Table of contents for issues of Lecture Notes in Mathematics

Last update: Fri Oct 13 09:03:22 MDT 2017                Valid HTML 3.2!

Volume 1294, 2010
Volume 1670, 2010
Volume 1984, 2010
Volume 1985, 2010
Volume 1988, 2010
Volume 1989, 2010
Volume 1990, 2010
Volume 1991, 2010
Volume 1992, 2010
Volume 1993, 2010
Volume 1994, 2010
Volume 1995, 2010
Volume 1996, 2010
Volume 1997, 2010
Volume 1998, 2010
Volume 1999, 2010
Volume 2000, 2010
Volume 2001, 2010
Volume 2002, 2010
Volume 2004, 2010
Volume 2005, 2010
Volume 2007, 2010
Volume 2009, 2010
Volume 2003, 2011
Volume 2006, 2011
Volume 2008, 2011
Volume 2010, 2011
Volume 2011, 2011
Volume 2012, 2011
Volume 2013, 2011
Volume 2014, 2011
Volume 2015, 2011
Volume 2016, 2011
Volume 2017, 2011
Volume 2018, 2011
Volume 2019, 2011
Volume 2020, 2011
Volume 2021, 2011
Volume 2022, 2011
Volume 2023, 2011
Volume 2024, 2011
Volume 2025, 2011
Volume 2026, 2011
Volume 2027, 2011
Volume 2028, 2011
Volume 2029, 2011
Volume 2030, 2011
Volume 2031, 2011
Volume 2032, 2011
Volume 2033, 2011
Volume 2036, 2011
Volume 2034, 2012
Volume 2035, 2012
Volume 2037, 2012
Volume 2038, 2012
Volume 2039, 2012
Volume 2040, 2012
Volume 2041, 2012
Volume 2042, 2012
Volume 2043, 2012
Volume 2044, 2012
Volume 2045, 2012
Volume 2046, 2012
Volume 2047, 2012
Volume 2048, 2012
Volume 2049, 2012
Volume 2050, 2012
Volume 2051, 2012
Volume 2052, 2012
Volume 2053, 2012
Volume 2055, 2012
Volume 2056, 2012
Volume 2059, 2012
Volume 2061, 2012
Volume 2054, 2013
Volume 2057, 2013
Volume 2058, 2013
Volume 2060, 2013
Volume 2062, 2013
Volume 2063, 2013
Volume 2064, 2013
Volume 2065, 2013
Volume 2066, 2013
Volume 2067, 2013
Volume 2068, 2013
Volume 2069, 2013
Volume 2070, 2013
Volume 2071, 2013
Volume 2072, 2013
Volume 2073, 2013
Volume 2074, 2013
Volume 2075, 2013
Volume 2076, 2013
Volume 2077, 2013
Volume 2078, 2013
Volume 2079, 2013
Volume 2080, 2013
Volume 2081, 2013
Volume 2083, 2013
Volume 2084, 2013
Volume 2085, 2013
Volume 2086, 2013
Volume 2088, 2013
Volume 2089, 2013
Volume 2090, 2013
Volume 2098, 2013
Volume 2099, 2013
Volume 2100, 2013
Volume 2102, 2013
Volume 849, 2014
Volume 2082, 2014
Volume 2087, 2014
Volume 2091, 2014
Volume 2092, 2014
Volume 2093, 2014
Volume 2094, 2014
Volume 2095, 2014
Volume 2096, 2014
Volume 2097, 2014
Volume 2101, 2014
Volume 2103, 2014
Volume 2104, 2014
Volume 2105, 2014
Volume 2106, 2014
Volume 2107, 2014
Volume 2108, 2014
Volume 2109, 2014
Volume 2110, 2014
Volume 2111, 2014
Volume 2112, 2014
Volume 2113, 2014
Volume 2114, 2014
Volume 2115, 2014
Volume 2116, 2014
Volume 2118, 2014
Volume 2121, 2014
Volume 2122, 2014
Volume 2123, 2014
Volume 2127, 2014
Volume 2117, 2015
Volume 2119, 2015
Volume 2120, 2015
Volume 2124, 2015
Volume 2126, 2015
Volume 2128, 2015
Volume 2129, 2015
Volume 2130, 2015
Volume 2131, 2015
Volume 2135, 2015
Volume 2141, 2015
Volume 2159, 2016
Volume 2160, 2016
Volume 2161, 2016
Volume 2162, 2016
Volume 2163, 2016
Volume 2165, 2016
Volume 2166, 2016
Volume 2170, 2016


Lecture Notes in Mathematics
Volume 1294, 2010

       Martine Queffélec   Front Matter . . . . . . . . . . . . . . I--XV
       Martine Queffélec   The Banach Algebra $ M(T) $  . . . . . . 1--19
       Martine Queffélec   Spectral Theory of Unitary Operators . . 21--48
       Martine Queffélec   Spectral Theory of Dynamical Systems . . 49--86
       Martine Queffélec   Dynamical Systems Associated with
                                  Sequences  . . . . . . . . . . . . . . . 87--124
       Martine Queffélec   Dynamical Systems Arising from
                                  Substitutions  . . . . . . . . . . . . . 125--160
       Martine Queffélec   Eigenvalues of Substitution Dynamical
                                  Systems  . . . . . . . . . . . . . . . . 161--192
       Martine Queffélec   Matrices of Measures . . . . . . . . . . 193--207
       Martine Queffélec   Matrix Riesz Products  . . . . . . . . . 209--224
       Martine Queffélec   Bijective Automata . . . . . . . . . . . 225--242
       Martine Queffélec   Maximal Spectral Type of General
                                  Automata . . . . . . . . . . . . . . . . 243--264
       Martine Queffélec   Spectral Multiplicity of General
                                  Automata . . . . . . . . . . . . . . . . 265--280
       Martine Queffélec   Compact Automata . . . . . . . . . . . . 281--291
       Martine Queffélec   Back Matter  . . . . . . . . . . . . . . 293--351


Lecture Notes in Mathematics
Volume 1670, 2010

                J. W. Neuberger   Front Matter . . . . . . . . . . . . . . i--xiii
                J. W. Neuberger   Several Gradients  . . . . . . . . . . . 1--4
                J. W. Neuberger   Comparison of Two Gradients  . . . . . . 5--13
                J. W. Neuberger   Continuous Steepest Descent in Hilbert
                                  Space: Linear Case . . . . . . . . . . . 15--17
                J. W. Neuberger   Continuous Steepest Descent in Hilbert
                                  Space: Nonlinear Case  . . . . . . . . . 19--34
                J. W. Neuberger   Orthogonal Projections, Adjoints and
                                  Laplacians . . . . . . . . . . . . . . . 35--51
                J. W. Neuberger   Ordinary Differential Equations and
                                  Sobolev Gradients  . . . . . . . . . . . 53--55
                J. W. Neuberger   Convexity and Gradient Inequalities  . . 57--61
                J. W. Neuberger   Boundary and Supplementary Conditions    63--78
                J. W. Neuberger   Continuous Newton's Method . . . . . . . 79--83
                J. W. Neuberger   More About Finite Differences  . . . . . 85--97
                J. W. Neuberger   Sobolev Gradients for Variational
                                  Problems . . . . . . . . . . . . . . . . 99--102
                J. W. Neuberger   An Introduction to Sobolev Gradients in
                                  Non-Inner Product Spaces . . . . . . . . 103--107
                J. W. Neuberger   Singularities and a Simple
                                  Ginzburg--Landau Functional  . . . . . . 109--111
                J. W. Neuberger   The Superconductivity Equations of
                                  Ginzburg--Landau . . . . . . . . . . . . 113--121
                J. W. Neuberger   Tricomi Equation: a Case Study . . . . . 123--127
                J. W. Neuberger   Minimal Surfaces . . . . . . . . . . . . 129--145
                J. W. Neuberger   Flow Problems and Non-Inner Product
                                  Sobolev Spaces . . . . . . . . . . . . . 147--152
                J. W. Neuberger   An Alternate Approach to Time-dependent
                                  PDEs . . . . . . . . . . . . . . . . . . 153--158
                J. W. Neuberger   Foliations and Supplementary Conditions
                                  I  . . . . . . . . . . . . . . . . . . . 159--169
                J. W. Neuberger   Foliations and Supplementary Conditions
                                  II . . . . . . . . . . . . . . . . . . . 171--175


Lecture Notes in Mathematics
Volume 1984, 2010

            Vicent Caselles and   
                 Pascal Monasse   Introduction . . . . . . . . . . . . . . 1--7
            Vicent Caselles and   
                 Pascal Monasse   Introduction . . . . . . . . . . . . . . 1--7
            Vicent Caselles and   
                 Pascal Monasse   Front Matter . . . . . . . . . . . . . . 1--14
            Vicent Caselles and   
                 Pascal Monasse   Front Matter . . . . . . . . . . . . . . 1--14
            Vicent Caselles and   
                 Pascal Monasse   Back Matter  . . . . . . . . . . . . . . 1--18
            Vicent Caselles and   
                 Pascal Monasse   Back Matter  . . . . . . . . . . . . . . 1--18
            Vicent Caselles and   
                 Pascal Monasse   The Tree of Shapes of an Image . . . . . 9--34
            Vicent Caselles and   
                 Pascal Monasse   The Tree of Shapes of an Image . . . . . 9--34
            Vicent Caselles and   
                 Pascal Monasse   Grain Filters  . . . . . . . . . . . . . 35--73
            Vicent Caselles and   
                 Pascal Monasse   Grain Filters  . . . . . . . . . . . . . 35--73
            Vicent Caselles and   
                 Pascal Monasse   A Topological Description of the
                                  Topographic Map  . . . . . . . . . . . . 75--102
            Vicent Caselles and   
                 Pascal Monasse   A Topological Description of the
                                  Topographic Map  . . . . . . . . . . . . 75--102
            Vicent Caselles and   
                 Pascal Monasse   Merging the Component Trees  . . . . . . 103--113
            Vicent Caselles and   
                 Pascal Monasse   Merging the Component Trees  . . . . . . 103--113
            Vicent Caselles and   
                 Pascal Monasse   Computation of the Tree of Shapes of a
                                  Digital Image  . . . . . . . . . . . . . 115--140
            Vicent Caselles and   
                 Pascal Monasse   Computation of the Tree of Shapes of a
                                  Digital Image  . . . . . . . . . . . . . 115--140
            Vicent Caselles and   
                 Pascal Monasse   Computation of the Tree of Bilinear
                                  Level Lines  . . . . . . . . . . . . . . 141--153
            Vicent Caselles and   
                 Pascal Monasse   Computation of the Tree of Bilinear
                                  Level Lines  . . . . . . . . . . . . . . 141--153
            Vicent Caselles and   
                 Pascal Monasse   Applications . . . . . . . . . . . . . . 155--171
            Vicent Caselles and   
                 Pascal Monasse   Applications . . . . . . . . . . . . . . 155--171


Lecture Notes in Mathematics
Volume 1985, 2010

             Torsten Linß   Introduction . . . . . . . . . . . . . . 1--4
             Torsten Linß   Introduction . . . . . . . . . . . . . . 1--4
             Torsten Linß   Front Matter . . . . . . . . . . . . . . 1--10
             Torsten Linß   Front Matter . . . . . . . . . . . . . . 1--10
             Torsten Linß   Back Matter  . . . . . . . . . . . . . . 1--18
             Torsten Linß   Back Matter  . . . . . . . . . . . . . . 1--18
             Torsten Linß   Layer-Adapted Meshes . . . . . . . . . . 5--29
             Torsten Linß   Layer-Adapted Meshes . . . . . . . . . . 5--29
             Torsten Linß   Front Matter . . . . . . . . . . . . . . 31--31
             Torsten Linß   Front Matter . . . . . . . . . . . . . . 31--31
             Torsten Linß   The Analytical Behaviour of Solutions    33--76
             Torsten Linß   The Analytical Behaviour of Solutions    33--76
             Torsten Linß   Finite Difference Schemes for
                                  Convection-Diffusion Problems  . . . . . 77--149
             Torsten Linß   Finite Difference Schemes for
                                  Convection-Diffusion Problems  . . . . . 77--149
             Torsten Linß   Finite Element and Finite Volume Methods 151--182
             Torsten Linß   Finite Element and Finite Volume Methods 151--182
             Torsten Linß   Discretisations of
                                  Reaction-Convection-Diffusion Problems   183--231
             Torsten Linß   Discretisations of
                                  Reaction-Convection-Diffusion Problems   183--231
             Torsten Linß   Front Matter . . . . . . . . . . . . . . 233--233
             Torsten Linß   Front Matter . . . . . . . . . . . . . . 233--233
             Torsten Linß   The Analytical Behaviour of Solutions    235--246
             Torsten Linß   The Analytical Behaviour of Solutions    235--246
             Torsten Linß   Reaction-Diffusion Problems  . . . . . . 247--256
             Torsten Linß   Reaction-Diffusion Problems  . . . . . . 247--256
             Torsten Linß   Convection-Diffusion Problems  . . . . . 257--307
             Torsten Linß   Convection-Diffusion Problems  . . . . . 257--307


