Last update:
Fri Oct 13 09:02:38 MDT 2017
Vassili N. Kolokoltsov Introduction . . . . . . . . . . . . . . 1--16
Vassili N. Kolokoltsov Gaussian diffusions . . . . . . . . . . 17--39
Vassili N. Kolokoltsov Boundary value problem for Hamiltonian
systems . . . . . . . . . . . . . . . . 40--96
Vassili N. Kolokoltsov Semiclassical approximation for regular
diffusion . . . . . . . . . . . . . . . 97--135
Vassili N. Kolokoltsov Invariant degenerate diffusion on
cotangent bundles . . . . . . . . . . . 136--145
Vassili N. Kolokoltsov Transition probability densities for
stable jump-diffusions . . . . . . . . . 146--190
Vassili N. Kolokoltsov Semiclassical asymptotics for the
localised Feller--Courr\`ege processes 191--222
Vassili N. Kolokoltsov Complex stochastic diffusion or
stochastic Schrödinger equation . . . . . 223--238
Vassili N. Kolokoltsov Some topics in semiclassical spectral
analysis . . . . . . . . . . . . . . . . 239--254
Vassili N. Kolokoltsov Path integration for the Schrödinger,
heat and complex diffusion equations . . 255--279
Dieter A. Wolf-Gladrow 1. Introduction . . . . . . . . . . . . 1--13
Dieter A. Wolf-Gladrow 2. Cellular Automata . . . . . . . . . . 15--37
Dieter A. Wolf-Gladrow 3. Lattice-gas cellular automata . . . . 39--138
Dieter A. Wolf-Gladrow 4. Some statistical mechanics . . . . . 139--158
Dieter A. Wolf-Gladrow 5. Lattice Boltzmann Models . . . . . . 159--246
Dieter A. Wolf-Gladrow 6. Appendix . . . . . . . . . . . . . . 247--270
Dieter A. Wolf-Gladrow Subject Index . . . . . . . . . . . . . 271--274
Dieter A. Wolf-Gladrow References . . . . . . . . . . . . . . . 275--308
Vojislav Mari\'c Introduction . . . . . . . . . . . . . . 1--8
Vojislav Mari\'c Existence of regular solutions . . . . . 9--47
Vojislav Mari\'c Asymptotic behaviour of regular
solutions . . . . . . . . . . . . . . . 49--70
Vojislav Mari\'c Equations of Thomas--Fermi type . . . . 71--104
Vojislav Mari\'c An equation arising in boundary-layer
theory . . . . . . . . . . . . . . . . . 105--114
Peter Kravanja and
Marc Van Barel Zeros of analytic functions . . . . . . 1--59
Peter Kravanja and
Marc Van Barel Clusters of zeros of analytic functions 61--81
Peter Kravanja and
Marc Van Barel Zeros and poles of meromorphic functions 83--89
Peter Kravanja and
Marc Van Barel Systems of analytic equations . . . . . 91--103
P. Del Moral and
L. Miclo Branching and interacting particle
systems approximations of Feynman--Kac
formulae with applications to non-linear
filtering . . . . . . . . . . . . . . . 1--145
Nathalie Eisenbaum Exponential inequalities for Bessel
processes . . . . . . . . . . . . . . . 146--150
D. Khoshnevisan On sums of iid random variables indexed
by $N$ parameters . . . . . . . . . . . 151--156
Stéphane Attal and
Robin L. Hudson Series of iterated quantum stochastic
integrals . . . . . . . . . . . . . . . 157--170
Jay Rosen and
Haya Kaspi $p$-Variation for families of local
times on lines . . . . . . . . . . . . . 171--184
Zbigniew J. Jurek and
Liming Wu Large deviations for some Poisson random
integrals . . . . . . . . . . . . . . . 185--197
Laurent Denis and
Axel Grorud and
Monique Pontier Formes de Dirichlet sur un Espace de
Wiener--Poisson. Application au
grossissement de filtration. (French) [] 198--217
A. Maitra and
W. Sudderth Saturations of gambling houses . . . . . 218--238
Simon C. Harris Convergence of a `Gibbs--Boltzmann'
random measure for a typed branching
diffusion . . . . . . . . . . . . . . . 239--256
Masao Nagasawa and
Hiroshi Tanaka Time dependent subordination and Markov
processes with jumps . . . . . . . . . . 257--288
David G. Hobson Marked excursions and random trees . . . 289--301
Laurent Serlet Laws of the iterated logarithm for the
Brownian snake . . . . . . . . . . . . . 302--312
Mireille Capitaine On the Onsager--Machlup functional for
elliptic diffusion processes . . . . . . 313--328
Yaozhong Hu A unified approach to several
inequalities for Gaussian and diffusion
measures . . . . . . . . . . . . . . . . 329--335
Laurent Miclo and
Cyril Roberto Trous spectraux pour certains
algorithmes de Metropolis sur $ \mathbb
{R} $. (French) [] . . . . . . . . . . . 336--352
Frédéric Mouton Comportement asymptotique des fonctions
harmoniques sur les arbres. (French) [] 353--373
Y. Isozaki and
S. Kotani Asymptotic estimates for the first
hitting time of fluctuating additive
functionals of Brownian motion . . . . . 374--387
Siva Athreya Monotonicity property for a class of
semilinear partial differential
equations . . . . . . . . . . . . . . . 388--392
Davar Khoshnevisan and
Zhan Shi Fast sets and points for fractional
Brownian motion . . . . . . . . . . . . 393--416
L. Vostrikova and
M. Yor Some invariance properties (of the laws)
of Ocone's martingales . . . . . . . . . 417--431
Siegfried Graf and
Harald Luschgy Introduction . . . . . . . . . . . . . . 1--5
Siegfried Graf and
Harald Luschgy General properties of the quantization
for probability distributions . . . . . 7--75
Siegfried Graf and
Harald Luschgy Asymptotic quantization for nonsingular
probability distributions . . . . . . . 77--154
Siegfried Graf and
Harald Luschgy Asymptotic quantization for singular
probability distributions . . . . . . . 155--207
Tim Hsu Introduction . . . . . . . . . . . . . . 1--8
Tim Hsu Background material . . . . . . . . . . 9--26
Tim Hsu Quilts . . . . . . . . . . . . . . . . . 28--53
Tim Hsu Norton systems and their quilts . . . . 55--70
Tim Hsu Examples of quilts . . . . . . . . . . . 71--79
Tim Hsu The combinatorics of quilts . . . . . . 81--91
Tim Hsu Classical interpretations of quilts . . 93--98
Tim Hsu Presentations and the structure problem 100--117
Tim Hsu Small snug quilts . . . . . . . . . . . 119--125
Tim Hsu Monodromy systems . . . . . . . . . . . 127--131
Tim Hsu Quilts for groups involved in the
monster . . . . . . . . . . . . . . . . 133--149
Tim Hsu Some results on the structure problem 151--156
Tim Hsu Further directions . . . . . . . . . . . 157--178
Karsten Keller Introduction . . . . . . . . . . . . . . 1--23
Karsten Keller Abstract Julia sets . . . . . . . . . . 25--71
Karsten Keller The Abstract Mandelbrot set . . . . . . 73--139
Karsten Keller Abstract and concrete theory . . . . . . 141--180
Klaus Ritter Introduction . . . . . . . . . . . . . . 1--9
Klaus Ritter Linear problems: Definitions and a
classical example . . . . . . . . . . . 11--31
Klaus Ritter Second-order results for linear problems 33--65
Klaus Ritter Integration and approximation of
univariate functions . . . . . . . . . . 67--121
Klaus Ritter Linear problems for univariate functions
with noisy data . . . . . . . . . . . . 123--131
Klaus Ritter Integration and approximation of
multivariate functions . . . . . . . . . 133--182
Klaus Ritter Nonlinear methods for linear problems 183--211
Klaus Ritter Nonlinear problems . . . . . . . . . . . 213--225
Antonio Fasano Some general facts about filtration
through porous media . . . . . . . . . . 1--8
Magne S. Espedal and
Kenneth Hvistendahl Karlsen Numerical solution of reservoir flow
models based on large time step operator
splitting algorithms . . . . . . . . . . 9--77
Antonio Fasano Filtration problems in various
industrial processes . . . . . . . . . . 79--126
Andro Mikeli\'c Homogenization theory and applications
to filtration through porous media . . . 127--214
Dmitri R. Yafaev Basic concepts . . . . . . . . . . . . . 1--13
Dmitri R. Yafaev Short-range interactions. asymptotic
completeness . . . . . . . . . . . . . . 14--23
Dmitri R. Yafaev Short-range interactions. Miscellaneous 24--29
Dmitri R. Yafaev Long-range interactions. The scheme of
smooth perturbations . . . . . . . . . . 30--39
Dmitri R. Yafaev The generalized Fourier transform . . . 40--46
Dmitri R. Yafaev Long-range matrix potentials . . . . . . 47--52
Dmitri R. Yafaev A stationary representation . . . . . . 53--58
Dmitri R. Yafaev The short-range case . . . . . . . . . . 59--66
Dmitri R. Yafaev The long-range case . . . . . . . . . . 67--79
Dmitri R. Yafaev The relative scattering matrix . . . . . 80--85
Dmitri R. Yafaev Setting the scattering problem . . . . . 86--95
Dmitri R. Yafaev Resolvent equations for three-particle
systems . . . . . . . . . . . . . . . . 96--105
Dmitri R. Yafaev Asymptotic completeness. A sketch of
proof . . . . . . . . . . . . . . . . . 106--117
Dmitri R. Yafaev The scattering matrix and eigenfunctions
for multiparticle systems . . . . . . . 118--127
Dmitri R. Yafaev New channels of scattering . . . . . . . 128--136
Dmitri R. Yafaev The Heisenberg model . . . . . . . . . . 137--144
Dmitri R. Yafaev Infinite obstacle scattering . . . . . . 145--153
Bengt Ove Turesson Preliminaries . . . . . . . . . . . . . 1--14
Bengt Ove Turesson Sobolev spaces . . . . . . . . . . . . . 15--68
Bengt Ove Turesson Potential theory . . . . . . . . . . . . 69--140
Bengt Ove Turesson Applications of potential theory to
Sobolev spaces . . . . . . . . . . . . . 141--162
Seiichiro Wakabayashi Hyperfunctions . . . . . . . . . . . . . 5--39
Seiichiro Wakabayashi Basic calculus of Fourier integral
operators and pseudodifferential
operators . . . . . . . . . . . . . . . 41--114
Seiichiro Wakabayashi Analytic wave front sets and
microfunctions . . . . . . . . . . . . . 115--204
Seiichiro Wakabayashi Microlocal uniqueness . . . . . . . . . 205--258
Seiichiro Wakabayashi Local solvability . . . . . . . . . . . 259--293
Michel Emery Introduction . . . . . . . . . . . . . . 3--4
Michel Emery Variétés, vecteurs, covecteurs,
diffuseurs, codiffuseurs. (French) [] 5--21
Michel Emery Semimartingales dans une variété et
géométrie d'ordre 2. (French) [] . . . . . 22--37
Michel Emery Connexions et martingales. (French) [] 38--51
Michel Emery Fonctions convexes et comportement des
martingales. (French) [] . . . . . . . . 52--72
Michel Emery Mouvements browniens et applications
harmoniques. (French) [] . . . . . . . . 73--84
Arkadi Nemirovski Preface . . . . . . . . . . . . . . . . 88--88
Arkadi Nemirovski Estimating regression functions from
Hölder balls . . . . . . . . . . . . . . 89--112
Arkadi Nemirovski Estimating regression functions from
Sobolev balls . . . . . . . . . . . . . 113--131
Arkadi Nemirovski Spatial adaptive estimation on Sobolev
balls . . . . . . . . . . . . . . . . . 132--154
Arkadi Nemirovski Estimating signals satisfying
differential inequalities . . . . . . . 155--182
Arkadi Nemirovski Aggregation of estimates, I . . . . . . 183--206
Arkadi Nemirovski Aggregation of estimates, II . . . . . . 207--227
Arkadi Nemirovski Estimating functionals, I . . . . . . . 228--257
Arkadi Nemirovski Estimating functionals, II . . . . . . . 258--277
Dan Voiculescu Introduction . . . . . . . . . . . . . . 283--284
Dan Voiculescu Noncommutative probability and operator
algebra background . . . . . . . . . . . 284--294
Dan Voiculescu Addition of freely independent
noncommutative random variables . . . . 294--308
Dan Voiculescu Multiplication of freely independent
noncommutative random variables . . . . 308--313
Dan Voiculescu Generalized canonical form, noncrossing
partitions . . . . . . . . . . . . . . . 313--316
Rainer E. Burkard Trees and paths: graph optimisation
problems with industrial applications 1--38
Vincenzo Capasso Mathematical models for polymer
crystallization processes . . . . . . . 39--67
P. Deuflhard Differential equations in technology and
medicine: Computational concepts,
adaptive algorithms, and virtual labs 69--125
Heinz W. Engl Inverse problems and their
regularization . . . . . . . . . . . . . 127--150
Antony Jameson and
Luigi Martinelli Aerodynamic shape optimization
techniques based on control theory . . . 151--221
J.-L. Lions Complexity in industrial problems. Some
remarks . . . . . . . . . . . . . . . . 223--266
K. Laevsky and
B. J. van der Linden and
R. M. M. Mattheij Flow and heat transfer in pressing of
glass products . . . . . . . . . . . . . 267--285
J.-W. He and
M. Chevalier and
R. Glowinski and
R. Metcalfe and
A. Nordlander and
J. Periaux Drag reduction by active control for
flow past cylinders . . . . . . . . . . 287--363
Gilbert Strang Signal processing for everyone . . . . . 366--412
Arrigo Cellina Introduction . . . . . . . . . . . . . . 1--5
Bernd Kawohl Some nonconvex shape optimization
problems . . . . . . . . . . . . . . . . 7--46
Luc Tartar An introduction to the homogenization
method in optimal design . . . . . . . . 47--156
Jean-Paul Zolésio Shape analysis and weak flow . . . . . . 157--341
Olivier Pironneau Optimal shape design by local boundary
variations . . . . . . . . . . . . . . . 343--384
Eric Lombardi Introduction . . . . . . . . . . . . . . 1--19
Eric Lombardi `Exponential tools' for evaluating
oscillatory integrals . . . . . . . . . 22--76
Eric Lombardi Resonances of reversible vector fields 78--100
Eric Lombardi Analytic description of periodic orbits
bifurcating from a pair of simple purely
imaginary eigenvalues . . . . . . . . . 101--122
Eric Lombardi Constructive Floquet theory for periodic
matrices near a constant one . . . . . . 123--134
Eric Lombardi Inversion of affine equations around
reversible homoclinic connections . . . 135--184
Eric Lombardi The $ 0^{2+} i \omega $ resonance . . . 186--325
Eric Lombardi The $ 0^{2+} i \omega $ resonance in
infinite dimensions. Application to
water waves . . . . . . . . . . . . . . 327--357
Eric Lombardi The $ (i \omega_0)^2 i \omega_1 $
resonance . . . . . . . . . . . . . . . 359--403
André Unterberger Introduction . . . . . . . . . . . . . . 1--9
André Unterberger Distributions associated with the
non-unitary principal series . . . . . . 11--15
André Unterberger Modular distributions . . . . . . . . . 17--23
André Unterberger The principal series of $ {\rm SL}(2,
\mathbb {R}) $ and the Radon transform 25--31
André Unterberger Another look at the composition of Weyl
symbols . . . . . . . . . . . . . . . . 33--44
André Unterberger The Roelcke--Selberg decomposition and
the Radon transform . . . . . . . . . . 45--59
André Unterberger Recovering the Roelcke--Selberg
coefficients of a function in $ L^2
(\Gamma \setminus \Pi) $ . . . . . . . . 61--68
André Unterberger The ``product'' of two Eisenstein
distributions . . . . . . . . . . . . . 69--75
André Unterberger The Roelcke--Selberg expansion of the
product of two Eisenstein series: the
continuous part . . . . . . . . . . . . 77--90
André Unterberger A digression on Kloosterman sums . . . . 91--96
André Unterberger The Roelcke--Selberg expansion of the
product of two Eisenstein series: the
discrete part . . . . . . . . . . . . . 97--109
André Unterberger The expansion of the Poisson bracket of
two Eisenstein series . . . . . . . . . 111--117
André Unterberger Automorphic distributions on $ \mathbb
{R}^2 $ . . . . . . . . . . . . . . . . 119--130
André Unterberger The Hecke decomposition of products or
Poisson brackets of two Eisenstein
series . . . . . . . . . . . . . . . . . 131--147
André Unterberger A generating series of sorts for Maass
cusp-forms . . . . . . . . . . . . . . . 149--161
André Unterberger Some arithmetic distributions . . . . . 163--176
André Unterberger Quantization, products and Poisson
brackets . . . . . . . . . . . . . . . . 177--190
André Unterberger Moving to the forward light-cone: the
Lax--Phillips theory revisited . . . . . 191--212
André Unterberger Automorphic functions associated with
quadratic $ {\rm PSL}(2, \mathbb {Z})
$-orbits in $ P_1 (\mathbb {R}) $ . . . 213--230
André Unterberger Quadratic orbits: a dual problem . . . . 231--246
Lutz Habermann Preliminaries . . . . . . . . . . . . . 1--9
Lutz Habermann A canonical metric for flat conformal
manifolds . . . . . . . . . . . . . . . 11--31
Lutz Habermann Kleinian groups and moduli spaces . . . 33--53
Lutz Habermann Asymptotics: The flat case . . . . . . . 55--82
Lutz Habermann Generalization in low dimensions . . . . 83--100
Lutz Habermann The moduli space of all conformal
structures . . . . . . . . . . . . . . . 101--107
Markus Kunze Introduction . . . . . . . . . . . . . . 1--6
Markus Kunze Some general theory of differential
inclusions . . . . . . . . . . . . . . . 7--18
Markus Kunze Bounded, unbounded, periodic, and almost
periodic solutions . . . . . . . . . . . 19--61
Markus Kunze Lyapunov exponents for non-smooth
dynamical systems . . . . . . . . . . . 63--140
Markus Kunze On the application of Conley index
theory to non-smooth dynamical systems 141--162
Markus Kunze On the application of KAM theory to
non-smooth dynamical systems . . . . . . 163--184
Markus Kunze Planar non-smooth dynamical systems . . 185--196
Markus Kunze Melnikov's method for non-smooth
dynamical systems . . . . . . . . . . . 197--201
Markus Kunze Further topics and notes . . . . . . . . 203--209
M. Anttila The transportation cost for the cube . . 1--11
J. Arias-de-Reyna and
R. Villa The uniform concentration of measure
phenomenon in $ \ell_p^n $ $ (1 \leq p
\leq 2) $ . . . . . . . . . . . . . . . 13--18
G. Schechtman An editorial comment on the preceding
paper . . . . . . . . . . . . . . . . . 19--20
K. Ball A remark on the slicing problem . . . . 21--26
S. G. Bobkov Remarks on the growth of $ L^p $-norms
of polynomials . . . . . . . . . . . . . 27--35
J. Bourgain Positive Lyapounov exponents for most
energies . . . . . . . . . . . . . . . . 37--66
J. Bourgain and
S. Jitomirskaya Anderson localization for the band model 67--79
A. A. Giannopoulos and
V. D. Milman and
M. Rudelson Convex bodies with minimal mean width 81--93
O. Guédon and
A. E. Litvak Euclidean projections of a $p$-convex
body . . . . . . . . . . . . . . . . . . 95--108
B. Klartag Remarks on Minkowski symmetrizations . . 109--117
A. Koldobsky and
M. Lifshits Average volume of sections of star
bodies . . . . . . . . . . . . . . . . . 119--146
R. Lata\la and
K. Oleszkiewicz Between Sobolev and Poincaré . . . . . . 147--168
A. E. Litvak and
N. Tomczak-Jaegermann Random aspects of high-dimensional
convex bodies . . . . . . . . . . . . . 169--190
V. D. Milman and
S. J. Szarek A geometric lemma and duality of entropy
numbers . . . . . . . . . . . . . . . . 191--222
V. D. Milman and
N. Tomczak-Jaegermann Stabilized asymptotic structures and
envelopes in Banach spaces . . . . . . . 223--237
G. Paouris On the isotropic constant of
Non-symmetric convex bodies . . . . . . 239--243
G. Schechtman and
J. Zinn Concentration on the $ \ell_p^n $ ball 245--256
S. J. Szarek and
D. Voiculescu Shannon's entropy power inequality via
restricted Minkowski sums . . . . . . . 257--262
R. Wagner Notes on an inequality by Pisier for
functions on the discrete cube . . . . . 263--268
A. Zvavitch More on embedding subspaces of $ L_p $
into $ \ell_p^N $, $ 0 < p < 1 $ . . . . . 269--280
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Introduction . . . . . . . . . . . . . . vii--xiii
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Topology of involutions . . . . . . . . 1--28
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Integral lattices and quadratic forms 29--52
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Algebraic surfaces . . . . . . . . . . . 53--78
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Real surfaces: the topological aspects 79--87
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Summary: Deformation Classes . . . . . . 88--96
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Topology of real Enriques surfaces . . . 97--126
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Moduli of real Enriques surfaces . . . . 127--144
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Deformation types: the hyperbolic and
parabolic cases . . . . . . . . . . . . 145--168
Alexander Degtyarev and
Ilia Itenberg and
Viatcheslav Kharlamov Deformation types: the elliptic and
parabolic cases . . . . . . . . . . . . 169--190
Lars Winther Christensen Introduction . . . . . . . . . . . . . . 1--2
Lars Winther Christensen Synopsis . . . . . . . . . . . . . . . . 3--8
Lars Winther Christensen Conventions and prerequisites . . . . . 9--15
Lars Winther Christensen The classical Gorenstein dimension . . . 17--40
Lars Winther Christensen $G$-dimension and reflexive complexes 41--63
Lars Winther Christensen Auslander categories . . . . . . . . . . 65--90
Lars Winther Christensen $G$-projectivity . . . . . . . . . . . . 91--112
Lars Winther Christensen $G$-flatness . . . . . . . . . . . . . . 113--134
Lars Winther Christensen $G$-injectivity . . . . . . . . . . . . 135--158
Michael R\ru\vzi\vcka Modeling of electrorheological fluids 1--37
Michael R\ru\vzi\vcka Mathematical framework . . . . . . . . . 39--59
Michael R\ru\vzi\vcka Electrorheological fluids with shear
dependent viscosities: Steady flows . . 61--103
Michael R\ru\vzi\vcka Electrorheological fluids with shear
dependent viscosities: Unsteady flows 105--151
Martin Fuchs and
Gregory Seregin Introduction . . . . . . . . . . . . . . 1--4
Martin Fuchs and
Gregory Seregin Weak solutions to boundary value
problems in the deformation theory of
perfect elastoplasticity . . . . . . . . 5--39
Martin Fuchs and
Gregory Seregin Differentiability properties of weak
solutions to boundary value problems in
the deformation theory of plasticity . . 40--130
Martin Fuchs and
Gregory Seregin Quasi-static fluids of generalized
Newtonian type . . . . . . . . . . . . . 131--206
Martin Fuchs and
Gregory Seregin Fluids of Prandtl--Eyring type and
plastic materials with logarithmic
hardening law . . . . . . . . . . . . . 207--259
Nigel J. Cutland 1. Loeb Measures . . . . . . . . . . . . 1--28
Nigel J. Cutland 2. Stochastic Fluid Mechanics . . . . . 29--60
Nigel J. Cutland 3. Stochastic Calculus of Variations . . 61--84
Nigel J. Cutland 4. Mathematical Finance Theory . . . . . 85--101
Nigel J. Cutland References . . . . . . . . . . . . . . . 103--107
Nigel J. Cutland Index . . . . . . . . . . . . . . . . . 109--111
Gilles Pisier 0. Introduction. Description of contents 1--13
Gilles Pisier 1. Von Neumann's inequality and Ando's
generalization . . . . . . . . . . . . . 14--30
Gilles Pisier 2. Non-unitarizable uniformly bounded
group representations . . . . . . . . . 31--57
Gilles Pisier 3. Completely bounded maps . . . . . . . 58--74
Gilles Pisier 4. Completely bounded homomorphisms and
derivations . . . . . . . . . . . . . . 75--98
Gilles Pisier 5. Schur multipliers and Grothendieck's
inequality . . . . . . . . . . . . . . . 99--113
Gilles Pisier 6. Hankelian Schur multipliers.
Herz--Schur multipliers . . . . . . . . 114--123
Gilles Pisier 7. The similarity problem for cyclic
homomorphisms on a $ C^* $-algebra . . . 124--141
Gilles Pisier 8. Completely bounded maps in the Banach
space setting . . . . . . . . . . . . . 142--151
Gilles Pisier 9. The Sz.-Nagy--Halmos similarity
problem . . . . . . . . . . . . . . . . 152--167
Gilles Pisier 10. The Kadison Similarity Problem . . . 168--181
Gilles Pisier References . . . . . . . . . . . . . . . 182--193
Gilles Pisier Subject and Notation Index . . . . . . . 194--196
John Douglas Moore Front Matter . . . . . . . . . . . . . . i--viii
John Douglas Moore Preliminaries . . . . . . . . . . . . . 1--44
John Douglas Moore Spin geometry on four-manifolds . . . . 45--72
John Douglas Moore Global analysis of the Seiberg--Witten
equations . . . . . . . . . . . . . . . 73--116
John Douglas Moore Back Matter . . . . . . . . . . . . . . 117--121
Pol Vanhaecke Introduction . . . . . . . . . . . . . . 1--16
Pol Vanhaecke Integrable Hamiltonian systems on affine
Poisson varieties . . . . . . . . . . . 17--70
Pol Vanhaecke Integrable Hamiltonian systems and
symmetric products of curves . . . . . . 71--96
Pol Vanhaecke Interludium: the geometry of Abelian
varieties . . . . . . . . . . . . . . . 97--125
Pol Vanhaecke Algebraic completely integrable
Hamiltonian systems . . . . . . . . . . 127--142
Pol Vanhaecke The Mumford systems . . . . . . . . . . 143--173
Pol Vanhaecke Two-dimensional a.c.i. systems and
applications . . . . . . . . . . . . . . 175--241
Yuri V. Nesterenko and
Patrice Philippon $ \Theta (\tau, z) $ and Transcendence 1--11
Yuri V. Nesterenko and
Patrice Philippon Mahler's conjecture and other
transcendence Results . . . . . . . . . 13--26
Yuri V. Nesterenko and
Patrice Philippon Algebraic independence for values of
Ramanujan Functions . . . . . . . . . . 27--46
Yuri V. Nesterenko and
Patrice Philippon Some remarks on proofs of algebraic
independence . . . . . . . . . . . . . . 47--51
Yuri V. Nesterenko and
Patrice Philippon Élimination multihomog\`ene. (French)
[Multihomogeneous elimination] . . . . . 53--81
Yuri V. Nesterenko and
Patrice Philippon Diophantine geometry . . . . . . . . . . 83--94
Yuri V. Nesterenko and
Patrice Philippon Géométrie diophantienne multiprojective.
(French) [Multiprojective Diophantine
geometry] . . . . . . . . . . . . . . . 95--131
Yuri V. Nesterenko and
Patrice Philippon Criteria for algebraic independence . . 133--141
Yuri V. Nesterenko and
Patrice Philippon Upper bounds for (geometric) Hilbert
functions . . . . . . . . . . . . . . . 143--148
Yuri V. Nesterenko and
Patrice Philippon Multiplicity estimates for solutions of
algebraic differential equations . . . . 149--165
Yuri V. Nesterenko and
Patrice Philippon Zero Estimates on Commutative Algebraic
Groups . . . . . . . . . . . . . . . . . 167--185
Yuri V. Nesterenko and
Patrice Philippon Measures of algebraic independence for
Mahler functions . . . . . . . . . . . . 187--197
Yuri V. Nesterenko and
Patrice Philippon Algebraic Independence in Algebraic
Groups. Part I: Small Transcendence
Degrees . . . . . . . . . . . . . . . . 199--211
Yuri V. Nesterenko and
Patrice Philippon Algebraic Independence in Algebraic
Groups. Part II: Large Transcendence
Degrees . . . . . . . . . . . . . . . . 213--225
Yuri V. Nesterenko and
Patrice Philippon Some metric results in Transcendental
Numbers Theory . . . . . . . . . . . . . 227--237
Yuri V. Nesterenko and
Patrice Philippon The Hilbert Nullstellensatz,
Inequalities for Polynomials, and
Algebraic Independence . . . . . . . . . 239--248
Masao Nagasawa and
Hiroshi Tanaka The Principle of Variation for
Relativistic Quantum Particles . . . . . 1--27
Nicolas Privault Quantum stochastic calculus for the
uniform measure and Boolean convolution 28--47
Anthony Phan Martingales D'Azéma Asymétriques.
Description Élémentaire et Unicité.
(French) [] . . . . . . . . . . . . . . 48--86
Tsung-Ming Chao and
Ching-Shung Chou Some remarks on the martingales
satisfying the structure equation $ [X,
X]_t = t + \int^t_0 \beta X_{s^-} d X_s
$ . . . . . . . . . . . . . . . . . . . 87--97
David Kurtz Une caractérization des martingales
d'Azéma bidimensionnelles de type (II).
