Last update:
Fri Oct 13 09:01:42 MDT 2017
R. G. Burns On the Rank of the Intersection of
Subgroups of a Fuchsian Group . . . . . 165--187
Uwe Jannsen Mixed motives for absolute Hodge cycles 1--56
Uwe Jannsen Algebraic cycles, $K$-theory, and
extension classes . . . . . . . . . . . 57--188
Uwe Jannsen $K$-theory and $ \ell $-adic cohomology 189--221
A. Durand Quelques aspects de la théorie analytique
des polynômes I. (French) [] . . . . . . 1--42
A. Durand Quelques aspects de la théorie analytique
des polynômes II. (French) [] . . . . . . 43--85
Alain Durand Relation de Szeg\Ho sur la derivée d'un
polynôme. (French) [] . . . . . . . . . . 86--93
Alain Durand Approximations algébriques d'un nombre
transcendant. (French) [] . . . . . . . 94--96
Jean-Pierre Borel Polynômes \`a coefficients positifs
multiples d'un polynôme donné. (French) [] 97--115
P. Bundschuh Indépendance algébrique par des méthodes
d'approximations. (French) [] . . . . . 116--122
François Gramain Fonctions enti\`eres d'une ou plusieurs
variables complexes prenant des valeurs
enti\`eres sur une progression
géométrique. (French) [] . . . . . . . . . 123--137
Michel Langevin Sph\`ere de Riemann et Géométrie des
polynômes. (French) [] . . . . . . . . . 138--159
Maurice Mignotte Polynômes et lemme de Siegel. (French) [] 160--166
A. Schinzel and
J. L. Nicolas Localisation des zéros de polynômes
intervenant en théorie du signal.
(French) [] . . . . . . . . . . . . . . 167--179
Patrice Philippon Polynômes d'interpolation sur $ \mathbb
{Z} $ et $ \mathbb {Z}[i] $. (French) [] 180--195
Elmer Rees and
Christopher Smyth On the constant in the Tarry--Escott
problem . . . . . . . . . . . . . . . . 196--208
Bahman Saffari Extremal problems on polynomials . . . . 209--211
A. Schinzel Un crit\`ere d'irreductibilité de
polynômes. (French) [] . . . . . . . . . 212--224
Michel Waldschmidt Indépendance algébrique de nombres de
Liouville. (French) [] . . . . . . . . . 225--235
Mich\`ele Audin Hamiltoniens périodiques sur les variétés
symplectiques compactes de dimension
$4$. (French) [] . . . . . . . . . . . . 1--25
R. Cushman and
J.-C. van der Meer The Hamiltonian Hopf bifurcation in the
Lagrange top . . . . . . . . . . . . . . 26--38
Pierre Dazord Groupoídes symplectiques et troisi\`eme
théor\`eme de Lie `non linéaire'. (French)
[] . . . . . . . . . . . . . . . . . . . 39--74
N. Desolneux-Moulis Dynamique des syst\`emes hamiltoniens
compl\`etement intégrables sur les variétés
compactes. (French) [] . . . . . . . . . 75--83
Paul Donato Géométrie des orbites coadjointes des
groupes de difféomorphismes. (French) [] 84--104
Jean-Pierre Françoise Intégrales de périodes en geométries
symplectique et isochore. (French) [] 105--138
Emmanuel Giroux Formes generatrices d'immersions
lagrangiennes dans un espace cotangent.
(French) [] . . . . . . . . . . . . . . 139--145
P. A. Horváthy Dynamical symmetries of monopole
scattering . . . . . . . . . . . . . . . 146--160
Yvette Kosmann-Schwarzbach Groupes de Lie--Poisson
quasitriangulaires. (French) [] . . . . 161--177
Ernesto A. Lacomba and
Felipe Peredo Escape-equilibrium solutions in the
repulsive Coulombian isosceles $3$-body
problem . . . . . . . . . . . . . . . . 178--191
André Lichnerowicz Groupes de Lie \`a structures
symplectiques ou Kähleriennes
invariantes. (French) [] . . . . . . . . 192--209
Carlos Moreno Produits star sur certains $ G / K $
Kähleriens. Équation de Yang--Baxter et
produits star sur $G$. (French) [] . . . 210--234
Marie-Paule Muller Une sph\`ere Lagrangienne plongée dans
une structure symplectique compl\`ete
sur $ \mathbb {R}^6 $. (French) [] . . . 235--241
Claude Roger Déformations universelles des crochets de
Poissonxo. (French) [] . . . . . . . . . 242--254
Regina Martínez and
Carles Simó Blow up of collapsing binaries in the
planar three body problem . . . . . . . 255--267
F. J. Turiel Dimension minimale des orbites d'une
action symplectique de $ \mathbb {R}^n
$. (French) [] . . . . . . . . . . . . . 268--289
Lucian B\uadescu Infinitesimal deformations of negative
weights and hyperplane sections . . . . 1--22
Edoardo Ballico On $k$-spanned projective surfaces . . . 23--23
Mauro Beltrametti and
Andrew J. Sommese On $K$-spannedness for projective
surfaces . . . . . . . . . . . . . . . . 24--51
Aldo Biancofiore On the hyperplane sections of ruled
surfaces . . . . . . . . . . . . . . . . 52--66
Fabrizio Catanese Footnotes to a theorem of I. Reider . . 67--74
Herbert Clemens An obstruction to moving multiples of
subvarieties . . . . . . . . . . . . . . 75--90
Wolfram Decker and
Thomas Peternell and
Joseph le Potier and
Michael Schneider Half-canonical surfaces in $ {\rm IP}_4
$ . . . . . . . . . . . . . . . . . . . 91--110
Ph. Ellia and
Ch. Peskine Groupes de points de $ P^2 $:
Caract\`ere et position uniforme.
(French) [] . . . . . . . . . . . . . . 111--116
Takao Fujita On singular Del Pezzo varieties . . . . 117--128
Klaus Hulek Abelian surfaces in products of
projective spaces . . . . . . . . . . . 129--137
Paltin Ionescu Embedded projective varieties of small
invariants. III . . . . . . . . . . . . 138--154
Elvira Laura Livorni On the existence of some surfaces . . . 155--179
Cristina Oliva On the pluriadjoint maps of polarized
normal Gorenstein surfaces . . . . . . . 180--183
Marino Palleschi On the adjoint line bundle to an ample
and spanned one . . . . . . . . . . . . 184--190
Miles Reid Quadrics through a canonical surface . . 191--213
Miles Reid Infinitesimal view of extending a
hyperplane section- deformation theory
and computer algebra . . . . . . . . . . 214--286
Igor Reider Toward Abel--Jacobi theory for higher
dimensional varieties . . . . . . . . . 287--300
Fumio Sakai Reider--Serrano's method on normal
surfaces . . . . . . . . . . . . . . . . 301--319
J. F. Adams Talk on Toda's work . . . . . . . . . . 7--14
Wen-Hsiung Lin A conjecture of may on $ E_2 $-term of
the may spectral sequence for the
cohomology of the Steenrod algebra . . . 15--52
I. M. James Continuous functions of several variable 53--56
M. Tezuka and
N. Yagita Cohomology of finite groups and
Brown--Peterson cohomology II . . . . . 57--69
J. R. Hubbuck Some stably indecomposable loop spaces 70--77
David J. Anick $R$-local homotopy theory . . . . . . . 78--85
John McCleary Homotopy theory and closed geodesics . . 86--94
Juno Mukai A proof of the theorem characterizing
the generalized $J$-homomorphism . . . . 95--104
Ronald Brown Some problems in non-abelian homotopical
and homological algebra . . . . . . . . 105--129
K. Knapp and
E. Ossa KO-codegree and real line bundles . . . 130--139
J. P. C. Greenlees The power of $ \bmod P $ Borel homology 140--151
F. R. Cohen A note concerning the $ v_1 $-periodic
homotopy of odd spheres . . . . . . . . 152--155
Zen-ichi Yosimura The quasi KO-homology types of the real
projective spaces . . . . . . . . . . . 156--174
Stewart B. Priddy On characterizing summands in the
classifying space of a group, II . . . . 175--183
Jack Morava On the complex Cobordism ring as a Fock
representation . . . . . . . . . . . . . 184--204
Kazumoto Kozima On the generalized homology of the
connective fibering of BU . . . . . . . 205--209
Haynes Miller On Jones's Kahn--Priddy theorem . . . . 210--218
Donald M. Davis and
Mark Mahowald $ v_1$-periodic homotopy of $ {\rm
Sp}(2)$, $ {\rm Sp}(3)$, and $ S^{2 n}$ 219--237
Pat Muldowney About Ralph Henstock . . . . . . . . . . 1--6
Ralph Henstock Introduction to the new integrals . . . 7--9
P. S. Bullen Some applications of a theorem of
Marcinkiewicz . . . . . . . . . . . . . 10--18
Chew Tuan Seng The superposition operators in the space
of Henstock--Kurzweil integrable
functions . . . . . . . . . . . . . . . 19--24
Susana Fernandez Long de Foglio New and old results concerning
Henstock's integrals . . . . . . . . . . 25--37
Cecile Pierson-Gorez Double integrals and convergence of
double series . . . . . . . . . . . . . 38--53
Ralph Henstock Integration in infinite-dimensional
spaces . . . . . . . . . . . . . . . . . 54--65
Jaroslav Kurzweil and
Ji\vrí Jarník The PU-integral: its definition and some
basic properties . . . . . . . . . . . . 66--81
Solomon Leader $1$-differentials on $1$-cells: a
further study . . . . . . . . . . . . . 82--96
Lee Peng Yee Generalized convergence theorems for
Denjoy--Perron integrals . . . . . . . . 97--109
P. Maritz On some aspects of open multifunctions 110--130
P. Muldowney Infinite-dimensional generalised Riemann
integrals . . . . . . . . . . . . . . . 131--135
Piotr Mikusi\'nski and
Krzysztof Ostaszewski The space of Henstock integrable
functions II . . . . . . . . . . . . . . 136--149
Washek F. Pfeffer Divergence theorem for vector fields
with singularities . . . . . . . . . . . 150--166
V. A. Skvortsov Some properties of dyadic primitives . . 167--179
J. D. Stegeman Analysis of P. Malliavin's proof of non
spectral synthesis . . . . . . . . . . . 180--200
J. D. Stegeman Papers of G. Cross, Y. Kubota, J. L.
Mawhin, M. Morayne, W. F. Pfeffer and
W.-C. Yang, and C. A. Rogers . . . . . . 201--201
J. D. Stegeman Problems . . . . . . . . . . . . . . . . 202--202
C. Andradas and
E. Becker A note on the real spectrum of analytic
functions on an analytic manifold of
dimension one . . . . . . . . . . . . . 1--21
Riccardo Benedetti and
François Loeser and
Jean-Jacques Risler Two bounds for the number of connected
components of a real algebraic set . . . 22--35
Shrikant M. Bhatwadekar and
Friedrich Ischebeck and
Manuel Ojanguren and
Gerhard Schabhüser Strongly algebraic vector bundles over $
\mathbb {R}^d $ . . . . . . . . . . . . 36--41
Edward Bierstone and
Pierre D. Milman Local resolution of singularities . . . 42--64
J. Bochnak and
W. Kucharz On vector bundles and real algebraic
morphisms . . . . . . . . . . . . . . . 65--71
Ludwig Bröcker On the stability index of Noetherian
rings . . . . . . . . . . . . . . . . . 72--80
Emilio Bujalance and
Antonio F. Costa and
J. M. Gamboa Real parts of complex algebraic curves 81--110
Michel Coste Sous-ensembles algébriques réels de
codimension $2$. (French) [] . . . . . . 111--120
J.-P. Françoise and
R. Silhol Real abelian varieties and the
singularities of an integrable
Hamiltonian system . . . . . . . . . . . 121--127
Danielle Gondard-Cozette Chainable fields and real algebraic
geometry . . . . . . . . . . . . . . . . 128--148
A. González-Corbalan and
T. Recio Shape invariant lists and realization as
plane real algebraic curves with
doublepoints . . . . . . . . . . . . . . 149--169
K. Kurdyka and
J. B. Poly and
G. Raby Moyennes des fonctions sous-analytiques,
densité, cône tangent et tranches.
(French) [] . . . . . . . . . . . . . . 170--177
Dan Laksov and
Karin Westin Nullstellensätze; conjectures and
counterexamples . . . . . . . . . . . . 178--190
Alexis Marin Sur un théor\`eme de Cheponkus. (French)
[] . . . . . . . . . . . . . . . . . . . 191--193
Alexander Nabutovsky Isotopies and non-recursive functions in
real algebraic geometry . . . . . . . . 194--205
Robert O. Robson Slices: Functions for abstract real
analysis . . . . . . . . . . . . . . . . 206--222
M.-F. Roy and
A. Szpirglas Complexity of the computation of
cylindrical decomposition and topology
of real algebraic curves using Thom's
lemma . . . . . . . . . . . . . . . . . 223--236
Jesús M. Ruíz On the topology of global semianalytic
sets . . . . . . . . . . . . . . . . . . 237--246
Masahiro Shiota Piecewise linearization of subanalytic
functions II . . . . . . . . . . . . . . 247--307
R. Silhol Classification birationnelle des
surfaces rationnelles réelles . . . . . . 308--324
Hebe Azevedo Biagioni Generalized functions on an open subset
of $ E_n $ . . . . . . . . . . . . . . . 1--68
Hebe Azevedo Biagioni Generalized functions on an arbitrary
subset of $ E_n $ . . . . . . . . . . . 69--82
Hebe Azevedo Biagioni Generalized solutions of nonlinear
partial differential equations . . . . . 83--141
Michael Atiyah Hyperkähler manifolds . . . . . . . . . . 1--13
Eugenio Calabi Affine differential geometry and
holomorphic curves . . . . . . . . . . . 15--21
J. W. Cogdell and
I. I. Piatetski-Shapiro The meromorphic continuation of
Kloosterman--Selberg zeta functions . . 23--35
Gerd Dethloff and
Hans Grauert Deformation of compact Riemann surfaces
$Y$ of genus $p$ with distinguished
points $ P_1, \ldots, P_m {\in } Y$ . . 37--44
Shoshichi Kobayashi On moduli of vector bundles . . . . . . 45--57
Adam Korányi and
Hans Martin Reimann Quasiconformal mappings on CR manifolds 59--75
Rainer Nagel On the stability of positive semigroups
generated by operator matrices . . . . . 77--83
Raghavan Narasimhan The Levi problem on algebraic manifolds 85--91
H. H. Schaefer A Banach--Steinhaus theorem for weak and
order continuous operators . . . . . . . 93--100
Jean-Pierre Vigué Fixed points of holomorphic mappings . . 101--106
Stanley O. Kochman Introduction . . . . . . . . . . . . . . 1--11
Stanley O. Kochman Toda brackets . . . . . . . . . . . . . 12--34
Stanley O. Kochman Low dimensional computations . . . . . . 35--71
Stanley O. Kochman The image of $J$ . . . . . . . . . . . . 72--98
Stanley O. Kochman The Japanese stems $ (\pi_N, 9 \leq N
\leq 31) $ . . . . . . . . . . . . . . . 99--138
Stanley O. Kochman The Chicago stem $ (\pi^S_N, 32 \leq N
\leq 45) $ . . . . . . . . . . . . . . . 139--211
Stanley O. Kochman The new stems $ (\pi^S_N, 46 \leq N \leq
64) $ . . . . . . . . . . . . . . . . . 212--283
Stanley O. Kochman The elements of arf invariant one . . . 284--293
Francis E. Burstall and
John H. Rawnsley Introduction . . . . . . . . . . . . . . 1--5
Francis E. Burstall and
John H. Rawnsley Homogeneous geometry . . . . . . . . . . 6--14
Francis E. Burstall and
John H. Rawnsley Harmonic maps and twistor spaces . . . . 15--21
Francis E. Burstall and
John H. Rawnsley Symmetric spaces . . . . . . . . . . . . 22--38
Francis E. Burstall and
John H. Rawnsley Flag manifolds . . . . . . . . . . . . . 39--62
Francis E. Burstall and
John H. Rawnsley The twistor space of a Riemannian
symmetric space . . . . . . . . . . . . 63--70
Francis E. Burstall and
John H. Rawnsley Twistor lifts over Riemannian symmetric
spaces . . . . . . . . . . . . . . . . . 71--80
Francis E. Burstall and
John H. Rawnsley Stable Harmonic $2$-spheres . . . . . . 81--89
Francis E. Burstall and
John H. Rawnsley Factorisation of harmonic spheres in Lie
groups . . . . . . . . . . . . . . . . . 90--105
Peter Booth Equivalent homotopy theories and groups
of self-equivalences . . . . . . . . . . 1--16
P. I. Booth and
P. R. Heath On the group $ \epsilon (X \times Y) $
and $ \epsilon_B^B(X \times_B Y) $ . . . 17--31
G. Didierjean Homotopie des Espaces d'Équivalences.
(French) [Homotopy of equivalent spaces] 32--39
Vagn Lundsgaard Hansen The space of self maps on the $2$-sphere 40--47
Allen Hatcher and
Darryl McCullough Finite presentation of $3$-manifold
mapping class groups . . . . . . . . . . 48--57
Donald W. Kahn Representations of the stable group of
self-equivalences . . . . . . . . . . . 58--70
Howard J. Marcum Homotopy equivalences in $2$-categories 71--86
Ken-ichi Maruyama Localizing $ \epsilon_\# (X) $ . . . . . 87--90
J. P. May Weak equivalences and quasifibrations 91--101
Darryl McCullough Topological and algebraic automorphisms
of $3$-manifolds . . . . . . . . . . . . 102--113
Andy Miller Projecting homeomorphisms from covering
spaces . . . . . . . . . . . . . . . . . 114--132
Jesper Michael Mòller Equivariant self-homotopy equivalences
of $2$-stage $G$-spaces . . . . . . . . 133--146
John W. Rutter On skeleton preserving homotopy
self-equivalences of CW complexes . . . 147--156
Kohhei Yamaguchi Self-homotopy equivalences and highly
connected Poincaré complexes . . . . . . 157--169
Martin Arkowitz The group of self-homotopy equivalences
--- a survey . . . . . . . . . . . . . . 170--203
Donald W. Kahn Some research problems on
homotopy-self-equivalences . . . . . . . 204--207
Donald W. Kahn List of papers on or relevant to groups
of self-homotopy equivalences . . . . . 208--214
Michel Ledoux A note on large deviations for Wiener
chaos . . . . . . . . . . . . . . . . . 1--14
Richard F. Bass A probabilistic approach to the
boundedness of singular integral
operators . . . . . . . . . . . . . . . 15--40
T. J. Ransford Predictable sets and set-valued
processes . . . . . . . . . . . . . . . 41--45
Luca Pratelli Sur le lemme de mesurabilité de Doob.
(French) [] . . . . . . . . . . . . . . 46--51
C. Dellacherie Théorie des Processus de Production.
(French) [] . . . . . . . . . . . . . . 52--62
C. Dellacherie Mod\`eles simples de la théorie du
potentiel non linéaire. (French) [] . . . 63--104
Rémi Leander and
Michel Weber Une représentation gaussienne de l'indice
d'un opérateur. (French) [] . . . . . . . 105--106
B. Rajeev On semi-martingales associated with
crossings . . . . . . . . . . . . . . . 107--116
Jean Bertoin Sur une horloge fluctuante pour les
processus de Bessel de petites
dimensions. (French) [] . . . . . . . . 117--136
Xing-Xiong Xue A zero--one law for integral functionals
of the Bessel process . . . . . . . . . 137--153
David Nualart and
Josep Vives Anticipative calculus for the Poisson
process based on the Fock space . . . . 155--165
Wu Liming Un traitement unifié de la représentation
des fonctionnelles de Wiener. (French)
[] . . . . . . . . . . . . . . . . . . . 166--187
Martin T. Barlow and
Philip Protter On convergence of semimartingales . . . 188--193
Martin T. Barlow and
Edwin A. Perkins On pathwise uniqueness and expansion of
filtrations . . . . . . . . . . . . . . 194--209
J. Azéma and
M. Yor Dérivation par rapport au processus de
Bessel. (French) [] . . . . . . . . . . 210--226
T. Jeulin and
M. Yor Filtration des ponts browniens et
équations différentielles stochastiques
linéaires. (French) [] . . . . . . . . . 227--265
Jean-Pascal Ansel and
Christophe Stricker Quelques remarques sur un théor\`eme de
Yan. (French) [] . . . . . . . . . . . . 266--274
L. G. Gorostiza and
S. Roelly-Coppoletta and
A. Wakolbinger Sur la persistance du processus de
Dawson--Watanabe stable. L'interversion
de la limite en temps et de la
renormalisation. (French) [] . . . . . . 275--281
François Coquet and
Jean Jacod Convergence des surmartingales ---
Application aux vraisemblances
partielles. (French) [Convergence of
supermartingales --- Application to
partial likelihoods] . . . . . . . . . . 282--299
Dominique Cellier and
Dominique Fourdrinier Sur les lois \`a symétrie elliptique.
(French) [] . . . . . . . . . . . . . . 300--328
A. Ancona Théorie du Potentiel sur les Graphes et
les Variétés. (French) [] . . . . . . . . 1--112
D. Geman Random fields and inverse problems in
imaging . . . . . . . . . . . . . . . . 113--193
N. Ikeda Probabilistic methods in the study of
asymptotics . . . . . . . . . . . . . . 195--325
Karin Erdmann Algebras, quivers, representation type,
Auslander--Reiten theory, coverings . . 1--46
Karin Erdmann Special biserial algebras and the local
semidihedral algebra . . . . . . . . . . 47--79
Karin Erdmann Tame symmetric local algebras . . . . . 80--92
Karin Erdmann More on modules, quivers,
Auslander--Reiten sequences . . . . . . 93--120
Karin Erdmann Stable Auslander--Reiten components for
tame blocks . . . . . . . . . . . . . . 121--158
Karin Erdmann Algebras of dihedral type . . . . . . . 159--180
Karin Erdmann Algebras of quaternion type . . . . . . 181--204
Karin Erdmann Algebras of semidihedral type . . . . . 205--262
Karin Erdmann Centres, blocks, decomposition numbers 263--285
Karin Erdmann Some applications . . . . . . . . . . . 286--306
Steven Homer and
Anil Nerode and
Richard A. Platek and
Gerald E. Sacks and
Andre Scedrov Front Matter . . . . . . . . . . . . . . ??
Steven Homer The isomorphism conjecture and its
generalizations . . . . . . . . . . . . 1--11
Anil Nerode Some lectures on intuitionistic logic 12--59
Richard A. Platek Making computers safe for the world: an
introduction to proofs of programs part
I . . . . . . . . . . . . . . . . . . . 60--89
Gerald E. Sacks Prolog Programming . . . . . . . . . . . 90--110
Andre Scedrov A guide to polymorphic types . . . . . . 111--150
Andre Scedrov Back Matter . . . . . . . . . . . . . . ??
Winfried Bruns Straightening laws on modules and their
symmetric algebras . . . . . . . . . . . 1--20
Maria Pia Cavaliere and
Maria Evelina Rossi and
Giuseppe Valla On short graded algebras . . . . . . . . 21--31
Jürgen Herzog A homological approach to symbolic
powers . . . . . . . . . . . . . . . . . 32--46
Graig Huneke and
Bernd Ulrich Generic residual intersections . . . . . 47--60
Lorenzo Robbiano and
Moss Sweedler Subalgebra bases . . . . . . . . . . . . 61--87
Peter Schenzel Flatness and ideal-transforms of finite
type . . . . . . . . . . . . . . . . . . 88--97
Aron Simis Topics in Rees algebras of special
ideals . . . . . . . . . . . . . . . . . 98--114
Wolmer V. Vasconcelos Symmetric algebras . . . . . . . . . . . 115--160
John G. Heywood Open problems in the theory of the
Navier--Stokes equations for viscous
incompressible flow . . . . . . . . . . 1--22
A. V. Fursikov Navier--Stokes equations from the point
of view of the theory of ill-posed
boundary value problems . . . . . . . . 23--39
A. V. Fursikov On the statistical approach to the
Navier--Stokes equations . . . . . . . . 40--48
Dietmar Kröner Asymptotic expansions for a flow with a
dynamic contact angle . . . . . . . . . 49--59
Konstantin Pileckas Noncompact free boundary problems for
the Navier--Stokes equations . . . . . . 60--72
Wolfgang Borchers and
Tetsuro Miyakawa On large time behavior of the total
kinetic energy for weak solutions of the
Navier--Stokes equations in unbounded
domains . . . . . . . . . . . . . . . . 73--83
Hideo Kozono Strong solution for the Navier--Stokes
flow in the half-space . . . . . . . . . 84--86
V. V. Pukhnachov The problem of momentumless flow for the
Navier--Stokes equations . . . . . . . . 87--94
Michael Wiegner Decay and stability in $ L_p $ for
strong solutions of the Cauchy problem
for the Navier--Stokes equations . . . . 95--99
T. M. Fischer A Galerkin approximation for linear
eigenvalue problems in two and
three-dimensional boundary-layer flows 100--108
Wayne Nagata Symmetry-breaking effects of distant
sidewalls in Rayleigh--Bénard convection 109--116
Hisashi Okamoto Applications of degenerate bifurcation
equations to the Taylor problem and the
water wave problem . . . . . . . . . . . 117--127
Giovanni Prouse A uniqueness criterion for the solution
of the stationary Navier--Stokes
equations . . . . . . . . . . . . . . . 128--133
Hermann Sohr and
Werner Varnhorn On decay properties of the Stokes
equations in exterior domains . . . . . 134--151
Wolf von Wahl On necessary and sufficient conditions
for the solvability of the equations $
{\rm rot} \mu = \gamma $ and $ {\rm div}
\mu = \epsilon $ with $ \mu $ vanishing
on the boundary . . . . . . . . . . . . 152--157
Waldemar Velte On optimal constants in some
inequalities . . . . . . . . . . . . . . 158--168
A. V. Kazhikhov Boundary-value problems for
Navier--Stokes equations of viscous gas 169--172
Alberto Valli On the one-dimensional Navier--Stokes
equations for compressible fluids . . . 173--179
Rolf Rannacher On the numerical analysis of the
nonstationary Navier--Stokes equations 180--193
Valeriy Ya. Rivkind Numerical methods for the Navier--Stokes
equations with an unknown boundary
between two viscous incompressible
fluids . . . . . . . . . . . . . . . . . 194--200
Klaus Ambos-Spies and
Steven Homer and
Dongping Yang Honest polynomial reductions and
exptally sets . . . . . . . . . . . . . 1--22
Marat M. Arslanov On the structure of degrees below $
O^\prime $ . . . . . . . . . . . . . . . 23--32
C. T. Chong and
K. J. Mourad Positive solutions to Post's problem . . 33--40
P. Clote The metamathematics of Fra\"\issé's order
type conjecture . . . . . . . . . . . . 41--56
S. Barry Cooper Enumeration reducibility,
nondeterministic computations and
relative computability of partial
functions . . . . . . . . . . . . . . . 57--110
Rod Downey Notes on the $ O''' $ priority method
with special attention to density
results . . . . . . . . . . . . . . . . 111--140
Rod Downey and
Carl Jockusch and
Michael Stob Array nonrecursive sets and multiple
permitting arguments . . . . . . . . . . 141--173
Rod Downey and
Joe Mourad Superbranching degrees . . . . . . . . . 175--186
Peter A. Fejer and
Richard A. Shore A direct construction of a minimal
recursively enumerable truth-table
degree . . . . . . . . . . . . . . . . . 187--204
Marcia Groszek and
Michael Mytilinaios $ \Sigma_2 $-induction and the
construction of a high degree . . . . . 205--221
Christine Ann Haught and
Richard A. Shore Undecidability and initial segments of
the wtt-degrees $ \leq 0^\prime $ . . . 223--244
Antonín Ku\vcera Randomness and generalizations of fixed
point free functions . . . . . . . . . . 245--254
Martin Kummer Recursive enumeration without repetition
revisited . . . . . . . . . . . . . . . 255--275
Steffen Lempp and
Manuel Lerman Priority arguments using iterated trees
of strategies . . . . . . . . . . . . . 277--296
Wolfgang Maass and
Theodore A. Slaman On the relationship between the
complexity, the degree, and the
extension of a computable set . . . . . 297--322
A. Nerode and
J. B. Remmel Polynomially isolated sets . . . . . . . 323--362
Dieter Spreen A characterization of effective
topological spaces . . . . . . . . . . . 363--387
Serge Lang Nevanlinna theory in one variable . . . 9--55
Serge Lang Equidimensional higher dimensional
theory . . . . . . . . . . . . . . . . . 57--107
William Cherry Nevanlinna Theory for Meromorphic
Functions on Coverings of $C$ . . . . . 113--142
William Cherry Equidimensional Nevanlinna Theory on
Coverings of $ C^n $ . . . . . . . . . . 143--168
Shigeki Akiyama On a certain sum of traces of Hecke
operators . . . . . . . . . . . . . . . 1--10
J.-P. Allouche and
P. Flajolet and
M. Mendes France Algebraically independent formal power
series: a language theory interpretation 11--18
Jean-Paul Allouche and
Jeffrey Shallit Sums of digits and the Hurwitz zeta
function . . . . . . . . . . . . . . . . 19--30
Daniel Bertrand Transcendental methods in arithmetic
geometry . . . . . . . . . . . . . . . . 31--44
Christol Gilles Globally bounded solutions of
differential equations . . . . . . . . . 45--64
Etienne Fouvry Nombres presque premiers dans les petits
intervalles. (French) [] . . . . . . . . 65--85
E. Fouvry and
G. Tenenbaum Diviseurs de Titchmarsh des entiers sans
grand facteur premier. (French) [] . . . 86--102
Akio Fujii Uniform distribution of the zeros of the
Riemann zeta function and the mean value
theorems of Dirichlet $L$-functions (II) 103--125
Kazuo Goto and
Takeshi Kano Some conditions on uniform distribution
of monotone sequences . . . . . . . . . 126--132
Takashi Harase Algebraic dependence of formal power
series . . . . . . . . . . . . . . . . . 133--137
Guy Henniart Une conséquence de la théorie du
changement de base pour $ {\rm GL}(n) $.
(French) [] . . . . . . . . . . . . . . 138--142
Kuniaki Horie and
Mitsuko Horie On the exponents of ideal class groups
of CM-fields . . . . . . . . . . . . . . 143--148
M. Ishibashi and
S. Kanemitsu Some asymptotic formulas of Ramanujan 149--167
Nobushige Kurokawa Analyticity of Dirichlet series over
prime powers . . . . . . . . . . . . . . 168--177
Kohji Matsumoto Value-distribution of zeta-functions . . 178--187
Shin-ichiro Mizumoto Integrality of critical values of triple
product $L$-functions . . . . . . . . . 188--195
Takayuki Oda Multiple Hecke series for class-$1$
Whittaker functions on $ {\rm GL}(n)$
over $p$-adic fields . . . . . . . . . . 196--214
Roger W. Barnard Open problems and conjectures in complex
analysis . . . . . . . . . . . . . . . . 1--26
J. M. Borwein and
P. B. Borwein A remarkable cubic mean iteration . . . 27--31
Antonio Córdova Yévenes and
Stephan Ruscheweyh On the maximal range problem for slit
domains . . . . . . . . . . . . . . . . 33--44
Roland Freund On Bernstein type inequalities and a
weighted Chebyshev approximation problem
on ellipses . . . . . . . . . . . . . . 45--55
David M. Hough Conformal mapping and Fourier--Jacobi
approximations . . . . . . . . . . . . . 57--70
J. A. Hummel Numerical solutions of the Schiffer
equation . . . . . . . . . . . . . . . . 71--79
K. G. Ivanov and
E. B. Saff Behavior of the Lagrange interpolants in
the roots of unity . . . . . . . . . . . 81--87
Lisa Jacobsen Orthogonal polynomials, chain sequences,
three-term recurrence relations and
continued fractions . . . . . . . . . . 89--101
Al Marden and
Burt Rodin On Thurston's formulation and proof of
Andreev's theorem . . . . . . . . . . . 103--115
Diego Mejía and
David Minda Hyperbolic geometry in spherically
$k$-convex regions . . . . . . . . . . . 117--129
David Minda The Bloch and Marden constants . . . . . 131--142
O. F. Orellana On some analytic and computational
aspects of two dimensional vortex sheet
evolution . . . . . . . . . . . . . . . 143--154
N. Papamichael and
N. S. Stylianopoulos On the numerical performance of a domain
decomposition method for conformal
mapping . . . . . . . . . . . . . . . . 155--169
Glenn Schober Planar harmonic mappings . . . . . . . . 171--176
T. J. Suffridge Extremal problems for non-vanishing $
H^p $ functions . . . . . . . . . . . . 177--190
W. J. Thron Some results on separate convergence of
continued fractions . . . . . . . . . . 191--200
R. S. Varga and
A. J. Carpenter Asymptotics for the zeros of the partial
sums of $ e^z $. II . . . . . . . . . . 201--207
Enrique Arrondo and
Raquel Mallavibarrena and
Ignacio Sols Proof of Schubert's conjectures on
double contacts . . . . . . . . . . . . 1--29
D. Avritzer and
I. Vainsencher $ {\rm Hilb}^4 P^2 $ . . . . . . . . . . 30--59
Susan Jane Colley Schubert's coincidence formulas for line
complexes and the contribution of
embedded planar pencils . . . . . . . . 60--76
Trygve Johnsen Local multiplicities of tangential
trisecants to space curves . . . . . . . 77--100
Steven L. Kleiman Multiple-point formulas II: The Hilbert
scheme . . . . . . . . . . . . . . . . . 101--138
Dan Laksov and
Robert Speiser Transversality criteria in any
characteristic . . . . . . . . . . . . . 139--150
Patrick Le Barz Quelques formules multisécantes pour les
surfaces. (French) [] . . . . . . . . . 151--188
J. M. Miret and
S. Xambó Descamps On Schubert's degenerations of cuspidal
plane cubics . . . . . . . . . . . . . . 189--214
Ragni Piene and
Hsin-sheng Tai A characterization of balanced rational
normal scrolls in terms of their
osculating spaces . . . . . . . . . . . 215--224
Francesc Rosselló-Llompart The Chow ring of $ {\rm Hilb}^3 P^3 $ 225--255
Anders Thorup Rational equivalence theory on arbitrary
Noetherian schemes . . . . . . . . . . . 256--297
Tamar Datuashvili Homological dimension of extensions of
abelian categories and rings . . . . . . 1--35
Joseph Gubeladze Classical algebraic $K$-theory of monoid
algebras . . . . . . . . . . . . . . . . 36--94
Hvedri Inassaridze $K$-theory of special normed rings . . . 95--156
George Janelidze Cohomology and extensions of internal
modules . . . . . . . . . . . . . . . . 157--168
M. Jibladze Coefficients for cohomology of `large'
categories . . . . . . . . . . . . . . . 169--179
Tamazi Kandelaki $K$-theory of $ \mathbb {Z}_2$-graded
Banach categories. I . . . . . . . . . . 180--221
P. Pataraia On Quillen's $+$ construction of perfect
groups . . . . . . . . . . . . . . . . . 222--267
Teimuraz Pirashvili Cohomology of small categories in
homotopical algebra . . . . . . . . . . 268--302
M. Uridia $U$-theory of exact categories . . . . . 303--313
Pierre Gilles Lemarié Introduction \`a la théorie des
ondelettes. (French) [] . . . . . . . . 1--13
Yves Meyer Ondelettes, filtres miroirs en
quadrature et traitement numérique de
l'image. (French) [] . . . . . . . . . . 14--25
Pierre Gilles Lemarié Analyse multi-échelles et ondelettes \`a
support compact. (French) [] . . . . . . 26--38
Guy David Une nouvelle démonstration du théor\`eme $
T(b) $, d'apr\`es Coifman et Semmes.
(French) [] . . . . . . . . . . . . . . 39--50
Jacques Froment and
Jean-Michel Morel Analyse multiéchelle, vision stéréo et
ondelettes. (French) [] . . . . . . . . 51--80
Patrick Flandrin Quelques méthodes temps-fréquence et
temps-échelle en traitement du signal.
(French) [] . . . . . . . . . . . . . . 81--92
Gilles Deslauriers and
Jacques Dubois and
Serge Dubuc Schéma itératif d'interpolation. (French)
[Iterative interpolation scheme] . . . . 93--101
Matthias Holschneider and
Philippe Tchamitchian Régularité locale de la fonction
``non-différentiable'' de Riemann.
(French) [] . . . . . . . . . . . . . . 102--124
A. Arneodo and
F. Argoul and
G. Grasseau Transformation en ondelettes et
renormalisation. (French) [] . . . . . . 125--191
Pierre Gilles Lemarie Wavelets in 1989: an extended summary 192--212
Emilio Bujalance and
José Javier Etayo and
José Manuel Gamboa and
Grzegorz Gromadzki Preliminary results . . . . . . . . . . 1--20
Emilio Bujalance and
José Javier Etayo and
José Manuel Gamboa and
Grzegorz Gromadzki Klein surfaces as orbit spaces of NEC
groups . . . . . . . . . . . . . . . . . 21--37
Emilio Bujalance and
José Javier Etayo and
José Manuel Gamboa and
Grzegorz Gromadzki Normal NEC subgroups of NEC groups . . . 38--59
Emilio Bujalance and
José Javier Etayo and
José Manuel Gamboa and
Grzegorz Gromadzki Cyclic groups of automorphisms of
compact Klein surfaces . . . . . . . . . 60--97
Emilio Bujalance and
José Javier Etayo and
José Manuel Gamboa and
Grzegorz Gromadzki Klein surfaces with groups of
automorphisms in prescribed families . . 98--137
Emilio Bujalance and
José Javier Etayo and
José Manuel Gamboa and
Grzegorz Gromadzki The automorphism group of compact Klein
surfaces with one boundary component . . 138--152
Emilio Bujalance and
José Javier Etayo and
José Manuel Gamboa and
Grzegorz Gromadzki The automorphism group of hyperelliptic
compact Klein surfaces with boundary . . 153--164
Iris Lee Anshel On two relator groups . . . . . . . . . 1--21
Martin Arkowitz When is the homotopy set $ [X, Y] $
infinite? . . . . . . . . . . . . . . . 22--26
William A. Bogley Local collapses for diagrammatic
reducibility . . . . . . . . . . . . . . 27--38
Ricardo N. Cruz Periodic knots and desuspensions of free
involutions on spheres . . . . . . . . . 39--47
Carl Droms and
Jacques Lewin and
Herman Servatius The Tits conjecture and the five string
braid group . . . . . . . . . . . . . . 48--51
Herman Servatius and
Carl Droms and
Brigitte Servatius The finite basis extension property and
graph groups . . . . . . . . . . . . . . 52--58
Benjamin Fine Subgroup presentations without coset
representatives . . . . . . . . . . . . 59--73
Michael Frame and
James Hefferon Fractal dimensions of limit sets of some
Kleinian groups . . . . . . . . . . . . 74--80
Richard Goldstein Bounded cancellation of automorphisms of
free products . . . . . . . . . . . . . 81--89
Cynthia Hog-Angeloni A short topological proof of Cohn's
theorem . . . . . . . . . . . . . . . . 90--95
Cynthia Hog-Angeloni On the homotopy type of $2$-complexes
with a free product of cyclic groups as
fundamental group . . . . . . . . . . . 96--108
Cynthia Hog-Angeloni and
M. Paul Latiolais and
Wolfgang Metzler Bias ideals and obstructions to
simple-homotopy equivalence . . . . . . 109--121
Günther Huck Embeddings of acyclic $2$-complexes in $
S^4$ with contractible complement . . . 122--129
W. Imrich and
E. C. Turner Fixed subsets of homomorphisms of free
groups . . . . . . . . . . . . . . . . . 130--147
Gregory Lupton Note on a conjecture of Stephen
Halperin's . . . . . . . . . . . . . . . 148--163
Martin Lustig On the rank, the deficiency and the
homological dimension of groups: The
computation of a lower bound via Fox
ideals . . . . . . . . . . . . . . . . . 164--174
Stephan Rosebrock A reduced spherical diagram into a
ribbon-disk complement and related
examples . . . . . . . . . . . . . . . . 175--185
Christopher Schaufele and
Nancy Zumoff $ *$-Groups, graphs, and bases . . . . . 186--191
Thomas W. Tucker Some topological graph theory for
topologists: a sampler of covering space
constructions . . . . . . . . . . . . . 192--207
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Espaces métriques hyperboliques. (French)
[] . . . . . . . . . . . . . . . . . . . 1--15
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Bord d'un espace hyperbolique. (French)
[] . . . . . . . . . . . . . . . . . . . 16--23
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Quasi-géodésiques et quasi-isométries dans
les espaces hyperboliques. (French) [] 24--42
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Groupes hyperboliques. (French) [] . . . 43--56
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Le poly\`edre $ P_d(X) $. (French) [] 57--64
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Inégalités isopérimétriques et espaces
hyperboliques. (French) [] . . . . . . . 65--80
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Inégalités isopérimétriques: une
application. (French) [] . . . . . . . . 81--89
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Approximation par des arbres. (French)
[] . . . . . . . . . . . . . . . . . . . 90--96
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Classification des isométries. (French)
[] . . . . . . . . . . . . . . . . . . . 97--105
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Parties quasi-convexes d'un espace
hyperbolique. (French) [] . . . . . . . 106--123
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Structure métrique sur le bord d'un
espace hyperbolique. (French) [] . . . . 124--139
Michel Coornaert and
Thomas Delzant and
Athanase Papadopoulos Automates et groupes hyperboliques.