Lecture Notes in Mathematics
Volume 1988, 2010

            Michel Broué   Front Matter . . . . . . . . . . . . . . I--XI
            Michel Broué   Preliminaries  . . . . . . . . . . . . . 1--9
            Michel Broué   Prerequisites and Complements in
                                  Commutative Algebra  . . . . . . . . . . 11--33
            Michel Broué   Polynomial Invariants of Finite Linear
                                  Groups . . . . . . . . . . . . . . . . . 35--56
            Michel Broué   Finite Reflection Groups in
                                  Characteristic Zero  . . . . . . . . . . 57--96
            Michel Broué   Eigenspaces and Regular Elements . . . . 97--118
            Michel Broué   Back Matter  . . . . . . . . . . . . . . 119--138


Lecture Notes in Mathematics
Volume 1989, 2010

          Immanuel M. Bomze and   
       Vladimir F. Demyanov and   
             Roger Fletcher and   
           Tamás Terlaky   Front Matter . . . . . . . . . . . . . . i--xiii
              Immanuel M. Bomze   Global Optimization: a Quadratic
                                  Programming Perspective  . . . . . . . . 1--53
           Vladimir F. Demyanov   Nonsmooth Optimization . . . . . . . . . 55--163
                 Roger Fletcher   The Sequential Quadratic Programming
                                  Method . . . . . . . . . . . . . . . . . 165--214
          Imre Pólik and   
           Tamás Terlaky   Interior Point Methods for Nonlinear
                                  Optimization . . . . . . . . . . . . . . 215--276
          Imre Pólik and   
           Tamás Terlaky   Back Matter  . . . . . . . . . . . . . . 277--289


Lecture Notes in Mathematics
Volume 1990, 2010

                     Serge Bouc   Front Matter . . . . . . . . . . . . . . I--IX
                     Serge Bouc   Examples . . . . . . . . . . . . . . . . 1--11
                     Serge Bouc   Front Matter . . . . . . . . . . . . . . 14--14
                     Serge Bouc   $G$-Sets and $ (H, G)$-Bisets  . . . . . 15--40
                     Serge Bouc   Biset Functors . . . . . . . . . . . . . 41--51
                     Serge Bouc   Simple Functors  . . . . . . . . . . . . 53--72
                     Serge Bouc   Front Matter . . . . . . . . . . . . . . 74--74
                     Serge Bouc   The Burnside Functor . . . . . . . . . . 75--95
                     Serge Bouc   Endomorphism Algebras  . . . . . . . . . 97--119
                     Serge Bouc   The Functor $ \mathbb {C}R_{\mathbb {C}}
                                  $  . . . . . . . . . . . . . . . . . . . 121--134
                     Serge Bouc   Tensor Product and Internal Hom  . . . . 135--152
                     Serge Bouc   Front Matter . . . . . . . . . . . . . . 154--154
                     Serge Bouc   Rational Representations of $p$-Groups   155--181
                     Serge Bouc   $p$-Biset Functors . . . . . . . . . . . 183--213
                     Serge Bouc   Applications . . . . . . . . . . . . . . 215--240
                     Serge Bouc   The Dade Group . . . . . . . . . . . . . 241--292
                     Serge Bouc   Back Matter  . . . . . . . . . . . . . . 293--299


Lecture Notes in Mathematics
Volume 1991, 2010

            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Front Matter . . . . . . . . . . . . . . i--xviii
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Models of Higher Order . . . . . . . . . 1--25
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Linear Problems  . . . . . . . . . . . . 27--60
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Eigenvalue Problems  . . . . . . . . . . 61--98
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Kernel Estimates . . . . . . . . . . . . 99--146
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Positivity and Lower Order Perturbations 147--185
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Dominance of Positivity in Linear
                                  Equations  . . . . . . . . . . . . . . . 187--226
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Semilinear Problems  . . . . . . . . . . 227--370
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Willmore Surfaces of Revolution  . . . . 371--392
            Filippo Gazzola and   
      Hans-Christoph Grunau and   
                   Guido Sweers   Back Matter  . . . . . . . . . . . . . . 393--429


Lecture Notes in Mathematics
Volume 1992, 2010

            Alberto Parmeggiani   Front Matter . . . . . . . . . . . . . . i--xi
            Alberto Parmeggiani   Introduction . . . . . . . . . . . . . . 1--5
            Alberto Parmeggiani   The Harmonic Oscillator  . . . . . . . . 7--13
            Alberto Parmeggiani   The Weyl--Hörmander Calculus  . . . . . . 15--53
            Alberto Parmeggiani   The Spectral Counting Function $
                                  N(\lambda) $ and the Behavior of the
                                  Eigenvalues: Part 1  . . . . . . . . . . 55--66
            Alberto Parmeggiani   The Heat-Semigroup, Functional Calculus
                                  and Kernels  . . . . . . . . . . . . . . 67--77
            Alberto Parmeggiani   The Spectral Counting Function $
                                  N(\lambda) $ and the Behavior of the
                                  Eigenvalues: Part 2  . . . . . . . . . . 79--92
            Alberto Parmeggiani   The Spectral Zeta Function . . . . . . . 93--110
            Alberto Parmeggiani   Some Properties of the Eigenvalues of $
                                  Q_{\left ({\alpha, \beta } \right)}^{\rm
                                  w (x, D)} $  . . . . . . . . . . . . . . 111--120
            Alberto Parmeggiani   Some Tools from the Semiclassical
                                  Calculus . . . . . . . . . . . . . . . . 121--147
            Alberto Parmeggiani   On Operators Induced by General
                                  Finite-Rank Orthogonal Projections . . . 149--159
            Alberto Parmeggiani   Energy-Levels, Dynamics, and the Maslov
                                  Index  . . . . . . . . . . . . . . . . . 161--190
            Alberto Parmeggiani   Localization and Multiplicity of a
                                  Self-Adjoint Elliptic $ 2 \times 2 $
                                  Positive NCHO in $ \mathbb {R}^n $ . . . 191--238
            Alberto Parmeggiani   Back Matter  . . . . . . . . . . . . . . 239--260


Lecture Notes in Mathematics
Volume 1993, 2010

                 Pandelis Dodos   Front Matter . . . . . . . . . . . . . . i--xi
                 Pandelis Dodos   Basic Concepts . . . . . . . . . . . . . 1--8
                 Pandelis Dodos   The Standard Borel Space of All
                                  Separable Banach Spaces  . . . . . . . . 9--35
                 Pandelis Dodos   The $ \ell_2 $ Baire Sum . . . . . . . . 37--56
                 Pandelis Dodos   Amalgamated Spaces . . . . . . . . . . . 57--70
                 Pandelis Dodos   Zippin's Embedding Theorem . . . . . . . 71--88
                 Pandelis Dodos   The Bourgain--Pisier Construction  . . . 89--114
                 Pandelis Dodos   Strongly Bounded Classes of Banach
                                  Spaces . . . . . . . . . . . . . . . . . 115--126
                 Pandelis Dodos   Back Matter  . . . . . . . . . . . . . . 127--167


Lecture Notes in Mathematics
Volume 1994, 2010

     Árpád Baricz   Front Matter . . . . . . . . . . . . . . i--xiv
     Árpád Baricz   Introduction and Preliminary Results . . 1--22
     Árpád Baricz   Geometric Properties of Generalized
                                  Bessel Functions . . . . . . . . . . . . 23--69
     Árpád Baricz   Inequalities Involving Bessel and
                                  Hypergeometric Functions . . . . . . . . 71--186
     Árpád Baricz   Back Matter  . . . . . . . . . . . . . . 187--212


Lecture Notes in Mathematics
Volume 1995, 2010

          Alexander Y. Khapalov   Front Matter . . . . . . . . . . . . . . i--xv
          Alexander Y. Khapalov   Introduction . . . . . . . . . . . . . . 1--12
          Alexander Y. Khapalov   Front Matter . . . . . . . . . . . . . . 14--14
          Alexander Y. Khapalov   Global Nonnegative Controllability of
                                  the $ 1 - D $ Semilinear Parabolic
                                  Equation . . . . . . . . . . . . . . . . 15--31
          Alexander Y. Khapalov   Multiplicative Controllability of the
                                  Semilinear Parabolic Equation: a
                                  Qualitative Approach . . . . . . . . . . 33--48
          Alexander Y. Khapalov   The Case of the Reaction-Diffusion Term
                                  Satisfying Newton's Law  . . . . . . . . 49--65
          Alexander Y. Khapalov   Classical Controllability for the
                                  Semilinear Parabolic Equations with
                                  Superlinear Terms  . . . . . . . . . . . 67--80
          Alexander Y. Khapalov   Front Matter . . . . . . . . . . . . . . 82--82
          Alexander Y. Khapalov   Controllability Properties of a
                                  Vibrating String with Variable Axial
                                  Load and Damping Gain  . . . . . . . . . 83--104
          Alexander Y. Khapalov   Controllability Properties of a
                                  Vibrating String with Variable Axial
                                  Load Only  . . . . . . . . . . . . . . . 105--119
          Alexander Y. Khapalov   Reachability of Nonnegative Equilibrium
                                  States for the Semilinear Vibrating
                                  String . . . . . . . . . . . . . . . . . 121--145
          Alexander Y. Khapalov   The $1$-D Wave and Rod Equations
                                  Governed by Controls That Are
                                  Time-Dependent Only  . . . . . . . . . . 147--156
          Alexander Y. Khapalov   Front Matter . . . . . . . . . . . . . . 158--158
          Alexander Y. Khapalov   Introduction . . . . . . . . . . . . . . 159--164
          Alexander Y. Khapalov   A ``Basic'' $2$-D Swimming Model . . . . 165--170
          Alexander Y. Khapalov   The Well-Posedness of a $2$-D Swimming
                                  Model  . . . . . . . . . . . . . . . . . 171--193
          Alexander Y. Khapalov   Geometric Aspects of Controllability for
                                  a Swimming Phenomenon  . . . . . . . . . 195--217
          Alexander Y. Khapalov   Local Controllability for a Swimming
                                  Model  . . . . . . . . . . . . . . . . . 219--236
          Alexander Y. Khapalov   Global Controllability for a ``Rowing''
                                  Swimming Model . . . . . . . . . . . . . 237--262
          Alexander Y. Khapalov   Front Matter . . . . . . . . . . . . . . 264--264
          Alexander Y. Khapalov   Multiplicative Controllability for the
                                  Schrödinger Equation  . . . . . . . . . . 265--274
          Alexander Y. Khapalov   Back Matter  . . . . . . . . . . . . . . 275--290


Lecture Notes in Mathematics
Volume 1996, 2010

                  Thomas Lorenz   Front Matter . . . . . . . . . . . . . . i--xiv
                  Thomas Lorenz   Introduction . . . . . . . . . . . . . . 1--29
                  Thomas Lorenz   Extending Ordinary Differential
                                  Equations to Metric Spaces: Aubin's
                                  Suggestion . . . . . . . . . . . . . . . 31--101
                  Thomas Lorenz   Adapting Mutational Equations to
                                  Examples in Vector Spaces: Local
                                  Parameters of Continuity . . . . . . . . 103--179
                  Thomas Lorenz   Less Restrictive Conditions on Distance
                                  Functions: Continuity Instead of
                                  Triangle Inequality  . . . . . . . . . . 181--330
                  Thomas Lorenz   Introducing Distribution-Like Solutions
                                  to Mutational Equations  . . . . . . . . 331--384
                  Thomas Lorenz   Mutational Inclusions in Metric Spaces   385--438
                  Thomas Lorenz   Back Matter  . . . . . . . . . . . . . . 439--515


Lecture Notes in Mathematics
Volume 1997, 2010

                  Markus Banagl   Front Matter . . . . . . . . . . . . . . i--xvi
                  Markus Banagl   Homotopy Theory  . . . . . . . . . . . . 1--106
                  Markus Banagl   Intersection Spaces  . . . . . . . . . . 107--189
                  Markus Banagl   String Theory  . . . . . . . . . . . . . 191--209
                  Markus Banagl   Back Matter  . . . . . . . . . . . . . . 211--223