(French) [] . . . . . . . . . . . . . . 98--119
David Kurtz and
Anthony Phan Correction \`a un Article d'Attal et
Émery sur les Martingales d'Azéma
Bidimendionnelles. (French) [] . . . . . 120--122
M. Émery A Discrete Approach to the Chaotic
Representation Property . . . . . . . . 123--138
Yuri Kabanov and
Christophe Sticker On equivalent martingale measures with
bounded densities . . . . . . . . . . . 139--148
Yuri Kabanov and
Christophe Sticker A teacher's note on no-arbitrage
criteria . . . . . . . . . . . . . . . . 149--152
P. J. Fitzsimmons Hermite Martingales . . . . . . . . . . 153--157
Ma\lgorzata Kuchta and
Micha\l Morayne and
S\lawomir Solecki A Martingale Proof of the Theorem by
Jessen, Marcinkiewicz and Zygmund on
Strong Differentiation of Integrals . . 158--161
Liliana Forzani and
Roberto Scotto and
Wilfredo Urbina A simple proof of the $ L^p $ continuity
of the higher order Riesz Transforms
with respect to the Gaussian measure $
{\gamma }d $ . . . . . . . . . . . . . . 162--166
M. Ledoux Logarithmic Sobolev Inequalities for
Unbounded Spin Systems Revisited . . . . 167--194
Richard F. Bass and
Edwin A. Perkins On the martingale problem for
super-Brownian motion . . . . . . . . . 195--201
Martin Barlow and
Krzysztof Burdzy and
Haya Kaspi and
Avi Mandelbaum Coalescence of Skew Brownian Motions . . 202--205
Nathanaël Enriquez and
Jacques Franchi and
Yves Le Jan Canonical Lift and Exit Law of the
Fundamental Diffusion Associated with a
Kleinian Group . . . . . . . . . . . . . 206--219
J. J. Alibert and
K. Bahlali Genericity in Deterministic and
Stochastic Differential Equations . . . 220--240
Anne Estrade and
Monique Pontier Backward Stochastic Differential
Equations in a Lie Group . . . . . . . . 241--259
M. Malric Filtrations Quotients de la Filtration
Brownienne. (French) [] . . . . . . . . 260--264
Michel Émery and
Walter Schachermayer On Vershik's Standardness Criterion and
Tsirelson's Notion of Cosiness . . . . . 265--305
Peter E. Zhidkov Introduction . . . . . . . . . . . . . . 1--4
Peter E. Zhidkov Notation . . . . . . . . . . . . . . . . 5--7
Peter E. Zhidkov Evolutionary equations. Results on
existence . . . . . . . . . . . . . . . 9--38
Peter E. Zhidkov Stationary problems . . . . . . . . . . 39--78
Peter E. Zhidkov Stability of solutions . . . . . . . . . 79--104
Peter E. Zhidkov Invariant measures . . . . . . . . . . . 105--136
Robert R. Phelps Introduction. The Krein--Milman theorem
as an integral representation theorem 1--8
Robert R. Phelps Application of the Krein--Milman theorem
to completely monotonic functions . . . 9--12
Robert R. Phelps Choquet's theorem: The metrizable case 13--16
Robert R. Phelps The Choquet--Bishop--de Leeuw existence
theorem . . . . . . . . . . . . . . . . 17--23
Robert R. Phelps Applications to Rainwater's and Haydon's
theorems . . . . . . . . . . . . . . . . 25--26
Robert R. Phelps A new setting: The Choquet boundary . . 27--33
Robert R. Phelps Applications of the Choquet boundary to
resolvents . . . . . . . . . . . . . . . 35--38
Robert R. Phelps The Choquet boundary for uniform
algebras . . . . . . . . . . . . . . . . 39--45
Robert R. Phelps The Choquet boundary and approximation
theory . . . . . . . . . . . . . . . . . 47--49
Robert R. Phelps Uniqueness of representing measures . . 51--63
Robert R. Phelps Properties of the resultant map . . . . 65--71
Robert R. Phelps Application to invariant and ergodic
measures . . . . . . . . . . . . . . . . 73--78
Robert R. Phelps A method for extending the
representation theorems: Caps . . . . . 79--87
Robert R. Phelps A different method for extending the
representation theorems . . . . . . . . 88--91
Robert R. Phelps Orderings and dilations of measures . . 93--99
Robert R. Phelps Additional Topics . . . . . . . . . . . 101--113
Nicolas Monod Introduction . . . . . . . . . . . . . . 1--7
Nicolas Monod Banach modules, $ L_\infty $ spaces . . 9--30
Nicolas Monod Relative injectivity and amenable
actions . . . . . . . . . . . . . . . . 31--60
Nicolas Monod Definition and characterization of
continuous bounded cohomology . . . . . 61--127
Nicolas Monod Cohomological techniques . . . . . . . . 129--168
Nicolas Monod Towards applications . . . . . . . . . . 169--201
Damir Filipovi\'c 1. Introduction . . . . . . . . . . . . 1--11
Damir Filipovi\'c 2. Stochastic Equations in Infinite
Dimensions . . . . . . . . . . . . . . . 13--27
Damir Filipovi\'c 3. Consistent State Space Processes . . 29--56
Damir Filipovi\'c 4. The HJM Methodology Revisited . . . . 57--73
Damir Filipovi\'c 5. The Forward Curve Spaces $ H_w $ . . 75--94
Damir Filipovi\'c 6. Invariant Manifolds for Stochastic
Equations . . . . . . . . . . . . . . . 95--111
Damir Filipovi\'c 7. Consistent HJM Models . . . . . . . . 113--125
Damir Filipovi\'c 8. Appendix: a Summary of Conditions . . 127--128
Damir Filipovi\'c References . . . . . . . . . . . . . . . 129--131
Damir Filipovi\'c Index . . . . . . . . . . . . . . . . . 133--134
Clemens Adelmann Introduction . . . . . . . . . . . . . . 1--4
Clemens Adelmann Decomposition Laws . . . . . . . . . . . 5--24
Clemens Adelmann Elliptic Curves . . . . . . . . . . . . 25--39
Clemens Adelmann Elliptic Modular Curves . . . . . . . . 41--58
Clemens Adelmann Torsion Point Fields . . . . . . . . . . 59--86
Clemens Adelmann Invariants and Resolvent Polynomials . . 87--106
Sandra Cerrai Introduction . . . . . . . . . . . . . . 1--18
Sandra Cerrai Kolmogorov equations in $ \mathbb {R}^d
$ with unbounded coefficients . . . . . 21--63
Sandra Cerrai Asymptotic behaviour of solutions . . . 65--80
Sandra Cerrai Analyticity of the semigroup in a
degenerate case . . . . . . . . . . . . 81--101
Sandra Cerrai Smooth dependence on data for the SPDE:
the Lipschitz case . . . . . . . . . . . 105--141
Sandra Cerrai Kolmogorov equations in Hilbert spaces 143--170
Sandra Cerrai Smooth dependence on data for the SPDE:
the non-Lipschitz case (I) . . . . . . . 171--203
Sandra Cerrai Smooth dependence on data for the SPDE:
the non-Lipschitz case (II) . . . . . . 205--220
Sandra Cerrai Ergodicity . . . . . . . . . . . . . . . 221--235
Sandra Cerrai Hamilton--Jacobi--Bellman equations in
Hilbert spaces . . . . . . . . . . . . . 237--279
Sandra Cerrai Application to stochastic optimal
control problems . . . . . . . . . . . . 281--300
Jean-Louis Loday and
Frédéric Chapoton and
Alessandra Frabetti and
François Goichot Introduction . . . . . . . . . . . . . . 1--6
Jean-Louis Loday Dialgebras . . . . . . . . . . . . . . . 7--66
Alessandra Rabetti Dialgebra (co)homology with coefficients 67--103
Frédéric Chapoton Un endofoncteur de la catégorie des
opérades. (French) [] . . . . . . . . . . 105--110
François Goichot Un théoréme de Milnor--Moore pour les
alg\`ebres de Leibniz. (French) [] . . . 111--133
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . i--xiv
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 2--2
Ana Cannas da Silva Symplectic Forms . . . . . . . . . . . . 3--8
Ana Cannas da Silva Symplectic Form on the Cotangent Bundle 9--14
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 16--16
Ana Cannas da Silva Lagrangian Submanifolds . . . . . . . . 17--23
Ana Cannas da Silva Generating Functions . . . . . . . . . . 25--31
Ana Cannas da Silva Recurrence . . . . . . . . . . . . . . . 33--37
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 40--40
Ana Cannas da Silva Preparation for the Local Theory . . . . 41--47
Ana Cannas da Silva Moser Theorems . . . . . . . . . . . . . 49--53
Ana Cannas da Silva Darboux--Moser--Weinstein Theory . . . . 55--60
Ana Cannas da Silva Weinstein Tubular Neighborhood Theorem 61--66
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 68--68
Ana Cannas da Silva Contact Forms . . . . . . . . . . . . . 69--74
Ana Cannas da Silva Contact Dynamics . . . . . . . . . . . . 75--79
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 82--82
Ana Cannas da Silva Almost Complex Structures . . . . . . . 83--88
Ana Cannas da Silva Compatible Triples . . . . . . . . . . . 89--92
Ana Cannas da Silva Dolbeault Theory . . . . . . . . . . . . 93--98
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 100--100
Ana Cannas da Silva Complex Manifolds . . . . . . . . . . . 101--107
Ana Cannas da Silva Kähler Forms . . . . . . . . . . . . . . 109--116
Ana Cannas da Silva Compact Kähler Manifolds . . . . . . . . 117--123
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 126--126
Ana Cannas da Silva Hamiltonian Vector Fields . . . . . . . 127--134
Ana Cannas da Silva Variational Principles . . . . . . . . . 135--142
Ana Cannas da Silva Legendre Transform . . . . . . . . . . . 143--148
Thomas Kerler and
Volodymyr V. Lyubashenko Introduction and Summary of Results . . 1--14
Thomas Kerler and
Volodymyr V. Lyubashenko The Double Category of Framed, Relative
$3$-Cobordisms . . . . . . . . . . . . . 15--95
Thomas Kerler and
Volodymyr V. Lyubashenko Tangle-Categories and Presentation of
Cobordisms . . . . . . . . . . . . . . . 97--172
Thomas Kerler and
Volodymyr V. Lyubashenko Isomorphism between Tangle and Cobordism
Double Categories . . . . . . . . . . . 173--215
Thomas Kerler and
Volodymyr V. Lyubashenko Monoidal categories and monoidal
$2$-categories . . . . . . . . . . . . . 217--259
Thomas Kerler and
Volodymyr V. Lyubashenko Coends and construction of Hopf algebras 261--282
Thomas Kerler and
Volodymyr V. Lyubashenko Construction of TQFT-Double Functors . . 283--311
Thomas Kerler and
Volodymyr V. Lyubashenko Generalization of a modular functor . . 313--334
Thomas Kerler and
Volodymyr V. Lyubashenko From Quantum Field Theory to Axiomatics 335--342
Thomas Kerler and
Volodymyr V. Lyubashenko Double Categories and Double Functors 343--352
Thomas Kerler and
Volodymyr V. Lyubashenko Thick tangles . . . . . . . . . . . . . 353--368
Lo\"\ic Herve Generalization to the Non-Ergodic Case 115--140
Jie Xiao Fundamental Material . . . . . . . . . . 1--12
Jie Xiao Composite Embedding . . . . . . . . . . 13--22
Jie Xiao Series Expansions . . . . . . . . . . . 23--34
Jie Xiao Modified Carleson Measures . . . . . . . 35--44
Jie Xiao Inner-Outer Structure . . . . . . . . . 45--56
Jie Xiao Pseudo-holomorphic Extension . . . . . . 57--66
Jie Xiao Representation via $ \partial $-equation 67--86
Jie Xiao Dyadic Localization . . . . . . . . . . 87--104
Markus J. Pflaum Introduction . . . . . . . . . . . . . . 1--9
Markus J. Pflaum Notation . . . . . . . . . . . . . . . . 11--14
Markus J. Pflaum Stratified Spaces and Functional
Structures . . . . . . . . . . . . . . . 15--62
Markus J. Pflaum Differential Geometric Objects on
Singular Spaces . . . . . . . . . . . . 63--90
Markus J. Pflaum Control Theory . . . . . . . . . . . . . 91--149
Markus J. Pflaum Orbit Spaces . . . . . . . . . . . . . . 151--168
Markus J. Pflaum De Rham Cohomology . . . . . . . . . . . 169--181
Markus J. Pflaum Homology of Algebras of Smooth Functions 183--199
Maria Alberich-Carramiñana 1. Preliminaries . . . . . . . . . . . . 1--28
Maria Alberich-Carramiñana 2. Plane Cremona maps . . . . . . . . . 29--71
Maria Alberich-Carramiñana 3. Clebsch's theorems and Jacobian . . . 73--100
Maria Alberich-Carramiñana 4. Composition . . . . . . . . . . . . . 101--125
Maria Alberich-Carramiñana 5. Characteristic matrices . . . . . . . 127--176
Maria Alberich-Carramiñana 6. Total principal and special
homaloidal curves . . . . . . . . . . . 177--205
Maria Alberich-Carramiñana 7. Inverse Cremona map . . . . . . . . . 207--225
Maria Alberich-Carramiñana 8. Noether's factorization theorem . . . 227--247
Maria Alberich-Carramiñana References . . . . . . . . . . . . . . . 249--251
Maria Alberich-Carramiñana Subject and Index Notation . . . . . . . 253--256
Heide Gluesing-Luerssen 1. Introduction . . . . . . . . . . . . 1--5
Heide Gluesing-Luerssen 2. The Algebraic Framework for
Delay-Differential Equations . . . . . . 7--21
Heide Gluesing-Luerssen 3. The Algebraic Structure of $ \mathcal
{H}_0 $ . . . . . . . . . . . . . . . . 23--72
Heide Gluesing-Luerssen 4. Behaviors of Delay-Differential
Systems . . . . . . . . . . . . . . . . 73--134
Heide Gluesing-Luerssen 5. First-Out Representations . . . . . . 135--167
Heide Gluesing-Luerssen References . . . . . . . . . . . . . . . 169--174
Heide Gluesing-Luerssen Subject Index and Notation Index . . . . 175--176
Michel Émery and
Marc Yor A short presentation of the selected
articles . . . . . . . . . . . . . . . . 1--8
C. Dellacherie Ensembles Aléatoires I. (French) [] . . . 9--26
C. Dellacherie Ensembles Aléatoires II. (French) [] . . 27--48
P.-A. Meyer Guide Détaillé de la Théorie
\flqqGénérale\frqq des Processus. (French)
[] . . . . . . . . . . . . . . . . . . . 49--74
C. Dellacherie Sur les Théorémes Fondamentaux de la
Théorie Générale des Processus. (French) [] 75--84
C. Dellacherie Un Ensemble Progressivement Mesurable 85--87
Marc Yor Grossissement d'une Filtration et
Semi-martingales: Théor\`emes Généraux.
(French) [] . . . . . . . . . . . . . . 88--96
P.-A. Meyer Intégrales Stochastiques I. (French) [] 97--119
P.-A. Meyer Intégrales Stochastiques II. (French) [] 120--142
C. Doléans-Dade and
P.-A. Meyer Intégrales Stochastiques par Rapport aux
Martingales Locales. (French) [] . . . . 143--173
P.-A. Meyer Un Cours sur les Intégrales
Stochastiques. (French) [] . . . . . . . 174--329
Marc Yor Sur Quelques Approximations d'Intégrales
Stochastiques. (French) [] . . . . . . . 330--340
Marc Yor Sur les Intégrales Stochastiques
Optionelles et une Suite Remarquable de
Formules Exponentielles. (French) [] . . 341--360
E. Lenglart and
D. Lepingle and
M. Pratelli Présentation Unifiée de Certaines Inégalités
de la Théorie des Martingales. (French)
[] . . . . . . . . . . . . . . . . . . . 361--383
P.-A. Meyer Le Dual de \flqq$ H^1 $\frqq est
\flqqBMO\frqq (Cas Continu). (French) [] 384--393
A. Bernard and
B. Maisonneuve Decomposition Atomique de Martingales de
la Classe $ H^1 $. (French) [] . . . . . 394--414
C. Dellacherie Intégrals Stochastiques par Rapport aux
Processus de Wiener ou de Poisson . . . 415--416
Chou Ching-Sung and
P.-A. Meyer Sur la Représentation des Martingales
comme Intégrales Stochastiques dans les
Processus Ponctuels. (French) [] . . . . 417--427
Marc Yor Sous-Espaces Denses dans $ L^1 $ ou $
H^1 $ et Représentation des Martingales.
(French) [] . . . . . . . . . . . . . . 428--472
C. Delacherie and
C. Doleans-Dade Un contre-exemple au probl\`eme des
laplaciens approchés. (French) [] . . . . 473--483
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 1. Quaternions . . . . . . . . . . . . . 1--4
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 2. Linear Algebra over the Quaternions 5--8
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 3. Projective Spaces . . . . . . . . . . 9--14
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 4. Vector Bundles . . . . . . . . . . . 15--22
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 5. The Mean Curvature Sphere . . . . . . 23--30
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 6. Willmore Surfaces . . . . . . . . . . 31--38
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 7. Metric and Affine Conformal Geometry 39--46
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 8. Twistor Projections . . . . . . . . . 47--52
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 9. Bäcklund Transforms of Willmore
Surfaces . . . . . . . . . . . . . . . . 53--59
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 10. Willmore Surfaces in $ S^3 $ . . . . 61--66
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 11. Spherical Willmore Surfaces in $
\mathbb {H} P^1 $ . . . . . . . . . . . 67--72
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 12. Darboux transforms . . . . . . . . . 73--81
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall 13. Appendix . . . . . . . . . . . . . . 83--86
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall References . . . . . . . . . . . . . . . 87--87
Francis E. Burstall and
Franz Pedit and
Dirk Ferus and
Katrin Leschke and
Ulrich Pinkall Index . . . . . . . . . . . . . . . . . 89--89
Z. Arad and
M. Muzychuk Introduction . . . . . . . . . . . . . . 1--11
Z. Arad and
M. Muzychuk and
H. Arisha and
E. Fisman Integral Table Algebras with a Faithful
Nonreal Element of Degree $4$ . . . . . 13--41
Z. Arad and
F. Bünger and
E. Fisman and
M. Muzychuk Standard Integral Table Algebras with a
Faithful Nonreal Element of Degree $5$ 43--81
F. Bünger Standard Integral Table Algebras with a
Faithful Real Element of Degree $5$ and
Width $3$ . . . . . . . . . . . . . . . 83--103
Mitsugu Hirasaka The Enumeration of Primitive Commutative
Association Schemes with a Non-symmetric
Relation of Valency, at Most $4$ . . . . 105--119
Volker Runde 0. Paradoxical decompositions . . . . . 1--15
Volker Runde 1. Amenable, locally compact groups . . 17--36
Volker Runde 2. Amenable Banach algebras . . . . . . 37--61
Volker Runde 3. Examples of amenable Banach algebras 63--81
Volker Runde 4. Amenability-like properties . . . . . 83--117
Volker Runde 5. Banach homology . . . . . . . . . . . 119--139
Volker Runde 6. $ C^* $- and $ W^* $-algebras . . . . 141--190
Volker Runde 7. Operator amenability . . . . . . . . 191--207
Volker Runde 8. Geometry of spaces of homomorphisms 209--219
Volker Runde Open problems . . . . . . . . . . . . . 221--229
Volker Runde A Abstract harmonic analysis . . . . . . 231--241
Volker Runde B Tensor products . . . . . . . . . . . 243--254
Volker Runde C Banach space properties . . . . . . . 255--263
Volker Runde D Operator spaces . . . . . . . . . . . 265--274
Volker Runde List of Symbols . . . . . . . . . . . . 275--280
Volker Runde References . . . . . . . . . . . . . . . 281--288
Volker Runde Index . . . . . . . . . . . . . . . . . 289--296
William H. Meeks III Minimal surfaces in Flat
Three-Dimensional Spaces . . . . . . . . 1--14
Joaquín Pérez and
Antonio Ros Properly embedded minimal surfaces with
finite total curvature . . . . . . . . . 15--66
Harold Rosenberg Bryant Surfaces . . . . . . . . . . . . 67--111
K. Behrend Introduction . . . . . . . . . . . . . . 1--2
K. Behrend Localization and Gromov--Witten
Invariants . . . . . . . . . . . . . . . 3--38
César Gómez and
Rafael Hernández Fields, Stings and Branes . . . . . . . 39--191
Vitaly Tarasov $q$-Hypergeometric Functions and
Representation Theory . . . . . . . . . 193--267
Gang Tian Constructing symplectic invariants . . . 269--311
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo 1. The Osserman Conditions in
Semi-Riemannian Geometry . . . . . . . . 1--20
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo 2. The Osserman Conjecture in Riemannian
Geometry . . . . . . . . . . . . . . . . 21--37
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo 3. Lorentzian--Osserman Manifolds . . . 39--61
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo 4. Four-Dimensional Semi-Riemannian
Osserman Manifolds with Metric Tensors
of Signature $ (2, 2) $ . . . . . . . . 63--94
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo 5. Semi-Riemannian Osserman Manifolds 95--136
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo 6. Generalizations and Osserman-Related
Conditions . . . . . . . . . . . . . . . 137--156
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo References . . . . . . . . . . . . . . . 157--163
Eduardo García-Río and
Demir N. Kupeli and
Ramón Vázquez-Lorenzo Index . . . . . . . . . . . . . . . . . 165--166
Hubert Kiechle Introduction . . . . . . . . . . . . . . 1--5
Hubert Kiechle 1. Preliminaries . . . . . . . . . . . . 7--22
Hubert Kiechle 2. Left Loops and Transversals . . . . . 23--42
Hubert Kiechle 3. The Left Inverse Property and Kikkawa
Loops . . . . . . . . . . . . . . . . . 43--52
Hubert Kiechle 4. Isotopy Theory . . . . . . . . . . . 53--58
Hubert Kiechle 5. Nuclei and the Autotopism Group . . . 59--64
Hubert Kiechle 6. Bol Loops and $K$-Loops . . . . . . . 65--81
Hubert Kiechle 7. Frobenius Groups with Many
Involutions . . . . . . . . . . . . . . 83--102
Hubert Kiechle 8. Loops with Fibrations . . . . . . . . 103--106
Hubert Kiechle 9. $K$-Loops from Classical Groups over
Ordered Fields . . . . . . . . . . . . . 107--136
Hubert Kiechle 10. Relativistic Velocity Addition . . . 137--142
Hubert Kiechle 11. $K$-loops from the General Linear
Groups over Rings . . . . . . . . . . . 143--150
Hubert Kiechle 12. Derivations . . . . . . . . . . . . 151--164
Hubert Kiechle Appendix . . . . . . . . . . . . . . . . 165--170
Hubert Kiechle References . . . . . . . . . . . . . . . 171--180
Hubert Kiechle Index . . . . . . . . . . . . . . . . . 181--186
Igor \vChue\vshov Introduction . . . . . . . . . . . . . . 1--7
Igor \vChue\vshov 1. General Facts about Random Dynamical
Systems . . . . . . . . . . . . . . . . 9--53
Igor \vChue\vshov 2. Generation of Random Dynamical
Systems . . . . . . . . . . . . . . . . 55--81
Igor \vChue\vshov 3. Order-Preserving Random Dynamical
Systems . . . . . . . . . . . . . . . . 83--111
Igor \vChue\vshov 4. Sublinear Random Dynamical Systems 113--141
Igor \vChue\vshov 5. Cooperative Random Differential
Equations . . . . . . . . . . . . . . . 143--183
Igor \vChue\vshov 6. Cooperative Stochastic Differential
Equations . . . . . . . . . . . . . . . 185--225
Igor \vChue\vshov References . . . . . . . . . . . . . . . 227--231
Igor \vChue\vshov Index . . . . . . . . . . . . . . . . . 233--234
Jan Hendrik Bruinier Introduction . . . . . . . . . . . . . . 1--13
Jan Hendrik Bruinier 1. Vector valued modular forms for the
metaplectic group . . . . . . . . . . . 15--38
Jan Hendrik Bruinier 2. The regularized theta lift . . . . . 39--61
Jan Hendrik Bruinier 3. The Fourier expansion of the theta
lift . . . . . . . . . . . . . . . . . . 63--94
Jan Hendrik Bruinier 4. Some Riemann geometry on $ {\rm O}(2,
l) $ . . . . . . . . . . . . . . . . . . 95--118
Jan Hendrik Bruinier 5. Chern classes of Heegner divisors . . 119--140
Jan Hendrik Bruinier References . . . . . . . . . . . . . . . 141--144
Jan Hendrik Bruinier Subject Index and Notation Index . . . . 145--152
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Front Matter . . . . . . . . . . . . . . 4--4
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Introduction . . . . . . . . . . . . . . 5--6
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins On the construction of the
three-dimensional polymer measure . . . 7--38
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Self-attracting random walks . . . . . . 39--104
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins One-dimensional pinning-depinning
transitions . . . . . . . . . . . . . . 105--120
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Back Matter . . . . . . . . . . . . . . 121--125
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Front Matter . . . . . . . . . . . . . . 127--127
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Introduction . . . . . . . . . . . . . . 132--134
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Branching Particle Systems and
Dawson--Watanabe Superprocesses . . . . 135--192
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Sample Path Properties of Superprocesses 193--246
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Interactive Drifts . . . . . . . . . . . 247--280
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Spatial Interactions . . . . . . . . . . 281--317
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Back Matter . . . . . . . . . . . . . . 318--329
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Front Matter . . . . . . . . . . . . . . 332--332
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Introduction, Tangent Sets . . 336--345
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Lower Bounds . . . . . . . . . 346--356
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Calculus of Scores . . . . . . 357--369
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Gaussian Approximations . . . . 370--382
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Empirical Processes and
Consistency of $Z$-Estimators . . . . . 383--394
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Empirical Processes and
Normality of $Z$-Estimators . . . . . . 395--411
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Efficient Score and One-step
Estimators . . . . . . . . . . . . . . . 412--423
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Rates of Convergence . . . . . 424--432
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Maximum and Profile Likelihood 433--445
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Lecture: Infinite-dimensional
$Z$-Estimators . . . . . . . . . . . . . 446--454
Erwin Bolthausen and
Aad van der Vaart and
Edwin Perkins Back Matter . . . . . . . . . . . . . . 455--457
Cho-Ho Chu and
Anthony To-Ming Lau Introduction . . . . . . . . . . . . . . 1--4
Cho-Ho Chu and
Anthony To-Ming Lau Harmonic functions on locally compact
groups . . . . . . . . . . . . . . . . . 5--50
Cho-Ho Chu and
Anthony To-Ming Lau Harmonic functions on Fourier algebras 51--89
Cho-Ho Chu and
Anthony To-Ming Lau References . . . . . . . . . . . . . . . 90--97
Cho-Ho Chu and
Anthony To-Ming Lau List of symbols and Subject Index . . . 98--100
Lars Grüne 1. Introduction: Dynamics, Perturbation
and Discretization . . . . . . . . . . . 1--12
Lars Grüne 2. Setup and Preliminaries . . . . . . . 13--25
Lars Grüne 3. Strongly Attracting Sets . . . . . . 27--68
Lars Grüne 4. Weakly Attracting Sets . . . . . . . 69--112
Lars Grüne 5. Relation between Discretization and
Perturbation . . . . . . . . . . . . . . 113--136
Lars Grüne 6. Discretizations of Attracting Sets 137--156
Lars Grüne 7. Domains of Attraction . . . . . . . . 157--194
Lars Grüne Appendix A: Viscosity Solutions . . . . 195--200
Lars Grüne Appendix B: Comparison Functions . . . . 201--205
Lars Grüne Appendix C: Numerical Examples . . . . . 207--217
Lars Grüne Notation . . . . . . . . . . . . . . . . 219--220
Lars Grüne References . . . . . . . . . . . . . . . 221--227
Lars Grüne Index . . . . . . . . . . . . . . . . . 229--231
Hakan Eliasson and
Sergei Kuksin and
Stefano Marmi and
Jean-Christophe Yoccoz Front Matter . . . . . . . . . . . . . . I--XIII
L. Hakan Eliasson Perturbations of linear quasi-periodic
system . . . . . . . . . . . . . . . . . 1--60
Sergei B. Kuksin KAM-persistence of finite-gap solutions 61--123
Jean-Christophe Yoccoz Analytic linearization of circle
diffeomorphisms . . . . . . . . . . . . 125--173
Stefano Marmi and
Jean-Christophe Yoccoz Some open problems related to small
divisors . . . . . . . . . . . . . . . . 175--191
Stefano Marmi and
Jean-Christophe Yoccoz Back Matter . . . . . . . . . . . . . . 193--199
Juan Arias de Reyna 1. Hardy--Littlewood maximal function 3--10
Juan Arias de Reyna 2. Fourier Series . . . . . . . . . . . 11--29
Juan Arias de Reyna 3. Hilbert Transform . . . . . . . . . . 31--44
Juan Arias de Reyna The Charleson--Hunt Theorem . . . . . . 47--49
Juan Arias de Reyna 4. The Basic Step . . . . . . . . . . . 51--72
Juan Arias de Reyna 5. Maximal Inequalities . . . . . . . . 73--76
Juan Arias de Reyna 6. Growth of Partial Sums . . . . . . . 77--84
Juan Arias de Reyna 7. Carleson analysis of the function . . 85--91
Juan Arias de Reyna 8. Allowed Pairs . . . . . . . . . . . . 93--102
Juan Arias de Reyna 9. Pair Interchange Theorems . . . . . . 103--115
Juan Arias de Reyna 10. All together . . . . . . . . . . . . 117--123
Juan Arias de Reyna 11. Spaces of functions . . . . . . . . 127--143
Juan Arias de Reyna 12. The Maximal Operator of Fourier
series . . . . . . . . . . . . . . . . . 145--162
Juan Arias de Reyna 13. Fourier Transform on the line . . . 163--166
Juan Arias de Reyna References . . . . . . . . . . . . . . . 167--169
Juan Arias de Reyna Comments and Subject Index . . . . . . . 171--175
Steven Dale Cutkosky 1. Introduction . . . . . . . . . . . . 1--8
Steven Dale Cutkosky 2. Local Monomialization . . . . . . . . 9--10
Steven Dale Cutkosky 3. Monomialization of Morphisms in Low
Dimensions . . . . . . . . . . . . . . . 11--13
Steven Dale Cutkosky 4. An Overview of the Proof of
Monomialization of Morphisms From $3$
Folds to Surfaces . . . . . . . . . . . 14--18
Steven Dale Cutkosky 5. Notations . . . . . . . . . . . . . . 19--19
Steven Dale Cutkosky 6. The Invariant $ \nu $ . . . . . . . . 20--55
Steven Dale Cutkosky 7. The Invariant $ \nu $ Under Quadratic
Transforms . . . . . . . . . . . . . . . 56--76
Steven Dale Cutkosky 8. Permissible Monoidal Transforms
Centered at Curves . . . . . . . . . . . 77--92
Steven Dale Cutkosky 9. Power Series in $2$ Variables . . . . 93--108
Steven Dale Cutkosky 10. $ \bf {A_r(X)} $ . . . . . . . . . . 109--109
Steven Dale Cutkosky 11. Reduction of $ \nu $ in a Special
Case . . . . . . . . . . . . . . . . . . 110--130
Steven Dale Cutkosky 12. Reduction of $ \nu $ in a Second
Special Case . . . . . . . . . . . . . . 131--149
Steven Dale Cutkosky 13. Resolution 1 . . . . . . . . . . . . 150--162
Steven Dale Cutkosky 14. Resolution 2 . . . . . . . . . . . . 163--175
Steven Dale Cutkosky 15. Resolution 3 . . . . . . . . . . . . 176--184
Steven Dale Cutkosky 16. Resolution 4 . . . . . . . . . . . . 185--187
Steven Dale Cutkosky 17. Proof of the Main Theorem . . . . . 188--188
Steven Dale Cutkosky 18. Monomialization . . . . . . . . . . 189--223
Steven Dale Cutkosky 19. Toroidalization . . . . . . . . . . 224--231
Steven Dale Cutkosky 20. Glossary of Notations and
Definitions . . . . . . . . . . . . . . 232--233
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 1. Generalities . . . . . . . . . . . . 3--37
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 2. Doi--Koppinen Hopf modules and
entwined modules . . . . . . . . . . . . 39--87
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 3. Frobenius and separable functors for
entwined modules . . . . . . . . . . . . 89--157
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 4. Applications . . . . . . . . . . . . 159--213
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 5. Yetter--Drinfeld modules and the
quantum Yang--Baxter equation . . . . . 217--243
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 6. Hopf modules and the pentagon
equation . . . . . . . . . . . . . . . . 245--300
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 7. Long dimodules and the Long equation 301--316
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu 8. The Frobenius-Separability equation 317--343
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu References . . . . . . . . . . . . . . . 345--352
Stefaan Caenepeel and
Gigel Militaru and
Shenglin Zhu Index . . . . . . . . . . . . . . . . . 353--354
Alexander Vasil'ev 1. Introduction . . . . . . . . . . . . 1--5
Alexander Vasil'ev 2. Moduli of Families of Curves and
Extremal Partitions . . . . . . . . . . 7--55
Alexander Vasil'ev 3. Moduli in Extremal Problems for
Conformal Mapping . . . . . . . . . . . 57--139
Alexander Vasil'ev 4. Moduli in Extremal Problems for
Quasiconformal Mapping . . . . . . . . . 141--174
Alexander Vasil'ev 5. Moduli on Teichmüller Spaces . . . . . 175--196
Alexander Vasil'ev References . . . . . . . . . . . . . . . 197--206
Alexander Vasil'ev List of symbols and Index . . . . . . . 207--211
Yorck Sommerhäuser Introduction . . . . . . . . . . . . . . 1--6
Yorck Sommerhäuser 1. Preliminaries . . . . . . . . . . . . 7--24
Yorck Sommerhäuser 2. Clifford theory . . . . . . . . . . . 25--33
Yorck Sommerhäuser 3. Examples . . . . . . . . . . . . . . 35--47
Yorck Sommerhäuser 4. Isomorphisms . . . . . . . . . . . . 49--65
Yorck Sommerhäuser 5. Constructions . . . . . . . . . . . . 67--89
Yorck Sommerhäuser 6. Commutative Yetter--Drinfel'd Hopf
algebras . . . . . . . . . . . . . . . . 91--102
Yorck Sommerhäuser 7. Cocommutative Yetter--Drinfel'd Hopf
algebras . . . . . . . . . . . . . . . . 103--113
Yorck Sommerhäuser 8. Semisimple Hopf algebras of dimension
$ p^3 $ . . . . . . . . . . . . . . . . 115--129
Yorck Sommerhäuser 9. Semisimple Hopf algebras of dimension
$ p q $ . . . . . . . . . . . . . . . . 131--140
Yorck Sommerhäuser 10. Applications . . . . . . . . . . . . 141--145
Yorck Sommerhäuser References . . . . . . . . . . . . . . . 147--150
Yorck Sommerhäuser Subject and Symbol Index . . . . . . . . 151--157
Xingzhi Zhan 1. Inequalities in the Löwner Partial
Order . . . . . . . . . . . . . . . . . 1--15
Xingzhi Zhan 2. Majorization and Eigenvalues . . . . 17--25
Xingzhi Zhan 3. Singular Values . . . . . . . . . . . 27--54
Xingzhi Zhan 4. Norm Inequalities . . . . . . . . . . 55--98
Xingzhi Zhan 5. Solution of the van der Waerden
Conjecture . . . . . . . . . . . . . . . 99--109
Xingzhi Zhan References . . . . . . . . . . . . . . . 110--114
Xingzhi Zhan Index . . . . . . . . . . . . . . . . . 115--116
Manfred Knebusch and
Digen Zhang Introduction . . . . . . . . . . . . . . 1--6
Manfred Knebusch and
Digen Zhang Summary . . . . . . . . . . . . . . . . 7--7
Manfred Knebusch and
Digen Zhang Chapter I: Basics on Manis valuations
and Prüfer extensions . . . . . . . . . . 9--81
Manfred Knebusch and
Digen Zhang Chapter II: Multiplicative ideal theory 83--176
Manfred Knebusch and
Digen Zhang Chapter III: PM-valuations and
valuations of weaker type . . . . . . . 177--250
Manfred Knebusch and
Digen Zhang Appendix . . . . . . . . . . . . . . . . 251--256
Manfred Knebusch and
Digen Zhang References . . . . . . . . . . . . . . . 257--262
Manfred Knebusch and
Digen Zhang Subject and Symbol Index . . . . . . . . 263--267
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong Introduction . . . . . . . . . . . . . . 1--3
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 1. Mathematical preliminaries . . . . . 5--16
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 2. Regularization of moment problems by
truncated expansion and by the Tikhonov
method . . . . . . . . . . . . . . . . . 17--49
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 3. Backus-Gilbert regularization of a
moment problem . . . . . . . . . . . . . 51--81
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 4. The Hausdorff moment problem:
regularization and error estimates . . . 83--97
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 5. Analytic functions: reconstruction
and Sinc approximations . . . . . . . . 99--130
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 6. Regularization of some inverse
problems in potential theory . . . . . . 131--146
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 7. Regularization of some inverse
problems in heat conduction . . . . . . 147--169
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong 8. Epilogue . . . . . . . . . . . . . . 171--173
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong References . . . . . . . . . . . . . . . 175--180
Dang Dinh Ang and
Rudolf Gorenflo and
Vy Khoi Le and
Dang Duc Trong Index . . . . . . . . . . . . . . . . . 181--183
Jorge Cortés Monforte Front Matter . . . . . . . . . . . . . . I--XV
Jorge Cortés Monforte 1. Introduction . . . . . . . . . . . . 1--12
Jorge Cortés Monforte 2. Basic geometric tools . . . . . . . . 13--37
Jorge Cortés Monforte 3. Nonholonomic systems . . . . . . . . 39--61
Jorge Cortés Monforte 4. Symmetries of nonholonomic systems 63--102
Jorge Cortés Monforte 5. Chaplygin systems . . . . . . . . . . 103--120
Jorge Cortés Monforte 6. A class of hybrid nonholonomic
systems . . . . . . . . . . . . . . . . 121--140
Jorge Cortés Monforte 7. Nonholonomic integrators . . . . . . 141--170
Jorge Cortés Monforte 8. Control of mechanical systems . . . . 171--202
Jorge Cortés Monforte References . . . . . . . . . . . . . . . 203--216
Jorge Cortés Monforte Back Matter . . . . . . . . . . . . . . 203--224
Jorge Cortés Monforte Index . . . . . . . . . . . . . . . . . 217--219
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Basic notions on substitutions . . . . . 1--32
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Substitutions, arithmetic and finite
automata: an introduction . . . . . . . 35--52
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Automatic sequences and transcendence 53--80
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Substitutions and partitions of the set
of positive integers . . . . . . . . . . 81--98
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Substitutions and symbolic dynamical
systems . . . . . . . . . . . . . . . . 101--142
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Sturmian Sequences . . . . . . . . . . . 143--198
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Spectral theory and geometric
representation of substitutions . . . . 199--252
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Diophantine approximations,
substitutions, and fractals . . . . . . 253--292
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Infinite words generated by invertible
substitutions . . . . . . . . . . . . . 295--320
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Polynomial dynamical systems associated
with substitutions . . . . . . . . . . . 321--342
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Piecewise linear transformations of the
unit interval and Cantor sets . . . . . 343--361
N. Pytheas Fogg and
Valéré Berthé and
Sébastien Ferenczi and
Christian Mauduit and
Anne Siegel Some open problems . . . . . . . . . . . 363--374
J. Rivat A. Undecomposable matrices in dimension
$3$ . . . . . . . . . . . . . . . . . . 375--376
Huishi Li Introduction . . . . . . . . . . . . . . 1--4
Huishi Li Chapter I: Basic Structural Tricks and
Examples . . . . . . . . . . . . . . . . 5--32
Huishi Li Chapter II: Gröbner Bases in Associative
Algebras . . . . . . . . . . . . . . . . 33--65
Huishi Li Chapter III: Gröbner Bases and Basic
Algebraic--Algorithmic Structures . . . 67--90
Huishi Li Chapter IV: Filtered-Graded Transfer of
Gröbner Bases . . . . . . . . . . . . . . 91--105
Huishi Li Chapter V: GK-dimension of Modules over
Quadric Solvable Polynomial Algebras and
Elimination of Variables . . . . . . . . 107--132
Huishi Li Chapter VI: Multiplicity Computation of
Modules over Quadric Solvable Polynomial
Algebras . . . . . . . . . . . . . . . . 133--151
Huishi Li Chapter VII: $ (\partial)$-Holonomic
Modules and Functions over Quadric
Solvable Polynomial Algebras . . . . . . 153--173
Huishi Li Chapter VIII: Regularity and $ K_0
$-group of Quadric Solvable Polynomial
Algebras . . . . . . . . . . . . . . . . 175--186
Huishi Li References . . . . . . . . . . . . . . . 187--193
Huishi Li Index . . . . . . . . . . . . . . . . . 195--197
Jens M. Melenk 1. Introduction . . . . . . . . . . . . 1--20
Jens M. Melenk 2. hp-FEM for Reaction Diffusion
Problems: Principal Results . . . . . . 23--72
Jens M. Melenk 3. hp Approximation . . . . . . . . . . 73--138
Jens M. Melenk 4. The Countably Normed Spaces $ {\cal
B}^l_{\beta, \varepsilon } $ . . . . . . 141--168
Jens M. Melenk 5. Regularity Theory in Countably Normed
Spaces . . . . . . . . . . . . . . . . . 169--224
Jens M. Melenk 6. Exponentially Weighted Countably
Normed Spaces . . . . . . . . . . . . . 227--254
Jens M. Melenk 7. Regularity through Asymptotic
Expansions . . . . . . . . . . . . . . . 255--295
Jens M. Melenk Appendix . . . . . . . . . . . . . . . . 297--310
Jens M. Melenk References . . . . . . . . . . . . . . . 311--316
Jens M. Melenk Index . . . . . . . . . . . . . . . . . 317--318
Bernhard Schmidt 1. Introduction . . . . . . . . . . . . 1--25
Bernhard Schmidt 2. The field descent . . . . . . . . . . 27--51
Bernhard Schmidt 3. Exponent bounds . . . . . . . . . . . 53--78
Bernhard Schmidt 4. Two-weight irreducible cyclic codes 79--90
Bernhard Schmidt Bibliography . . . . . . . . . . . . . . 91--98
Bernhard Schmidt Index . . . . . . . . . . . . . . . . . 99--100
Waldyr Muniz Oliva Introduction . . . . . . . . . . . . . . 1--2
Waldyr Muniz Oliva 1. Differentiable manifolds . . . . . . 3--12
Waldyr Muniz Oliva 2. Vector fields, differential forms and
tensor fields . . . . . . . . . . . . . 13--21
Waldyr Muniz Oliva 3. Pseudo-Riemannian manifolds . . . . . 23--53
Waldyr Muniz Oliva 4. Newtonian mechanics . . . . . . . . . 55--60
Waldyr Muniz Oliva 5. Mechanical systems on Riemannian
manifolds . . . . . . . . . . . . . . . 61--110
Waldyr Muniz Oliva 6. Mechanical systems with non-holonomic
constraints . . . . . . . . . . . . . . 111--126
Waldyr Muniz Oliva 7. Hyperbolicity and Anosov systems.