(French) [] . . . . . . . . . . . . . . 140--158
Luigi Accardi and
Alberto Frigerio and
Yun-Gang Lu Quantum Langevin equation in the weak
coupling limit . . . . . . . . . . . . . 1--16
L. Accardi and
Yun Gang Lu On the low density limit of Boson models 17--53
L. Accardi and
R. L. Hudson Quantum stochastic flows and non abelian
cohomology . . . . . . . . . . . . . . . 54--69
David Applebaum Quantum diffusions on involutive
algebras . . . . . . . . . . . . . . . . 70--85
Alberto Barchielli Some Markov semigroups in quantum
probability . . . . . . . . . . . . . . 86--98
Viacheslav Belavkin A quantum stochastic calculus in Fock
space of input and output nondemolition
processes . . . . . . . . . . . . . . . 99--125
Carlo Cecchini and
Burkhard Kümmerer Stochastic transitions on preduals of
von Neumann algebras . . . . . . . . . . 126--130
F. Fagnola Quantum stochastic calculus and a boson
Lévy theorem . . . . . . . . . . . . . . 131--144
Karl-Heinz Fichtner and
Uwe Schreiter Locally independent boson systems . . . 145--161
Alberto Frigerio Time-inhomogeneous and nonlinear quantum
evolutions . . . . . . . . . . . . . . . 162--176
Alberto Frigerio Quantum Poisson processes: Physical
motivations and applications . . . . . . 177--177
D. Goderis and
A. Verbeure and
P. Vets Quantum central limit and coarse
graining . . . . . . . . . . . . . . . . 178--193
Gerhard C. Hegerfeldt An open problem in quantum shot noise 194--203
Ewa Hensz A method of operator estimation and a
strong law of large numbers in von
Neumann algebras . . . . . . . . . . . . 204--210
A. S. Holevo An analog of the Itô decomposition for
multiplicative processes with values in
a Lie group . . . . . . . . . . . . . . 211--215
R. L. Hudson and
P. Shepperson Stochastic dilations of quantum
dynamical semigroups using
one-dimensional quantum stochastic
calculus . . . . . . . . . . . . . . . . 216--218
Gert-Ludwig Ingold and
Hermann Grabert Sluggish decay of preparation effects in
low temperature quantum systems . . . . 219--230
Ryszard Jajte Almost sure convergence of iterates of
contractions in noncommutative $ L_2
$-spaces . . . . . . . . . . . . . . . . 231--246
J. M. Lindsay and
H. Maassen Duality transform as *-algebraic
isomorphism . . . . . . . . . . . . . . 247--250
J. M. Lindsay and
K. R. Parthasarathy Rigidity of the Poisson convolution . . 251--262
Karl Heinz Dovermann and
Reinhard Schultz Summary: Background material and basic
results . . . . . . . . . . . . . . . . 1--8
Karl Heinz Dovermann and
Reinhard Schultz Introduction to equivariant surgery . . 9--36
Karl Heinz Dovermann and
Reinhard Schultz Relations between equivariant surgery
theories . . . . . . . . . . . . . . . . 37--79
Karl Heinz Dovermann and
Reinhard Schultz Periodicity theorems in equivariant
surgery . . . . . . . . . . . . . . . . 80--114
Karl Heinz Dovermann and
Reinhard Schultz Twisted product formulas for surgery
with coefficients . . . . . . . . . . . 115--140
Karl Heinz Dovermann and
Reinhard Schultz Products and periodicity for surgery up
to pseudoequivalence . . . . . . . . . . 141--191
Shinzo Watanabe Short time asymptotic problems in Wiener
functional integration theory.
Applications to heat kernels and index
theorems . . . . . . . . . . . . . . . . 1--62
Etienne Pardoux Applications of anticipating stochastic
calculus to stochastic differential
equations . . . . . . . . . . . . . . . 63--105
H. Körezlio\uglu and
A. S. Üstünel A new class of distributions on Wiener
spaces . . . . . . . . . . . . . . . . . 106--121
D. Nualart and
A. S. Üstünel and
M. Zakai Some remarks on independence and
conditioning on Wiener space . . . . . . 122--127
Nicolas Bouleau and
Francis Hirsch Some results on Lipschitzian stochastic
differential equations by Dirichlet
forms methods . . . . . . . . . . . . . 128--140
Maria Jolis and
Marta Sanz On generalized multiple stochastic
integrals and multiparameter
anticipative calculus . . . . . . . . . 141--182
Axel Grorud Un crochet non-symétrique en calcul
stochastique anticipatif. (French) [] 183--192
Paolo Baldi Large deviations and the functional
Lévy's modulus for invariant diffusions 193--203
M. Chaleyat-Maurel and
J.-F. Le Gall On polar sets for hypoelliptic diffusion
processes . . . . . . . . . . . . . . . 204--212
Ph. Blanchard and
Zhiming Ma New results on the Schrödinger semigroups
with potentials given by signed smooth
measures . . . . . . . . . . . . . . . . 213--243
Francesco Russo Linear extrapolation concerning Hilbert
valued planar functions . . . . . . . . 244--268
Friedmar Schulz Integral criteria for Hölder continuity 1--14
Friedmar Schulz Regularity for linear elliptic equations
and quasilinear systems . . . . . . . . 15--27
Friedmar Schulz Regularity for Monge--Amp\`ere equations 28--38
Friedmar Schulz Function theory of elliptic equations 39--52
Friedmar Schulz Univalent solutions of binary elliptic
systems . . . . . . . . . . . . . . . . 53--60
Friedmar Schulz Conformal mappings with respect to a
Riemannian metric . . . . . . . . . . . 61--71
Friedmar Schulz Local behavior of solutions of
differential inequalities . . . . . . . 72--84
Friedmar Schulz Univalent solutions of Heinz--Lewy type
systems . . . . . . . . . . . . . . . . 85--93
Friedmar Schulz A priori estimates for Monge--Amp\`ere
equations . . . . . . . . . . . . . . . 94--105
Friedmar Schulz Regularity and a priori estimates for
locally convex surfaces . . . . . . . . 106--114
Ivar Ekeland and
Paolo Marcellini and
Antonio Marino and
Mario Tosques and
Czes\law Olech and
Giulio Pianigiani and
Tyrrell Rockafeller and
Michel Valadier Front Matter . . . . . . . . . . . . . . ??
I. Ekeland The $ \epsilon $-variational principle
revisited . . . . . . . . . . . . . . . 1--15
Paolo Marcellini Non convex integrals of the Calculus of
Variations . . . . . . . . . . . . . . . 16--57
A. Marino and
M. Tosques Some variational problems with lack of
convexity and some partial differential
inequalities . . . . . . . . . . . . . . 58--83
Czesraw Olech The Lyapunov Theorem: Its extensions and
applications . . . . . . . . . . . . . . 84--103
Giulio Pianigiani Differential inclusions the Baire
category method . . . . . . . . . . . . 104--136
R. T. Rockafellar Nonsmooth analysis and parametric
optimization . . . . . . . . . . . . . . 137--151
Michel Valadier Young measures . . . . . . . . . . . . . 152--188
Michel Valadier Back Matter . . . . . . . . . . . . . . ??
Joachim Schwermer Cohomology of arithmetic groups,
automorphic forms and $L$-functions . . 1--29
Nolan R. Wallach Limit multiplicities in $ L^2 (\Gamma
\setminus G) $ . . . . . . . . . . . . . 31--56
Avner Ash and
Armand Borel Generalized modular symbols . . . . . . 57--75
Siegfried Böcherer On Yoshida's theta lift . . . . . . . . 77--83
Prof. Dr. Günter Harder Some results on the Eisenstein
cohomology of arithmetic subgroups of $
{\rm GL}_n $ . . . . . . . . . . . . . . 85--153
Michael Harris Period invariants of Hilbert modular
forms, I: Trilinear differential
operators and $L$-functions . . . . . . 155--202
R.-P. Holzapfel An effective finiteness theorem for ball
lattices . . . . . . . . . . . . . . . . 203--236
Yasuko Konno Unitary representations with nonzero
multiplicities in $ L^2 (\Gamma
\setminus G) $ . . . . . . . . . . . . . 237--248
J.-P. Labesse Signature des variétés modulaires de
Hilbert et représentations diédrales.
(French) [] . . . . . . . . . . . . . . 249--260
Takayuki Oda The Riemann--Hodge period relation for
Hilbert modular forms of weight $2$ . . 261--286
Mark Reeder Modular symbols and the Steinberg
representation . . . . . . . . . . . . . 287--302
Jürgen Rohlfs Lefschetz numbers for arithmetic groups 303--313
Jürgen Rohlfs and
Birgit Speh Boundary contributions to Lefschetz
numbers for arithmetic groups I . . . . 315--332
S. P. Wang Embedding of Flensted--Jensen modules in
$ L^2 (\Gamma \setminus G) $ in the
noncompact case . . . . . . . . . . . . 333--356
Goro Azumaya Locally split submodules and modules
with perfect endomorphism rings . . . . 1--6
Soumaya Makdissi Khuri Modules with regular, perfect,
Noetherian or Artinian endomorphism
rings . . . . . . . . . . . . . . . . . 7--18
Joseph A. Wehlen Azumaya rings and Maschke's Theorem . . 19--24
Bruno J. Müller and
Surjeet Singh Uniform modules over serial rings II . . 25--32
Mary H. Wright Links between prime ideals of a serial
ring with Krull dimension . . . . . . . 33--40
John Dauns Semiprime modules and rings . . . . . . 41--62
Mark L. Teply and
Blas Torrecillas Primitive ideals of nice Ore
localizations . . . . . . . . . . . . . 63--71
Kent R. Fuller and
Birge Zimmermann-Huisgen Filtered Cartan matrices for Artinian
rings of low Loewy length . . . . . . . 72--79
Philippe Loustaunau and
Jay Shapiro Morita contexts . . . . . . . . . . . . 80--92
Abdullah Al-Huzali and
S. K. Jain and
S. R. López-Permouth On the weak relative-injectivity of
rings and modules . . . . . . . . . . . 93--98
Patrick F. Smith CS-modules and weak CS-modules . . . . . 99--115
S. Tariq Rizvi and
Mohamed F. Yousif On continuous and singular modules . . . 116--124
Gary Birkenmeier and
Henry Heatherly Permutation identity rings and the
medial radical . . . . . . . . . . . . . 125--138
J. C. McConnell Quantum groups, filtered rings and
Gelfand--Kirillov dimension . . . . . . 139--147
Bruno J. Müller and
Ying-Lan Zhang Ore localization in the first Weyl
algebra . . . . . . . . . . . . . . . . 148--154
Timothy J. Hodges Ring-theoretical aspects of the
Bernstein--Beilinson theorem . . . . . . 155--163
W\lodzimierz Odyniec and
Grzegorz Lewicki Introduction . . . . . . . . . . . . . . 1--17
W\lodzimierz Odyniec and
Grzegorz Lewicki Problem of uniqueness of minimal
projections in Banach spaces . . . . . . 18--51
W\lodzimierz Odyniec and
Grzegorz Lewicki Minimal projections onto codimension one
subspaces and a related mathematical
programming problem . . . . . . . . . . 52--93
W\lodzimierz Odyniec and
Grzegorz Lewicki Kolmogorov's type criteria for minimal
projections . . . . . . . . . . . . . . 94--130
W\lodzimierz Odyniec and
Grzegorz Lewicki Isometries of Banach spaces and the
problem of characterization of Hilbert
spaces . . . . . . . . . . . . . . . . . 131--152
James S. Howland Spectral concentration for dense point
spectrum . . . . . . . . . . . . . . . . 1--11
E. N. Dancer and
P. Hess Behaviour of a semilinear
periodic-parabolic problem when a
parameter is small . . . . . . . . . . . 12--19
Kenji Yajima On smoothing property of Schrödinger
propagators . . . . . . . . . . . . . . 20--35
Gregory F. Bachelis and
Frank J. Massey III A coin tossing problem of R. L. Rivest 36--52
Tosio Kato Liapunov functions and monotonicity in
the Navier--Stokes equation . . . . . . 53--63
Hiroshi Matano Singular solutions of a nonlinear
elliptic equation and an infinite
dimensional dynamical system . . . . . . 64--87
Takashi Suzuki Introduction to geometric potential
theory . . . . . . . . . . . . . . . . . 88--103
Rafael José Iório, Jr. KDV, BO and friends in weighted Sobolev
spaces . . . . . . . . . . . . . . . . . 104--121
Alan McIntosh The square root problem for elliptic
operators --- a survey . . . . . . . . . 122--140
Carlos E. Kenig and
Gustavo Ponce and
Luis Vega The initial value problem for a class of
nonlinear dispersive equations . . . . . 141--156
Akira Iwatsuka On Schrödinger operators with magnetic
fields . . . . . . . . . . . . . . . . . 157--172
Hideo Tamura Existence of bound states for double
well potentials and the Efimov effect 173--186
Arne Jensen High energy asymptotics for the total
scattering phase in potential scattering
theory . . . . . . . . . . . . . . . . . 187--195
Takashi Ichinose Feynman path integral to relativistic
quantum mechanics . . . . . . . . . . . 196--209
Mitsuru Ikawa On the distribution of poles of the
scattering matrix for several convex
bodies . . . . . . . . . . . . . . . . . 210--225
Tohru Ozawa Smoothing effect for the Schrödinger
evolution equations with electric fields 226--235
Takayoshi Ogawa and
Yoshio Tsutsumi Blow-up of solutions for the nonlinear
Schrödinger equation with quartic
potential and periodic boundary
condition . . . . . . . . . . . . . . . 236--251
Luis Alvarez-Gaumé and
Enrico Arbarello and
Corrado De Concini and
Nigel J. Hitchin Front Matter . . . . . . . . . . . . . . ??
N. J. Hitchin The geometry and topology of moduli
spaces . . . . . . . . . . . . . . . . . 1--48
L. Alvarez-Gaumé Topics in conformal field theory and
string theory . . . . . . . . . . . . . 49--94
Enrico Arbarello and
Corrado De Concini Geometrical aspects of the
Kadomtsev--Petviashvili equation . . . . 95--137
Ugo Bruzzo and
Giovanni Landi Geometry of standard constraints and
anomalous supersymmetric gauge theories 138--147
Adrian R. Lugo and
Jorge G. Russo Hamiltonian formulation of string theory
and multiloop amplitudes in the operator
context . . . . . . . . . . . . . . . . 148--162
Marco Matone Conformal field theory, real weight
differentials and KdV equation in higher
genus . . . . . . . . . . . . . . . . . 163--175
Gregorio Falqui and
Cesare Reina Supermoduli and superstrings . . . . . . 176--188
Gregorio Falqui and
Cesare Reina Back Matter . . . . . . . . . . . . . . ??
G. Baron On point sets with differences of
distances not less than the minimum
distance . . . . . . . . . . . . . . . . 1--5
Martin Blümlinger Sample path properties of diffusion
processes on compact manifolds . . . . . 6--19
Thomas B. Burg and
Michael Drmota and
Robert F. Tichy Some new results in summability theory 20--30
Michael Drmota On irregularities of distribution on the
hyperbolic plane . . . . . . . . . . . . 31--42
M. Drmota and
R. F. Tichy and
R. Winkler Completely uniformly distributed
sequences of matrices . . . . . . . . . 43--57
Peter J. Grabner On digit expansions with respect to
second order linear recurring sequences 58--64
Edmund Hlawka Näherungsformeln zur Berechnung von
mehrfachen Integralen mit Anwendungen
auf die Berechungen von Potentialen,
Induktionskoeffizienten und Lösungen von
Gleichungssystemen. (German)
[Approximation formulas for the
calculation of multiple integrals with
applications to the calculation of
potentials, induction coefficients, and
solutions of equation systems] . . . . . 65--111
Peter Kirschenhofer On the variance of the sum of digits
function . . . . . . . . . . . . . . . . 112--116
Peter Kirschenhofer and
Helmut Prodinger On the analysis of probabilistic
counting . . . . . . . . . . . . . . . . 117--120
Christian Krattenthaler A determinant evaluation and some
enumeration results for plane partitions 121--131
Gerhard Larcher An inequality with applications in
Diophantine approximation . . . . . . . 132--138
Wolfgang Müller and
Werner Georg Nowak Lattice points in planar domains:
Applications of Huxley's `discrete
Hardy--Littlewood method' . . . . . . . 139--164
Prof. Dr. H. Niederreiter Pseudorandom numbers generated from
shift register sequences . . . . . . . . 165--177
Werner Georg Nowak Divisors in arithmetic progressions in
imaginary quadratic number fields . . . 178--192
Helmut Prodinger Further results on a problem of Knödel
concerning the analysis of bin-packing 193--198
Johannes Schoißengeier An asymptotic expansion for $ \sum
\limits_{n \leq N \{ n \alpha + \beta \}
} $ . . . . . . . . . . . . . . . . . . 199--205
Gerhard Turnwald A note on the Ramanujan--Nagell equation 206--207
R. Winkler Strong Weyl property in uniform
distribution . . . . . . . . . . . . . . 208--220
A. V. Babin and
M. I. Vishik Semigroups dependent on a parameter,
their attractors and asymptotic
behaviour . . . . . . . . . . . . . . . 1--19
Yu. G. Borisovich A modern approach to the theory of
topological characteristics of
non-linear operators. II . . . . . . . . 21--49
A. T. Fomenko and
V. V. Sharko Exact round Morse functions,
inequalities of Morse type and integrals
of Hamiltonian systems . . . . . . . . . 51--67
V. Ya. Gershkovich Estimates for $ \epsilon $-balls of
nonholonomic metrics . . . . . . . . . . 69--85
Yu. I. Sapronov The bifurcation of stationary rotations
of a multidimensional asymmetric rigid
body from the sleeping top regime . . . 87--100
V. A. Sobolev Nonlocal integral manifolds and
decoupling of nonlinear parabolic
systems . . . . . . . . . . . . . . . . 101--108
B. Yu. Sternin and
V. E. Shatalov On Leary's residue theory . . . . . . . 109--119
L. V. Zi\'lbergleit and
V. V. Lychagin Spencer cohomology of differential
equations . . . . . . . . . . . . . . . 121--136
V. G. Zvyagin The properness of elliptic and parabolic
differential operators . . . . . . . . . 137--159
V. M. Tikhomirov A. N. Kolmogorov and the progress of
mathematics . . . . . . . . . . . . . . 161--169
D. V. Alekseevskii and
B. A. Putko On the completeness of left-invariant
pseudo-Riemannian metrics on Lie groups 171--185
Ya. I. Belopol'skaya Second-order parabolic equations in
principal fibre bundles and associated
vector bundles . . . . . . . . . . . . . 187--200
A. Yu. Borisovich Lyapunov--Schmidt method and types of
singularities of critical points of key
function in the problem of bifurcations
of minimal surfaces . . . . . . . . . . 201--210
Yu. G. Borisovich and
M. I. Shpilberg Relative topological characteristics of
mappings . . . . . . . . . . . . . . . . 211--225
B. D. Gel'man On some problems from the theory of
fixed points of multivalued mappings . . 227--244
Le Van Hong Relative calibrations and the problem of
stability of minimal surfaces . . . . . 245--262
A. M. Vershik On topological questions of real
complexity theory and combinatorial
optimization . . . . . . . . . . . . . . 263--270
Yu. M. Vorob'ev and
M. V. Karasev Deformation and cohomologies of Poisson
brackets . . . . . . . . . . . . . . . . 271--289
M. G. Zaidenberg Holomorphic rigidity of polynomial
polyhedrons and quasihomogeneity . . . . 291--307
V. G. Zvyagin On the structure of the set of solutions
of a non-linear elliptic problem with
fixed boundary conditions . . . . . . . 309--320
B. Dwork Work of Philippe Robba . . . . . . . . . 1--10
Alan Adolphson and
Steven Sperber $p$-Adic estimates for exponential sums 11--22
Yves André $p$-Adic Betti lattices . . . . . . . . 23--63
Jesús Araujo and
J. Martinez-Maurica The nonarchimedean Banach--Stone theorem 64--79
Pierre Berthelot Cohomologie rigide et théorie des
$D$-modules. (French) [] . . . . . . . . 80--124
D. Bertrand Extensions de $D$-modules et groupes de
Galois différentiels. (French) [] . . . . 125--141
Bruno Chiarellotto Duality in rigid analysis . . . . . . . 142--172
Robert F. Coleman On the Frobenius matrices of Fermat
curves . . . . . . . . . . . . . . . . . 173--193
Matthijs J. Coster Supercongruences . . . . . . . . . . . . 194--204
Valentino Cristante Witt realization of the $p$-adic
Barsotti--Tate groups; some applications 205--216
J. Denef and
F. Loeser Poly\`edres de Newton et poids de sommes
exponentielles. (French) [] . . . . . . 217--222
Ernst-Ulrich Gekeler De Rham cohomology and the Gauss--Manin
connection for Drinfeld modules . . . . 223--255
Frank Herrlich The nonarchimedean extended Teichmüller
space . . . . . . . . . . . . . . . . . 256--266
Z. Mebkhout and
L. Narvaez-Macarro Sur les coéfficients de de
Rham--Grothendieck des variétés
algébriques. (French) [] . . . . . . . . 267--308
Diane Meuser On a functional equation of Igusa's
local zeta function . . . . . . . . . . 309--313
Yasuo Morita On vanishing of cohomologies of rigid
analytic spaces . . . . . . . . . . . . 314--318
Arthur Ogus A $p$-adic analogue of the
Chowla--Selberg formula . . . . . . . . 319--341
Wim H. Schikhof The complementation property of $
\ell^\infty $ in $p$-adic Banach spaces 342--350
Dinesh S. Thakur Gross--Koblitz formula for function
fields . . . . . . . . . . . . . . . . . 351--355
Lucien van Hamme Three generalizations of Mahler's
expansion for continuous functions on $
\mathbb {Z}_p $ . . . . . . . . . . . . 356--361
Bernard Candelpergher and
Francine Diener and
Marc Diener Retard \`a la bifurcation: du local au
global. (French) [] . . . . . . . . . . 1--19
Carmen Chicone On bifurcation of limit cycles from
centers . . . . . . . . . . . . . . . . 20--43
Freddy Dumortier and
Robert Roussarie On the saddle loop bifurcation . . . . . 44--73
J. Ecalle Finitude des cycles-limites et
accéléro-sommation de l'application de
retour. (French) [] . . . . . . . . . . 74--159
Ljubomir Gavrilov and
Emil Horozov Limit cycles and zeroes of Abelian
integrals satisfying third order
Picard--Fuchs equations . . . . . . . . 160--186
A. Gasull and
J. Sotomayor On the basin of attraction of
dissipative planar vector fields . . . . 187--195
C. Gutiérrez and
J. Sotomayor Periodic lines of curvature bifurcating
from Darbouxian umbilical connections 196--229
N. G. Lloyd and
J. M. Pearson Conditions for a centre and the
bifurcation of limit cycles in a class
of cubic systems . . . . . . . . . . . . 230--242
Jean Moulin Ollagnier and
Jean-Marie Strelcyn On first integrals of linear systems,
Frobenius integrability theorem and
linear representations of Lie algebras 243--271
A. Mourtada Cyclicité finie des polycycles
hyperboliques de champs de vecteurs du
plan mise sous forme normale. (French)
[] . . . . . . . . . . . . . . . . . . . 272--314
L. M. Perko Bifurcation of limit cycles . . . . . . 315--333
Christiane Rousseau Universal unfolding of a singularity of
a symmetric vector field with $7$-jet $
C^\infty $-equivalent to $ y \partial /
\partial x + (\pm x^3 \pm x^6 y)