Lecture Notes in Mathematics
Volume 1998, 2010

                Marco Abate and   
               Eric Bedford and   
             Marco Brunella and   
            Tien-Cuong Dinh and   
           Dierk Schleicher and   
                  Nessim Sibony   Front Matter . . . . . . . . . . . . . . i--xiii
                    Marco Abate   Discrete Holomorphic Local Dynamical
                                  Systems  . . . . . . . . . . . . . . . . 1--55
                   Eric Bedford   Dynamics of Rational Surface
                                  Automorphisms  . . . . . . . . . . . . . 57--104
                 Marco Brunella   Uniformisation of Foliations by Curves   105--163
            Tien-Cuong Dinh and   
                  Nessim Sibony   Dynamics in Several Complex Variables:
                                  Endomorphisms of Projective Spaces and
                                  Polynomial-like Mappings . . . . . . . . 165--294
               Dierk Schleicher   Dynamics of Entire Functions . . . . . . 295--339
               Dierk Schleicher   Back Matter  . . . . . . . . . . . . . . 341--348


Lecture Notes in Mathematics
Volume 1999, 2010

                 Hans Schoutens   Front Matter . . . . . . . . . . . . . . i--x
                 Hans Schoutens   Introduction . . . . . . . . . . . . . . 1--6
                 Hans Schoutens   Ultraproducts and \Lo\'s' Theorem  . . . 7--27
                 Hans Schoutens   Flatness . . . . . . . . . . . . . . . . 29--50
                 Hans Schoutens   Uniform Bounds . . . . . . . . . . . . . 51--63
                 Hans Schoutens   Tight Closure in Positive Characteristic 65--80
                 Hans Schoutens   Tight Closure in Characteristic Zero.
                                  Affine Case  . . . . . . . . . . . . . . 81--95
                 Hans Schoutens   Tight Closure in Characteristic Zero.
                                  Local Case . . . . . . . . . . . . . . . 97--112
                 Hans Schoutens   Cataproducts . . . . . . . . . . . . . . 113--125
                 Hans Schoutens   Protoproducts  . . . . . . . . . . . . . 127--148
                 Hans Schoutens   Asymptotic Homological Conjectures in
                                  Mixed Characteristic . . . . . . . . . . 149--169
                 Hans Schoutens   Back Matter  . . . . . . . . . . . . . . 171--210


Lecture Notes in Mathematics
Volume 2000, 2010

               Harry Yserentant   Front Matter . . . . . . . . . . . . . . i--viii
               Harry Yserentant   Introduction and Outline . . . . . . . . 1--11
               Harry Yserentant   Fourier Analysis . . . . . . . . . . . . 13--26
               Harry Yserentant   The Basics of Quantum Mechanics  . . . . 27--50
               Harry Yserentant   The Electronic Schrödinger Equation . . . 51--58
               Harry Yserentant   Spectrum and Exponential Decay . . . . . 59--85
               Harry Yserentant   Existence and Decay of Mixed Derivatives 87--116
               Harry Yserentant   Eigenfunction Expansions . . . . . . . . 117--125
               Harry Yserentant   Convergence Rates and Complexity Bounds  127--140
               Harry Yserentant   The Radial-Angular Decomposition . . . . 141--176
               Harry Yserentant   Back Matter  . . . . . . . . . . . . . . 177--188


Lecture Notes in Mathematics
Volume 2001, 2010

            Thomas Duquesne and   
             Oleg Reichmann and   
               Ken-iti Sato and   
               Christoph Schwab   Front Matter . . . . . . . . . . . . . . i--xiv
                   Ken-iti Sato   Fractional Integrals and Extensions of
                                  Selfdecomposability  . . . . . . . . . . 1--91
                Thomas Duquesne   Packing and Hausdorff Measures of Stable
                                  Trees  . . . . . . . . . . . . . . . . . 93--136
             Oleg Reichmann and   
               Christoph Schwab   Numerical Analysis of Additive, Lévy and
                                  Feller Processes with Applications to
                                  Option Pricing . . . . . . . . . . . . . 137--196
             Oleg Reichmann and   
               Christoph Schwab   Back Matter  . . . . . . . . . . . . . . 197--204


Lecture Notes in Mathematics
Volume 2002, 2010

        Christian Pötzsche   Front Matter . . . . . . . . . . . . . . i--xxiv
        Christian Pötzsche   Nonautonomous Dynamical Systems  . . . . 1--36
        Christian Pötzsche   Nonautonomous Difference Equations . . . 37--94
        Christian Pötzsche   Linear Difference Equations  . . . . . . 95--185
        Christian Pötzsche   Invariant Fiber Bundles  . . . . . . . . 187--316
        Christian Pötzsche   Linearization  . . . . . . . . . . . . . 317--343
        Christian Pötzsche   Back Matter  . . . . . . . . . . . . . . 345--405


Lecture Notes in Mathematics
Volume 2004, 2010

                   Kai Diethelm   Front Matter . . . . . . . . . . . . . . i--viii
                   Kai Diethelm   Front Matter . . . . . . . . . . . . . . 1--1
                   Kai Diethelm   Introduction . . . . . . . . . . . . . . 3--12
                   Kai Diethelm   Riemann--Liouville Differential and
                                  Integral Operators . . . . . . . . . . . 13--47
                   Kai Diethelm   Caputo's Approach  . . . . . . . . . . . 49--65
                   Kai Diethelm   Mittag-Leffler Functions . . . . . . . . 67--73
                   Kai Diethelm   Front Matter . . . . . . . . . . . . . . 75--75
                   Kai Diethelm   Existence and Uniqueness Results for
                                  Riemann-Liouville Fractional
                                  Differential Equations . . . . . . . . . 77--83
                   Kai Diethelm   Single-Term Caputo Fractional
                                  Differential Equations: Basic Theory and
                                  Fundamental Results  . . . . . . . . . . 85--132
                   Kai Diethelm   Single-Term Caputo Fractional
                                  Differential Equations: Advanced Results
                                  for Special Cases  . . . . . . . . . . . 133--166
                   Kai Diethelm   Multi-Term Caputo Fractional
                                  Differential Equations . . . . . . . . . 167--186
                   Kai Diethelm   Back Matter  . . . . . . . . . . . . . . 187--253


Lecture Notes in Mathematics
Volume 2005, 2010

                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Front Matter . . . . . . . . . . . . . . i--xi
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Introduction . . . . . . . . . . . . . . 1--19
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   The Spaces $ B_{p, q}^{s, \tau
                                  }({\mathbb {R}}^n) $ and $ F_{p, q}^{s,
                                  \tau }({\mathbb {R}}^n) $  . . . . . . . 21--48
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Almost Diagonal Operators and Atomic and
                                  Molecular Decompositions . . . . . . . . 49--64
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Several Equivalent Characterizations . . 65--135
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Pseudo-Differential Operators  . . . . . 137--146
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Key Theorems . . . . . . . . . . . . . . 147--175
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Inhomogeneous Besov--Hausdorff and
                                  Triebel--Lizorkin--Hausdorff Spaces  . . 177--250
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Homogeneous Spaces . . . . . . . . . . . 251--269
                   Wen Yuan and   
            Winfried Sickel and   
                    Dachun Yang   Back Matter  . . . . . . . . . . . . . . 271--288


Lecture Notes in Mathematics
Volume 2007, 2010

           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   Front Matter . . . . . . . . . . . . . . i--xx
           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   Preliminaries  . . . . . . . . . . . . . 1--20
           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   On the Number of Conjugacy Classes of
                                  Symmetries of Riemann Surfaces . . . . . 21--32
           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   Counting Ovals of Symmetries of Riemann
                                  Surfaces . . . . . . . . . . . . . . . . 33--63
           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   Symmetry Types of Some Families of
                                  Riemann Surfaces . . . . . . . . . . . . 65--90
           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   Symmetry Types of Riemann Surfaces with
                                  a Large Group of Automorphisms . . . . . 91--143
           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   Appendix . . . . . . . . . . . . . . . . 145--149
           Emilio Bujalance and   
     Francisco Javier Cirre and   
  José Manuel Gamboa and   
             Grzegorz Gromadzki   Back Matter  . . . . . . . . . . . . . . 151--158


Lecture Notes in Mathematics
Volume 2009, 2010

Jean-Louis Colliot-Thél\`ene and   
      Peter Swinnerton-Dyer and   
                     Paul Vojta   Front Matter . . . . . . . . . . . . . . i--xi
Jean-Louis Colliot-Thél\`ene   Variétés presque rationnelles, leurs
                                  points rationnels et leurs dégénérescences.
                                  (French) [Nearly rational varieties,
                                  their rational points, and their
                                  degenerations] . . . . . . . . . . . . . 1--44
      Sir Peter Swinnerton-Dyer   Topics in Diophantine Equations  . . . . 45--110
                     Paul Vojta   Diophantine Approximation and Nevanlinna
                                  Theory . . . . . . . . . . . . . . . . . 111--224
                     Paul Vojta   Back Matter  . . . . . . . . . . . . . . 225--232


Lecture Notes in Mathematics
Volume 2003, 2011

              Areski Cousin and   
Stéphane Crépey and   
      Olivier Guéant and   
               David Hobson and   
          Monique Jeanblanc and   
          Jean-Michel Lasry and   
          Jean-Paul Laurent and   
         Pierre-Louis Lions and   
                   Peter Tankov   Front Matter . . . . . . . . . . . . . . i--x
              Areski Cousin and   
          Monique Jeanblanc and   
              Jean-Paul Laurent   Hedging CDO Tranches in a Markovian
                                  Environment  . . . . . . . . . . . . . . 1--61
  Stéphane Crépey   About the Pricing Equations in Finance   63--203
      Olivier Guéant and   
          Jean-Michel Lasry and   
             Pierre-Louis Lions   Mean Field Games and Applications  . . . 205--266
                   David Hobson   The Skorokhod Embedding Problem and
                                  Model-Independent Bounds for Option
                                  Prices . . . . . . . . . . . . . . . . . 267--318
                   Peter Tankov   Pricing and Hedging in Exponential Lévy
                                  Models: Review of Recent Results . . . . 319--359
                   Peter Tankov   Back Matter  . . . . . . . . . . . . . . 361--366


Lecture Notes in Mathematics
Volume 2006, 2011

    Catherine Donati-Martin and   
              Antoine Lejay and   
                  Alain Rouault   Front Matter . . . . . . . . . . . . . . i--xi
    Catherine Donati-Martin and   
              Antoine Lejay and   
                  Alain Rouault   Front Matter . . . . . . . . . . . . . . 1--1
                    Jean Picard   Representation Formulae for the
                                  Fractional Brownian Motion . . . . . . . 3--70
    Catherine Donati-Martin and   
              Antoine Lejay and   
                  Alain Rouault   Front Matter . . . . . . . . . . . . . . 71--71
                    Jean Picard   Front Matter . . . . . . . . . . . . . . 71--71
              Marc Arnaudon and   
Koléh\`e Abdoulaye Coulibaly and   
                Anton Thalmaier   Horizontal Diffusion in $ C^1 $ Path
                                  Space  . . . . . . . . . . . . . . . . . 73--94
              Marc Arnaudon and   
Koléh\`e Abdoulaye Coulibaly and   
                Anton Thalmaier   Horizontal Diffusion in $ C^1 $ Path
                                  Space  . . . . . . . . . . . . . . . . . 73--94
                      Jay Rosen   A Stochastic Calculus Proof of the CLT
                                  for the $ L^2 $ Modulus of Continuity of
                                  Local Time . . . . . . . . . . . . . . . 95--104
            Ayako Matsumoto and   
                     Kouji Yano   On a Zero-One Law for the Norm Process
                                  of Transient Random Walk . . . . . . . . 105--126
        Stéphane Laurent   On Standardness and $I$-cosiness . . . . 127--186
             Claude Dellacherie   On Isomorphic Probability Spaces . . . . 187--189
                  Markus Riedle   Cylindrical Wiener Processes . . . . . . 191--214
              Maurizio Pratelli   A Remark on the $ 1 / H $-Variation of
                                  the Fractional Brownian Motion . . . . . 215--219
              Maurizio Pratelli   A Remark on the $ 1 / H $-Variation of
                                  the Fractional Brownian Motion . . . . . 215--219
               Matthieu Marouby   Simulation of a Local Time Fractional
                                  Stable Motion  . . . . . . . . . . . . . 221--239
Blandine Bérard Bergery and   
                 Pierre Vallois   Convergence at First and Second Order of
                                  Some Approximations of Stochastic
                                  Integrals  . . . . . . . . . . . . . . . 241--268
             Gilles Pag\`es and   
                   Afef Sellami   Convergence of Multi-Dimensional
                                  Quantized SDE's  . . . . . . . . . . . . 269--307
               Ciprian A. Tudor   Asymptotic Cramér's Theorem and Analysis
                                  on Wiener Space  . . . . . . . . . . . . 309--325
                   Joseph Lehec   Moments of the Gaussian Chaos  . . . . . 327--340
                Nicolas Bouleau   The Lent Particle Method for Marked
                                  Point Processes  . . . . . . . . . . . . 341--349
              Paul Bourgade and   
          Ashkan Nikeghbali and   
                  Alain Rouault   Ewens Measures on Compact Groups and
                                  Hypergeometric Kernels . . . . . . . . . 351--377
      Stéphane Attal and   
                    Ion Nechita   Discrete Approximation of the Free Fock
                                  Space  . . . . . . . . . . . . . . . . . 379--394
       Christoph Czichowsky and   
           Nicholas Westray and   
                    Harry Zheng   Convergence in the Semimartingale
                                  Topology and Constrained Portfolios  . . 395--412
       Christoph Czichowsky and   
               Martin Schweizer   Closedness in the Semimartingale
                                  Topology for Spaces of Stochastic
                                  Integrals with Constrained Integrands    413--436
                David Baker and   
                       Marc Yor   On Martingales with Given Marginals and
                                  the Scaling Property . . . . . . . . . . 437--439
                David Baker and   
    Catherine Donati-Martin and   
                       Marc Yor   A Sequence of Albin Type Continuous
                                  Martingales with Brownian Marginals and
                                  Scaling  . . . . . . . . . . . . . . . . 441--449
             Francis Hirsch and   
         Christophe Profeta and   
           Bernard Roynette and   
                       Marc Yor   Constructing Self-Similar Martingales
                                  via Two Skorokhod Embeddings . . . . . . 451--503
                David Baker and   
    Catherine Donati-Martin and   
                       Marc Yor   Back Matter  . . . . . . . . . . . . . . 505--510
             Francis Hirsch and   
         Christophe Profeta and   
           Bernard Roynette and   
                       Marc Yor   Back Matter  . . . . . . . . . . . . . . 505--510