Vakonomic mechanics . . . . . . . . . . 127--143
Waldyr Muniz Oliva 8. Special relativity . . . . . . . . . 145--163
Waldyr Muniz Oliva 9. General relativity . . . . . . . . . 165--181
Waldyr Muniz Oliva A. Hamiltonian and Lagrangian formalisms 183--193
Waldyr Muniz Oliva B. Möbius transformations and the Lorentz
group . . . . . . . . . . . . . . . . . 195--221
Waldyr Muniz Oliva C. Quasi-Maxwell form of Einstein's
equation . . . . . . . . . . . . . . . . 223--244
Waldyr Muniz Oliva D. Viscosity solutions and Aubry--Mather
theory . . . . . . . . . . . . . . . . . 245--257
Waldyr Muniz Oliva References . . . . . . . . . . . . . . . 259--261
Waldyr Muniz Oliva Index . . . . . . . . . . . . . . . . . 263--270
Hervé Pajot 1. Some geometric measure theory . . . . 1--15
Hervé Pajot 2. P. Jones' traveling salesman theorem 17--27
Hervé Pajot 3. Menger curvature . . . . . . . . . . 29--54
Hervé Pajot 4. The Cauchy singular integral operator
on Ahlfors regular sets . . . . . . . . 55--65
Hervé Pajot 5. Analytic capacity and the Painlevé
problem . . . . . . . . . . . . . . . . 67--79
Hervé Pajot 6. The Denjoy and Vitushkin conjectures 81--103
Hervé Pajot 7. The capacity $ \gamma_{ + } $ and the
Painlevé Problem . . . . . . . . . . . . 105--114
Hervé Pajot Bibliography . . . . . . . . . . . . . . 115--118
Hervé Pajot Index . . . . . . . . . . . . . . . . . 119--119
Ivan Cherednik and
Yavor Markov Hankel transform via double Hecke
algebra . . . . . . . . . . . . . . . . 1--25
Roger Howe Lecture Notes by Cathy Kriloff . . . . . 27--69
George Lusztig Notes on affine Hecke algebras . . . . . 71--103
Ofer Gabber and
Lorenzo Ramero 1. Introduction . . . . . . . . . . . . 1--10
Ofer Gabber and
Lorenzo Ramero 2. Homological theory . . . . . . . . . 11--49
Ofer Gabber and
Lorenzo Ramero 3. Almost ring theory . . . . . . . . . 50--91
Ofer Gabber and
Lorenzo Ramero 4. Fine study of almost projective
modules . . . . . . . . . . . . . . . . 92--129
Ofer Gabber and
Lorenzo Ramero 5. Henselization and completion of
almost algebras . . . . . . . . . . . . 130--194
Ofer Gabber and
Lorenzo Ramero 6. Valuation theory . . . . . . . . . . 195--241
Ofer Gabber and
Lorenzo Ramero 7. Analytic geometry . . . . . . . . . . 242--286
Ofer Gabber and
Lorenzo Ramero 8. Appendix . . . . . . . . . . . . . . 287--300
Ofer Gabber and
Lorenzo Ramero References and Index . . . . . . . . . . 301--303
A. Guionnet and
B. Zegarlinksi Lectures on Logarithmic Sobolev
Inequalities . . . . . . . . . . . . . . 1--134
Leonid Pastur and
Antonie Lejay Matrices aléatoires: Statistique
asymptotique des valeurs propres.
(French) [] . . . . . . . . . . . . . . 135--164
Neil O'Connell Random matrices, non-colliding processes
and queues . . . . . . . . . . . . . . . 165--182
Azzouz Dermoune and
Octave Moutsinga Generalized variational principles . . . 183--193
Djalil Chafa\"\i Gaussian maximum of entropy and reversed
log-Sobolev inequality . . . . . . . . . 194--200
Laurent Miclo About projections of logarithmic Sobolev
inequalities . . . . . . . . . . . . . . 201--221
Laurent Miclo Sur l'inégalité de Sobolev logarithmique
des opérateurs de Laguerre \`a petit
param\`etre. (French) [] . . . . . . . . 222--229
Abdellatif Bentaleb Sur les fonctions extrémales des inégalités
de Sobolev des opérateurs de diffusion.
(French) [] . . . . . . . . . . . . . . 230--250
Catherine Donati-Martin and
Yueyun Hu Penalization of the Wiener Measure and
Principal Values . . . . . . . . . . . . 251--269
Christophe Leuridan Théor\`eme de Ray--Knight dans un arbre:
Une approche algébrique. (French) [] . . 270--301
Richard F. Bass Stochastic differential equations driven
by symmetric stable processes . . . . . 302--313
Thomas Simon Support d'une équation d'Itô avec sauts en
dimension $1$. (French) [] . . . . . . . 314--330
Nathalie Eisenbaum A Gaussian sheet connected to symmetric
Markov chains . . . . . . . . . . . . . 331--334
Christophe Leuridan Filtration d'une Marche aléatoire
stationnaire sur le cercle. (French) [] 335--347
Samia Beghdadi-Sakrani Une martingale non pure, dont la
filtration est brownienne. (French) [] 348--359
Jan Hannig On filtrations related to purely
discontinuous martingales . . . . . . . 360--365
Samia Beghdadi-Sakrani Calcul stochastique pour des mesures
signées. (French) [] . . . . . . . . . . 366--382
Jean Jacod On processes with conditional
independent increments and stable
convergence in law . . . . . . . . . . . 383--401
Valentin Grecea Duality and quasy-continuity for
supermartingales . . . . . . . . . . . . 402--412
Yuri Kabanov and
Christophe Stricker On the true submartingale property,
d'apr\`es Schachermayer . . . . . . . . 413--414
Vincenzo Capasso and
Alessandra Micheletti Stochastic Geometry of Spatially
Structured Birth and Growth Processes.
Application to Crystallization Processes 1--39
Ely Merzbach An Introduction to the General Theory of
Set-Indexed Martingales . . . . . . . . 41--84
B. Gail Ivanoff Set-Indexed Processes: Distributions and
Weak Convergence . . . . . . . . . . . . 85--125
Marco Dozzi Occupation Density and Sample Path
Properties . . . . . . . . . . . . . . . 127--166
Robert C. Dalang Level Sets and Excursions of the
Brownian Sheet . . . . . . . . . . . . . 167--208
Thomas S. Mountford Critical Reversible Attractive Nearest
Particle Systems . . . . . . . . . . . . 209--241
Georg Dolzmann 1. Introduction . . . . . . . . . . . . 1--10
Georg Dolzmann 2. Semiconvex Hulls of Compact Sets . . 11--68
Georg Dolzmann 3. Macroscopic Energy for Nematic
Elastomers . . . . . . . . . . . . . . . 69--81
Georg Dolzmann 4. Uniqueness and Stability of
Microstructure . . . . . . . . . . . . . 83--126
Georg Dolzmann 5. Applications to Martensic
Transformations . . . . . . . . . . . . 127--152
Georg Dolzmann 6. Algorithmic Aspects . . . . . . . . . 153--175
Georg Dolzmann 7. Bibliographic Remarks . . . . . . . . 177--182
Georg Dolzmann A. Convexity Conditions and Rank-one
Connections . . . . . . . . . . . . . . 183--192
Georg Dolzmann B. Elements of Crystallography . . . . . 193--196
Georg Dolzmann C. Notation . . . . . . . . . . . . . . 197--200
Georg Dolzmann References . . . . . . . . . . . . . . . 201--209
Georg Dolzmann Index . . . . . . . . . . . . . . . . . 211--212
Frédéric Cao 1. Curve evolution and image processing 3--21
Frédéric Cao 2. Rudimentary bases of curve geometry 23--28
Frédéric Cao 3. Geometric curve shortening flow . . . 31--53
Frédéric Cao 4. Curve evolution and level sets . . . 55--103
Frédéric Cao 5. Classical numerical methods for curve
evolution . . . . . . . . . . . . . . . 107--110
Frédéric Cao 6. A geometrical scheme for curve
evolution . . . . . . . . . . . . . . . 111--166
Frédéric Cao Conclusion and perspectives . . . . . . 167--169
Frédéric Cao A. Proof of Thm. 4.34 . . . . . . . . . 171--176
Frédéric Cao References . . . . . . . . . . . . . . . 177--184
Frédéric Cao Index . . . . . . . . . . . . . . . . . 185--187
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter 1. Introduction . . . . . . . . . . . . 1--18
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter 2. Method I: Planar reduction . . . . . 21--44
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter 3. Method II: The energy-momentum map 45--68
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter 4. Birkhoff normalization . . . . . . . 71--84
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter 5. Singularity theory . . . . . . . . . 85--96
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter 6. Gröbner bases and Standard bases . . . 97--132
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter 7. Computing normalizing transformations 133--151
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter A. Appendix . . . . . . . . . . . . . . 153--158
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter References . . . . . . . . . . . . . . . 159--165
Henk Broer and
Igor Hoveijn and
Gerton Lunter and
Gert Vegter Index . . . . . . . . . . . . . . . . . 167--169
F. Barthe and
M. Csörnyei and
A. Naor A Note on Simultaneous Polar and
Cartesian Decomposition . . . . . . . . 1--19
Alexander Barvinok Approximating a Norm by a Polynomial . . 20--26
S. G. Bobkov Concentration of Distributions of the
Weighted Sums with Bernoullian
Coefficients . . . . . . . . . . . . . . 27--36
S. G. Bobkov Spectral Gap and Concentration for Some
Spherically Symmetric Probability
Measures . . . . . . . . . . . . . . . . 37--43
S. G. Bobkov and
A. Koldobsky On the Central Limit Property of Convex
Bodies . . . . . . . . . . . . . . . . . 44--52
S. G. Bobkov and
F. L. Nazarov On Convex Bodies and Log-Concave
Probability Measures with Unconditional
Basis . . . . . . . . . . . . . . . . . 53--69
J. Bourgain Random Lattice Schrödinger Operators with
Decaying Potential: Some Higher
Dimensional Phenomena . . . . . . . . . 70--98
J. Bourgain On Long-Time Behaviour of Solutions of
Linear Schrödinger Equations with Smooth
Time-Dependent Potential . . . . . . . . 99--113
J. Bourgain On the Isotropy-Constant Problem for
``PSI-2''-Bodies . . . . . . . . . . . . 114--121
E. D. Gluskin On the Sum of Intervals . . . . . . . . 122--130
E. Gluskin and
V. Milman Note on the Geometric-Arithmetic Mean
Inequality . . . . . . . . . . . . . . . 131--135
Olivier Guédon and
Artem Zvavitch Supremum of a Process in Terms of Trees 136--147
Olga Maleva Point Preimages under Ball
Non-Collapsing Mappings . . . . . . . . 148--157
Vitali Milman and
Roy Wagner Some Remarks on a Lemma of Ran Raz . . . 158--168
Fedor Nazarov On the Maximal Perimeter of a Convex Set
in $ \mathbb {R}^n $ with Respect to a
Gaussian Measure . . . . . . . . . . . . 169--187
Krzysztof Oleszkiewicz On $p$-Pseudostable Random Variables,
Rosenthal Spaces and $ l_p^n$ Ball
Slicing . . . . . . . . . . . . . . . . 188--210
G. Paouris $ \Psi_2 $-Estimates for Linear
Functionals on Zonoids . . . . . . . . . 211--222
G. Schechtman and
N. Tomczak-Jaegermann and
R. Vershynin Maximal $ \ell_p^n$-Structures in Spaces
with Extremal Parameters . . . . . . . . 223--240
Carsten Schütt and
Elisabeth Werner Polytopes with Vertices Chosen Randomly
from the Boundary of a Convex Body . . . 241--422
Werner Schindler 1. Introduction . . . . . . . . . . . . 1--9
Werner Schindler 2. Main Theorems . . . . . . . . . . . . 11--54
Werner Schindler 3. Significance, Applicability and
Advantages . . . . . . . . . . . . . . . 55--62
Werner Schindler 4. Applications . . . . . . . . . . . . 63--153
Werner Schindler References . . . . . . . . . . . . . . . 155--158
Werner Schindler Glossary and Index . . . . . . . . . . . 159--167
Olaf Steinbach Introduction . . . . . . . . . . . . . . 1--5
Olaf Steinbach 1. Preliminaries . . . . . . . . . . . . 7--24
Olaf Steinbach 2. Stability Results . . . . . . . . . . 25--51
Olaf Steinbach 3. The Dirichlet--Neumann Map for
Elliptic Boundary Value Problems . . . . 53--70
Olaf Steinbach 4. Mixed Discretization Schemes . . . . 71--83
Olaf Steinbach 5. Hybrid Coupled Domain Decomposition
Methods . . . . . . . . . . . . . . . . 85--115
Olaf Steinbach References . . . . . . . . . . . . . . . 117--120
Jochen Wengenroth 1. Introduction . . . . . . . . . . . . 1--6
Jochen Wengenroth 2. Notions from homological algebra . . 7--15
Jochen Wengenroth 3. The projective limit functor for
countable spectra . . . . . . . . . . . 17--57
Jochen Wengenroth 4. Uncountable projective spectra . . . 59--76
Jochen Wengenroth 5. The derived functors of Hom . . . . . 77--107
Jochen Wengenroth 6. Inductive spectra of locally convex
spaces . . . . . . . . . . . . . . . . . 109--118
Jochen Wengenroth 7. The duality functor . . . . . . . . . 119--127
Jochen Wengenroth References . . . . . . . . . . . . . . . 129--132
Jochen Wengenroth Index . . . . . . . . . . . . . . . . . 133--134
Jan Stevens Introduction . . . . . . . . . . . . . . 1--4
Jan Stevens 1. Deformations of singularities . . . . 5--14
Jan Stevens 2. Standard bases . . . . . . . . . . . 15--22
Jan Stevens 3. Infinitesimal deformations . . . . . 23--31
Jan Stevens 4. Example: the fat point of
multiplicity four . . . . . . . . . . . 33--38
Jan Stevens 5. Deformations of algebras . . . . . . 39--44
Jan Stevens 6. Formal deformation theory . . . . . . 45--53
Jan Stevens 7. Deformations of compact manifolds . . 55--61
Jan Stevens 8. How to solve the deformation equation 63--66
Jan Stevens 9. Convergence for isolated
singularities . . . . . . . . . . . . . 67--70
Jan Stevens 10. Quotient singularities . . . . . . . 71--77
Jan Stevens 11. The projection method . . . . . . . 79--92
Jan Stevens 12. Formats . . . . . . . . . . . . . . 93--104
Jan Stevens 13. Smoothing components of curves . . . 105--111
Jan Stevens 14. Kollár's conjectures . . . . . . . . 113--124
Jan Stevens 15. Cones over curves . . . . . . . . . 125--136
Jan Stevens 16. The versal deformation of
hyperelliptic cones . . . . . . . . . . 137--146
Jan Stevens References . . . . . . . . . . . . . . . 147--153
Jan Stevens Index . . . . . . . . . . . . . . . . . 155--157
Luigi Ambrosio Lecture Notes on Optimal Transport
Problems . . . . . . . . . . . . . . . . 1--52
Klaus Deckelnick and
Gerhard Dziuk Numerical Approximation of Mean
Curvature Flow of Graphs and Level Sets 53--87
Masayasu Mimura Reaction-Diffusion Systems Arising in
Biological and Chemical Systems:
Application of Singular Limit Procedures 89--121
Vsevolod A. Solonnikov Lectures on Evolution Free Boundary
Problems: Classical Solutions . . . . . 123--175
Halil Mete Soner Variational and Dynamic Problems for the
Ginzburg--Landau Functional . . . . . . 177--233
Luis A. Caffarelli The Monge--Amp\`ere Equation and Optimal
Transportation, an elementary review . . 1--10
Giuseppe Buttazzo and
Luigi De Pascale Optimal Shapes and Masses, and Optimal
Transportation Problems . . . . . . . . 11--51
Cedric Villani Optimal transportation, dissipative
PDE's and functional inequalities . . . 53--89
Yann Brenier Extended Monge--Kantorovich Theory . . . 91--121
Luigi Ambrosio and
Aldo Pratelli Existence and stability results in the $
L^1 $ theory of optimal transportation 123--160
Peter Bank and
Hans Föllmer American Options, Multi--armed Bandits,
and Optimal Consumption Plans: a
Unifying View . . . . . . . . . . . . . 1--42
Fabrice Baudoin Modeling Anticipations on Financial
Markets . . . . . . . . . . . . . . . . 43--94
L. C. G. Rogers Duality in constrained optimal
investment and consumption problems: a
synthesis . . . . . . . . . . . . . . . 95--131
H. Mete Soner and
Nizar Touzi The Problem of Super-replication under
Constraints . . . . . . . . . . . . . . 133--172
Alexei Borodin Asymptotic representation theory and
Riemann--Hilbert problem . . . . . . . . 3--19
Percy Deift Four Lectures on Random Matrix Theory 21--52
R. Speicher Free Probability Theory and Random
Matrices . . . . . . . . . . . . . . . . 53--73
Akihito Hora A Noncommutative Version of Kerov's
Gaussian Limit for the Plancherel
Measure of the Symmetric Group . . . . . 77--88
Andrei Okounkov Random trees and moduli of curves . . . 89--126
Grigori Olshanski An introduction to harmonic analysis on
the infinite symmetric group . . . . . . 127--160
A. Vershik Two lectures on the asymptotic
representation theory and statistics of
Young diagrams . . . . . . . . . . . . . 161--182
Philippe Biane Characters of symmetric groups and free
cumulants . . . . . . . . . . . . . . . 185--200
Marek Bo\.zejko and
Ryszard Szwarc Algebraic length and Poincaré series on
reflection groups with applications to
representations theory . . . . . . . . . 201--221
Maxim Nazarov Mixed hook-length formula for degenerate
a fine Hecke algebras . . . . . . . . . 223--236
Wolfram Koepf Computer Algebra Algorithms for
Orthogonal Polynomials and Special
Functions . . . . . . . . . . . . . . . 1--24
Joris Van der Jeugt $ 3 n j$-Coefficients and Orthogonal
Polynomials of Hypergeometric Type . . . 25--92
Margit Rösler Dunkl Operators: Theory and Applications 93--135
Dennis Stanton Enumeration and Special Functions . . . 137--166
Arno B. J. Kuijlaars Riemann--Hilbert Analysis for Orthogonal
Polynomials . . . . . . . . . . . . . . 167--210
Adri B. Olde Daalhuis Exponential Asymptotics . . . . . . . . 211--244
Michael Bildhauer 1. Introduction . . . . . . . . . . . . 1--12
Michael Bildhauer 2. Variational problems with linear
growth: the general setting . . . . . . 13--39
Michael Bildhauer 3. Variational integrands with $ (s,
\mu, q)$-growth . . . . . . . . . . . . 41--96
Michael Bildhauer 4. Variational problems with linear
growth: the case of $ \mu $-elliptic
integrands . . . . . . . . . . . . . . . 97--139
Michael Bildhauer 5. Bounded solutions for convex
variational problems with a wide range
of anisotropy . . . . . . . . . . . . . 141--159
Michael Bildhauer 6. Anisotropic linear/superlinear growth
in the scalar case . . . . . . . . . . . 161--172
Michael Bildhauer A. Some remarks on relaxation . . . . . 173--183
Michael Bildhauer B. Some density results . . . . . . . . 185--198
Michael Bildhauer C. Brief comments on steady states of
generalized Newtonian fluids . . . . . . 199--203
Michael Bildhauer D. Notation and conventions . . . . . . 205--206
Michael Bildhauer References . . . . . . . . . . . . . . . 207--213
Michael Bildhauer Index . . . . . . . . . . . . . . . . . 215--217
David Masser and
Yuri V. Nesterenko and
Hans Peter Schlickewei and
Wolfgang Schmidt and
Michel Waldschmidt Front Matter . . . . . . . . . . . . . . I--XI
David Masser Heights, Transcendence, and Linear
Independence on Commutative Group
Varieties . . . . . . . . . . . . . . . 1--51
Yuri Nesterenko Linear Forms in Logarithms of Rational
Numbers . . . . . . . . . . . . . . . . 53--106
Hans Peter Schlickewei Approximation of Algebraic Numbers . . . 107--170
Wolfgang M. Schmidt Linear Recurrence Sequences . . . . . . 171--247
Michel Waldschmidt Linear Independence Measures for
Logarithms of Algebraic Numbers . . . . 249--344
Michel Waldschmidt Back Matter . . . . . . . . . . . . . . 345--351
Fumio Hiai and
Hideki Kosaki 1. Introduction . . . . . . . . . . . . 1--6
Fumio Hiai and
Hideki Kosaki 2. Double integral transformations . . . 7--32
Fumio Hiai and
Hideki Kosaki 3. Means of operators and their
comparison . . . . . . . . . . . . . . . 33--55
Fumio Hiai and
Hideki Kosaki 4. Convergence of means . . . . . . . . 57--63
Fumio Hiai and
Hideki Kosaki 5. A-L-G interpolation means $ M_\alpha
$ . . . . . . . . . . . . . . . . . . . 65--78
Fumio Hiai and
Hideki Kosaki 6. Heinz-type means $ A_\alpha $ . . . . 79--87
Fumio Hiai and
Hideki Kosaki 7. Binomial means $ B_\alpha $ . . . . . 89--104
Fumio Hiai and
Hideki Kosaki 8. Certain alternating sums of operators 105--121
Fumio Hiai and
Hideki Kosaki A Appendices . . . . . . . . . . . . . . 123--139
Fumio Hiai and
Hideki Kosaki References . . . . . . . . . . . . . . . 141--144
Stefan Teufel 1. Introduction . . . . . . . . . . . . 1--31
Stefan Teufel 2. First order adiabatic theory . . . . 33--69
Stefan Teufel 3. Space-adiabatic perturbation theory 71--104
Stefan Teufel 4. Applications and extensions . . . . . 105--140
Stefan Teufel 5. Quantum dynamics in periodic media 141--171
Stefan Teufel 6. Adiabatic decoupling without spectral
gap . . . . . . . . . . . . . . . . . . 173--201
Stefan Teufel Appendix . . . . . . . . . . . . . . . . 203--224
Stefan Teufel List of symbols and References . . . . . 225--234
Shui-Nee Chow Lattice Dynamical Systems . . . . . . . 1--102
Roberto Conti and
Marcello Galeotti Totally Bounded Cubic Systems in $
\mathbb {R}^2 $ . . . . . . . . . . . . 103--171
Russell Johnson and
Francesca Mantellini Non-Autonomous Differential Equations 173--229
John Mallet-Paret Traveling Waves in Spatially Discrete
Dynamical Systems of Diffusive Type . . 231--298
Roger D. Nussbaum Limiting Profiles for Solutions of
Differential-Delay Equations . . . . . . 299--342
A. M. Anile and
G. Mascali and
V. Romano Recent Developments in Hydrodynamical
Modeling of Semiconductors . . . . . . . 1--56
Walter Allegretto Drift-Diffusion Equations and
Applications . . . . . . . . . . . . . . 57--95
Christian Ringhofer Kinetic and Gas- Dynamic Models for
Semiconductor Transport . . . . . . . . 97--131
Juan A. Navarro González and
Juan B. Sancho de Salas Introduction . . . . . . . . . . . . . . 1--5
Juan A. Navarro González and
Juan B. Sancho de Salas 1. Differentiable Manifolds . . . . . . 7--20
Juan A. Navarro González and
Juan B. Sancho de Salas 2. Differentiable Algebras . . . . . . . 21--38
Juan A. Navarro González and
Juan B. Sancho de Salas 3. Differentiable Spaces . . . . . . . . 39--49
Juan A. Navarro González and
Juan B. Sancho de Salas 4. Topology of Differentiable Spaces . . 51--56
Juan A. Navarro González and
Juan B. Sancho de Salas 5. Embeddings . . . . . . . . . . . . . 57--68
Juan A. Navarro González and
Juan B. Sancho de Salas 6. Topological Tensor Products . . . . . 69--77
Juan A. Navarro González and
Juan B. Sancho de Salas 7. Fibred Products . . . . . . . . . . . 79--87
Juan A. Navarro González and
Juan B. Sancho de Salas 8. Topological Localization . . . . . . 89--97
Juan A. Navarro González and
Juan B. Sancho de Salas 9. Finite Morphisms . . . . . . . . . . 99--111
Juan A. Navarro González and
Juan B. Sancho de Salas 10. Smooth Morphisms . . . . . . . . . . 113--125
Juan A. Navarro González and
Juan B. Sancho de Salas 11. Quotients by Compact Lie Groups . . 127--150
Juan A. Navarro González and
Juan B. Sancho de Salas Appendix . . . . . . . . . . . . . . . . 151--179
Juan A. Navarro González and
Juan B. Sancho de Salas References . . . . . . . . . . . . . . . 181--183
Albert Cohen Theoretical, Applied and Computational
Aspects of Nonlinear Approximation . . . 1--29
Wolfgang Dahmen Multiscale and Wavelet Methods for
Operator Equations . . . . . . . . . . . 31--96
James H. Bramble Multilevel Methods in Finite Elements 97--151
Klaus Dohmen 1. Introduction and Overview . . . . . . 1--4
Klaus Dohmen 2. Preliminaries . . . . . . . . . . . . 5--8
Klaus Dohmen 3. Bonferroni Inequalities via Abstract
Tubes . . . . . . . . . . . . . . . . . 9--18
Klaus Dohmen 4. Abstract Tubes via Closure and Kernel
Operators . . . . . . . . . . . . . . . 19--43
Klaus Dohmen 5. Recursive Schemes . . . . . . . . . . 44--46
Klaus Dohmen 6. Reliability Applications . . . . . . 47--81
Klaus Dohmen 7. Combinatorial Applications and
Related Topics . . . . . . . . . . . . . 82--99
Klaus Dohmen Bibliography . . . . . . . . . . . . . . 100--109
Kevin M. Pilgrim 1. Introduction . . . . . . . . . . . . 1--35
Kevin M. Pilgrim 2. Preliminaries . . . . . . . . . . . . 37--48
Kevin M. Pilgrim 3. Combinations . . . . . . . . . . . . 49--57
Kevin M. Pilgrim 4. Uniqueness of combinations . . . . . 59--68
Kevin M. Pilgrim 5. Decomposition . . . . . . . . . . . . 69--77
Kevin M. Pilgrim 6. Uniqueness of decompositions . . . . 79--81
Kevin M. Pilgrim 7. Counting classes of annulus maps . . 83--88
Kevin M. Pilgrim 8. Applications to mapping class groups 89--94
Kevin M. Pilgrim 9. Examples . . . . . . . . . . . . . . 95--103
Kevin M. Pilgrim 10. Canonical Decomposition Theorem . . 105--109
Kevin M. Pilgrim References . . . . . . . . . . . . . . . 111--116
David J. Green Introduction . . . . . . . . . . . . . . 1--9
David J. Green Part I: 1. Bases for finite-dimensional
algebras and modules . . . . . . . . . . 13--20
David J. Green Part I: 2. The Buchberger Algorithm for
modules . . . . . . . . . . . . . . . . 21--32
David J. Green Part I: 3. Constructing minimal
resolutions . . . . . . . . . . . . . . 33--46
David J. Green Part II: 4. Gröbner bases for graded
commutative algebras . . . . . . . . . . 49--65
David J. Green Part II: 5. The visible ring structure 67--80
David J. Green Part II: 6. The completeness of the
presentation . . . . . . . . . . . . . . 81--90
David J. Green Part III: 7. Experimental results . . . 93--100
David J. Green A Sample cohomology calculations . . . . 101--130
David J. Green Epilogue and References . . . . . . . . 131--135
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Introduction . . . . . . . . . . . . . . 1--6
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Multimodularity, Convexity and
Optimization . . . . . . . . . . . . . . 11--38
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part I: 2. Balanced Sequences . . . . . 39--54
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part I: 3. Stochastic Event Graphs . . . 55--74
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part II: 4. Admission control in
stochastic event graphs . . . . . . . . 79--103
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part II: 5. Applications in queuing
networks . . . . . . . . . . . . . . . . 105--109
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part II: 6. Optimal routing . . . . . . 111--118
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part II: 7. Optimal routing in two
deterministic queues . . . . . . . . . . 119--149
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part III: 8. Networks with no buffers 155--181
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Vacancies, service allocation and
polling . . . . . . . . . . . . . . . . 183--204
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part III: 10. Monotonicity of feedback
control . . . . . . . . . . . . . . . . 205--223
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part IV: 11. Comparison of queues with
discrete-time arrival processes . . . . 229--241
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part IV: 12. Simplex convexity . . . . . 243--259
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part IV: 13. Orders and bounds for
multimodular functions . . . . . . . . . 261--282
Eitan Altman and
Bruno Gaujal and
Arie Hordijk Part IV: 14. Regular Ordering . . . . . 283--304
Eitan Altman and
Bruno Gaujal and
Arie Hordijk References . . . . . . . . . . . . . . . 305--310
Michael I. Gil' 1. Preliminaries . . . . . . . . . . . . 1--9
Michael I. Gil' 2. Norms of Matrix-Valued Functions . . 11--34
Michael I. Gil' 3. Invertibility of Finite Matrices . . 35--48
Michael I. Gil' 4. Localization of Eigenvalues of Finite
Matrices . . . . . . . . . . . . . . . . 49--63
Michael I. Gil' 5. Block Matrices and $ \pi $-Triangular
Matrices . . . . . . . . . . . . . . . . 65--74
Michael I. Gil' 6. Norm Estimates for Functions of
Compact Operators in a Hilbert Space . . 75--96
Michael I. Gil' 7. Functions of Non-compact Operators 97--121
Michael I. Gil' 8. Bounded Perturbations of
Nonselfadjoint Operators . . . . . . . . 123--134
Michael I. Gil' 9. Spectrum Localization of
Nonself-adjoint Operators . . . . . . . 135--149
Michael I. Gil' 10. Multiplicative Representations of
Resolvents . . . . . . . . . . . . . . . 151--161
Michael I. Gil' 11. Relatively $p$-Triangular Operators 163--172
Michael I. Gil' 12. Relatively Compact Perturbations of
Normal Operators . . . . . . . . . . . . 173--180
Michael I. Gil' 13. Infinite Matrices in Hilbert Spaces
and Differential Operators . . . . . . . 181--188
Michael I. Gil' 14. Integral Operators in Space $ L^2 $ 189--197
Michael I. Gil' 15. Operator Matrices . . . . . . . . . 199--213
Michael I. Gil' 16. Hille--Tamarkin Integral Operators 215--226
Michael I. Gil' 17. Integral Operators in Space $
L^{{[prescription - R]}} $ . . . . . . . 227--234
Michael I. Gil' 18. Hille--Tamarkin Matrices . . . . . . 235--241
Michael I. Gil' 19. Zeros of Entire Functions . . . . . 243--252
Antoine Lejay An Introduction to Rough Paths . . . . . 1--59
Dominique Bakry and
Olivier Mazet Characterization of Markov semigroups on
$ \mathbb {R} $ Associated to Some
Families of Orthogonal Polynomials . . . 60--80
Patrick Cheridito Representations of Gaussian measures
that are equivalent to Wiener measure 81--89
Leonid Galtchouk On the reduction of a multidimensional
continuous martingale to a Brownian
motion . . . . . . . . . . . . . . . . . 90--93
Isaac Meilijson The time to a given drawdown in Brownian
Motion . . . . . . . . . . . . . . . . . 94--108
Aimé Lachal Application de la théorie des excursions
\`a l'intégrale du mouvement brownien.