\partial / \partial y$ . . . . . . . . . 334--355
Franz Rothe and
Douglas S. Shafer Bifurcation in a quartic polynomial
system arising in biology . . . . . . . 356--368
Shi Songling On the finiteness of certain boundary
cycles for $N$ th degree polynomial
vector fields . . . . . . . . . . . . . 369--372
Dana Schlomiuk Algebraic integrals of quadratic systems
with a weak focus . . . . . . . . . . . 373--384
Ye Yanqian Rotated vector fields decomposition
method and its application . . . . . . . 385--392
Henryk \.Zo\l\kadek Remarks on the delay of the loss of
stability of systems with changing
parameter . . . . . . . . . . . . . . . 393--396
J. L. Alperin A Lie approach to finite groups . . . . 1--9
A. N. Krasil'nikov and
A. L. Shmel'kin On finite bases for laws of triangular
matrices . . . . . . . . . . . . . . . . 10--13
G. I. Lehrer Group representations, geometry and
topology . . . . . . . . . . . . . . . . 14--31
Ralph McKenzie Some interactions between group theory
and the general theory of algebras . . . 32--48
M. F. Newman Groups of prime-power order . . . . . . 49--62
Cheryl E. Praeger Finite primitive permutation groups: a
survey . . . . . . . . . . . . . . . . . 63--84
Dan Segal Residually finite groups . . . . . . . . 85--95
Bhama Srinivasan Modular representations of finite groups
of Lie type in a non-defining
characteristic . . . . . . . . . . . . . 96--105
C. M. Campbell and
E. F. Robertson and
P. D. Williams On the efficiency of some direct powers
of groups . . . . . . . . . . . . . . . 106--113
J. R. J. Groves Rewriting systems and homology of groups 114--141
Graham Higman Transversals and conjugacy in the group
of recursive permutations . . . . . . . 142--160
Walter D. Neumann On intersections of finitely generated
subgroups of free groups . . . . . . . . 161--170
Shi Wujie and
Bi Jianxing A characteristic property for each
finite projective special linear group 171--180
V. E. Shpilrain On the centers of free central
extensions of some groups . . . . . . . 181--184
John G. Thompson Groups of genus zero and certain
rational functions . . . . . . . . . . . 185--190
G. E. Wall Dependence of Lie relators for Burnside
varieties . . . . . . . . . . . . . . . 191--197
R. G. Burns Corrigenda to the paper `On the rank of
the intersection of subgroups of a
Fuchsian group' . . . . . . . . . . . . 198--198
R. Beauwens Modified incomplete factorization
strategies . . . . . . . . . . . . . . . 1--16
R. Bramley and
H.-C. Chen and
U. Meier and
A. Sameh On some parallel preconditioned CG
schemes . . . . . . . . . . . . . . . . 17--27
Richard E. Ewing and
Raytcho D. Lazarov and
Peng Lu and
Panayot S. Vassilevski Preconditioning indefinite systems
arising from mixed finite element
discretization of second-order elliptic
problems . . . . . . . . . . . . . . . . 28--43
Ivar Gustafsson A class of preconditioned conjugate
gradient methods applied to finite
element equations . . . . . . . . . . . 44--57
David R. Kincaid and
Thomas C. Oppe Recent vectorization and parallelization
of ITPACKV . . . . . . . . . . . . . . . 58--78
J. Maubach On the sparsity patterns of hierarchical
finite element matrices . . . . . . . . 79--104
Y. Notay Solving positive (semi)definite linear
systems by preconditioned iterative
methods . . . . . . . . . . . . . . . . 105--125
H. A. van der Vorst The convergence behaviour of
preconditioned CG and CG-S in the
presence of rounding errors . . . . . . 126--136
R. Weiss and
W. Schönauer Data reduction (dare) preconditioning
for generalized conjugate gradient
methods . . . . . . . . . . . . . . . . 137--153
O. Axelsson and
V. Eijkhout Analysis of a recursive
$5$-point/$9$-point factorization method 154--173
O. Axelsson and
W. Layton Iteration method as discretization
procedures . . . . . . . . . . . . . . . 174--193
Renate Schaaf Dirichlet branches bifurcating from zero 1--44
Renate Schaaf Neumann problems, period maps and
semilinear Dirichlet problems . . . . . 45--68
Renate Schaaf Generalizations . . . . . . . . . . . . 69--109
Renate Schaaf General properties of time maps . . . . 110--136
Dan Tiba Elements of nonlinear analysis . . . . . 1--28
Dan Tiba Semilinear equations . . . . . . . . . . 29--76
Dan Tiba Variational inequalities . . . . . . . . 77--121
Dan Tiba Free boundary problems . . . . . . . . . 122--151
A. M. Anile Modeling intense relativistic electron
beams . . . . . . . . . . . . . . . . . 1--14
N. Bellomo and
M. Lachowicz On the asymptotic theory of the
Boltzmann and Enskog equations a
rigorous $H$-theorem for the Enskog
equation . . . . . . . . . . . . . . . . 15--30
F. Brezzi and
L. D. Marini and
P. Markowich and
P. Pietra On some numerical problems in
semiconductor device simulation . . . . 31--42
Dan G. Cacuci and
V. Protopopescu Canonical propagators for nonlinear
systems: Theory and sample applications 43--56
Russel E. Caflisch Singularity formation for vortex sheets
and hyperbolic equations . . . . . . . . 57--69
Cornille Henri Exact exponential type solutions to the
discrete Boltzmann models . . . . . . . 70--86
P. Degond and
F. Guyot-Delaurens and
F. J. Mustieles and
F. Nier Semiconductor modelling via the
Boltzmann equation . . . . . . . . . . . 87--106
Giovanni Frosali Functional-analytic techniques in the
study of time-dependent electron swarms
in weakly ionized gases . . . . . . . . 107--139
G. P. Galdi and
M. Padula Further results in the nonlinear
stability of the magnetic Bénard problem 140--151
François Golse Particle transport in nonhomogeneous
media . . . . . . . . . . . . . . . . . 152--170
K. R. Rajagopal Some recent results on swirling flows of
Newtonian and non-Newtonian fluids . . . 171--185
Yoshio Sone and
Taku Ohwada and
Kazuo Aoki Evaporation and condensation of a
rarefied gas between its two parallel
plane condensed phases with different
temperatures and negative
temperature-gradient phenomenon ---
Numerical analysis of the Boltzmann
equation for hard-sphere molecules . . . 186--202
Giampiero Spiga Rigorous solution to the extended
kinetic equations for homogeneous gas
mixtures . . . . . . . . . . . . . . . . 203--221
Rudolf Gorenflo and
Sergio Vessella Introduction . . . . . . . . . . . . . . 1--7
Rudolf Gorenflo and
Sergio Vessella Basic theory and representation formulas 8--25
Rudolf Gorenflo and
Sergio Vessella Applications of Abel's original integral
equation: Determination of potentials 26--34
Rudolf Gorenflo and
Sergio Vessella Applications of a transformed Abel
integral equation . . . . . . . . . . . 35--63
Rudolf Gorenflo and
Sergio Vessella Smoothing properties of the Abel
operators . . . . . . . . . . . . . . . 64--82
Rudolf Gorenflo and
Sergio Vessella Existence and uniqueness theorems . . . 83--94
Rudolf Gorenflo and
Sergio Vessella Relations between Abel transform and
other integral transforms . . . . . . . 95--128
Rudolf Gorenflo and
Sergio Vessella Nonlinear Abel integral equations of
second kind . . . . . . . . . . . . . . 129--153
Rudolf Gorenflo and
Sergio Vessella Illposedness and stabilization of linear
Abel integral equations of first kind 154--181
Rudolf Gorenflo and
Sergio Vessella On numerical treatment of first kind
Abel integral equations . . . . . . . . 182--194
Malcolm R. Adams and
Clint McCrory and
Theodore Shifrin and
Robert Varley Symmetric Lagrangian singularities and
Gauss maps of theta divisors . . . . . . 1--26
Kurt Behnke On infinitesimal deformations of
minimally elliptic singularities . . . . 27--41
K. Bekka $C$-Régularité et trivialité topologique.
(French) [] . . . . . . . . . . . . . . 42--62
J. W. Bruce and
T. C. Wilkinson Folding maps and focal sets . . . . . . 63--72
Julio Castellanos The dual graph for space curves . . . . 73--80
Jan Arthur Christophersen On the components and discriminant of
the versal base space of cyclic quotient
singularities . . . . . . . . . . . . . 81--92
James Damon - equivalence and the equivalence of
sections of images and discriminants . . 93--121
Alexandru Dimca Differential forms and hypersurface
singularities . . . . . . . . . . . . . 122--153
P. J. Giblin and
F. Tari Local reflexional and rotational
symmetry in the plane . . . . . . . . . 154--171
V. V. Goryunov The intersection form of a plane
isolated line singularity . . . . . . . 172--184
S. M. Gusein-Zade On the degree of an equivariant map . . 185--193
Herwig Hauser and
Gerd Müller Automorphisms of direct products of
algebroid spaces . . . . . . . . . . . . 194--198
T. de Jong and
D. van Straten Disentanglements . . . . . . . . . . . . 199--211
W. L. Marar The Euler characteristic of the
disentanglement of the image of a corank
$1$ map germ . . . . . . . . . . . . . . 212--220
David Mond Vanishing cycles for analytic maps . . . 221--234
Ruud Pellikaan On complete conditions in enumerative
geometry . . . . . . . . . . . . . . . . 235--257
Andrew du Plessis and
Leslie Charles Wilson Right-symmetry of mappings . . . . . . . 258--275
Rob Schrauwen Deformations and the Milnor number of
non-isolated plane curve singularities 276--291
Dirk Siersma Vanishing cycles and special fibres . . 292--301
Jan Stevens On the versal deformation of cyclic
quotient singularities . . . . . . . . . 302--319
P. J. Aston Scaling Laws and Bifurcation . . . . . . 1--21
David Chillingworth Bifurcation from a manifold . . . . . . 22--37
P. Chossat and
D. Armbruster Structurally stable heteroclinic cycles
in a system with $ O(3) $ symmetry . . . 38--62
J. D. Crawford and
M. Golubitsky and
M. G. M. Gomes and
E. Knobloch and
I. N. Stewart Boundary conditions as symmetry
constraints . . . . . . . . . . . . . . 63--79
James Damon Equivariant bifurcations and
morsifications for finite groups . . . . 80--106
G. Dangelmayr and
M. Wegelin On a codimension-four bifurcation
occurring in optical bistability . . . . 107--121
Odo Diekmann and
Stephan A. van Gils The center manifold for delay equations
in the light of suns and stars . . . . . 122--141
Mike Field Local structure of equivariant dynamics 142--166
J. E. Furter On the bifurcations of subharmonics in
reversible systems . . . . . . . . . . . 167--192
Staszek Janeczko and
Mark Roberts Classification of symmetric caustics I:
symplectic equivalence . . . . . . . . . 193--219
S. Janeczko and
Ian Stewart Symplectic singularities and optical
diffraction . . . . . . . . . . . . . . 220--255
Reiner Lauterbach Dynamics near steady state bifurcations
in problems with spherical symmetry . . 256--265
James Montaldi Caustics in time reversible Hamiltonian
systems . . . . . . . . . . . . . . . . 266--277
Irene M. Moroz Some complex differential equations
arising in telecommunications . . . . . 278--293
Martin Peters Classification of two-parameter
bifurcations . . . . . . . . . . . . . . 294--300
Yieh-Hei Wan Versal deformations of infinitesimally
symplectic transformations with
antisymplectic involutions . . . . . . . 301--320
Donald L. Burkholder Explorations in martingale theory and
its applications . . . . . . . . . . . . 1--66
Etienne Pardoux Filtrage Non Linéaire et Équations aux
Derivées Partielles Stochastiques
Associées. (French) [] . . . . . . . . . 68--163
Alain-Sol Sznitman Topics in propagation of chaos . . . . . 165--251
Guy David Wavelets . . . . . . . . . . . . . . . . 1--25
Guy David Singular integral operators . . . . . . 26--54
Guy David Singular integrals on curves and
surfaces . . . . . . . . . . . . . . . . 55--92
Wojciech Banaszczyk Preliminaries . . . . . . . . . . . . . 1--44
Wojciech Banaszczyk Exotic groups . . . . . . . . . . . . . 45--71
Wojciech Banaszczyk Nuclear groups . . . . . . . . . . . . . 72--109
Wojciech Banaszczyk The Bochner theorem . . . . . . . . . . 110--131
Wojciech Banaszczyk Pontryagin duality . . . . . . . . . . . 132--167
Wolfgang M. Schmidt Siegel's lemma and heights . . . . . . . 1--33
Wolfgang M. Schmidt Diophantine approximation . . . . . . . 34--72
Wolfgang M. Schmidt The Thue equation . . . . . . . . . . . 73--126
Wolfgang M. Schmidt $S$-unit equations and hyperelliptic
equations . . . . . . . . . . . . . . . 127--175
Wolfgang M. Schmidt Diophantine equations in more than two
variables . . . . . . . . . . . . . . . 176--204
Akira Fujiki Hyperkähler structure on the moduli space
of flat bundles . . . . . . . . . . . . 1--83
Hiroshige Shiga Hardy spaces and BMO on Riemann surfaces 84--93
Kensho Takegoshi Application of a certain integral
formula to complex analysis . . . . . . 94--114
Toshihiro Nakanishi and
John A. Velling On inner radii of Teichmüller spaces . . 115--126
Soji Kaneyuki On the causal structures of the Silov
boundaries of symmetric bounded domains 127--159
Masahiko Taniguchi The behavior of the extremal length
function on arbitrary Riemann surface 160--169
Takeo Ohsawa A strong harmonic representation theorem
on complex spaces with isolated
singularities . . . . . . . . . . . . . 170--176
Tetsuji Shioda Mordell--Weil lattices of type $ E_8 $
and deformation of singularities . . . . 177--202
Scott A. Wolpert The spectrum of a Riemann surface with a
cusp . . . . . . . . . . . . . . . . . . 203--226
Toshiki Miyano and
Junjiro Noguchi Moduli spaces of harmonic and
holomorphic mappings and Diophantine
geometry . . . . . . . . . . . . . . . . 227--253
Yum-Tong Siu Global nondeformability of the complex
projective space . . . . . . . . . . . . 254--280
Ingrid Bauer and
Siegmund Kosarew Some aspects of Hodge theory on
non-complete algebraic manifolds . . . . 281--316
Steven Zucker $ L^p $-Cohomology and Satake
compactifications . . . . . . . . . . . 317--339
Jürgen Jost and
Shing-Tung Yau Harmonic maps and Kähler geometry . . . . 340--370
Yoshihiro Ohnita and
Seiichi Udagawa Complex-analyticity of pluriharmonic
maps and their constructions . . . . . . 371--407
Kyoji Saito Higher Eichler integrals and vector
bundles over the moduli of spinned
Riemann surfaces . . . . . . . . . . . . 408--421
Lennart Carleson Stochastic models of some dynamical
systems . . . . . . . . . . . . . . . . 1--12
V. Milman Some applications of duality relations 13--40
Ya. G. Sinai Mathematical problems in the theory of
quantum chaos . . . . . . . . . . . . . 41--59
P. M. Bleher Quasi-classical expansions and the
problem of quantum chaos . . . . . . . . 60--89
Alexander G. Reznikov A strengthened isoperimetric inequality
for simplices . . . . . . . . . . . . . 90--93
Michel Talagrand A new isoperimetric inequality and the
concentration of measure phenomenon . . 94--124
Paul F. X. Müller Permutations of the Haar system . . . . 125--126
J. Bourgain On the distribution of polynomials on
high dimensional convex sets . . . . . . 127--137
J. Bourgain and
J. Lindenstrauss On convering a set in $ R^N $ by balls
of the same diameter . . . . . . . . . . 138--144
M. Meyer and
S. Reisner Characterization of
affinely-rotation-invariant log-concave
measures by section-centroid location 145--152
J. Bourgain Remarks on Montgomery's conjectures on
Dirichlet sums . . . . . . . . . . . . . 153--165
M. Schmuckenschläger On the dependence on $ \epsilon $ in a
theorem of J. Bourgain, J. Lindenstrauss
and V. D. Milman . . . . . . . . . . . . 166--173
G. Schechtman and
M. Schmuckenschläger Another remark on the volume of the
intersection of two $ L_p^n $ balls . . 174--178
Jean Bourgain On the restriction and multiplier
problems in $ R^3 $ . . . . . . . . . . 179--191
R. Haydon and
E. Odell and
H. Rosenthal On certain classes of Baire-1 functions
with applications to Banach space theory 1--35
Keith Ball Normed spaces with a weak-Gordon--Lewis
property . . . . . . . . . . . . . . . . 36--47
S. J. Szarek On the geometry of the Banach--Mazur
compactum . . . . . . . . . . . . . . . 48--59
P. Wojtaszczyk Some remarks about the space of measures
with uniformly bounded partial sums and
Banach--Mazur distances between some
spaces of polynomials . . . . . . . . . 60--67
N. Ghoussoub and
W. B. Johnson Operators which factor through Banach
lattices not containing $ c_0 $ . . . . 68--71
William B. Johnson and
Gideon Schechtman Remarks on Talagrand's deviation
inequality for Rademacher functions . . 72--77
M. Zippin A global approach to certain operator
extension problems . . . . . . . . . . . 78--84
Helmut Knaust and
Edward Odell Weakly null sequences with upper $
\ell_p$-estimates . . . . . . . . . . . 85--107
H. P. Rosenthal and
S. J. Szarek On tensor products of operators from $
L^p $ to $ L^q $ . . . . . . . . . . . . 108--132
Thomas Schlumprecht Limited sets in injective tensor
products . . . . . . . . . . . . . . . . 133--158
Frank Räbiger Lower and upper $2$-estimates for order
bounded sequences and Dunford--Pettis
operators between certain classes of
Banach lattices . . . . . . . . . . . . 159--170
Denny H. Leung Embedding $ \ell^1 $ into tensor
products of Banach spaces . . . . . . . 171--176
Pawel Hitczenko A remark on the paper ``Martingale
inequalities in rearrangement invariant
function spaces'' by W. B. Johnson and
G. Schechtman . . . . . . . . . . . . . 177--182
Fouad Chaatit Twisted types and uniform stability . . 183--199
Alexey A. Panchishkin Front Matter . . . . . . . . . . . . . . N2--vii
Alexey A. Panchishkin Introduction . . . . . . . . . . . . . . 1--8
Alexey A. Panchishkin Acknowledgement . . . . . . . . . . . . 8--8
Alexey A. Panchishkin Non-Archimedean analytic functions,
measures and distributions . . . . . . . 9--34
Alexey A. Panchishkin Siegel modular forms and the holomorphic
projection operator . . . . . . . . . . 35--80
Alexey A. Panchishkin Non-Archimedean standard zeta functions
of Siegel modular forms . . . . . . . . 81--116
Alexey A. Panchishkin Non-Archimedean convolutions of Hilbert
modular forms . . . . . . . . . . . . . 117--145
Alexey A. Panchishkin Back Matter . . . . . . . . . . . . . . 146--161
Michel Courtieu and
Alexei A. Panchishkin Introduction . . . . . . . . . . . . . . 1--12
Michel Courtieu and
Alexei A. Panchishkin 1. Non-Archimedean analytic functions,
measures and distributions . . . . . . . 13--44
Michel Courtieu and
Alexei A. Panchishkin 2. Siegel modular forms and the
holomorphic projection operator . . . . 45--93
Michel Courtieu and
Alexei A. Panchishkin 3. Arithmetical differential operators
on nearly holomorphic Siegel modular
forms . . . . . . . . . . . . . . . . . 95--125
Michel Courtieu and
Alexei A. Panchishkin 4. Admissible measures for standard
$L$-functions and nearly holomorphic
Siegel modular forms . . . . . . . . . . 127--186
Michel Courtieu and
Alexei A. Panchishkin References . . . . . . . . . . . . . . . 187--193
Torben T. Nielsen Introduction . . . . . . . . . . . . . . 1--3
Torben T. Nielsen The Bose algebra $ \Gamma_0 \mathfrak
{H}, \langle, \rangle $ . . . . . . . . 4--22
Torben T. Nielsen Lifting operators to $ \Gamma $$
\mathfrak {H} $ . . . . . . . . . . . . 23--32
Torben T. Nielsen The coherent vectors in $ \Gamma $$
\mathfrak {H} $ . . . . . . . . . . . . 33--44
Torben T. Nielsen The Wick ordering and the Weyl relations 45--52
Torben T. Nielsen Some special operators . . . . . . . . . 53--65
Torben T. Nielsen The complex wave representation . . . . 66--71
Torben T. Nielsen The real wave representation . . . . . . 72--78
Torben T. Nielsen Bose algebras of operators . . . . . . . 79--88
Torben T. Nielsen Wave representations of $ \Gamma $($
\mathfrak {H} $+$ \mathfrak {H} $*) . . 89--93
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Phase Spaces . . . . . . . . . . . . . . 1--34
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Fundamental theorems . . . . . . . . . . 35--52
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Stieltjes integrals and linear operators
on $ \mathcal {B} $ . . . . . . . . . . 53--98
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito General linear systems . . . . . . . . . 99--129
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Linear autonomous systems . . . . . . . 130--176
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Linear periodic systems . . . . . . . . 177--186
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Fading memory spaces and functional
differential equations . . . . . . . . . 187--214
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Stabilities in perturbed systems and
limiting equations . . . . . . . . . . . 215--253
Yoshiyuki Hino and
Satoru Murakami and
Toshiki Naito Existence of periodic solutions and
almost periodic solutions . . . . . . . 254--276
C. Allday and
V. Puppe Some applications of shifted subgroups
in transformation groups . . . . . . . . 1--19
Pawel Andrzejewski Equivariant finiteness obstruction and
its geometric applications --- a survey 20--37
Giora Dula On conic spaces . . . . . . . . . . . . 38--58
Professor F. T. Farrell and
Professor L. E. Jones Computations of stable pseudoisotopy
spaces for aspherical manifolds . . . . 59--74
F. E. A. Johnson and
E. G. Rees The fundamental groups of algebraic
varieties . . . . . . . . . . . . . . . 75--82
Kunio Murasugi Invariants of graphs and their
applications to knot theory . . . . . . 83--97
A. V. Pazhitnov Morse theory of closed $1$-forms . . . . 98--110
Urs Würgler Morava $K$-theories: a survey . . . . . 111--138
Frank Connolly and
Tadeusz Ko\'zniewski Examples of lack of rigidity in
crystallographic groups . . . . . . . . 139--145
Jean-Claude Hausmann Sur la Topologie des Bras Articulés.
(French) [] . . . . . . . . . . . . . . 146--159
Ulrich Koschorke Semicontractible link maps and their
suspensions . . . . . . . . . . . . . . 160--169
Jonathan Rosenberg The KO-assembly map and positive scalar
curvature . . . . . . . . . . . . . . . 170--182
Micha\l Sadowski Equivariant splittings associated with
smooth toral actions . . . . . . . . . . 183--192
E. V. Troitsky Lefschetz numbers of $ C* $-complexes 193--206
Hans Joachim Baues On the homotopy category of Moore spaces
and an old result of Barratt . . . . . . 207--230
Jan Jaworowski An additive basis for the cohomology of
real Grassmannians . . . . . . . . . . . 231--234
Nguyen Huynh Ph\`an On the topology of the space of
reachable symmetric linear systems . . . 235--253
R. Schwänzl and
R. M. Vogt Homotopy ring spaces and their matrix
rings . . . . . . . . . . . . . . . . . 254--272
Jolanta S\lominska Homotopy colimits on $E$-$I$-categories 273--294
Vladimir V. Vershinin On bordism rings with principal torsion
ideal . . . . . . . . . . . . . . . . . 295--309
Kenneth L. Cooke and
Joseph Wiener A survey of differential equations with
piecewise continuous arguments . . . . . 1--15
Jack K. Hale Dynamics and delays . . . . . . . . . . 16--30
Paul Waltman A brief survey of persistence in
dynamical systems . . . . . . . . . . . 31--40
Felix Albrecht and
Gabriele Villari Periodic orbits of planar polynomial
Liénard systems with a small parameter 41--52
Herbert Amann Hopf bifurcation in quasilinear
reaction-diffusion systems . . . . . . . 53--63
Ovide Arino Monotone semi-flows which have a
monotone first integral . . . . . . . . 64--75
Anna Capietto and
Jean Mawhin and
Fabio Zanolin The coincidence degree of some
functional differential operators in
spaces of periodic functions and related
continuation theorems . . . . . . . . . 76--87
L. A. V. Carvalho On the stability of discrete equations
and ordinary differential equations . . 88--97
G. Conti and
P. Nistri and
P. Zecca Systems of set-valued equations in
Banach spaces . . . . . . . . . . . . . 98--109
C. Corduneanu Abstract Volterra equations and weak
topologies . . . . . . . . . . . . . . . 110--115
Odo Diekmann and
Mats Gyllenberg and
Horst R. Thieme Semigroups and renewal equations on dual
Banach spaces with applications to
population dynamics . . . . . . . . . . 116--129
W. E. Fitzgibbon and
J. J. Morgan and
R. S. Sanders and
S. J. Waggoner Estimates for spatio-temporally
dependent reaction diffusion systems . . 130--146
G. Fournier and
M. Willem The mountain circle theorem . . . . . . 147--160
Jeffery M. Franke and
Harlan W. Stech Extensions of an algorithm for the
analysis of nongeneric Hopf
bifurcations, with applications to
delay-difference equations . . . . . . . 161--175
Massimo Furi and
Maria Patrizia Pera The forced spherical pendulum does have
forced oscillations . . . . . . . . . . 176--182
David Gurarie and
Gerhard Kalisch and
Mark Kon and
Edward Landesman Radial bounds for Schrödinger operators
in Euclidean domains . . . . . . . . . . 183--190
P. Habets and
M. Ramos and
L. Sanchez Jumping nonlinearity for 2nd order ODE
with positive forcing . . . . . . . . . 191--203
Kenneth B. Hannsgen and
Robert L. Wheeler Moment conditions for a Volterra
integral equation in a Banach space . . 204--209
William A. Harris, Jr. and
Yasutaka Sibuya Asymptotic behaviors of solutions of a
system of linear ordinary differential
equations as $ t \to \infty $ . . . . . 210--217
Tomasz Kaczynski Implicit differential equations which
are not solvable for the highest
derivative . . . . . . . . . . . . . . . 218--224
Mohamed Bekkali Nonmeasurable sets of reals . . . . . . 1--13
Mohamed Bekkali Measurability in $ L[\mathbb {R}] $ . . 15--22
Mohamed Bekkali Forcing axioms . . . . . . . . . . . . . 23--60
Mohamed Bekkali The method of minimal walks . . . . . . 61--104
Mohamed Bekkali Appendix . . . . . . . . . . . . . . . . 105--114
Ryszard Jajte Almost sure convergence in
noncommutative $ L_2 $-spaces . . . . . 1--9
Ryszard Jajte Individual ergodic theorems in $ L_2 $
over a von Neumann algebra . . . . . . . 10--36
Ryszard Jajte Asymptotic formulae . . . . . . . . . . 37--51
Ryszard Jajte Convergence of iterates of contractions 52--63
Ryszard Jajte Convergence of orthogonal series and
strong laws of large numbers . . . . . . 64--84
Ryszard Jajte Convergence of conditional expectations
and martingales . . . . . . . . . . . . 85--89
Ryszard Jajte Miscellaneous results . . . . . . . . . 90--99
Jacques Dixmier Sur les invariants du groupe symétrique
dans certaines représentations, II.
(French) [] . . . . . . . . . . . . . . 1--34
Barbara J. Schmid Finite groups and invariant theory . . . 35--66
Jan-Erik Björk Derived categories . . . . . . . . . . . 67--129
Piotr Pragacz Algebro-geometric applications of Schur
$s$- and $q$-polynomials . . . . . . . . 130--191
François Dumas Sous-corps de fractions rationnelles des
corps gauches de séries de Laurent.
(French) [] . . . . . . . . . . . . . . 192--214
Daniel Krob Expressions rationnelles sur un anneau.
(French) [] . . . . . . . . . . . . . . 215--243
J. F. Pommaret Deformation theory of algebraic and
geometric structures . . . . . . . . . . 244--254
Michel Van den Bergh Differential operators on
semi-invariants for tori and weighted
projective spaces . . . . . . . . . . . 255--272
V. A. Alexeev Theorems about good divisors on log Fano
varieties (case of index $ r > (n - 2)$) 1--9
Donu Arapura Fano maps and fundamental groups . . . . 10--14
A. Bertram and
Lawrence Ein and
Robert Lazarsfeld Surjectivity of Gaussian maps for line
bundles of large degree on curves . . . 15--25
V. I. Danilov De Rham complex on toroidal variety . . 26--38
Igor Dolgachev and
Igor Reider On rank $2$ vector bundles with $ c_1^2
= 10$ and $ c_2 = 3$ on Enriques
surfaces . . . . . . . . . . . . . . . . 39--49
V. A. Iskovskih Towards the problem of rationality of
conic bundles . . . . . . . . . . . . . 50--56
M. M. Kapranov On DG-modules over the de Rham complex
and the vanishing cycles functor . . . . 57--86
George R. Kempf More on computing invariants . . . . . . 87--89
George R. Kempf Effective methods in invariant theory 90--93
V. A. Kolyvagin On the structure of Shafarevich--Tate
groups . . . . . . . . . . . . . . . . . 94--121
Vic. S. Kulikov On the fundamental group of the
complement of a hypersurface in $
\mathbb {C}^n $ . . . . . . . . . . . . 122--130
Boris Moishezon and
Mina Teicher Braid group technique $m$ complex
geometry, II: From arrangements of lines
and conics to cuspidal curves . . . . . 131--180
D. Yu. Nogin Notes on exceptional vector bundles and
helices . . . . . . . . . . . . . . . . 181--195
Morihiko Saito Hodge conjecture and mixed motives II 196--215
Craig Seeley and
Stephen S.-T. Yau Algebraic methods in the study of
simple-elliptic singularities . . . . . 216--237
Roy Smith and
Robert Varley Singularity theory applied to $ \Theta
$-divisors . . . . . . . . . . . . . . . 238--257
A. N. Tyurin A slight generalization of the
Mehta--Ramanathan theorem . . . . . . . 258--272
F. L. Zak Some properties of dual varieties and
their applications in projective
geometry . . . . . . . . . . . . . . . . 273--280
Yuri G. Zarhin Linear irreducible Lie algebras and
Hodge structures . . . . . . . . . . . . 281--297
Yuri G. Zarhin Ussr participants . . . . . . . . . . . 298--300
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek Introduction . . . . . . . . . . . . . . 1--18
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek Definitions and notations . . . . . . . 19--21
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek Transformation into normal form . . . . 22--27
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek Bifurcations of codimension $1$ and $2$ 28--56
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek Elementary properties . . . . . . . . . 57--84
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek The central rescaling . . . . . . . . . 85--134
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek Conclusions and discussion of remaining
problems . . . . . . . . . . . . . . . . 135--164
Freddy Dumortier and
Robert Roussarie and
Jorge Sotomayor and
Henryk \.Za\l\kadek Abelian integrals in unfoldings of
codimension $3$ singular planar vector
fields . . . . . . . . . . . . . . . . . 165--224
Stefana Hineva and
Evgeni Belchev On the minimal hypersurfaces of a
locally symmetric manifold . . . . . . . 1--4
Novica Bla\vzi\'c and
Neda Bokan and
Peter Gilkey The spectral geometry of the Laplacian
and the conformal Laplacian for
manifolds with boundary . . . . . . . . 5--17
J. Bolton and
W. M. Oxbury and
L. M. Woodward and
L. Vrancken Minimal immersions of $ {\rm Rp}^2 $
into $ \mathbb {C} p^n $ . . . . . . . . 18--27
Waldemar Cie\'slak and
Andrzej Miernowski and
Witold Mozgawa Isoptics of a closed strictly convex
curve . . . . . . . . . . . . . . . . . 28--35
Franki Dillen and
Luc Vrancken Generalized Cayley surfaces . . . . . . 36--47
A. Ferrández and
O. J. Garay and
P. Lucas On a certain class of conformally flat
Euclidean hypersurfaces . . . . . . . . 48--54
Paul Gauduchon Self-dual manifolds with non-negative
Ricci operator . . . . . . . . . . . . . 55--61
Bogus\law Hajduk On the obstruction group to existence of
Riemannian metrics of positive scalar
curvature . . . . . . . . . . . . . . . 62--72
Ursula Hamenstädt Compact manifolds with $ 1 / 4$-pinched
negative curvature . . . . . . . . . . . 73--78
Jürgen Jost and
Xiao-Wei Peng The geometry of moduli spaces of stable
vector bundles over Riemann surfaces . . 79--96
O. Kowalski and
F. Tricerri A canonical connection for locally
homogeneous Riemannian manifolds . . . . 97--103
Michael Kozlowski Some improper affine spheres in $ A_3 $ 104--107
Rob Kusner A maximum principle at infinity and the
topology of complete embedded surfaces
with constant mean curvature . . . . . . 108--114
Li An-Min Affine completeness and Euclidean
completeness . . . . . . . . . . . . . . 115--125
Ülo Lumiste On Submanifolds with parallel higher
order fundamental form in Euclidean
spaces . . . . . . . . . . . . . . . . . 126--137
A. Martínez and
F. Milán Convex affine surfaces with constant
affine mean curvature . . . . . . . . . 138--144
Maung Min-Oo and
Ernst A. Ruh and
Philippe Tondeur Transversal curvature and tautness for
Riemannian foliations . . . . . . . . . 145--146
Sebastián Montiel and
Antonio Ros Schrödinger operators associated to a
holomorphic map . . . . . . . . . . . . 147--174
D. Motreanu Generic existence of Morse functions on
infinite dimensional Riemannian
manifolds and applications . . . . . . . 175--184
Barbara Opozda Some extensions of Radon's theorem . . . 185--191
Jan Chabrowski Introduction . . . . . . . . . . . . . . 1--4
Jan Chabrowski Weighted Sobolev space $ \tilde W^{1, 2}
$ . . . . . . . . . . . . . . . . . . . 7--19
Jan Chabrowski The Dirichlet problem in a half-space 20--45
Jan Chabrowski The Dirichlet problem in a bounded
domain . . . . . . . . . . . . . . . . . 46--66
Jan Chabrowski Estimates of derivatives . . . . . . . . 67--77
Jan Chabrowski Harmonic measure . . . . . . . . . . . . 78--89
Jan Chabrowski Exceptional sets on the boundary . . . . 90--103
Jan Chabrowski Applications of the $ L^2 $-method . . . 104--116
Jan Chabrowski Domains with $ C^{1, \alpha } $-boundary 117--130
Jan Chabrowski The space $ C_{n - 1} (\bar Q) $ . . . . 131--141
Jan Chabrowski $ C_{n - 1} $-estimate of the solution
of the Dirichlet problem with $ L^2
$-boundary data . . . . . . . . . . . . 142--167
Eduard Reithmeier Introduction . . . . . . . . . . . . . . 3--8
Eduard Reithmeier Differentiable dynamical systems . . . . 9--109
Eduard Reithmeier Differentiable dynamical systems with
discontinuities . . . . . . . . . . . . 110--151
Hans Delfs Abstract locally semialgebraic spaces 1--16
Hans Delfs Sheaf theory on locally semialgebraic
spaces . . . . . . . . . . . . . . . . . 17--61
Hans Delfs Semialgebraic Borel--Moore-homology . . 62--114
Hans Delfs Some intersection theory . . . . . . . . 115--129
C. Dellacherie Théorie non linéaire du potentiel: Un
principe unifié de domination et du
maximum et quelques applications.
(French) [] . . . . . . . . . . . . . . 1--9
M. Emery Quelques cas de représentation chaotique.
(French) [] . . . . . . . . . . . . . . 10--23
Michael Schürmann The Azéma martingales as components of
quantum independent increment processes 24--30
K. R. Parthasarathy Realisation of a class of Markov
processes through unitary evolutions in
Fock space . . . . . . . . . . . . . . . 31--36
K. R. Parthasarathy An additional remark on unitary
evolutions in Fock space . . . . . . . . 37--38
B. V. Rajarama Bhat and
K. R. Parthasarathy Generalized harmonic oscillators in
quantum probability . . . . . . . . . . 39--51
P.-A. Meyer Application du ``Bébé Fock'' au mod\`ele
d'Ising. (French) [] . . . . . . . . . . 52--60
P.-A. Meyer and
J. A. Yan Les ``fonctions caractéristiques'' des
distributions sur l'espace de Wiener.
(French) [] . . . . . . . . . . . . . . 61--78
J. A. Yan Notes on the Wiener semigroup and
renormalization . . . . . . . . . . . . 79--94
J. A. Yan Some remarks on the theory of stochastic
integration . . . . . . . . . . . . . . 95--107
P.-A. Meyer Sur la méthode de L. Schwartz pour les
é.d.s.. (French) [] . . . . . . . . . . . 108--112
Rajeeva L. Karandikar On almost sure convergence of modified
Euler--Peano approximation of solution
to an S.D.E. driven by a semimartingale 113--120
Shigetoku Kawabata and
Toshio Yamada On Newton's method for stochastic
differential equations . . . . . . . . . 121--137
J. Jacod and
P. Protter Une remarque sur les équations
différentielles stochastiques \`a
solutions markoviennes. (French) [] . . 138--139
Jean Jacod Régularité d'ordre quelconque pour un
mod\`ele statistique filtré. (French) [] 140--161
Jean Mémin and
Leszek S\lominski Condition UT et stabilité en loi des
solutions d'équations différentielles
stochastiques. (French) [] . . . . . . . 162--177
Xavier Fernique Convergence en loi de fonctions
aléatoires continues ou c\`adl\`ag,
propriétés de compacité des lois. (French)
[] . . . . . . . . . . . . . . . . . . . 178--195
Jean Picard Calcul stochastique avec sauts sur une
variété. (French) [] . . . . . . . . . . . 196--219
M. Emery and
G. Mokobodzki Sur le barycentre d'une probabilité dans
une variété. (French) [] . . . . . . . . . 220--233
Dominique Bakry Inégalités de Sobolev faibles: un
crit\`ere $ \Gamma_2 $. (French) [] . . 234--261
Ludwig Arnold and
Hans Crauel Random dynamical systems . . . . . . . . 1--22
I. Ya. Goldsheid Lyapunov exponents and asymptotic
behaviour of the product of random
matrices . . . . . . . . . . . . . . . . 23--37
Hans Crauel Lyapunov exponents of random dynamical
systems on Grassmannians . . . . . . . . 38--50
Arie Leizarowitz Eigenvalue representation for the
Lyapunov exponents of certain Markov
processes . . . . . . . . . . . . . . . 51--63
Yuval Peres Analytic dependence of Lyapunov
exponents on transition probabilities 64--80
Y. Le Jan A second order extension of Oseledets
theorem . . . . . . . . . . . . . . . . 81--85
Oliver Knill The upper Lyapunov exponent of $ {\rm
Sl}(2, R) $ cocycles: Discontinuity and
the problem of positivity . . . . . . . 86--97
Yu. D. Latushkin and
A. M. Stepin Linear skew-product flows and semigroups
of weighted composition operators . . . 98--111
Philippe Bougerol Filtre de Kalman Bucy et exposants de
Lyapounov. (French) [] . . . . . . . . . 112--122
Peter H. Baxendale Invariant measures for nonlinear
stochastic differential equations . . . 123--140
Petra Boxler How to construct stochastic center
manifolds on the level of vector fields 141--158
Ludwig Arnold and
Petra Boxler Additive noise turns a hyperbolic fixed
point into a stationary solution . . . . 159--164
Xuerong Mao Lyapunov functions and almost sure
exponential stability . . . . . . . . . 165--177
Yuri Kifer Large deviations for random expanding
maps . . . . . . . . . . . . . . . . . . 178--186
Kay-Uwe Schaumlöffel Multiplicative ergodic theorems in
infinite dimensions . . . . . . . . . . 187--195
Franco Flandoli Stochastic flow and Lyapunov exponents
for abstract stochastic PDEs of
parabolic type . . . . . . . . . . . . . 196--205
R. W. R. Darling The Lyapunov exponent for products of
infinite-dimensional random matrices . . 206--215
Gerhard Keller Lyapunov exponents and complexity for
interval maps . . . . . . . . . . . . . 216--226
Franz Hofbauer An inequality for the Ljapunov exponent
of an ergodic invariant measure for a
piecewise monotonic map of the interval 227--231
P. Thieullen Généralisation du théor\`eme de Pesin pour
l'$ \alpha $-entropie. (French) [] . . . 232--242
Eberhard Freitag Introduction . . . . . . . . . . . . . . 1--5
Eberhard Freitag Siegel modular forms . . . . . . . . . . 8--37
Eberhard Freitag Theta series with polynomial
coefficients . . . . . . . . . . . . . . 38--69
Eberhard Freitag Singular weights . . . . . . . . . . . . 70--88
Eberhard Freitag Singular modular forms and theta series 89--110
Eberhard Freitag The fundamental lemma . . . . . . . . . 111--152
Eberhard Freitag The results . . . . . . . . . . . . . . 153--169
F. William Lawvere Some thoughts on the future of category
theory . . . . . . . . . . . . . . . . . 1--13
Ji\vrí Adámek and
Ji\vrí Rosický What are locally generated categories? 14--19
Jean Benabou Some remarks on free monoids in a topos 20--29
Francis Borceux and
Gilberte Van den Bossche A generic sheaf representation for rings 30--42
Dominique Bourn Normalization equivalence, kernel
equivalence and affine categories . . . 43--62
S. Carmody and
R. F. C. Walters Computing quotients of actions of a free
category . . . . . . . . . . . . . . . . 63--78
Antonio M. Cegarra and
Antonio R. Garzón A long exact sequence in non-abelian
cohomology . . . . . . . . . . . . . . . 79--94
Peter Freyd Algebraically complete categories . . . 95--104
John W. Gray Order-enriched sketches for typed lambda
calculi. . . . . . . . . . . . . . . . . 105--130
J. M. E. Hyland First steps in synthetic domain theory 131--156
George Janelidze Precategories and Galois theory . . . . 157--173
George Janelidze and
Walter Tholen How algebraic is the change-of-base
functor? . . . . . . . . . . . . . . . . 174--186
C. Barry Jay Fixpoint and loop constructions as
colimits . . . . . . . . . . . . . . . . 187--192
Peter Johnstone and
Steven Vickers Preframe presentations present . . . . . 193--212
André Joyal and
Myles Tierney Strong stacks and classifying spaces . . 213--236
S. Kasangian and
S. Vigna Trees in distributive categories . . . . 237--248
G. M. Kelly A note on relations relative to a
factorization system . . . . . . . . . . 249--261
Anders Kock Algebras for the partial map classifier
monad . . . . . . . . . . . . . . . . . 262--278
F. William Lawvere Intrinsic co-Heyting boundaries and the
Leibniz rule in certain toposes . . . . 279--281
John L. MacDonald Concretely functorial programming . . . 282--297
Alexander Mielke Introduction . . . . . . . . . . . . . . 1--6
Alexander Mielke Notations and basic facts on center
manifolds . . . . . . . . . . . . . . . 9--16
Alexander Mielke The linear theory . . . . . . . . . . . 17--26
Alexander Mielke Hamiltonian flows on center manifolds 27--40
Alexander Mielke Hamiltonian systems with symmetries . . 41--59
Alexander Mielke Lagrangian systems . . . . . . . . . . . 61--83
Alexander Mielke Nonautonomous systems . . . . . . . . . 85--92
Alexander Mielke Elliptic variational problems on
cylindrical domains . . . . . . . . . . 95--102
Alexander Mielke Capillarity surface waves . . . . . . . 103--108
Alexander Mielke Necking of strips . . . . . . . . . . . 109--119
Alexander Mielke Saint-Venant's problem . . . . . . . . . 121--131
Klaus Metsch Definition and basic properties of
linear spaces . . . . . . . . . . . . . 1--8
Klaus Metsch Lower bounds for the number of lines . . 9--14
Klaus Metsch Basic properties and results of $ (n +
1, 1)$-designs . . . . . . . . . . . . . 15--20
Klaus Metsch Points of degree $n$ . . . . . . . . . . 21--30
Klaus Metsch Linear spaces with few lines . . . . . . 31--42
Klaus Metsch Embedding $ (n + 1, 1)$-designs into
projective planes . . . . . . . . . . . 43--60
Klaus Metsch An optimal bound for embedding linear
spaces into projective planes . . . . . 61--73
Klaus Metsch The theorem of totten . . . . . . . . . 74--85
Klaus Metsch Linear spaces with $ n^2 + n + 1 $
points . . . . . . . . . . . . . . . . . 86--93
Klaus Metsch A hypothetical structure . . . . . . . . 94--105
Klaus Metsch Linear spaces with $ n^2 + n + 2 $ lines 106--117
Klaus Metsch Points of degree $n$ and another
characterization of the linear spaces $
L(n, d)$ . . . . . . . . . . . . . . . . 118--130
Klaus Metsch The non-existence of certain $ (7,
1)$-designs and determination of $ A(5)$
and $ A(6)$ . . . . . . . . . . . . . . 131--140
Klaus Metsch A result on graph theory with an
application to linear spaces . . . . . . 141--149
Klaus Metsch Linear spaces in which every long line
meets only few lines . . . . . . . . . . 150--160
Klaus Metsch $s$-Fold inflated projective planes . . 161--180
Klaus Metsch The Dowling Wilson Conjecture . . . . . 181--187
Klaus Metsch Uniqueness of embeddings . . . . . . . . 188--191
Keith R. Wicks Introduction . . . . . . . . . . . . . . 1--2
Keith R. Wicks Preliminaries . . . . . . . . . . . . . 3--12
Keith R. Wicks Nonstandard development of the Vietoris
topology . . . . . . . . . . . . . . . . 13--28
Keith R. Wicks Nonstandard development of the Hausdorff
metric . . . . . . . . . . . . . . . . . 29--43
Keith R. Wicks Hutchinson's invariant sets . . . . . . 44--85
Keith R. Wicks Views and fractal notions . . . . . . . 86--130
Claude Lobry Dynamic bifurcations . . . . . . . . . . 1--13
T. Erneux and
E. L. Reiss and
L. J. Holden and
M. Georgiou Slow passage through bifurcation and
limit points. Asymptotic theory and
applications . . . . . . . . . . . . . . 14--28
Mireille Canalis-Durand Formal expansion of van der Pol equation
canard solutions are Gevrey . . . . . . 29--39
Véronique Gautheron and
Emmanuel Isambert Finitely differentiable ducks and finite
expansions . . . . . . . . . . . . . . . 40--56
Guy Wallet Overstability in arbitrary dimension . . 57--70
Francine Diener and
Marc Diener Maximal delay . . . . . . . . . . . . . 71--86
Augustin Fruchard Existence of bifurcation delay: The
discrete case . . . . . . . . . . . . . 87--106
Claude Baesens Noise effect on dynamic bifurcations:
The case of a period-doubling cascade 107--130
Eric Benoit Linear dynamic bifurcation with noise 131--150
Antoine Delcroix A tool for the local study of slow-fast
vector fields: The zoom . . . . . . . . 151--167
S. N. Samborski Rivers from the point of view of the
qualitative theory . . . . . . . . . . . 168--180
François Blais Asymptotic expansions of rivers . . . . 181--189
Imme P. van den Berg Macroscopic rivers . . . . . . . . . . . 190--209
Der-Chen Chang Nankai lecture in $ \bar \partial
$-Neumann problem . . . . . . . . . . . 1--22
Chen Jie-cheng and
Luo Cheng Duality of $ H^1 $ and BMO on positively
curved manifolds and their
characterizations . . . . . . . . . . . 23--38
Chen Tian-Ping and
Zhang De-Zhi Oscillatory integral with polynomial
phase . . . . . . . . . . . . . . . . . 39--45
Dong-gao Deng and
Yongsheng Han On a generalized paraproduct defined by
non-convolution . . . . . . . . . . . . 46--53
Yongsheng Han $ H^p $ boundedness of Calderón--Zygmund
operators for product domains . . . . . 54--67
Wei Hu and
Xianliang Shi and
Qiyu Sun $ A_\infty $ condition characterized by
maximal geometric mean operator . . . . 68--72
Yue Hu A weighted norm inequality for
oscillatory singular integrals . . . . . 73--81
Yaping Jiang and
Xuebo Luo The nilpotent Lie group $ G^{d + 2} $
and a class of differential operators
with multiple characteristics . . . . . 82--83
Chun Li Characterization of
BMO$_p^{sq}$-functions by generalized
Carleson measure . . . . . . . . . . . . 84--94
Peng Lin and
Lizhong Peng Besov spaces of Paley--Wiener type . . . 95--112
He-ping Liu The weak $ H^p $ spaces on homogeneous
groups . . . . . . . . . . . . . . . . . 113--118
Zhixin Liu and
Shanzhen Lu Applications of Hörmander multiplier
theorem to approximation in real Hardy
spaces . . . . . . . . . . . . . . . . . 119--129
Hongwei Lou Weighted norm inequalities for the
restriction of Fourier transform to $
