                  groups . . . . . . . . . . . . . . . . . 67--71
                   W. C. Hsiang   A splitting theorem and the Künneth
                                  formula in algebraic $K$-theory  . . . . 72--77
                   C. B. Thomas   Obstructions for group actions on $
                                  S^{2n - 1} $ . . . . . . . . . . . . . . 78--86


Lecture Notes in Mathematics
Volume 109, 1969

                    J. Albrecht   Generalisation of an inclusion theorem
                                  of L. Collatz  . . . . . . . . . . . . . 1--6
                E. G. D'Jakonov   On certain iterative methods for solving
                                  nonlinear difference equations . . . . . 7--22
                      Ben Noble   Instability when solving Volterra
                                  integral equations of the second kind by
                                  multistep methods  . . . . . . . . . . . 23--39
                   Minoru Urabe   Numerical solution of boundary value
                                  problems in Chebyshev series --- A
                                  method of computation and error
                                  estimation . . . . . . . . . . . . . . . 40--86
                   Emil Vitasek   The numerical stability in solution of
                                  differential equations . . . . . . . . . 87--111
                Olaf B. Widlund   On the effects of scaling of the
                                  Peaceman--Rachford method  . . . . . . . 113--132
                  J. C. Butcher   The effective order of Runge--Kutta
                                  methods  . . . . . . . . . . . . . . . . 133--139
                   G. J. Cooper   Error bounds for some single step
                                  methods  . . . . . . . . . . . . . . . . 140--147
                      Olav Dahl   Approximation of nonlinear operators . . 148--153
Karl Graf Finck von Finckenstein   On the numerical treatment of hyperbolic
                                  differential equations with constant
                                  coefficients, particularly the
                                  $n$-dimensional wave equation  . . . . . 154--159
                Rudolf Gorenflo   Monotonic difference schemes for weakly
                                  coupled systems of parabolic
                                  differential equations . . . . . . . . . 160--167
                  A. R. Gourlay   The numerical solution of evolutionary
                                  partial differential equations . . . . . 168--171
                 W. R. Hodgkins   A method for the numerical integration
                                  of non-linear ordinary differential
                                  equations with greatly different time
                                  constants  . . . . . . . . . . . . . . . 172--177
                  Mohan Lal and   
                   Paul Gillard   Numerical solution of two
                                  differential-difference equations of
                                  analytic theory of numbers . . . . . . . 179--187
                     W. Liniger   Global accuracy and $A$-stability of
                                  one- and two-step integration formulae
                                  for stiff ordinary differential
                                  equations  . . . . . . . . . . . . . . . 188--193
                      Tom Lyche   Optimal order multistep methods with an
                                  arbitrary number of nonsteppoints  . . . 194--199
                       S. McKee   Alternating direction methods for
                                  parabolic equations in two and three
                                  space dimensions with mixed derivatives  200--206
                 K. O. Mead and   
                   L. M. Delves   On the convergence rates of variational
                                  methods  . . . . . . . . . . . . . . . . 207--213
       Syvert P. Nòrsett   An $A$-stable modification of the
                                  Adams--Bashforth methods . . . . . . . . 214--219
               Peter Piotrowski   Stability, consistency and convergence
                                  of variable $K$-step methods for
                                  numerical integration of large systems
                                  of ordinary differential equations . . . 221--227
                   J. H. Verner   Implicit Methods for Implicit
                                  Differential Equations . . . . . . . . . 261--266


Lecture Notes in Mathematics
Volume 110, 1969

                  Martin Aigner   Graphs and binary relations  . . . . . . 1--21
              Sabra S. Anderson   Graph theory and finite projective
                                  planes . . . . . . . . . . . . . . . . . 23--26
              David W. Barnette   On Steinitz's theorem concerning convex
                                  $3$-polytopes and on some properties of
                                  planar graphs  . . . . . . . . . . . . . 27--40
                   Mehdi Behzad   Analogues of Ramseyxo numbers  . . . . . 41--43
              Lowell W. Beineke   A survey of packings and coverings of
                                  graphs . . . . . . . . . . . . . . . . . 45--53
                   I. Z. Bouwer   Section graphs for finite permutation
                                  groups . . . . . . . . . . . . . . . . . 55--61
                    D. W. Crowe   Nearly regular polyhedra with two
                                  exceptional faces  . . . . . . . . . . . 63--76
                   Paul Erd\Hos   Some applications of graph theory to
                                  number theory  . . . . . . . . . . . . . 77--82
              Joseph B. Frechen   On the number of cycles in permutation
                                  graphs . . . . . . . . . . . . . . . . . 83--87
           Dennis P. Geller and   
          Stephen T. Hedetniemi   A note on a category of graphs . . . . . 89--90
            D. L. Greenwell and   
                R. L. Hemminger   Reconstructing graphs  . . . . . . . . . 91--114
           Branko Grünbaum   Incidence patterns of graphs and
                                  complexes  . . . . . . . . . . . . . . . 115--128
                 Richard K. Guy   A many-facetted problem of Zarankiewicz  129--148
             Ronald C. Hamelink   Graph theory and Lie algebra . . . . . . 149--153
               Frank Harary and   
                  Dominic Welsh   Matroids versus graphs . . . . . . . . . 155--170
             Stephen Hedetniemi   On classes of graphs defined by special
                                  cutsets of lines . . . . . . . . . . . . 171--189
           Marshall D. Hestenes   Rank $3$ graphs  . . . . . . . . . . . . 191--192
                Hudson V. Kronk   Variations on a theorem of Pósa . . . . . 193--197
                    R. Don Lick   Critically and minimally $n$-connected
                                  graphs . . . . . . . . . . . . . . . . . 199--205
                  Bennet Manvel   On reconstruction of graphs  . . . . . . 207--214