Lecture Notes in Mathematics
Volume 2008, 2011

            Paul Frank Baum and   
  Guillermo Cortiñas and   
                 Ralf Meyer and   
Rubén Sánchez-García and   
          Marco Schlichting and   
             Bertrand Toën   Front Matter . . . . . . . . . . . . . . i--xvi
               Paul F. Baum and   
Rubén J. Sánchez-García   $K$-Theory for Group $ C*$-algebras  . . 1--43
                     Ralf Meyer   Universal Coefficient Theorems and
                                  Assembly Maps in $ K K $-Theory  . . . . 45--102
      Guillermo Cortiñas   Algebraic v. Topological $K$-Theory: a
                                  Friendly Match . . . . . . . . . . . . . 103--165
              Marco Schlichting   Higher Algebraic $K$-Theory (After
                                  Quillen, Thomason and Others)  . . . . . 167--241
             Bertrand Toën   Lectures on DG-Categories  . . . . . . . 243--302
             Bertrand Toën   Back Matter  . . . . . . . . . . . . . . 303--308


Lecture Notes in Mathematics
Volume 2010, 2011

             Angiolo Farina and   
                  Axel Klar and   
      Robert M. M. Mattheij and   
            Andro Mikeli\'c and   
                 Norbert Siedow   Front Matter . . . . . . . . . . . . . . i--xi
          J. A. W. M. Groot and   
      Robert M. M. Mattheij and   
                  K. Y. Laevsky   Mathematical Modelling of Glass Forming
                                  Processes  . . . . . . . . . . . . . . . 1--56
               Martin Frank and   
                      Axel Klar   Radiative Heat Transfer and Applications
                                  for Glass Production Processes . . . . . 57--134
                 Norbert Siedow   Radiative Heat Transfer and Applications
                                  for Glass Production Processes II  . . . 135--171
             Angiolo Farina and   
             Antonio Fasano and   
                Andro Mikeli\'c   Non-Isothermal Flow of Molten Glass:
                                  Mathematical Challenges and Industrial
                                  Questions  . . . . . . . . . . . . . . . 173--224
             Angiolo Farina and   
             Antonio Fasano and   
                Andro Mikeli\'c   Back Matter  . . . . . . . . . . . . . . 225--227


Lecture Notes in Mathematics
Volume 2011, 2011

                Ben Andrews and   
             Christopher Hopper   Front Matter . . . . . . . . . . . . . . i--xvii
                Ben Andrews and   
             Christopher Hopper   Introduction . . . . . . . . . . . . . . 1--9
                Ben Andrews and   
             Christopher Hopper   Background Material  . . . . . . . . . . 11--47
                Ben Andrews and   
             Christopher Hopper   Harmonic Mappings  . . . . . . . . . . . 49--62
                Ben Andrews and   
             Christopher Hopper   Evolution of the Curvature . . . . . . . 63--82
                Ben Andrews and   
             Christopher Hopper   Short-Time Existence . . . . . . . . . . 83--95
                Ben Andrews and   
             Christopher Hopper   Uhlenbeck's Trick  . . . . . . . . . . . 97--113
                Ben Andrews and   
             Christopher Hopper   The Weak Maximum Principle . . . . . . . 115--135
                Ben Andrews and   
             Christopher Hopper   Regularity and Long-Time Existence . . . 137--143
                Ben Andrews and   
             Christopher Hopper   The Compactness Theorem for Riemannian
                                  Manifolds  . . . . . . . . . . . . . . . 145--159
                Ben Andrews and   
             Christopher Hopper   The $ \mathcal {F}$-Functional and
                                  Gradient Flows . . . . . . . . . . . . . 161--171
                Ben Andrews and   
             Christopher Hopper   The $ \mathcal {W}$-Functional and Local
                                  Noncollapsing  . . . . . . . . . . . . . 173--191
                Ben Andrews and   
             Christopher Hopper   An Algebraic Identity for Curvature
                                  Operators  . . . . . . . . . . . . . . . 193--221
                Ben Andrews and   
             Christopher Hopper   The Cone Construction of Böhm and Wilking 223--233
                Ben Andrews and   
             Christopher Hopper   Preserving Positive Isotropic Curvature  235--258
                Ben Andrews and   
             Christopher Hopper   The Final Argument . . . . . . . . . . . 259--269
                Ben Andrews and   
             Christopher Hopper   Back Matter  . . . . . . . . . . . . . . 287--296


Lecture Notes in Mathematics
Volume 2012, 2011

               Alison Etheridge   Front Matter . . . . . . . . . . . . . . i--viii
               Alison Etheridge   Introduction . . . . . . . . . . . . . . 1--3
               Alison Etheridge   Mutation and Random Genetic Drift  . . . 5--32
               Alison Etheridge   One Dimensional Diffusions . . . . . . . 33--51
               Alison Etheridge   More than Two Types  . . . . . . . . . . 53--64
               Alison Etheridge   Selection  . . . . . . . . . . . . . . . 65--87
               Alison Etheridge   Spatial Structure  . . . . . . . . . . . 89--107
               Alison Etheridge   Back Matter  . . . . . . . . . . . . . . 109--119


Lecture Notes in Mathematics
Volume 2013, 2011

           Alexander I. Bobenko   Introduction to Compact Riemann Surfaces 3--64
           Alexander I. Bobenko   Front Matter . . . . . . . . . . . . . . 65--65
          Bernard Deconinck and   
           Matthew S. Patterson   Computing with Plane Algebraic Curves
                                  and Riemann Surfaces: The Algorithms of
                                  the Maple Package ``Algcurves''  . . . . 67--123
     Jörg Frauendiener and   
                Christian Klein   Algebraic Curves and Riemann Surfaces in
                                  Matlab . . . . . . . . . . . . . . . . . 125--162
     Jörg Frauendiener and   
                Christian Klein   Front Matter . . . . . . . . . . . . . . 163--163
                 Markus Schmies   Computing Poincaré Theta Series for
                                  Schottky Groups  . . . . . . . . . . . . 165--182
              Darren Crowdy and   
           Jonathan S. Marshall   Uniformizing Real Hyperelliptic
                                  $M$-Curves Using the Schottky--Klein
                                  Prime Function . . . . . . . . . . . . . 183--193
    Rubén A. Hidalgo and   
         Mika Seppälä   Numerical Schottky Uniformizations:
                                  Myrberg's Opening Process  . . . . . . . 195--209
    Rubén A. Hidalgo and   
         Mika Seppälä   Front Matter . . . . . . . . . . . . . . 211--211
       Alexander I. Bobenko and   
           Christian Mercat and   
                 Markus Schmies   Period Matrices of Polyhedral Surfaces   213--226
                 Alexey Kokotov   On the Spectral Theory of the Laplacian
                                  on Compact Polyhedral Surfaces of
                                  Arbitrary Genus  . . . . . . . . . . . . 227--253
                 Alexey Kokotov   Back Matter  . . . . . . . . . . . . . . 255--257


Lecture Notes in Mathematics
Volume 2014, 2011

                Mich\`ele Audin   Front Matter . . . . . . . . . . . . . . i--viii
                Mich\`ele Audin   Introduction . . . . . . . . . . . . . . 1--12
                Mich\`ele Audin   The Great Prize, the framework . . . . . 13--57
                Mich\`ele Audin   The Great Prize of Mathematical Sciences 59--89
                Mich\`ele Audin   The memoirs  . . . . . . . . . . . . . . 91--114
                Mich\`ele Audin   After Fatou and Julia  . . . . . . . . . 115--133
                Mich\`ele Audin   On Pierre Fatou  . . . . . . . . . . . . 135--192
                Mich\`ele Audin   History's scars --- a scientific
                                  controversy \ldots in 1965 . . . . . . . 193--235
                Mich\`ele Audin   Back Matter  . . . . . . . . . . . . . . 237--332


Lecture Notes in Mathematics
Volume 2015, 2011

                Franco Flandoli   Front Matter . . . . . . . . . . . . . . i--ix
                Franco Flandoli   Introduction to Uniqueness and Blow-Up   1--16
                Franco Flandoli   Regularization by Additive Noise . . . . 17--69
                Franco Flandoli   Dyadic Models  . . . . . . . . . . . . . 71--99
                Franco Flandoli   Transport Equation . . . . . . . . . . . 101--131
                Franco Flandoli   Other Models: Uniqueness and
                                  Singularities  . . . . . . . . . . . . . 133--159
                Franco Flandoli   Back Matter  . . . . . . . . . . . . . . 161--176


Lecture Notes in Mathematics
Volume 2016, 2011

                   Jan Lang and   
                  David Edmunds   Front Matter . . . . . . . . . . . . . . i--xi
             Prof. Jan Lang and   
            Prof. David Edmunds   Basic Material . . . . . . . . . . . . . 1--31
             Prof. Jan Lang and   
            Prof. David Edmunds   Trigonometric Generalisations  . . . . . 33--48
             Prof. Jan Lang and   
            Prof. David Edmunds   The Laplacian and Some Natural Variants  49--63
             Prof. Jan Lang and   
            Prof. David Edmunds   Hardy Operators  . . . . . . . . . . . . 65--71
             Prof. Jan Lang and   
            Prof. David Edmunds   $s$-Numbers and Generalised
                                  Trigonometric Functions  . . . . . . . . 73--104
             Prof. Jan Lang and   
            Prof. David Edmunds   Estimates of $s$-Numbers of Weighted
                                  Hardy Operators  . . . . . . . . . . . . 105--128
             Prof. Jan Lang and   
            Prof. David Edmunds   More Refined Estimates . . . . . . . . . 129--151
             Prof. Jan Lang and   
            Prof. David Edmunds   A Non-Linear Integral System . . . . . . 153--182
             Prof. Jan Lang and   
            Prof. David Edmunds   Hardy Operators on Variable Exponent
                                  Spaces . . . . . . . . . . . . . . . . . 183--209
             Prof. Jan Lang and   
            Prof. David Edmunds   Back Matter  . . . . . . . . . . . . . . 211--220


Lecture Notes in Mathematics
Volume 2017, 2011

               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
                Michael Ruzicka   Front Matter . . . . . . . . . . . . . . i--ix
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Introduction . . . . . . . . . . . . . . 1--17
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Front Matter . . . . . . . . . . . . . . 19--19
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   A Framework for Function Spaces  . . . . 21--68
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Variable Exponent Lebesgue Spaces  . . . 69--97
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   The Maximal Operator . . . . . . . . . . 99--141
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   The Generalized Muckenhoupt Condition    143--197
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Classical Operators  . . . . . . . . . . 199--212
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Transfer Techniques  . . . . . . . . . . 213--244
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Front Matter . . . . . . . . . . . . . . 245--245
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Introduction to Sobolev Spaces . . . . . 247--288
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Density of Regular Functions . . . . . . 289--314
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Capacities . . . . . . . . . . . . . . . 315--338
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Fine Properties of Sobolev Functions . . 339--366
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Other Spaces of Differentiable Functions 367--398
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Front Matter . . . . . . . . . . . . . . 399--399
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Dirichlet Energy Integral and Laplace
                                  Equation . . . . . . . . . . . . . . . . 401--436
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   PDEs and Fluid Dynamics  . . . . . . . . 437--481
               Lars Diening and   
         Petteri Harjulehto and   
      Peter Hästö and   
          Michael R\ru\vzi\vcka   Back Matter  . . . . . . . . . . . . . . 483--509