S^{n - 1} $ . . . . . . . . . . . . . . 130--130
Ruilin Long and
Fusheng Nie Weighted Sobolev inequality and
eigenvalue estimates of Schrödinger
operators . . . . . . . . . . . . . . . 131--141
Alan McIntosh and
Qian Tao Convolution singular integral operators
on Lipschitz curves . . . . . . . . . . 142--162
Guangzhong Ouyang Multipliers from $ L_1 (G) $ to a
reflexive Segal algebra . . . . . . . . 163--168
Wenjie Pan Weighted norm inequalities for certain
maximal operators with approach regions 169--175
Dao-chun Sun and
Zhi-ying Wen The Hausdorff dimension of a class of
lacunary trigonometric series . . . . . 176--181
Li-min Sun Hermitian nilpotent Lie groups: Harmonic
analysis as spectral theory of
Laplacians . . . . . . . . . . . . . . . 182--184
Xue-Ping Wang Weak coupling asymptotics of Schrödinger
operators with Stark effect . . . . . . 185--195
Jean-Michel Bony Analyse microlocale des équations aux
dérivées partielles non linéaires. (French)
[] . . . . . . . . . . . . . . . . . . . 1--45
Gerd Grubb Parabolic pseudo-differential boundary
problems and applications . . . . . . . 46--117
Lars Hörmander Quadratic hyperbolic operators . . . . . 118--160
Hikosaburo Komatsu Microlocal analysis in Gevrey classes
and in complex domains . . . . . . . . . 161--236
Johannes Sjöstrand Microlocal analysis for the periodic
magnetic Schrödinger equation and related
questions . . . . . . . . . . . . . . . 237--332
Ciprian Foia\cs Commutant lifting techniques for
computing optimal $ H^\infty $
controllers . . . . . . . . . . . . . . 1--36
Bruce Francis Lectures on $ H_\infty $ control and
sampled-data systems . . . . . . . . . . 37--105
J. William Helton Two topics in systems engineering:
Frequency domain design and nonlinear
systems . . . . . . . . . . . . . . . . 106--140
Huibert Kwakernaak The polynomial approach to $ H_\infty
$-optimal regulation . . . . . . . . . . 141--221
J. B. Pearson Notes on $ l^1 $-optimal control . . . . 222--249
P. A. Fuhrmann On the Hamiltonian structure in the
computation of singular values for a
class of Hankel operators . . . . . . . 250--276
Joseph A. Ball and
Israel Gohberg and
Leiba Rodman Nehari interpolation problem for
rational matrix functions: The generic
case . . . . . . . . . . . . . . . . . . 277--308
I. Gohberg and
M. A. Kaashoek and
H. J. Woerdeman Time variant extension problems of
Nehari type and the band method . . . . 309--323
Jan Boman Helgason's support theorem for Radon
transforms --- A new proof and a
generalization . . . . . . . . . . . . . 1--5
Peter Maass Singular value decompositions for Radon
transforms . . . . . . . . . . . . . . . 6--14
W. R. Madych Image reconstruction in Hilbert space 15--45
R. G. Mukhometov A problem of integral geometry for a
family of rays with multiple reflections 46--52
Victor P. Palamodov Inversion formulas for the
three-dimensional ray transform . . . . 53--62
Volkmar Friedrich Backscattered photons --- Are they
useful for a surface-near tomography? 63--65
Pierre Grangeat Mathematical framework of cone beam $3$D
reconstruction via the first derivative
of the Radon transform . . . . . . . . . 66--97
Patricia Grassin and
Bernard Duchene and
Walid Tabbara Diffraction tomography some applications
and extension to $3$-D ultrasound
imaging . . . . . . . . . . . . . . . . 98--105
F. Alberto Grünbaum Diffuse tomography: a refined model . . 106--111
Rainer Kress and
Axel Zinn Three dimensional reconstructions in
inverse obstacle scattering . . . . . . 112--125
Alfred K. Louis Mathematical questions of a biomagnetic
imaging problem . . . . . . . . . . . . 126--132
Yair Censor On variable block algebraic
reconstruction techniques . . . . . . . 133--140
P. P. B. Eggermont On Volterra--Lotka differential
equations and multiplicative algorithms
for monotone complementarity problems 141--152
Tommy Elfving Constrained regularized least squares
problems . . . . . . . . . . . . . . . . 153--166
Alvaro R. De Pierro Multiplicative iterative methods in
computed tomography . . . . . . . . . . 167--186
P. C. Sabatier Remark on the informative content of few
measurements . . . . . . . . . . . . . . 187--193
W. G. Hawkins and
N.-C. Yang and
P. K. Leichner Theorems for the number of zeros of the
projection radial modulators of the $2$D
exponential Radon transform . . . . . . 194--214
Gabor T. Herman and
Dewey Odhner Evaluation of reconstruction algorithms 215--228
Hidemitsu Ogawa and
Itsuo Kumazawa Radon transform and analog coding . . . 229--241
Louis R. Oudin Determination of the specific density of
an aerosol through tomography . . . . . 242--260
Reinhard Lang Introduction . . . . . . . . . . . . . . 1--5
Reinhard Lang Two simple examples . . . . . . . . . . 6--18
Reinhard Lang The general heuristic picture . . . . . 19--29
Reinhard Lang Some known results and open problems . . 30--42
Reinhard Lang Explanation of Theorem 1 and
introduction to an extended Boltzmann
theory of entropy . . . . . . . . . . . 43--70
Reinhard Lang Explanation of Theorem 2 and
introduction to an extended
Floquet--Weyl theory . . . . . . . . . . 71--112
Reinhard Lang Conclusion . . . . . . . . . . . . . . . 113--118
Kazuaki Taira Introduction and results . . . . . . . . 1--9
Kazuaki Taira Semigroup theory . . . . . . . . . . . . 10--22
Kazuaki Taira $ L^p $ theory of pseudo-differential
operators . . . . . . . . . . . . . . . 23--40
Kazuaki Taira $ L^p $ approach to elliptic boundary
value problems . . . . . . . . . . . . . 41--49
Kazuaki Taira Proof of Theorem 1 . . . . . . . . . . . 50--54
Kazuaki Taira A priori estimates . . . . . . . . . . . 55--60
Kazuaki Taira Proof of Theorem 2 . . . . . . . . . . . 61--69
Kazuaki Taira Proof of Theorem 3 --- Part (I) . . . . 70--80
Kazuaki Taira Proof of Theorem 3 --- Part (II) . . . . 81--104
Kazuaki Taira Application to semilinear
initial-boundary value problems . . . . 105--111
Anna De Masi and
Errico Presutti Introduction . . . . . . . . . . . . . . 1--6
Anna De Masi and
Errico Presutti Hydrodynamic limits for independent
particles . . . . . . . . . . . . . . . 7--32
Anna De Masi and
Errico Presutti Hydrodynamics of the zero range process 33--51
Anna De Masi and
Errico Presutti Particle models for reaction-diffusion
equations . . . . . . . . . . . . . . . 52--66
Anna De Masi and
Errico Presutti Particle models for the Carleman
equation . . . . . . . . . . . . . . . . 67--96
Anna De Masi and
Errico Presutti The Glauber $+$ Kawasaki process . . . . 97--111
Anna De Masi and
Errico Presutti Hydrodynamic limits in kinetic models 112--127
Anna De Masi and
Errico Presutti Phase separation and interface dynamics 128--146
Anna De Masi and
Errico Presutti Escape from an unstable equilibrium . . 147--166
Anna De Masi and
Errico Presutti Estimates on the $V$-functions . . . . . 167--188
Carlos Simpson Introduction . . . . . . . . . . . . . . 1--11
Carlos Simpson Ordinary differential equations on a
Riemann surface . . . . . . . . . . . . 12--16
Carlos Simpson Laplace transform, asymptotic
expansions, and the method of stationary
phase . . . . . . . . . . . . . . . . . 17--30
Carlos Simpson Construction of flows . . . . . . . . . 31--40
Carlos Simpson Moving relative homology chains . . . . 41--53
Carlos Simpson The main lemma . . . . . . . . . . . . . 54--59
Carlos Simpson Finiteness lemmas . . . . . . . . . . . 60--67
Carlos Simpson Sizes of cells . . . . . . . . . . . . . 68--83
Carlos Simpson Moving the cycle of integration . . . . 84--92
Carlos Simpson Bounds on multiplicities . . . . . . . . 93--100
Carlos Simpson Regularity of individual terms . . . . . 101--110
Carlos Simpson Complements and examples . . . . . . . . 111--126
Carlos Simpson The Sturm--Liouville problem . . . . . . 127--134
Jeff Cheeger Critical points of distance functions
and applications to geometry . . . . . . 1--38
M. Gromov and
P. Pansu Rigidity of lattices: an introduction 39--137
Christian Okonek Instanton invariants and algebraic
surfaces . . . . . . . . . . . . . . . . 138--186
Kunihiko Kajitani Fourier integral operators with
complex-valued phase function and the
Cauchy problem for hyperbolic operators 1--70
Tatsuo Nishitani The effectively hyperbolic Cauchy
problem . . . . . . . . . . . . . . . . 71--167
Emilio Iluis-Puebla Introduction to algebraic $K$-theory . . 1--30
Jean-Louis Loday Introduction to algebraic $K$-theory and
cyclic homology . . . . . . . . . . . . 31--54
Henri Gillet Comparing algebraic and topological
$K$-theory . . . . . . . . . . . . . . . 55--99
Christophe Soulé Algebraic $K$-theory of the integers . . 100--132
Victor Snaith Applications of group cohomology to
bilinear forms . . . . . . . . . . . . . 133--164
Jean-Pierre Serre Front Matter . . . . . . . . . . . . . . I--VII
Jean-Pierre Serre Front Matter . . . . . . . . . . . . . . 1--1
Jean-Pierre Serre Lie Algebras: Definition and Examples 2--5
Jean-Pierre Serre Filtered Groups and Lie Algebras . . . . 6--10
Jean-Pierre Serre Universal Algebra of a Lie Algebra . . . 11--17
Jean-Pierre Serre Free Lie Algebras . . . . . . . . . . . 18--30
Jean-Pierre Serre Nilpotent and Solvable Lie Algebras . . 31--43
Jean-Pierre Serre Semisimple Lie Algebras . . . . . . . . 44--55
Jean-Pierre Serre Representations of $ \mathfrak
{sl}_{\mathfrak {n}} $ . . . . . . . . . 56--62
Jean-Pierre Serre Front Matter . . . . . . . . . . . . . . 63--63
Jean-Pierre Serre Complete Fields . . . . . . . . . . . . 64--66
Jean-Pierre Serre Analytic Functions . . . . . . . . . . . 67--75
Jean-Pierre Serre Analytic Manifolds . . . . . . . . . . . 76--101
Jean-Pierre Serre Analytic Groups . . . . . . . . . . . . 102--128
Jean-Pierre Serre Lie Theory . . . . . . . . . . . . . . . 129--160
Jean-Pierre Serre Back Matter . . . . . . . . . . . . . . 161--172
Salahoddin Shokranian Number theory and automorphic
representations . . . . . . . . . . . . 1--10
Salahoddin Shokranian Selberg's trace formula . . . . . . . . 11--23
Salahoddin Shokranian Kernel functions and the convergence
theorem . . . . . . . . . . . . . . . . 24--40
Salahoddin Shokranian The Ad\`elic theory . . . . . . . . . . 41--44
Salahoddin Shokranian The geometric theory . . . . . . . . . . 45--59
Salahoddin Shokranian The geometric expansion of the trace
formula . . . . . . . . . . . . . . . . 60--68
Salahoddin Shokranian The spectral theory . . . . . . . . . . 69--78
Salahoddin Shokranian The invariant trace formula and its
applications . . . . . . . . . . . . . . 79--86
Alexandru Buium Terminology and conventions . . . . . . 1--6
Alexandru Buium First properties . . . . . . . . . . . . 7--29
Alexandru Buium Affine $D$-group schemes . . . . . . . . 30--59
Alexandru Buium Commutative algebraic $D$-groups . . . . 60--86
Alexandru Buium General algebraic $D$-groups . . . . . . 87--98
Alexandru Buium Applications to differential algebraic
groups . . . . . . . . . . . . . . . . . 99--136
Arnaud Beauville Annulation du $ H^1 $ pour les fibrés en
droites plats. (French) [] . . . . . . . 1--15
Mauro C. Beltrametti and
Andrew J. Sommese and
Jaros\law A. Wi\'sniewski Results on varieties with many lines and
their applications to adjunction theory 16--38
Guntram Bohnhorst and
Heinz Spindler The stability of certain vector bundles
on $ \mathbb {P}^n $ . . . . . . . . . . 39--50
F. Catanese and
F. Tovena Vector bundles, linear systems and
extensions of $ \pi_1 $ . . . . . . . . 51--70
Olivier Debarre Vers une stratification de l'espace des
modules des variétés abeliennes
principalement polarisées. (French) [] 71--86
Jean-Pierre Damailly Singular Hermitian metrics on positive
line bundles . . . . . . . . . . . . . . 87--104
Takao Fujita On adjoint bundles of ample vector
bundles . . . . . . . . . . . . . . . . 105--112
Yujiro Kawamata Moderate degenerations of algebraic
surfaces . . . . . . . . . . . . . . . . 113--132
Ulf Persson Genus two fibrations revisited . . . . . 133--144
Th. Peternell and
M. Szurek and
J. A. Wi\'sniewski Numerically effective vector bundles
with small Chern classes . . . . . . . . 145--156
C. A. M. Peters On the rank of non-rigid period maps in
the weight one and two case . . . . . . 157--165
A. N. Tyurin The geometry of the special components
of moduli space of vector bundles over
algebraic surfaces of general type . . . 166--175
G. D. Anderson and
M. K. Vamanamurthy and
M. Vuorinen Conformal invariants, quasiconformal
maps, and special functions . . . . . . 1--19
F. W. Gehring Topics in quasiconformal mappings . . . 20--38
Tadeusz Iwaniec $ L^p $-theory of quasiregular mappings 39--64
Olli Martio Partial differential equations and
quasiregular mappings . . . . . . . . . 65--79
Yu. G. Reshetnyak On functional classes invariant relative
to homotheties . . . . . . . . . . . . . 80--92
Seppo Rickman Picard's theorem and defect relation for
quasiregular mappings . . . . . . . . . 93--103
Uri Srebro Topological properties of quasiregular
mappings . . . . . . . . . . . . . . . . 104--118
Jussi Väisälä Domains and maps . . . . . . . . . . . . 119--131
V. A. Zorich The global homeomorphism theorem for
space quasiconformal mappings, its
development and related open problems 132--148
Alejandro Adem On the geometry and cohomology of finite
simple groups . . . . . . . . . . . . . 1--9
D. J. Benson Resolutions and Poincaré duality for
finite groups . . . . . . . . . . . . . 10--19
A. J. Berrick and
Carles Casacuberta Groups and spaces with all localizations
trivial . . . . . . . . . . . . . . . . 20--29
Imre Bokor and
Irene Llerena More examples of non-cancellation in
homotopy . . . . . . . . . . . . . . . . 30--34
Carlos Broto and
Sa\"\id Zarati On sub-$ a*_p$-algebras of $ H*V$ . . . 35--49
Alberto Cavicchioli and
Fulvia Spaggiari The classification of $3$-manifolds with
spines related to Fibonacci groups . . . 50--78
B. Cenkl and
R. Porter Algorithm for the computation of the
cohomology of $ \Im $-groups . . . . . . 79--94
F. R. Cohen Remarks on the homotopy theory
associated to perfect groups . . . . . . 95--103
Emmanuel Dror Farjoun Homotopy localization and $ V_1
$-periodic spaces . . . . . . . . . . . 104--113
Nguy\cftilen Vi\cfudotet D\~ung The modulo $2$ cohomology algebra of the
wreath product $ \Sigma_\infty \int X$ 115--119
John C. Harris and
R. James Shank Lannes' division functors on summands of
$ H *(B (Z / p)^r) $ . . . . . . . . . . 120--133
Claude Hayat-Legrand Classes homotopiques associées á une
$G$-opération. (French) [] . . . . . . . 134--138
Friedrich Hegenbarth A note on the Brauer lift map . . . . . 139--145
L. J. Hernández and
T. Porter Categorical models of $N$-types for
pro-crossed complexes and $
\Im_n$-prospaces . . . . . . . . . . . . 146--185
Michael J. Hopkins and
Nicholas J. Kuhn and
Douglas C. Ravenel Morava $K$-theories of classifying
spaces and generalized characters for
finite groups . . . . . . . . . . . . . 186--209
Kenshi Ishiguro Classifying spaces of compact simple Lie
groups and $p$-tori . . . . . . . . . . 210--226
Marek Izydorek and
S\lawomir Rybicki On parametrized Borsuk--Ulam theorem for
free $ Z_p $-action . . . . . . . . . . 227--234
Alain Jeanneret and
Ulrich Suter Réalisation topologique de certaines
alg\`ebres associées aux alg\`ebres de
Dickson. (French) [] . . . . . . . . . . 235--239
Luciano Lomonaco Normalized operations in cohomology . . 240--249
Albert T. Lundell Concise tables of James numbers and some
homotopy of classical Lie groups and
associated homogeneous spaces . . . . . 250--272
V. G. Drinfel'd On some unsolved problems in quantum
group theory . . . . . . . . . . . . . . 1--8
Murray Gerstenhaber and
Anthony Giaquinto and
Samuel D. Schack Quantum symmetry . . . . . . . . . . . . 9--46
D. Gurevich and
V. Rubtsov Yang--Baxter equation and deformation of
associative and Lie algebras . . . . . . 47--55
L. I. Korogodsky and
L. L. Vaksman Quantum $G$-spaces and Heisenberg
algebra . . . . . . . . . . . . . . . . 56--66
Vladimir Lyubashenko Real and imaginary forms of quantum
groups . . . . . . . . . . . . . . . . . 67--78
Shahn Majid Rank of quantum groups and braided
groups in dual form . . . . . . . . . . 79--89
M. L. Nazarov Yangians of the ``strange'' Lie
superalgebras . . . . . . . . . . . . . 90--97
Masatoshi Noumi and
Katsuhisa Mimachi Askey--Wilson polynomials as spherical
functions on $ {\rm SU}_q(2) $ . . . . . 98--103
G. I. Ol'shanski\u\i Twisted Yangians and
infinite-dimensional classical Lie
algebras . . . . . . . . . . . . . . . . 104--119
Jim Stasheff Differential graded Lie algebras,
quasi-Hopf algebras and higher homotopy
algebras . . . . . . . . . . . . . . . . 120--137
Earl J. Taft Quantum deformation of the flag variety 138--141
Kimio Ueno and
Tadayoshi Takebayashi Zonal spherical functions on quantum
symmetric spaces and MacDonald's
symmetric polynomials . . . . . . . . . 142--147
A. Alekseev and
L. Faddeev and
M. Semenov-Tian-Shansky Hidden quantum groups inside Kac--Moody
algebras . . . . . . . . . . . . . . . . 148--158
O. Babelon Liouville theory on the lattice and
universal exchange algebra for Bloch
waves . . . . . . . . . . . . . . . . . 159--175
Denis Bernard and
André Leclair Non-local currents in $2$D QFT: an
alternative to the quantum inverse
scattering method . . . . . . . . . . . 176--196
L. C. Biedenharn and
M. A. Lohe Induced representations and tensor
operators for quantum groups . . . . . . 197--209
H. W. Braden and
E. Corrigan and
P. E. Dorey and
R. Sasaki Affine Toda field theory: $S$-matrix vs
perturbation . . . . . . . . . . . . . . 210--220
E. Celeghini and
R. Giachetti and
E. Sorace and
M. Tarlini Contractions of quantum groups . . . . . 221--244
Mo-Lin Ge New solutions of Yang--Baxter equations
and quantum group structures . . . . . . 245--258
Jean-Loup Gervais Quantum group symmetry of $2$D gravity 259--276
Ajay Kumar A qualitative uncertainity principle for
hypergroups . . . . . . . . . . . . . . 1--9
Alan Lambert Weighted shifts and composition
operators on $ L^2 $ . . . . . . . . . . 10--17
A. S. Cavaretta, Jr. and
A. Sharma Variation diminishing properties and
convexity for the tensor product
Bernstein operator . . . . . . . . . . . 18--32
B. L. Wadhwa and
B. S. Yadav Approximation in weighted Banach spaces
of power series . . . . . . . . . . . . 33--46
B. P. Duggal A note on generalised commutativity
theorems in the Schatten norm . . . . . 47--54
B. S. Yadav and
Dinesh Singh and
Sanjeev Agrawal De Branges modules in $ H^2 (\mathbb
{C}^K) $ of the torus . . . . . . . . . 55--74
Donald Sarason Weak compactness of holomorphic
composition operators on $ H^1 $ . . . . 75--79
Geetha S. Rao and
T. L. Bhaskaramurthi Nonexpansive mappings and proximinality
in normed almost linear spaces . . . . . 80--87
Henry Helson and
John E. McCarthy Continuity of seminorms . . . . . . . . 88--90
Jamil A. Siddiqi Maximal ideals in local Carleman
algebras . . . . . . . . . . . . . . . . 91--99
J. G. Clunie Convergence of polynomials with
restricted zeros . . . . . . . . . . . . 100--105
Jean-Pierre Kahane On a theorem of Pólya . . . . . . . . . . 106--112
M. H. Vasavada and
R. D. Mehta Algebra direct sum decomposition of $
C_R(X) $ . . . . . . . . . . . . . . . . 113--119
Pradipta Bandyopadhyaya Exposed points and points of continuity
in closed bounded convex sets . . . . . 120--127
P. K. Jain and
A. M. Jarrah and
D. P. Sinha Boundedly complete bases in various
locally convex Spaces . . . . . . . . . 128--140
R. Vasudevan A representation of the multipler module
$ {\rm hom}_A(A, W) $ . . . . . . . . . 141--146
S. C. Arora and
Sharda Sharma On two-parameter semigroup of operators 147--153
Saheb Dayal Higher Fréchet and discrete Gâteaux
differentiability of $n$-convex
functions on Banach spaces . . . . . . . 154--171
Shashi Kiran and
Ajit Iqbal Singh Role of James like spaces in
multiplicative linear functionals on
operator algebras . . . . . . . . . . . 172--180
U. N. Singh The Carleman--Fourier transform and its
applications . . . . . . . . . . . . . . 181--214
Leonard M. Adleman and
Ming-Deh A. Huang Introduction . . . . . . . . . . . . . . 1--3
Leonard M. Adleman and
Ming-Deh A. Huang Acknowledgement . . . . . . . . . . . . 4--4
Leonard M. Adleman and
Ming-Deh A. Huang Overview of the algorithm and the proof
of the main theorem . . . . . . . . . . 5--14
Leonard M. Adleman and
Ming-Deh A. Huang Reduction of main theorem to three
propositions . . . . . . . . . . . . . . 15--21
Leonard M. Adleman and
Ming-Deh A. Huang Proof of proposition 1 . . . . . . . . . 21--109
Leonard M. Adleman and
Ming-Deh A. Huang Proof of proposition 2 . . . . . . . . . 110--125
Leonard M. Adleman and
Ming-Deh A. Huang Proof of proposition 3 . . . . . . . . . 126--136
Louis Stuart Block and
William Andrew Coppel Introduction . . . . . . . . . . . . . . 1--3
Louis Stuart Block and
William Andrew Coppel Periodic orbits . . . . . . . . . . . . 5--23
Louis Stuart Block and
William Andrew Coppel Turbulence . . . . . . . . . . . . . . . 25--46
Louis Stuart Block and
William Andrew Coppel Unstable manifolds and homoclinic points 47--67
Louis Stuart Block and
William Andrew Coppel Topological dynamics . . . . . . . . . . 69--89
Louis Stuart Block and
William Andrew Coppel Topological dynamics (continued) . . . . 91--119
Louis Stuart Block and
William Andrew Coppel Chaotic and non-chaotic maps . . . . . . 121--166
Louis Stuart Block and
William Andrew Coppel Types of periodic orbits . . . . . . . . 167--188
Louis Stuart Block and
William Andrew Coppel Topological Entropy . . . . . . . . . . 189--218
Louis Stuart Block and
William Andrew Coppel Maps of the circle . . . . . . . . . . . 219--234
Christoph Bandt and
Karsten Keller Symbolic dynamics for angle-doubling on
the circle I. The topology of locally
connected Julia sets . . . . . . . . . . 1--23
A. M. Blokh Spectral decomposition, periods of
cycles and a conjecture of M.
Misiurewicz for graph maps . . . . . . . 24--31
Thomas Bogenschütz and
Hans Crauel The Abramov--Rokhlin formula . . . . . . 32--35
H. G. Bothe Expanding attractors with stable
foliations of class $ C^0 $ . . . . . . 36--61
L. A. Bunimovich On absolutely focusing mirrors . . . . . 62--82
M. Denker and
K. F. Krämer Upper and lower class results for
subsequences of the Champernowne number 83--89
Manfred Denker and
Mariusz Urba\'nski The dichotomy of Hausdorff measures and
equilibrium states for parabolic
rational maps . . . . . . . . . . . . . 90--113
Theodore P. Hill and
Ulrich Krengel On the construction of generalized
measure preserving transformations with
given marginals . . . . . . . . . . . . 114--123
Anzelm Iwanik Positive entropy implies infinite $ L^p
$-multiplicity for $ p > 1 $ . . . . . . 124--127
Zbigniew S. Kowalski On mixing generalized skew products . . 128--130
François Ledrappier Ergodic properties of the stable
foliations . . . . . . . . . . . . . . . 131--145
Emmanuel Lesigne Ergodic theorem along a return time
sequence . . . . . . . . . . . . . . . . 146--152
Jan Malczak Some limit theorems for Markov operators
and their applications . . . . . . . . . 153--162
Ivan Mizera Generic properties of one-dimensional
dynamical systems . . . . . . . . . . . 163--173
J. Schmeling and
Ra. Siegmund-Schultze Hölder continuity of the holonomy maps
for hyperbolic basic sets I . . . . . . 174--191
Ján \vSipo\vs Peculiar submeasures on finite algebras 192--197
Ulrich Wacker Invariance principles and central limit
theorems for nonadditive, stationary
processes . . . . . . . . . . . . . . . 198--228
Rainer Wittmann Fixed point rays of nonexpansive
mappings . . . . . . . . . . . . . . . . 229--233
M. Andreatta and
E. Ballico and
J. Wi\'sniewski Projective manifolds containing large
linear subspaces . . . . . . . . . . . . 1--11
Fabio Bardelli Algebraic cohomology classes on some
special threefolds . . . . . . . . . . . 12--20
Ch. Birkenhake and
H. Lange Norm-endomorphisms of abelian
subvarieties . . . . . . . . . . . . . . 21--32
Ciro Ciliberto and
Gerard van der Geer On the Jacobian of a hyperplane section
of a surface . . . . . . . . . . . . . . 33--40
Ciro Ciliberto and
Joe Harris and
Montserrat Teixidor i Bigas On the endomorphisms of $ {\rm
Jac}(W^1_d(C)) $ when $ p = 1 $ and $C$
has general moduli . . . . . . . . . . . 41--67
Bert van Geemen Projective models of Picard modular
varieties . . . . . . . . . . . . . . . 68--99
János Kollár and
Yoichi Miyaoka and
Shigefumi Mori Rational curves on Fano varieties . . . 100--105
Riccardo Salvati Manni Modular forms of the fourth degree . . . 106--111
Angelo Vistoli Equivariant Grothendieck groups and
equivariant Chow groups . . . . . . . . 112--133
Angelo Vistoli Trento examples . . . . . . . . . . . . 134--139
E. Ballico and
C. Ciliberto and
F. Catanese Open problems . . . . . . . . . . . . . 140--146
Rudolph A. Lorentz Introduction . . . . . . . . . . . . . . 1--3
Rudolph A. Lorentz Univariate interpolation . . . . . . . . 4--8
Rudolph A. Lorentz Basic properties of Birkhoff
interpolation . . . . . . . . . . . . . 9--22
Rudolph A. Lorentz Singular interpolation schemes . . . . . 23--49
Rudolph A. Lorentz Shifts and coalescences . . . . . . . . 50--61
Rudolph A. Lorentz Decomposition theorems . . . . . . . . . 62--71
Rudolph A. Lorentz Reduction . . . . . . . . . . . . . . . 72--74
Rudolph A. Lorentz Examples . . . . . . . . . . . . . . . . 75--89
Rudolph A. Lorentz Uniform Hermite interpolation of
tensor-product type . . . . . . . . . . 90--102
Rudolph A. Lorentz Uniform Hermite interpolation of type
total degree . . . . . . . . . . . . . . 103--138
Rudolph A. Lorentz Vandermonde determinants . . . . . . . . 139--155
Rudolph A. Lorentz A theorem of Severi . . . . . . . . . . 156--161
Rudolph A. Lorentz Kergin interpolation via Birkhoff
interpolation . . . . . . . . . . . . . 162--170
Klaus Keimel and
Walter Roth Introduction . . . . . . . . . . . . . . 1--7
Klaus Keimel and
Walter Roth Locally convex cones . . . . . . . . . . 8--24
Klaus Keimel and
Walter Roth Uniformly continuous operators and the
dual cone . . . . . . . . . . . . . . . 25--54
Klaus Keimel and
Walter Roth Subcones . . . . . . . . . . . . . . . . 55--67
Klaus Keimel and
Walter Roth Approximation . . . . . . . . . . . . . 68--80
Klaus Keimel and
Walter Roth Nachbin cones . . . . . . . . . . . . . 81--105
Klaus Keimel and
Walter Roth Quantitative estimates . . . . . . . . . 106--128
Henning Stichtenoth and
Michael A. Tsfasman Algebraic geometry and coding theory an
introduction . . . . . . . . . . . . . . 1--3
Yves Aubry Reed--Muller codes associated to
projective algebraic varieties . . . . . 4--17
Dirk Ehrhard Decoding Algebraic-Geometric Codes by
solving a key equation . . . . . . . . . 18--25
Gerhard Frey and
Marc Perret and
Henning Stichtenoth On the different of abelian extensions
of global fields . . . . . . . . . . . . 26--32
Arnaldo García and
R. F. Lax Goppa codes and Weierstrass gaps . . . . 33--42
Noboru Hamada and
Tor Helleseth On a characterization of some minihypers
in $ {\rm PG}(t, q) $ ($ q = 3 $ or $4$)
and its applications to error-correcting
codes . . . . . . . . . . . . . . . . . 43--62
Johan P. Hansen Deligne--Lusztig varieties and group
codes . . . . . . . . . . . . . . . . . 63--81
Gregory L. Katsman and
Michael A. Tsfasman and
Serge G. Vladu\ct Spectra of linear codes and error
probability of decoding . . . . . . . . 82--98
Kyeongcheol Yang and
P. Vijay Kumar On the true minimum distance of
Hermitian codes . . . . . . . . . . . . 99--107
Boris \`E. Kunyavskii Sphere packings centered at $S$-units of
algebraic tori . . . . . . . . . . . . . 108--121
Jens Peter Pedersen A function field related to the Ree
group . . . . . . . . . . . . . . . . . 122--131
Ruud Pellikaan On the gonality of curves, abundant
codes and decoding . . . . . . . . . . . 132--144
Igor E. Shparlinski and
Michael A. Tsfasman and
Serge G. Vladut Curves with many points and
multiplication in finite fields . . . . 145--169
Philip Stokes The domain of covering codes . . . . . . 170--177
Michael A. Tsfasman Some remarks on the asymptotic number of
points . . . . . . . . . . . . . . . . . 178--192
Conny Voss On the weights of trace codes . . . . . 193--198
François Rodier Minoration de Certaines Sommes
Exponentielles Binaires. (French) [] . . 199--209
Alexei N. Skorobogatov Linear codes, strata of Grassmannians,
and the problems of Segre . . . . . . . 210--223
Mark W. Short Introduction . . . . . . . . . . . . . . 1--9
Mark W. Short Background theory . . . . . . . . . . . 10--42
Mark W. Short The imprimitive soluble subgroups of $
{\rm GL}(2, p^k) $ . . . . . . . . . . . 43--54
Mark W. Short The normaliser of a Singer cycle of
prime degree . . . . . . . . . . . . . . 55--61
Mark W. Short The irreducible soluble subgroups of $
{\rm GL}(2, p^k) $ . . . . . . . . . . . 62--74
Mark W. Short Some irreducible soluble subgroups of $
{\rm GL}(q, p^k) $, $ q > 2 $ . . . . . . 75--83
Mark W. Short The imprimitive soluble subgroups of $
{\rm GL}(4, 2) $ and $ {\rm GL}(4, 3) $ 84--92
Mark W. Short The primitive soluble subgroups of $
{\rm GL}(4, p^k) $ . . . . . . . . . . . 93--107
Mark W. Short The irreducible soluble subgroups of $
{\rm GL}(6, 2) $ . . . . . . . . . . . . 108--113
Mark W. Short Conclusion . . . . . . . . . . . . . . . 114--120
Mark W. Short The primitive soluble permutation groups
of degree less than $ 256 $ . . . . . . 146--146
Yu. E. Gliklikh Stochastic analysis, groups of
diffemorphisms and Lagrangian
description of viscous incompressible
fluid . . . . . . . . . . . . . . . . . 1--18
A. Ya. Helemski\u\i From topological homology: algebras with
different properties of homological
triviality . . . . . . . . . . . . . . . 19--40
V. V. Lychagin and
L. V. Zil'bergle\u\it Duality in stable Spencer cohomologies 41--55
O. R. Musin On some problems of computational
geometry and topology . . . . . . . . . 57--80
V. E. Naza\u\ikinski\u\i and
B. Yu. Sternin and
V. E. Shatalov Introduction to Maslov's operational
method (non-commutative analysis and
differential equations) . . . . . . . . 81--91
Yu. B. Rudyak The problem of realization of homology
classes from Poincaré up to the present 93--110
V. G. Zvyagin and
N. M. Ratiner Oriented degree of Fredholm maps of
non-negative index and its application
to global bifurcation of solutions . . . 111--137
A. A. Bolibruch Fuchsian systems with reducible
monodromy and the Riemann--Hilbert
problem . . . . . . . . . . . . . . . . 139--155
I. U. Bronste\u\in and
A. Ya. Kopanski\u\i Finitely smooth normal forms of vector
fields in the vicinity of a rest point 157--172
B. D. Gel'man Generalized degree of multi-valued
mappings . . . . . . . . . . . . . . . . 173--192
G. N. Khimshiashvili On Fredholmian aspects of linear
transmission problems . . . . . . . . . 193--216
A. S. Mishchenko Stationary solutions of nonlinear
stochastic equations . . . . . . . . . . 217--236
B. Yu. Sternin and
V. E. Shatalov Continuation of solutions to elliptic
equations and localization of
singularities . . . . . . . . . . . . . 237--259
V. G. Zvyagin and
V. T. Dmitrienko Properness of nonlinear elliptic
differential operators in Hölder spaces 261--284
H. K. Kuiken Mathematical modelling of industrial
processes . . . . . . . . . . . . . . . 1--63
Bruno Forte Inverse problems in mathematics for
industry . . . . . . . . . . . . . . . . 64--110
Stavros Busenberg Case studies in industrial mathematics 111--153
Jean-Marc Delort Front Matter . . . . . . . . . . . . . . i--vi
Jean-Marc Delort Introduction . . . . . . . . . . . . . . 1--6
Jean-Marc Delort Fourier--Bros--Iagolnitzer
transformation and first
microlocalization . . . . . . . . . . . 7--27
Jean-Marc Delort Second microlocalization . . . . . . . . 28--46
Jean-Marc Delort Geometric upper bounds . . . . . . . . . 47--71
Jean-Marc Delort Semilinear Cauchy problem . . . . . . . 72--98
Jean-Marc Delort Back Matter . . . . . . . . . . . . . . 99--101
Weimin Xue Introduction to Morita duality . . . . . 1--53
Weimin Xue Morita duality and ring extensions . . . 54--83
Weimin Xue Artinian rings with Morita duality (I) 84--110
Weimin Xue Artinian rings (II) --- Azumaya's exact
rings . . . . . . . . . . . . . . . . . 111--148
Weimin Xue Other types of rings with duality . . . 149--159
Manfred Knebusch Semialgebraic topology in the last ten
years . . . . . . . . . . . . . . . . . 1--36
R. Parimala Algebraic geometric methods in real
algebraic geometry . . . . . . . . . . . 37--51
G. M. Polotovski\u\i On the classification of decomposing
plane algebraic curves . . . . . . . . . 52--74
Claus Scheiderer Real algebra and its applications to
geometry in the last ten years: Some
major developments and results . . . . . 75--96
E. I. Shustin Topology of real plane algebraic curves 97--109
R. Silhol Moduli problems in real algebraic
geometry . . . . . . . . . . . . . . . . 110--119
S. Akbulut and
H. King Constructing strange real algebraic sets 120--127
Carlos Andradas and
Jesús M. Ruíz More on basic semialgebraic sets . . . . 128--139
Alberto Borobia Mirror property for nonsingular mixed
configurations of one line and $k$
points in $ R^3$ . . . . . . . . . . . . 140--144
Ludwig Bröcker Families of semialgebraic sets and
limits . . . . . . . . . . . . . . . . . 145--162
G. W. Brumfiel A Hopf fixed point theorem for
semi-algebraic maps . . . . . . . . . . 163--169
G. W. Brumfiel On regular open semi-algebraic sets . . 170--173
Ana Castilla Sums of $ 2 n$-th powers meromorphic
functions with compact zero set . . . . 174--177
Zygmunt Charzy\'nski and
Przemys\law Skibi\'nski Pseudoorthogonality of powers of the
coordinates of a holomorphic mapping in
two variables with the constant Jacobian 178--192
Michel Coste and
Miloud Reguiat Trivialités en famille. (French) [] . . . 193--204
A. I. Degtyarev Stiefel orientations on a real algebraic
variety . . . . . . . . . . . . . . . . 205--220
Zofia Denkowska Subanaliticity and the second part of
Hilbert's $ 16^{\rm th} $ problem . . . 221--234
J.-P. Françoise and
F. Ronga The decidability of real algebraic sets
by the index formula . . . . . . . . . . 235--239
J. M. Gamboa and
C. Ueno Proper polynomial maps: The real case 240--256
Danielle Gondard-Cozette Sur les ordres de niveau $ 2^n $ et sur
une extension du 17\`eme probl\`eme de
Hilbert. (French) [] . . . . . . . . . . 257--266
René Thom Leaving mathematics for philosophy . . . 1--12
Sergei Novikov Rôle of integrable models in the
development of mathematics . . . . . . . 13--28
Shing-Tung Yau The current state and prospects of
geometry and nonlinear differential
equations . . . . . . . . . . . . . . . 29--39
Alain Connes Noncommutative geometry . . . . . . . . 40--58
Stephen Smale Theory of computation . . . . . . . . . 59--69
Vaughan F. R. Jones Knots in mathematics and physics . . . . 70--77
Gerd Faltings Recent progress in Diophantine geometry 78--86
Alain Connes and
Gerd Faltings and
Vaughan Jones and
Stephen Smale and
René Thom and
Jorge Wagensberg Round-table discussion . . . . . . . . . 87--108
Richard Bass and
Davar Khoshnevisan Stochastic calculus and the continuity
of local times of Lévy processes . . . . 1--10
Eduardo Mayer-Wolf and
David Nualart and
Víctor Pérez-Abreu Large deviations for multiple Wiener--Itô
integral processes . . . . . . . . . . . 11--31
Aihua Xia Weak convergence of jump processes . . . 32--46
Laurent Miclo Recuit simulé sans potentiel sur un
ensemble fini. (French) [] . . . . . . . 47--60
Luca Pratelli Une caractérisation de la convergence
dans $ L^1 $. Application aux
quasimartingales. (French) [] . . . . . 61--69
Martin T. Barlow and
Peter Imkeller On some sample path properties of
Skorohod integral processes . . . . . . 70--80
Krzysztof Burdzy and
Donald Marshall Hitting a boundary point with reflected
Brownian motion . . . . . . . . . . . . 81--94
T. S. Mountford Quasi-everywhere upper functions . . . . 95--106
T. S. Mountford A critical function for the planar
Brownian convex hull . . . . . . . . . . 107--112
J. C. Taylor Skew products, regular conditional
probabilities and stochastic
differential equations: a technical
remark . . . . . . . . . . . . . . . . . 113--126
Monique Pontier and
Anne Estrade Relévement horizontal d'une
semi-martingale c\`adl\`ag. (French) [] 127--145
Marc Arnaudon Connexions et martingales dans les
groupes de Lie. (French) [] . . . . . . 146--156
Lester E. Dubins and
Meir Smorodinsky The modified, discrete,
Lévy-transformation is Bernoulli . . . . 157--161
Hac\`ene Boutabia and
Bernard Maisonneuve Lois conditionnelles des excursions
markoviennes . . . . . . . . . . . . . . 162--166
D. Lépingle Orthogonalité et intégrabilité uniforme de
martingales discr\`etes. (French) [] . . 167--169
Dominique Bakry and
Dominique Michel Sur les inégalités FKG. (French) [] . . . 170--188
J. R. Norris A complete differential formalism for
stochastic calculus in manifolds . . . . 189--209
Martin Baxter Markov processes on the boundary of the
binary tree . . . . . . . . . . . . . . 210--224
Philippe Biane Fronti\`ere de Martin du dual de $ {\rm
SU}(2) $. (French) [] . . . . . . . . . 225--233
Paul McGill Generalised transforms,
quasi-diffusions, and Désiré André's
equation . . . . . . . . . . . . . . . . 234--247
Mark I. Freidlin Semi-linear pde's and limit theorems for
large deviations . . . . . . . . . . . . 1--109
Jean-François Le Gall Some properties of planar Brownian
motion . . . . . . . . . . . . . . . . . 111--235
G. Isac Introduction . . . . . . . . . . . . . . 1--3
G. Isac Preliminaries and definitions of
principal complementarity problems . . . 4--15
G. Isac Models and applications . . . . . . . . 16--51
G. Isac Equivalences . . . . . . . . . . . . . . 52--69
G. Isac Existence theorems . . . . . . . . . . . 70--138
G. Isac The order complementarity problem . . . 139--161
G. Isac The implicit complementarity problem . . 162--195
G. Isac Isotone projection cones and
complementarity . . . . . . . . . . . . 196--219
G. Isac Topics on complementarity problems . . . 220--269
G. Isac Errata . . . . . . . . . . . . . . . . . e1--e2
Jan van Neerven The adjoint semigroup . . . . . . . . . 1--18
Jan van Neerven The $ \sigma (X, X^\odot) $-topology . . 19--39
Jan van Neerven Interpolation, extrapolation and duality 40--68
Jan van Neerven Perturbation theory . . . . . . . . . . 69--95
Jan van Neerven Dichotomy theorems . . . . . . . . . . . 96--110
Jan van Neerven Adjoint semigroups and the RNP . . . . . 111--121
Jan van Neerven Tensor products . . . . . . . . . . . . 122--143
Jan van Neerven The adjoint of a positive semigroup . . 144--175
Leonid K. Antanovskii Analyticity of a free boundary in plane
quasi-steady flow of a liquid form
subject to variable surface tension . . 1--16
Jürgen Socolowsky On a free boundary problem for the
stationary Navier--Stokes equations with
a dynamic contact line . . . . . . . . . 17--29
V. A. Solonnikov and
A. Tani Evolution free boundary problem for
equations of motion of viscous
compressible barotropic liquid . . . . . 30--55
Michael Wolff Heat-conducting fluids with free surface
in the case of slip-condition on the
walls . . . . . . . . . . . . . . . . . 56--70
Wolfgang Borchers and
Tetsuro Miyakawa On some coercive estimates for the
Stokes problem in unbounded domains . . 71--84
Huakang Chang The steady Navier--Stokes problem for
low Reynolds number viscous jets into a
half space . . . . . . . . . . . . . . . 85--96
Reinhard Farwig and
Hermann Sohr An approach to resolvent estimates for
the Stokes equations in $ L^q $-spaces 97--110
Giovanni P. Galdi On the Oseen boundary-value problem in
exterior domains . . . . . . . . . . . . 111--131
Rodolfo Salvi The exterior problem for the stationary
Navier--Stokes equations: On the
existence and regularity . . . . . . . . 132--145
Maria E. Schonbek Some results on the asymptotic behaviour
of solutions to the Navier--Stokes
equations . . . . . . . . . . . . . . . 146--160
Michael Wiegner Approximation of weak solutions of the
Navier--Stokes equations in unbounded
domains . . . . . . . . . . . . . . . . 161--166
Rolf Rannacher On Chorin's projection method for the
incompressible Navier--Stokes equations 167--183
Endre Süli and
Antony F. Ware Analysis of the spectral
Lagrange--Galerkin method for the
Navier--Stokes equations . . . . . . . . 184--195
Werner Varnhorn A fractional step method for regularized
Navier--Stokes equations . . . . . . . . 196--209
Brian T. R. Wetton Finite difference vorticity methods . . 210--225
A. V. Fursikov The closure problem for the chain of the
Friedman--Keller moment equations in the
case of large Reynolds numbers . . . . . 226--245
Atsushi Inoue A tiny step towards a theory of
functional derivative equations --- A
strong solution of the space-time Hopf
equation . . . . . . . . . . . . . . . . 246--261
Gerd Grubb Initial value problems for the
Navier--Stokes equations with Neumann
conditions . . . . . . . . . . . . . . . 262--283
Il'ia Mogilevskii Estimates in $ C^{2 l, l} $ for solution
of a boundary value problem for the
nonstationary Stokes system with a
surface tension in boundary condition 284--290
Burkhard J. Schmitt and
Wolf von Wahl Decomposition of solenoidal fields into
poloidal fields, toroidal fields and the
mean flow. Applications to the
Boussinesq-equations . . . . . . . . . . 291--305
Mechthild Stoer Motivation . . . . . . . . . . . . . . . 5--6
Mechthild Stoer Network survivability models using node
types . . . . . . . . . . . . . . . . . 7--18
Mechthild Stoer Survivable network design under
connectivity constraints --- a survey 19--32
Mechthild Stoer Decomposition . . . . . . . . . . . . . 33--47
Mechthild Stoer Basic inequalities . . . . . . . . . . . 49--68
Mechthild Stoer Lifting theorems . . . . . . . . . . . . 69--76
Mechthild Stoer Partition inequalities . . . . . . . . . 77--90
Mechthild Stoer Node partition inequalities . . . . . . 91--99
Mechthild Stoer Lifted $r$-cover inequalities . . . . . 101--112
Mechthild Stoer Comb inequalities . . . . . . . . . . . 113--123
Mechthild Stoer How to find valid inequalities . . . . . 125--154
Mechthild Stoer Implementation of the cutting plane
algorithm . . . . . . . . . . . . . . . 155--173
Mechthild Stoer Computational results . . . . . . . . . 175--194
Jean François Colombeau Introduction to generalized functions
and distributions . . . . . . . . . . . 1--12
Jean François Colombeau Multiplications of distributions in
classical physics . . . . . . . . . . . 13--29
Jean François Colombeau Elementary introduction . . . . . . . . 30--61
Jean François Colombeau Jump formulas for systems in
nonconservative form. New numerical
methods . . . . . . . . . . . . . . . . 62--96
Jean François Colombeau The case of several constitutive
equations . . . . . . . . . . . . . . . 97--123
Jean François Colombeau Linear wave propagation in a medium with
piecewise $ C^\infty $ characteristics 124--143
Jean François Colombeau The canonical Hamiltonian formalism of
interacting quantum fields . . . . . . . 144--157
Jean François Colombeau The abstract theory of generalized
functions . . . . . . . . . . . . . . . 158--171
Peter Jipsen and
Henry Rose Preliminaries . . . . . . . . . . . . . 1--12
Peter Jipsen and
Henry Rose General results . . . . . . . . . . . . 13--45
Peter Jipsen and
Henry Rose Modular varieties . . . . . . . . . . . 46--76
Peter Jipsen and
Henry Rose Nonmodular varieties . . . . . . . . . . 77--114
Peter Jipsen and
Henry Rose Equational bases . . . . . . . . . . . . 115--127
Peter Jipsen and
Henry Rose Amalgamation in lattice varieties . . . 128--148
Cornelius Greither Galois theory of commutative rings . . . 1--31
Cornelius Greither Cyclotomic descent . . . . . . . . . . . 32--54
Cornelius Greither Corestriction and Hilbert's Theorem 90 55--66
Cornelius Greither Calculations with units . . . . . . . . 67--76
Cornelius Greither Cyclic $p$-extensions and
ie771--extensions of number fields . . . 77--96
Cornelius Greither Geometric theory: cyclic extensions of
finitely generated fields . . . . . . . 97--108
Cornelius Greither Cyclic Galois theory without the
condition ```$ p^{ - 1} \geq R $'' . . . 109--139
Anthony B. Evans Introduction . . . . . . . . . . . . . . 1--24
Anthony B. Evans Elementary abelian groups . . . . . . . 25--34
Anthony B. Evans Cyclotomic orthomorphisms . . . . . . . 35--49
Anthony B. Evans Automorphisms and translation nets . . . 50--56
Anthony B. Evans Further results . . . . . . . . . . . . 57--76
Anthony B. Evans Data for small groups . . . . . . . . . 77--90
Anthony B. Evans Research directions . . . . . . . . . . 91--104
Man Kam Kwong and
Anton Zettl Introduction . . . . . . . . . . . . . . 1--2
Man Kam Kwong and
Anton Zettl Unit weight functions . . . . . . . . . 3--34
Man Kam Kwong and
Anton Zettl The norms of $y$, $ y^\prime $, $
y^{\prime \prime }$ . . . . . . . . . . 35--83
Man Kam Kwong and
Anton Zettl Weights . . . . . . . . . . . . . . . . 84--116
Man Kam Kwong and
Anton Zettl The difference operator . . . . . . . . 117--143
Robert R. Phelps Front Matter . . . . . . . . . . . . . . I--XI
Robert R. Phelps Convex functions on real Banach spaces 1--16
Robert R. Phelps Monotone operators, subdifferentials and
Asplund spaces . . . . . . . . . . . . . 17--37
Robert R. Phelps Lower semicontinuous convex functions 38--57
Robert R. Phelps Smooth variational principles, Asplund
spaces, weak Asplund spaces . . . . . . 58--78
Robert R. Phelps Asplund spaces, the RNP and perturbed
optimization . . . . . . . . . . . . . . 79--94
Robert R. Phelps Gâteaux differentiability spaces . . . . 95--101
Robert R. Phelps A generalization of monotone operators:
Usco maps . . . . . . . . . . . . . . . 102--109
Robert R. Phelps Back Matter . . . . . . . . . . . . . . 110--120
Patrick Fitzpatrick and
Mario Martelli and
Jean Mawhin and
Roger Nussbaum Front Matter . . . . . . . . . . . . . . ??