(French) [] . . . . . . . . . . . . . . 109--195
Thomas S. Mountford Brownian Sheet Local Time and Bubbles 196--215
Katsuhiro Hirano On the maximum of a diffusion process in
a random Lévy environment . . . . . . . . 216--235
Davar Khoshnevisan The Codimension of the Zeros of a Stable
Process in Random Scenery . . . . . . . 236--245
Jean Brossard Deux notions équivalentes d'unicité en loi
pour les équations différentielles
stochastiques. (French) [] . . . . . . . 246--250
Zdzis\law Brze\'zniak and
Andrew Carroll Approximations of the Wong--Zakai type
for stochastic differential equations in
$M$-type $2$ Banach spaces with
applications to loop spaces . . . . . . 251--289
François Delarue Estimates of the Solutions of a System
of Quasi-linear PDEs. A Probabilistic
Scheme . . . . . . . . . . . . . . . . . 290--332
Grégory Miermont and
Jason Schweinsberg Self-similar fragmentations and stable
subordinators . . . . . . . . . . . . . 333--359
Michel Ledoux A Remark on Hypercontractivity and Tail
Inequalities for the Largest Eigenvalues
of Random Matrices . . . . . . . . . . . 360--369
Yan Doumerc A note on representations of eigenvalues
of classical Gaussian matrices . . . . . 370--384
Eva Strasser Necessary and sufficient conditions for
the supermartingale property of a
stochastic integral with respect to a
local martingale . . . . . . . . . . . . 385--393
Miklós Rásonyi A remark on the superhedging theorem
under transaction costs . . . . . . . . 394--398
Ioanid Rosu and
Dan Stroock On the Derivation of the Black--Scholes
Formula . . . . . . . . . . . . . . . . 399--414
Pierre Del Moral and
Arnaud Doucet On a Class of Genealogical and
Interacting Metropolis Models . . . . . 415--446
Alain Connes and
Joachim Cuntz and
Erik Guentner and
Nigel Higson and
Jerome Kaminker and
John E. Roberts Front Matter . . . . . . . . . . . . . . I--XIV
Alain Connes Cyclic Cohomology, Noncommutative
Geometry and Quantum Group Symmetries 1--71
Joachim Cuntz Cyclic Theory and the Bivariant
Chern--Connes Character . . . . . . . . 73--135
Nigel Higson and
Erik Guentner Group $ C* $-Algebras and $K$-Theory . . 137--251
Erik Guentner and
Jerome Kaminker Geometric and Analytic Properties of
Groups . . . . . . . . . . . . . . . . . 253--262
John E. Roberts More Lectures on Algebraic Quantum Field
Theory . . . . . . . . . . . . . . . . . 263--342
John E. Roberts Back Matter . . . . . . . . . . . . . . 343--354
Da-Quan Jiang and
Min Qian and
Min-Ping Qian Introduction . . . . . . . . . . . . . . 1--10
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 1. Circulation Distribution, Entropy
Production and Irreversibility of
Denumerable Markov Chains . . . . . . . 11--44
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 2. Circulation Distribution, Entropy
Production and Irreversibility of Finite
Markov Chains with Continuous Parameter 45--66
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 3. General Minimal Diffusion Process:
its Construction, Invariant Measure,
Entropy Production and Irreversibility 67--92
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 4. Measure-theoretic Discussion on
Entropy Production of Diffusion
Processes and Fluctuation-dissipation
Theorem . . . . . . . . . . . . . . . . 93--120
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 5. Entropy Production, Rotation Numbers
and Irreversibility of Diffusion
Processes on Manifolds . . . . . . . . . 121--148
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 6. On a System of Hyperstable Frequency
Locking Persistence under White Noise 149--158
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 7. Entropy Production and Information
Gain in Axiom $A$ Systems . . . . . . . 159--188
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 8. Lyapunov Exponents of Hyperbolic
Attractors . . . . . . . . . . . . . . . 189--214
Da-Quan Jiang and
Min Qian and
Min-Ping Qian 9. Entropy Production, Information Gain
and Lyapunov Exponents of Random
Hyperbolic Dynamical Systems . . . . . . 215--252
Da-Quan Jiang and
Min Qian and
Min-Ping Qian References . . . . . . . . . . . . . . . 253--276
Yosef Yomdin and
Georges Comte 1. Introduction and Content . . . . . . 1--22
Yosef Yomdin and
Georges Comte 2. Entropy . . . . . . . . . . . . . . . 23--32
Yosef Yomdin and
Georges Comte 3. Multidimensional Variations . . . . . 33--45
Yosef Yomdin and
Georges Comte 4. Semialgebraic and Tame Sets . . . . . 47--58
Yosef Yomdin and
Georges Comte 5. Variations of Semialgebraic and Tame
Sets . . . . . . . . . . . . . . . . . . 59--73
Yosef Yomdin and
Georges Comte 6. Some Exterior Algebra . . . . . . . . 75--82
Yosef Yomdin and
Georges Comte 7. Behaviour of Variations under
Polynomial Mappings . . . . . . . . . . 83--98
Yosef Yomdin and
Georges Comte 8. Quantitative Transversality and
Cuspidal Values . . . . . . . . . . . . 99--107
Yosef Yomdin and
Georges Comte 9. Mappings of Finite Smoothness . . . . 109--130
Yosef Yomdin and
Georges Comte 10. Some Applications and Related Topics 131--169
Yosef Yomdin and
Georges Comte Glossary and References . . . . . . . . 171--186
Bruno Kahn Cohomologie non ramifiée des quadriques.
(French) [] . . . . . . . . . . . . . . 1--23
Alexander Vishik Motives of Quadrics with Applications to
the Theory of Quadratic Forms . . . . . 25--101
Nikita A. Karpenko Motives and Chow Groups of Quadrics with
Application to the $u$-invariant (after
Oleg Izhboldin) . . . . . . . . . . . . 103--129
Oleg T. Izhboldin Virtual Pfister Neighbors and First Witt
Index . . . . . . . . . . . . . . . . . 131--142
Oleg T. Izhboldin Some New Results Concerning Isotropy of
Low-dimensional Forms . . . . . . . . . 143--150
Nikita A. Karpenko Izhboldin's Results on Stably Birational
Equivalence of Quadrics . . . . . . . . 151--183
Alexander S. Merkurjev Appendix: My Recollections About Oleg
Izhboldin . . . . . . . . . . . . . . . 185--187
Constantin Nastasescu and
Freddy Van Oystaeyen 1. The Category of Graded Rings . . . . 1--18
Constantin Nastasescu and
Freddy Van Oystaeyen 2. The Category of Graded Modules . . . 19--79
Constantin Nastasescu and
Freddy Van Oystaeyen 3. Modules over Strongly Graded Rings 81--113
Constantin Nastasescu and
Freddy Van Oystaeyen 4. Graded Clifford Theory . . . . . . . 115--145
Constantin Nastasescu and
Freddy Van Oystaeyen 5. Internal Homogenization . . . . . . . 147--165
Constantin Nastasescu and
Freddy Van Oystaeyen 6. External Homogenization . . . . . . . 167--185
Constantin Nastasescu and
Freddy Van Oystaeyen 7. Smash Products . . . . . . . . . . . 187--221
Constantin Nastasescu and
Freddy Van Oystaeyen 8. Localization of Graded Rings . . . . 223--240
Constantin Nastasescu and
Freddy Van Oystaeyen 9. Application to Gradability . . . . . 241--276
Constantin Nastasescu and
Freddy Van Oystaeyen Appendix . . . . . . . . . . . . . . . . 277--289
Constantin Nastasescu and
Freddy Van Oystaeyen Bibliography . . . . . . . . . . . . . . 291--302
Simon Tavaré Part I: Ancestral Inference in
Population Genetics . . . . . . . . . . 1--188
Ofer Zeitouni Part II: Random Walks in Random
Environment . . . . . . . . . . . . . . 189--312
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 1. The Single Server Queue . . . . . . . 1--21
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 2. Large Deviations in Euclidean Spaces 23--45
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 3. More on the Single Server Queue . . . 47--55
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 4. Introduction to Abstract Large
Deviations . . . . . . . . . . . . . . . 57--76
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 5. Continuous Queueing Maps . . . . . . 77--104
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 6. Large-Buffer Scalings . . . . . . . . 105--150
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 7. Many-Flows Scalings . . . . . . . . . 151--181
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 8. Long Range Dependence . . . . . . . . 183--198
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 9. Moderate Deviations Scalings . . . . 199--209
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik 10. Interpretations . . . . . . . . . . 211--238
Ayalvadi Ganesh and
Neil O'Connell and
Damon Wischik Bibliography . . . . . . . . . . . . . . 239--248
Rolf Gohm Introduction . . . . . . . . . . . . . . 1--7
Rolf Gohm 1. Extensions and Dilations . . . . . . 9--36
Rolf Gohm 2. Markov Processes . . . . . . . . . . 37--71
Rolf Gohm 3. Adaptedness . . . . . . . . . . . . . 73--111
Rolf Gohm 4. Examples and Applications . . . . . . 113--147
Rolf Gohm Appendix A: Some Facts about Unital
Completely Positive Maps . . . . . . . . 149--163
Rolf Gohm References . . . . . . . . . . . . . . . 165--168
Boris Tsirelson Part I: Scaling Limit, Noise, Stability 1--106
Wendelin Werner Part II: Random Planar Curves and
Schramm--Loewner Evolutions . . . . . . 107--195
Wolfgang Reichel 1. Introduction . . . . . . . . . . . . 1--7
Wolfgang Reichel 2. Uniqueness of critical points (I) . . 9--26
Wolfgang Reichel 3. Uniqueness of critical points (II) 27--57
Wolfgang Reichel 4. Variational problems on Riemannian
manifolds . . . . . . . . . . . . . . . 59--87
Wolfgang Reichel 5. Scalar problems in Euclidean space 89--125
Wolfgang Reichel 6. Vector problems in Euclidean space 127--138
Wolfgang Reichel Appendix . . . . . . . . . . . . . . . . 139--143
Wolfgang Reichel References . . . . . . . . . . . . . . . 145--149
Trygve Johnsen and
Andreas Leopold Knutsen 1. Introduction . . . . . . . . . . . . 1--14
Trygve Johnsen and
Andreas Leopold Knutsen 2. Surfaces in Scrolls . . . . . . . . . 15--18
Trygve Johnsen and
Andreas Leopold Knutsen 3. The Clifford index of smooth curves
in $ |L| $ and the definition of the
scrolls $ \mathcal {T}(c, D, \{
D_\lambda \}) $ . . . . . . . . . . . . 19--29
Trygve Johnsen and
Andreas Leopold Knutsen 4. Two existence theorems . . . . . . . 31--33
Trygve Johnsen and
Andreas Leopold Knutsen 5. The singular locus of the surface $
S' $ and the scroll $ \mathcal {T} $ . . 35--45
Trygve Johnsen and
Andreas Leopold Knutsen 6. Postponed proofs . . . . . . . . . . 47--57
Trygve Johnsen and
Andreas Leopold Knutsen 7. Projective models in smooth scrolls 59--61
Trygve Johnsen and
Andreas Leopold Knutsen 8. Projective models in singular scrolls 63--98
Trygve Johnsen and
Andreas Leopold Knutsen 9. More on projective models in smooth
scrolls of $ K 3 $ surfaces of low
Clifford-indices . . . . . . . . . . . . 99--120
Trygve Johnsen and
Andreas Leopold Knutsen 10. BN general and Clifford general $ K
3 $ surfaces . . . . . . . . . . . . . . 121--128
Trygve Johnsen and
Andreas Leopold Knutsen 11. Projective models of $ K 3 $
surfaces of low genus . . . . . . . . . 129--154
Trygve Johnsen and
Andreas Leopold Knutsen 12. Some applications and open questions 155--158
Trygve Johnsen and
Andreas Leopold Knutsen References . . . . . . . . . . . . . . . 159--162
Brian Jefferies 1. Introduction . . . . . . . . . . . . 1--11
Brian Jefferies 2. Weyl Calculus . . . . . . . . . . . . 13--25
Brian Jefferies 3. Clifford Analysis . . . . . . . . . . 27--38
Brian Jefferies 4. Functional Calculus for Noncommuting
Operators . . . . . . . . . . . . . . . 39--66
Brian Jefferies 5. The Joint Spectrum of Matrices . . . 67--121
Brian Jefferies 6. The Monogenic Calculus for Sectorial
Operators . . . . . . . . . . . . . . . 123--155
Brian Jefferies 7. Feynman's Operational Calculus . . . 157--171
Brian Jefferies References . . . . . . . . . . . . . . . 173--179
Karl Friedrich Siburg 1. Aubry--Mather theory . . . . . . . . 1--13
Karl Friedrich Siburg 2. Mather--Mañé theory . . . . . . . . . . 15--35
Karl Friedrich Siburg 3. The minimal action and convex
billiards . . . . . . . . . . . . . . . 37--57
Karl Friedrich Siburg 4. The minimal action near fixed points
and invariant tori . . . . . . . . . . . 59--80
Karl Friedrich Siburg 5. The minimal action and Hofer's
geometry . . . . . . . . . . . . . . . . 81--95
Karl Friedrich Siburg 6. The minimal action and symplectic
geometry . . . . . . . . . . . . . . . . 97--119
Karl Friedrich Siburg References . . . . . . . . . . . . . . . 121--125
Min Ho Lee Introduction . . . . . . . . . . . . . . 1--9
Min Ho Lee 1. Mixed Automorphic Forms . . . . . . . 11--34
Min Ho Lee 2. Line Bundles and Elliptic Varieties 35--58
Min Ho Lee 3. Mixed Automorphic Forms and
Cohomology . . . . . . . . . . . . . . . 59--82
Min Ho Lee 4. Mixed Hilbert and Siegel Modular
Forms . . . . . . . . . . . . . . . . . 83--107
Min Ho Lee 5. Mixed Automorphic Forms on Semisimple
Lie Groups . . . . . . . . . . . . . . . 109--139
Min Ho Lee 6. Families of Abelian Varieties . . . . 141--175
Min Ho Lee 7. Jacobi Forms . . . . . . . . . . . . 177--207
Min Ho Lee 8. Twisted Torus Bundles . . . . . . . . 209--230
Min Ho Lee References . . . . . . . . . . . . . . . 231--236
Habib Ammari and
Hyeonbae Kang 1. Introduction . . . . . . . . . . . . 1--4
Habib Ammari and
Hyeonbae Kang Part I: Detection of Small Conductivity
Inclusions . . . . . . . . . . . . . . . 5--9
Habib Ammari and
Hyeonbae Kang 2. Transmission Problem . . . . . . . . 11--39
Habib Ammari and
Hyeonbae Kang 3. Generalized Polarization Tensors . . 41--64
Habib Ammari and
Hyeonbae Kang 4. Derivation of the Full Asymptotic
Formula . . . . . . . . . . . . . . . . 65--78
Habib Ammari and
Hyeonbae Kang 5. Detection of Inclusions . . . . . . . 79--101
Habib Ammari and
Hyeonbae Kang Part II: Detection of Small Elastic
Inclusions . . . . . . . . . . . . . . . 103--107
Habib Ammari and
Hyeonbae Kang 6. Transmission Problem for
Elastostatics . . . . . . . . . . . . . 109--127
Habib Ammari and
Hyeonbae Kang 7. Elastic Moment Tensor . . . . . . . . 129--149
Habib Ammari and
Hyeonbae Kang 8. Derivation of Full Asymptotic
Expansions . . . . . . . . . . . . . . . 151--157
Habib Ammari and
Hyeonbae Kang 9. Detection of Inclusions . . . . . . . 159--173
Habib Ammari and
Hyeonbae Kang Part III: Detection of Small
Electromagnetic Inclusions . . . . . . . 175--178
Habib Ammari and
Hyeonbae Kang 10. Well-Posedness . . . . . . . . . . . 179--183
Habib Ammari and
Hyeonbae Kang 11. Representation of Solutions . . . . 185--195
Habib Ammari and
Hyeonbae Kang 12. Derivation of Asymptotic Formulae 197--205
Habib Ammari and
Hyeonbae Kang 13. Reconstruction Algorithms . . . . . 207--214
Habib Ammari and
Hyeonbae Kang A. Appendices . . . . . . . . . . . . . 215--221
Habib Ammari and
Hyeonbae Kang References . . . . . . . . . . . . . . . 223--236
Habib Ammari and
Hyeonbae Kang Index . . . . . . . . . . . . . . . . . 237--238
Tomasz R. Bielecki and
Monique Jeanblanc and
Marek Rutkowski Hedging of Defaultable Claims . . . . . 1--132
Tomas Björk On the Geometry of Interest Rate Models 133--215
José Scheinkman and
Wei Xiong Heterogeneous Beliefs, Speculation and
Trading in Financial Markets . . . . . . 217--250
Marco Abate Angular Derivatives in Several Complex
Variables . . . . . . . . . . . . . . . 1--47
John Erik Fornæss Real Methods in Complex Dynamics . . . . 49--107
Xiaojun Huang Local Equivalence Problems for Real
Submanifolds in Complex Spaces . . . . . 109--163
Jean-Pierre Rosay Introduction to a General Theory of
Boundary Values . . . . . . . . . . . . 165--189
Alexander Tumanov Extremal Discs and the Geometry of CR
Manifolds . . . . . . . . . . . . . . . 191--212
Martin L. Brown 1. Introduction . . . . . . . . . . . . 1--11
Martin L. Brown 2. Preliminaries . . . . . . . . . . . . 13--30
Martin L. Brown 3. Bruhat-Tits trees with complex
multiplication . . . . . . . . . . . . . 31--74
Martin L. Brown 4. Heegner sheaves . . . . . . . . . . . 75--103
Martin L. Brown 5. The Heegner module . . . . . . . . . 105--222
Martin L. Brown 6. Cohomology of the Heegner module . . 223--327
Martin L. Brown 7. Finiteness of Tate--Shafarevich
groups . . . . . . . . . . . . . . . . . 329--434
Martin L. Brown Appendix . . . . . . . . . . . . . . . . 435--505
Martin L. Brown References . . . . . . . . . . . . . . . 507--510
Martin L. Brown Index . . . . . . . . . . . . . . . . . 511--517
S. Alesker A Topological Obstruction to Existence
of Quaternionic Plücker Map . . . . . . . 1--7
S. Alesker Hard Lefschetz Theorem for Valuations
and Related Questions of Integral
Geometry . . . . . . . . . . . . . . . . 9--20
S. Alesker $ {\rm SU}(2) $-Invariant Valuations . . 21--29
S. Artstein The Change in the Diameter of a Convex
Body under a Random Sign-Projection . . 31--39
K. Ball An Elementary Introduction to Monotone
Transportation . . . . . . . . . . . . . 41--52
F. Barthe A Continuous Version of the
Brascamp--Lieb Inequalities . . . . . . 53--63
F. Barthe and
D. Cordero-Erausquin Inverse Brascamp--Lieb Inequalities
along the Heat Equation . . . . . . . . 65--71
I. Benjamini and
O. Schramm Pinched Exponential Volume Growth
Implies an Infinite Dimensional
Isoperimetric Inequality . . . . . . . . 73--76
J. Bourgain On Localization for Lattice Schrödinger
Operators Involving Bernoulli Variables 77--99
J. Bourgain and
B. Klartag and
V. Milman Symmetrization and Isotropic Constants
of Convex Bodies . . . . . . . . . . . . 101--115
E. Gluskin On the Multivariable Version of Ball's
Slicing Cube Theorem . . . . . . . . . . 117--121
E. Gluskin and
V. Milman Geometric Probability and Random Cotype
$2$ . . . . . . . . . . . . . . . . . . 123--138
W. B. Johnson and
G. Schechtman Several Remarks Concerning the Local
Theory of $ L_p $ Spaces . . . . . . . . 139--148
B. Klartag On John-Type Ellipsoids . . . . . . . . 149--158
A. E. Litvak and
V. D. Milman and
N. Tomczak-Jaegermann Isomorphic Random Subspaces and
Quotients of Convex and Quasi-Convex
Bodies . . . . . . . . . . . . . . . . . 159--178
Yu I. Lyubich Almost Euclidean Subspaces of Real $
\ell_p^n $ with $p$ an Even Integer . . 179--192
S. Mendelson Geometric Parameters in Learning Theory 193--235
V. D. Milman and
A. Pajor Essential Uniqueness of an $M$-Ellipsoid
of a Given Convex Body . . . . . . . . . 237--241
L. Pastur On the Thermodynamic Limit for
Disordered Spin Systems . . . . . . . . 243--268
G. Pisier On Read's Proof that $ B(\ell_1) $ Is
Not Amenable . . . . . . . . . . . . . . 269--275
Olivier Catoni Introduction . . . . . . . . . . . . . . 1--4
Olivier Catoni 1. Universal lossless data compression 5--54
Olivier Catoni 2. Links between data compression and
statistical estimation . . . . . . . . . 55--69
Olivier Catoni 3. Non cumulated mean risk . . . . . . . 71--95
Olivier Catoni 4. Gibbs estimators . . . . . . . . . . 97--154
Olivier Catoni 5. Randomized estimators and empirical
complexity . . . . . . . . . . . . . . . 155--197
Olivier Catoni 6. Deviation inequalities . . . . . . . 199--222
Olivier Catoni 7. Markov chains with exponential
transitions . . . . . . . . . . . . . . 223--260
Olivier Catoni References . . . . . . . . . . . . . . . 261--265
Olivier Catoni Index . . . . . . . . . . . . . . . . . 267--269
Olivier Catoni List of participants and List of short
lectures . . . . . . . . . . . . . . . . 271--273
Alexander S. Kechris and
Benjamin D. Miller I. Orbit Equivalence . . . . . . . . . . 1--6
Alexander S. Kechris and
Benjamin D. Miller II. Amenability and Hyperfiniteness . . 7--53
Alexander S. Kechris and
Benjamin D. Miller III. Costs of Equivalence Relations and
Groups . . . . . . . . . . . . . . . . . 55--128
Alexander S. Kechris and
Benjamin D. Miller References . . . . . . . . . . . . . . . 129--130
Alexander S. Kechris and
Benjamin D. Miller Index . . . . . . . . . . . . . . . . . 131--134
Charles Favre and
Mattias Jonsson Front Matter . . . . . . . . . . . . . . I--XV
Charles Favre and
Mattias Jonsson Introduction . . . . . . . . . . . . . . 1--7
Charles Favre and
Mattias Jonsson 1. Generalities . . . . . . . . . . . . 9--24
Charles Favre and
Mattias Jonsson 2. MacLane's Method . . . . . . . . . . 25--42
Charles Favre and
Mattias Jonsson 3. Tree Structures . . . . . . . . . . . 43--80
Charles Favre and
Mattias Jonsson 4. Valuations Through Puiseux Series . . 81--96
Charles Favre and
Mattias Jonsson 5. Topologies . . . . . . . . . . . . . 97--110
Charles Favre and
Mattias Jonsson 6. The Universal Dual Graph . . . . . . 111--150
Charles Favre and
Mattias Jonsson 7. Tree Measures . . . . . . . . . . . . 151--192
Charles Favre and
Mattias Jonsson 8. Applications of the Tree Analysis . . 193--209
Charles Favre and
Mattias Jonsson Appendix . . . . . . . . . . . . . . . . 211--225
Charles Favre and
Mattias Jonsson References . . . . . . . . . . . . . . . 227--229
Charles Favre and
Mattias Jonsson Index . . . . . . . . . . . . . . . . . 231--234
Charles Favre and
Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 241--241
Charles Favre and
Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 241--243
Charles Favre and
Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 243--243
Charles Favre and
Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 243--243
Charles Favre and
Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 243--244
Osamu Saeki Introduction . . . . . . . . . . . . . . 1--5
Osamu Saeki Part I: Classification of Singular
Fibers . . . . . . . . . . . . . . . . . 7--57
Osamu Saeki Part II: Universal Complex of Singular
Fibers . . . . . . . . . . . . . . . . . 59--120
Osamu Saeki Part III: Epilogue . . . . . . . . . . . 121--129
Osamu Saeki References . . . . . . . . . . . . . . . 131--134
Osamu Saeki List of Symbols and Index . . . . . . . 135--145
Giuseppe Da Prato An Introduction to Markov Semigroups . . 1--63
Peer C. Kunstmann and
Lutz Weis Maximal $ L_p $-regularity for Parabolic
Equations, Fourier Multiplier Theorems
and $ H^\infty $-functional Calculus . . 65--311
Irena Lasiecka Optimal Control Problems and Riccati
Equations for Systems with Unbounded
Controls and Partially Analytic
Generators-Applications to Boundary and
Point Control Problems . . . . . . . . . 313--369
Alessandra Lunardi An Introduction to Parabolic Moving
Boundary Problems . . . . . . . . . . . 371--399
Roland Schnaubelt Asymptotic Behaviour of Parabolic
Nonautonomous Evolution Equations . . . 401--472
Kerry Back Incomplete and Asymmetric Information in
Asset Pricing Theory . . . . . . . . . . 1--25
Tomasz R. Bielecki and
Monique Jeanblanc and
Marek Rutkowski Modeling and Valuation of Credit Risk 27--126
Christian Hipp Stochastic Control with Application in
Insurance . . . . . . . . . . . . . . . 127--164
Shige Peng Nonlinear Expectations, Nonlinear
Evaluations and Risk Measures . . . . . 165--253
Walter Schachermayer Utility Maximisation in Incomplete
Markets . . . . . . . . . . . . . . . . 255--293
Ronald A. Doney Tanaka's Construction for Random Walks
and Lévy Processes . . . . . . . . . . . 1--4
Ronald A. Doney Some Excursion Calculations for
Spectrally One-sided Lévy Processes . . . 5--15
Andreas E. Kyprianou and
Zbigniew Palmowski A Martingale Review of some Fluctuation
Theory for Spectrally Negative Lévy
Processes . . . . . . . . . . . . . . . 16--29
Martijn R. Pistorius A Potential-theoretical Review of some
Exit Problems of Spectrally Negative Lévy
Processes . . . . . . . . . . . . . . . 30--41
Laurent Nguyen-Ngoc and
Marc Yor Some Martingales Associated to Reflected
Lévy Processes . . . . . . . . . . . . . 42--69
K. Bruce Erickson and
Ross A. Maller Generalised Ornstein--Uhlenbeck
Processes and the Convergence of Lévy
Integrals . . . . . . . . . . . . . . . 70--94
Pierre Foug\`eres Spectral Gap for log-Concave Probability
Measures on the Real Line . . . . . . . 95--123
Laurent Godefroy Propriété de Choquet-Deny et fonctions
harmoniques sur les hypergroupes
commutatifs. (French) [] . . . . . . . . 124--134
Mioara Buiculescu Exponential Decay Parameters Associated
with Excessive Measures . . . . . . . . 135--144
Valentin Grecea Positive Bilinear Mappings Associated
with Stochastic Processes . . . . . . . 145--157
Adam Jakubowski An Almost Sure Approximation for the
Predictable Process in the Doob--Meyer
Decomposition Theorem . . . . . . . . . 158--164
Alexander Cherny and
Albert Shiryaev On Stochastic Integrals up to Infinity
and Predictable Criteria for
Integrability . . . . . . . . . . . . . 165--185
Yuri Kabanov and
Christophe Stricker Remarks on the true No-arbitrage
Property . . . . . . . . . . . . . . . . 186--194
Hans Bühler Information-equivalence: On Filtrations
Created by Independent Increments . . . 195--204
Moshe Zakai Rotations and Tangent Processes on
Wiener Space . . . . . . . . . . . . . . 205--225
Ichiro Shigekawa $ L^p $ Multiplier Theorem for the
Hodge--Kodaira Operator . . . . . . . . 226--246
Giovanni Peccati and
Ciprian A. Tudor Gaussian Limits for Vector-valued
Multiple Stochastic Integrals . . . . . 247--262
Jay Rosen Derivatives of Self-intersection Local
Times . . . . . . . . . . . . . . . . . 263--281
Nathalie Eisenbaum and
Ciprian A. Tudor On Squared Fractional Brownian Motions 282--289
Antoine Ayache and
Albert Benassi and
Serge Cohen and
Jacques Lévy Véhel Regularity and Identification of
Generalized Multifractional Gaussian
Processes . . . . . . . . . . . . . . . 290--312
Alexander S. Cherny and
Hans-Jürgen Engelbert Introduction . . . . . . . . . . . . . . 1--4
Alexander S. Cherny and
Hans-Jürgen Engelbert 1. Stochastic Differential Equations . . 5--25
Alexander S. Cherny and
Hans-Jürgen Engelbert 2. One-Sided Classification of Isolated
Singular Points . . . . . . . . . . . . 27--64
Alexander S. Cherny and
Hans-Jürgen Engelbert 3. Two-Sided Classification of Isolated
Singular Points . . . . . . . . . . . . 65--79
Alexander S. Cherny and
Hans-Jürgen Engelbert 4. Classification at Infinity and Global
Solutions . . . . . . . . . . . . . . . 81--91
Alexander S. Cherny and
Hans-Jürgen Engelbert 5. Several Special Cases . . . . . . . . 93--103
Alexander S. Cherny and
Hans-Jürgen Engelbert Appendix . . . . . . . . . . . . . . . . 105--118
Alexander S. Cherny and
Hans-Jürgen Engelbert References . . . . . . . . . . . . . . . 119--121
Alexander S. Cherny and
Hans-Jürgen Engelbert Index of Notation and Index of Terms . . 123--128
Emmanuel Letellier 1. Introduction . . . . . . . . . . . . 1--4
Emmanuel Letellier 2. Connected Reductive Groups and Their
Lie Algebras . . . . . . . . . . . . . . 5--31
Emmanuel Letellier 3. Deligne--Lusztig Induction . . . . . 33--43
Emmanuel Letellier 4. Local Systems and Perverse Sheaves 45--60
Emmanuel Letellier 5. Geometrical Induction . . . . . . . . 61--113
Emmanuel Letellier 6. Deligne--Lusztig Induction and
Fourier Transforms . . . . . . . . . . . 115--149
Emmanuel Letellier 7. Fourier Transforms of the
Characteristic Functions of the Adjoint
Orbits . . . . . . . . . . . . . . . . . 151--158
Emmanuel Letellier References . . . . . . . . . . . . . . . 159--162
Emmanuel Letellier Index . . . . . . . . . . . . . . . . . 163--165
Avner Friedman Introduction to Neurons . . . . . . . . 1--20
David Terman An Introduction to Dynamical Systems and
Neuronal Dynamics . . . . . . . . . . . 21--68
Bard Ermentrout Neural Oscillators . . . . . . . . . . . 69--106
Alla Borisyuk Physiology and Mathematical Modeling of
the Auditory System . . . . . . . . . . 107--168
Giancarlo Benettin Physical Applications of Nekhoroshev
Theorem and Exponential Estimates . . . 1--76
Jacques Henrard The Adiabatic Invariant Theory and
Applications . . . . . . . . . . . . . . 77--141
Sergei Kuksin Lectures on Hamiltonian Methods in
Nonlinear PDEs . . . . . . . . . . . . . 143--164
Bernard Helffer and
Francis Nier 1. Introduction . . . . . . . . . . . . 1--9
Bernard Helffer and
Francis Nier 2. Kohn's Proof of the Hypoellipticity
of the Hörmander Operators . . . . . . . 11--18
Bernard Helffer and
Francis Nier 3. Compactness Criteria for the
Resolvent of Schrödinger Operators . . . 19--26
Bernard Helffer and
Francis Nier 4. Global Pseudo-differential Calculus 27--42
Bernard Helffer and
Francis Nier 5. Analysis of Some Fokker--Planck
Operator . . . . . . . . . . . . . . . . 43--64
Bernard Helffer and
Francis Nier 6. Return to Equilibrium for the
Fokker--Planck Operator . . . . . . . . 65--72
Bernard Helffer and
Francis Nier 7. Hypoellipticity and Nilpotent Groups 73--78
Bernard Helffer and
Francis Nier 8. Maximal Hypoellipticity for
Polynomial of Vector Fields and Spectral
Byproducts . . . . . . . . . . . . . . . 79--87
Bernard Helffer and
Francis Nier 9. On Fokker--Planck Operators and
Nilpotent Techniques . . . . . . . . . . 89--95
Bernard Helffer and
Francis Nier 10. Maximal Microhypoellipticity for
Systems and Applications to Witten
Laplacians . . . . . . . . . . . . . . . 97--112
Bernard Helffer and
Francis Nier 11. Spectral Properties of the
Witten--Laplacians in Connection with
Poincaré Inequalities for Laplace
Integrals . . . . . . . . . . . . . . . 113--131
Bernard Helffer and
Francis Nier 12. Semi-classical Analysis for the
Schrödinger Operator: Harmonic
Approximation . . . . . . . . . . . . . 133--145
Bernard Helffer and
Francis Nier 13. Decay of Eigenfunctions and
Application to the Splitting . . . . . . 147--161
Bernard Helffer and
Francis Nier 14. Semi-classical Analysis and Witten
Laplacians: Morse Inequalities . . . . . 163--172
Bernard Helffer and
Francis Nier 15. Semi-classical Analysis and Witten
Laplacians: Tunneling Effects . . . . . 173--180
Bernard Helffer and
Francis Nier 16. Accurate Asymptotics for the
Exponentially Small Eigenvalues of $
\Delta_{f, h}^{(0)} $ . . . . . . . . . 181--188
Bernard Helffer and
Francis Nier 17. Application to the Fokker--Planck
Equation . . . . . . . . . . . . . . . . 189--191
Bernard Helffer and
Francis Nier 18. Epilogue . . . . . . . . . . . . . . 193--193
Bernard Helffer and
Francis Nier References and Index . . . . . . . . . . 195--209
Hartmut Führ 1. Introduction . . . . . . . . . . . . 1--13
Hartmut Führ 2. Wavelet Transforms and Group
Representations . . . . . . . . . . . . 15--58
Hartmut Führ 3. The Plancherel Transform for Locally
Compact Groups . . . . . . . . . . . . . 59--103
Hartmut Führ 4. Plancherel Inversion and Wavelet
Transforms . . . . . . . . . . . . . . . 105--138
Hartmut Führ 5. Admissible Vectors for Group
Extensions . . . . . . . . . . . . . . . 139--168
Hartmut Führ 6. Sampling Theorems for the Heisenberg
Group . . . . . . . . . . . . . . . . . 169--184
Hartmut Führ References and Index . . . . . . . . . . 185--193
Konstantinos Efstathiou Introduction . . . . . . . . . . . . . . 1--8
Konstantinos Efstathiou 1. Four Hamiltonian Systems . . . . . . 9--33
Konstantinos Efstathiou 2. Small Vibrations of Tetrahedral
Molecules . . . . . . . . . . . . . . . 35--58
Konstantinos Efstathiou 3. The Hydrogen Atom in Crossed Fields 59--85
Konstantinos Efstathiou 4. Quadratic Spherical Pendula . . . . . 87--111
Konstantinos Efstathiou 5. Fractional Monodromy in the $ 1
\colon - 2 $ Resonance System . . . . . 113--127
Konstantinos Efstathiou Appendix . . . . . . . . . . . . . . . . 129--138
Konstantinos Efstathiou References and Index . . . . . . . . . . 139--149
David Applebaum Lévy Processes in Euclidean Spaces and
Groups . . . . . . . . . . . . . . . . . 1--98
Johan Kustermans Locally compact quantum groups . . . . . 99--180
J. Martin Lindsay Quantum Stochastic Analysis -- an
Introduction . . . . . . . . . . . . . . 181--271
B. V. Rajarama Bhat Dilations, Cocycles and Product Systems 273--291
M. J. Sanderson Basic Concepts of Ca$^{2+}$ Signaling in
Cells and Tissues . . . . . . . . . . . 1--13
J. Sneyd Modeling $ {\rm IP}_3 $-Dependent
Calcium Dynamics in Non-Excitable Cells 15--61
T. R. Shannon Integrated Calcium Management in Cardiac
Myocytes . . . . . . . . . . . . . . . . 63--95
R. L. Winslow and
R. Hinch and
J. L. Greenstein Mechanisms and Models of Cardiac
Excitation-Contraction Coupling . . . . 97--131
E. Pate Mathematical Analysis of the Generation
of Force and Motion in Contracting
Muscle . . . . . . . . . . . . . . . . . 133--153
J. Reisert Signal Transduction in Vertebrate
Olfactory Receptor Cells . . . . . . . . 155--171
R. Bertram Mathematical Models of Synaptic
Transmission and Short-Term Plasticity 173--202
Jay Jorgenson and
Serge Lang $ {\rm GL}_n(R) $ Action on $ {\rm
Pos}_n(R) $ . . . . . . . . . . . . . . 1--22
Jay Jorgenson and
Serge Lang Measures, Integration and Quadratic
Model . . . . . . . . . . . . . . . . . 23--47
Jay Jorgenson and
Serge Lang Special Functions on $ {\rm Pos}_n $ . . 49--74
Jay Jorgenson and
Serge Lang Invariant Differential Operators on $
{\rm Pos}_n(R) $ . . . . . . . . . . . . 75--94
Jay Jorgenson and
Serge Lang Poisson Duality and Zeta Functions . . . 95--106
Jay Jorgenson and
Serge Lang Eisenstein Series First Part . . . . . . 107--120
Jay Jorgenson and
Serge Lang Geometric and Analytic Estimates . . . . 121--132
Jay Jorgenson and
Serge Lang Eisenstein Series Second Part . . . . . 133--162
Amir Dembo and
Tadahisa Funaki Favorite Points, Cover Times and
Fractals . . . . . . . . . . . . . . . . 1--101
Amir Dembo and
Tadahisa Funaki Stochastic Interface Models . . . . . . 103--274
Amir Dembo and
Tadahisa Funaki Back Matter . . . . . . . . . . . . . . ??