Lecture Notes in Mathematics
Volume 2018, 2011

                         Bei Hu   Front Matter . . . . . . . . . . . . . . i--x
                         Bei Hu   Introduction . . . . . . . . . . . . . . 1--5
                         Bei Hu   A Review of Elliptic Theories  . . . . . 7--18
                         Bei Hu   A Review of Parabolic Theories . . . . . 19--27
                         Bei Hu   A Review of Fixed Point Theorems . . . . 29--31
                         Bei Hu   Finite Time Blow-Up for Evolution
                                  Equations  . . . . . . . . . . . . . . . 33--46
                         Bei Hu   Steady-State Solutions . . . . . . . . . 47--63
                         Bei Hu   Blow-Up Rate . . . . . . . . . . . . . . 65--83
                         Bei Hu   Asymptotically Self-Similar Blow-Up
                                  Solutions  . . . . . . . . . . . . . . . 85--95
                         Bei Hu   One Space Variable Case  . . . . . . . . 97--118
                         Bei Hu   Back Matter  . . . . . . . . . . . . . . 127--127


Lecture Notes in Mathematics
Volume 2019, 2011

            Robert J. Adler and   
             Jonathan E. Taylor   Front Matter . . . . . . . . . . . . . . i--viii
            Robert J. Adler and   
             Jonathan E. Taylor   Introduction . . . . . . . . . . . . . . 1--12
            Robert J. Adler and   
             Jonathan E. Taylor   Gaussian Processes . . . . . . . . . . . 13--35
            Robert J. Adler and   
             Jonathan E. Taylor   Some Geometry and Some Topology  . . . . 37--58
            Robert J. Adler and   
             Jonathan E. Taylor   The Gaussian Kinematic Formula . . . . . 59--85
            Robert J. Adler and   
             Jonathan E. Taylor   On Applications: Topological Inference   87--106
            Robert J. Adler and   
             Jonathan E. Taylor   Algebraic Topology of Excursion Sets: a
                                  New Challenge  . . . . . . . . . . . . . 107--114
            Robert J. Adler and   
             Jonathan E. Taylor   Back Matter  . . . . . . . . . . . . . . 115--122


Lecture Notes in Mathematics
Volume 2020, 2011

                Alexander Isaev   Front Matter . . . . . . . . . . . . . . i--xii
          Prof. Alexander Isaev   Invariants of CR-Hypersurfaces . . . . . 1--33
          Prof. Alexander Isaev   Rigid Hypersurfaces  . . . . . . . . . . 35--40
          Prof. Alexander Isaev   Tube Hypersurfaces . . . . . . . . . . . 41--53
          Prof. Alexander Isaev   General Methods for Solving Defining
                                  Systems  . . . . . . . . . . . . . . . . 55--82
          Prof. Alexander Isaev   Strongly Pseudoconvex Spherical Tube
                                  Hypersurfaces  . . . . . . . . . . . . . 83--96
          Prof. Alexander Isaev   $ (n - 1, 1)$-Spherical Tube
                                  Hypersurfaces  . . . . . . . . . . . . . 97--121
          Prof. Alexander Isaev   $ (n - 2, 2)$-Spherical Tube
                                  Hypersurfaces  . . . . . . . . . . . . . 123--184
          Prof. Alexander Isaev   Number of Affine Equivalence Classes of
                                  $ (k, n - k)$-Spherical Tube
                                  Hypersurfaces for $ k \leq (n - 2)$  . . 185--194
          Prof. Alexander Isaev   Further Results  . . . . . . . . . . . . 195--212
          Prof. Alexander Isaev   Back Matter  . . . . . . . . . . . . . . 213--220


Lecture Notes in Mathematics
Volume 2021, 2011

                 Andreas Defant   Front Matter . . . . . . . . . . . . . . i--viii
                 Andreas Defant   Introduction . . . . . . . . . . . . . . 1--13
                 Andreas Defant   Commutative Theory . . . . . . . . . . . 15--78
                 Andreas Defant   Noncommutative Theory  . . . . . . . . . 79--158
                 Andreas Defant   Back Matter  . . . . . . . . . . . . . . 159--173


Lecture Notes in Mathematics
Volume 2022, 2011

           Ingemar Nåsell   Front Matter . . . . . . . . . . . . . . i--xi
           Ingemar Nåsell   Introduction . . . . . . . . . . . . . . 1--7
           Ingemar Nåsell   Model Formulation  . . . . . . . . . . . 9--16
           Ingemar Nåsell   Stochastic Process Background  . . . . . 17--40
           Ingemar Nåsell   The SIS Model: First Approximations of
                                  the Quasi-stationary Distribution  . . . 41--46
           Ingemar Nåsell   Some Approximations Involving the Normal
                                  Distribution . . . . . . . . . . . . . . 47--72
           Ingemar Nåsell   Preparations for the Study of the
                                  Stationary Distribution $ p^{(1)} $ of
                                  the SIS Model  . . . . . . . . . . . . . 73--91
           Ingemar Nåsell   Approximation of the Stationary
                                  Distribution $ p^{(1)} $ of the SIS
                                  Model  . . . . . . . . . . . . . . . . . 93--99
           Ingemar Nåsell   Preparations for the Study of the
                                  Stationary Distribution $ p^{(0)} $ of
                                  the SIS Model  . . . . . . . . . . . . . 101--113
           Ingemar Nåsell   Approximation of the Stationary
                                  Distribution $ p^{(0)} $ of the SIS
                                  Model  . . . . . . . . . . . . . . . . . 115--118
           Ingemar Nåsell   Approximation of Some Images Under $
                                  \Psi $ for the SIS Model . . . . . . . . 119--139
           Ingemar Nåsell   Approximation of the Quasi-stationary
                                  Distribution $q$ of the SIS Model  . . . 141--147
           Ingemar Nåsell   Approximation of the Time to Extinction
                                  for the SIS Model  . . . . . . . . . . . 149--154
           Ingemar Nåsell   Uniform Approximations for the SIS Model 155--170
           Ingemar Nåsell   Thresholds for the SIS Model . . . . . . 171--175
           Ingemar Nåsell   Concluding Comments  . . . . . . . . . . 177--182
           Ingemar Nåsell   Back Matter  . . . . . . . . . . . . . . 183--199


Lecture Notes in Mathematics
Volume 2023, 2011

           Kre\vsimir Veseli\'c   Front Matter . . . . . . . . . . . . . . i--xv
           Kre\vsimir Veseli\'c   The Model  . . . . . . . . . . . . . . . 1--13
           Kre\vsimir Veseli\'c   Simultaneous Diagonalisation (Modal
                                  Damping) . . . . . . . . . . . . . . . . 15--22
           Kre\vsimir Veseli\'c   Phase Space  . . . . . . . . . . . . . . 23--28
           Kre\vsimir Veseli\'c   The Singular Mass Case . . . . . . . . . 29--37
           Kre\vsimir Veseli\'c   `Indefinite Metric'  . . . . . . . . . . 39--48
           Kre\vsimir Veseli\'c   Matrices and Indefinite Scalar Products  49--54
           Kre\vsimir Veseli\'c   Oblique Projections  . . . . . . . . . . 55--60
           Kre\vsimir Veseli\'c   $J$-Orthogonal Projections . . . . . . . 61--65
           Kre\vsimir Veseli\'c   Spectral Properties and Reduction of
                                  $J$-Hermitian Matrices . . . . . . . . . 67--71
           Kre\vsimir Veseli\'c   Definite Spectra . . . . . . . . . . . . 73--88
           Kre\vsimir Veseli\'c   General Hermitian Matrix Pairs . . . . . 89--92
           Kre\vsimir Veseli\'c   Spectral Decomposition of a General
                                  $J$-Hermitian Matrix . . . . . . . . . . 93--111
           Kre\vsimir Veseli\'c   The Matrix Exponential . . . . . . . . . 113--120
           Kre\vsimir Veseli\'c   The Quadratic Eigenvalue Problem . . . . 121--127
           Kre\vsimir Veseli\'c   Simple Eigenvalue Inclusions . . . . . . 129--134
           Kre\vsimir Veseli\'c   Spectral Shift . . . . . . . . . . . . . 135--138
           Kre\vsimir Veseli\'c   Resonances and Resolvents  . . . . . . . 139--141
           Kre\vsimir Veseli\'c   Well-Posedness . . . . . . . . . . . . . 143--143
           Kre\vsimir Veseli\'c   Modal Approximation  . . . . . . . . . . 145--157
           Kre\vsimir Veseli\'c   Modal Approximation and Overdampedness   159--166


Lecture Notes in Mathematics
Volume 2024, 2011

            Mariarosaria Padula   Front Matter . . . . . . . . . . . . . . i--xiv
            Mariarosaria Padula   Topics in Fluid Mechanics  . . . . . . . 1--52
            Mariarosaria Padula   Topics in Stability  . . . . . . . . . . 53--86
            Mariarosaria Padula   Barotropic Fluids with Rigid Boundary    87--132
            Mariarosaria Padula   Isothermal Fluids with Free Boundaries   133--195
            Mariarosaria Padula   Polytropic Fluids with Rigid Boundary    197--221
            Mariarosaria Padula   Back Matter  . . . . . . . . . . . . . . 223--235


Lecture Notes in Mathematics
Volume 2025, 2011

          Giambattista Giacomin   Front Matter . . . . . . . . . . . . . . i--xi
          Giambattista Giacomin   Introduction . . . . . . . . . . . . . . 1--4
          Giambattista Giacomin   Homogeneous Pinning Systems: a Class of
                                  Exactly Solved Models  . . . . . . . . . 5--27
          Giambattista Giacomin   Introduction to Disordered Pinning
                                  Models . . . . . . . . . . . . . . . . . 29--40
          Giambattista Giacomin   Irrelevant Disorder Estimates  . . . . . 41--50
          Giambattista Giacomin   Relevant Disorder Estimates: The
                                  Smoothing Phenomenon . . . . . . . . . . 51--61
          Giambattista Giacomin   Critical Point Shift: The Fractional
                                  Moment Method  . . . . . . . . . . . . . 63--90
          Giambattista Giacomin   The Coarse Graining Procedure  . . . . . 91--99
          Giambattista Giacomin   Path Properties  . . . . . . . . . . . . 101--112
          Giambattista Giacomin   Back Matter  . . . . . . . . . . . . . . 113--130


Lecture Notes in Mathematics
Volume 2026, 2011

                    Yves Le Jan   Front Matter . . . . . . . . . . . . . . i--viii
                    Yves Le Jan   Symmetric Markov Processes on Finite
                                  Spaces . . . . . . . . . . . . . . . . . 1--12
                    Yves Le Jan   Loop Measures  . . . . . . . . . . . . . 13--28
                    Yves Le Jan   Geodesic Loops . . . . . . . . . . . . . 29--34
                    Yves Le Jan   Poisson Process of Loops . . . . . . . . 35--45
                    Yves Le Jan   The Gaussian Free Field  . . . . . . . . 47--56
                    Yves Le Jan   Energy Variation and Representations . . 57--64
                    Yves Le Jan   Decompositions . . . . . . . . . . . . . 65--73
                    Yves Le Jan   Loop Erasure and Spanning Trees  . . . . 75--89
                    Yves Le Jan   Reflection Positivity  . . . . . . . . . 91--97
                    Yves Le Jan   The Case of General Symmetric Markov
                                  Processes  . . . . . . . . . . . . . . . 99--113
                    Yves Le Jan   Back Matter  . . . . . . . . . . . . . . 115--124


Lecture Notes in Mathematics
Volume 2027, 2011

              V. S. Varadarajan   Introduction . . . . . . . . . . . . . . 1--15
            L. Andrianopoli and   
                 R. D'Auria and   
                 S. Ferrara and   
                   M. Trigiante   Black Holes and First Order Flows in
                                  Supergravity . . . . . . . . . . . . . . 17--43
            Claudio Carmeli and   
              Gianni Cassinelli   Representations of Super Lie Groups:
                                  Some Remarks . . . . . . . . . . . . . . 45--67
               D. Cervantes and   
                 R. Fioresi and   
             M. A. Lledó   On Chiral Quantum Superspaces  . . . . . 69--99
                 R. Fioresi and   
                    F. Gavarini   On the Construction of Chevalley
                                  Supergroups  . . . . . . . . . . . . . . 101--123
          Hans Plesner Jakobsen   Indecomposable Finite-Dimensional
                                  Representations of a Class of Lie
                                  Algebras and Lie Superalgebras . . . . . 125--138
                   Stephen Kwok   On the Geometry of Super Riemann
                                  Surfaces . . . . . . . . . . . . . . . . 139--154
                Alessio Marrani   Charge Orbits and Moduli Spaces of Black
                                  Hole Attractors  . . . . . . . . . . . . 155--174
              M. V. Movshev and   
                     A. Schwarz   Maximal Supersymmetry  . . . . . . . . . 175--193
          Karl-Hermann Neeb and   
                 Hadi Salmasian   Lie Supergroups, Unitary
                                  Representations, and Invariant Cones . . 195--239
               Jeffrey M. Rabin   Geometry of Dual Pairs of Complex
                                  Supercurves  . . . . . . . . . . . . . . 241--252
                 Vera Serganova   On the Superdimension of an Irreducible
                                  Representation of a Basic Classical Lie
                                  Superalgebra . . . . . . . . . . . . . . 253--273
                 Vera Serganova   Back Matter  . . . . . . . . . . . . . . 275--276