Patrick Fitzpatrick The parity as an invariant for detecting
bifurcation of the zeroes of one
parameter families of nonlinear Fredholm
maps . . . . . . . . . . . . . . . . . . 1--31
Mario Martelli Continuation principles and boundary
value problems . . . . . . . . . . . . . 32--73
J. Mawhin Topological degree and boundary value
problems for nonlinear differential
equations . . . . . . . . . . . . . . . 74--142
Roger D. Nussbaum The fixed point index and fixed point
theorems . . . . . . . . . . . . . . . . 143--205
Roger D. Nussbaum Back Matter . . . . . . . . . . . . . . ??
Paul-André Meyer Front Matter . . . . . . . . . . . . . . N2--X
Paul-André Meyer Non-Commutative Probability . . . . . . 1--10
Paul-André Meyer Spin . . . . . . . . . . . . . . . . . . 11--40
Paul-André Meyer The Harmonic Oscillator . . . . . . . . 41--54
Paul-André Meyer Fock Space (1) . . . . . . . . . . . . . 55--96
Paul-André Meyer Fock Space (2): Multiple Fock Spaces . . 97--116
Paul-André Meyer Stochastic Calculus in Fock Space . . . 117--186
Paul-André Meyer Independent Increments . . . . . . . . . 187--200
Paul-André Meyer Back Matter . . . . . . . . . . . . . . 201--293
Michel Coornaert and
Athanase Papadopoulos Introduction . . . . . . . . . . . . . . 1--4
Michel Coornaert and
Athanase Papadopoulos A quick review of Gromov hyperbolic
spaces . . . . . . . . . . . . . . . . . 5--18
Michel Coornaert and
Athanase Papadopoulos Symbolic dynamics . . . . . . . . . . . 19--42
Michel Coornaert and
Athanase Papadopoulos The boundary of a hyperbolic group as a
finitely presented dynamical system . . 43--68
Michel Coornaert and
Athanase Papadopoulos Another finite presentation for the
action of a hyperbolic group on its
boundary . . . . . . . . . . . . . . . . 69--90
Michel Coornaert and
Athanase Papadopoulos Trees and hyperbolic boundary . . . . . 91--106
Michel Coornaert and
Athanase Papadopoulos Semi-Markovian spaces . . . . . . . . . 107--117
Michel Coornaert and
Athanase Papadopoulos The boundary of a torsion-free
hyperbolic group as a semi-Markovian
space . . . . . . . . . . . . . . . . . 118--134
C. A. Berenstein and
T. Kawai and
D. C. Struppa Interpolation theorems in several
complex variables and applications . . . 1--9
Ha\"\im Brézis New energies for harmonic maps and
liquid crystals . . . . . . . . . . . . 11--24
Giovanni Dore $ L^p $ regularity for abstract
differential equations . . . . . . . . . 25--38
Daisuke Fujiwara Some Feynman path integrals as
oscillatory integrals over a Sobolev
manifold . . . . . . . . . . . . . . . . 39--53
Mariko Giga and
Yoshikazu Giga and
Hermann Sohr $ L^p $ estimates for the Stokes system 55--67
Kiyosi It\=o Semigroups in probability theory . . . . 69--83
Toshiyuki Iwamiya and
Tadayasu Takahashi and
Shinnosuke Oharu Characterization of nonlinearly
perturbed semigroups . . . . . . . . . . 85--102
Tosio Kato Abstract evolution equations, linear and
quasilinear, revisited . . . . . . . . . 103--125
Yasuyuki Kawahigashi Exactly solvable orbifold models and
subfactors . . . . . . . . . . . . . . . 127--147
Hitoshi Kitada Asymptotic completeness of $N$-body wave
operators II. A new proof for the
short-range case and the asymptotic
clustering for long-range systems . . . 149--189
Yoshikazu Kobayashi and
Shinnosuke Oharu Semigroups of locally Lipschitzian
operators and applications . . . . . . . 191--211
Hikosaburo Komatsu Operational calculus and semi-groups of
operators . . . . . . . . . . . . . . . 213--234
Yukio K\=omura and
Kiyoko Furuya Wave equations in nonreflexive spaces 235--238
J.-L. Lions Remarks on systems with incompletely
given initial data and incompletely
given part of the boundary . . . . . . . 239--250
Shigetake Matsuura On non-convex curves of constant angle 251--268
Hiroko Morimoto Asymptotic behavior of weak solutions of
the convection equation . . . . . . . . 269--276
Minoru Murata Uniform restricted parabolic Harnack
inequality, separation principle, and
ultracontractivity for parabolic
equations . . . . . . . . . . . . . . . 277--288
P. P. Narayanaswami The separable quotient problem for
barrelled spaces . . . . . . . . . . . . 289--308
H. Okamoto and
M. Sh\=oji and
M. Katsurada A computer-assisted analysis of the two
dimensional Navier--Stokes equations . . 309--318
Mitsuharu Ôtani A priori estimates for some nonlinear
parabolic equations via Lyapunov
functions . . . . . . . . . . . . . . . 319--327
Donald A. Dawson Measure-valued Markov processes . . . . 1--260
Bernard Maisonneuve Processus de Markov: Naissance,
retournement, régénération. (French) [] . . 261--292
Joel Spencer Nine lectures on random graphs . . . . . 293--347
Jürg Fröhlich and
Thomas Kerler Introduction and survey of results . . . 1--16
Jürg Fröhlich and
Thomas Kerler Local quantum theory with braid group
statistics . . . . . . . . . . . . . . . 17--44
Jürg Fröhlich and
Thomas Kerler Superselection sectors and the structure
of fusion rule algebras . . . . . . . . 45--101
Jürg Fröhlich and
Thomas Kerler Hopf algebras and quantum groups at
roots of unity . . . . . . . . . . . . . 102--118
Jürg Fröhlich and
Thomas Kerler Representation theory of $ U_q^{\rm
red}(s \ell_2) $ . . . . . . . . . . . . 119--140
Jürg Fröhlich and
Thomas Kerler Path representations of the braid groups
for quantum groups at roots of unity . . 141--175
Jürg Fröhlich and
Thomas Kerler Duality theory for local quantum
theories, dimensions and balancing in
quantum categories . . . . . . . . . . . 176--283
Jürg Fröhlich and
Thomas Kerler The quantum categories with a generator
of dimension less than two . . . . . . . 284--411
Asen L. Dontchev and
Tullio Zolezzi Tykhonov well-posedness . . . . . . . . 1--37
Asen L. Dontchev and
Tullio Zolezzi Hadamard and Tykhonov well-posedness . . 38--80
Asen L. Dontchev and
Tullio Zolezzi Generic well-posedness . . . . . . . . . 81--115
Asen L. Dontchev and
Tullio Zolezzi Well-posedness and variational, epi- and
Mosco convergences . . . . . . . . . . . 116--175
Asen L. Dontchev and
Tullio Zolezzi Well-posedness in optimal control . . . 176--229
Asen L. Dontchev and
Tullio Zolezzi Relaxation and value Hadamard
well-posedness in optimal control . . . 230--247
Asen L. Dontchev and
Tullio Zolezzi Singular perturbations in optimal
control . . . . . . . . . . . . . . . . 248--282
Asen L. Dontchev and
Tullio Zolezzi Well-posedness in the calculus of
variations . . . . . . . . . . . . . . . 283--334
Asen L. Dontchev and
Tullio Zolezzi Hadamard well-posedness in mathematical
programming . . . . . . . . . . . . . . 335--380
Michael Schürmann Introduction . . . . . . . . . . . . . . 1--11
Michael Schürmann Basic concepts and first results . . . . 12--40
Michael Schürmann Symmetric white noise on Bose Fock space 41--68
Michael Schürmann Symmetrization . . . . . . . . . . . . . 69--80
Michael Schürmann White noise on Bose Fock space . . . . . 81--113
Michael Schürmann Quadratic components of conditionally
positive linear functionals . . . . . . 114--127
Michael Schürmann Limit theorems . . . . . . . . . . . . . 128--137
John W. Morgan and
Kieran G. O'Grady Introduction . . . . . . . . . . . . . . 1--11
John W. Morgan and
Kieran G. O'Grady Unstable polynomials of algebraic
surfaces . . . . . . . . . . . . . . . . 12--32
John W. Morgan and
Kieran G. O'Grady Identification of $ \delta_{3, r}(S, H)
$ with $ \gamma_3 (S) $ . . . . . . . . 33--56
John W. Morgan and
Kieran G. O'Grady Certain moduli spaces for bundles on
elliptic surfaces with $ p_g = 1 $ . . . 57--98
John W. Morgan and
Kieran G. O'Grady Representatives for classes in the image
of the $ \nu $-map . . . . . . . . . . . 99--111
John W. Morgan and
Kieran G. O'Grady The blow-up formula . . . . . . . . . . 112--166
John W. Morgan and
Kieran G. O'Grady The proof of Theorem 1.1.1 . . . . . . . 167--210
Caterina Dimaki and
Evdokia Xekalaki Characterizations of the Pareto
distribution based on order statistics 1--16
B. Dimitrov and
Z. Khalil Some characterizations of the
exponential distribution based on the
service time properties of an unreliable
server . . . . . . . . . . . . . . . . . 17--25
Mark Finkelstein and
Howard G. Tucker On the distribution of the Wilcoxon
Rank-Sum statistic . . . . . . . . . . . 26--32
W. Hazod On different stability-concepts for
probabilities on groups . . . . . . . . 33--44
Herbert Heyer Functional limit theorems for random
walks on one-dimensional hypergroups . . 45--57
Peter Jagers Stabilities and instabilities in
population dynamics . . . . . . . . . . 58--67
Slobodanka Jankovi\'c Some properties of random variables
which are stable with respect to the
random sample size . . . . . . . . . . . 68--75
V. V. Kalashnikov Two-side estimates of geometric
convolutions . . . . . . . . . . . . . . 76--88
L. B. Klebanov and
A. Yu. Yakovlev A stochastic model of radiation
carcinogenesis . . . . . . . . . . . . . 89--99
V. Yu. Korolev and
V. M. Kruglov Limit theorems for random sums of
independent random variables . . . . . . 100--120
I. S. Molchanov On regularly varying multivalued
functions . . . . . . . . . . . . . . . 121--129
E. V. Morozov A comparison theorem for queueing system
with non-identical channels . . . . . . 130--133
Josep M. Oller On an intrinsic bias measure . . . . . . 134--158
Jerzy Pusz Characterization of exponential
distributions by conditional moments . . 159--162
Yu. S. Khokhlov The functional limit theorem on
nilpotent Lie group . . . . . . . . . . 163--166
M. Yu. Svertchkov On wide-sense regeneration . . . . . . . 167--169
S. M. Shkol'nik Some properties of the median of the
stable distributions close to the
symmetric ones . . . . . . . . . . . . . 170--173
Hermann Thorisson Regeneration, stationarity and
simulation . . . . . . . . . . . . . . . 174--179
Jacek Weso\lowski Multivariate infinitely divisible
distributions with the Gaussian second
order conditional structure . . . . . . 180--183
O. L. Yanushkevichiene On the convergence of random symmetric
polynomials . . . . . . . . . . . . . . 184--188
Peter Harmand and
Dirk Werner and
Wend Werner Basic theory of $M$-ideals . . . . . . . 1--47
Peter Harmand and
Dirk Werner and
Wend Werner Geometric properties of $M$-ideals . . . 49--100
Peter Harmand and
Dirk Werner and
Wend Werner Banach spaces which are $M$-ideals in
their biduals . . . . . . . . . . . . . 101--155
Peter Harmand and
Dirk Werner and
Wend Werner Banach spaces which are $L$-summands in
their biduals . . . . . . . . . . . . . 157--214
Peter Harmand and
Dirk Werner and
Wend Werner $M$-ideals in Banach algebras . . . . . 215--261
Peter Harmand and
Dirk Werner and
Wend Werner $M$-ideals in spaces of bounded
operators . . . . . . . . . . . . . . . 263--344
Tohsuke Urabe Introduction . . . . . . . . . . . . . . 1--16
Tohsuke Urabe Quadrilateral singularities and elliptic
$ K3 $ surfaces . . . . . . . . . . . . 17--59
Tohsuke Urabe Theorems with the Ik-conditions for $
J_{3, 0} $, $ Z_{1, 0} $ and $ Q_{2, 0}
$ . . . . . . . . . . . . . . . . . . . 60--97
Tohsuke Urabe Obstruction components . . . . . . . . . 98--184
Tohsuke Urabe Concept of co-root modules . . . . . . . 185--226
Gennadi Vainikko Some problems leading to
multidimensional weakly singular
integral equations . . . . . . . . . . . 1--9
Gennadi Vainikko Preliminaries . . . . . . . . . . . . . 10--23
Gennadi Vainikko Smoothness of the solution . . . . . . . 24--50
Gennadi Vainikko Outlines of the discrete convergence
theory . . . . . . . . . . . . . . . . . 51--59
Gennadi Vainikko Piecewise constant collocation and
related methods . . . . . . . . . . . . 60--93
Gennadi Vainikko Composite cubature algorithms . . . . . 94--111
Gennadi Vainikko Higher order methods . . . . . . . . . . 112--136
Gennadi Vainikko Nonlinear integral equation . . . . . . 137--144
Thomas Bagby and
Norman Levenberg Bernstein theorems for harmonic
functions . . . . . . . . . . . . . . . 7--18
A. P. Buslaev and
V. M. Tikhomirov Spectral theory of nonlinear equations
and $n$-widths of Sobolev spaces . . . . 19--30
Charles K. Chui On wavelet analysis . . . . . . . . . . 31--42
J. S. Geronimo Polynomials orthogonal on the unit
circle with random recurrence
coefficients . . . . . . . . . . . . . . 43--61
Charles A. Micchelli Using the refinement equation for the
construction of pre-wavelets IV: Cube
splines and elliptic splines united . . 62--70
E. A. Rakhmanov Strong asymptotics for orthogonal
polynomials . . . . . . . . . . . . . . 71--97
A. L. Levin and
E. B. Saff Exact convergence rates for best $ L_P $
rational approximation to the signum
function and for optimal quadrature in $
H^P $ . . . . . . . . . . . . . . . . . 98--109
Herbert Stahl Uniform rational approximation of $ | X
| $ . . . . . . . . . . . . . . . . . . 110--130
Mizan Rahman and
S. K. Suslov Classical biorthogonal rational
functions . . . . . . . . . . . . . . . 131--146
A. I. Aptekarev A direct proof for Trefethen's
conjecture . . . . . . . . . . . . . . . 147--148
V. P. Havin and
A. Presa Sagué Approximation properties of harmonic
vector fields and differential forms . . 149--156
Oleg V. Ivanov A problem of Axler and Shields on
nontangential limits and maximal ideal
space of some pseudonanalytic algebras 157--159
V. V. Ma\u\imeskul Degree of approximation of analytic
functions by ``near the best''
polynomial approximants . . . . . . . . 160--163
O. G. Parfënov Extremal problems for Blaschke products
and widths . . . . . . . . . . . . . . . 164--168
I. E. Pritsker On the convergence of Bieberbach
polynomials in domains with interior
zero angles . . . . . . . . . . . . . . 169--172
Boris Shekhtman Duality principle in linearized rational
approximation . . . . . . . . . . . . . 173--177
V. N. Temlyakov Universality of the Fibonacci cubature
formulas . . . . . . . . . . . . . . . . 178--184
S. Khrushchëv Parameters of orthogonal polynomials . . 185--191
Amos J. Carpenter and
Richard S. Varga Some numerical results on best uniform
polynomial approximation of $ X^\alpha $
on $ [0, 1] $ . . . . . . . . . . . . . 192--222
Leif Arkeryd and
Pierre-Louis Lions and
Peter A. Markowich and
Srinivasa R. S. Varadhan Front Matter . . . . . . . . . . . . . . ??
C. Cercignani and
M. Pulvirenti Nonequilibrium problems in many-particle
systems. An introduction . . . . . . . . 1--13
L. Arkeryd Some examples of NSA methods in kinetic
theory . . . . . . . . . . . . . . . . . 14--57
P.-L. Lions Global solutions of kinetic models and
related questions . . . . . . . . . . . 58--86
Peter A. Markowich Kinetic models for semiconductors . . . 87--111
S. R. S. Varadhan Entropy methods in hydrodynamic scaling 112--145
S. R. S. Varadhan Back Matter . . . . . . . . . . . . . . ??
Joachim Hilgert and
Karl-Hermann Neeb Lie semigroups and their tangent wedges 1--46
Joachim Hilgert and
Karl-Hermann Neeb Examples . . . . . . . . . . . . . . . . 47--79
Joachim Hilgert and
Karl-Hermann Neeb Geometry and topology of Lie semigroups 80--112
Joachim Hilgert and
Karl-Hermann Neeb Ordered homogeneous spaces . . . . . . . 113--147
Joachim Hilgert and
Karl-Hermann Neeb Applications of ordered spaces to Lie
semigroups . . . . . . . . . . . . . . . 148--161
Joachim Hilgert and
Karl-Hermann Neeb Maximal semigroups in groups with
cocompact radical . . . . . . . . . . . 162--176
Joachim Hilgert and
Karl-Hermann Neeb Invariant Cones and Ol'shanskii
semigroups . . . . . . . . . . . . . . . 177--201
Joachim Hilgert and
Karl-Hermann Neeb Compression semigroups . . . . . . . . . 202--253
Joachim Hilgert and
Karl-Hermann Neeb Representation theory . . . . . . . . . 254--296
Joachim Hilgert and
Karl-Hermann Neeb The theory for $ {\rm Sl}(2) $ . . . . . 297--302
Jean-Louis Colliot-Thél\`ene and
Kazuya Kato and
Paul Vojta Front Matter . . . . . . . . . . . . . . ??
Jean-Louis Colliot-Thél\`ene Cycles algébriques de torsion et
$K$-théorie algébrique. Cours au C.I.M.E.,
juin 1991. (French) [] . . . . . . . . . 1--49
Kazuya Kato Lectures on the approach to Iwasawa
theory for Hasse--Weil $L$-functions via
$ B_{dR}$. Part I . . . . . . . . . . . 50--163
Paul Vojta Applications of arithmetic algebraic
geometry to Diophantine approximations 164--208
Jean-Louis Colliot-Thél\`ene and
Kazuya Kato and
Paul Vojta Arithmetic algebraic geometry, Trento,
Italy 1991 . . . . . . . . . . . . . . . e1--e2
Jean-Louis Colliot-Thél\`ene and
Kazuya Kato and
Paul Vojta Back Matter . . . . . . . . . . . . . . ??
H. W. Lenstra, Jr. The number field sieve: an annotated
bibliography . . . . . . . . . . . . . . 1--3
J. M. Pollard Factoring with cubic integers . . . . . 4--10
A. K. Lenstra and
H. W. Lenstra, Jr. and
M. S. Manasse and
J. M. Pollard The number field sieve . . . . . . . . . 11--42
J. M. Pollard The lattice sieve . . . . . . . . . . . 43--49
J. P. Buhler and
H. W. Lenstra, Jr. and
Carl Pomerance Factoring integers with the number field
sieve . . . . . . . . . . . . . . . . . 50--94
Jean-Marc Couveignes Computing a square root for the number
field sieve . . . . . . . . . . . . . . 95--102
Daniel J. Bernstein and
A. K. Lenstra A general number field sieve
implementation . . . . . . . . . . . . . 103--126
Otto Liess Introduction . . . . . . . . . . . . . . 1--32
Otto Liess Higher order wave front sets . . . . . . 33--93
Otto Liess Pseudodifferential operators . . . . . . 95--144
Otto Liess Bi-symplectic geometry and
multihomogeneous maps . . . . . . . . . 145--191
Otto Liess Fourier Integral Operators . . . . . . . 193--223
Otto Liess Conical refraction, hyperbolicity and
slowness surfaces . . . . . . . . . . . 225--278
Otto Liess Propagation of regularity up to the
boundary . . . . . . . . . . . . . . . . 279--308
Otto Liess Some results on transmission problems 309--345
Otto Liess Partial analyticity, higher
microlocalization and sheaves . . . . . 347--379
Sergej B. Kuksin Symplectic structures and Hamiltonian
systems in scales of Hilbert spaces . . 1--12
Sergej B. Kuksin Statement of the main theorem and its
consequences . . . . . . . . . . . . . . 13--44
Sergej B. Kuksin Proof of the main theorem . . . . . . . 45--90
Masao Nagasawa Principle of superposition and
interference of diffusion processes . . 1--14
Thierry de la Rue Espaces de Lebesgue. (French) [Lebesgue
spaces] . . . . . . . . . . . . . . . . 15--21
J. P. Ansel and
C. Stricker Unicité et existence de la loi minimale.
(French) [] . . . . . . . . . . . . . . 22--29
J. P. Ansel and
C. Stricker Décomposition de Kunita--Watanabe.
(French) [] . . . . . . . . . . . . . . 30--32
Jean Bertoin Une preuve simple du théor\`eme de
Shimura sur les points méandre du
mouvement brownien plan. (French) [] . . 33--35
Frank Knight Some remarks on mutual windings . . . . 36--43
Oliver Brockhaus Sufficient statistics for the Brownian
sheet . . . . . . . . . . . . . . . . . 44--52
T. Jeulin and
M. Yor Moyennes mobiles et semimartingales.
(French) [] . . . . . . . . . . . . . . 53--77
Kiyoshi Kawazu and
Hiroshi Tanaka On the maximum of a diffusion process in
a drifted Brownian environment . . . . . 78--85
Yaozhong Hu Hypercontractivité pour les fermions,
d'apr\`es Carlen--Lieb. (French) [] . . 86--96
P.-A. Meyer Représentation de martingales d'opérateurs
d'apr\`es Parthasarathy--Sinha. (French)
[] . . . . . . . . . . . . . . . . . . . 97--105
P.-A. Meyer Les syst\`emes-produits et l'espace de
Fock d'apr\`es W. Arveson. (French) [] 106--113
P.-A. Meyer Représentation des fonctions
conditionnellement de type positif
d'apr\`es V. P. Belavkin. (French) [] 114--121
L. E. Dubins and
Michel Émery and
M. Yor On the Lévy transformation of Brownian
motions and continuous martingales . . . 122--132
J. Azéma and
T. Jeulin and
F. Knight and
M. Yor Le théor\`eme d'arrêt en une fin
d'ensemble prévisible. (French) [] . . . 133--158
K. D. Elworthy and
M. Yor Conditional expectations for derivatives
of certain stochastic flows . . . . . . 159--172
John B. Walsh Some remarks on $ A(t, B_t) $ . . . . . 173--176
Krzysztof Burdzy Excursion laws and exceptional points on
Brownian paths . . . . . . . . . . . . . 177--181
Marc Arnaudon Propriétés asymptotiques des
semi-martingales \`a valeurs dans des
variétés \`a bord continu. (French) [] . . 182--201
Dominique Schneider and
Michel Weber Une remarque sur un théor\`eme de
Bourgain. (French) [] . . . . . . . . . 202--206
Thomas J. Bridges and
Jacques E. Furter Introduction . . . . . . . . . . . . . . 1--8
Thomas J. Bridges and
Jacques E. Furter Generic bifurcation of periodic points 9--31
Thomas J. Bridges and
Jacques E. Furter Singularity theory for equivariant
gradient bifurcation problems . . . . . 33--62
Thomas J. Bridges and
Jacques E. Furter Classification of Zq-equivariant
gradient bifurcation problems . . . . . 63--83
Thomas J. Bridges and
Jacques E. Furter Period-$3$ points of the generalized
standard map . . . . . . . . . . . . . . 85--88
Thomas J. Bridges and
Jacques E. Furter Classification of Dq-equivariant
gradient bifurcation problems . . . . . 89--99
Thomas J. Bridges and
Jacques E. Furter Reversibility and degenerate bifurcation
of period-$q$ points of multiparameter
maps . . . . . . . . . . . . . . . . . . 101--118
Thomas J. Bridges and
Jacques E. Furter Periodic points of equivariant
symplectic maps . . . . . . . . . . . . 119--147
Thomas J. Bridges and
Jacques E. Furter Collision of multipliers at rational
points for symplectic maps . . . . . . . 149--174
Thomas J. Bridges and
Jacques E. Furter Equivariant maps and the collision of
multipliers . . . . . . . . . . . . . . 175--183
Vladimir G. Sprind\vzuk Origins . . . . . . . . . . . . . . . . 1--13
Vladimir G. Sprind\vzuk Algebraic foundations . . . . . . . . . 14--29
Vladimir G. Sprind\vzuk Linear forms in the logarithms of
algebraic numbers . . . . . . . . . . . 30--60
Vladimir G. Sprind\vzuk The Thue equation . . . . . . . . . . . 61--84
Vladimir G. Sprind\vzuk The Thue--Mahler equation . . . . . . . 85--110
Vladimir G. Sprind\vzuk Elliptic and hyperelliptic equations . . 111--137
Vladimir G. Sprind\vzuk Equations of hyperelliptic type . . . . 138--154
Vladimir G. Sprind\vzuk The class number value problem . . . . . 155--187
Vladimir G. Sprind\vzuk Reducibility of polynomials and
Diophantine equations . . . . . . . . . 188--218
Thomas Bartsch Introduction . . . . . . . . . . . . . . 1--7
Thomas Bartsch Category, genus and critical point
theory with symmetries . . . . . . . . . 8--29
Thomas Bartsch Category and genus of
infinite-dimensional representation
spheres . . . . . . . . . . . . . . . . 30--52
Thomas Bartsch The length of $G$-spaces . . . . . . . . 53--71
Thomas Bartsch The length of representation spheres . . 72--85
Thomas Bartsch The length and Conley index theory . . . 86--95
Thomas Bartsch The exit-length . . . . . . . . . . . . 96--112
Thomas Bartsch Bifurcation for $ O(3) $-equivariant
problems . . . . . . . . . . . . . . . . 113--126
Thomas Bartsch Multiple periodic solutions near
equilibria of symmetric Hamiltonian
systems . . . . . . . . . . . . . . . . 127--141
Ilya S. Molchanov Distributions of random closed sets . . 1--14
Ilya S. Molchanov Survey on stability of random sets and
limit theorems for Minkowski addition 15--27
Ilya S. Molchanov Infinite divisibility and stability of
random sets with respect to unions . . . 29--44
Ilya S. Molchanov Limit theorems for normalized unions of
random closed sets . . . . . . . . . . . 45--65
Ilya S. Molchanov Almost sure convergence of unions of
random closed sets . . . . . . . . . . . 67--84
Ilya S. Molchanov Multivalued regularly varying functions
and their applications to limit theorems
for unions of random sets . . . . . . . 85--99
Ilya S. Molchanov Probability metrics in the space of
random sets distributions . . . . . . . 101--121
Ilya S. Molchanov Applications of limit theorems . . . . . 123--145
Günter Harder Die Be\u\ilinson--Deligne-Vermutungen.
(German) [The Be\u\ilinson--Deligne
conjectures] . . . . . . . . . . . . . . 1--30
Günter Harder Die Kohomologie von Shimura-Varietäten.
(German) [The Cohomology of Shimura
Varieties] . . . . . . . . . . . . . . . 31--69
Günter Harder Die Beispiele. (German) [The examples] 70--102
Günter Harder Andersons gemischte Motive. (German)
[Anderson's mixed motives] . . . . . . . 103--142
Eugene Fabes and
Masatoshi Fukushima and
Leonard Gross and
Carlos Kenig and
Michael Röckner and
Daniel W. Stroock Front Matter . . . . . . . . . . . . . . ??
E. B. Fabes Gaussian upper bounds on fundamental
solutions of parabolic equations; the
method of Nash . . . . . . . . . . . . . 1--20
Masatoshi Fukushima Two topics related to Dirichlet forms:
quasi everywhere convergences and
additive functionals . . . . . . . . . . 21--53
Leonard Gross Logarithmic Sobolev inequalities and
contractivity properties of semigroups 54--88
Carlos E. Kenig Potential theory of non-divergence form
elliptic equations . . . . . . . . . . . 89--128
Michael Röckner General theory of Dirichlet forms and
applications . . . . . . . . . . . . . . 129--193
Daniel W. Stroock Logarithmic Sobolev inequalities for
Gibbs states . . . . . . . . . . . . . . 194--228
Daniel W. Stroock Back Matter . . . . . . . . . . . . . . ??
Jay A. Jorgenson and
Serge Lang Some complex analytic properties of
regularized products and series . . . . ix-88
Jay A. Jorgenson and
Serge Lang A Parseval formula for functions with a
singular asymptotic expansion at the
origin . . . . . . . . . . . . . . . . . 89--117
L. Boutet de Monvel Indice des syst\`emes différentiels.
(French) [] . . . . . . . . . . . . . . 1--30
C. De Concini and
C. Procesi Quantum groups . . . . . . . . . . . . . 31--140
Pierre Schapira and
Jean-Pierre Schneiders Index theorems for $R$-constructible
sheaves and for $D$-modules . . . . . . 141--156
Nicole Berline and
Mich\`ele Vergne The equivariant Chern character and
index of $G$-invariant operators.
Lectures at CIME, Venise 1992 . . . . . 157--200
Frits Beukers Diophantine Equations and Approximation 1--11
Rob Tijdeman Diophantine Approximation and its
Applications . . . . . . . . . . . . . . 13--20
Rob Tijdeman Roth's Theorem . . . . . . . . . . . . . 21--30
Jan-Hendrik Evertse The Subspace Theorem of W. M. Schmidt 31--50
Johan Huisman Heights on Abelian Varieties . . . . . . 51--61
Jaap Top D. Mumford's ``A Remark on Mordell's
Conjecture'' . . . . . . . . . . . . . . 63--67
Johan de Jong Ample Line Bundles and Intersection
Theory . . . . . . . . . . . . . . . . . 69--76
Marius van der Put The Product Theorem . . . . . . . . . . 77--82
Carel Faber Geometric Part of Faltings's Proof . . . 83--91
Robert-Jan Kooman Faltings's Version of Siegel's Lemma . . 93--96
Bas Edixhoven Arithmetic Part of Faltings's Proof . . 97--110
Gerard van der Geer Points of Degree $d$ on Curves over
Number Fields . . . . . . . . . . . . . 111--116
Frans Oort ``The'' General Case of S. Lang's
Conjecture (after Faltings) . . . . . . 117--122
Frans Oort Back Matter . . . . . . . . . . . . . . 123--127
Roland Lvovich Dobrushin and
Shigeo Kusuoka Front Matter . . . . . . . . . . . . . . ??
R. L. Dobrushin On the way to the mathematical
foundations of statistical mechanics . . 1--37
S. Kusuoka Lecture on diffusion processes on nested
fractals . . . . . . . . . . . . . . . . 39--98
Jean-Pierre Serre Cohomologie des groupes profinis.
(French) [] . . . . . . . . . . . . . . 1--79
Jean-Pierre Serre Cohomologie galoisi\`eme --- cas
commutatif. (French) [Galois cohomology
--- commutative case] . . . . . . . . . 81--126
Jean-Pierre Serre Cohomologie galoisienne non commutative.