Vladimir I. Gurariy and
Wolfgang Lusky Disposition of Subspaces . . . . . . . . 1--21
Vladimir I. Gurariy and
Wolfgang Lusky Sequences in Normed Spaces . . . . . . . 23--43
Vladimir I. Gurariy and
Wolfgang Lusky Isomorphisms, Isometries and Embeddings 45--51
Vladimir I. Gurariy and
Wolfgang Lusky Spaces of Universal Disposition . . . . 53--60
Vladimir I. Gurariy and
Wolfgang Lusky Bounded Approximation Properties . . . . 61--69
Vladimir I. Gurariy and
Wolfgang Lusky Coefficient Estimates and the Müntz
Theorem . . . . . . . . . . . . . . . . 71--92
Vladimir I. Gurariy and
Wolfgang Lusky Classification and Elementary Properties
of Müntz Sequences . . . . . . . . . . . 93--103
Vladimir I. Gurariy and
Wolfgang Lusky More on the Geometry of Müntz Sequences
and Müntz Polynomials . . . . . . . . . . 105--116
Vladimir I. Gurariy and
Wolfgang Lusky Operators of Finite Rank and Bases in
Müntz Spaces . . . . . . . . . . . . . . 117--136
Vladimir I. Gurariy and
Wolfgang Lusky Projection Types and the Isomorphism
Problem for Müntz Spaces . . . . . . . . 137--145
Vladimir I. Gurariy and
Wolfgang Lusky The Classes $ [M], A, P $ and $
P_\epsilon $ . . . . . . . . . . . . . . 147--154
Vladimir I. Gurariy and
Wolfgang Lusky Finite Dimensional Müntz Limiting Spaces
in $C$ . . . . . . . . . . . . . . . . . 155--161
Uwe Franz and
Rolf Rolf Random Walks on Finite Quantum Groups 1--32
Ole E. Barndorff-Nielsen and
Steen Thorbjòrnsen Classical and Free Infinite Divisibility
and Lévy Processes . . . . . . . . . . . 33--159
Uwe Franz Lévy Processes on Quantum Groups and Dual
Groups . . . . . . . . . . . . . . . . . 161--257
Burkhard Kümmerer Quantum Markov Processes and
Applications in Physics . . . . . . . . 259--330
Peter Constantin Euler Equations, Navier--Stokes
Equations and Turbulence . . . . . . . . 1--43
Giovanni Gallavotti CKN Theory of Singularities of Weak
Solutions of the Navier--Stokes
Equations . . . . . . . . . . . . . . . 45--74
Alexandre V. Kazhikhov Approximation of Weak Limits and Related
Problems . . . . . . . . . . . . . . . . 75--100
Yves Meyer Oscillating Patterns in Some Nonlinear
Evolution Equations . . . . . . . . . . 101--187
Seiji Ukai Asymptotic Analysis of Fluid Equations 189--250
Seiji Ukai Back Matter . . . . . . . . . . . . . . ??
Baltazar D. Aguda Modeling the Cell Division Cycle . . . . 1--22
Howard A. Levine and
Marit Nilsen-Hamilton Angiogenesis --- a
Biochemical/Mathematical Perspective . . 23--76
Georgios Lolas Mathematical Modelling of Proteolysis
and Cancer Cell Invasion of Tissue . . . 77--129
Mark Chaplain and
Anastasios Matzavinos Mathematical Modelling of
Spatio-temporal Phenomena in Tumour
Immunology . . . . . . . . . . . . . . . 131--183
Marek Kimmel and
Andrzej Swierniak Control Theory Approach to Cancer
Chemotherapy: Benefiting from Phase
Dependence and Overcoming Drug
Resistance . . . . . . . . . . . . . . . 185--221
Avner Friedman Cancer Models and Their Mathematical
Analysis . . . . . . . . . . . . . . . . 223--246
Avner Friedman Back Matter . . . . . . . . . . . . . . ??
Roger Mansuy and
Marc Yor Notation and Convention . . . . . . . . 1--39
Roger Mansuy and
Marc Yor Stopping and Non-stopping Times . . . . 41--51
Roger Mansuy and
Marc Yor On the Martingales which Vanish on the
Set of Brownian Zeroes . . . . . . . . . 53--69
Roger Mansuy and
Marc Yor Predictable and Chaotic Representation
Properties for Some Remarkable
Martingales Including the Azéma and the
Dunkl Martingales . . . . . . . . . . . 71--86
Roger Mansuy and
Marc Yor Unveiling the Brownian Path (or history)
as the Level Rises . . . . . . . . . . . 87--102
Roger Mansuy and
Marc Yor Weak and Strong Brownian Filtrations . . 103--116
Roger Mansuy and
Marc Yor Sketches of Solutions for the Exercises 117--139
Meyer Paul André Titres et Travaux: Postface. (French) [] 1--12
Marc Yor The Life and Scientific Work of Paul
André Meyer (August 21st, 1934--January
30th, 2003) ``Un mod\`ele pour nous
tous'' . . . . . . . . . . . . . . . . . 13--26
Stéphane Attal Disparition de Paul-André Meyer. (French)
[] . . . . . . . . . . . . . . . . . . . 27--34
Jacques Azéma and
Claude Dellacherie and
Catherine Doléans-Dade and
Michel Émery and
Yves Le Jan and
Bernard Maisonneuve and
Yves Meyer and
Jacques Neveu and
Nicolas Privault and
Daniel Revuz Témoignages. (French) [] . . . . . . . . 35--46
Yan Pautrat Kernel and Integral Representations of
Operators on Infinite Dimensional Toy
Fock Spaces . . . . . . . . . . . . . . 47--60
Philippe Biane Le Théor\`eme de Pitman, le Groupe
Quantique $ {\rm SU}_q(2) $, et une
Question de P.-A. Meyer. (French) [] . . 61--75
Jia-An Yan A Simple Proof of Two Generalized
Borel--Cantelli Lemmas . . . . . . . . . 77--79
François Coquet and
Adam Jakubowski and
Jean Mémin and
Leszek S\lominski Natural Decomposition of Processes and
Weak Dirichlet Processes . . . . . . . . 81--116
John B. Walsh A Lost Scroll . . . . . . . . . . . . . 117--118
Marzia De Donno and
Maurizio Pratelli Stochastic Integration with Respect to a
Sequence of Semimartingales . . . . . . 119--135
Rajeeva L. Karandikar On Almost Sure Convergence Results in
Stochastic Calculus . . . . . . . . . . 137--147
Shinichi Kotani On a Condition that One-Dimensional
Diffusion Processes are Martingales . . 149--156
Dilip B. Madan and
Marc Yor Itô's Integrated Formula for Strict Local
Martingales . . . . . . . . . . . . . . 157--170
David Applebaum Martingale-Valued Measures,
Ornstein--Uhlenbeck Processes with Jumps
and Operator Self-Decomposability in
Hilbert Space . . . . . . . . . . . . . 171--196
Michel Émery Sandwiched Filtrations and Lévy Processes 197--208
Yuri Kabanov and
Christophe Stricker The Dalang--Morton--Willinger Theorem
Under Delayed and Restricted Information 209--213
Freddy Delbaen The Structure of $m$-Stable Sets and in
Particular of the Set of Risk Neutral
Measures . . . . . . . . . . . . . . . . 215--258
Bhaskaran Rajeev A Path Transformation of Brownian Motion 259--267
David Aldous and
Jim Pitman Two Recursive Decompositions of Brownian
Bridge Related to the Asymptotics of
Random Mappings . . . . . . . . . . . . 269--303
Bernard Roynette and
Pierre Vallois and
Marc Yor Pénalisations et Quelques Extensions du
Théor\`eme de Pitman, Relatives au
Mouvement Brownien et \`a Son. (French)
[] . . . . . . . . . . . . . . . . . . . 305--336
Jim Pitman Preliminaries . . . . . . . . . . . . . 1--11
Jim Pitman Bell polynomials, composite structures
and Gibbs partitions . . . . . . . . . . 13--35
Jim Pitman Exchangeable random partitions . . . . . 37--53
Jim Pitman Sequential constructions of random
partitions . . . . . . . . . . . . . . . 55--75
Jim Pitman Poisson constructions of random
partitions . . . . . . . . . . . . . . . 77--95
Jim Pitman Coagulation and fragmentation processes 97--120
Jim Pitman Random walks and random forests . . . . 121--141
Jim Pitman The Brownian forest . . . . . . . . . . 143--175
Jim Pitman Brownian local times, branching and
Bessel processes . . . . . . . . . . . . 177--191
Jim Pitman Brownian bridge asymptotics for random
mappings . . . . . . . . . . . . . . . . 193--206
Jim Pitman Random forests and the additive
coalescent . . . . . . . . . . . . . . . 207--221
Horst Herrlich Origins . . . . . . . . . . . . . . . . 1--8
Horst Herrlich Choice Principles . . . . . . . . . . . 9--20
Horst Herrlich Elementary Observations . . . . . . . . 21--42
Horst Herrlich Disasters without Choice . . . . . . . . 43--116
Horst Herrlich Disasters with Choice . . . . . . . . . 117--136
Horst Herrlich Disasters either way . . . . . . . . . . 137--141
Horst Herrlich Beauty without Choice . . . . . . . . . 143--157
Raphaël Cerf Front Matter . . . . . . . . . . . . . . i--xiv
Raphaël Cerf Front Matter . . . . . . . . . . . . . . 1--1
Raphaël Cerf Phase coexistence and subadditivity . . 3--12
Raphaël Cerf Front Matter . . . . . . . . . . . . . . 13--13
Raphaël Cerf Ising model . . . . . . . . . . . . . . 15--24
Raphaël Cerf Bernoulli percolation . . . . . . . . . 25--29
Raphaël Cerf FK or random cluster model . . . . . . . 31--42
Raphaël Cerf Front Matter . . . . . . . . . . . . . . 43--43
Raphaël Cerf The Wulff crystal . . . . . . . . . . . 45--64
Raphaël Cerf Front Matter . . . . . . . . . . . . . . 65--65
Raphaël Cerf Large deviation theory . . . . . . . . . 67--74
Raphaël Cerf Surface large deviation principles . . . 75--84
Raphaël Cerf Volume large deviations . . . . . . . . 85--102
Raphaël Cerf Front Matter . . . . . . . . . . . . . . 103--103
Raphaël Cerf Coarse graining . . . . . . . . . . . . 105--116
Raphaël Cerf Decoupling . . . . . . . . . . . . . . . 117--127
Raphaël Cerf Surface tension . . . . . . . . . . . . 129--145
Raphaël Cerf Interface estimate . . . . . . . . . . . 147--155
Raphaël Cerf Front Matter . . . . . . . . . . . . . . 157--157
Raphaël Cerf Sets of finite perimeter . . . . . . . . 159--172
Raphaël Cerf Surface energy . . . . . . . . . . . . . 173--188
Raphaël Cerf The Wulff theorem . . . . . . . . . . . 189--199
Raphaël Cerf Front Matter . . . . . . . . . . . . . . 201--201
Raphaël Cerf LDP for the cluster shapes . . . . . . . 203--214
Raphaël Cerf Enhanced upper bound . . . . . . . . . . 215--228
Raphaël Cerf LDP for FK percolation . . . . . . . . . 229--239
Raphaël Cerf LDP for Ising . . . . . . . . . . . . . 241--252
Raphaël Cerf Back Matter . . . . . . . . . . . . . . 253--268
Gordon Slade Front Matter . . . . . . . . . . . . . . i--xiii
Gordon Slade Simple Random Walk . . . . . . . . . . . 1--6
Gordon Slade The Self-Avoiding Walk . . . . . . . . . 7--17
Gordon Slade The Lace Expansion for the Self-Avoiding
Walk . . . . . . . . . . . . . . . . . . 19--29
Gordon Slade Diagrammatic Estimates for the
Self-Avoiding Walk . . . . . . . . . . . 31--40
Gordon Slade Convergence for the Self-Avoiding Walk 41--55
Gordon Slade Further Results for the Self-Avoiding
Walk . . . . . . . . . . . . . . . . . . 57--65
Gordon Slade Lattice Trees . . . . . . . . . . . . . 67--75
Gordon Slade The Lace Expansion for Lattice Trees . . 77--86
Gordon Slade Percolation . . . . . . . . . . . . . . 87--108
Gordon Slade The Expansion for Percolation . . . . . 109--123
Gordon Slade Results for Percolation . . . . . . . . 125--139
Gordon Slade Oriented Percolation . . . . . . . . . . 141--149
Gordon Slade Expansions for Oriented Percolation . . 151--159
Gordon Slade The Contact Process . . . . . . . . . . 161--170
Gordon Slade Branching Random Walk . . . . . . . . . 171--182
Gordon Slade Integrated Super-Brownian Excursion . . 183--200
Gordon Slade Super-Brownian Motion . . . . . . . . . 201--210
Gordon Slade Back Matter . . . . . . . . . . . . . . 211--232
Alain Joye Introduction to the Theory of Linear
Operators . . . . . . . . . . . . . . . 1--40
Alain Joye Introduction to Quantum Statistical
Mechanics . . . . . . . . . . . . . . . 41--67
Stéphane Attal Elements of Operator Algebras and
Modular Theory . . . . . . . . . . . . . 69--105
Claude-Alain Pillet Quantum Dynamical Systems . . . . . . . 107--182
Marco Merkli The Ideal Quantum Gas . . . . . . . . . 183--233
Vojkan Jak\vsi\'c Topics in Spectral Theory . . . . . . . 235--312
Luc Rey Bellet Ergodic Properties of Markov Processes 1--39
Luc Rey-Bellet Open Classical Systems . . . . . . . . . 41--78
Stéphane Attal Quantum Noises . . . . . . . . . . . . . 79--147
Rolando Rebolledo Complete Positivity and the Markov
structure of Open Quantum Systems . . . 149--182
Franco Fagnola Quantum Stochastic Differential
Equations and Dilation of Completely
Positive Semigroups . . . . . . . . . . 183--220
Walter Aschbacher and
Vojkan Jak\vsi\'c and
Yan Pautrat and
Claude-Alain Pillet Topics in Non-Equilibrium Quantum
Statistical Mechanics . . . . . . . . . 1--66
Jan Derezi\'nski and
Rafal Früboes Fermi Golden Rule and Open Quantum
Systems . . . . . . . . . . . . . . . . 67--116
Philippe Blanchard and
Robert Olkiewicz Decoherence as Irreversible Dynamical
Process in Open Quantum Systems . . . . 117--159
Franco Fagnola and
Rolando Rebolledo Notes on the Qualitative Behaviour of
Quantum Markov Semigroups . . . . . . . 161--205
Alberto Barchielli Continual Measurements in Quantum
Mechanics and Quantum Stochastic
Calculus . . . . . . . . . . . . . . . . 207--292
Walter Gautschi Orthogonal Polynomials, Quadrature, and
Approximation: Computational Methods and
Software (in Matlab) . . . . . . . . . . 1--77
Andrei Martínez Finkelshtein Equilibrium Problems of Potential Theory
in the Complex Plane . . . . . . . . . . 79--117
Bernhard Beckermann Discrete Orthogonal Polynomials and
Superlinear Convergence of Krylov
Subspace Methods in Numerical Linear
Algebra . . . . . . . . . . . . . . . . 119--185
Adhemar Bultheel and
Erik Hendriksen and
Pablo González-Vera and
Olav Njåstad Orthogonal Rational Functions on the
Unit Circle: from the Scalar to the
Matrix Case . . . . . . . . . . . . . . 187--228
Vadim B. Kuznetsov Orthogonal Polynomials and Separation of
Variables . . . . . . . . . . . . . . . 229--254
Paul Terwilliger An Algebraic Approach to the Askey
Scheme of Orthogonal Polynomials . . . . 255--330
Peter A. Clarkson Painlevé Equations --- Nonlinear Special
Functions . . . . . . . . . . . . . . . 331--411
Peter A. Clarkson Back Matter . . . . . . . . . . . . . . 413--422
Nakao Hayashi and
Pavel I. Naumkin and
Elena I. Kaikina and
Ilya A. Shishmarev Preliminary results . . . . . . . . . . 1--50
Nakao Hayashi and
Pavel I. Naumkin and
Elena I. Kaikina and
Ilya A. Shishmarev Weak Nonlinearity . . . . . . . . . . . 51--178
Nakao Hayashi and
Pavel I. Naumkin and
Elena I. Kaikina and
Ilya A. Shishmarev Critical Nonconvective Equations . . . . 179--322
Nakao Hayashi and
Pavel I. Naumkin and
Elena I. Kaikina and
Ilya A. Shishmarev Critical Convective Equations . . . . . 323--429
Nakao Hayashi and
Pavel I. Naumkin and
Elena I. Kaikina and
Ilya A. Shishmarev Subcritical Nonconvective Equations . . 431--512
Nakao Hayashi and
Pavel I. Naumkin and
Elena I. Kaikina and
Ilya A. Shishmarev Subcritical Convective Equations . . . . 513--540
András Telcs Front Matter . . . . . . . . . . . . . . i--vii
András Telcs Introduction . . . . . . . . . . . . . . 1--6
András Telcs Basic definitions and preliminaries . . 7--21
András Telcs Front Matter . . . . . . . . . . . . . . 24--24
András Telcs Some elements of potential theory . . . 25--47
András Telcs Isoperimetric inequalities . . . . . . . 49--60
András Telcs Polynomial volume growth . . . . . . . . 61--67
András Telcs Front Matter . . . . . . . . . . . . . . 70--70
András Telcs Motivation of the local approach . . . . 71--81
András Telcs Einstein relation . . . . . . . . . . . 83--93
András Telcs Upper estimates . . . . . . . . . . . . 95--129
András Telcs Lower estimates . . . . . . . . . . . . 131--151
András Telcs Two-sided estimates . . . . . . . . . . 153--163
András Telcs Closing remarks . . . . . . . . . . . . 165--168
András Telcs Parabolic Harnack inequality . . . . . . 169--179
András Telcs Semi-local theory . . . . . . . . . . . 181--185
András Telcs Back Matter . . . . . . . . . . . . . . 187--199
Shigeru Takamura Front Matter . . . . . . . . . . . . . . i--xxix
Shigeru Takamura Front Matter . . . . . . . . . . . . . . 22--22
Shigeru Takamura Splitting Deformations of Degenerations 23--31
Shigeru Takamura What is a barking? . . . . . . . . . . . 33--39
Shigeru Takamura Semi-Local Barking Deformations: Ideas
and Examples . . . . . . . . . . . . . . 41--56
Shigeru Takamura Global Barking Deformations: Ideas and
Examples . . . . . . . . . . . . . . . . 57--81
Shigeru Takamura Front Matter . . . . . . . . . . . . . . 84--84
Shigeru Takamura Deformations of Tubular Neighborhoods of
Branches (Preparation) . . . . . . . . . 85--98
Shigeru Takamura Construction of Deformations by Tame
Subbranches . . . . . . . . . . . . . . 99--117
Shigeru Takamura Construction of Deformations of type $
A_l $ . . . . . . . . . . . . . . . . . 119--141
Shigeru Takamura Construction of Deformations by Wild
Subbranches . . . . . . . . . . . . . . 143--152
Shigeru Takamura Subbranches of Types $ A_l $, $ B_l $, $
C_l $ . . . . . . . . . . . . . . . . . 153--176
Shigeru Takamura Construction of Deformations of Type $
B_l $ . . . . . . . . . . . . . . . . . 177--181
Shigeru Takamura Construction of Deformations of Type $
C_l $ . . . . . . . . . . . . . . . . . 183--207
Shigeru Takamura Recursive Construction of Deformations
of Type $ C_l $ . . . . . . . . . . . . 209--234
Shigeru Takamura Types $ A_l $, $ B_l $, and $ C_l $
Exhaust all Cases . . . . . . . . . . . 235--251
Shigeru Takamura Construction of Deformations by Bunches
of Subbranches . . . . . . . . . . . . . 253--262
Shigeru Takamura Front Matter . . . . . . . . . . . . . . 264--264
Shigeru Takamura Construction of Barking Deformations
(Stellar Case) . . . . . . . . . . . . . 265--278
Shigeru Takamura Simple Crusts (Stellar Case) . . . . . . 279--302
Shigeru Takamura Compound barking (Stellar Case) . . . . 303--307
Shigeru Takamura Deformations of Tubular Neighborhoods of
Trunks . . . . . . . . . . . . . . . . . 309--326
Shigeru Takamura Construction of Barking Deformations
(Constellar Case) . . . . . . . . . . . 327--347
Shigeru Takamura Further Examples . . . . . . . . . . . . 349--379
Shigeru Takamura Front Matter . . . . . . . . . . . . . . 382--382
Shigeru Takamura Singularities of Fibers around Cores . . 383--419
Shigeru Takamura Arrangement Functions and Singularities,
I . . . . . . . . . . . . . . . . . . . 421--438
Shigeru Takamura Arrangement Functions and Singularities,
II . . . . . . . . . . . . . . . . . . . 439--459
Shigeru Takamura Supplement . . . . . . . . . . . . . . . 461--479
Shigeru Takamura Front Matter . . . . . . . . . . . . . . 482--482
Shigeru Takamura Classification Theorem . . . . . . . . . 483--485
Shigeru Takamura List of Weighted Crustal Sets for
Singular Fibers of Genus $ \leq 5 $ . . 487--580
Shigeru Takamura Back Matter . . . . . . . . . . . . . . 581--594
Katharina Habermann and
Lutz Habermann Front Matter . . . . . . . . . . . . . . i--xii
Katharina Habermann and
Lutz Habermann Background on Symplectic Spinors . . . . 1--19
Katharina Habermann and
Lutz Habermann Symplectic Connections . . . . . . . . . 21--34
Katharina Habermann and
Lutz Habermann Symplectic Spinor Fields . . . . . . . . 35--48
Katharina Habermann and
Lutz Habermann Symplectic Dirac Operators . . . . . . . 49--66
Katharina Habermann and
Lutz Habermann An Associated Second Order Operator . . 67--79
Katharina Habermann and
Lutz Habermann The Kähler Case . . . . . . . . . . . . . 81--96
Katharina Habermann and
Lutz Habermann Fourier Transform for Symplectic Spinors 97--100
Katharina Habermann and
Lutz Habermann Lie Derivative and Quantization . . . . 101--113
Katharina Habermann and
Lutz Habermann Back Matter . . . . . . . . . . . . . . 115--124
Joris van der Hoeven Front Matter . . . . . . . . . . . . . . I--XXII
Joris van der Hoeven Orderings . . . . . . . . . . . . . . . 11--32
Joris van der Hoeven Grid-based series . . . . . . . . . . . 33--55
Joris van der Hoeven The Newton polygon method . . . . . . . 57--77
Joris van der Hoeven Transseries . . . . . . . . . . . . . . 79--96
Joris van der Hoeven Operations on transseries . . . . . . . 97--113
Joris van der Hoeven Grid-based operators . . . . . . . . . . 115--133
Joris van der Hoeven Linear differential equations . . . . . 135--164
Joris van der Hoeven Algebraic differential equations . . . . 165--200
Joris van der Hoeven The intermediate value theorem . . . . . 201--233
Joris van der Hoeven Back Matter . . . . . . . . . . . . . . 235--259
Marta Bunge and
Jonathon Funk Front Matter . . . . . . . . . . . . . . I--XVII
Marta Bunge and
Jonathon Funk Front Matter . . . . . . . . . . . . . . 8--8
Marta Bunge and
Jonathon Funk Lawvere Distributions on Toposes . . . . 9--29
Marta Bunge and
Jonathon Funk Complete Spread Maps of Toposes . . . . 31--54
Marta Bunge and
Jonathon Funk The Spread and Completeness Conditions 55--76
Marta Bunge and
Jonathon Funk Front Matter . . . . . . . . . . . . . . 78--78
Marta Bunge and
Jonathon Funk Completion KZ-Monads . . . . . . . . . . 79--97
Marta Bunge and
Jonathon Funk Complete Spreads as Discrete
$M$-fibrations . . . . . . . . . . . . . 99--108
Marta Bunge and
Jonathon Funk Closed and Linear KZ-Monads . . . . . . 109--127
Marta Bunge and
Jonathon Funk Front Matter . . . . . . . . . . . . . . 130--130
Marta Bunge and
Jonathon Funk Lattice-Theoretic Aspects . . . . . . . 131--159
Marta Bunge and
Jonathon Funk Localic and Algebraic Aspects . . . . . 161--188
Marta Bunge and
Jonathon Funk Topological Aspects . . . . . . . . . . 189--215
Marta Bunge and
Jonathon Funk Back Matter . . . . . . . . . . . . . . 217--229
J. B. Friedlander and
D. R. Heath-Brown and
H. Iwaniec and
J. Kaczorowski Front Matter . . . . . . . . . . . . . . I--XI
John B. Friedlander Producing Prime Numbers via Sieve
Methods . . . . . . . . . . . . . . . . 1--49
D. R. Heath-Brown Counting Rational Points on Algebraic
Varieties . . . . . . . . . . . . . . . 51--95
Henryk Iwaniec Conversations on the Exceptional
Character . . . . . . . . . . . . . . . 97--132
Jerzy Kaczorowski Axiomatic Theory of $L$-Functions: the
Selberg Class . . . . . . . . . . . . . 133--209
Jerzy Kaczorowski Back Matter . . . . . . . . . . . . . . 211--216
James A. Green and
Manfred Schocker and
Karin Erdmann Front Matter . . . . . . . . . . . . . . I--IX
James A. Green and
Manfred Schocker and
Karin Erdmann Introduction . . . . . . . . . . . . . . 1--10
James A. Green and
Manfred Schocker and
Karin Erdmann Polynomial Representations of $ {\rm GL
n} (K) $: The Schur algebra . . . . . . 11--22
James A. Green and
Manfred Schocker and
Karin Erdmann Weights and Characters . . . . . . . . . 23--31
James A. Green and
Manfred Schocker and
Karin Erdmann The modules $ D_\lambda, K $ . . . . . . 33--42
James A. Green and
Manfred Schocker and
Karin Erdmann The Carter--Lusztig modules $ V_\lambda,
K $ . . . . . . . . . . . . . . . . . . 43--52
James A. Green and
Manfred Schocker and
Karin Erdmann Representation theory of the symmetric
group . . . . . . . . . . . . . . . . . 53--70
James A. Green and
Manfred Schocker and
Karin Erdmann Back Matter . . . . . . . . . . . . . . 72--163
Jin Ma and
Jiongmin Yong Front Matter . . . . . . . . . . . . . . i--xiii
Jin Ma and
Jiongmin Yong Introduction . . . . . . . . . . . . . . 1--24
Jin Ma and
Jiongmin Yong Linear Equations . . . . . . . . . . . . 25--50
Jin Ma and
Jiongmin Yong Method of Optimal Control . . . . . . . 51--79
Jin Ma and
Jiongmin Yong Four Step Scheme . . . . . . . . . . . . 80--102
Jin Ma and
Jiongmin Yong Linear, Degenerate Backward Stochastic
Partial Differential Equations . . . . . 103--136
Jin Ma and
Jiongmin Yong The Method of Continuation . . . . . . . 137--168
Jin Ma and
Jiongmin Yong FBSDEs with Reflections . . . . . . . . 169--192
Jin Ma and
Jiongmin Yong Applications of FBSDEs . . . . . . . . . 193--234
Jin Ma and
Jiongmin Yong Numerical Methods for FBSDEs . . . . . . 235--256
Jin Ma and
Jiongmin Yong Back Matter . . . . . . . . . . . . . . 257--274
Jörn Steuding Front Matter . . . . . . . . . . . . . . I--XIII
Jörn Steuding Introduction . . . . . . . . . . . . . . 1--33
Jörn Steuding Dirichlet Series and Polynomial Euler
Products . . . . . . . . . . . . . . . . 35--47
Jörn Steuding Interlude: Results from Probability
Theory . . . . . . . . . . . . . . . . . 49--61
Jörn Steuding Limit Theorems . . . . . . . . . . . . . 63--85
Jörn Steuding Universality . . . . . . . . . . . . . . 87--110
Jörn Steuding The Selberg Class . . . . . . . . . . . 111--135
Jörn Steuding Value-Distribution in the Complex Plane 137--154
Jörn Steuding The Riemann Hypothesis . . . . . . . . . 155--165
Jörn Steuding Effective Results . . . . . . . . . . . 167--191
Jörn Steuding Consequences of Universality . . . . . . 193--207
Jörn Steuding Dirichlet Series with Periodic
Coefficients . . . . . . . . . . . . . . 209--227
Jörn Steuding Joint Universality . . . . . . . . . . . 229--248
Jörn Steuding $L$-Functions of Number Fields . . . . . 249--283
Jörn Steuding Back Matter . . . . . . . . . . . . . . 285--322
Prof. George Osipenko Front Matter . . . . . . . . . . . . . . I--XII
Prof. George Osipenko Introduction . . . . . . . . . . . . . . 1--14
Prof. George Osipenko Symbolic Image . . . . . . . . . . . . . 15--25
Prof. George Osipenko Periodic Trajectories . . . . . . . . . 27--33
Prof. George Osipenko Newton's Method . . . . . . . . . . . . 35--41
Prof. George Osipenko Invariant Sets . . . . . . . . . . . . . 43--54
Prof. George Osipenko Chain Recurrent Set . . . . . . . . . . 55--63
Prof. George Osipenko Attractors . . . . . . . . . . . . . . . 65--83
Prof. George Osipenko Filtration . . . . . . . . . . . . . . . 85--95
Prof. George Osipenko Structural Graph . . . . . . . . . . . . 97--105
Prof. George Osipenko Entropy . . . . . . . . . . . . . . . . 107--121
Prof. George Osipenko Projective Space and Lyapunov Exponents 123--136
Prof. George Osipenko Morse Spectrum . . . . . . . . . . . . . 137--160
Prof. George Osipenko Hyperbolicity and Structural Stability 161--174
Prof. George Osipenko Controllability . . . . . . . . . . . . 175--179
Prof. George Osipenko Invariant Manifolds . . . . . . . . . . 181--195
Prof. George Osipenko Ikeda Mapping Dynamics . . . . . . . . . 197--218
Prof. George Osipenko A Dynamical System of Mathematical
Biology . . . . . . . . . . . . . . . . 219--232
Prof. George Osipenko Back Matter . . . . . . . . . . . . . . 233--287
Adrian Baddeley and
Imre Bárány and
Rolf Schneider Front Matter . . . . . . . . . . . . . . I--XII
Adrian Baddeley and
Imre Bárány and
Rolf Schneider Spatial Point Processes and their
Applications . . . . . . . . . . . . . . 1--75
Adrian Baddeley and
Imre Bárány and
Rolf Schneider Random Polytopes, Convex Bodies, and
Approximation . . . . . . . . . . . . . 77--118
Adrian Baddeley and
Imre Bárány and
Rolf Schneider Integral Geometric Tools for Stochastic
Geometry . . . . . . . . . . . . . . . . 119--184
Adrian Baddeley and
Imre Bárány and
Rolf Schneider Random Sets (in Particular Boolean
Models) . . . . . . . . . . . . . . . . 185--245
Adrian Baddeley and
Imre Bárány and
Rolf Schneider Random Mosaics . . . . . . . . . . . . . 247--266
Adrian Baddeley and
Imre Bárány and
Rolf Schneider On the Evolution Equations of Mean
Geometric Densities for a Class of Space
and Time Inhomogeneous Stochastic
Birth-and-growth Processes . . . . . . . 267--281
Adrian Baddeley and
Imre Bárány and
Rolf Schneider Back Matter . . . . . . . . . . . . . . 283--292
Heinz Hanßmann Front Matter . . . . . . . . . . . . . . I--XV
Heinz Hanßmann Introduction . . . . . . . . . . . . . . 1--15
Heinz Hanßmann Bifurcations of Equilibria . . . . . . . 17--89
Heinz Hanßmann Bifurcations of Periodic Orbits . . . . 91--107
Heinz Hanßmann Bifurcations of Invariant Tori . . . . . 109--142
Heinz Hanßmann Perturbations of Ramified Torus Bundles 143--159
Heinz Hanßmann Planar Singularities . . . . . . . . . . 161--165
Heinz Hanßmann Stratifications . . . . . . . . . . . . 167--171
Heinz Hanßmann Normal Form Theory . . . . . . . . . . . 173--184
Heinz Hanßmann Proof of the Main KAM Theorem . . . . . 185--200
Heinz Hanßmann Proofs of the Necessary Lemmata . . . . 201--206
Heinz Hanßmann Back Matter . . . . . . . . . . . . . . 207--241
Charles W. Groetsch Front Matter . . . . . . . . . . . . . . I--X
Charles W. Groetsch Some Problems Leading to Unbounded
Operators . . . . . . . . . . . . . . . 1--17
Charles W. Groetsch Hilbert Space Background . . . . . . . . 19--51
Charles W. Groetsch A General Approach to Stabilization . . 53--75
Charles W. Groetsch The Tikhonov--Morozov Method . . . . . . 77--99
Charles W. Groetsch Finite-Dimensional Approximations . . . 101--119
Charles W. Groetsch Back Matter . . . . . . . . . . . . . . 121--131
Lajos Molnár Front Matter . . . . . . . . . . . . . . I--IXL
Lajos Molnár Some Linear and Multiplicative Preserver
Problems on Operator Algebras and
Function Algebras . . . . . . . . . . . 29--64
Lajos Molnár Preservers on Quantum Structures . . . . 65--157
Lajos Molnár Local Automorphisms and Local Isometries
of Operator Algebras and Function
Algebras . . . . . . . . . . . . . . . . 159--204
Lajos Molnár Back Matter . . . . . . . . . . . . . . 205--236
Professor Pascal Massart Front Matter . . . . . . . . . . . . . . I--XIV
Professor Pascal Massart Introduction . . . . . . . . . . . . . . 1--13
Professor Pascal Massart Exponential and Information Inequalities 15--51
Professor Pascal Massart Gaussian Processes . . . . . . . . . . . 53--82
Professor Pascal Massart Gaussian Model Selection . . . . . . . . 83--146
Professor Pascal Massart Concentration Inequalities . . . . . . . 147--181
Professor Pascal Massart Maximal Inequalities . . . . . . . . . . 183--199
Professor Pascal Massart Density Estimation via Model Selection 201--277
Professor Pascal Massart Statistical Learning . . . . . . . . . . 279--318
Professor Pascal Massart Back Matter . . . . . . . . . . . . . . 319--341
Professor Ronald A. Doney Front Matter . . . . . . . . . . . . . . I--IX
Professor Ronald A. Doney Introduction to Lévy Processes . . . . . 1--8
Professor Ronald A. Doney Subordinators . . . . . . . . . . . . . 9--17
Professor Ronald A. Doney Local Times and Excursions . . . . . . . 19--24
Professor Ronald A. Doney Ladder Processes and the Wiener--Hopf
Factorisation . . . . . . . . . . . . . 25--40
Professor Ronald A. Doney Further Wiener--Hopf Developments . . . 41--50
Professor Ronald A. Doney Creeping and Related Questions . . . . . 51--64
Professor Ronald A. Doney Spitzer's Condition . . . . . . . . . . 65--80
Professor Ronald A. Doney Lévy Processes Conditioned to Stay
Positive . . . . . . . . . . . . . . . . 81--93
Professor Ronald A. Doney Spectrally Negative Lévy Processes . . . 95--113
Professor Ronald A. Doney Small-Time Behaviour . . . . . . . . . . 115--132
Professor Ronald A. Doney Back Matter . . . . . . . . . . . . . . 133--150
Horst Reinhard Beyer Front Matter . . . . . . . . . . . . . . i--xiv
Horst Reinhard Beyer Conventions . . . . . . . . . . . . . . 1--3
Horst Reinhard Beyer Mathematical Introduction . . . . . . . 5--12
Horst Reinhard Beyer Prerequisites . . . . . . . . . . . . . 13--39
Horst Reinhard Beyer Strongly Continuous Semigroups . . . . . 41--69
Horst Reinhard Beyer Examples of Generators of Strongly
Continuous Semigroups . . . . . . . . . 71--103
Horst Reinhard Beyer Intertwining Relations, Operator
Homomorphisms . . . . . . . . . . . . . 105--121
Horst Reinhard Beyer Examples of Constrained Systems . . . . 123--135
Horst Reinhard Beyer Kernels, Chains, and Evolution Operators 137--163
Horst Reinhard Beyer The Linear Evolution Equation . . . . . 165--176
Horst Reinhard Beyer Examples of Linear Evolution Equations 177--214
Horst Reinhard Beyer The Quasi-Linear Evolution Equation . . 215--234
Horst Reinhard Beyer Examples of Quasi-Linear Evolution
Equations . . . . . . . . . . . . . . . 235--263
Horst Reinhard Beyer Back Matter . . . . . . . . . . . . . . 265--287
Laure Coutin An Introduction to (Stochastic) Calculus
with Respect to Fractional Brownian
Motion . . . . . . . . . . . . . . . . . 3--65
Laure Coutin Front Matter . . . . . . . . . . . . . . 67--67
Goran Peskir A Change-of-Variable Formula with Local
Time on Surfaces . . . . . . . . . . . . 70--96
Andreas E. Kyprianou and
Budhi A. Surya A Note on a Change of Variable Formula
with Local Time-Space for Lévy Processes
of Bounded Variation . . . . . . . . . . 97--104
Joseph Najnudel Integration with Respect to
Self-Intersection Local Time of a
One-Dimensional Brownian Motion . . . . 105--116
K. David Elworthy and
Aubrey Truman and
Huaizhong Zhao Generalized Itô Formulae and Space-Time
Lebesgue--Stieltjes Integrals of Local
Times . . . . . . . . . . . . . . . . . 117--136
Nathalie Eisenbaum Local Time-Space Calculus for Reversible
Semimartingales . . . . . . . . . . . . 137--146
Francesco Russo and
Pierre Vallois Elements of Stochastic Calculus via
Regularization . . . . . . . . . . . . . 147--185
Huyen Pham On the Smooth-Fit Property for
One-Dimensional Optimal Switching
Problem . . . . . . . . . . . . . . . . 187--199
Huyen Pham Front Matter . . . . . . . . . . . . . . 201--201
Irene Crimaldi and
Giorgio Letta and
Luca Pratelli A Strong Form of Stable Convergence . . 203--225
Pedro J. Catuogno and
Paulo R. C. Ruffino Product of Harmonic Maps is Harmonic: a
Stochastic Approach . . . . . . . . . . 227--233
Michel Ledoux More Hypercontractive Bounds for
Deformed Orthogonal Polynomial Ensembles 235--240
Emmanuel Cépa and
Dominique Lépingle No Multiple Collisions for Mutually
Repelling Brownian Particles . . . . . . 241--246
Larbi Alili and
Pierre Patie On the Joint Law of the $ L_1 $ and $
L_2 $ Norms of a $3$-Dimensional Bessel
Bridge . . . . . . . . . . . . . . . . . 247--264
Paavo Salminen and
Marc Yor Tanaka Formula for Symmetric Lévy
Processes . . . . . . . . . . . . . . . 265--285
Martijn R. Pistorius An Excursion-Theoretical Approach to
Some Boundary Crossing Problems and the
Skorokhod Embedding for Reflected Lévy
Processes . . . . . . . . . . . . . . . 287--307
Jan Ob\lój The Maximality Principle Revisited: On
Certain Optimal Stopping Problems . . . 309--328
Nathanaül Enriquez Correlated Processes and the Composition
of Generators . . . . . . . . . . . . . 329--342
Laurent Serlet Representation of the Martingales for
the Brownian Snake . . . . . . . . . . . 343--354
Emmanuel Gobet and
Stéphane Menozzi Discrete Sampling of Functionals of Itô
Processes . . . . . . . . . . . . . . . 355--374
Oleksandr Chybiryakov Itô's Integrated Formula for Strict Local
Martingales with Jumps . . . . . . . . . 375--388
Erwin Bolthausen Random Media and Spin Glasses: an
Introduction into Some Mathematical
Results and Problems . . . . . . . . . . 1--44
David Sherrington Spin Glasses: a Perspective . . . . . . 45--62
Michel Talagrand Mean Field Models for Spin Glasses: Some
Obnoxious Problems . . . . . . . . . . . 63--80
Anton Bovier and
Irina Kurkova Much Ado about Derrida's GREM . . . . . 81--115
Alice Guionnet Dynamics for Spherical Models of
Spin-Glass and Aging . . . . . . . . . . 117--144
Charles M. Newman and
Daniel L. Stein Local vs. Global Variables for Spin
Glasses . . . . . . . . . . . . . . . . 145--158
Charles M. Newman and
Daniel L. Stein Short-Range Spin Glasses: Results and
Speculations . . . . . . . . . . . . . . 159--175
Charles M. Newman and
Daniel L. Stein Back Matter . . . . . . . . . . . . . . 177--182
Olivier Wittenberg Front Matter . . . . . . . . . . . . . . I--XXIV
Olivier Wittenberg Arithmétique des pinceaux semi-stables de
courbes de genre $1$ (premi\`ere
partie). (French) [] . . . . . . . . . . 19--72
Olivier Wittenberg Arithmétique des pinceaux semi-stables de
courbes de genre $1$ (seconde partie).