Lecture Notes in Mathematics
Volume 2028, 2011

          Stefano Bianchini and   
             Eric A. Carlen and   
           Alexander Mielke and   
          Cédric Villani   Front Matter . . . . . . . . . . . . . . i--xiii
          Stefano Bianchini and   
                  Matteo Gloyer   Transport Rays and Applications to
                                  Hamilton--Jacobi Equations . . . . . . . 1--15
                 Eric A. Carlen   Functional Inequalities and Dynamics . . 17--85
               Alexander Mielke   Differential, Energetic, and Metric
                                  Formulations for Rate-Independent
                                  Processes  . . . . . . . . . . . . . . . 87--170
            Alessio Figalli and   
          Cédric Villani   Optimal Transport and Curvature  . . . . 171--217
            Alessio Figalli and   
          Cédric Villani   Back Matter  . . . . . . . . . . . . . . 219--224


Lecture Notes in Mathematics
Volume 2029, 2011

           Pierre Gillibert and   
              Friedrich Wehrung   Front Matter . . . . . . . . . . . . . . i--x
           Pierre Gillibert and   
              Friedrich Wehrung   Background . . . . . . . . . . . . . . . 1--34
           Pierre Gillibert and   
              Friedrich Wehrung   Boolean Algebras That Are Scaled with
                                  Respect to a Poset . . . . . . . . . . . 35--50
           Pierre Gillibert and   
              Friedrich Wehrung   The Condensate Lifting Lemma (CLL) . . . 51--79
           Pierre Gillibert and   
              Friedrich Wehrung   Getting Larders from Congruence Lattices
                                  of First-Order Structures  . . . . . . . 81--116
           Pierre Gillibert and   
              Friedrich Wehrung   Congruence-Permutable,
                                  Congruence-Preserving Extensions of
                                  Lattices . . . . . . . . . . . . . . . . 117--129
           Pierre Gillibert and   
              Friedrich Wehrung   Larders from von Neumann Regular Rings   131--138
           Pierre Gillibert and   
              Friedrich Wehrung   Discussion . . . . . . . . . . . . . . . 139--141
           Pierre Gillibert and   
              Friedrich Wehrung   Back Matter  . . . . . . . . . . . . . . 143--158


Lecture Notes in Mathematics
Volume 2030, 2011

            Yukio Matsumoto and   
José María Montesinos-Amilibia   Front Matter . . . . . . . . . . . . . . i--xvi
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Front Matter . . . . . . . . . . . . . . 1--1
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Pseudo-periodic Maps . . . . . . . . . . 3--15
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Standard Form  . . . . . . . . . . . . . 17--52
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Generalized Quotient . . . . . . . . . . 53--92
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Uniqueness of Minimal Quotient . . . . . 93--129
            Yukio Matsumoto and   
José María Montesinos-Amilibia   A Theorem in Elementary Number Theory    131--144
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Conjugacy Invariants . . . . . . . . . . 145--169
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Front Matter . . . . . . . . . . . . . . 171--171
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Topological Monodromy  . . . . . . . . . 173--188
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Blowing Down Is a Topological Operation  189--198
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Singular Open-Book . . . . . . . . . . . 199--220
            Yukio Matsumoto and   
José María Montesinos-Amilibia   Back Matter  . . . . . . . . . . . . . . 221--238


Lecture Notes in Mathematics
Volume 2031, 2011

                Jin Akiyama and   
                     Mikio Kano   Front Matter . . . . . . . . . . . . . . i--xii
                Jin Akiyama and   
                     Mikio Kano   Basic Terminology  . . . . . . . . . . . 1--14
                Jin Akiyama and   
                     Mikio Kano   Matchings and $1$-Factors  . . . . . . . 15--67
                Jin Akiyama and   
                     Mikio Kano   Regular Factors and $f$-Factors  . . . . 69--141
                Jin Akiyama and   
                     Mikio Kano   $ (g, f)$-Factors and $ [a, b]$-Factors  143--191
                Jin Akiyama and   
                     Mikio Kano   $ [a, b]$-Factorizations . . . . . . . . 193--218
                Jin Akiyama and   
                     Mikio Kano   Parity Factors . . . . . . . . . . . . . 219--251
                Jin Akiyama and   
                     Mikio Kano   Component Factors  . . . . . . . . . . . 253--293
                Jin Akiyama and   
                     Mikio Kano   Spanning Trees . . . . . . . . . . . . . 295--336
                Jin Akiyama and   
                     Mikio Kano   Back Matter  . . . . . . . . . . . . . . 337--356


Lecture Notes in Mathematics
Volume 2032, 2011

             Jonathan A. Barmak   Front Matter . . . . . . . . . . . . . . i--xvii
             Jonathan A. Barmak   Preliminaries  . . . . . . . . . . . . . 1--18
             Jonathan A. Barmak   Basic Topological Properties of Finite
                                  Spaces . . . . . . . . . . . . . . . . . 19--35
             Jonathan A. Barmak   Minimal Finite Models  . . . . . . . . . 37--47
             Jonathan A. Barmak   Simple Homotopy Types and Finite Spaces  49--72
             Jonathan A. Barmak   Strong Homotopy Types  . . . . . . . . . 73--84
             Jonathan A. Barmak   Methods of Reduction . . . . . . . . . . 85--91
             Jonathan A. Barmak   $h$-Regular Complexes and Quotients  . . 93--104
             Jonathan A. Barmak   Group Actions and a Conjecture of
                                  Quillen  . . . . . . . . . . . . . . . . 105--120
             Jonathan A. Barmak   Reduced Lattices . . . . . . . . . . . . 121--127
             Jonathan A. Barmak   Fixed Points and the Lefschetz Number    129--135
             Jonathan A. Barmak   The Andrews--Curtis Conjecture . . . . . 137--150
             Jonathan A. Barmak   Back Matter  . . . . . . . . . . . . . . 151--170


Lecture Notes in Mathematics
Volume 2033, 2011

          Vladimir Koltchinskii   Front Matter . . . . . . . . . . . . . . i--ix
    Prof. Vladimir Koltchinskii   Introduction . . . . . . . . . . . . . . 1--16
    Prof. Vladimir Koltchinskii   Empirical and Rademacher Processes . . . 17--32
    Prof. Vladimir Koltchinskii   Bounding Expected Sup-Norms of Empirical
                                  and Rademacher Processes . . . . . . . . 33--57
    Prof. Vladimir Koltchinskii   Excess Risk Bounds . . . . . . . . . . . 59--79
    Prof. Vladimir Koltchinskii   Examples of Excess Risk Bounds in
                                  Prediction Problems  . . . . . . . . . . 81--97
    Prof. Vladimir Koltchinskii   Penalized Empirical Risk Minimization
                                  and Model Selection Problems . . . . . . 99--119
    Prof. Vladimir Koltchinskii   Linear Programming in Sparse Recovery    121--149
    Prof. Vladimir Koltchinskii   Convex Penalization in Sparse Recovery   151--189
    Prof. Vladimir Koltchinskii   Low Rank Matrix Recovery: Nuclear Norm
                                  Penalization . . . . . . . . . . . . . . 191--234
    Prof. Vladimir Koltchinskii   Back Matter  . . . . . . . . . . . . . . 235--254


Lecture Notes in Mathematics
Volume 2036, 2011

               Volker Mayer and   
           Mariusz Urbanski and   
           Bartlomiej Skorulski   Front Matter . . . . . . . . . . . . . . i--x
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Introduction . . . . . . . . . . . . . . 1--4
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Expanding Random Maps  . . . . . . . . . 5--15
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   The RPF-Theorem  . . . . . . . . . . . . 17--38
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Measurability, Pressure and Gibbs
                                  Condition  . . . . . . . . . . . . . . . 39--45
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Fractal Structure of Conformal Expanding
                                  Random Repellers . . . . . . . . . . . . 47--56
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Multifractal Analysis  . . . . . . . . . 57--68
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Expanding in the Mean  . . . . . . . . . 69--74
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Classical Expanding Random Systems . . . 75--91
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Real Analyticity of Pressure . . . . . . 93--108
               Volker Mayer and   
       Bartlomiej Skorulski and   
               Mariusz Urbanski   Back Matter  . . . . . . . . . . . . . . 109--112


Lecture Notes in Mathematics
Volume 2034, 2012

         Andrea Bonfiglioli and   
                  Roberta Fulci   Front Matter . . . . . . . . . . . . . . i--xxii
         Andrea Bonfiglioli and   
                  Roberta Fulci   Historical Overview  . . . . . . . . . . 1--45
         Andrea Bonfiglioli and   
                  Roberta Fulci   Front Matter . . . . . . . . . . . . . . 47--47
         Andrea Bonfiglioli and   
                  Roberta Fulci   Background Algebra . . . . . . . . . . . 49--114
         Andrea Bonfiglioli and   
                  Roberta Fulci   The Main Proof of the CBHD Theorem . . . 115--172
         Andrea Bonfiglioli and   
                  Roberta Fulci   Some ``Short'' Proofs of the CBHD
                                  Theorem  . . . . . . . . . . . . . . . . 173--264
         Andrea Bonfiglioli and   
                  Roberta Fulci   Convergence of the CBHD Series and
                                  Associativity of the CBHD Operation  . . 265--369
         Andrea Bonfiglioli and   
                  Roberta Fulci   Relationship Between the CBHD Theorem,
                                  the PBW Theorem and the Free Lie
                                  Algebras . . . . . . . . . . . . . . . . 371--389
         Andrea Bonfiglioli and   
                  Roberta Fulci   Front Matter . . . . . . . . . . . . . . 391--391
         Andrea Bonfiglioli and   
                  Roberta Fulci   Proofs of the Algebraic Prerequisites    393--457
         Andrea Bonfiglioli and   
                  Roberta Fulci   Construction of Free Lie Algebras  . . . 459--477
         Andrea Bonfiglioli and   
                  Roberta Fulci   Formal Power Series in One Indeterminate 479--499
         Andrea Bonfiglioli and   
                  Roberta Fulci   Symmetric Algebra  . . . . . . . . . . . 501--521
         Andrea Bonfiglioli and   
                  Roberta Fulci   Back Matter  . . . . . . . . . . . . . . 523--539


Lecture Notes in Mathematics
Volume 2035, 2012

                   Habib Ammari   Front Matter . . . . . . . . . . . . . . i--ix
              John C. Schotland   Direct Reconstruction Methods in Optical
                                  Tomography . . . . . . . . . . . . . . . 1--29
               Habib Ammari and   
           Josselin Garnier and   
             Vincent Jugnon and   
                  Hyeonbae Kang   Direct Reconstruction Methods in
                                  Ultrasound Imaging of Small Anomalies    31--55
               Habib Ammari and   
                Elie Bretin and   
             Vincent Jugnon and   
                    Abdul Wahab   Photoacoustic Imaging for Attenuating
                                  Acoustic Media . . . . . . . . . . . . . 57--84
              Richard Kowar and   
                 Otmar Scherzer   Attenuation Models in Photoacoustics . . 85--130
                    Hao Gao and   
              Stanley Osher and   
                   Hongkai Zhao   Quantitative Photoacoustic Tomography    131--158
                    Hao Gao and   
              Stanley Osher and   
                   Hongkai Zhao   Back Matter  . . . . . . . . . . . . . . 159--160