(French) [Noncommutative Galois
cohomology] . . . . . . . . . . . . . . 127--170
Ferenc Weisz Preliminaries and notations . . . . . . 1--12
Ferenc Weisz One-parameter Martingale Hardy spaces 13--79
Ferenc Weisz Two-Parameter Martingale Hardy spaces 80--140
Ferenc Weisz Tree martingales . . . . . . . . . . . . 141--163
Ferenc Weisz Real interpolation . . . . . . . . . . . 164--182
Ferenc Weisz Inequalities for Vilenkin--Fourier
coefficients . . . . . . . . . . . . . . 183--203
Vilmos Totik Introduction . . . . . . . . . . . . . . 1--5
Vilmos Totik Freud weights . . . . . . . . . . . . . 7--20
Vilmos Totik Approximation with general weights . . . 21--48
Vilmos Totik Varying weights . . . . . . . . . . . . 49--77
Vilmos Totik Applications . . . . . . . . . . . . . . 79--110
Ralph deLaubenfels Intuition and elementary examples . . . 1--6
Ralph deLaubenfels Existence families . . . . . . . . . . . 7--12
Ralph deLaubenfels Regularized semigroups . . . . . . . . . 13--23
Ralph deLaubenfels The solution space of an operator and
automatic well-posedness . . . . . . . . 24--37
Ralph deLaubenfels Exponentially bounded (Banach) solution
spaces . . . . . . . . . . . . . . . . . 38--54
Ralph deLaubenfels Well-posedness on a larger space;
Generalized solutions . . . . . . . . . 55--59
Ralph deLaubenfels Entire vectors and entire existence
families . . . . . . . . . . . . . . . . 60--65
Ralph deLaubenfels Reversibility of parabolic problems . . 66--70
Ralph deLaubenfels The Cauchy problem for the Laplace
equation . . . . . . . . . . . . . . . . 71--72
Ralph deLaubenfels Boundary values of holomorphic
semigroups . . . . . . . . . . . . . . . 73--75
Ralph deLaubenfels The Schrödinger equation . . . . . . . . 76--78
Ralph deLaubenfels Functional calculus for commuting
generators of bounded strongly
continuous groups . . . . . . . . . . . 79--85
Ralph deLaubenfels Petrovsky correct matrices of generators
of bounded strongly continuous groups 86--91
Ralph deLaubenfels Arbitrary matrices of generators of
bounded strongly continuous groups . . . 92--93
Ralph deLaubenfels More examples of regularized semigroups 94--96
Ralph deLaubenfels Existence and uniqueness families . . . 97--103
Ralph deLaubenfels $C$-resolvents and Hille--Yosida type
theorems . . . . . . . . . . . . . . . . 104--109
Ralph deLaubenfels Relationship to integrated semigroups 110--112
Ralph deLaubenfels Perturbations . . . . . . . . . . . . . 113--124
Ralph deLaubenfels Type of an operator . . . . . . . . . . 125--127
Sergei Yu. Pilyugin Definitions and preliminary results . . 1--21
Sergei Yu. Pilyugin Generic properties of dynamical systems 23--52
Sergei Yu. Pilyugin Topological stability . . . . . . . . . 53--85
Sergei Yu. Pilyugin Perturbations of attractors . . . . . . 87--123
Sergei Yu. Pilyugin Limit sets of domains . . . . . . . . . 125--142
Lothar Göttsche Fundamental facts . . . . . . . . . . . 1--11
Lothar Göttsche Computation of the Betti numbers of
Hilbert schemes . . . . . . . . . . . . 12--80
Lothar Göttsche The varieties of second and higher order
data . . . . . . . . . . . . . . . . . . 81--144
Lothar Göttsche The Chow ring of relative Hilbert
schemes of projective bundles . . . . . 145--183
S. V. Kisliakov Banach spaces . . . . . . . . . . . . . 1--50
H. G. Dales and
A. Ya. Helemskii Banach algebras . . . . . . . . . . . . 51--154
Jean-Pierre Kahane Probabilistic problems . . . . . . . . . 155--178
I. Gohberg and
M. A. Kaashoek Holomorphic operator functions . . . . . 179--210
Peter Rosenthal General operator theory . . . . . . . . 211--258
M. Sh. Birman Perturbation theory scattering theory 259--292
Jaak Peetre Hankel and Toeplitz operators . . . . . 293--358
John B. Conway Close to normal operators . . . . . . . 359--388
N. K. Nikolskii and
V. I. Vasyunin Functional models . . . . . . . . . . . 389--408
E. M. Dyn'kin and
S. V. Kisliakov Singular integrals, BMO, $ H^p $ . . . . 409--464
N. K. Nikolski Spectral analysis and synthesis . . . . 1--72
J. Brennan and
A. Volberg and
V. P. Havin Approximation and capacities . . . . . . 73--176
Paul Nevai Orthogonal polynomials . . . . . . . . . 177--206
J. Brennan and
A. Volberg and
V. P. Havin Uniqueness, moments, normality . . . . . 207--258
N. K. Nikolski Interpolation, bases, multipliers . . . 259--294
A. A. Goldberg and
B. Ya. Levin and
I. V. Ostrovskii Entire and subharmonic functions. . . . 295--338
L. A. Aizenberg $ \mathbb {C}^n $ . . . . . . . . . . . 339--382
P. Duren Geometric function theory . . . . . . . 383--422
B. Bielefeld and
M. Lyubich Holomorphic dynamics . . . . . . . . . . 423--462
B. Bielefeld and
M. Lyubich Miscellaneous problems . . . . . . . . . 463--482
Marius Mitrea Clifford algebras . . . . . . . . . . . 1--15
Marius Mitrea Constructions of Clifford wavelets . . . 16--41
Marius Mitrea The $ L^2 $ Boundedness of Clifford
algebra valued singular integral
operators . . . . . . . . . . . . . . . 42--59
Marius Mitrea Hardy spaces of monogenic functions . . 60--86
Marius Mitrea Applications to the theory of harmonic
functions . . . . . . . . . . . . . . . 87--105
Kazuaki Kitahara Preliminaries . . . . . . . . . . . . . 1--7
Kazuaki Kitahara Characterizations of approximating
spaces of $ C[a, b] $ or $ C_0 (Q) $ . . 8--29
Kazuaki Kitahara Some topics of Haar-like spaces of $ F
[a, b] $ . . . . . . . . . . . . . . . . 30--57
Kazuaki Kitahara Approximation by vector-valued monotone
increasing or convex functions . . . . . 58--77
Kazuaki Kitahara Approximation by step functions . . . . 78--89
Nobuaki Obata Prerequisites . . . . . . . . . . . . . 1--18
Nobuaki Obata White noise space . . . . . . . . . . . 19--32
Nobuaki Obata White noise functionals . . . . . . . . 33--70
Nobuaki Obata Operator theory . . . . . . . . . . . . 71--108
Nobuaki Obata Toward harmonic analysis . . . . . . . . 109--150
Nobuaki Obata Addendum . . . . . . . . . . . . . . . . 151--166
Joseph Bernstein and
Valery Lunts Introduction . . . . . . . . . . . . . . 1--1
Joseph Bernstein and
Valery Lunts Derived category $ D_G(X) $ and functors 2--67
Joseph Bernstein and
Valery Lunts DG-modules and equivariant cohomology 68--125
Joseph Bernstein and
Valery Lunts Equivariant cohomology of toric
varieties . . . . . . . . . . . . . . . 126--132
Norihiko Kazamaki Exponential martingales . . . . . . . . 1--24
Norihiko Kazamaki BMO-martingales . . . . . . . . . . . . 25--52
Norihiko Kazamaki Exponential of BMO . . . . . . . . . . . 53--84
Mario Milman Introduction . . . . . . . . . . . . . . 1--5
Mario Milman Background on extrapolation theory . . . 7--34
Mario Milman $ K / J $ inequalities and limiting
embedding theorems . . . . . . . . . . . 35--41
Mario Milman Calculations with the $ \Delta $ method
and applications . . . . . . . . . . . . 43--57
Mario Milman Bilinear extrapolation and a limiting
case of a theorem by Cwikel . . . . . . 59--73
Mario Milman Extrapolation, reiteration, and
applications . . . . . . . . . . . . . . 75--93
Mario Milman Estimates for commutators in real
interpolation . . . . . . . . . . . . . 95--126
Mario Milman Sobolev imbedding theorems and
extrapolation of infinitely many
operators . . . . . . . . . . . . . . . 127--130
Mario Milman Some remarks on extrapolation spaces and
abstract parabolic equations . . . . . . 131--137
Mario Milman Optimal decompositions, scales, and
Nash--Moser iteration . . . . . . . . . 139--147
Dominique Bakry L'hypercontractivité et son utilisation
en théorie des semigroupes. (French) [] 1--114
Richard D. Gill Lectures on survival analysis . . . . . 115--241
S. Molchanov Lectures on random media . . . . . . . . 242--411
Werner Balser Asymptotic power series . . . . . . . . 1--12
Werner Balser Laplace and Borel transforms . . . . . . 13--22
Werner Balser Summable power series . . . . . . . . . 23--32
Werner Balser Cauchy--Heine transform . . . . . . . . 33--40
Werner Balser Acceleration operators . . . . . . . . . 41--52
Werner Balser Multisummable power series . . . . . . . 53--74
Werner Balser Some equivalent definitions of
multisummability . . . . . . . . . . . . 75--81
Werner Balser Formal solutions to non-linear ODE . . . 83--101
Laurent Schwartz Semi-martingales banachiques: Le
théor\`eme des trois opérateurs. (French)
[] . . . . . . . . . . . . . . . . . . . 1--20
J. Jacod and
A. V. Skorohod Jumping filtrations and martingales with
finite variation . . . . . . . . . . . . 21--35
Annie Millet and
Marta Sanz-Solé A simple proof of the support theorem
for diffusion processes . . . . . . . . 36--48
T. J. Rabeherimanana and
S. N. Smirnov Petites perturbations de syst\`emes
dynamiques et Alg\`ebres de Lie
Nilpotentes. Une extension des
estimations de Doss & Stroock. (French)
[] . . . . . . . . . . . . . . . . . . . 49--72
Pierre Vallois Orthogonalité et uniforme intégrabilité de
martingales. Étude d'une classe
d'exemples. (French) [] . . . . . . . . 73--91
P. Monat Remarques sur les inégalités de
Burkholder--Davis--Gundy. (French) [] 92--97
P.-A. Meyer Sur une transformation du mouvement
brownien due \`a Jeulin et Yor. (French)
[] . . . . . . . . . . . . . . . . . . . 98--101
Michael B. Marcus and
Jay Rosen Exact rates of convergence to the local
times of symmetric Lévy processes . . . . 102--109
Luca Pratelli Deux contre-exemples sur la convergence
d'intégrales anticipatives. (French) [] 110--112
Gladys Bobadilla and
Rolando Rebolledo and
Eugenio Saavedra Corrections \`a: ``Sur la convergence
d'intégrales anticipatives''. (French) [] 113--115
J. Bertoin and
R. A. Doney On conditioning random walks in an
exponential family to stay nonnegative 116--121
Z. Shi Liminf behaviours of the windings and
Lévy's stochastic areas of planar
Brownian motion . . . . . . . . . . . . 122--137
Jean Bertoin and
Wendelin Werner Asymptotic windings of planar Brownian
motion revisited via the
Ornstein--Uhlenbeck process . . . . . . 138--152
Wendelin Werner Rate of explosion of the Amp\`erean area
of the planar Brownian loop . . . . . . 153--163
Jean Bertoin and
Wendelin Werner Comportement asymptotique du nombre de
tours effectués par la trajectoire
brownienne plane. (French) [] . . . . . 164--171
Jean-François Le Gall Exponential moments for the renormalized
self-intersection local time of planar
Brownian motion . . . . . . . . . . . . 172--180
Jean-Pascal Ansel Remarques sur le prix des actifs
contingents. (French) [] . . . . . . . . 181--188
P. Monat and
C. Stricker Fermeture de $ G_T(\Theta) $ et de $ L^2
(\mathcal {F}_0) + G_T(\Theta) $.
(French) [] . . . . . . . . . . . . . . 189--194
Sophie Maille Sur l'utilisation de processus de Markov
dans le mod\`ele d'Ising: attractivité et
couplage. (French) [] . . . . . . . . . 195--235
Jacques Azéma and
Catherine Rainer Sur l'équation de structure $ d[X, X]_t =
d t - X_{t - }^+ d X_t $. (French) [] 236--255
Martin Brokate Hysteresis operators . . . . . . . . . . 1--38
Nobuyuki Kenmochi Systems of nonlinear PDEs arising from
dynamical phase transitions . . . . . . 39--86
Y. Huo and
I. Müller and
S. Seelecke Quasiplasticity and pseudoelasticity in
shape memory alloys . . . . . . . . . . 87--146
José-Francisco Rodrigues Variational methods in the Stefan
problem . . . . . . . . . . . . . . . . 147--212
Claudio Verdi Numerical aspects of parabolic free
boundary and hysteresis problems . . . . 213--284
Ian Kiming On the experimental verification of the
Artin conjecture for $2$-dimensional odd
Galois representations over $Q$ liftings
of $2$-dimensional projective Galois
representations over $Q$ . . . . . . . . 1--36
Jacques Basmaji and
Ian Kiming A table of $ A_5 $-fields . . . . . . . 37--46
Martin Kinzelbach A. Geometrical construction of
$2$-dimensional Galois representations
of $ A_5$-type. B. On the realisation of
the groups $ {\rm PSL}_2 (1)$ as Galois
groups over number fields by means of
$l$-torsion points of elliptic curves 47--58
Lo\"\ic Merel Universal Fourier expansions of modular
forms . . . . . . . . . . . . . . . . . 59--94
Xiangdong Wang The Hecke operators on the cusp forms of
$ \Gamma_0 (N) $ with nebentype . . . . 95--108
Ian Kiming and
Xiangdong Wang Examples of $2$-dimensional, odd Galois
representations of $ A_5$-type over $
\mathbb {Q}$ satisfying the Artin
conjecture . . . . . . . . . . . . . . . 109--121
Rodney Nillsen Introduction . . . . . . . . . . . . . . 1--8
Rodney Nillsen General and preparatory results . . . . 9--43
Rodney Nillsen Multiplication and difference spaces on
$ R^n $ . . . . . . . . . . . . . . . . 44--117
Rodney Nillsen Applications to differential and
singular integral operators . . . . . . 118--151
Rodney Nillsen Results for $ L^p $ spaces on general
groups . . . . . . . . . . . . . . . . . 152--174
Nanhua Xi Hecke algebras . . . . . . . . . . . . . 1--17
Nanhua Xi Affine Weyl groups and affine Hecke
algebras . . . . . . . . . . . . . . . . 18--26
Nanhua Xi A generalized two-sided cell of an
affine Weyl group . . . . . . . . . . . 27--43
Nanhua Xi $ q_s$-Analogue of weight multiplicity 44--47
Nanhua Xi Kazhdan--Lusztig classification on
simple modules of affine Hecke algebras 48--62
Nanhua Xi An equivalence relation in $ T \times
\mathbb {C}^* $ . . . . . . . . . . . . 63--79
Nanhua Xi The lowest two-sided cell . . . . . . . 80--84
Nanhua Xi Principal series representations and
induced modules . . . . . . . . . . . . 85--92
Nanhua Xi Isogenous affine Hecke algebras . . . . 93--98
Nanhua Xi Quotient algebras . . . . . . . . . . . 99--101
Nanhua Xi The based rings of cells in affine Weyl
groups of type $ \widetilde {G_2 },
\widetilde {B_2 }, \widetilde {A_2 } $ 102--115
Nanhua Xi Simple modules attached to $ c_1 $ . . . 116--128
Claus Scheiderer Real spectrum and real étale site . . . . 1--8
Claus Scheiderer Glueing étale and real étale site . . . . 9--17
Claus Scheiderer Limit theorems, stalks, and other basic
facts . . . . . . . . . . . . . . . . . 18--29
Claus Scheiderer Some reminders on Weil restrictions . . 30--41
Claus Scheiderer Real spectrum of $X$ and étale site of $
X[\sqrt {-1}]$ . . . . . . . . . . . . . 42--55
Claus Scheiderer The fundamental long exact sequence . . 56--67
Claus Scheiderer Cohomological dimension of $ X_b $, I:
Reduction to the field case . . . . . . 68--86
Claus Scheiderer Equivariant sheaves for actions of
topological groups . . . . . . . . . . . 87--95
Claus Scheiderer Cohomological dimension of $ X_b $, II:
The field case . . . . . . . . . . . . . 96--106
Claus Scheiderer $G$-toposes . . . . . . . . . . . . . . 107--127
Claus Scheiderer Inverse limits of $G$-toposes: Two
examples . . . . . . . . . . . . . . . . 128--160
Claus Scheiderer Group actions on spaces: Topological
versus topos-theoretic constructions . . 161--165
Claus Scheiderer Quotient topos of a $G$-topos, for $G$
of prime order . . . . . . . . . . . . . 166--172
Claus Scheiderer Comparison theorems . . . . . . . . . . 173--179
Claus Scheiderer Base change theorems . . . . . . . . . . 180--190
Claus Scheiderer Constructible sheaves and finiteness
theorems . . . . . . . . . . . . . . . . 191--204
Claus Scheiderer Cohomology of affine varieties . . . . . 205--211
Claus Scheiderer Relations to the Zariski topology . . . 212--218
Claus Scheiderer Examples and complements . . . . . . . . 219--243
Jean Bellissard and
Mirko Degli Esposti and
Giovanni Forni and
Sandro Graffi and
Stefano Isola and
John N. Mather Front Matter . . . . . . . . . . . . . . ??
Jean Bellissard Non commutative methods in semiclassical
analysis . . . . . . . . . . . . . . . . 1--64
Mirko Degli Esposti and
Sandro Graffi and
Stefano Isola Equidistribution of periodic orbits: an
overview of classical VS quantum results 65--91
John N. Mather and
Giovanni Forni Action minimizing orbits in Hamiltonian
systems . . . . . . . . . . . . . . . . 92--186
John N. Mather and
Giovanni Forni Back Matter . . . . . . . . . . . . . . ??
Paolo M. Soardi Kirchhoff's laws . . . . . . . . . . . . 1--21
Paolo M. Soardi Finite networks . . . . . . . . . . . . 22--31
Paolo M. Soardi Currents and potentials with finite
energy . . . . . . . . . . . . . . . . . 32--71
Paolo M. Soardi Uniqueness and related topics . . . . . 72--99
Paolo M. Soardi Some examples and computations . . . . . 100--130
Paolo M. Soardi Royden's compactification . . . . . . . 131--159
Paolo M. Soardi Rough isometries . . . . . . . . . . . . 160--172
Marco Abate and
Giorgio Patrizio Real Finsler geometry . . . . . . . . . 1--62
Marco Abate and
Giorgio Patrizio Complex Finsler geometry . . . . . . . . 63--125
Marco Abate and
Giorgio Patrizio Manifolds with constant holomorphic
curvature . . . . . . . . . . . . . . . 127--170
Karl Wilhelm Breitung Introduction . . . . . . . . . . . . . . 1--8
Karl Wilhelm Breitung Mathematical preliminaries . . . . . . . 9--33
Karl Wilhelm Breitung Asymptotic analysis . . . . . . . . . . 34--44
Karl Wilhelm Breitung Univariate integrals . . . . . . . . . . 45--50
Karl Wilhelm Breitung Multivariate Laplace type integrals . . 51--84
Karl Wilhelm Breitung Approximations for normal integrals . . 85--105
Karl Wilhelm Breitung Arbitrary probability integrals . . . . 106--120
Karl Wilhelm Breitung Crossing rates of stochastic processes 121--134
Jay Jorgenson and
Serge Lang Explicit formulas for regularized
products and series . . . . . . . . . . 1--134
Dorian Goldfeld A spectral interpretation of Weil's
explicit formula . . . . . . . . . . . . 135--152
Mark L. Green Infinitesimal Methods in Hodge Theory 1--92
Jacob P. Murre Algebraic Cycles and Algebraic Aspects
of Cohomology and $K$-Theory . . . . . . 93--152
Claire Voisin Transcendental Methods in the Study of
Algebraic Cycles . . . . . . . . . . . . 153--222
Gian Pietro Pirola The Infinitesimal Invariant of $ C^+ -
C^- $ . . . . . . . . . . . . . . . . . 223--232
Bert van Geemen An Introduction to the Hodge Conjecture
for Abelian Varieties . . . . . . . . . 233--252
Stefan Müller-Stach A Remark on Height Pairings . . . . . . 253--259
Robert D. M. Accola Review of some basic concepts in the
theory of Riemann surfaces . . . . . . . 1--12
Robert D. M. Accola Some exceptional points on Riemann
surfaces . . . . . . . . . . . . . . . . 13--19
Robert D. M. Accola The inequality of Castelnuovo--Severi 20--29
Robert D. M. Accola Smooth and branched coverings of Riemann
surfaces . . . . . . . . . . . . . . . . 30--41
Robert D. M. Accola Automorphisms of Riemann surfaces, I . . 42--51
Robert D. M. Accola When are fixed points of automorphisms
exceptional in some other sense? . . . . 52--73
Robert D. M. Accola Automorphisms of Riemann surfaces, II; $
N(p) $ . . . . . . . . . . . . . . . . . 74--98
Lutz Heindorf and
Sakaé Fuchino and
Leonid B. Shapiro Introduction . . . . . . . . . . . . . . 1--10
Lutz Heindorf and
Sakaé Fuchino and
Leonid B. Shapiro Setting the stage . . . . . . . . . . . 11--35
Lutz Heindorf and
Sakaé Fuchino and
Leonid B. Shapiro rc-Filtered Boolean algebras . . . . . . 37--68
Lutz Heindorf and
Sakaé Fuchino and
Leonid B. Shapiro Functors . . . . . . . . . . . . . . . . 69--96
Lutz Heindorf and
Sakaé Fuchino and
Leonid B. Shapiro $ \sigma $-filtered Boolean algebras . . 97--109
Lutz Heindorf and
Sakaé Fuchino and
Leonid B. Shapiro Weakly projective and regularly filtered
algebras . . . . . . . . . . . . . . . . 111--145
Lutz Heindorf and
Sakaé Fuchino and
Leonid B. Shapiro The twisted embedding and its
applications . . . . . . . . . . . . . . 147--163
Bernd Herzog Ring filtrations . . . . . . . . . . . . 1--17
Bernd Herzog Basic lemmas . . . . . . . . . . . . . . 18--29
Bernd Herzog Tangential flatness under base change 30--47
Bernd Herzog Relation to flatness . . . . . . . . . . 48--58
Bernd Herzog Distinguished bases . . . . . . . . . . 59--75
Bernd Herzog Hilbert series . . . . . . . . . . . . . 76--90
Bernd Herzog Flatifying filtrations . . . . . . . . . 91--100
Bernd Herzog Kodaira--Spencer maps . . . . . . . . . 101--126
Bernd Herzog Inequalities related with flat couples
of local rings . . . . . . . . . . . . . 127--142
Bernd Herzog On the local rings of the Hilbert scheme 143--170
Paul-André Meyer Non-commutative probability . . . . . . 1--11
Paul-André Meyer Spin . . . . . . . . . . . . . . . . . . 13--42
Paul-André Meyer The harmonic oscillator . . . . . . . . 43--56
Paul-André Meyer Fock space (1) . . . . . . . . . . . . . 57--102
Paul-André Meyer Fock space (2): Multiple Fock spaces . . 103--124
Paul-André Meyer Stochastic calculus in Fock space . . . 125--194
Paul-André Meyer Independent increments . . . . . . . . . 195--208
Jürgen Berndt and
Franco Tricerri and
Lieven Vanhecke Introduction . . . . . . . . . . . . . . 1--3
Jürgen Berndt and
Franco Tricerri and
Lieven Vanhecke Symmetric-like Riemannian manifolds . . 4--20
Jürgen Berndt and
Franco Tricerri and
Lieven Vanhecke Generalized Heisenberg groups . . . . . 21--77
Jürgen Berndt and
Franco Tricerri and
Lieven Vanhecke Damek--Ricci spaces . . . . . . . . . . 78--114
Klaus Johannson Handlebodies . . . . . . . . . . . . . . 1--36
Klaus Johannson Relative handlebodies . . . . . . . . . 37--146
Klaus Johannson Generalized one-relator $3$-manifolds 147--245
Klaus Johannson $N$-relation $3$-manifolds . . . . . . . 246--282
Klaus Johannson The space of Heegaard graphs . . . . . . 283--426
W\ladys\law Narkiewicz Rings of integral-valued polynomials . . 1--66
W\ladys\law Narkiewicz Fully invariant sets for polynomial
mappings . . . . . . . . . . . . . . . . 67--109
Alexander Pott Preliminaries: Incidence structures with
Singer groups . . . . . . . . . . . . . 1--33
Alexander Pott Examples: Existence and non-existence 35--68
Alexander Pott Difference sets with classical
parameters . . . . . . . . . . . . . . . 69--102
Alexander Pott Semiregular relative difference sets . . 103--111
Alexander Pott Projective planes with quasiregular
collineation groups . . . . . . . . . . 113--147
Alexander Pott Codes and sequences . . . . . . . . . . 149--168
Jörg Winkelmann Survey . . . . . . . . . . . . . . . . . 1--19
Jörg Winkelmann The classification of three-dimensional
homogeneous complex manifolds $ X = G /
H $ where $G$ is a complex Lie group . . 20--84
Jörg Winkelmann The classification of three-dimensional
homogeneous complex manifolds $ X = G /
H $ where $G$ is a real Lie group . . . 85--224
Vasile Ene Preliminaries . . . . . . . . . . . . . 1--23
Vasile Ene Classes of functions . . . . . . . . . . 25--125
Vasile Ene Finite representations for continuous
functions . . . . . . . . . . . . . . . 127--139
Vasile Ene Monotonicity . . . . . . . . . . . . . . 141--159
Vasile Ene Integrals . . . . . . . . . . . . . . . 161--211
Vasile Ene Examples . . . . . . . . . . . . . . . . 213--292
Annette Huber Basic notions . . . . . . . . . . . . . 2--10
Annette Huber Derived categories of exact categories 10--21
Annette Huber Filtered derived categories . . . . . . 22--27
Annette Huber Gluing of categories . . . . . . . . . . 28--45
Annette Huber Godement resolutions . . . . . . . . . . 45--48
Annette Huber Singular cohomology . . . . . . . . . . 50--56
Annette Huber De Rham cohomology . . . . . . . . . . . 57--60
Annette Huber Hodge realization . . . . . . . . . . . 60--73
Annette Huber $1$-adic cohomology . . . . . . . . . . 73--80
Annette Huber Comparison functors: $1$-adic versus
singular realization . . . . . . . . . . 80--86
Annette Huber The mixed realization . . . . . . . . . 86--95
Annette Huber The Tate twist . . . . . . . . . . . . . 98--102
Annette Huber $ \otimes $-product and internal Hom on
$ D_{\rm MR}$ . . . . . . . . . . . . . 102--112
Annette Huber The Künneth morphism . . . . . . . . . . 112--122
Annette Huber The Bloch--Ogus axioms . . . . . . . . . 122--138
Annette Huber The Chern class of a line bundle . . . . 140--146
Annette Huber Classifying spaces . . . . . . . . . . . 146--154
Annette Huber Higher Chern classes . . . . . . . . . . 154--169
Annette Huber Operations of correspondences . . . . . 172--177
Annette Huber Grothendieck motives . . . . . . . . . . 177--182
Lars B. Wahlbin Some one-dimensional superconvergence
results . . . . . . . . . . . . . . . . 1--27
Lars B. Wahlbin Remarks about some of the tools used in
Chapter 1 . . . . . . . . . . . . . . . 28--35
Lars B. Wahlbin Local and global properties of $ L_2
$-projections . . . . . . . . . . . . . 36--41
Lars B. Wahlbin Introduction to several space
dimensions: some results about
superconvergence in $ L_2 $-projections 42--47
Lars B. Wahlbin Second order elliptic boundary value
problems in any number of space
dimensions: preliminary considerations
on local and global estimates and
presentation of the main technical tools
for showing superconvergence . . . . . . 48--64
Lars B. Wahlbin Superconvergence in tensor-product
elements . . . . . . . . . . . . . . . . 65--73
Lars B. Wahlbin Superconvergence by local symmetry . . . 74--83
Lars B. Wahlbin Superconvergence for difference
quotients on translation invariant
meshes . . . . . . . . . . . . . . . . . 84--92
Lars B. Wahlbin On superconvergence in nonlinear
problems . . . . . . . . . . . . . . . . 93--97
Lars B. Wahlbin Chapter 10. Superconvergence in
isoparametric mappings of translation
invariant meshes: an example . . . . . . 98--106
Lars B. Wahlbin Superconvergence by averaging: mainly,
the $K$-operator . . . . . . . . . . . . 107--124
Lars B. Wahlbin A computational investigation of
superconvergence for first derivatives
in the plane . . . . . . . . . . . . . . 125--135
Pei-Dong Liu and
Min Qian Preliminaries . . . . . . . . . . . . . 1--21
Pei-Dong Liu and
Min Qian Entropy and Lyapunov exponents of random
diffeomorphisms . . . . . . . . . . . . 22--44
Pei-Dong Liu and
Min Qian Estimation of entropy from above through
Lyapunov exponents . . . . . . . . . . . 45--54
Pei-Dong Liu and
Min Qian Stable invariant manifolds of random
diffeomorphisms . . . . . . . . . . . . 55--90
Pei-Dong Liu and
Min Qian Estimation of entropy from below through
Lyapunov exponents . . . . . . . . . . . 91--108
Pei-Dong Liu and
Min Qian Stochastic flows of diffeomorphisms . . 109--127
Pei-Dong Liu and
Min Qian Characterization of measures satisfying
entropy formula . . . . . . . . . . . . 128--181
Pei-Dong Liu and
Min Qian Random perturbations of hyperbolic
attractors . . . . . . . . . . . . . . . 182--206
Günter Schwarz Introduction . . . . . . . . . . . . . . 1--8
Günter Schwarz Analysis of differential forms . . . . . 9--58
Günter Schwarz The Hodge decomposition . . . . . . . . 59--112
Günter Schwarz Boundary value problems for differential
forms . . . . . . . . . . . . . . . . . 113--145
Philippe Biane Calcul stochastique non-commutatif.
(French) [] . . . . . . . . . . . . . . 1--96
Rick Durrett Ten lectures on particle systems . . . . 97--201
Ludwig Arnold and
Christopher K. R. T. Jones and
Konstantin Mischaikow and
Genevi\`eve Raugel Front Matter . . . . . . . . . . . . . . ??
Ludwig Arnold Random dynamical systems . . . . . . . . 1--43
Christopher K. R. T. Jones Geometric singular perturbation theory 44--118
Konstantin Mischaikow Conley index theory . . . . . . . . . . 119--207
Genevi\`eve Raugel Dynamics of partial differential
equations on thin domains . . . . . . . 208--315
Genevi\`eve Raugel Back Matter . . . . . . . . . . . . . . ??
Ali Süleyman Üstünel Preliminaries . . . . . . . . . . . . . 1--7
Ali Süleyman Üstünel Gross--Sobolev derivative, divergence
and Ornstein--Uhlenbeck operator . . . . 9--18
Ali Süleyman Üstünel Meyer inequalities . . . . . . . . . . . 19--25
Ali Süleyman Üstünel Hypercontractivity . . . . . . . . . . . 27--30
Ali Süleyman Üstünel $ L^p $-multipliers theorem, Meyer
inequalities and distributions . . . . . 31--39
Ali Süleyman Üstünel Some applications of the distributions 41--51
Ali Süleyman Üstünel Positive distributions and applications 53--60
Ali Süleyman Üstünel Characterization of independence of some
Wiener functionals . . . . . . . . . . . 61--67
Ali Süleyman Üstünel Moment inequalities for Wiener
functional . . . . . . . . . . . . . . . 69--79
Ali Süleyman Üstünel Introduction to the theorem of Ramer . . 81--90
Norbert Knarr Introduction . . . . . . . . . . . . . . 1--4
Norbert Knarr Foundations . . . . . . . . . . . . . . 5--24
Norbert Knarr Spreads of $3$-dimensional projective
spaces . . . . . . . . . . . . . . . . . 25--39
Norbert Knarr Kinematic spaces . . . . . . . . . . . . 40--47
Norbert Knarr Examples and supplements . . . . . . . . 48--60
Norbert Knarr Locally compact $4$-dimensional
translation planes . . . . . . . . . . . 61--77
Norbert Knarr Planes of Lenz type V with complex
kernel . . . . . . . . . . . . . . . . . 78--94
Norbert Knarr Locally compact translation planes of
higher dimension . . . . . . . . . . . . 95--103
Wolfgang Kühnel Introduction and basic notions . . . . . 1--5
Wolfgang Kühnel Tight polyhedral surfaces . . . . . . . 6--40
Wolfgang Kühnel Tightness and $k$-tightness . . . . . . 41--55
Wolfgang Kühnel $ (k - 1)$-connected $ 2 k$-manifolds 56--77
Wolfgang Kühnel $3$-manifolds and twisted sphere bundles 78--84
Wolfgang Kühnel Connected sums and manifolds with
boundary . . . . . . . . . . . . . . . . 85--94
Wolfgang Kühnel Miscellaneous cases and pseudomanifolds 95--109
A. M. Chebotarev and
F. Fagnola On quantum extensions of the Azéma
martingale semigroup . . . . . . . . . . 1--16
F. Delbaen and
W. Schachermayer An inequality for the predictable
projection of an adapted process . . . . 17--24
N. V. Krylov A martingale proof of the Khinchin
iterated logarithm law for Wiener
processes . . . . . . . . . . . . . . . 25--29
Philippe Biane Intertwining of Markov semi-groups, some
examples . . . . . . . . . . . . . . . . 30--36
Wendelin Werner Some remarks on perturbed reflecting
Brownian motion . . . . . . . . . . . . 37--43
Mireille Chaleyat-Maurel and
David Nualart Onsager--Machlup functionals for
solutions of stochastic boundary value
problems . . . . . . . . . . . . . . . . 44--55
S. Attal and
K. Burdzy and
M. Émery and
Y. Hu Sur quelques filtrations et
transformations browniennes. (French) [] 56--69
Marc Arnaudon Barycentres convexes et approximations
des martingales continues dans les
variétés. (French) [] . . . . . . . . . . 70--85
Emmanuel Cépa Équations différentielles stochastiques
multivoques. (French) [] . . . . . . . . 86--107
L. Overbeck On the predictable representation
property for superprocesses . . . . . . 108--116
A. Dermoune Chaoticity on a stochastic interval $
[0, T] $ . . . . . . . . . . . . . . . . 117--124
Jean Bertoin and
Ma.-Emilia Caballero On the rate of growth of subordinators
with slowly varying Laplace exponent . . 125--132
S. Fourati Une propriété de Markov pour les processus
indexés par $ \mathbb {R} $. (French) [] 133--154
David Williams Non-linear Wiener--Hopf theory, 1: an
appetizer . . . . . . . . . . . . . . . 155--161
Yukuang Chiu From an example of Lévy's . . . . . . . . 162--165
David Applebaum A horizontal Lévy process on the bundle
of orthonormal frames over a complete
Reimannian manifold . . . . . . . . . . 166--180
S. Cohen Some Markov properties of stochastic
differential equations with jumps . . . 181--193
J. Franchi Chaos multiplicatif: un traitement
simple et complet de la fonction de
partition. (French) [] . . . . . . . . . 194--201
Zhongmin Qian and
Sheng-Wu He On the hypercontractivity of
Ornstein--Uhlenbeck semigroups with
drift . . . . . . . . . . . . . . . . . 202--217
Yaozhong Hu On the differentiability of functions of
an operator . . . . . . . . . . . . . . 218--219
Alexander Koshelev Weak solutions and the universal
iterative process . . . . . . . . . . . 1--22
Alexander Koshelev Regularity of solutions for non
degenerated quasilinear second order
elliptic systems of the divergent form
with bounded nonlinearities . . . . . . 23--71
Alexander Koshelev Some properties and applications of
regular solutions for quasilinear
elliptic systems . . . . . . . . . . . . 72--107
Alexander Koshelev Differentiability of solutions for
second order elliptic systems . . . . . 108--174
Alexander Koshelev Regularity of solutions for parabolic
systems with some applications . . . . . 175--215
Alexander Koshelev The Navier--Stokes system; strong
solutions . . . . . . . . . . . . . . . 216--247
David B. Massey Introduction . . . . . . . . . . . . . . 1--7
David B. Massey Definitions and basic properties . . . . 8--30
David B. Massey Elementary examples . . . . . . . . . . 31--36
David B. Massey A handle decomposition of the Milnor
fibre . . . . . . . . . . . . . . . . . 37--41
David B. Massey Generalized Lê--Iomdine formulas . . . . 42--60
David B. Massey Lê numbers and hyperplane arrangements 61--67
David B. Massey Thom's $ a_f $ condition . . . . . . . . 68--74
David B. Massey Aligned singularities . . . . . . . . . 75--80
David B. Massey Suspending singularities . . . . . . . . 81--85
David B. Massey Constancy of the Milnor fibrations . . . 86--91
David B. Massey Other characterizations of the Lê cycles 92--104
Izak Moerdijk Introduction . . . . . . . . . . . . . . 1--4
Izak Moerdijk Background in topos theory . . . . . . . 5--19
Izak Moerdijk Classifying topoi . . . . . . . . . . . 21--55
Izak Moerdijk Geometric realization . . . . . . . . . 57--76
Izak Moerdijk Comparison theorems . . . . . . . . . . 77--88
Izak Moerdijk Classifying spaces and classifying topoi 95--95
Vadim Vladimirovich Yurinsky Gaussian measures in Euclidean space . . 1--42
Vadim Vladimirovich Yurinsky Seminorms of Gaussian vectors in
infinite dimensions . . . . . . . . . . 43--78
Vadim Vladimirovich Yurinsky Inequalities for seminorms: Sums of
independent random vectors . . . . . . . 79--122
Vadim Vladimirovich Yurinsky Rough asymptotics of large deviations 123--162
Vadim Vladimirovich Yurinsky Gaussian and related approximations for
distributions of sums . . . . . . . . . 163--216
Vadim Vladimirovich Yurinsky Fine asymptotics of moderate deviations 217--254
Gilles Pisier Front Matter . . . . . . . . . . . . . . N2--vii
Gilles Pisier Introduction. Description of contents 1--12
Gilles Pisier Von Neumann's inequality and Ando's
generalization . . . . . . . . . . . . . 13--29
Gilles Pisier Non-unitarizable uniformly bounded group
representations . . . . . . . . . . . . 30--52
Gilles Pisier Completely bounded maps . . . . . . . . 53--69
Gilles Pisier Completely bounded homomorphisms and
derivations . . . . . . . . . . . . . . 70--91
Gilles Pisier Schur multipliers and Grothendieck's
inequality . . . . . . . . . . . . . . . 92--106
Gilles Pisier Hankelian Schur multipliers. Herz--Schur
multipliers . . . . . . . . . . . . . . 107--115
Gilles Pisier The similarity problem for cyclic
homomorphisms on a $ C* $-algebra . . . 116--132
Gilles Pisier Completely bounded maps in the Banach
space setting . . . . . . . . . . . . . 133--142
Gilles Pisier Back Matter . . . . . . . . . . . . . . 143--161
Erasmus Landvogt Introduction . . . . . . . . . . . . . . 1--13
Erasmus Landvogt The apartment . . . . . . . . . . . . . 14--30
Erasmus Landvogt The $ o_K $-group schemes in the
quasi-split case . . . . . . . . . . . . 31--66
Erasmus Landvogt The building in the quasi-split case . . 67--97
Erasmus Landvogt The building and its compactification 98--149
Ron Donagi and
Eyal Markman Spectral covers, algebraically
completely integrable, Hamiltonian
systems, and moduli of bundles . . . . . 1--119
Boris Dubrovin Geometry of $2$D topological field
theories . . . . . . . . . . . . . . . . 120--348
Boris Feigin and
Edward Frenkel Integrals of motion and quantum groups 349--418
Emma Previato Seventy years of spectral curves:
1923--1993 . . . . . . . . . . . . . . . 419--481
Hyman Bass and
Maria Victoria Otero-Espinar and
Daniel Rockmore and
Charles Tresser Cyclic renormalization . . . . . . . . . 1--51
Hyman Bass and
Maria Victoria Otero-Espinar and
Daniel Rockmore and
Charles Tresser Itinerary calculus and renormalization 53--101
Hyman Bass and
Maria Victoria Otero-Espinar and
Daniel Rockmore and
Charles Tresser Spherically transitive automorphisms of
rooted trees . . . . . . . . . . . . . . 103--133
Hyman Bass and
Maria Victoria Otero-Espinar and
Daniel Rockmore and
Charles Tresser Closed normal subgroups of $ {\rm Aut}(X
(q)) $ . . . . . . . . . . . . . . . . . 135--156
Emmanuel Dror Farjoun Coaugmented homotopy idempotent
localization functors . . . . . . . . . 1--38
Emmanuel Dror Farjoun Augmented homotopy idempotent functors 39--58
Emmanuel Dror Farjoun Commutation rules for $ \Omega $, $ L_f
$ and $ {\rm CW}_A $, preservation of
fibrations and cofibrations . . . . . . 59--78
Emmanuel Dror Farjoun Dold--Thom symmetric products and other
colimits . . . . . . . . . . . . . . . . 79--99
Emmanuel Dror Farjoun General theory of fibrations, GEM error
terms . . . . . . . . . . . . . . . . . 100--126
Emmanuel Dror Farjoun Homological localization nearly
preserves fibrations . . . . . . . . . . 127--134
Emmanuel Dror Farjoun Classification of nullity and cellular
types of finite $p$-torsion suspension
spaces . . . . . . . . . . . . . . . . . 135--143
Emmanuel Dror Farjoun $ v_1$-periodic spaces and $K$-theory 144--154
Emmanuel Dror Farjoun Cellular inequalities . . . . . . . . . 155--175
Hian-Poh Yap Basic terminology and introduction . . . 1--6
Hian-Poh Yap Some basic results . . . . . . . . . . . 7--14
Hian-Poh Yap Complete $r$-partite graphs . . . . . . 15--24
Hian-Poh Yap Graphs of low degree . . . . . . . . . . 25--34
Hian-Poh Yap Graphs of high degree . . . . . . . . . 35--52
Hian-Poh Yap Classification of type $1$ and type $2$
graphs . . . . . . . . . . . . . . . . . 53--95
Hian-Poh Yap Total chromatic number of planar graphs 96--103
Hian-Poh Yap Some upper bounds for the total
chromatic number of graphs . . . . . . . 104--113
Hian-Poh Yap Concluding remarks . . . . . . . . . . . 114--120
Vasile Br\^\inz\uanescu Vector bundles over complex manifolds 1--27
Vasile Br\^\inz\uanescu Facts on compact complex surfaces . . . 29--52
Vasile Br\^\inz\uanescu Line bundles over surfaces . . . . . . . 53--83
Vasile Br\^\inz\uanescu Existence of holomorphic vector bundles 85--117
Vasile Br\^\inz\uanescu Classification of vector bundles . . . . 119--155
Serge Lang Existence and uniqueness . . . . . . . . 3--36
Serge Lang Relations with subgroups . . . . . . . . 37--61
Serge Lang Cohomological triviality . . . . . . . . 62--72
Serge Lang Cup products . . . . . . . . . . . . . . 73--108
Serge Lang Augmented products . . . . . . . . . . . 109--115
Serge Lang Spectral sequences . . . . . . . . . . . 116--122
Serge Lang Groups of Galois type . . . . . . . . . 123--155
Serge Lang Group extensions . . . . . . . . . . . . 156--165
Serge Lang Class formations . . . . . . . . . . . . 166--187
John Tate Applications of Galois cohomology in
algebraic geometry . . . . . . . . . . . 188--215
Professeur S. D. Chatterji Remarques sur l'intégrale de Riemann
généralisée. (French) [] . . . . . . . . . 1--11
Tahir Choulli and
Christophe Stricker Deux applications de la décomposition de
Galtchouk--Kunita--Watanabe. (French) [] 12--23
C. Cocozza-Thivent and
M. Roussignol Comparaison des lois stationnaires et
quasi-stationnaires d'un processus de
Markov et application \`a la fiabilité.