(French) [] . . . . . . . . . . . . . . 73--108
Olivier Wittenberg Principe de Hasse pour les surfaces de
del Pezzo de degré $4$. (French) [] . . . 109--200
Olivier Wittenberg Back Matter . . . . . . . . . . . . . . 201--222
Alexander Isaev Front Matter . . . . . . . . . . . . . . I--VIII
Alexander Isaev Introduction . . . . . . . . . . . . . . 1--22
Alexander Isaev The Homogeneous Case . . . . . . . . . . 23--28
Alexander Isaev The Case $ d (M) = n^2 $ . . . . . . . . 29--50
Alexander Isaev The Case $ d (M) = n^2 - 1 $, $ n \geq 3
$ . . . . . . . . . . . . . . . . . . . 51--60
Alexander Isaev The Case of $ (2, 3)$-Manifolds . . . . 61--119
Alexander Isaev Proper Actions . . . . . . . . . . . . . 121--130
Alexander Isaev Back Matter . . . . . . . . . . . . . . 131--143
Vladimir Maz'ya and
Gershon Kresin Front Matter . . . . . . . . . . . . . . I--XV
Vladimir Maz'ya and
Gershon Kresin Estimates for analytic functions bounded
with respect to their real part . . . . 1--16
Vladimir Maz'ya and
Gershon Kresin Estimates for analytic functions with
respect to the $ L_p $-norm of $ R
\Delta f $ on the circle . . . . . . . . 17--35
Vladimir Maz'ya and
Gershon Kresin Estimates for analytic functions by the
best $ L_p $-approximation of $ R f $ on
the circle . . . . . . . . . . . . . . . 37--55
Vladimir Maz'ya and
Gershon Kresin Estimates for directional derivatives of
harmonic functions . . . . . . . . . . . 57--67
Vladimir Maz'ya and
Gershon Kresin Estimates for derivatives of analytic
functions . . . . . . . . . . . . . . . 69--98
Vladimir Maz'ya and
Gershon Kresin Bohr's type real part estimates . . . . 99--114
Vladimir Maz'ya and
Gershon Kresin Estimates for the increment of
derivatives of analytic functions . . . 115--128
Vladimir Maz'ya and
Gershon Kresin Back Matter . . . . . . . . . . . . . . 129--144
Peter Giesl Front Matter . . . . . . . . . . . . . . I--VIII
Peter Giesl Introduction . . . . . . . . . . . . . . 1--10
Peter Giesl Lyapunov Functions . . . . . . . . . . . 11--59
Peter Giesl Radial Basis Functions . . . . . . . . . 61--98
Peter Giesl Construction of Lyapunov Functions . . . 99--114
Peter Giesl Global Determination of the Basin of
Attraction . . . . . . . . . . . . . . . 115--132
Peter Giesl Application of the Method: Examples . . 133--147
Peter Giesl Back Matter . . . . . . . . . . . . . . 149--170
Claudia Prévôt and
Michael Röckner Front Matter . . . . . . . . . . . . . . V--VI
Claudia Prévôt and
Michael Röckner Motivation, Aims and Examples . . . . . 1--4
Claudia Prévôt and
Michael Röckner Stochastic Integral in Hilbert Spaces 5--42
Claudia Prévôt and
Michael Röckner Stochastic Differential Equations in
Finite Dimensions . . . . . . . . . . . 43--54
Claudia Prévôt and
Michael Röckner A Class of Stochastic Differential
Equations . . . . . . . . . . . . . . . 55--103
Claudia Prévôt and
Michael Röckner Back Matter . . . . . . . . . . . . . . 105--148
Thomas Schuster Front Matter . . . . . . . . . . . . . . I--XIII
Thomas Schuster Front Matter . . . . . . . . . . . . . . 1--4
Thomas Schuster Ill-posed problems and regularization
methods . . . . . . . . . . . . . . . . 5--9
Thomas Schuster Approximate inverse in $ L^2 $-spaces 11--24
Thomas Schuster Approximate inverse in Hilbert spaces 25--38
Thomas Schuster Approximate inverse in distribution
spaces . . . . . . . . . . . . . . . . . 39--47
Thomas Schuster Conclusion and perspectives . . . . . . 49--49
Thomas Schuster Front Matter . . . . . . . . . . . . . . 51--54
Thomas Schuster A semi-discrete setup for Doppler
tomography . . . . . . . . . . . . . . . 55--61
Thomas Schuster Solving the semi-discrete problem . . . 63--79
Thomas Schuster Convergence and stability . . . . . . . 81--87
Thomas Schuster Approaches for defect correction . . . . 89--103
Thomas Schuster Conclusion and perspectives . . . . . . 105--106
Thomas Schuster Front Matter . . . . . . . . . . . . . . 107--110
Thomas Schuster The spherical mean operator . . . . . . 111--121
Thomas Schuster Design of a mollifier . . . . . . . . . 123--131
Thomas Schuster Computation of reconstruction kernels 133--137
Thomas Schuster Numerical experiments . . . . . . . . . 139--144
Thomas Schuster Conclusion and perspectives . . . . . . 145--145
Thomas Schuster Front Matter . . . . . . . . . . . . . . 147--149
Thomas Schuster Approximate inverse and X-ray
diffractometry . . . . . . . . . . . . . 151--164
Thomas Schuster A filtered backprojection algorithm . . 165--179
Thomas Schuster Computation of reconstruction kernels in
$3$D computerized tomography . . . . . . 181--185
Thomas Schuster Conclusion and perspectives . . . . . . 187--187
Thomas Schuster Back Matter . . . . . . . . . . . . . . 189--202
Martin Rasmussen Front Matter . . . . . . . . . . . . . . IX--XI
Martin Rasmussen Introduction . . . . . . . . . . . . . . 1--6
Martin Rasmussen Notions of Attractivity and Bifurcation 7--50
Martin Rasmussen Nonautonomous Morse Decompositions . . . 51--80
Martin Rasmussen Linear Systems . . . . . . . . . . . . . 81--113
Martin Rasmussen Nonlinear Systems . . . . . . . . . . . 115--135
Martin Rasmussen Bifurcations in Dimension One . . . . . 137--152
Martin Rasmussen Bifurcations of Asymptotically
Autonomous Systems . . . . . . . . . . . 153--191
Martin Rasmussen Back Matter . . . . . . . . . . . . . . 193--215
Terry J. Lyons and
Michael Caruana and
Thierry Lévy Front Matter . . . . . . . . . . . . . . I--XVIII
Terry J. Lyons and
Michael Caruana and
Thierry Lévy Differential Equations Driven by
Moderately Irregular Signals . . . . . . 1--24
Terry J. Lyons and
Michael Caruana and
Thierry Lévy The Signature of a Path . . . . . . . . 25--40
Terry J. Lyons and
Michael Caruana and
Thierry Lévy Rough Paths . . . . . . . . . . . . . . 41--61
Terry J. Lyons and
Michael Caruana and
Thierry Lévy Integration Along Rough Paths . . . . . 63--79
Terry J. Lyons and
Michael Caruana and
Thierry Lévy Differential Equations Driven by Rough
Paths . . . . . . . . . . . . . . . . . 81--93
Terry J. Lyons and
Michael Caruana and
Thierry Lévy Back Matter . . . . . . . . . . . . . . 95--115
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Front Matter . . . . . . . . . . . . . . I--XLIII
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Jorgensen's picture of quasifuchsian
punctured torus groups . . . . . . . . . 1--14
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Fricke surfaces and $ {\rm PSL}(2,
\mathbb {C}) $-representations . . . . . 15--35
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Labeled representations and associated
complexes . . . . . . . . . . . . . . . 37--47
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Chain rule and side parameter . . . . . 49--99
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Special examples . . . . . . . . . . . . 101--132
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Reformulation of Main Theorem 1.3.5 and
outline of the proof . . . . . . . . . . 133--154
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Openness . . . . . . . . . . . . . . . . 155--169
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Closedness . . . . . . . . . . . . . . . 171--214
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Algebraic roots and geometric roots . . 215--231
Hirotaka Akiyoshi and
Makoto Sakuma and
Masaaki Wada and
Yasushi Yamashita Back Matter . . . . . . . . . . . . . . 233--256
S. Alesker Theory of Valuations on Manifolds, IV.
New Properties of the Multiplicative
Structure . . . . . . . . . . . . . . . 1--44
S. Artstein-Avidan and
O. Friedland and
Vitali D. Milman Geometric Applications of Chernoff-Type
Estimates . . . . . . . . . . . . . . . 45--75
Sergey G. Bobkov A Remark on the Surface
Brunn--Minkowski-Type Inequality . . . . 77--79
Sergey G. Bobkov On Isoperimetric Constants for
Log-Concave Probability Distributions 81--88
J. Bourgain A Remark on Quantum Ergodicity for CAT
Maps . . . . . . . . . . . . . . . . . . 89--98
J. Bourgain Some Arithmetical Applications of the
Sum-Product Theorems in Finite Fields 99--116
D. Gatzouras and
A. Giannopoulos and
N. Markoulakis On the Maximal Number of Facets of $0$ /
$1$ Polytopes . . . . . . . . . . . . . 117--125
Y. Gordon A Note on an Observation of G.
Schechtman . . . . . . . . . . . . . . . 127--132
Boaz Klartag Marginals of Geometric Inequalities . . 133--166
M. Ledoux Deviation Inequalities on Largest
Eigenvalues . . . . . . . . . . . . . . 167--219
A. E. Litvak and
Vitali D. Milman and
A. Pajor and
N. Tomczak-Jaegermann On the Euclidean Metric Entropy of
Convex Bodies . . . . . . . . . . . . . 221--235
M. Meckes Some Remarks on Transportation Cost and
Related Inequalities . . . . . . . . . . 237--244
E. Milman A Comment on the Low-Dimensional
Busemann--Petty Problem . . . . . . . . 245--253
P. Pivovarov Random Convex Bodies Lacking Symmetric
Projections, Revisited Through
Decoupling . . . . . . . . . . . . . . . 255--263
Gideon Schechtman The Random Version of Dvoretzky's
Theorem in $ l_{\infty }^n $ . . . . . . 265--270
S. Sodin Tail-Sensitive Gaussian Asymptotics for
Marginals of Concentrated Measures in
High Dimension . . . . . . . . . . . . . 271--295
S. J. Szarek and
N. Tomczak-Jaegermann Decoupling Weakly Dependent Events . . . 297--303
J. O. Wojtaszczyk The Square Negative Correlation Property
for Generalized Orlicz Balls . . . . . . 305--313
J. O. Wojtaszczyk Back Matter . . . . . . . . . . . . . . 315--332
Alberto Bressan and
Denis Serre and
Mark Williams and
Kevin Zumbrun Front Matter . . . . . . . . . . . . . . I--XII
Alberto Bressan BV Solutions to Hyperbolic Systems by
Vanishing Viscosity . . . . . . . . . . 1--77
Denis Serre Discrete Shock Profiles: Existence and
Stability . . . . . . . . . . . . . . . 79--158
Mark Williams Stability of Multidimensional Viscous
Shocks . . . . . . . . . . . . . . . . . 159--227
Kevin Zumbrun Planar Stability Criteria for Viscous
Shock Waves of Systems with Real
Viscosity . . . . . . . . . . . . . . . 229--326
Kevin Zumbrun Back Matter . . . . . . . . . . . . . . 327--356
Vasile Berinde Front Matter . . . . . . . . . . . . . . I--XVII
Vasile Berinde Pre-Requisites of Fixed Points . . . . . 3--30
Vasile Berinde The Picard Iteration . . . . . . . . . . 31--62
Vasile Berinde The Krasnoselskij Iteration . . . . . . 63--88
Vasile Berinde The Mann Iteration . . . . . . . . . . . 89--112
Vasile Berinde The Ishikawa Iteration . . . . . . . . . 113--134
Vasile Berinde Other Fixed Point Iteration Procedures 135--156
Vasile Berinde Stability of Fixed Point Iteration
Procedures . . . . . . . . . . . . . . . 157--178
Vasile Berinde Iterative Solution of Nonlinear Operator
Equations . . . . . . . . . . . . . . . 179--198
Vasile Berinde Error Analysis of Fixed Point Iteration
Procedures . . . . . . . . . . . . . . . 199--220
Vasile Berinde Back Matter . . . . . . . . . . . . . . 221--322
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . I--XV
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . 1--1
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Symplectic Reduction . . . . . . . . . . 3--42
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Cotangent Bundle Reduction . . . . . . . 43--99
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu The Problem Setting . . . . . . . . . . 101--109
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . 111--111
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Commuting Reduction and Semidirect
Product Theory . . . . . . . . . . . . . 113--142
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Regular Reduction by Stages . . . . . . 143--175
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Group Extensions and the Stages
Hypothesis . . . . . . . . . . . . . . . 177--210
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Magnetic Cotangent Bundle Reduction . . 211--237
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Stages and Coadjoint Orbits of Central
Extensions . . . . . . . . . . . . . . . 239--250
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Examples . . . . . . . . . . . . . . . . 251--283
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Stages and Semidirect Products with
Cocycles . . . . . . . . . . . . . . . . 285--396
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Reduction by Stages via Symplectic
Distributions . . . . . . . . . . . . . 397--407
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Reduction by Stages with Topological
Conditions . . . . . . . . . . . . . . . 409--420
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . 421--422
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu The Optimal Momentum Map and Point
Reduction . . . . . . . . . . . . . . . 423--436
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Optimal Orbit Reduction . . . . . . . . 437--459
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Optimal Reduction by Stages . . . . . . 461--481
Jerrold E. Marsden and
Gerard Misiolek and
Juan-Pablo Ortega and
Matthew Perlmutter and
Tudor S. Ra\ctiu Back Matter . . . . . . . . . . . . . . 483--523
Gitta Kutyniok Front Matter . . . . . . . . . . . . . . I--XII
Gitta Kutyniok Introduction . . . . . . . . . . . . . . 1--10
Gitta Kutyniok Wavelet and Gabor Frames . . . . . . . . 11--20
Gitta Kutyniok Weighted Affine Density . . . . . . . . 21--33
Gitta Kutyniok Qualitative Density Conditions . . . . . 35--57
Gitta Kutyniok Quantitative Density Conditions . . . . 59--86
Gitta Kutyniok Homogeneous Approximation Property . . . 87--104
Gitta Kutyniok Weighted Beurling Density and
Shift-Invariant Gabor Systems . . . . . 105--125
Gitta Kutyniok Back Matter . . . . . . . . . . . . . . 127--142
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Front Matter . . . . . . . . . . . . . . I--VIII
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Introduction . . . . . . . . . . . . . . 1--14
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Graph Laplacians . . . . . . . . . . . . 15--27
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Eigenfunctions and Nodal Domains . . . . 29--47
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Nodal Domain Theorems for Special Graph
Classes . . . . . . . . . . . . . . . . 49--65
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Computational Experiments . . . . . . . 67--75
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Faber--Krahn Type Inequalities . . . . . 77--91
Türker Biyiko\ugu and
Josef Leydold and
Peter F. Stadler Back Matter . . . . . . . . . . . . . . 93--115
Brooks Roberts and
Ralf Schmidt Front Matter . . . . . . . . . . . . . . I--VIII
Brooks Roberts and
Ralf Schmidt A Summary . . . . . . . . . . . . . . . 1--25
Brooks Roberts and
Ralf Schmidt Representation Theory . . . . . . . . . 27--83
Brooks Roberts and
Ralf Schmidt Paramodular Vectors . . . . . . . . . . 85--122
Brooks Roberts and
Ralf Schmidt Zeta Integrals . . . . . . . . . . . . . 123--149
Brooks Roberts and
Ralf Schmidt Non-supercuspidal Representations . . . 151--186
Brooks Roberts and
Ralf Schmidt Hecke Operators . . . . . . . . . . . . 187--237
Brooks Roberts and
Ralf Schmidt Proofs of the Main Theorems . . . . . . 239--267
Brooks Roberts and
Ralf Schmidt Back Matter . . . . . . . . . . . . . . 269--307
René A. Carmona and
Ivar Ekeland and
Arturo Kohatsu-Higa and
Jean-Michel Lasry and
Pierre-Louis Lions and
Huyên Pham and
Erik Taflin Front Matter . . . . . . . . . . . . . . i--viii
René A. Carmona HJM: a Unified Approach to Dynamic
Models for Fixed Income, Credit and
Equity Markets . . . . . . . . . . . . . 1--50
Ivar Ekeland and
Erik Taflin Optimal Bond Portfolios . . . . . . . . 51--102
Arturo Kohatsu-Higa Models for Insider Trading with Finite
Utility . . . . . . . . . . . . . . . . 103--171
Pierre-Louis Lions and
Jean-Michel Lasry Large Investor Trading Impacts on
Volatility . . . . . . . . . . . . . . . 173--190
Huyên Pham Some Applications and Methods of Large
Deviations in Finance and Insurance . . 191--244
Huyên Pham Back Matter . . . . . . . . . . . . . . 245--249
Rufus Bowen Front Matter . . . . . . . . . . . . . . i--x
Rufus Bowen Gibbs Measures . . . . . . . . . . . . . 3--27
Rufus Bowen General Thermodynamic Formalism . . . . 29--44
Rufus Bowen Axiom a Diffeomorphisms . . . . . . . . 45--59
Rufus Bowen Ergodic Theory of Axiom a
Diffeomorphisms . . . . . . . . . . . . 61--73
Rufus Bowen Back Matter . . . . . . . . . . . . . . 74--78
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi Front Matter . . . . . . . . . . . . . . i--x
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi Introduction . . . . . . . . . . . . . . 1--8
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi The Fresnel Integral of Functions on a
Separable Real Hilbert Space . . . . . . 9--17
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi The Feynman Path Integral in Potential
Scattering . . . . . . . . . . . . . . . 19--35
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi The Fresnel Integral Relative to a
Non-singular Quadratic Form . . . . . . 37--50
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi Feynman Path Integrals for the
Anharmonic Oscillator . . . . . . . . . 51--62
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi Expectations with Respect to the Ground
State of the Harmonic Oscillator . . . . 63--68
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi Expectations with Respect to the Gibbs
State of the Harmonic Oscillator . . . . 69--71
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi The Invariant Quasi-free States . . . . 73--83
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi The Feynman History Integral for the
Relativistic Quantum Boson Field . . . . 85--92
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi Some Recent Developments . . . . . . . . 93--140
Sergio A. Albeverio and
Raphael J. Hòegh-Krohn and
Sonia Mazzucchi Back Matter . . . . . . . . . . . . . . 141--175
Stephen Simons Front Matter . . . . . . . . . . . . . . I--XIV
Stephen Simons Introduction . . . . . . . . . . . . . . 1--13
Stephen Simons The Hahn--Banach--Lagrange theorem and
some consequences . . . . . . . . . . . 15--39
Stephen Simons Fenchel duality . . . . . . . . . . . . 41--69
Stephen Simons Multifunctions, SSD spaces, monotonicity
and Fitzpatrick functions . . . . . . . 71--105
Stephen Simons Monotone multifunctions on general
Banach spaces . . . . . . . . . . . . . 107--115
Stephen Simons Monotone multifunctions on reflexive
Banach spaces . . . . . . . . . . . . . 117--138
Stephen Simons Special maximally monotone
multifunctions . . . . . . . . . . . . . 139--195
Stephen Simons The sum problem for general Banach
spaces . . . . . . . . . . . . . . . . . 197--201
Stephen Simons Open problems . . . . . . . . . . . . . 203--204
Stephen Simons Glossary of classes of multifunctions 205--206
Stephen Simons A selection of results . . . . . . . . . 207--231
Stephen Simons Back Matter . . . . . . . . . . . . . . 233--248
Fraydoun Rezakhanlou and
Cédric Villani Front Matter . . . . . . . . . . . . . . i--xii
C. Villani Entropy Production and Convergence to
Equilibrium . . . . . . . . . . . . . . 1--70
F. Rezakhanlou Kinetic Limits for Interacting Particle
Systems . . . . . . . . . . . . . . . . 71--105
F. Rezakhanlou Back Matter . . . . . . . . . . . . . . 107--111
Ivan Veseli\'c Front Matter . . . . . . . . . . . . . . I--X
Ivan Veseli\'c Random Operators . . . . . . . . . . . . 1--11
Ivan Veseli\'c Existence of the Integrated Density of
States . . . . . . . . . . . . . . . . . 13--43
Ivan Veseli\'c Wegner Estimate . . . . . . . . . . . . 45--56
Ivan Veseli\'c Wegner's Original Idea. Rigorous
Implementation . . . . . . . . . . . . . 57--77
Ivan Veseli\'c Lipschitz Continuity of the IDS . . . . 79--97
Ivan Veseli\'c Back Matter . . . . . . . . . . . . . . 99--146
Steven Neil Evans Front Matter . . . . . . . . . . . . . . I--XI
Steven Neil Evans Introduction . . . . . . . . . . . . . . 1--8
Steven Neil Evans Around the Continuum Random Tree . . . . 9--20
Steven Neil Evans $R$-Trees and $0$-Hyperbolic Spaces . . 21--44
Steven Neil Evans Hausdorff and Gromov--Hausdorff Distance 45--68
Steven Neil Evans Root Growth with Re-Grafting . . . . . . 69--86
Steven Neil Evans The Wild Chain and other Bipartite
Chains . . . . . . . . . . . . . . . . . 87--103
Steven Neil Evans Diffusions on a $R$-Tree without Leaves:
Snakes and Spiders . . . . . . . . . . . 105--128
Steven Neil Evans $R$-Trees from Coalescing Particle
Systems . . . . . . . . . . . . . . . . 129--141
Steven Neil Evans Subtree Prune and Re-Graft . . . . . . . 143--162
Steven Neil Evans Back Matter . . . . . . . . . . . . . . 163--193
Jianjun Paul Tian Front Matter . . . . . . . . . . . . . . I--XI
Jianjun Paul Tian Introduction . . . . . . . . . . . . . . 1--7
Jianjun Paul Tian Motivations . . . . . . . . . . . . . . 9--16
Jianjun Paul Tian Evolution Algebras . . . . . . . . . . . 17--52
Jianjun Paul Tian Evolution Algebras and Markov Chains . . 53--90
Jianjun Paul Tian Evolution Algebras and Non-Mendelian
Genetics . . . . . . . . . . . . . . . . 91--107
Jianjun Paul Tian Further Results and Research Topics . . 109--118
Jianjun Paul Tian Back Matter . . . . . . . . . . . . . . 119--129
L. S. Kubatko Inference of Phylogenetic Trees . . . . 1--38
D. Janies and
D. Pol Large-Scale Phylogenetic Analysis of
Emerging Infectious Diseases . . . . . . 39--76
C. Cosner Reaction--Diffusion Equations and
Ecological Modeling . . . . . . . . . . 77--115
T. Nagylaki and
Y. Lou The Dynamics of Migration--Selection
Models . . . . . . . . . . . . . . . . . 117--170
Y. Lou Some Challenging Mathematical Problems
in Evolution of Dispersal and Population
Dynamics . . . . . . . . . . . . . . . . 171--205
Y. Lou Back Matter . . . . . . . . . . . . . . 206--209
Jaya P. N. Bishwal Front Matter . . . . . . . . . . . . . . I--XII
Jaya P. N. Bishwal Parametric Stochastic Differential
Equations . . . . . . . . . . . . . . . 1--11
Jaya P. N. Bishwal Front Matter . . . . . . . . . . . . . . 13--13
Jaya P. N. Bishwal Rates of Weak Convergence of Estimators
in Homogeneous Diffusions . . . . . . . 15--48
Jaya P. N. Bishwal Large Deviations of Estimators in
Homogeneous Diffusions . . . . . . . . . 49--60
Jaya P. N. Bishwal Local Asymptotic Mixed Normality for
Nonhomogeneous Diffusions . . . . . . . 61--78
Jaya P. N. Bishwal Bayes and Sequential Estimation in
Stochastic PDEs . . . . . . . . . . . . 79--97
Jaya P. N. Bishwal Maximum Likelihood Estimation in
Fractional Diffusions . . . . . . . . . 99--122
Jaya P. N. Bishwal Front Matter . . . . . . . . . . . . . . 123--123
Jaya P. N. Bishwal Approximate Maximum Likelihood
Estimation in Nonhomogeneous Diffusions 125--157
Jaya P. N. Bishwal Rates of Weak Convergence of Estimators
in the Ornstein--Uhlenbeck Process . . . 159--200
Jaya P. N. Bishwal Local Asymptotic Normality for
Discretely Observed Homogeneous
Diffusions . . . . . . . . . . . . . . . 201--223
Jaya P. N. Bishwal Estimating Function for Discretely
Observed Homogeneous Diffusions . . . . 225--244
Jaya P. N. Bishwal Back Matter . . . . . . . . . . . . . . 245--264
Michael Wilson Front Matter . . . . . . . . . . . . . . I--XII
Michael Wilson Some Assumptions . . . . . . . . . . . . 1--7
Michael Wilson An Elementary Introduction . . . . . . . 9--37
Michael Wilson Exponential Square . . . . . . . . . . . 39--68
Michael Wilson Many Dimensions; Smoothing . . . . . . . 69--84
Michael Wilson The Calderón Reproducing Formula I . . . 85--100
Michael Wilson The Calderón Reproducing Formula II . . . 101--127
Michael Wilson The Calderón Reproducing Formula III . . 129--143
Michael Wilson Schrödinger Operators . . . . . . . . . . 145--150
Michael Wilson Some Singular Integrals . . . . . . . . 151--160
Michael Wilson Orlicz Spaces . . . . . . . . . . . . . 161--188
Michael Wilson Goodbye to Good-$ \lambda $ . . . . . . 189--195
Michael Wilson A Fourier Multiplier Theorem . . . . . . 197--202
Michael Wilson Vector-Valued Inequalities . . . . . . . 203--212
Michael Wilson Random Pointwise Errors . . . . . . . . 213--218
Michael Wilson Back Matter . . . . . . . . . . . . . . 219--228
Marcus du Sautoy and
Luke Woodward Front Matter . . . . . . . . . . . . . . I--XII
Marcus du Sautoy and
Luke Woodward Introduction . . . . . . . . . . . . . . 1--20
Marcus du Sautoy and
Luke Woodward Nilpotent Groups: Explicit Examples . . 21--68
Marcus du Sautoy and
Luke Woodward Soluble Lie Rings . . . . . . . . . . . 69--82
Marcus du Sautoy and
Luke Woodward Local Functional Equations . . . . . . . 83--119
Marcus du Sautoy and
Luke Woodward Natural Boundaries I: Theory . . . . . . 121--153
Marcus du Sautoy and
Luke Woodward Natural Boundaries II: Algebraic Groups 155--167
Marcus du Sautoy and
Luke Woodward Natural Boundaries III: Nilpotent Groups 169--177
Marcus du Sautoy and
Luke Woodward Back Matter . . . . . . . . . . . . . . 179--212
Luis Barreira and
Claudia Valls Front Matter . . . . . . . . . . . . . . I--XIV
Luis Barreira and
Claudia Valls Introduction . . . . . . . . . . . . . . 1--16
Luis Barreira and
Claudia Valls Front Matter . . . . . . . . . . . . . . 17--17
Luis Barreira and
Claudia Valls Exponential dichotomies and basic
properties . . . . . . . . . . . . . . . 19--25
Luis Barreira and
Claudia Valls Robustness of nonuniform exponential
dichotomies . . . . . . . . . . . . . . 27--51
Luis Barreira and
Claudia Valls Front Matter . . . . . . . . . . . . . . 53--53
Luis Barreira and
Claudia Valls Lipschitz stable manifolds . . . . . . . 55--73
Luis Barreira and
Claudia Valls Smooth stable manifolds in Rn . . . . . 75--117
Luis Barreira and
Claudia Valls Smooth stable manifolds in Banach spaces 119--143
Luis Barreira and
Claudia Valls A nonautonomous Grobman--Hartman theorem 145--167
Luis Barreira and
Claudia Valls Front Matter . . . . . . . . . . . . . . 169--169
Luis Barreira and
Claudia Valls Center manifolds in Banach spaces . . . 171--196
Luis Barreira and
Claudia Valls Reversibility and equivariance in center
manifolds . . . . . . . . . . . . . . . 197--215
Luis Barreira and
Claudia Valls Front Matter . . . . . . . . . . . . . . 217--217
Luis Barreira and
Claudia Valls Lyapunov regularity and exponential
dichotomies . . . . . . . . . . . . . . 219--248
Luis Barreira and
Claudia Valls Lyapunov regularity in Hilbert spaces 249--263
Luis Barreira and
Claudia Valls Stability of nonautonomous equations in
Hilbert spaces . . . . . . . . . . . . . 265--276
Luis Barreira and
Claudia Valls Back Matter . . . . . . . . . . . . . . 277--290
Luigi Ambrosio and
Luis Caffarelli and
Michael G. Crandall and
Lawrence C. Evans and
Nicola Fusco Front Matter . . . . . . . . . . . . . . I--XI
Luigi Ambrosio Transport Equation and Cauchy Problem
for Non-Smooth Vector Fields . . . . . . 1--41
Luis Caffarelli and
Luis Silvestre Issues in Homogenization for Problems
with Non Divergence Structure . . . . . 43--74
Michael G. Crandall A Visit with the $ \infty $-Laplace
Equation . . . . . . . . . . . . . . . . 75--122
Lawrence C. Evans Weak KAM Theory and Partial Differential
Equations . . . . . . . . . . . . . . . 123--154
Nicola Fusco Geometrical Aspects of Symmetrization 155--181
Elvira Mascolo CIME Courses on Partial Differential
Equations and Calculus of Variations . . 183--189
Elvira Mascolo Back Matter . . . . . . . . . . . . . . 193--204
Jakob Jonsson Front Matter . . . . . . . . . . . . . . i--xiv
Jakob Jonsson Introduction and Overview . . . . . . . 3--17
Jakob Jonsson Abstract Graphs and Set Systems . . . . 19--28
Jakob Jonsson Simplicial Topology . . . . . . . . . . 29--47
Jakob Jonsson Discrete Morse Theory . . . . . . . . . 51--66
Jakob Jonsson Decision Trees . . . . . . . . . . . . . 67--86
Jakob Jonsson Miscellaneous Results . . . . . . . . . 87--95
Jakob Jonsson Graph Properties . . . . . . . . . . . . 99--106
Jakob Jonsson Dihedral Graph Properties . . . . . . . 107--112
Jakob Jonsson Digraph Properties . . . . . . . . . . . 113--118
Jakob Jonsson Main Goals and Proof Techniques . . . . 119--124
Jakob Jonsson Matchings . . . . . . . . . . . . . . . 127--149
Jakob Jonsson Graphs of Bounded Degree . . . . . . . . 151--168
Jakob Jonsson Forests and Matroids . . . . . . . . . . 171--188
Jakob Jonsson Bipartite Graphs . . . . . . . . . . . . 189--204
Jakob Jonsson Directed Variants of Forests and
Bipartite Graphs . . . . . . . . . . . . 205--215
Jakob Jonsson Noncrossing Graphs . . . . . . . . . . . 217--231
Jakob Jonsson Non-Hamiltonian Graphs . . . . . . . . . 233--242
Jakob Jonsson Disconnected Graphs . . . . . . . . . . 245--262
Jakob Jonsson Not $2$-connected Graphs . . . . . . . . 263--273
Jakob Jonsson Not $3$-connected Graphs and Beyond . . 275--290
Yuliya S. Mishura Front Matter . . . . . . . . . . . . . . I--XVII
Yuliya S. Mishura Wiener Integration with Respect to