Lecture Notes in Mathematics
Volume 2037, 2012

András Némethi and   
    Ágnes Szilárd   Front Matter . . . . . . . . . . . . . . i--xii
András Némethi and   
    Ágnes Szilárd   Introduction . . . . . . . . . . . . . . 1--7
András Némethi and   
    Ágnes Szilárd   Front Matter . . . . . . . . . . . . . . 9--9
András Némethi and   
    Ágnes Szilárd   The Topology of a Hypersurface Germ $f$
                                  in Three Variables . . . . . . . . . . . 11--15
András Némethi and   
    Ágnes Szilárd   The Topology of a Pair $ (f, g) $  . . . 17--23
András Némethi and   
    Ágnes Szilárd   Plumbing Graphs and Oriented Plumbed
                                  $3$-Manifolds  . . . . . . . . . . . . . 25--43
András Némethi and   
    Ágnes Szilárd   Cyclic Coverings of Graphs . . . . . . . 45--54
András Némethi and   
    Ágnes Szilárd   The Graph $ \mathit \Gamma_{\mathcal
                                  {C}} $ of a pair $ (f, g) $: The
                                  Definition . . . . . . . . . . . . . . . 55--61
András Némethi and   
    Ágnes Szilárd   The Graph $ \mathit \Gamma_{\mathcal
                                  {C}} $: Properties . . . . . . . . . . . 63--77
András Némethi and   
    Ágnes Szilárd   Examples: Homogeneous Singularities  . . 79--82
András Némethi and   
    Ágnes Szilárd   Examples: Families Associated with Plane
                                  Curve Singularities  . . . . . . . . . . 83--97
András Némethi and   
    Ágnes Szilárd   Front Matter . . . . . . . . . . . . . . 99--99
András Némethi and   
    Ágnes Szilárd   The Main Algorithm . . . . . . . . . . . 101--115
András Némethi and   
    Ágnes Szilárd   Proof of the Main Algorithm  . . . . . . 117--130
András Némethi and   
    Ágnes Szilárd   The Collapsing Main Algorithm  . . . . . 131--138
András Némethi and   
    Ágnes Szilárd   Vertical/Horizontal Monodromies  . . . . 139--151
András Némethi and   
    Ágnes Szilárd   The Algebraic Monodromy of $ H_1
                                  (\partial F) $: Starting Point . . . . . 153--156
András Némethi and   
    Ágnes Szilárd   The Ranks of $ H_1 (\partial F) $ and $
                                  H_1 (\partial F \setminus V g) $ via
                                  plumbing . . . . . . . . . . . . . . . . 157--160
András Némethi and   
    Ágnes Szilárd   The Characteristic Polynomial of $
                                  \partial F $ via $ P^\sharp $ and $
                                  P^\sharp_j $ . . . . . . . . . . . . . . 161--166
András Némethi and   
    Ágnes Szilárd   The Proof of the Characteristic
                                  Polynomial Formulae  . . . . . . . . . . 167--172
András Némethi and   
    Ágnes Szilárd   The Mixed Hodge Structure of $ H_1
                                  (\partial F) $ . . . . . . . . . . . . . 173--176
András Némethi and   
    Ágnes Szilárd   Front Matter . . . . . . . . . . . . . . 177--177
András Némethi and   
    Ágnes Szilárd   Homogeneous Singularities  . . . . . . . 179--199
András Némethi and   
    Ágnes Szilárd   Cylinders of Plane Curve Singularities:
                                  $ f = f^{\prime }(x, y) $  . . . . . . . 201--204


Lecture Notes in Mathematics
Volume 2038, 2012

                  Vincent Guedj   Introduction . . . . . . . . . . . . . . 1--10
              Vincent Guedj and   
                  Ahmed Zeriahi   Dirichlet Problem in Domains of $
                                  \mathbb {C}^n $  . . . . . . . . . . . . 13--32
            Romain Dujardin and   
                  Vincent Guedj   Geometric Properties of Maximal psh
                                  Functions  . . . . . . . . . . . . . . . 33--52
            Romain Dujardin and   
                  Vincent Guedj   Front Matter . . . . . . . . . . . . . . 53--53
        François Delarue   Probabilistic Approach to Regularity . . 55--198
        François Delarue   Front Matter . . . . . . . . . . . . . . 199--199
               Zbigniew B\locki   The Calabi--Yau Theorem  . . . . . . . . 201--227
               Zbigniew B\locki   Front Matter . . . . . . . . . . . . . . 229--229
                    Boris Kolev   The Riemannian Space of Kähler Metrics    231--255
      Sébastien Boucksom   Monge--Amp\`ere Equations on Complex
                                  Manifolds with Boundary  . . . . . . . . 257--282
              Robert Berman and   
                  Julien Keller   Bergman Geodesics  . . . . . . . . . . . 283--302
              Robert Berman and   
                  Julien Keller   Back Matter  . . . . . . . . . . . . . . 303--310


Lecture Notes in Mathematics
Volume 2039, 2012

                      Olaf Post   Front Matter . . . . . . . . . . . . . . i--xv
                      Olaf Post   Introduction . . . . . . . . . . . . . . 1--56
                      Olaf Post   Graphs and Associated Laplacians . . . . 57--96
                      Olaf Post   The Functional Analytic Part: Scales of
                                  Hilbert Spaces and Boundary Triples  . . 97--185
                      Olaf Post   The Functional Analytic Part: Two
                                  Operators in Different Hilbert Spaces    187--257
                      Olaf Post   Manifolds, Tubular Neighbourhoods and
                                  Their Perturbations  . . . . . . . . . . 259--289
                      Olaf Post   Plumber's Shop: Estimates for Star
                                  Graphs and Related Spaces  . . . . . . . 291--366
                      Olaf Post   Global Convergence Results . . . . . . . 367--388
                      Olaf Post   Back Matter  . . . . . . . . . . . . . . 389--431


Lecture Notes in Mathematics
Volume 2040, 2012

          Silvia Bertoluzza and   
        Ricardo H. Nochetto and   
           Alfio Quarteroni and   
        Kunibert G. Siebert and   
                 Andreas Veeser   Front Matter . . . . . . . . . . . . . . i--xii
              Silvia Bertoluzza   Adaptive Wavelet Methods . . . . . . . . 1--56
          Marco Discacciati and   
             Paola Gervasio and   
               Alfio Quarteroni   Heterogeneous Mathematical Models in
                                  Fluid Dynamics and Associated Solution
                                  Algorithms . . . . . . . . . . . . . . . 57--123
        Ricardo H. Nochetto and   
                 Andreas Veeser   Primer of Adaptive Finite Element
                                  Methods  . . . . . . . . . . . . . . . . 125--225
            Kunibert G. Siebert   Mathematically Founded Design of
                                  Adaptive Finite Element Software . . . . 227--309
            Kunibert G. Siebert   Back Matter  . . . . . . . . . . . . . . 311--314


Lecture Notes in Mathematics
Volume 2041, 2012

            Benjamin Howard and   
                   Tonghai Yang   Front Matter . . . . . . . . . . . . . . i--viii
            Benjamin Howard and   
                   Tonghai Yang   Introduction . . . . . . . . . . . . . . 1--9
            Benjamin Howard and   
                   Tonghai Yang   Linear Algebra . . . . . . . . . . . . . 11--24
            Benjamin Howard and   
                   Tonghai Yang   Moduli Spaces of Abelian Surfaces  . . . 25--41
            Benjamin Howard and   
                   Tonghai Yang   Eisenstein Series  . . . . . . . . . . . 43--63
            Benjamin Howard and   
                   Tonghai Yang   The Main Results . . . . . . . . . . . . 65--84
            Benjamin Howard and   
                   Tonghai Yang   Local Calculations . . . . . . . . . . . 85--133
            Benjamin Howard and   
                   Tonghai Yang   Back Matter  . . . . . . . . . . . . . . 135--140


Lecture Notes in Mathematics
Volume 2042, 2012

          William J. Layton and   
                    Leo Rebholz   Front Matter . . . . . . . . . . . . . . i--viii
          William J. Layton and   
                 Leo G. Rebholz   Introduction . . . . . . . . . . . . . . 1--33
          William J. Layton and   
                 Leo G. Rebholz   Large Eddy Simulation  . . . . . . . . . 35--60
          William J. Layton and   
                 Leo G. Rebholz   Approximate Deconvolution Operators and
                                  Models . . . . . . . . . . . . . . . . . 61--88
          William J. Layton and   
                 Leo G. Rebholz   Phenomenology of ADMs  . . . . . . . . . 89--97
          William J. Layton and   
                 Leo G. Rebholz   Time Relaxation Truncates Scales . . . . 99--120
          William J. Layton and   
                 Leo G. Rebholz   The Leray-Deconvolution Regularization   121--144
          William J. Layton and   
                 Leo G. Rebholz   NS-Alpha- and NS-Omega-Deconvolution
                                  Regularizations  . . . . . . . . . . . . 145--162
          William J. Layton and   
                 Leo G. Rebholz   Back Matter  . . . . . . . . . . . . . . 163--184


Lecture Notes in Mathematics
Volume 2043, 2012

                Thomas H. Otway   Front Matter . . . . . . . . . . . . . . i--ix
                Thomas H. Otway   Introduction . . . . . . . . . . . . . . 1--11
                Thomas H. Otway   Mathematical Preliminaries . . . . . . . 13--45
                Thomas H. Otway   The Equation of Cinquini--Cibrario . . . 47--85
                Thomas H. Otway   The Cold Plasma Model  . . . . . . . . . 87--120
                Thomas H. Otway   Light Near a Caustic . . . . . . . . . . 121--144
                Thomas H. Otway   Projective Geometry  . . . . . . . . . . 145--167
                Thomas H. Otway   Back Matter  . . . . . . . . . . . . . . 169--214


Lecture Notes in Mathematics
Volume 2044, 2012

           Kendall Atkinson and   
                     Weimin Han   Front Matter . . . . . . . . . . . . . . i--ix
           Kendall Atkinson and   
                     Weimin Han   Preliminaries  . . . . . . . . . . . . . 1--9
           Kendall Atkinson and   
                     Weimin Han   Spherical Harmonics  . . . . . . . . . . 11--86
           Kendall Atkinson and   
                     Weimin Han   Differentiation and Integration over the
                                  Sphere . . . . . . . . . . . . . . . . . 87--130
           Kendall Atkinson and   
                     Weimin Han   Approximation Theory . . . . . . . . . . 131--163
           Kendall Atkinson and   
                     Weimin Han   Numerical Quadrature . . . . . . . . . . 165--210
           Kendall Atkinson and   
                     Weimin Han   Applications: Spectral Methods . . . . . 211--236
           Kendall Atkinson and   
                     Weimin Han   Back Matter  . . . . . . . . . . . . . . 237--244


Lecture Notes in Mathematics
Volume 2045, 2012

                 John Lewis and   
            Peter Lindqvist and   
           Juan J. Manfredi and   
                   Sandro Salsa   Front Matter . . . . . . . . . . . . . . i--xi
                       J. Lewis   Applications of Boundary Harnack
                                  Inequalities for $p$ Harmonic Functions
                                  and Related Topics . . . . . . . . . . . 1--72
                Peter Lindqvist   Regularity of Supersolutions . . . . . . 73--131
               Juan J. Manfredi   Introduction to Random Tug-of-War Games
                                  and PDEs . . . . . . . . . . . . . . . . 133--151
                   Sandro Salsa   The Problems of the Obstacle in Lower
                                  Dimension and for the Fractional
                                  Laplacian  . . . . . . . . . . . . . . . 153--244
                   Sandro Salsa   Back Matter  . . . . . . . . . . . . . . 245--247