Lecture Notes in Mathematics
Volume 111, 1969

                    K. H. Mayer   Einleitung. (German) [Introduction]  . . 1--4
                    K. H. Mayer   Bordismusgruppen. (German) [Bordism
                                  groups]  . . . . . . . . . . . . . . . . 5--18
                    K. H. Mayer   Vorbereitungen und Bezeichnungen.
                                  (German) [Preparations and designations] 19--26
                    K. H. Mayer   Komplexe Vektorraumbündel über schwach
                                  fast-komplexen und orientierten
                                  Mannigfaltigkeiten. (German) [Complex
                                  vector sheaves over weakly
                                  almost-complex and oriented manifolds]   27--33
                    K. H. Mayer   Exakte Sequenzen zur Bestimmung von $
                                  \Omega_*^{\rm SU}(X) $. (German) [Exact
                                  sequences for the determination of $
                                  \Omega_*^{\rm SU}(X) $]  . . . . . . . . 34--40
                    K. H. Mayer   Die Definition von $ W(X) $. (German)
                                  [The definition of $ W(X) $] . . . . . . 41--49
                    K. H. Mayer   Identifikation von $ W(X) $. (German)
                                  [Identification of $ W(X) $] . . . . . . 50--56
                    K. H. Mayer   Die Homologie von $ W({\rm BU}(1)) $.
                                  (German) [The homology of $ W({\rm
                                  BU}(1)) $] . . . . . . . . . . . . . . . 57--67
                    K. H. Mayer   Die Torsion von $ \Omega_*^{\rm SU}({\rm
                                  BU}(1)) $. (German) [The torsion of $
                                  \Omega_*^{\rm SU}({\rm BU}(1)) $]  . . . 68--69
                    K. H. Mayer   Die Relationen zwischen den
                                  charakteristischen Zahlen einer $ S
                                  U$-Mannigfaltigkeit und eines $
                                  U(k)$-Bündels. (German) [The relations
                                  between the characteristic numbers of an
                                  $ S U$-manifold and a $ U(k) $ sheaf]    70--75
                    K. H. Mayer   Ein Ergebnis für $ \Omega_{8n + 4}^{\rm
                                  Spin}({\rm BSO}(2 k + 1)) $. (German) [A
                                  result for $ \Omega_{8n + 4}^{\rm
                                  Spin}({\rm BSO}(2 k + 1)) $] . . . . . . 76--80
                    K. H. Mayer   Reelle Vektorraumbündel über schwach
                                  fast-komplexen und orientierten
                                  Mannigfaltigkeiten. (German) [Real
                                  vector sheaf over weak almost-complex
                                  and oriented manifolds]  . . . . . . . . 81--95
                    K. H. Mayer   Reelle Vektorraumbündel über $ S
                                  U$-Mannigfaltigkeiten. (German) [Real
                                  vector sheaf over $ S U $-manifolds] . . 96--97


Lecture Notes in Mathematics
Volume 118, 1969

               J. W. S. Cassels   Factorization of polynomials in several
                                  variables  . . . . . . . . . . . . . . . 1--17
                 Ole-Johan Dahl   Programming languages as tools for the
                                  formulation of concepts  . . . . . . . . 18--29
              Jens Erik Fenstad   Non-standard models for arithmetic and
                                  analysis . . . . . . . . . . . . . . . . 30--47
                   Peter Hilton   On factorization of manifolds  . . . . . 48--57
                     Olli Lehto   Homeomorphisms with a given dilatation   58--73
              Henrik H. Martens   From the classical theory of Jacobian
                                  varieties  . . . . . . . . . . . . . . . 74--98
                   Atle Selberg   Recent developments in the theory of
                                  discontinuous groups of motions of
                                  symmetric spaces . . . . . . . . . . . . 99--120
               Lennart Carleson   The corona theorem . . . . . . . . . . . 121--132
                      J. Wermer   Polynomial approximation . . . . . . . . 133--162


Lecture Notes in Mathematics
Volume 191, 1971

                 C. Dellacherie   Correction \`a `Ensembles aléatoires II'.
                                  (French) [Correction to `Random
                                  ensembles II'']  . . . . . . . . . . . . 86--86