Fractional Brownian Motion . . . . . . . 1--121
Yuliya S. Mishura Stochastic Integration with Respect to
fBm and Related Topics . . . . . . . . . 123--196
Yuliya S. Mishura Stochastic Differential Equations
Involving Fractional Brownian Motion . . 197--290
Yuliya S. Mishura Filtering in Systems with Fractional
Brownian Noise . . . . . . . . . . . . . 291--299
Yuliya S. Mishura Financial Applications of Fractional
Brownian Motion . . . . . . . . . . . . 301--326
Yuliya S. Mishura Statistical Inference with Fractional
Brownian Motion . . . . . . . . . . . . 327--362
Yuliya S. Mishura Back Matter . . . . . . . . . . . . . . 363--393
José Miguel Urbano Front Matter . . . . . . . . . . . . . . i--x
José Miguel Urbano Introduction . . . . . . . . . . . . . . 1--8
José Miguel Urbano Weak Solutions and a Priori Estimates 11--19
José Miguel Urbano The Geometric Setting and an Alternative 21--34
José Miguel Urbano Towards the Hölder Continuity . . . . . . 35--48
José Miguel Urbano Immiscible Fluids and Chemotaxis . . . . 51--86
José Miguel Urbano Flows in Porous Media: The Variable
Exponent Case . . . . . . . . . . . . . 87--105
José Miguel Urbano Phase Transitions: The Doubly Singular
Stefan Problem . . . . . . . . . . . . . 107--143
José Miguel Urbano Back Matter . . . . . . . . . . . . . . 145--150
Michael Cowling and
Edward Frenkel and
Masaki Kashiwara and
Alain Valette and
David A. Vogan, Jr. and
Nolan R. Wallach Front Matter . . . . . . . . . . . . . . i--xii
Michael Cowling Applications of Representation Theory to
Harmonic Analysis of Lie Groups (and
Vice Versa) . . . . . . . . . . . . . . 1--50
Edward Frenkel Ramifications of the Geometric Langlands
Program . . . . . . . . . . . . . . . . 51--135
Masaki Kashiwara Equivariant Derived Category and
Representation of Real Semisimple Lie
Groups . . . . . . . . . . . . . . . . . 137--234
Alain Valette Amenability and Margulis Super-Rigidity 235--258
David A. Vogan, Jr. Unitary Representations and Complex
Analysis . . . . . . . . . . . . . . . . 259--344
Nolan R. Wallach Quantum Computing and Entanglement for
Mathematicians . . . . . . . . . . . . . 345--376
Nolan R. Wallach Back Matter . . . . . . . . . . . . . . 377--388
Andrei A. Agrachev and
A. Stephen Morse and
Eduardo D. Sontag and
Héctor J. Sussmann and
Vadim I. Utkin Front Matter . . . . . . . . . . . . . . i--xiii
Andrei A. Agrachev Geometry of Optimal Control Problems and
Hamiltonian Systems . . . . . . . . . . 1--59
A. Stephen Morse Lecture Notes on Logically Switched
Dynamical Systems . . . . . . . . . . . 61--161
Eduardo D. Sontag Input to State Stability: Basic Concepts
and Results . . . . . . . . . . . . . . 163--220
Héctor J. Sussmann Generalized Differentials, Variational
Generators, and the Maximum Principle
with State Constraints . . . . . . . . . 221--287
Vadim I. Utkin Sliding Mode Control: Mathematical
Tools, Design and Applications . . . . . 289--347
Vadim I. Utkin Back Matter . . . . . . . . . . . . . . 349--351
Miodrag Petkovi\'c Front Matter . . . . . . . . . . . . . . i--xii
Miodrag Petkovi\'c Basic Concepts . . . . . . . . . . . . . 1--34
Miodrag Petkovi\'c Iterative Processes and Point Estimation
Theory . . . . . . . . . . . . . . . . . 35--66
Miodrag Petkovi\'c Point Estimation of Simultaneous Methods 67--127
Miodrag Petkovi\'c Families of Simultaneous Methods of
Higher Order: Part I . . . . . . . . . . 129--160
Miodrag Petkovi\'c Families of Simultaneous Methods of
Higher Order: Part II . . . . . . . . . 161--195
Miodrag Petkovi\'c Back Matter . . . . . . . . . . . . . . 197--210
Azzouz Dermoune and
Philippe Heinrich Spectral gap inequality for a colored
disordered lattice gas . . . . . . . . . 1--18
D. Féral On large deviations for the spectral
measure of discrete Coulomb gas . . . . 19--49
Oleksiy Khorunzhiy Estimates for moments of random matrices
with Gaussian elements . . . . . . . . . 51--92
M. Capitaine and
M. Casalis Geometric interpretation of the
cumulants for random matrices previously
defined as convolutions on the symmetric
group . . . . . . . . . . . . . . . . . 93--119
Andreas E. Kyprianou and
Zbigniew Palmowski Fluctuations of spectrally negative
Markov additive processes . . . . . . . 121--135
Jean Bertoin and
Alexander Lindner and
Ross Maller On Continuity Properties of the Law of
Integrals of Lévy Processes . . . . . . . 137--159
Driss Baraka and
Thomas Mountford A Law of the Iterated Logarithm for
Fractional Brownian Motions . . . . . . 161--179
Ivan Nourdin A simple theory for the study of SDEs
driven by a fractional Brownian motion,
in dimension one . . . . . . . . . . . . 181--197
Greg Markowsky Proof of a Tanaka-like formula stated by
J. Rosen in Séminaire XXXVIII . . . . . . 199--202
Ismael Bailleul Une preuve simple d'un résultat de
Dufresne. (French) [] . . . . . . . . . 203--213
Laurent Serlet Creation or deletion of a drift on a
Brownian trajectory . . . . . . . . . . 215--232
A. M. G. Cox Extending Chacon--Walsh: Minimality and
Generalised Starting Distributions . . . 233--264
Jean Brossard and
Christophe Leuridan Transformations browniennes et
compléments indépendants: résultats et
probl\`emes ouverts. (French) [] . . . . 265--278
Jean-Claude Gruet Hyperbolic random walks . . . . . . . . 279--294
D. Bakry and
N. Huet The Hypergroup Property and
Representation of Markov Kernels . . . . 295--347
David Williams A new look at `Markovian' Wiener--Hopf
theory . . . . . . . . . . . . . . . . . 349--369
F. Bolley Separability and completeness for the
Wasserstein distance . . . . . . . . . . 371--377
Nicolas Privault A probabilistic interpretation to the
symmetries of a discrete heat equation 379--399
Shunsuke Kaji On the tail distributions of the
supremum and the quadratic variation of
a C\`adl\`ag local martingale . . . . . 401--420
Peter Friz and
Nicolas Victoir The Burkholder--Davis--Gundy Inequality
for Enhanced Martingales . . . . . . . . 421--438
André Unterberger Front Matter . . . . . . . . . . . . . . i--ix
André Unterberger Introduction . . . . . . . . . . . . . . 1--9
André Unterberger The Metaplectic and Anaplectic
Representations . . . . . . . . . . . . 11--26
André Unterberger The One-Dimensional Alternative
Pseudodifferential Analysis . . . . . . 27--74
André Unterberger From Anaplectic Analysis to Usual
Analysis . . . . . . . . . . . . . . . . 75--91
André Unterberger Pseudodifferential Analysis and Modular
Forms . . . . . . . . . . . . . . . . . 93--114
André Unterberger Back Matter . . . . . . . . . . . . . . 115--122
G. F. Webb Population Models Structured by Age,
Size, and Spatial Position . . . . . . . 1--49
M. Martcheva and
H. R. Thieme Infinite ODE Systems Modeling
Size-Structured Metapopulations,
Macroparasitic Diseases, and Prion
Proliferation . . . . . . . . . . . . . 51--113
W.-E. Fitzgibbon and
M. Langlais Simple Models for the Transmission of
Microparasites Between Host Populations
Living on Noncoincident Spatial Domains 115--164
S. A. Gourley and
R. Liu and
J. Wu Spatiotemporal Patterns of Disease
Spread: Interaction of Physiological
Structure, Spatial Movements, Disease
Progression and Human Intervention . . . 165--208
P. Auger and
R. Bravo de la Parra and
J.-C. Poggiale and
E. Sánchez and
T. Nguyen-Huu Aggregation of Variables and
Applications to Population Dynamics . . 209--263
M. Ballyk and
D. Jones and
H. L. Smith The Biofilm Model of Freter: a Review 265--302
M. Ballyk and
D. Jones and
H. L. Smith Back Matter . . . . . . . . . . . . . . 303--306
J. D. Goddard From Granular Matter to Generalized
Continuum . . . . . . . . . . . . . . . 1--22
A. V. Bobylev and
C. Cercignani and
I. M. Gamba Generalized Kinetic Maxwell Type Models
of Granular Gases . . . . . . . . . . . 23--57
Giuseppe Toscani Hydrodynamics from the Dissipative
Boltzmann Equation . . . . . . . . . . . 59--75
Gianfranco Capriz Bodies with Kinetic Substructure . . . . 77--90
Tommaso Ruggeri From Extended Thermodynamics to Granular
Materials . . . . . . . . . . . . . . . 91--107
R. García-Rojo and
S. McNamara and
H. J. Herrmann Influence of Contact Modelling on the
Macroscopic Plastic Response of Granular
Soils Under Cyclic Loading . . . . . . . 109--124
A. Barrat and
A. Puglisi and
E. Trizac and
P. Visco and
F. van Wijland Fluctuations in Granular Gases . . . . . 125--165
Pasquale Giovine An Extended Continuum Theory for
Granular Media . . . . . . . . . . . . . 167--192
Paolo Maria Mariano Slow Motion in Granular Matter . . . . . 193--210
Paolo Maria Mariano Back Matter . . . . . . . . . . . . . . 211--212
Denis Auroux and
Marco Manetti and
Paul Seidel and
Bernd Siebert and
Ivan Smith Front Matter . . . . . . . . . . . . . . i--xiii
Denis Auroux and
Ivan Smith Lefschetz Pencils, Branched Covers and
Symplectic Invariants . . . . . . . . . 1--53
Fabrizio Catanese Differentiable and Deformation Type of
Algebraic Surfaces, Real and Symplectic
Structures . . . . . . . . . . . . . . . 55--167
Marco Manetti Smoothings of Singularities and
Deformation Types of Surfaces . . . . . 169--230
Paul Seidel Lectures on Four-Dimensional Dehn Twists 231--267
Bernd Siebert and
Gang Tian Lectures on Pseudo-Holomorphic Curves
and the Symplectic Isotopy Problem . . . 269--341
Bernd Siebert and
Gang Tian Back Matter . . . . . . . . . . . . . . 343--345
Daniele Boffi and
Franco Brezzi and
Leszek F. Demkowicz and
Ricardo G. Durán and
Richard S. Falk and
Michel Fortin Front Matter . . . . . . . . . . . . . . i--x
Ricardo G. Durán Mixed Finite Element Methods . . . . . . 1--44
Daniele Boffi and
Franco Brezzi and
Michel Fortin Finite Elements for the Stokes Problem 45--100
Leszek F. Demkowicz Polynomial Exact Sequences and
Projection-Based Interpolation with
Application to Maxwell Equations . . . . 101--158
Richard S. Falk Finite Element Methods for Linear
Elasticity . . . . . . . . . . . . . . . 159--194
Richard S. Falk Finite Elements for the
Reissner--Mindlin Plate . . . . . . . . 195--232
Richard S. Falk Back Matter . . . . . . . . . . . . . . 233--235
Jacek Banasiak and
Mark A. J. Chaplain and
Jacek Mi\kekisz Front Matter . . . . . . . . . . . . . . i--xii
Jacek Banasiak Positivity in Natural Sciences . . . . . 1--89
Vincenzo Capasso and
Daniela Morale Rescaling Stochastic Processes:
Asymptotics . . . . . . . . . . . . . . 91--146
Mark A. J. Chaplain Modelling Aspects of Cancer Growth:
Insight from Mathematical and Numerical
Analysis and Computational Simulation 147--200
Miros\law Lachowicz Lins Between Microscopic and Macroscopic
Descriptions . . . . . . . . . . . . . . 201--267
Jacek Mi\kekisz Evolutionary Game Theory and Population
Dynamics . . . . . . . . . . . . . . . . 269--316
Jacek Mi\kekisz Back Matter . . . . . . . . . . . . . . 317--321
Jacek Mi\kekisz Erratum . . . . . . . . . . . . . . . . 323--323
Shai M. J. Haran Front Matter . . . . . . . . . . . . . . I--XII
Shai M. J. Haran Introduction: Motivations from Geometry 1--18
Shai M. J. Haran Gamma and Beta Measures . . . . . . . . 19--31
Shai M. J. Haran Markov Chains . . . . . . . . . . . . . 33--46
Shai M. J. Haran Real Beta Chain and $q$-Interpolation 47--62
Shai M. J. Haran Ladder Structure . . . . . . . . . . . . 63--93
Shai M. J. Haran $q$-Interpolation of Local Tate Thesis 95--115
Shai M. J. Haran Pure Basis and Semi-Group . . . . . . . 117--130
Shai M. J. Haran Higher Dimensional Theory . . . . . . . 131--142
Shai M. J. Haran Real Grassmann Manifold . . . . . . . . 143--156
Shai M. J. Haran $p$-Adic Grassmann Manifold . . . . . . 157--171
Shai M. J. Haran $q$-Grassmann Manifold . . . . . . . . . 173--184
Shai M. J. Haran Quantum Group $ {\rm U}_q ({\rm su}(1,
1)) $ and the $q$-Hahn Basis . . . . . . 185--197
Shai M. J. Haran Back Matter . . . . . . . . . . . . . . 199--222
Sergio Albeverio and
Franco Flandoli and
Yakov G. Sinai Front Matter . . . . . . . . . . . . . . i--viii
Sergio Albeverio and
Benedetta Ferrario Some Methods of Infinite Dimensional
Analysis in Hydrodynamics: an
Introduction . . . . . . . . . . . . . . 1--50
Franco Flandoli An Introduction to $3$D Stochastic Fluid
Dynamics . . . . . . . . . . . . . . . . 51--150
Yakov G. Sinai Mathematical Results Related to the
Navier--Stokes System . . . . . . . . . 151--164
Yakov G. Sinai Back Matter . . . . . . . . . . . . . . 165--174
Ana Carpio and
Oliver Dorn and
Miguel Moscoso and
Frank Natterer and
George C. Papanicolaou and
Maria Luisa Rapún and
Alessandro Teta Front Matter . . . . . . . . . . . . . . i--xi
Miguel Moscoso Introduction to Image Reconstruction . . 1--16
Frank Natterer X-ray Tomography . . . . . . . . . . . . 17--34
Oliver Dorn and
Hugo Bertete-Aguirre and
George C. Papanicolaou Adjoint Fields and Sensitivities for
$3$D Electromagnetic Imaging in
Isotropic and Anisotropic Media . . . . 35--65
Miguel Moscoso Polarization-Based Optical Imaging . . . 67--83
Ana Carpio and
Maria Luisa Rapún Topological Derivatives for Shape
Reconstruction . . . . . . . . . . . . . 85--133
Oliver Dorn Time-Reversal and the Adjoint Imaging
Method with an Application in
Telecommunication . . . . . . . . . . . 135--170
Gianfausto Dell'Antonio and
Rodolfo Figari and
Alessandro Teta A Brief Review on Point Interactions . . 171--189
Gianfausto Dell'Antonio and
Rodolfo Figari and
Alessandro Teta Back Matter . . . . . . . . . . . . . . 191--192
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Front Matter . . . . . . . . . . . . . . i--xvi
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Prerequisites . . . . . . . . . . . . . 1--10
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Extensions . . . . . . . . . . . . . . . 11--28
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Groups of Extreme Nilpotency Class . . . 29--47
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Chains . . . . . . . . . . . . . . . . . 49--79
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Groups with Few Types of Isogenous
Factors . . . . . . . . . . . . . . . . 81--147
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Three-Dimensional Affine Groups . . . . 149--166
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Normality of Subgroups . . . . . . . . . 167--198
Alfonso Di Bartolo and
Giovanni Falcone and
Peter Plaumann and
Karl Strambach Back Matter . . . . . . . . . . . . . . 199--206
David J. D. Earn A Light Introduction to Modelling
Recurrent Epidemics . . . . . . . . . . 3--17
Fred Brauer Compartmental Models in Epidemiology . . 19--79
Linda J. S. Allen An Introduction to Stochastic Epidemic
Models . . . . . . . . . . . . . . . . . 81--130
Fred Brauer An Introduction to Networks in Epidemic
Modeling . . . . . . . . . . . . . . . . 133--146
P. van den Driessche Deterministic Compartmental Models:
Extensions of Basic Models . . . . . . . 147--157
P. van den Driessche and
James Watmough Further Notes on the Basic Reproduction
Number . . . . . . . . . . . . . . . . . 159--178
P. van den Driessche Spatial Structure: Patch Models . . . . 179--189
Jianhong Wu Spatial Structure: Partial Differential
Equations Models . . . . . . . . . . . . 191--203
Jia Li and
Fred Brauer Continuous-Time Age-Structured Models in
Population Dynamics and Epidemiology . . 205--227
Ping Yan Distribution Theory, Stochastic
Processes and Infectious Disease
Modelling . . . . . . . . . . . . . . . 229--293
Chris T. Bauch The Role of Mathematical Models in
Explaining Recurrent Outbreaks of
Infectious Childhood Diseases . . . . . 297--319
Fred Brauer Modeling Influenza: Pandemics and
Seasonal Epidemics . . . . . . . . . . . 321--347
M. Nuño and
C. Castillo-Chavez and
Z. Feng and
M. Martcheva Mathematical Models of Influenza: The
Role of Cross-Immunity, Quarantine and
Age-Structure . . . . . . . . . . . . . 349--364
M. J. Wonham and
M. A. Lewis A Comparative Analysis of Models for
West Nile Virus . . . . . . . . . . . . 365--390
M. J. Wonham and
M. A. Lewis Back Matter . . . . . . . . . . . . . . 391--412
Grégoire Allaire and
Anton Arnold and
Pierre Degond and
Thomas Yizhao Hou Front Matter . . . . . . . . . . . . . . I--XIV
Grégoire Allaire Periodic Homogenization and Effective
Mass Theorems for the Schrödinger
Equation . . . . . . . . . . . . . . . . 1--44
Anton Arnold Mathematical Properties of Quantum
Evolution Equations . . . . . . . . . . 45--109
Pierre Degond and
Samy Gallego and
Florian Méhats and
Christian Ringhofer Quantum Hydrodynamic and Diffusion
Models Derived from the Entropy
Principle . . . . . . . . . . . . . . . 111--168
Yalchin Efendiev and
Thomas Yizhao Hou Multiscale Computations for Flow and
Transport in Heterogeneous Media . . . . 169--248
Yalchin Efendiev and
Thomas Yizhao Hou Back Matter . . . . . . . . . . . . . . 249--251
Dan Abramovich and
Marcos Mariño and
Michael Thaddeus and
Ravi Vakil Front Matter . . . . . . . . . . . . . . I--X
D. Abramovich Lectures on Gromov--Witten Invariants of
Orbifolds . . . . . . . . . . . . . . . 1--48
M. Mariño Lectures on the Topological Vertex . . . 49--104
M. Thaddeus Floer Cohomology with Gerbes . . . . . . 105--141
R. Vakil The Moduli Space of Curves and
Gromov--Witten Theory . . . . . . . . . 143--198
R. Vakil Back Matter . . . . . . . . . . . . . . 199--210
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Front Matter . . . . . . . . . . . . . . i--xi
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Introduction . . . . . . . . . . . . . . 1--12
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Extracting Meaningful Curves from Images 15--35
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Robust Shape Directions . . . . . . . . 41--59
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Invariant Level Line Encoding . . . . . 61--77
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur A Contrario Decision: the LLD Method . . 81--92
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Meaningful Matches: Experiments on LLD
and MSER . . . . . . . . . . . . . . . . 93--125
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Hierarchical Clustering and Validity
Assessment . . . . . . . . . . . . . . . 129--149
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Grouping Spatially Coherent Meaningful
Matches . . . . . . . . . . . . . . . . 151--165
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Experimental Results . . . . . . . . . . 167--182
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur The SIFT Method . . . . . . . . . . . . 185--208
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Securing SIFT with A Contrario
Techniques . . . . . . . . . . . . . . . 209--224
Frédéric Cao and
José-Luis Lisani and
Jean-Michel Morel and
Pablo Musé and
Frédéric Sur Back Matter . . . . . . . . . . . . . . 225--257
Hans G. Feichtinger and
Bernard Helffer and
Michael P. Lamoureux and
Nicolas Lerner and
Joachim Toft Front Matter . . . . . . . . . . . . . . i--xxiv
H. Feichtinger and
F. Luef and
E. Cordero Banach Gelfand Triples for Gabor
Analysis . . . . . . . . . . . . . . . . 1--33
B. Helffer Four Lectures in Semiclassical Analysis
for Non Self-Adjoint Problems with
Applications to Hydrodynamic Instability 35--77
M. P. Lamoureux and
G. F. Margrave An Introduction to Numerical Methods of
Pseudodifferential Operators . . . . . . 79--133
N. Lerner Some Facts About the Wick Calculus . . . 135--174
J. Toft Schatten Properties for
Pseudo-Differential Operators on
Modulation Spaces . . . . . . . . . . . 175--202
J. Toft Back Matter . . . . . . . . . . . . . . 203--204
Maury Bramson Front Matter . . . . . . . . . . . . . . i--viii
Maury Bramson Introduction . . . . . . . . . . . . . . 1--16
Maury Bramson The Classical Networks . . . . . . . . . 17--52
Maury Bramson Instability of Subcritical Queueing
Networks . . . . . . . . . . . . . . . . 53--76
Maury Bramson Stability of Queueing Networks . . . . . 77--138
Maury Bramson Applications and Some Further Theory . . 139--173
Maury Bramson Back Matter . . . . . . . . . . . . . . 175--190
Khadiga A. Arwini and
Christopher T. J. Dodson Front Matter . . . . . . . . . . . . . . I--X
Khadiga A. Arwini and
Christopher T. J. Dodson Mathematical Statistics and Information
Theory . . . . . . . . . . . . . . . . . 1--18
Khadiga A. Arwini and
Christopher T. J. Dodson Introduction to Riemannian Geometry . . 19--30
Khadiga A. Arwini and
Christopher T. J. Dodson Information Geometry . . . . . . . . . . 31--54
Khadiga A. Arwini and
Christopher T. J. Dodson Information Geometry of Bivariate
Families . . . . . . . . . . . . . . . . 55--107
Khadiga A. Arwini and
Christopher T. J. Dodson Neighbourhoods of Poisson Randomness,
Independence, and Uniformity . . . . . . 109--117
Khadiga A. Arwini and
Christopher T. J. Dodson Cosmological Voids and Galactic
Clustering . . . . . . . . . . . . . . . 119--137
A. J. Doig Amino Acid Clustering . . . . . . . . . 139--151
A. J. Doig Cryptographic Attacks and Signal
Clustering . . . . . . . . . . . . . . . 153--159
W. W. Sampson Stochastic Fibre Networks . . . . . . . 161--194
J. Scharcanski and
S. Felipussi Stochastic Porous Media and Hydrology 195--222
J. Scharcanski and
S. Felipussi Quantum Chaology . . . . . . . . . . . . 223--233
J. Scharcanski and
S. Felipussi Back Matter . . . . . . . . . . . . . . 235--253
Philippe Biane and
Luc Bouten and
Fabio Cipriani and
Norio Konno and
Nicolas Privault and
Quanhua Xu Front Matter . . . . . . . . . . . . . . i--xi
Philippe Biane and
Luc Bouten and
Fabio Cipriani and
Norio Konno and
Nicolas Privault and
Quanhua Xu Introduction . . . . . . . . . . . . . . 1--2
Nicolas Privault Potential Theory in Classical
Probability . . . . . . . . . . . . . . 3--59
Philippe Biane Introduction to Random Walks on
Noncommutative Spaces . . . . . . . . . 61--116
Quanhua Xu Interactions between Quantum Probability
and Operator Space Theory . . . . . . . 117--159
Fabio Cipriani Dirichlet Forms on Noncommutative Spaces 161--276
Lue Bouten Applications of Quantum Stochastic
Processes in Quantum Optics . . . . . . 277--307
Norie Konno Quantum Walks . . . . . . . . . . . . . 309--452
Norie Konno Back Matter . . . . . . . . . . . . . . 453--463
Cho-Ho Chu Front Matter . . . . . . . . . . . . . . i--ix
Cho-Ho Chu Introduction . . . . . . . . . . . . . . 1--4
Cho-Ho Chu Lebesgue Spaces of Matrix Functions . . 5--19
Cho-Ho Chu Matrix Convolution Operators . . . . . . 21--85
Cho-Ho Chu Convolution Semigroups . . . . . . . . . 87--100
Cho-Ho Chu Back Matter . . . . . . . . . . . . . . 101--108
Martin C. Olsson Front Matter . . . . . . . . . . . . . . I--VII
Martin C. Olsson Introduction . . . . . . . . . . . . . . 1--5
Martin C. Olsson A Brief Primer on Algebraic Stacks . . . 7--29
Martin C. Olsson Preliminaries . . . . . . . . . . . . . 31--55
Martin C. Olsson Moduli of Broken Toric Varieties . . . . 57--83
Martin C. Olsson Moduli of Principally Polarized Abelian
Varieties . . . . . . . . . . . . . . . 85--134
Martin C. Olsson Moduli of Abelian Varieties with Higher
Degree Polarizations . . . . . . . . . . 135--230
Martin C. Olsson Level Structure . . . . . . . . . . . . 231--271
Martin C. Olsson Back Matter . . . . . . . . . . . . . . 273--278
Yukiyoshi Nakkajima and
Atsushi Shiho Front Matter . . . . . . . . . . . . . . i--xxiii
Yukiyoshi Nakkajima and
Atsushi Shiho Preliminaries on Filtered Derived
Categories and Topoi . . . . . . . . . . 15--53
Yukiyoshi Nakkajima and
Atsushi Shiho Weight Filtrations on Log Crystalline
Cohomologies . . . . . . . . . . . . . . 55--217
Yukiyoshi Nakkajima and
Atsushi Shiho Weight Filtrations and Slope Filtrations
on Rigid Cohomologies (Summary) . . . . 219--248
Yukiyoshi Nakkajima and
Atsushi Shiho Back Matter . . . . . . . . . . . . . . 249--266
Kazuaki Taira Front Matter . . . . . . . . . . . . . . 1--9
Kazuaki Taira Introduction and Main Results . . . . . 1--12
Kazuaki Taira Back Matter . . . . . . . . . . . . . . 1--17
Kazuaki Taira Semigroup Theory . . . . . . . . . . . . 13--54
Kazuaki Taira $ L^p $ Theory of Pseudo-Differential
Operators . . . . . . . . . . . . . . . 55--75
Kazuaki Taira $ L^p $ Approach to Elliptic Boundary
Value Problems . . . . . . . . . . . . . 77--85
Kazuaki Taira Proof of Theorem 1.1 . . . . . . . . . . 87--93
Kazuaki Taira A Priori Estimates . . . . . . . . . . . 95--100
Kazuaki Taira Proof of Theorem 1.2 . . . . . . . . . . 101--111
Kazuaki Taira Proof of Theorem 1.3 --- Part (i) . . . 113--124
Kazuaki Taira Proof of Theorem 1.3, Part (II) . . . . 125--159
Kazuaki Taira Application to Semilinear
Initial-Boundary Value Problems . . . . 161--168
Kazuaki Taira Concluding Remarks . . . . . . . . . . . 169--174
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia Front Matter . . . . . . . . . . . . . . I--XI
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia Introduction . . . . . . . . . . . . . . 1--11
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia $ \sigma $-Continuous and Co- $ \sigma
$-continuous Maps . . . . . . . . . . . 13--47
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia Generalized Metric Spaces and Locally
Uniformly Rotund Renormings . . . . . . 49--72
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia $ \sigma $-Slicely Continuous Maps . . . 73--99
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia Some Applications . . . . . . . . . . . 101--116
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia Some Open Problems . . . . . . . . . . . 117--129
Aníbal Moltó and
José Orihuela and
Stanimir Troyanski and
Manuel Valdivia Back Matter . . . . . . . . . . . . . . 131--148
Roman Mikhailov and
Inder Bir Singh Passi Front Matter . . . . . . . . . . . . . . i--xxi
Roman Mikhailov and
Inder Bir Singh Passi Lower Central Series . . . . . . . . . . 1--100
Roman Mikhailov and
Inder Bir Singh Passi Dimension Subgroups . . . . . . . . . . 101--164
Roman Mikhailov and
Inder Bir Singh Passi Derived Series . . . . . . . . . . . . . 165--185
Roman Mikhailov and
Inder Bir Singh Passi Augmentation Powers . . . . . . . . . . 187--227
Roman Mikhailov and
Inder Bir Singh Passi Homotopical Aspects . . . . . . . . . . 229--290
Roman Mikhailov and
Inder Bir Singh Passi Miscellanea . . . . . . . . . . . . . . 291--297
Roman Mikhailov and
Inder Bir Singh Passi Back Matter . . . . . . . . . . . . . . 299--352
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Front Matter . . . . . . . . . . . . . . I--X
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Introduction: The Models . . . . . . . . 1--9
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel The Mathematical Models . . . . . . . . 11--23
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Traffic Plans . . . . . . . . . . . . . 25--37
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel The Structure of Optimal Traffic Plans 39--45
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Operations on Traffic Plans . . . . . . 47--54
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Traffic Plans and Distances between
Measures . . . . . . . . . . . . . . . . 55--63
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel The Tree Structure of Optimal Traffic
Plans and their Approximation . . . . . 65--78
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Interior and Boundary Regularity . . . . 79--93
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel The Equivalence of Various Models . . . 95--104
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Irrigability and Dimension . . . . . . . 105--117
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel The Landscape of an Optimal Pattern . . 119--134
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel The Gilbert--Steiner Problem . . . . . . 135--149
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Dirac to Lebesgue Segment: a Case Study 151--168
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Application: Embedded Irrigation
Networks . . . . . . . . . . . . . . . . 169--177
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Open Problems . . . . . . . . . . . . . 179--183
Marc Bernot and
Vicent Caselles and
Jean-Michel Morel Back Matter . . . . . . . . . . . . . . 185--206
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--2
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--2
Alice Guionnet Basics of matrices . . . . . . . . . . . 1--3
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--3
Alice Guionnet Free probability setting . . . . . . . . 1--4
Alice Guionnet Introduction . . . . . . . . . . . . . . 1--4
Alice Guionnet Large Deviations of the Maximum
Eigenvalue . . . . . . . . . . . . . . . 1--5
Alice Guionnet Asymptotics of
Harish-Chandra--Itzykson--Zuber
integrals and of Schur polynomials . . . 1--6
Alice Guionnet Generalizations . . . . . . . . . . . . 1--6
Alice Guionnet Words in several independent Wigner
matrices . . . . . . . . . . . . . . . . 1--6
Alice Guionnet Asymptotics of some matrix integrals . . 1--8
Alice Guionnet Concentration inequalities and