(French) [] . . . . . . . . . . . . . . 24--39
Peter Jagers and
Olle Nerman The asymptotic composition of
supercritical, multi-type branching
populations . . . . . . . . . . . . . . 40--54
C. Kipnis and
E. Saada Un lien entre réseaux de neurones et
syst\`emes de particules: Un mod\`ele de
rétinotopie. (French) [] . . . . . . . . 55--67
R. Léandre Cohomologie de Bismut--Nualart--Pardoux
et cohomologie de Hochschild enti\`ere.
(French) [] . . . . . . . . . . . . . . 68--99
J. De Sam Lazaro Un contre-exemple touchant \`a
l'indépendance. (French) [] . . . . . . . 100--103
J. A. Yan An asymptotic evaluation of heat kernel
for short time . . . . . . . . . . . . . 104--107
Weian Zheng Meyer's Topology and Brownian motion in
a composite medium . . . . . . . . . . . 108--116
Wilhelm von Waldenfels Continuous Maassen kernels and the
inverse oscillator . . . . . . . . . . . 117--161
Mireille Echerbault Sur le mod\`ele d'Heisenberg. (French)
[On the Heisenberg model] . . . . . . . 162--177
Dominique Bakry and
Mireille Echerbault Sur les inégalités GKS. (French) [] . . . 178--206
Zhan Shi How long does it take a transient Bessel
process to reach its future infimum? . . 207--217
Yaozhong Hu Strong and weak order of time
discretization schemes of stochastic
differential equations . . . . . . . . . 218--227
Catherine Rainer Projection d'une diffusion sur sa
filtration lente. (French) [] . . . . . 228--242
J. Azéma and
C. Rainer and
M. Yor Une propriété des martingales pures.
(French) [] . . . . . . . . . . . . . . 243--254
Christophe Leuridan Une démonstration élémentaire d'une identité
de Biane et Yor. (French) [] . . . . . . 255--260
B. Rajeev First order calculus and last entrance
times . . . . . . . . . . . . . . . . . 261--287
P. Cattiaux and
C. Léonard Minimization of the Kullback information
for some Markov processes . . . . . . . 288--311
J. Azéma and
T. Jeulin and
F. Knight and
G. Mokobodzki and
M. Yor Sur les processus croissants de type
injectif. (French) [] . . . . . . . . . 312--343
Carl Graham and
Thomas G. Kurtz and
Sylvie Méléard and
Philip E. Protter and
Mario Pulvirenti and
Denis Talay Front Matter . . . . . . . . . . . . . . ??
Thomas G. Kurtz and
Philip E. Protter Weak convergence of stochastic integrals
and differential equations . . . . . . . 1--41
Sylvie Méléard Asymptotic behaviour of some interacting
particle systems; McKean--Vlasov and
Boltzmann models . . . . . . . . . . . . 42--95
Mario Pulvirenti Kinetic limits for stochastic particle
systems . . . . . . . . . . . . . . . . 96--126
Carl Graham A statistical physics approach to large
networks . . . . . . . . . . . . . . . . 127--147
Denis Talay Probabilistic numerical methods for
partial differential equations: Elements
of analysis . . . . . . . . . . . . . . 148--196
Thomas G. Kurtz and
Philip E. Protter Weak convergence of stochastic integrals
and differential equations II: Infinite
dimensional case . . . . . . . . . . . . 197--285
Thomas G. Kurtz and
Philip E. Protter Back Matter . . . . . . . . . . . . . . ??
Paul-Hermann Zieschang Basic results . . . . . . . . . . . . . 1--32
Paul-Hermann Zieschang Decomposition theory . . . . . . . . . . 33--64
Paul-Hermann Zieschang Algebraic prerequisites . . . . . . . . 65--96
Paul-Hermann Zieschang Representation theory . . . . . . . . . 97--121
Paul-Hermann Zieschang Theory of generators . . . . . . . . . . 123--176
John D. Moore Preliminaries . . . . . . . . . . . . . 1--38
John D. Moore Spin geometry on four-manifolds . . . . 39--64
John D. Moore Global analysis of the Seiberg--Witten
equations . . . . . . . . . . . . . . . 65--100
Daniel Neuenschwander Introduction . . . . . . . . . . . . . . 1--6
Daniel Neuenschwander Probability theory on simply connected
nilpotent Lie groups . . . . . . . . . . 7--27
Daniel Neuenschwander Brownian motions on $H$ . . . . . . . . 29--84
Daniel Neuenschwander Other limit theorems on $H$ . . . . . . 85--123
Kumiko Nishioka Transcendence theory of Mahler functions
of one variable . . . . . . . . . . . . 1--32
Kumiko Nishioka Transcendence theory of Mahler functions
of several variables . . . . . . . . . . 33--77
Kumiko Nishioka Algebraic independence of Mahler
functions and their values . . . . . . . 78--117
Kumiko Nishioka Applications of elimination theory . . . 118--149
Kumiko Nishioka Regular sequences and Mahler functions 150--175
Alexander Kushkuley and
Zalman Balanov Introduction . . . . . . . . . . . . . . 1--12
Alexander Kushkuley and
Zalman Balanov Fundamental domains and extension of
equivariant maps . . . . . . . . . . . . 13--30
Alexander Kushkuley and
Zalman Balanov Degree theory for equivariant maps of
finite-dimensional manifolds:
Topological actions . . . . . . . . . . 31--42
Alexander Kushkuley and
Zalman Balanov Degree theory for equivariant maps of
finite-dimensional manifolds: Smooth
actions . . . . . . . . . . . . . . . . 43--73
Alexander Kushkuley and
Zalman Balanov A winding number of equivariant vector
fields in infinite dimensional Banach
spaces . . . . . . . . . . . . . . . . . 74--85
Alexander Kushkuley and
Zalman Balanov Some applications . . . . . . . . . . . 86--125
Matts Essén Potential theory part I . . . . . . . . 3--100
Hiroaki Aikawa Potential theory part II . . . . . . . . 103--200
Jinzhong Xu Introduction . . . . . . . . . . . . . . 1--3
Jinzhong Xu Envelopes and covers . . . . . . . . . . 5--25
Jinzhong Xu Fundamental theorems . . . . . . . . . . 27--50
Jinzhong Xu Flat covers and cotorsion envelopes . . 51--79
Jinzhong Xu Flat covers over commutative rings . . . 81--106
Jinzhong Xu Applications in commutative rings . . . 107--151
Emmanuel Hebey Geometric preliminaries . . . . . . . . 1--9
Emmanuel Hebey Sobolev spaces . . . . . . . . . . . . . 10--16
Emmanuel Hebey Sobolev embeddings . . . . . . . . . . . 17--57
Emmanuel Hebey The best constants problems . . . . . . 58--89
Emmanuel Hebey Sobolev spaces in the presence of
symmetries . . . . . . . . . . . . . . . 90--105
Murray A. Marshall Introduction . . . . . . . . . . . . . . 1--4
Murray A. Marshall Orderings on fields . . . . . . . . . . 5--17
Murray A. Marshall Spaces of orderings . . . . . . . . . . 19--35
Murray A. Marshall Fans and the representation theorem . . 37--59
Murray A. Marshall $P$-structures, connected components and
$0$ the isotropy theorem . . . . . . . . 61--82
Murray A. Marshall The real spectrum of a ring . . . . . . 83--97
Murray A. Marshall Abstract real spectra . . . . . . . . . 99--131
Murray A. Marshall Minimal generation of constructible sets 133--150
Murray A. Marshall Structure results and realization
results . . . . . . . . . . . . . . . . 151--181
Bruce Hunt Introduction . . . . . . . . . . . . . . 1--14
Bruce Hunt Moduli spaces of PEL structures . . . . 15--35
Bruce Hunt Arithmetic quotients . . . . . . . . . . 36--65
Bruce Hunt Projective embeddings of modular
varieties . . . . . . . . . . . . . . . 66--107
Bruce Hunt The $ 27 $ lines on a cubic surface . . 108--167
Bruce Hunt The Burkhardt quartic . . . . . . . . . 168--221
Bruce Hunt A gem of the modular universe . . . . . 222--254
Pol Vanhaecke Front Matter . . . . . . . . . . . . . . N2--viii
Pol Vanhaecke Introduction . . . . . . . . . . . . . . 1--15
Pol Vanhaecke Integrable Hamiltonian systems on affine
Poisson varieties . . . . . . . . . . . 17--65
Pol Vanhaecke Integrable Hamiltonian systems and
symmetric products of curves . . . . . . 67--93
Pol Vanhaecke Interludium: the geometry of Abelian
varieties . . . . . . . . . . . . . . . 95--122
Pol Vanhaecke Algebraic completely integrable
Hamiltonian systems . . . . . . . . . . 123--138
Pol Vanhaecke The master systems . . . . . . . . . . . 139--169
Pol Vanhaecke The Garnier and Hénon--Heiles potentials
and the Toda lattice . . . . . . . . . . 171--208
Pol Vanhaecke Back Matter . . . . . . . . . . . . . . 209--221
Karel Dekimpe Preliminaries and notational conventions 1--11
Karel Dekimpe Infra-nilmanifolds and Almost-Bieberbach
groups . . . . . . . . . . . . . . . . . 13--30
Karel Dekimpe Algebraic characterizations of
almost-crystallographic groups . . . . . 31--46
Karel Dekimpe Canonical type representations . . . . . 47--102
Karel Dekimpe The Cohomology of virtually nilpotent
groups . . . . . . . . . . . . . . . . . 103--120
Karel Dekimpe Infra-nilmanifolds and their topological
invariants . . . . . . . . . . . . . . . 121--157
Karel Dekimpe Classification survey . . . . . . . . . 159--230
Guy Boillat and
Constantin M. Dafermos and
Peter D. Lax and
Tai-Ping Liu Front Matter . . . . . . . . . . . . . . ??
Guy Boillat Non linear hyperbolic fields and waves 1--47
C. M. Dafermos Entropy and the stability of classical
solutions of hyperbolic systems of
conservation laws . . . . . . . . . . . 48--69
Peter D. Lax Outline of a theory of the KdV equation 70--102
Tai-Ping Liu Nonlinear hyperbolic-dissipative partial
differential equations . . . . . . . . . 103--136
Tai-Ping Liu Back Matter . . . . . . . . . . . . . . ??
Peter Abramenko Introduction . . . . . . . . . . . . . . 1--10
Peter Abramenko Groups acting on twin buildings . . . . 11--55
Peter Abramenko Homotopy properties of $ \oint \Delta^0
(a) \oint $ . . . . . . . . . . . . . . 56--106
Peter Abramenko Finiteness properties of classical $ F_q
$ over $ F_q[t] $ . . . . . . . . . . . 107--114
Michael Puschnigg The asymptotic homotopy category . . . . 1--18
Michael Puschnigg Algebraic de Rham complexes . . . . . . 19--26
Michael Puschnigg Cyclic cohomology . . . . . . . . . . . 27--39
Michael Puschnigg Homotopy properties of $X$-complexes . . 40--58
Michael Puschnigg The analytic $X$-complex . . . . . . . . 59--96
Michael Puschnigg The asymptotic $X$-complex . . . . . . . 97--117
Michael Puschnigg Asymptotic cyclic cohomology of dense
subalgebras . . . . . . . . . . . . . . 118--126
Michael Puschnigg Products . . . . . . . . . . . . . . . . 127--157
Michael Puschnigg Exact sequences . . . . . . . . . . . . 158--181
Michael Puschnigg $ K K $-theory and asymptotic cohomology 182--201
Michael Puschnigg Examples . . . . . . . . . . . . . . . . 202--231
Jürgen Richter-Gebert Introduction . . . . . . . . . . . . . . 1--11
Jürgen Richter-Gebert The objects and the tools . . . . . . . 13--40
Jürgen Richter-Gebert The universality theorem . . . . . . . . 41--76
Jürgen Richter-Gebert Applications of university . . . . . . . 77--115
Jürgen Richter-Gebert Three-dimensional polytopes . . . . . . 117--147
Jürgen Richter-Gebert Alternative construction techniques . . 149--172
Jürgen Richter-Gebert Problems . . . . . . . . . . . . . . . . 173--177
Allan Adler and
Sundararaman Ramanan Introduction . . . . . . . . . . . . . . 1--7
Allan Adler and
Sundararaman Ramanan Standard Heisenberg Groups . . . . . . . 8--17
Allan Adler and
Sundararaman Ramanan Heisenberg groups of line bundles on
abelian varieties . . . . . . . . . . . 18--30
Allan Adler and
Sundararaman Ramanan Theta structures and the addition
formula . . . . . . . . . . . . . . . . 31--51
Allan Adler and
Sundararaman Ramanan Geometry and arithmetic of the
fundamental relations . . . . . . . . . 52--76
Allan Adler and
Sundararaman Ramanan Invariant theory, arithmetic and vector
bundles . . . . . . . . . . . . . . . . 77--106
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk Front Matter . . . . . . . . . . . . . . i--xi
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk Introduction and examples . . . . . . . 1--40
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk The conjugacy theory . . . . . . . . . . 41--75
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk The continuation theory . . . . . . . . 77--82
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk Complicated Whitney-smooth families . . 83--121
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk Conclusions . . . . . . . . . . . . . . 123--139
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk Appendices . . . . . . . . . . . . . . . 141--167
Hendrik W. Broer and
George B. Huitema and
Mikhail B. Sevryuk Back Matter . . . . . . . . . . . . . . 169--195
Jean-Pierre Demailly $ L^2 $ vanishing theorems for positive
line bundles and adjunction theory . . . 1--97
Thomas Peternell Manifolds of semi-positive curvature . . 98--142
Gang Tian Kähler--Einstein metrics on algebraic
manifolds . . . . . . . . . . . . . . . 143--185
Andrei Tyurin Six lectures on four manifolds . . . . . 186--246
Danielle Dias and
Patrick Le Barz Introduction . . . . . . . . . . . . . . 1--8
Danielle Dias and
Patrick Le Barz Double and triple points formula . . . . 10--64
Danielle Dias and
Patrick Le Barz Construction of a complete quadruples
variety . . . . . . . . . . . . . . . . 66--128
R. L. Dobrushin Perturbation methods of the theory of
Gibbsian fields . . . . . . . . . . . . 1--66
Piet Groeneboom Lectures on inverse problems . . . . . . 67--164
Michel Ledoux Isoperimetry and Gaussian analysis . . . 165--294
Shrawan Kumar and
Gérard Laumon and
Ulrich Stuhler Front Matter . . . . . . . . . . . . . . ??
Shrawan Kumar Infinite Grassmannians and moduli spaces
of $G$-bundles . . . . . . . . . . . . . 1--49
G. Laumon Drinfeld shtukas . . . . . . . . . . . . 50--109
A. Blum and
U. Stuhler Drinfeld modules and elliptic sheaves 110--188
A. Blum and
U. Stuhler Back Matter . . . . . . . . . . . . . . ??
Jörg Wildeshaus Introduction . . . . . . . . . . . . . . 1--21
Jörg Wildeshaus Mixed structures on fundamental groups 23--76
Jörg Wildeshaus The canonical construction of mixed
sheaves on mixed Shimura varieties . . . 77--140
Jörg Wildeshaus Polylogarithmic extensions on mixed
Shimura varieties. Part I: Construction
and basic properties . . . . . . . . . . 141--197
Jörg Wildeshaus Polylogarithmic extensions on mixed
Shimura varieties. Part II: The
classical polylogarithm . . . . . . . . 199--248
Jörg Wildeshaus Polygogarithmic extensions on mixed
Shimura varieties. Part III: The
elliptic polygogarithm . . . . . . . . . 249--335
Michael Drmota and
Robert F. Tichy Discrepancy of sequences . . . . . . . . 1--203
Michael Drmota and
Robert F. Tichy General concepts of uniform distribution 204--367
Michael Drmota and
Robert F. Tichy Applications . . . . . . . . . . . . . . 368--432
Stevo Todorcevic Compact sets in function spaces . . . . 1--60
Stevo Todorcevic The semigroup $ \beta \mathbb {N} $ . . 61--78
Stevo Todorcevic Compact and compactly generated groups 79--120
Stevo Todorcevic Hyperspaces . . . . . . . . . . . . . . 121--147
Riccardo Benedetti and
Carlo Petronio Motivations, plan and statements . . . . 1--12
Riccardo Benedetti and
Carlo Petronio A review on standard spines and
$o$-graphs . . . . . . . . . . . . . . . 13--22
Riccardo Benedetti and
Carlo Petronio Branched standard spines . . . . . . . . 23--39
Riccardo Benedetti and
Carlo Petronio Manifolds with boundary . . . . . . . . 40--63
Riccardo Benedetti and
Carlo Petronio Combed closed manifolds . . . . . . . . 64--72
Riccardo Benedetti and
Carlo Petronio More on combings, and the closed
calculus . . . . . . . . . . . . . . . . 73--84
Riccardo Benedetti and
Carlo Petronio Framed and spin manifolds . . . . . . . 85--97
Riccardo Benedetti and
Carlo Petronio Branched spines and quantum invariants 98--107
Riccardo Benedetti and
Carlo Petronio Problems and perspectives . . . . . . . 108--120
Riccardo Benedetti and
Carlo Petronio Homology and cohomology computations . . 121--126
Robert W. Ghrist and
Philip J. Holmes and
Michael C. Sullivan Introduction . . . . . . . . . . . . . . 1--4
Robert W. Ghrist and
Philip J. Holmes and
Michael C. Sullivan Prerequisites . . . . . . . . . . . . . 5--32
Robert W. Ghrist and
Philip J. Holmes and
Michael C. Sullivan Templates . . . . . . . . . . . . . . . 33--68
Robert W. Ghrist and
Philip J. Holmes and
Michael C. Sullivan Template theory . . . . . . . . . . . . 69--106
Robert W. Ghrist and
Philip J. Holmes and
Michael C. Sullivan Bifurcations . . . . . . . . . . . . . . 107--142
Robert W. Ghrist and
Philip J. Holmes and
Michael C. Sullivan Invariants . . . . . . . . . . . . . . . 143--166
Robert W. Ghrist and
Philip J. Holmes and
Michael C. Sullivan Concluding remarks . . . . . . . . . . . 167--191
Jonathan Warren Branching processes, the Ray--Knight
theorem, and sticky Brownian motion . . 1--15
R. Léandre and
J. R. Norris Integration by parts and Cameron--Martin
formulas for the free path space of a
compact Riemannian manifold . . . . . . 16--23
A. S. Üstünel and
M. Zakai The change of variables formula on
Wiener space . . . . . . . . . . . . . . 24--39
Olivier Mazet Classification des Semi-Groupes de
diffusion sur IR associés \`a une famille
de polynômes orthogonaux. (French) [] . . 40--53
Shizan Fang and
Jacques Franchi A differentiable isomorphism between
Wiener space and path group . . . . . . 54--61
Jean Jacod and
Víctor Pérez-Abreu On martingales which are finite sums of
independent random variables with time
dependent coefficients . . . . . . . . . 62--68
Jean-Marc Aza\"\is and
Mario Wschebor Oscillation presque sûre de martingales
continues. (French) [] . . . . . . . . . 69--76
Fuqing Gao A note on Cramér's theorem . . . . . . . 77--79
Sheng-Wu He and
Jia-Gang Wang The hypercontractivity of
Ornstein--Uhlenbeck semigroups with
drift, revisited . . . . . . . . . . . . 80--84
B. Cadre Une preuve standard du principe
d'invariance de Stoll. (French) [] . . . 85--102
Jean-François Le Gall Marches aléatoires auto-évitantes et
mesures de polym\`ere. (French) [] . . . 103--112
K. D. Elworthy and
X. M. Li and
M. Yor On the tails of the supremum and the
quadratic variation of strictly local
martingales . . . . . . . . . . . . . . 113--125
Leonid I. Galtchouk and
Alexandre A. Novikov On Wald's equation. Discrete time case 126--135
Laurent Miclo Remarques sur l'hypercontractivité et
l'évolution de l'entropie pour des
cha\^\ines de Markov finies. (French) [] 136--167
M\uad\ualina Deaconu and
Sophie Wantz Comportement des temps d'atteinte d'une
diffusion fortement rentrante. (French)
[] . . . . . . . . . . . . . . . . . . . 168--175
M. Émery Closed sets supporting a continuous
divergent martingale . . . . . . . . . . 176--189
Davar Khoshnevisan Some polar sets for the Brownian sheet 190--197
Pietro Majer and
Maria Elvira Mancino A counter-example concerning a condition
of Ogawa integrability . . . . . . . . . 198--206
Yukuang Chiu The multiplicity of stochastic processes 207--215
Nathalie Eisenbaum Théor\`emes limités pour les temps locaux
d'un processus stable symétrique.
(French) [] . . . . . . . . . . . . . . 216--224
Bruno Biais and
Jean Charles Rochet Risk sharing, adverse selection and
market structure . . . . . . . . . . . . 1--51
Tomas Björk Interest rate theory . . . . . . . . . . 53--122
Jak\vsa Cvitani\'c Optimal trading under constraints . . . 123--190
N. El Karoui and
M. C. Quenez Non-linear pricing theory and backward
stochastic differential equations . . . 191--246
Ely\`es Jouini Market imperfections, equilibrium and
arbitrage . . . . . . . . . . . . . . . 247--307
Harry Reimann Introduction . . . . . . . . . . . . . . 1--8
Harry Reimann Part I . . . . . . . . . . . . . . . . . 9--65
Harry Reimann Part II . . . . . . . . . . . . . . . . 66--88
Antonio Pumariño and
J. Angel Rodríguez Introduction . . . . . . . . . . . . . . 1--10
Antonio Pumariño and
J. Angel Rodríguez Saddle-focus connections . . . . . . . . 11--20
Antonio Pumariño and
J. Angel Rodríguez The unimodal family . . . . . . . . . . 21--52
Antonio Pumariño and
J. Angel Rodríguez Contractive directions . . . . . . . . . 53--72
Antonio Pumariño and
J. Angel Rodríguez Critical points of the bidimensional map 73--88
Antonio Pumariño and
J. Angel Rodríguez The inductive process . . . . . . . . . 89--118
Antonio Pumariño and
J. Angel Rodríguez The binding point . . . . . . . . . . . 119--134
Antonio Pumariño and
J. Angel Rodríguez The binding period . . . . . . . . . . . 135--152
Antonio Pumariño and
J. Angel Rodríguez The exclusion of parameters . . . . . . 153--190
Vladimir Kozlov and
Vladimir Maz'ya Basic equation with constant
coefficients . . . . . . . . . . . . . . 1--14
Vladimir Kozlov and
Vladimir Maz'ya The operator $ M (\partial_t) $ on a
semiaxis and an interval . . . . . . . . 15--24
Vladimir Kozlov and
Vladimir Maz'ya The operator $ M (\partial_t) - \omega_0
$ with constant $ \omega_0 $ . . . . . . 25--35
Vladimir Kozlov and
Vladimir Maz'ya Green's function for the operator $ M
(\partial_t) - \omega (t) $ . . . . . . 37--45
Vladimir Kozlov and
Vladimir Maz'ya Uniqueness and solvability properties of
the operator $ M(\partial_t - \omega
(t)) $ . . . . . . . . . . . . . . . . . 47--80
Vladimir Kozlov and
Vladimir Maz'ya Properties of $ M(\partial_t - \omega
(t)) $ under various assumptions about $
\omega (t) $ . . . . . . . . . . . . . . 81--110
Vladimir Kozlov and
Vladimir Maz'ya Asymptotics of solutions at infinity . . 111--125
Vladimir Kozlov and
Vladimir Maz'ya Application to ordinary differential
equations with operator coefficients . . 127--136
Martino Bardi and
Michael G. Crandall and
Lawrence C. Evans and
Halil Mete Soner and
Panagiotis E. Souganidis Front Matter . . . . . . . . . . . . . . ??
Michael G. Crandall Viscosity solutions: a primer . . . . . 1--43
Martino Bardi Some applications of viscosity solutions
to optimal control and differential
games . . . . . . . . . . . . . . . . . 44--97
Lawrence C. Evans Regularity for fully nonlinear elliptic
equations and motion by mean curvature 98--133
Halil Mete Soner Controlled Markov processes, viscosity
solutions and applications to
mathematical finance . . . . . . . . . . 134--185
Panagiotis E. Souganidis Front propagation: Theory and
applications . . . . . . . . . . . . . . 186--242
Panagiotis E. Souganidis Back Matter . . . . . . . . . . . . . . ??
Aleksy Tralle and
John Oprea The starting point: Homotopy properties
of Kähler manifolds . . . . . . . . . . . 1--44
Aleksy Tralle and
John Oprea Nilmanifolds . . . . . . . . . . . . . . 45--69
Aleksy Tralle and
John Oprea Solvmanifolds . . . . . . . . . . . . . 70--119
Aleksy Tralle and
John Oprea The examples of McDuff . . . . . . . . . 120--136
Aleksy Tralle and
John Oprea Symplectic structures in total spaces of
bundles . . . . . . . . . . . . . . . . 137--172
Aleksy Tralle and
John Oprea Survey . . . . . . . . . . . . . . . . . 173--199
John W. Rutter Preliminaries . . . . . . . . . . . . . 1--3
John W. Rutter Building blocks . . . . . . . . . . . . 4--6
John W. Rutter Representations: homology and homotopy 7--10
John W. Rutter Surfaces . . . . . . . . . . . . . . . . 11--18
John W. Rutter Generators: surface, modular groups . . 19--27
John W. Rutter Manifolds of dimension three or more . . 28--33
John W. Rutter $ \epsilon^*(X) $ not finitely generated 34--35
John W. Rutter Localization . . . . . . . . . . . . . . 36--39
John W. Rutter $ \epsilon^*(X) $ finitely presented,
nilpotent . . . . . . . . . . . . . . . 40--43
John W. Rutter L-R duality . . . . . . . . . . . . . . 44--44
John W. Rutter Cellular/homology complexes: methods . . 45--53
John W. Rutter Cellular, homology complexes:
calculations . . . . . . . . . . . . . . 54--62
John W. Rutter Non-$1$-connected Postnikov: methods . . 63--73
John W. Rutter Homotopy systems, chain complexes . . . 74--79
John W. Rutter Non-$1$-connected spaces: calculations 80--93
John W. Rutter Whitehead torsion, simple homotopy . . . 94--97
John W. Rutter Unions and products . . . . . . . . . . 98--107
John W. Rutter Group theoretic properties . . . . . . . 108--112
John W. Rutter Homotopy type, homotopy groups . . . . . 113--120
John W. Rutter Homotopy automorphisms of $H$-spaces . . 121--123
Yulia E. Karpeshina Introduction . . . . . . . . . . . . . . 1--22
Yulia E. Karpeshina Perturbation theory for a polyharmonic
operator in the case of $ 2 l > n $ . . . 23--62
Yulia E. Karpeshina Perturbation theory for the polyharmonic
operator in the case $ 4 l > n + 1 $ . . 63--97
Yulia E. Karpeshina Perturbation theory for Schrödinger
operator with a periodic potential . . . 99--232
Yulia E. Karpeshina The interaction of a free wave with a
semi-bounded crystal . . . . . . . . . . 233--338
Martin Väth Introduction . . . . . . . . . . . . . . 1--6
Martin Väth Basic definitions and properties . . . . 7--27
Martin Väth Ideal spaces with additional properties 29--74
Martin Väth Ideal spaces on product measures and
calculus . . . . . . . . . . . . . . . . 75--104
Martin Väth Operators and applications . . . . . . . 105--126
Evarist Gine Decoupling and limit theorems for
$u$-statistics and $u$-processes . . . . 1--35
Evarist Gine Lectures on some aspects of the
bootstrap . . . . . . . . . . . . . . . 37--151
Geoffrey Grimmett Percolation and disordered systems . . . 153--300
Laurent Saloff-Coste Lectures on finite Markov chains . . . . 301--413
Marius van der Put and
Michael F. Singer Picard--Vessiot rings . . . . . . . . . 4--27
Marius van der Put and
Michael F. Singer Algorithms for difference equations . . 28--34
Marius van der Put and
Michael F. Singer The inverse problem for difference
equations . . . . . . . . . . . . . . . 35--44
Marius van der Put and
Michael F. Singer The ring $S$ of sequences . . . . . . . 45--51
Marius van der Put and
Michael F. Singer An excursion in positive characteristic 52--59
Marius van der Put and
Michael F. Singer Difference modules over $ \mathcal {P} $ 60--67
Marius van der Put and
Michael F. Singer Classification and canonical forms . . . 71--76
Marius van der Put and
Michael F. Singer Semi-regular difference equations . . . 77--94
Marius van der Put and
Michael F. Singer Mild difference equations . . . . . . . 95--110
Marius van der Put and
Michael F. Singer Examples of equations and Galois groups 111--126
Marius van der Put and
Michael F. Singer Wild difference equations . . . . . . . 127--148
Marius van der Put and
Michael F. Singer $q$-Difference equations . . . . . . . . 149--174
Jesús M. F. Castillo and
Manuel González Three-space constructions . . . . . . . 1--44
Jesús M. F. Castillo and
Manuel González Methods to obtain $3$ $ {\rm SP}$ ideals 45--80
Jesús M. F. Castillo and
Manuel González Classical Banach spaces . . . . . . . . 81--112
Jesús M. F. Castillo and
Manuel González Topological Properties of Banach Spaces 113--155
Jesús M. F. Castillo and
Manuel González Geometrical Properties . . . . . . . . . 156--195
Jesús M. F. Castillo and
Manuel González Homological Properties . . . . . . . . . 196--220
Jesús M. F. Castillo and
Manuel González Approximation Properties . . . . . . . . 221--231
Daniel B. Dix Laplace expansions, outer regions . . . 1--74
Daniel B. Dix Expansion in the inner region, matching 75--95
Daniel B. Dix Uniformly valid expansions as $ t \to
\infty $ . . . . . . . . . . . . . . . . 96--113
Daniel B. Dix Special results for special cases . . . 114--154
Daniel B. Dix Applications . . . . . . . . . . . . . . 155--193
Uwe Kaiser Link bordism in manifolds . . . . . . . 1--20
Uwe Kaiser Enumeration of link bordism in
$3$-manifolds . . . . . . . . . . . . . 21--36
Uwe Kaiser Linking number maps . . . . . . . . . . 37--68
Uwe Kaiser Surface structures for links in
$3$-manifolds . . . . . . . . . . . . . 69--84
Uwe Kaiser Link invariants in Betti-trivial
$3$-manifolds . . . . . . . . . . . . . 85--98
Uwe Kaiser Link characteristic and band-operations
in Betti-trivial $3$-manifolds . . . . . 99--116
Uwe Kaiser $3$-dimensional Betti-trivial
submanifolds . . . . . . . . . . . . . . 117--131
John William Neuberger Several gradients . . . . . . . . . . . 1--3
John William Neuberger Comparison of two gradients . . . . . . 5--9
John William Neuberger Continuous steepest descent in Hilbert
space: Linear case . . . . . . . . . . . 11--13
John William Neuberger Continuous steepest descent in Hilbert
space: Nonlinear case . . . . . . . . . 15--31
John William Neuberger Orthogonal projections, Adjoints and
Laplacians . . . . . . . . . . . . . . . 33--42
John William Neuberger Introducing boundary conditions . . . . 43--52
John William Neuberger Newton's method in the context of
Sobolev gradients . . . . . . . . . . . 53--58
John William Neuberger Finite difference setting: the inner
product case . . . . . . . . . . . . . . 59--68
John William Neuberger Sobolev gradients for weak solutions:
Function space case . . . . . . . . . . 69--73
John William Neuberger Sobolev gradients in non-inner product
spaces: Introduction . . . . . . . . . . 75--78
John William Neuberger The superconductivity equations of
Ginzburg--Landau . . . . . . . . . . . . 79--91
John William Neuberger Minimal surfaces . . . . . . . . . . . . 93--106
John William Neuberger Flow problems and non-inner product
Sobolev spaces . . . . . . . . . . . . . 107--114
John William Neuberger Foliations as a guide to boundary
conditions . . . . . . . . . . . . . . . 115--123
John William Neuberger Some related iterative methods for
differential equations . . . . . . . . . 125--133
John William Neuberger A related analytic iteration method . . 135--138
John William Neuberger Steepest descent for conservation
equations . . . . . . . . . . . . . . . 139--140
John William Neuberger A sample computer code with notes . . . 141--143
Serge Bouc Introduction . . . . . . . . . . . . . . 1--3
Serge Bouc Mackey functors . . . . . . . . . . . . 5--39
Serge Bouc Green functors . . . . . . . . . . . . . 41--60
Serge Bouc The category associated to a Green
functor . . . . . . . . . . . . . . . . 61--80
Serge Bouc The algebra associated to a Green
functor . . . . . . . . . . . . . . . . 81--97
Serge Bouc Morita equivalence and relative
projectivity . . . . . . . . . . . . . . 99--121
Serge Bouc Construction of Green functors . . . . . 123--152
Serge Bouc A Morita theory . . . . . . . . . . . . 153--165
Serge Bouc Composition . . . . . . . . . . . . . . 167--182
Serge Bouc Adjoint constructions . . . . . . . . . 183--222
Serge Bouc Adjunction and Green functors . . . . . 223--274
Serge Bouc The simple modules . . . . . . . . . . . 275--304
Serge Bouc Centres . . . . . . . . . . . . . . . . 305--336
Satya Mandal Introduction . . . . . . . . . . . . . . 1--2
Satya Mandal Préliminaires. (French) [Preliminaries] 3--12
Satya Mandal Patching modules and other preliminaries 13--23
Satya Mandal Extended modules over polynomial rings 25--33
Satya Mandal Modules over commutative rings . . . . . 35--62
Satya Mandal The theory of matrices . . . . . . . . . 63--72
Satya Mandal Complete intersections . . . . . . . . . 73--90
Satya Mandal The techniques of Lindel . . . . . . . . 91--110
Frank D. Grosshans Introduction . . . . . . . . . . . . . . 1--4
Frank D. Grosshans Observable subgroups . . . . . . . . . . 5--32
Frank D. Grosshans The transfer principle . . . . . . . . . 33--70
Frank D. Grosshans Invariants of maximal unipotent
subgroups . . . . . . . . . . . . . . . 71--105
Frank D. Grosshans Complexity . . . . . . . . . . . . . . . 106--137
Frank D. Grosshans Errata . . . . . . . . . . . . . . . . . e1--e2
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Introduction . . . . . . . . . . . . . . 1--8
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Elementary properties of width . . . . . 9--11
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken $p$-adically simple groups ($ \tilde
p$-groups) . . . . . . . . . . . . . . . 12--20
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Periodicity . . . . . . . . . . . . . . 21--25
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Chevalley groups . . . . . . . . . . . . 26--29
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Some classical groups . . . . . . . . . 30--54
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Some thin groups . . . . . . . . . . . . 55--58
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Algorithms on fields . . . . . . . . . . 59--61
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Fields of small degree . . . . . . . . . 62--67
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Algorithm for finding a filtration and
the obliquity . . . . . . . . . . . . . 68--77
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken The theory behind the tables . . . . . . 78--91
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Tables . . . . . . . . . . . . . . . . . 92--105
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Uncountably many just infinite pro-
$p$-groups of finite width . . . . . . . 106--107
Gundel Klaas and
Charles R. Leedham-Green and
Wilhelm Plesken Some open problems . . . . . . . . . . . 108--108
Pilar Cembranos and
José Mendoza Introduction . . . . . . . . . . . . . . 1--8
Pilar Cembranos and
José Mendoza Preliminaries . . . . . . . . . . . . . 9--40
Pilar Cembranos and
José Mendoza Copies of $ c_0 $ and $ \ell_1 $ in $
L_p (\mu, X) $ . . . . . . . . . . . . . 41--63
Pilar Cembranos and
José Mendoza $ C(K, X) $ spaces . . . . . . . . . . . 65--74
Pilar Cembranos and
José Mendoza $ L_p(\mu, X) $ spaces . . . . . . . . . 75--82
Pilar Cembranos and
José Mendoza The space $ L_\infty (\mu, X) $ . . . . 83--104
Pilar Cembranos and
José Mendoza Tabulation of results . . . . . . . . . 105--106
Pilar Cembranos and
José Mendoza Some related open problems . . . . . . . 107--109
Olga Krupková Introduction . . . . . . . . . . . . . . 1--19
Olga Krupková Basic geometric tools . . . . . . . . . 20--40
Olga Krupková Lagrangean dynamics on fibered manifolds 41--51
Olga Krupková Variational Equations . . . . . . . . . 52--79
Olga Krupková Hamiltonian systems . . . . . . . . . . 80--96
Olga Krupková Regular Lagrangean systems . . . . . . . 97--128
Olga Krupková Singular Lagrangean systems . . . . . . 129--148
Olga Krupková Symmetries of Lagrangean systems . . . . 149--173
Olga Krupková Geometric intergration methods . . . . . 174--207
Olga Krupková Lagrangean systems on $ \pi \colon R
\times M $ \frqq$R$ . . . . . . . . . . 208--228
Joseph E. Yukich Introduction . . . . . . . . . . . . . . 1--8
Joseph E. Yukich Subadditivity and superadditivity . . . 9--17
Joseph E. Yukich Subadditive and superadditive Euclidean
functionals . . . . . . . . . . . . . . 18--31
Joseph E. Yukich Asymptotics for Euclidean functionals:
The uniform case . . . . . . . . . . . . 32--52
Joseph E. Yukich Rates of convergence and heuristics . . 53--63
Joseph E. Yukich Isoperimetry and concentration
inequalities . . . . . . . . . . . . . . 64--77
Joseph E. Yukich Umbrella theorems for Euclidean
functionals . . . . . . . . . . . . . . 78--96
Joseph E. Yukich Applications and examples . . . . . . . 97--109
Joseph E. Yukich Minimal triangulations . . . . . . . . . 110--125
Joseph E. Yukich Geometric location problems . . . . . . 126--130
Joseph E. Yukich Worst case growth rates . . . . . . . . 131--137
Nikolai Proskurin Part 0 . . . . . . . . . . . . . . . . . 1--62
Nikolai Proskurin Part 1 . . . . . . . . . . . . . . . . . 63--125
Nikolai Proskurin Part 2 . . . . . . . . . . . . . . . . . 126--187
Karl-Goswin Grosse-Erdmann Introduction . . . . . . . . . . . . . . 1--6
Karl-Goswin Grosse-Erdmann The blocking technique . . . . . . . . . 7--22
Karl-Goswin Grosse-Erdmann The sequence spaces $ c (a, p, q) $ and
$ d (a, p, q) $ . . . . . . . . . . . . 23--47
Karl-Goswin Grosse-Erdmann Applications to matrix operators and
inequalities . . . . . . . . . . . . . . 49--76
Karl-Goswin Grosse-Erdmann Integral analogues . . . . . . . . . . . 77--92
Ke-Zheng Li and
Frans Oort Introduction . . . . . . . . . . . . . . 1--10
Ke-Zheng Li and
Frans Oort Supersingular abelian varieties . . . . 11--15
Ke-Zheng Li and
Frans Oort Some prerequisites about group schemes 16--18
Ke-Zheng Li and
Frans Oort Flag type quotients . . . . . . . . . . 19--23
Ke-Zheng Li and
Frans Oort Main results on $ S_{g, 1} $ . . . . . . 24--27
Ke-Zheng Li and
Frans Oort Prerequisites about Dieudonné modules . . 28--34
Ke-Zheng Li and
Frans Oort PFTQs of Dieudonné modules over $W$ . . . 35--38
Ke-Zheng Li and
Frans Oort Moduli of rigid PFTQs of Dieudonné
modules . . . . . . . . . . . . . . . . 39--50
Ke-Zheng Li and
Frans Oort Some class numbers . . . . . . . . . . . 51--54
Ke-Zheng Li and
Frans Oort Examples on $ S_{g, 1} $ . . . . . . . . 55--68
Ke-Zheng Li and
Frans Oort Main results on $ S_{g, d} $ . . . . . . 69--72
Ke-Zheng Li and
Frans Oort Proofs of the propositions on FTQs . . . 73--83
Ke-Zheng Li and
Frans Oort Examples on $ S_{g, d} $ $ (d > 1) $ . . 84--86
Ke-Zheng Li and
Frans Oort A scheme-theoretic definition of
supersingularity . . . . . . . . . . . . 87--95
G. J. Wirsching Introduction . . . . . . . . . . . . . . 1--9
G. J. Wirsching Some ideas around $ 3 n + 1 $ iterations 10--30
G. J. Wirsching Analysis of the Collatz graph . . . . . 31--75
G. J. Wirsching $3$-adic averages of counting functions 76--95
G. J. Wirsching An asymptotically homogeneous Markov
chain . . . . . . . . . . . . . . . . . 96--122
G. J. Wirsching Mixing and predecessor density . . . . . 123--140
Hans-Dieter Alber Introduction . . . . . . . . . . . . . . 1--5
Hans-Dieter Alber Initial-boundary value problems for the
inelastic behavior of metals . . . . . . 7--22
Hans-Dieter Alber Constitutive equations of monotone type
and generalized standard materials . . . 23--44
Hans-Dieter Alber Existence of solutions for constitutive
equations of monotone type . . . . . . . 45--56
Hans-Dieter Alber Transformation of interior variables . . 57--73
Hans-Dieter Alber Classification conditions . . . . . . . 75--97
Hans-Dieter Alber Transformation of rate independent
constitutive equations . . . . . . . . . 99--116
Hans-Dieter Alber Application of the theory to engineering
models . . . . . . . . . . . . . . . . . 117--136
Hans-Dieter Alber Open problems and related results . . . 137--142
Andreas Pomp Pseudohomogeneous distributions . . . . 1--27
Andreas Pomp Levi functions for elliptic systems of
partial differential equations . . . . . 29--45
Andreas Pomp Systems of integral equations, generated
by Levi functions . . . . . . . . . . . 47--68
Andreas Pomp The differential equations of the DV
model . . . . . . . . . . . . . . . . . 69--88
Andreas Pomp Levi functions for the shell equations 89--108
Andreas Pomp The system of integral equations and its
numerical solution . . . . . . . . . . . 109--135
Andreas Pomp An example: Katenoid shell under torsion 137--153
Carlos Berenstein Randon transforms, wavelets, and
applications . . . . . . . . . . . . . . 1--33
Peter Ebenfelt Holomorphic mappings between real
analytic submanifolds in complex space 35--69
Simon Gindikin Real integral geometry and complex
analysis . . . . . . . . . . . . . . . . 70--98
Sigurdur Helgason Radon transforms and wave equations . . 99--121
Alexander Tumanov Analytic discs and the extendibility of
CR functions . . . . . . . . . . . . . . 123--141
Alexander Zimmermann Introduction . . . . . . . . . . . . . . 1--4
Steffen König Basic definitions and some examples . . 5--32
Steffen König Rickard's fundamental theorem . . . . . 33--50
Alexander Zimmermann Some modular and local representation
theory . . . . . . . . . . . . . . . . . 51--80
Alexander Zimmermann Onesided tilting complexes for group
rings . . . . . . . . . . . . . . . . . 81--104
Alexander Zimmermann Tilting with additional structure:
twosided tilting complexes . . . . . . . 105--149
Alexander Zimmermann Historical remarks . . . . . . . . . . . 151--154
Bernhard Keller On the construction of triangle
equivalences . . . . . . . . . . . . . . 155--176
Jeremy Rickard Triangulated categories in the modular
representation theory of finite groups 177--198
Raphaël Rouquier The derived category of blocks with
cyclic defect groups . . . . . . . . . . 199--220
Markus Linckelmann On stable equivalences of Morita type 221--232
C. Dellacherie and
A. Iwanik Sous-mesures symétriques sur un ensemble
fini. (French) [] . . . . . . . . . . . 1--5
Mireille Capitaine Sur une inégalité de Sobolev logarithmique
pour une diffusion unidimensionnelle.
(French) [] . . . . . . . . . . . . . . 6--13
Éric Fontenas Sur les minorations des constantes de
Sobolev et de Sobolev logarithmiques
pour les opérateurs de Jacobi et de
Laguerre. (French) [] . . . . . . . . . 14--29
P. Mathieu Quand l'inégalité log-Sobolev implique
l'inégalité de trou spectral. (French) [] 30--35
Laurent Miclo Trous spectraux \`a basse température: un
contre-exemple \`a un comportement
asymptotique escompté. (French) [] . . . 36--55
C. Stricker and
J. A. Yan Some remarks on the optional
decomposition theorem . . . . . . . . . 56--66
Tahir Choulli and
Christophe Stricker Séparation d'une sur-et d'une
sousmartingale par une martingale.
(French) [] . . . . . . . . . . . . . . 67--72
Peter Grandits and
Leszek Krawczyk Closedness of some spaces of stochastic
integrals . . . . . . . . . . . . . . . 73--85
Matthias K. Heck Homogeneous diffusions on the
Sierpi\'nski gasket . . . . . . . . . . 86--107
Y. Git Almost sure path properties of Branching
Diffusion Processes . . . . . . . . . . 108--127
S. Amghibech Criteria of regularity at the end of a
tree . . . . . . . . . . . . . . . . . . 128--136
R. Mikulevicius and
B. L. Rozovskii Normalized stochastic integrals in
topological vector spaces . . . . . . . 137--165
Khaled Bahlali and
Brahim Mezerdi and
Youssef Ouknine Pathwise uniqueness and approximation of
solutions of stochastic differential
equations . . . . . . . . . . . . . . . 166--187
Marc Arnaudon and
Anton Thalmaier Stability of stochastic differential
equations in manifolds . . . . . . . . . 188--214
B. Jourdain Propagation trajectorielle du chaos pour
les lois de conservation scalaire.
(French) [] . . . . . . . . . . . . . . 215--230
R. A. Doney Some calculations for perturbed Brownian
motion . . . . . . . . . . . . . . . . . 231--236
R. A. Doney and
J. Warren and
M. Yor Perturbed Bessel processes . . . . . . . 237--249
David G. Hobson The maximum maximum of a martingale . . 250--263
M. T. Barlow and
M. Émery and
F. B. Knight and
S. Song and
M. Yor Autour d'un théor\`eme de Tsirelson sur
des filtrations Browniennes et non
Browniennes. (French) [] . . . . . . . . 264--305
M. Émery and
M. Yor Sur un théor\`eme de Tsirelson relatif
\`a des mouvements browniens corrélés et
\`a la nullité de certains temps locaux.
(French) [] . . . . . . . . . . . . . . 306--312
Folkmar Bornemann Introduction . . . . . . . . . . . . . . 1--16
Folkmar Bornemann Homogenization of natural mechanical
systems with a strong constraining
potential . . . . . . . . . . . . . . . 17--72
Folkmar Bornemann Applications . . . . . . . . . . . . . . 73--88
Folkmar Bornemann Adiabatic results in quantum theory and
quantum-classical coupling . . . . . . . 89--114
Sigurd Assing and
Wolfgang M. Schmidt Basic concepts and preparatory results 1--13
Sigurd Assing and
Wolfgang M. Schmidt Classification of the points of the
state space . . . . . . . . . . . . . . 15--25
Sigurd Assing and
Wolfgang M. Schmidt Weakly additive functionals and time
change of strong Markov processes . . . 27--32
Sigurd Assing and
Wolfgang M. Schmidt Semimartingale decomposition of
continuous strong Markov semimartingales 33--52
Sigurd Assing and
Wolfgang M. Schmidt Occupation time formula . . . . . . . . 53--77
Sigurd Assing and
Wolfgang M. Schmidt Construction of continuous strong Markov
processes . . . . . . . . . . . . . . . 79--102
Sigurd Assing and
Wolfgang M. Schmidt Continuous strong Markov semimartingales
as solutions of stochastic differential
equations . . . . . . . . . . . . . . . 103--118
William Fulton and
Piotr Pragacz Introduction to degeneracy loci and
Schubert polynomials . . . . . . . . . . 1--13
William Fulton and
Piotr Pragacz Modern formulation; Grassmannians, flag
varieties, Schubert varieties . . . . . 14--25
William Fulton and
Piotr Pragacz Symmetric polynomials useful in geometry 26--39
William Fulton and
Piotr Pragacz Polynomials supported on degeneracy loci 40--52
William Fulton and
Piotr Pragacz The Euler characteristic of degeneracy
loci . . . . . . . . . . . . . . . . . . 53--64
William Fulton and
Piotr Pragacz Flag bundles and determinantal formulas
for the other classical groups . . . . . 65--78
William Fulton and
Piotr Pragacz $ \tilde P{- } $ and $ \tilde Q{-} $
polynomial formulas for other classical
groups . . . . . . . . . . . . . . . . . 79--91
William Fulton and
Piotr Pragacz The classes of Brill--Noether loci in
Prym varieties . . . . . . . . . . . . . 92--96
William Fulton and
Piotr Pragacz Applications and open problems . . . . . 97--103
Martin T. Barlow Diffusions on fractals . . . . . . . . . 1--121
David Nualart Analysis on Wiener space and
anticipating stochastic calculus . . . . 123--220
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Introduction . . . . . . . . . . . . . . 1--4
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Acknowledgement . . . . . . . . . . . . 5--5
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Overview . . . . . . . . . . . . . . . . 6--49
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Intersection cohomology of real
arrangements . . . . . . . . . . . . . . 50--70
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Configuration spaces and quantum groups 71--121
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Tensor categories arising from
configuration spaces . . . . . . . . . . 122--172
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Localization on $ \mathbb {P}^1 $ . . . 173--196
Roman Bezrukavnikov and
Michael Finkelberg and
Vadim Schechtman Modular structure on the category $
\mathcal {F} \mathcal {S} $ . . . . . . 197--251
Timothy M. W. Eyre Introduction . . . . . . . . . . . . . . 1--6
Timothy M. W. Eyre Quantum stochastic calculus . . . . . . 7--21
Timothy M. W. Eyre $ Z_2 $-graded structures . . . . . . . 23--31
Timothy M. W. Eyre Representations of Lie superalgebras in
$ Z_2 $-graded quantum stochastic
calculus . . . . . . . . . . . . . . . . 33--50
Timothy M. W. Eyre The ungraded higher order Itô product
formula . . . . . . . . . . . . . . . . 51--57
Timothy M. W. Eyre The Itô superalgebra . . . . . . . . . . 59--75
Timothy M. W. Eyre Some results in $ Z_2 $-graded quantum
stochastic calculus . . . . . . . . . . 77--99
Timothy M. W. Eyre Chaotic expansions . . . . . . . . . . . 101--112
Timothy M. W. Eyre Extensions . . . . . . . . . . . . . . . 113--132
Stephen Simons Introduction . . . . . . . . . . . . . . 1--11
Stephen Simons Functional analytic preliminaries . . . 13--28
Stephen Simons Multifunctions . . . . . . . . . . . . . 29--41
Stephen Simons A digression into convex analysis . . . 43--51
Stephen Simons General monotone multifunctions . . . . 53--73
Stephen Simons The sum problem for reflexive spaces . . 75--95
Stephen Simons Special maximal monotone multifunctions 97--109
Stephen Simons Subdifferentials . . . . . . . . . . . . 111--139
Stephen Simons Discontinuous positive linear operators 141--151
Stephen Simons The sum problem for general Banach
spaces . . . . . . . . . . . . . . . . . 153--161
Stephen Simons Open problems . . . . . . . . . . . . . 163--164
Andrea Braides Introduction . . . . . . . . . . . . . . 1--6
Andrea Braides Functions of bounded variation . . . . . 7--26
Andrea Braides Special functions of bounded variation 27--38
Andrea Braides Examples of approximation . . . . . . . 39--86
Andrea Braides A general approach to approximation . . 87--102
Andrea Braides Non-local approximation . . . . . . . . 103--130
Darald J. Hartfiel Introduction . . . . . . . . . . . . . . 1--2
Darald J. Hartfiel Stochastic matrices and their variants 3--25
Darald J. Hartfiel Introduction to Markov set-chains . . . 27--57
Darald J. Hartfiel Convergence of Markov set-chains . . . . 59--89
Darald J. Hartfiel Behavior in Markov set-chains . . . . . 91--113
Elisabeth Bouscaren Introduction to model theory . . . . . . 1--18
Martin Ziegler Introduction to stability theory and
Morley rank . . . . . . . . . . . . . . 19--44
Daniel Lascar Omega-stable groups . . . . . . . . . . 45--59
Anand Pillay Model theory of algebraically closed
fields . . . . . . . . . . . . . . . . . 61--84
Marc Hindry Introduction to abelian varieties and
the Mordell--Lang conjecture . . . . . . 85--100
Anand Pillay The model-theoretic content of Lang's
conjecture . . . . . . . . . . . . . . . 101--106
David Marker Zariski geometries . . . . . . . . . . . 107--128
Carol Wood Differentially closed fields . . . . . . 129--141
Françoise Delon Separably closed fields . . . . . . . . 143--176
Elisabeth Bouscaren Proof of the Mordell--Lang conjecture
for function fields . . . . . . . . . . 177--196
Ehud Hrushovski Proof of Manin's theorem by reduction to
positive characteristic . . . . . . . . 197--205
Ehud Hrushovski Back Matter . . . . . . . . . . . . . . 207--216
Bernardo Cockburn and
Chi-Wang Shu and
Claes Johnson and
Eitan Tadmor Front Matter . . . . . . . . . . . . . . ??
Eitan Tadmor Approximate solutions of nonlinear
conservation laws . . . . . . . . . . . 1--149
Bernardo Cockburn An introduction to the Discontinuous
Galerkin method for convection-dominated
problems . . . . . . . . . . . . . . . . 151--268
Claes Johnson Adaptive finite element methods for
conservation laws . . . . . . . . . . . 269--323
Chi-Wang Shu Essentially non-oscillatory and weighted
essentially non-oscillatory schemes for
hyperbolic conservation laws . . . . . . 325--432
Chi-Wang Shu Back Matter . . . . . . . . . . . . . . ??
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Some group theory . . . . . . . . . . . 1--8
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Groups acting on sets . . . . . . . . . 9--18
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Transitivity . . . . . . . . . . . . . . 19--30
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Primitivity . . . . . . . . . . . . . . 31--38
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Suborbits and orbitals . . . . . . . . . 39--48
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann More about symmetric groups . . . . . . 49--56
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Linear groups . . . . . . . . . . . . . 57--66
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Wreath products . . . . . . . . . . . . 67--76
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Rational numbers . . . . . . . . . . . . 77--86
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Jordan groups . . . . . . . . . . . . . 87--97
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Examples of Jordan groups . . . . . . . 99--113
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Relations related to betweenness . . . . 115--129
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Classification theorems . . . . . . . . 131--142
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Homogeneous structures . . . . . . . . . 143--158
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann The Hrushovski construction . . . . . . 159--170
Meenaxi Bhattacharjee and
Dugald Macpherson and
Rögnvaldur G. Möller and
Peter M. Neumann Applications and open questions . . . . 171--180
Atsushi Inoue Introduction . . . . . . . . . . . . . . 1--5
Atsushi Inoue Fundamentals of $ O^* $-algebras . . . . 7--40
Atsushi Inoue Standard systems and modular systems . . 41--110
Atsushi Inoue Standard weights on $ O^* $-algebras . . 111--168
Atsushi Inoue Physical applications . . . . . . . . . 169--223
Wojbor A. Woyczy\'nski Shock waves and the large scale
structure (LSS) of the universe . . . . 1--11
Wojbor A. Woyczy\'nski Hydrodynamic limits, nonlinear
diffusions, and propagation of chaos . . 13--24
Wojbor A. Woyczy\'nski Hopf--Cole formula and its asymptotic
analysis . . . . . . . . . . . . . . . . 25--42
Wojbor A. Woyczy\'nski Statistical description, parabolic
approximation . . . . . . . . . . . . . 43--95
Wojbor A. Woyczy\'nski Hyperbolic approximation and inviscid
limit . . . . . . . . . . . . . . . . . 97--133
Wojbor A. Woyczy\'nski Forced Burgers turbulence . . . . . . . 135--201
Wojbor A. Woyczy\'nski Passive tracer transport in Burgers' and
related flows . . . . . . . . . . . . . 203--270
Wojbor A. Woyczy\'nski Fractal Burgers--KPZ models . . . . . . 271--298
Ti-Jun Xiao and
Jin Liang Front Matter . . . . . . . . . . . . . . N2--XII
Ti-Jun Xiao and
Jin Liang Laplace transforms and operator families
in locally convex spaces . . . . . . . . 1--44
Ti-Jun Xiao and
Jin Liang Wellposedness and solvability . . . . . 45--83
Ti-Jun Xiao and
Jin Liang Generalized wellposedness . . . . . . . 85--140
Ti-Jun Xiao and
Jin Liang Analyticity and parabolicity . . . . . . 141--176
Ti-Jun Xiao and
Jin Liang Exponential growth bound and exponential
stability . . . . . . . . . . . . . . . 177--197
Ti-Jun Xiao and
Jin Liang Differentiability and norm continuity 199--238
Ti-Jun Xiao and
Jin Liang Almost periodicity . . . . . . . . . . . 239--261
Ti-Jun Xiao and
Jin Liang Back Matter . . . . . . . . . . . . . . 263--309
David B. Mumford I. Varieties . . . . . . . . . . . . . . 1--63
David B. Mumford II. Preschemes . . . . . . . . . . . . . 65--136
David B. Mumford III. Local Properties of Schemes . . . . 137--223
David B. Mumford Appendix: Curves and their Jacobians . . 225--291
David B. Mumford References: The Red Book of Varieties
and Schemes . . . . . . . . . . . . . . 293--293
David B. Mumford Guide to the Literature and References:
Curves and their Jacobians . . . . . . . 294--300
Enrico Arbarello Supplementary Bibliography on the
Schottky Problem . . . . . . . . . . . . 301--304
R. M. Dudley and
R. Norvai\vsa A survey on differentiability of six
operators in relation to probability and
statistics . . . . . . . . . . . . . . . 1--72
R. M. Dudley and
R. Norvai\vsa Product integrals, Young integrals and
$p$-variation . . . . . . . . . . . . . 73--208
R. M. Dudley and
R. Norvai\vsa Differentiability of the composition and
quantile operators for regulated and A.
E. continuous functions . . . . . . . . 209--240
R. M. Dudley and
R. Norvai\vsa and
Jinghua Qian Bibliographies on $p$-variation and $
\varphi $-variation . . . . . . . . . . 241--272
Hirotaka Tamanoi Introduction and summary of results . . 1--21
Hirotaka Tamanoi Elliptic genera . . . . . . . . . . . . 22--48
Hirotaka Tamanoi Vertex operator super algebras . . . . . 49--92
Hirotaka Tamanoi $G$-invariant vertex operator super
subalgebras . . . . . . . . . . . . . . 93--221
Hirotaka Tamanoi Geometric structure in vector spaces and
reduction of structure groups on
manifolds . . . . . . . . . . . . . . . 222--302
Hirotaka Tamanoi Infinite dimensional symmetries in
elliptic genera for Kähler manifolds . . 303--378
Igor Nikolaev and
Evgeny Zhuzhoma Definitions and examples . . . . . . . . 1--21
Igor Nikolaev and
Evgeny Zhuzhoma Poincaré--Bendixson's theory . . . . . . 23--39
Igor Nikolaev and
Evgeny Zhuzhoma Decomposition of flows . . . . . . . . . 41--62
Igor Nikolaev and
Evgeny Zhuzhoma Local theory . . . . . . . . . . . . . . 63--71
Igor Nikolaev and
Evgeny Zhuzhoma Space of flows and vector fields . . . . 73--93
Igor Nikolaev and
Evgeny Zhuzhoma Ergodic theory . . . . . . . . . . . . . 95--114
Igor Nikolaev and
Evgeny Zhuzhoma Invariants of surface flows . . . . . . 115--174
Igor Nikolaev and
Evgeny Zhuzhoma $ C^* $-algebras of surface flows . . . 175--199
Igor Nikolaev and
Evgeny Zhuzhoma Semi-local theory . . . . . . . . . . . 201--208
Igor Nikolaev and
Evgeny Zhuzhoma Anosov--Weil problem . . . . . . . . . . 209--237
Igor Nikolaev and
Evgeny Zhuzhoma Non-compact surfaces . . . . . . . . . . 239--255
Igor Nikolaev and
Evgeny Zhuzhoma Triptych . . . . . . . . . . . . . . . . 257--268
Sergei Yu. Pilyugin Shadowing near an invariant set . . . . 1--101
Sergei Yu. Pilyugin Topologically stable, structurally
stable, and generic systems . . . . . . 103--172
Sergei Yu. Pilyugin Systems with special structure . . . . . 173--217
Sergei Yu. Pilyugin Numerical applications of shadowing . . 219--257
Rados\law Pytlak Introduction . . . . . . . . . . . . . . 1--12
Rados\law Pytlak Estimates on solutions to differential
equations and their approximations . . . 13--26
Rados\law Pytlak First order method . . . . . . . . . . . 27--53
Rados\law Pytlak Implementation . . . . . . . . . . . . . 55--79
Rados\law Pytlak Second order method . . . . . . . . . . 81--128
Rados\law Pytlak Runge--Kutta based procedure for optimal
control of differential--algebraic
equations . . . . . . . . . . . . . . . 129--168
Kang Zuo Introduction . . . . . . . . . . . . . . 1--9
Kang Zuo Preliminaries . . . . . . . . . . . . . 10--24
Kang Zuo Harmonic metrics on flat vector bundles 25--51
Kang Zuo Non-abelian Hodge theory, factorization
theorems for non rigid or $p$-adic
unbounded representations . . . . . . . 52--103
Kang Zuo Shafarevich maps for representations of
fundamental groups, Kodaira dimension
and Chern hyperbolicity of Shafarevich
varieties . . . . . . . . . . . . . . . 104--124
Michel Bena\"\im Dynamics of stochastic approximation
algorithms . . . . . . . . . . . . . . . 1--68
Olivier Catoni Simulated annealing algorithms and
Markov chains with rare transitions . . 69--119
Michel Ledoux Concentration of measure and logarithmic
Sobolev inequalities . . . . . . . . . . 120--216
Bernard de Meyer Une simplification de l'argument de
Tsirelson sur le caract\`ere
non-brownien des processus de Walsh.
(French) [] . . . . . . . . . . . . . . 217--220
W. Schachermayer On certain probabilities equivalent to
Wiener measure, d'apr\`es Dubins,
Feldman, Smorodinsky and Tsirelson . . . 221--239
S. Beghdadi-Sakrani and
M. Émery On certain probabilities equivalent to
Coin-Tossing, d'Apr\`es Schachermayer 240--256
J. Warren On the joining of sticky Brownian motion 257--266
M. Émery and
W. Schachermayer Brownian filtrations are not stable
under equivalent time-changes . . . . . 267--276
Shinzo Watanabe The existence of a multiple spider
martingale in the natural filtration of
a certain diffusion in the plane . . . . 277--290
M. Émery and
W. Schachermayer A remark on Tsirelson's stochastic
differential equation . . . . . . . . . 291--303
M. Arnaudon Appendice \`a l'exposé précédent: La
filtration naturelle du mouvement
brownien indexé par $ \mathbb {R} $ dans
une variété compacte. (French) [] . . . . 304--314
Jan Kallsen A stochastic differential equation with
a unique (up to indistinguishability)
but not strong solution . . . . . . . . 315--326
Koichiro Takaoka Some remarks on the uniform
integrability of continuous martingales 327--333
Maurizio Pratelli An alternative proof of a theorem of
Aldous concerning convergence in
distribution for martingales . . . . . . 334--338
Micha\l Morayne and
Krzysztof Tabisz A short proof of decomposition of
strongly reduced martingales . . . . . . 339--341
Peter Grandits Some remarks on $ L^\infty $, $ H^\infty
$ and BMO . . . . . . . . . . . . . . . 342--348
W. Brannath and
W. Schachermayer A bipolar theorem for $ L_+ {}^0 \left
(\Omega, \mathcal {F}, \mathbb {P}
\right) $ . . . . . . . . . . . . . . . 349--354
Aziz Es-Sahib and
Heinich Henri Barycentre canonique pour un espace
métrique \`a courbure négative. (French)
[] . . . . . . . . . . . . . . . . . . . 355--370
Nacereddine Belili Dualité du probl\`eme des marges et ses
applications. (French) [] . . . . . . . 371--387
Jim Pitman The distribution of local times of a
Brownian bridge . . . . . . . . . . . . 388--394
Max Koecher Domains of positivity . . . . . . . . . 1--33
Max Koecher Omega domains . . . . . . . . . . . . . 35--51
Max Koecher Jordan algebras . . . . . . . . . . . . 53--72
Max Koecher Real and complex Jordan algebras . . . . 73--92
Max Koecher Complex Jordan algebras . . . . . . . . 93--108
Max Koecher Jordan algebras and omega domains . . . 109--126
Max Koecher Half-spaces . . . . . . . . . . . . . . 127--155
Werner Ricker Vector measures and Banach spaces . . . 1--24
Werner Ricker Abstract Boolean algebras and Stone
spaces . . . . . . . . . . . . . . . . . 25--40
Werner Ricker Boolean algebras of projections and
uniformly closed operator algebras . . . 41--56
Werner Ricker Ranges of spectral measures and Boolean
algebras of projections . . . . . . . . 57--66
Werner Ricker Integral representation of the strongly
closed algebra generated by a Boolean
algebra of projections . . . . . . . . . 67--90
Werner Ricker Bade functionals: an application to
scalar-type spectral operators . . . . . 91--104
Werner Ricker The reflexivity theorem and bicommutant
algebras . . . . . . . . . . . . . . . . 105--119
Niels Schwartz and
James J. Madden Introduction . . . . . . . . . . . . . . 1--19
Niels Schwartz and
James J. Madden Preordered and partially ordered rings 21--33
Niels Schwartz and
James J. Madden Reflective subcategories . . . . . . . . 35--42
Niels Schwartz and
James J. Madden Totally ordered and real closed fields 43--44
Niels Schwartz and
James J. Madden Real spectra of preordered rings . . . . 45--49
Niels Schwartz and
James J. Madden Epimorphisms of reduced porings . . . . 51--53
Niels Schwartz and
James J. Madden Functions and representable porings . . 55--61
Niels Schwartz and
James J. Madden Semi-algebraic functions . . . . . . . . 63--77
Niels Schwartz and
James J. Madden Comparing reflectors . . . . . . . . . . 79--92
Niels Schwartz and
James J. Madden Constructing reflectors . . . . . . . . 93--105
Niels Schwartz and
James J. Madden $H$-closed epireflectors . . . . . . . . 107--123
Niels Schwartz and
James J. Madden Quotient-closed reflectors . . . . . . . 125--132
Niels Schwartz and
James J. Madden The real closure reflector . . . . . . . 133--160
Niels Schwartz and
James J. Madden Arities of reflectors and approximations
by $H$-closed reflectors . . . . . . . . 161--166
Niels Schwartz and
James J. Madden Epimorphic extensions of reduced porings 167--181
Niels Schwartz and
James J. Madden Essential monoreflectors . . . . . . . . 183--188
Niels Schwartz and
James J. Madden Reflections of totally ordered fields 189--199
Niels Schwartz and
James J. Madden von Neumann regular $f$-rings . . . . . 201--208
Niels Schwartz and
James J. Madden Totally ordered domains . . . . . . . . 209--215
Niels Schwartz and
James J. Madden Reduced $f$-rings . . . . . . . . . . . 217--227
Fabrice Bethuel and
Gerhard Huisken and
Stefan Müller and
Klaus Steffen Front Matter . . . . . . . . . . . . . . ??
F. Bethuel Variational methods for Ginzburg--Landau
equations . . . . . . . . . . . . . . . 1--43
Gerhard Huisken and
Alexander Polden Geometric evolution equations for
hypersurfaces . . . . . . . . . . . . . 45--84
Stefan Müller Variational models for microstructure
and phase transitions . . . . . . . . . 85--210
Klaus Steffen Parametric surfaces of prescribed mean
curvature . . . . . . . . . . . . . . . 211--265
Klaus Steffen Back Matter . . . . . . . . . . . . . . ??
Odo Diekmann and
Richard Durrett and
Karl Peter Hadeler and
Philip K. Maini and
Hal Smith Front Matter . . . . . . . . . . . . . . ??
Odo Diekmann Modeling and analysing physiologically
structured populations . . . . . . . . . 1--37
Rick Durrett Stochastic spatial models . . . . . . . 39--94
K. P. Hadeler Reaction transport systems in biological
modelling . . . . . . . . . . . . . . . 95--150
Philip K. Maini Mathematical models in morphogenesis . . 151--189
H. L. Smith Dynamics of competition . . . . . . . . 191--240
H. L. Smith Back Matter . . . . . . . . . . . . . . ??
N. V. Krylov On Kolmogorov's equations for finite
dimensional diffusions . . . . . . . . . 1--63
Michael Röckner $ L^p $-analysis of finite and infinite
dimensional diffusion operators . . . . 65--116
J. Zabczyk Parabolic equations on Hilbert spaces 117--213
John H. Coates and
Kenneth A. Ribet and
Ralph Greenberg and
Karl Rubin Front Matter . . . . . . . . . . . . . . ??
John Coates Fragments of the $ {\rm GL}_2 $ Iwasawa
theory of elliptic curves without
complex multiplication . . . . . . . . . 1--50
Ralph Greenberg Iwasawa theory for elliptic curves . . . 51--144
Kenneth A. Ribet Torsion points on $ J_0 (N) $ and Galois
representations . . . . . . . . . . . . 145--166
Karl Rubin Elliptic curves with complex
multiplication and the conjecture of
Birch and Swinnerton-Dyer . . . . . . . 167--234
Karl Rubin Back Matter . . . . . . . . . . . . . . ??
Jean Bertoin Subordinators: Examples and Applications 1--91
Fabio Martinelli Lectures on Glauber Dynamics for
Discrete Spin Models . . . . . . . . . . 93--191
Yuval Peres Probability on Trees: an Introductory
Climb . . . . . . . . . . . . . . . . . 193--280
Andreas Eberle Introduction . . . . . . . . . . . . . . 1--8
Andreas Eberle Motivation and basic definitions:
Uniqueness problems in various contexts 9--40
Andreas Eberle $ L^p $ uniqueness in finite dimensions 41--87
Andreas Eberle Markov uniqueness . . . . . . . . . . . 89--167
Andreas Eberle Probabilistic aspects of $ L^p $ and
Markov uniqueness . . . . . . . . . . . 169--184
Andreas Eberle First steps in infinite dimensions . . . 185--253
Kenneth R. Meyer Introduction . . . . . . . . . . . . . . 1--8
Kenneth R. Meyer Equations of celestial mechanics . . . . 9--18
Kenneth R. Meyer Hamiltonian systems . . . . . . . . . . 19--37
Kenneth R. Meyer Central configurations . . . . . . . . . 39--49
Kenneth R. Meyer Symmetries, integrals, and reduction . . 51--70
Kenneth R. Meyer Theory of periodic solutions . . . . . . 71--86
Kenneth R. Meyer Satellite orbits . . . . . . . . . . . . 87--90
Kenneth R. Meyer The restricted problem . . . . . . . . . 91--103
Kenneth R. Meyer Lunar orbits . . . . . . . . . . . . . . 105--110
Kenneth R. Meyer Comet orbits . . . . . . . . . . . . . . 111--118
Kenneth R. Meyer Hill's lunar equations . . . . . . . . . 119--127
Kenneth R. Meyer The elliptic problem . . . . . . . . . . 129--137
K. D. Elworthy and
J. Le Jan and
Xue-Mei Li Introduction . . . . . . . . . . . . . . 3--6
K. D. Elworthy and
J. Le Jan and
Xue-Mei Li Construction of connections . . . . . . 7--29
K. D. Elworthy and
J. Le Jan and
Xue-Mei Li The infinitesimal generators and
associated operators . . . . . . . . . . 30--56
K. D. Elworthy and
J. Le Jan and
Xue-Mei Li Decomposition of noise and filtering . . 57--75
K. D. Elworthy and
J. Le Jan and
Xue-Mei Li Application: Analysis on spaces of paths 76--86
K. D. Elworthy and
J. Le Jan and
Xue-Mei Li Stability of stochastic dynamical
systems . . . . . . . . . . . . . . . . 87--94
K. D. Elworthy and
J. Le Jan and
Xue-Mei Li Appendices . . . . . . . . . . . . . . . 95--110
Anthony Iarrobino and
Vassil Kanev Forms and catalecticant matrices . . . . 3--56
Anthony Iarrobino and
Vassil Kanev Sums of powers of linear forms, and
Gorenstein algebras . . . . . . . . . . 57--72
Anthony Iarrobino and
Vassil Kanev Tangent spaces to catalecticant schemes 73--90
Anthony Iarrobino and
Vassil Kanev The locus $ {\rm PS}(s, j; r) $ of sums
of powers, and determinantal loci of
catalecticant matrices . . . . . . . . . 91--127
Anthony Iarrobino and
Vassil Kanev Forms and zero-dimensional schemes I:
Basic results, and the case $ r = 3 $ 131--205
Anthony Iarrobino and
Vassil Kanev Forms and zero-dimensional schemes, II:
Annihilating schemes and reducible $
{\rm Gor}(T) $ . . . . . . . . . . . . . 207--236
Anthony Iarrobino and
Vassil Kanev Connectedness and components of the
determinantal locus $ \mathbb {P} V_s
(u, v; r) $ . . . . . . . . . . . . . . 237--247
Anthony Iarrobino and
Vassil Kanev Closures of the variety $ {\rm Gor}(T)
$, and the parameter space $ G(T) $ of
graded algebras . . . . . . . . . . . . 249--253
Anthony Iarrobino and
Vassil Kanev Questions and problems . . . . . . . . . 255--264
Randall McCutcheon Introduction . . . . . . . . . . . . . . 1--4
Randall McCutcheon Ramsey theory and topological dynamics 5--39
Randall McCutcheon Infinitary Ramsey theory . . . . . . . . 40--77
Randall McCutcheon Density Ramsey theory . . . . . . . . . 78--110
Randall McCutcheon Three ergodic Roth theorems . . . . . . 111--135
Randall McCutcheon Two Szemerédi theorems . . . . . . . . . 136--152
Jean-Pierre Croisille and
Gilles Lebeau Introduction . . . . . . . . . . . . . . 1--2
Jean-Pierre Croisille and
Gilles Lebeau Notation and results . . . . . . . . . . 3--26
Jean-Pierre Croisille and
Gilles Lebeau The spectral function . . . . . . . . . 27--56
Jean-Pierre Croisille and
Gilles Lebeau Proofs of the results . . . . . . . . . 57--78
Jean-Pierre Croisille and
Gilles Lebeau Numerical algorithm . . . . . . . . . . 79--95
Jean-Pierre Croisille and
Gilles Lebeau Numerical results . . . . . . . . . . . 97--125