logarithmic Sobolev inequalities . . . . 1--9
Alice Guionnet Large deviations for the law of the
spectral measure of Gaussian Wigner's
matrices . . . . . . . . . . . . . . . . 1--10
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--11
Alice Guionnet First-order expansion . . . . . . . . . 1--11
Alice Guionnet Wigner's matrices; more moments
estimates . . . . . . . . . . . . . . . 1--12
Alice Guionnet Freeness . . . . . . . . . . . . . . . . 1--14
Alice Guionnet Free entropy . . . . . . . . . . . . . . 1--15
Alice Guionnet Maps and Gaussian calculus . . . . . . . 1--15
Alice Guionnet Stochastic analysis for random matrices 1--15
Alice Guionnet Wigner's theorem . . . . . . . . . . . . 1--22
Alice Guionnet Concentration inequalities for random
matrices . . . . . . . . . . . . . . . . 1--23
Alice Guionnet Second-order expansion for the free
energy . . . . . . . . . . . . . . . . . 1--25
Alice Guionnet Large deviation principle for the law of
the spectral measure of shifted Wigner
matrices . . . . . . . . . . . . . . . . 1--27
Joseph Lipman and
Mitsuyasu Hashimoto Front Matter . . . . . . . . . . . . . . i--x
Joseph Lipman and
Mitsuyasu Hashimoto Front Matter . . . . . . . . . . . . . . 1--3
Joseph Lipman and
Mitsuyasu Hashimoto Introduction . . . . . . . . . . . . . . 5--10
Joseph Lipman and
Mitsuyasu Hashimoto Derived and Triangulated Categories . . 11--42
Joseph Lipman and
Mitsuyasu Hashimoto Derived Functors . . . . . . . . . . . . 43--81
Joseph Lipman and
Mitsuyasu Hashimoto Derived Direct and Inverse Image . . . . 83--158
Joseph Lipman and
Mitsuyasu Hashimoto Abstract Grothendieck Duality for
Schemes . . . . . . . . . . . . . . . . 159--252
Joseph Lipman and
Mitsuyasu Hashimoto Front Matter . . . . . . . . . . . . . . 253--257
Joseph Lipman and
Mitsuyasu Hashimoto Back Matter . . . . . . . . . . . . . . 253--259
Joseph Lipman and
Mitsuyasu Hashimoto Introduction . . . . . . . . . . . . . . 259--262
Joseph Lipman and
Mitsuyasu Hashimoto Commutativity of Diagrams Constructed
from a Monoidal Pair of Pseudofunctors 263--278
Joseph Lipman and
Mitsuyasu Hashimoto Sheaves on Ringed Sites . . . . . . . . 279--302
Joseph Lipman and
Mitsuyasu Hashimoto Derived Categories and Derived Functors
of Sheaves on Ringed Sites . . . . . . . 303--312
Joseph Lipman and
Mitsuyasu Hashimoto Sheaves over a Diagram of $S$-Schemes 313--317
Joseph Lipman and
Mitsuyasu Hashimoto The Left and Right Inductions and the
Direct and Inverse Images . . . . . . . 319--321
Joseph Lipman and
Mitsuyasu Hashimoto Operations on Sheaves Via the Structure
Data . . . . . . . . . . . . . . . . . . 323--336
Joseph Lipman and
Mitsuyasu Hashimoto Quasi-Coherent Sheaves Over a Diagram of
Schemes . . . . . . . . . . . . . . . . 337--342
Joseph Lipman and
Mitsuyasu Hashimoto Derived Functors of Functors on Sheaves
of Modules Over Diagrams of Schemes . . 343--349
Joseph Lipman and
Mitsuyasu Hashimoto Simplicial Objects . . . . . . . . . . . 351--353
Joseph Lipman and
Mitsuyasu Hashimoto Descent Theory . . . . . . . . . . . . . 355--361
Joseph Lipman and
Mitsuyasu Hashimoto Local Noetherian Property . . . . . . . 363--365
Joseph Lipman and
Mitsuyasu Hashimoto Groupoid of Schemes . . . . . . . . . . 367--371
Joseph Lipman and
Mitsuyasu Hashimoto Bökstedt--Neeman Resolutions and HyperExt
Sheaves . . . . . . . . . . . . . . . . 373--376
Joseph Lipman and
Mitsuyasu Hashimoto The Right Adjoint of the Derived Direct
Image Functor . . . . . . . . . . . . . 377--383
Joseph Lipman and
Mitsuyasu Hashimoto Back Matter . . . . . . . . . . . . . . 467--478
Giuseppe Buttazzo and
Sergio Solimini and
Aldo Pratelli and
Eugene Stepanov Introduction . . . . . . . . . . . . . . 1--6
Giuseppe Buttazzo and
Aldo Pratelli and
Eugene Stepanov and
Sergio Solimini Front Matter . . . . . . . . . . . . . . 1--8
Giuseppe Buttazzo and
Sergio Solimini and
Aldo Pratelli and
Eugene Stepanov Optimal connected networks . . . . . . . 1--12
Giuseppe Buttazzo and
Sergio Solimini and
Aldo Pratelli and
Eugene Stepanov Problem setting . . . . . . . . . . . . 1--17
Giuseppe Buttazzo and
Sergio Solimini and
Aldo Pratelli and
Eugene Stepanov Optimal sets and geodesics in the
two-dimensional case . . . . . . . . . . 1--25
Giuseppe Buttazzo and
Sergio Solimini and
Aldo Pratelli and
Eugene Stepanov Back Matter . . . . . . . . . . . . . . 1--26
Giuseppe Buttazzo and
Sergio Solimini and
Aldo Pratelli and
Eugene Stepanov Topological properties of optimal sets 1--29
Giuseppe Buttazzo and
Sergio Solimini and
Aldo Pratelli and
Eugene Stepanov Relaxed problem and existence of
solutions . . . . . . . . . . . . . . . 1--37
Robert Dalang and
Davar Khoshnevisan and
Carl Mueller and
David Nualart and
Yimin Xiao Front Matter . . . . . . . . . . . . . . I--XI
Davar Khoshnevisan A Primer on Stochastic Partial
Differential Equations . . . . . . . . . 1--38
Robert C. Dalang The Stochastic Wave Equation . . . . . . 39--71
David Nualart Application of Malliavin Calculus to
Stochastic Partial Differential
Equations . . . . . . . . . . . . . . . 73--109
Carl Mueller Some Tools and Results for Parabolic
Stochastic Partial Differential
Equations . . . . . . . . . . . . . . . 111--144
Yimin Xiao Sample Path Properties of Anisotropic
Gaussian Random Fields . . . . . . . . . 145--212
Yimin Xiao Back Matter . . . . . . . . . . . . . . 213--222
Wolfgang Siegert Front Matter . . . . . . . . . . . . . . i--xvi
Wolfgang Siegert Linear differential systems with
parameter excitation . . . . . . . . . . 9--51
Wolfgang Siegert Locality and time scales of the
underlying non-degenerate stochastic
system: Freidlin--Wentzell theory . . . 53--123
Wolfgang Siegert Exit probabilities for degenerate
systems . . . . . . . . . . . . . . . . 125--142
Wolfgang Siegert Local Lyapunov exponents . . . . . . . . 143--229
Wolfgang Siegert Back Matter . . . . . . . . . . . . . . 231--260
Walter Roth Front Matter . . . . . . . . . . . . . . i--x
Walter Roth Introduction . . . . . . . . . . . . . . 1--7
Walter Roth Locally Convex Cones . . . . . . . . . . 9--117
Walter Roth Measures and Integrals. The General
Theory . . . . . . . . . . . . . . . . . 119--248
Walter Roth Measures on Locally Compact Spaces . . . 249--340
Walter Roth Back Matter . . . . . . . . . . . . . . 341--362
Charles Chidume Front Matter . . . . . . . . . . . . . . i--xvii
Charles Chidume Some Geometric Properties of Banach
Spaces . . . . . . . . . . . . . . . . . 1--9
Charles Chidume Smooth Spaces . . . . . . . . . . . . . 11--18
Charles Chidume Duality Maps in Banach Spaces . . . . . 19--28
Charles Chidume Inequalities in Uniformly Convex Spaces 29--44
Charles Chidume Inequalities in Uniformly Smooth Spaces 45--55
Charles Chidume Iterative Method for Fixed Points of
Nonexpansive Mappings . . . . . . . . . 57--86
Charles Chidume Hybrid Steepest Descent Method for
Variational Inequalities . . . . . . . . 87--111
Charles Chidume Iterative Methods for Zeros of \cyr F --
Accretive-Type Operators . . . . . . . . 113--127
Charles Chidume Iteration Processes for Zeros of
Generalized \cyr F-Accretive Mappings 129--140
Charles Chidume An Example; Mann Iteration for Strictly
Pseudo-contractive Mappings . . . . . . 141--149
Charles Chidume Approximation of Fixed Points of
Lipschitz Pseudo-contractive Mappings 151--160
Charles Chidume Generalized Lipschitz Accretive and
Pseudo-contractive Mappings . . . . . . 161--167
Charles Chidume Applications to Hammerstein Integral
Equations . . . . . . . . . . . . . . . 169--191
Charles Chidume Iterative Methods for Some
Generalizations of Nonexpansive Maps . . 193--204
Charles Chidume Common Fixed Points for Finite Families
of Nonexpansive Mappings . . . . . . . . 205--214
Charles Chidume Common Fixed Points for Countable
Families of Nonexpansive Mappings . . . 215--229
Charles Chidume Common Fixed Points for Families of
Commuting Nonexpansive Mappings . . . . 231--242
Charles Chidume Finite Families of Lipschitz
Pseudo-contractive and Accretive
Mappings . . . . . . . . . . . . . . . . 243--250
Charles Chidume Generalized Lipschitz Pseudo-contractive
and Accretive Mappings . . . . . . . . . 251--256
Charles Chidume Finite Families of Non-self
Asymptotically Nonexpansive Mappings . . 257--270
Donggao Deng and
Yongsheng Han Front Matter . . . . . . . . . . . . . . i--xii
Donggao Deng and
Yongsheng Han Introduction . . . . . . . . . . . . . . 1--7
Donggao Deng and
Yongsheng Han Calderón--Zygmund Operator on Space of
Homogeneous Type . . . . . . . . . . . . 9--25
Donggao Deng and
Yongsheng Han The Boundedness of Calderón--Zygmund
Operators on Wavelet Spaces . . . . . . 27--37
Donggao Deng and
Yongsheng Han Wavelet Expansions on Spaces of
Homogeneous Type . . . . . . . . . . . . 39--90
Donggao Deng and
Yongsheng Han Wavelets and Spaces of Functions and
Distributions . . . . . . . . . . . . . 91--136
Donggao Deng and
Yongsheng Han Littlewood--Paley Analysis on Non
Homogeneous Spaces . . . . . . . . . . . 137--147
Donggao Deng and
Yongsheng Han Back Matter . . . . . . . . . . . . . . 149--160
Benoit Fresse Front Matter . . . . . . . . . . . . . . 1--2
Benoit Fresse Front Matter . . . . . . . . . . . . . . 1--8
Benoit Fresse Introduction . . . . . . . . . . . . . . 1--13
Benoit Fresse Symmetric objects and functors . . . . . 1--18
Benoit Fresse Front Matter . . . . . . . . . . . . . . 17--20
Benoit Fresse Symmetric monoidal categories for
operads . . . . . . . . . . . . . . . . 21--34
Benoit Fresse Operads and algebras in symmetric
monoidal categories . . . . . . . . . . 53--76
Benoit Fresse Miscellaneous structures associated to
algebras over operads . . . . . . . . . 77--93
Benoit Fresse Back Matter . . . . . . . . . . . . . . 95--96
Benoit Fresse Front Matter . . . . . . . . . . . . . . 98--98
Benoit Fresse Definitions and basic constructions . . 99--106
Benoit Fresse Tensor products . . . . . . . . . . . . 107--112
Benoit Fresse Universal constructions on right modules
over operads . . . . . . . . . . . . . . 113--119
Benoit Fresse Adjunction and embedding properties . . 121--128
Benoit Fresse Algebras in right modules over operads 129--138
Benoit Fresse Miscellaneous examples . . . . . . . . . 139--147
Benoit Fresse Back Matter . . . . . . . . . . . . . . 149--149
Benoit Fresse Front Matter . . . . . . . . . . . . . . 152--152
Benoit Fresse Symmetric monoidal model categories for
operads . . . . . . . . . . . . . . . . 153--184
Benoit Fresse The homotopy of algebras over operads 185--202
Benoit Fresse The (co)homology of algebras over
operads . . . . . . . . . . . . . . . . 203--214
Benoit Fresse Back Matter . . . . . . . . . . . . . . 215--216
Benoit Fresse Front Matter . . . . . . . . . . . . . . 218--218
Benoit Fresse The model category of right modules . . 219--223
Benoit Fresse Modules and homotopy invariance of
functors . . . . . . . . . . . . . . . . 225--233
Benoit Fresse Extension and restriction functors and
model structures . . . . . . . . . . . . 235--239
Benoit Fresse Miscellaneous applications . . . . . . . 241--259
Benoit Fresse Back Matter . . . . . . . . . . . . . . 261--261
Benoit Fresse Shifted modules over operads and
functors . . . . . . . . . . . . . . . . 267--276
Benoit Fresse Shifted functors and pushout-products 277--286
Rainer Weissauer Appendix on Galois cohomology . . . . . 1--4
Rainer Weissauer Reduction to unit elements . . . . . . . 1--13
Rainer Weissauer Appendix on Double Cosets . . . . . . . 1--16
Rainer Weissauer Front Matter . . . . . . . . . . . . . . 1--16
Rainer Weissauer An Application of the Hard Lefschetz
Theorem . . . . . . . . . . . . . . . . 1--17
Rainer Weissauer Back Matter . . . . . . . . . . . . . . 1--18
Rainer Weissauer The Langlands--Shelstad transfer factor 1--20
Rainer Weissauer The Ramanujan Conjecture for Genus two
Siegel modular Forms . . . . . . . . . . 1--21
Rainer Weissauer A special Case of the Fundamental Lemma
I . . . . . . . . . . . . . . . . . . . 1--28
Rainer Weissauer Fundamental lemma (twisted case) . . . . 1--30
Rainer Weissauer A special Case of the Fundamental Lemma
II . . . . . . . . . . . . . . . . . . . 1--31
Rainer Weissauer CAP-Localization . . . . . . . . . . . . 1--34
Rainer Weissauer Local and Global Endoscopy for $ {\rm
GSp}(4) $ . . . . . . . . . . . . . . . 1--36
Rainer Weissauer Character identities and Galois
representations related to the group $
{\rm GSp}(4) $ . . . . . . . . . . . . . 1--99
Bernard Roynette and
Marc Yor Front Matter . . . . . . . . . . . . . . 1--11
Bernard Roynette and
Marc Yor Back Matter . . . . . . . . . . . . . . 1--21
Bernard Roynette and
Marc Yor Some penalisations of the Wiener measure 1--31
Bernard Roynette and
Marc Yor Introduction . . . . . . . . . . . . . . 1--34
Bernard Roynette and
Marc Yor A general principle and some questions
about penalisations . . . . . . . . . . 1--36
Bernard Roynette and
Marc Yor Feynman--Kac penalisations for Brownian
motion . . . . . . . . . . . . . . . . . 1--64
Bernard Roynette and
Marc Yor Penalisations of a Bessel process with
dimension $ d(0 d 2) $ by a function of
the ranked lengths of its excursions . . 1--93
Marek Biskup and
Anton Bovier and
Frank Hollander and
Dima Ioffe and
Fabio Martinelli and
Karel Netocný and
Christina Toninelli Front Matter . . . . . . . . . . . . . . 1--8
N. Cancrini and
F. Martinelli and
C. Robert and
C. Toninelli Back Matter . . . . . . . . . . . . . . 1--9
Frank den Hollander Three Lectures on Metastability Under
Stochastic Dynamics . . . . . . . . . . 1--24
N. Cancrini and
F. Martinelli and
C. Robert and
C. Toninelli Facilitated Spin Models: Recent and New
Results . . . . . . . . . . . . . . . . 1--34
Dmitry Ioffe Stochastic Geometry of Classical and
Quantum Ising Models . . . . . . . . . . 1--41
Anton Bovier Metastability . . . . . . . . . . . . . 1--45
Fabio Lucio Toninelli Localization Transition in Disordered
Pinning Models . . . . . . . . . . . . . 1--48
Christian Maes and
Karel Neto\vcný and
Bidzina Shergelashvili A Selection of Nonequilibrium Issues . . 1--60
Marek Biskup Reflection Positivity and Phase
Transitions in Lattice Spin Models . . . 1--86
Laure Saint-Raymond The compressible Euler limit . . . . . . 1--6
Laure Saint-Raymond Front Matter . . . . . . . . . . . . . . 1--10
Laure Saint-Raymond Introduction . . . . . . . . . . . . . . 1--11
Laure Saint-Raymond Back Matter . . . . . . . . . . . . . . 1--25
Laure Saint-Raymond Mathematical tools for the derivation of
hydrodynamic limits . . . . . . . . . . 1--32
Laure Saint-Raymond The Boltzmann equation and its formal
hydrodynamic limits . . . . . . . . . . 1--34
Laure Saint-Raymond The incompressible Euler limit . . . . . 1--42
Laure Saint-Raymond The incompressible Navier--Stokes limit 1--42
Takuro Mochizuki Front Matter . . . . . . . . . . . . . . 1--20
Takuro Mochizuki Introduction . . . . . . . . . . . . . . 1--23
Takuro Mochizuki Parabolic $L$-Bradlow Pairs . . . . . . 1--33
Takuro Mochizuki Preliminaries . . . . . . . . . . . . . 1--38
Takuro Mochizuki Geometric Invariant Theory and Enhanced
Master Space . . . . . . . . . . . . . . 1--47
Takuro Mochizuki Back Matter . . . . . . . . . . . . . . 1--48
Takuro Mochizuki Virtual Fundamental Classes . . . . . . 1--50
Takuro Mochizuki Obstruction Theories of Moduli Stacks
and Master Spaces . . . . . . . . . . . 1--67
Takuro Mochizuki Invariants . . . . . . . . . . . . . . . 1--77
Mitchell A. Berger and
Louis H. Kauffman and
Boris Khesin and
H. Keith Moffatt and
Renzo L. Ricca and
De Witt Sumners Front Matter . . . . . . . . . . . . . . 1--12
Patrick D. Bangert Braids and Knots . . . . . . . . . . . . 1--73
Mitchell A. Berger Topological Quantities: Calculating
Winding, Writhing, Linking, and Higher
Order Invariants . . . . . . . . . . . . 75--97
Louis H. Kauffman and
Sofia Lambropoulou Tangles, Rational Knots and DNA . . . . 99--138
Boris Khesin The Group and Hamiltonian Descriptions
of Hydrodynamical Systems . . . . . . . 139--155
H. K. Moffatt Singularities in Fluid Dynamics and
their Resolution . . . . . . . . . . . . 157--166
Renzo L. Ricca Structural Complexity and Dynamical
Systems . . . . . . . . . . . . . . . . 167--186
De Witt Sumners Random Knotting: Theorems, Simulations
and Applications . . . . . . . . . . . . 187--217
De Witt Sumners Back Matter . . . . . . . . . . . . . . 219--231
Frank den Hollander Introduction . . . . . . . . . . . . . . 1--7
Frank Hollander Front Matter . . . . . . . . . . . . . . 1--13
Frank den Hollander Back Matter . . . . . . . . . . . . . . 1--31
Frank den Hollander Two Basic Models . . . . . . . . . . . . 9--16
Frank den Hollander Front Matter . . . . . . . . . . . . . . 17--18
Frank den Hollander Soft Polymers in Low Dimension . . . . . 19--39
Frank den Hollander Soft Polymers in High Dimension . . . . 41--58
Frank den Hollander Elastic Polymers . . . . . . . . . . . . 59--65
Frank den Hollander Polymer Collapse . . . . . . . . . . . . 67--84
Frank den Hollander Polymer Adsorption . . . . . . . . . . . 85--112
Frank den Hollander Front Matter . . . . . . . . . . . . . . 113--114
Frank den Hollander Charged Polymers . . . . . . . . . . . . 115--127
Frank den Hollander Copolymers near a Linear Selective
Interface . . . . . . . . . . . . . . . 129--154
Frank den Hollander Copolymers near a Random Selective
Interface . . . . . . . . . . . . . . . 155--179
Frank den Hollander Random Pinning and Wetting of Polymers 181--204
Frank den Hollander Polymers in a Random Potential . . . . . 205--231
Christian Rohde Front Matter . . . . . . . . . . . . . . 1--7
Jan Christian Rohde Introduction . . . . . . . . . . . . . . 1--9
Jan Christian Rohde Back Matter . . . . . . . . . . . . . . 1--24
Jan Christian Rohde An Introduction to Hodge Structures and
Shimura Varieties . . . . . . . . . . . 11--57
Jan Christian Rohde Cyclic Covers of the Projective Line . . 59--69
Jan Christian Rohde Some Preliminaries for Families of
Cyclic Covers . . . . . . . . . . . . . 71--78
Jan Christian Rohde The Galois Group Decomposition of the
Hodge Structure . . . . . . . . . . . . 79--89
Jan Christian Rohde The Computation of the Hodge Group . . . 91--119
Jan Christian Rohde Examples of Families with Dense Sets of
Complex Multiplication Fibers . . . . . 121--142
Jan Christian Rohde The Construction of Calabi--Yau
Manifolds with Complex Multiplication 143--156
Jan Christian Rohde The Degree $3$ Case . . . . . . . . . . 157--167
Jan Christian Rohde Other Examples and Variations . . . . . 169--186
Jan Christian Rohde Examples of CMCY Families of
$3$-manifolds and their Invariants . . . 187--198
Jan Christian Rohde Maximal Families of CMCY Type . . . . . 199--208
Nicolas Ginoux Front Matter . . . . . . . . . . . . . . 1--11
Nicolas Ginoux Basics of spin geometry . . . . . . . . 1--27
Nicolas Ginoux Back Matter . . . . . . . . . . . . . . 1--32
Nicolas Ginoux Explicit computations of spectra . . . . 29--39
Nicolas Ginoux Lower eigenvalue estimates on closed
manifolds . . . . . . . . . . . . . . . 41--68
Nicolas Ginoux Lower eigenvalue estimates on compact
manifolds with boundary . . . . . . . . 69--75
Nicolas Ginoux Upper eigenvalue bounds on closed
manifolds . . . . . . . . . . . . . . . 77--92
Nicolas Ginoux Prescription of eigenvalues on closed
manifolds . . . . . . . . . . . . . . . 93--101
Nicolas Ginoux The Dirac spectrum on non-compact
manifolds . . . . . . . . . . . . . . . 103--111
Nicolas Ginoux Other topics related with the Dirac
spectrum . . . . . . . . . . . . . . . . 113--129
Matthew J. Gursky and
Ermanno Lanconelli and
Andrea Malchiodi and
Gabriella Tarantello and
Xu-Jia Wang and
Paul C. Yang Front Matter . . . . . . . . . . . . . . 1--12
Paul Yang Back Matter . . . . . . . . . . . . . . 1--14
Matthew J. Gursky PDEs in Conformal Geometry . . . . . . . 1--33
Ermanno Lanconelli Heat Kernels in Sub-Riemannian Settings 35--61
Andrea Malchiodi Concentration of Solutions for Some
Singularly Perturbed Neumann Problems 63--115
Gabriella Tarantello On Some Elliptic Problems in the Study
of Selfdual Chern--Simons Vortices . . . 117--175
Xu-Jia Wang The $k$-Hessian Equation . . . . . . . . 177--252
Paul Yang Minimal Surfaces in CR Geometry . . . . 253--273
Min Quian and
Jian-Sheng Xie and
Shu Zhu Preliminaries . . . . . . . . . . . . . 1--8
Min Qian and
Jian-Sheng Xie and
Shu Zhu Front Matter . . . . . . . . . . . . . . 1--11
Min Quian and
Jian-Sheng Xie and
Shu Zhu Back Matter . . . . . . . . . . . . . . 1--38
Min Quian and
Jian-Sheng Xie and
Shu Zhu Margulis--Ruelle Inequality . . . . . . 9--13
Min Quian and
Jian-Sheng Xie and
Shu Zhu Expanding Maps . . . . . . . . . . . . . 15--26
Min Quian and
Jian-Sheng Xie and
Shu Zhu Axiom A Endomorphisms . . . . . . . . . 27--44
Min Quian and
Jian-Sheng Xie and
Shu Zhu Unstable and Stable Manifolds for
Endomorphisms . . . . . . . . . . . . . 45--86
Min Quian and
Jian-Sheng Xie and
Shu Zhu Pesin's Entropy Formula for
Endomorphisms . . . . . . . . . . . . . 87--96
Min Quian and
Jian-Sheng Xie and
Shu Zhu SRB Measures and Pesin's Entropy Formula
for Endomorphisms . . . . . . . . . . . 97--150
Min Quian and
Jian-Sheng Xie and
Shu Zhu Ergodic Property of Lyapunov Exponents 151--171
Min Quian and
Jian-Sheng Xie and
Shu Zhu Generalized Entropy Formula . . . . . . 173--204
Min Quian and
Jian-Sheng Xie and
Shu Zhu Exact Dimensionality of Hyperbolic
Measures . . . . . . . . . . . . . . . . 205--244
Mikós Rásonyi Back Matter . . . . . . . . . . . . . . 1--6
Antoine Lejay Yet another introduction to rough paths 1--101
Miclo Laurent Monotonicity of the extremal functions
for one-dimensional inequalities of
logarithmic Sobolev type . . . . . . . . 103--130
Walter Schachermayer and
Uwe Schmock and
Josef Teichmann Non-monotone convergence in the
quadratic Wasserstein distance . . . . . 131--136
Fangjun Xu On the equation $ \mu = S_t \mu * \mu_t
$ . . . . . . . . . . . . . . . . . . . 137--145
Philippe Biane Shabat polynomials and harmonic measure 147--151
Nizar Demni Radial Dunkl Processes Associated with
Dihedral Systems . . . . . . . . . . . . 153--169
Philippe Biane Matrix Valued Brownian Motion and a
Paper by Pólya . . . . . . . . . . . . . 171--185
Kouji Yano and
Yuko Yano and
Marc Yor On the Laws of First Hitting Times of
Points for One-Dimensional Symmetric
Stable Lévy Processes. (French) [] . . . 187--227
P. J. Fitzsimmons and
R. K. Getoor Lévy Systems and Time Changes. (French)
[] . . . . . . . . . . . . . . . . . . . 229--259
Nathalie Krell Self-Similar Branching Markov Chains . . 261--280
Robert Hardy and
Simon C. Harris A Spine Approach to Branching Diffusions
with Applications to $ L^p $-Convergence
of Martingales . . . . . . . . . . . . . 281--330
Pierre Debs Penalisation of the Standard Random Walk
by a Function of the One-Sided Maximum,
of the Local Time, or of the Duration of
the Excursions . . . . . . . . . . . . . 331--363
M. Erraoui and
E. H. Essaky Canonical Representation for Gaussian
Processes . . . . . . . . . . . . . . . 365--381
Michel Émery Recognising Whether a Filtration is
Brownian: a Case Study . . . . . . . . . 383--396
Ameur Dhahri Markovian properties of the spin-boson
model . . . . . . . . . . . . . . . . . 397--432
Stéphane Attal and
Nadine Guillotin-Plantard Statistical properties of Pauli matrices
going through noisy channels . . . . . . 433--448
Mikós Rásonyi Erratum to: New methods in the arbitrage
theory of financial markets with
transaction costs, in Séminaire XLI . . . 449--449
Krzysztof Bogdan and
Tomasz Byczkowski and
Tadeusz Kulczycki and
Michal Ryznar and
Renming Song and
Zoran Vondracek Front Matter . . . . . . . . . . . . . . 1--8
R. Song and
Z. Vondra\vcek Back Matter . . . . . . . . . . . . . . 1--16
Piotr Graczyk and
Andrzej Stos Introduction . . . . . . . . . . . . . . 1--24
K. Bogdan and
T. Byczkowski Boundary Potential Theory for Schrödinger
Operators Based on Fractional Laplacian 25--55
M. Ryznar Nontangential Convergence for $ \alpha
$-harmonic Functions . . . . . . . . . . 57--72
T. Kulczycki Eigenvalues and Eigenfunctions for
Stable Processes . . . . . . . . . . . . 73--86
R. Song and
Z. Vondra\vcek Potential Theory of Subordinate Brownian
Motion . . . . . . . . . . . . . . . . . 87--176
Maria Chlouveraki Front Matter . . . . . . . . . . . . . . 1--11
Maria Chlouveraki On Commutative Algebra . . . . . . . . . 1--19
Maria Chlouveraki Back Matter . . . . . . . . . . . . . . 1--32
Maria Chlouveraki On Blocks . . . . . . . . . . . . . . . 21--59
Maria Chlouveraki On Essential Algebras . . . . . . . . . 61--70
Maria Chlouveraki On Hecke Algebras . . . . . . . . . . . 71--89
Maria Chlouveraki On the Determination of the Rouquier
Blocks . . . . . . . . . . . . . . . . . 91--132
Nicolas Privault Introduction . . . . . . . . . . . . . . 1--6
Nicolas Privault Front Matter . . . . . . . . . . . . . . 1--7
Nicolas Privault Back Matter . . . . . . . . . . . . . . 1--15
Nicolas Privault The Discrete Time Case . . . . . . . . . 7--58
Nicolas Privault Continuous Time Normal Martingales . . . 59--112
Nicolas Privault Gradient and Divergence Operators . . . 113--130
Nicolas Privault Annihilation and Creation Operators . . 131--160
Nicolas Privault Analysis on the Wiener Space . . . . . . 161--194
Nicolas Privault Analysis on the Poisson Space . . . . . 195--246
Nicolas Privault Local Gradients on the Poisson Space . . 247--280
Nicolas Privault Option Hedging in Continuous Time . . . 281--293
Nicolas Privault Appendix . . . . . . . . . . . . . . . . 295--300
Julien Lef\`evre and
Sylvain Baillet Back Matter . . . . . . . . . . . . . . 1--8
Jin Keun Seo and
Eung Je Woo Multi-Frequency Electrical Impedance
Tomography and Magnetic Resonance
Electrical Impedance Tomography . . . . 1--71
Mickael Tanter and
Mathias Fink Time Reversing Waves For Biomedical
Applications . . . . . . . . . . . . . . 73--97
Habib Ammari and
Hyeonbae Kang The Method of Small-Volume Expansions
for Medical Imaging . . . . . . . . . . 99--132
George Dassios Electric and Magnetic Activity of the
Brain in Spherical and Ellipsoidal
Geometry . . . . . . . . . . . . . . . . 133--202
Julien Lef\`evre and
Sylvain Baillet Estimation of Velocity Fields and
Propagation on Non-Euclidian Domains:
Application to the Exploration of
Cortical Spatiotemporal Dynamics . . . . 203--226
Jean-Pierre Antoine and
Camillo Trapani Front Matter . . . . . . . . . . . . . . I--XXIX
Jean-Pierre Antoine and
Camillo Trapani General Theory: Algebraic Point of View 11--34
Jean-Pierre Antoine and
Camillo Trapani General Theory: Topological Aspects . . 35--56
Jean-Pierre Antoine and
Camillo Trapani Operators on PIP-Spaces and Indexed
PIP-Spaces . . . . . . . . . . . . . . . 57--101
Jean-Pierre Antoine and
Camillo Trapani Examples of Indexed PIP-Spaces . . . . . 103--156
Jean-Pierre Antoine and
Camillo Trapani Refinements of PIP-Spaces . . . . . . . 157--219
Jean-Pierre Antoine and
Camillo Trapani Partial $ *$-Algebras of Operators in a
PIP-Space . . . . . . . . . . . . . . . 221--255
Jean-Pierre Antoine and
Camillo Trapani Applications in Mathematical Physics . . 257--292
Jean-Pierre Antoine and
Camillo Trapani PIP-Spaces and Signal Processing . . . . 293--324
Jean-Pierre Antoine and
Camillo Trapani Back Matter . . . . . . . . . . . . . . 325--358
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa Front Matter . . . . . . . . . . . . . . i--xx
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Case of Manifolds . . . . . . . . . 1--29
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Schwartz Index . . . . . . . . . . . 31--41
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The GSV Index . . . . . . . . . . . . . 43--69
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa Indices of Vector Fields on Real
Analytic Varieties . . . . . . . . . . . 71--83
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Virtual Index . . . . . . . . . . . 85--96
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Case of Holomorphic Vector Fields 97--113
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Homological Index and Algebraic
Formulas . . . . . . . . . . . . . . . . 115--128
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Local Euler Obstruction . . . . . . 129--141
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa Indices for $1$-Forms . . . . . . . . . 143--166
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Schwartz Classes . . . . . . . . . . 167--184
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa The Virtual Classes . . . . . . . . . . 185--192
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa Milnor Number and Milnor Classes . . . . 193--200
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa Characteristic Classes of Coherent
Sheaves on Singular Varieties . . . . . 201--213
Jean-Paul Brasselet and
José Seade and
Tatsuo Suwa Back Matter . . . . . . . . . . . . . . 215--231