Lecture Notes in Mathematics
Volume 2046, 2012

         Peggy Cénac and   
           Brigitte Chauvin and   
Frédéric Paccaut and   
               Nicolas Pouyanne   Context Trees, Variable Length Markov
                                  Chains and Dynamical Sources . . . . . . 1--39
     Aleksandar Mijatovi\'c and   
                 Nika Novak and   
                 Mikhail Urusov   Martingale Property of Generalized
                                  Stochastic Exponentials  . . . . . . . . 41--59
     Andreas Basse-O'Connor and   
       Svend-Erik Graversen and   
                   Jan Pedersen   Some Classes of Proper Integrals and
                                  Generalized Ornstein--Uhlenbeck
                                  Processes  . . . . . . . . . . . . . . . 61--74
              Zhongmin Qian and   
                  Jiangang Ying   Martingale Representations for Diffusion
                                  Processes and Backward Stochastic
                                  Differential Equations . . . . . . . . . 75--103
               Markus Mocha and   
               Nicholas Westray   Quadratic Semimartingale BSDEs Under an
                                  Exponential Moments Condition  . . . . . 105--139
                 Greg Markowsky   The Derivative of the Intersection Local
                                  Time of Brownian Motion Through Wiener
                                  Chaos  . . . . . . . . . . . . . . . . . 141--148
                         Hao Wu   On the Occupation Times of Brownian
                                  Excursions and Brownian Loops  . . . . . 149--166
                    Hatem Hajri   Discrete Approximations to Solution
                                  Flows of Tanaka's SDE Related to Walsh
                                  Brownian Motion  . . . . . . . . . . . . 167--190
                Nizar Demni and   
                  Taoufik Hmidi   Spectral Distribution of the Free
                                  Unitary Brownian Motion: Another
                                  Approach . . . . . . . . . . . . . . . . 191--206
             Nathalie Eisenbaum   Another Failure in the Analogy Between
                                  Gaussian and Semicircle Laws . . . . . . 207--213
                  Antoine Lejay   Global Solutions to Rough Differential
                                  Equations with Unbounded Vector Fields   215--246
               Renaud Marty and   
              Knut Sòlna   Asymptotic Behavior of Oscillatory
                                  Fractional Processes . . . . . . . . . . 247--269
             Juha Vuolle-Apiala   Time Inversion Property for Rotation
                                  Invariant Self-similar Diffusion
                                  Processes  . . . . . . . . . . . . . . . 271--277
        Antoine-Marie Bogso and   
         Christophe Profeta and   
               Bernard Roynette   On Peacocks: a General Introduction to
                                  Two Articles . . . . . . . . . . . . . . 279--280
        Antoine-Marie Bogso and   
         Christophe Profeta and   
               Bernard Roynette   Some Examples of Peacocks in a Markovian
                                  Set-Up . . . . . . . . . . . . . . . . . 281--315
        Antoine-Marie Bogso and   
         Christophe Profeta and   
               Bernard Roynette   Peacocks Obtained by Normalisation:
                                  Strong and Very Strong Peacocks  . . . . 317--374
            Simon C. Harris and   
             Matthew I. Roberts   Branching Brownian Motion: Almost Sure
                                  Growth Along Scaled Paths  . . . . . . . 375--399
        Jean-Christophe Mourrat   On the Delocalized Phase of the Random
                                  Pinning Model  . . . . . . . . . . . . . 401--407
              Bernard Bercu and   
  Jean-François Bony and   
                Vincent Bruneau   Large Deviations for Gaussian Stationary
                                  Processes and Semi-Classical Analysis    409--428
       Christian Léonard   Girsanov Theory Under a Finite Entropy
                                  Condition  . . . . . . . . . . . . . . . 429--465
       Christian Léonard   Back Matter  . . . . . . . . . . . . . . 467--469


Lecture Notes in Mathematics
Volume 2047, 2012

                 Gani T. Stamov   Front Matter . . . . . . . . . . . . . . i--xx
                 Gani T. Stamov   Impulsive Differential Equations and
                                  Almost Periodicity . . . . . . . . . . . 1--32
                 Gani T. Stamov   Almost Periodic Solutions  . . . . . . . 33--96
                 Gani T. Stamov   Lyapunov Method and Almost Periodicity   97--149
                 Gani T. Stamov   Applications . . . . . . . . . . . . . . 151--203
                 Gani T. Stamov   Back Matter  . . . . . . . . . . . . . . 205--217


Lecture Notes in Mathematics
Volume 2048, 2012

   Fatiha Alabau-Boussouira and   
             Roger Brockett and   
              Olivier Glass and   
Jérôme Le Rousseau and   
                 Enrique Zuazua   Front Matter . . . . . . . . . . . . . . i--xiii
       Fatiha Alabau-Boussouira   On Some Recent Advances on Stabilization
                                  for Hyperbolic Equations . . . . . . . . 1--100
                 Roger Brockett   Notes on the Control of the Liouville
                                  Equation . . . . . . . . . . . . . . . . 101--129
                  Olivier Glass   Some Questions of Control in Fluid
                                  Mechanics  . . . . . . . . . . . . . . . 131--206
Jérôme Le Rousseau   Carleman Estimates and Some Applications
                                  to Control Theory  . . . . . . . . . . . 207--243
           Sylvain Ervedoza and   
                 Enrique Zuazua   The Wave Equation: Control and Numerics  245--339
           Sylvain Ervedoza and   
                 Enrique Zuazua   Back Matter  . . . . . . . . . . . . . . 341--344


Lecture Notes in Mathematics
Volume 2049, 2012

              Angelo Favini and   
            Gabriela Marinoschi   Front Matter . . . . . . . . . . . . . . i--xxi
              Angelo Favini and   
            Gabriela Marinoschi   Existence for Parabolic--Elliptic
                                  Degenerate Diffusion Problems  . . . . . 1--56
              Angelo Favini and   
            Gabriela Marinoschi   Existence for Diffusion Degenerate
                                  Problems . . . . . . . . . . . . . . . . 57--90
              Angelo Favini and   
            Gabriela Marinoschi   Existence for Nonautonomous
                                  Parabolic--Elliptic Degenerate Diffusion
                                  Equations  . . . . . . . . . . . . . . . 91--108
              Angelo Favini and   
            Gabriela Marinoschi   Parameter Identification in a
                                  Parabolic--Elliptic Degenerate Problem   109--133
              Angelo Favini and   
            Gabriela Marinoschi   Back Matter  . . . . . . . . . . . . . . 135--143


Lecture Notes in Mathematics
Volume 2050, 2012

                 Semyon Alesker   The $ \alpha $-Cosine Transform and
                                  Intertwining Integrals on Real
                                  Grassmannians  . . . . . . . . . . . . . 1--21
                 Semyon Alesker   On Modules Over Valuations . . . . . . . 23--34
      Shiri Artstein-Avidan and   
             Dmitry Faifman and   
                  Vitali Milman   On Multiplicative Maps of Continuous and
                                  Smooth Functions . . . . . . . . . . . . 35--59
      Shiri Artstein-Avidan and   
              Dan Florentin and   
                  Vitali Milman   Order Isomorphisms on Convex Functions
                                  in Windows . . . . . . . . . . . . . . . 61--122
             Itai Benjamini and   
                   Oded Schramm   Finite Transitive Graph Embeddings into
                                  a Hyperbolic Metric Space Must Stretch
                                  or Squeeze . . . . . . . . . . . . . . . 123--126
             Itai Benjamini and   
                  Ofer Zeitouni   Tightness of Fluctuations of First
                                  Passage Percolation on Some Large Graphs 127--132
                  Jean Bourgain   Finitely Supported Measures on $ {\rm
                                  SL}_2 (\mathbb {R}) $ Which are
                                  Absolutely Continuous at Infinity  . . . 133--141
                  Jean Bourgain   Möbius Schrödinger . . . . . . . . . . . . 143--150
    Dario Cordero-Erausquin and   
                  Bo'az Klartag   Interpolations, Convexity and Geometric
                                  Inequalities . . . . . . . . . . . . . . 151--168
    Dario Cordero-Erausquin and   
                  Michel Ledoux   Hypercontractive Measures, Talagrand's
                                  Inequality, and Influences . . . . . . . 169--189
                 Dmitry Faifman   A Family of Unitary Operators Satisfying
                                  a Poisson-Type Summation Formula . . . . 191--204
              Dan Florentin and   
                Alexander Segal   Stability of Order Preserving Transforms 205--225
     Apostolos Giannopoulos and   
           Grigoris Paouris and   
                Petros Valettas   On the Distribution of the $
                                  \psi_2$-Norm of Linear Functionals on
                                  Isotropic Convex Bodies  . . . . . . . . 227--253
            Efim D. Gluskin and   
            Alexander E. Litvak   A Remark on Vertex Index of the Convex
                                  Bodies . . . . . . . . . . . . . . . . . 255--265
              Bo'az Klartag and   
                 Emanuel Milman   Inner Regularization of Log-Concave
                                  Measures and Small-Ball Estimates  . . . 267--278
         Hermann König and   
                  Vitali Milman   An Operator Equation Generalizing the
                                  Leibniz Rule for the Second Derivative   279--299
                 Rafa\l Lata\la   Moments of Unconditional Logarithmically
                                  Concave Vectors  . . . . . . . . . . . . 301--315
               Elizabeth Meckes   Projections of Probability
                                  Distributions: a Measure-Theoretic
                                  Dvoretzky Theorem  . . . . . . . . . . . 317--326
                Piotr Nayar and   
                   Tomasz Tkocz   On a Loomis--Whitney Type Inequality for
                                  Permutationally Invariant Unconditional
                                  Convex Bodies  . . . . . . . . . . . . . 327--333
                  Fedor Nazarov   The Hörmander Proof of the
                                  Bourgain--Milman Theorem . . . . . . . . 335--343


Lecture Notes in Mathematics
Volume 2051, 2012

          Vincent Rivasseau and   
           Robert Seiringer and   
         Jan Philip Solovej and   
                 Thomas Spencer   Front Matter . . . . . . . . . . . . . . i--xiii
              Vincent Rivasseau   Introduction to the Renormalization
                                  Group with Applications to
                                  Non-relativistic Quantum Electron Gases  1--54
               Robert Seiringer   Cold Quantum Gases and Bose--Einstein
                                  Condensation . . . . . . . . . . . . . . 55--92
             Jan Philip Solovej   Quantum Coulomb Gases  . . . . . . . . . 93--124
                 Thomas Spencer   SUSY Statistical Mechanics and Random
                                  Band Matrices  . . . . . . . . . . . . . 125--177
                 Thomas Spencer   Back Matter  . . . . . . . . . . . . . . 179--180


Lecture Notes in Mathematics
Volume 2052, 2012

                   Fabien Morel   Front Matter . . . . . . . . . . . . . . i--x
                   Fabien Morel   Introduction . . . . . . . . . . . . . . 1--13
                   Fabien Morel   Unramified Sheaves and Strongly $
                                  {\mathbb {A}}^1 $-Invariant Sheaves  . . 15--48
                   Fabien Morel   Unramified Milnor--Witt $K$-Theories . . 49--80
                   Fabien Morel   Geometric Versus Canonical Transfers . . 81--112
                   Fabien Morel   The Rost--Schmid Complex of a Strongly $
                                  \mathbb {A}^1 $-Invariant Sheaf  . . . . 113--148
                   Fabien Morel   $ {\mathbb {A}}^1 $-Homotopy Sheaves and
                                  $ {\mathbb {A}}^1 $-Homology Sheaves . . 149--175
                   Fabien Morel   $ {\mathbb {A}}^1 $-Coverings, $ {\pi
                                  }_1^{{\mathbb {A}}^1 }({\mathbb {P}}^n)
                                  $ and $ {\pi }_1^{{\mathbb {A}}^1}({\rm
                                  SL}_n) $ . . . . . . . . . . . . . . . . 177--197
                   Fabien Morel   $ {\mathbb {A}}^1 $-Homotopy and
                                  Algebraic Vector Bundles . . . . . . . . 199--207
                   Fabien Morel   The Affine B.G. Property for the Linear
                                  Groups and the Grassmannian  . . . . . . 209--226
                   Fabien Morel   Back Matter  . . . . . . . . . . . . . . 227--259


Lecture Notes in Mathematics
Volume 2053, 2012

          Steffen Fröhlich   Front Matter . . . . . . . . . . . . . . i--xiv
          Steffen Fröhlich   Surface Geometry . . . . . . . . . . . . 1--29
          Steffen Fröhlich   Elliptic Systems . . . . . . . . . . . . 31--52
          Steffen Fröhlich   Normal Coulomb Frames in $ {\mathbb
                                  {R}}^4 $ . . . . . . . . . . . . . . . . 53--73
          Steffen Fröhlich   Normal Coulomb Frames in $ \mathbb
                                  {R}^{n + 2} $  . . . . . . . . . . . . . 75--105
          Steffen Fröhlich   Back Matter  . . . . . . . . . . . . . . 107--117


Lecture Notes in Mathematics
Volume 2055, 2012

               Sungbok Hong and   
            John Kalliongis and   
          Darryl McCullough and   
             J. Hyam Rubinstein   Front Matter . . . . . . . . . . . . . . i--x
               Sungbok Hong and   
            John Kalliongis and   
          Darryl McCullough and   
             J. Hyam Rubinstein   Elliptic Three-Manifolds and the Smale
                                  Conjecture . . . . . . . . . . . . . . . 1--7
               Sungbok Hong and   
            John Kalliongis and   
          Darryl McCullough and   
             J. Hyam Rubinstein   Diffeomorphisms and Embeddings of
                                  Manifolds  . . . . . . . . . . . . . . . 9--17
               Sungbok Hong and   
            John Kalliongis and   
          Darryl McCullough and   
             J. Hyam Rubinstein   The Method of Cerf and Palais  . . . . . 19--51
               Sungbok Hong and   
            John Kalliongis and   
          Darryl McCullough and   
             J. Hyam Rubinstein   Elliptic Three-Manifolds Containing
                                  One-Sided Klein Bottles  . . . . . . . . 53--83
               Sungbok Hong and   
            John Kalliongis and   
          Darryl McCullough and   
             J. Hyam Rubinstein   Lens Spaces  . . . . . . . . . . . . . . 85--144
               Sungbok Hong and   
            John Kalliongis and   
          Darryl McCullough and   
             J. Hyam Rubinstein   Back Matter  . . . . . . . . . . . . . . 145--155


Lecture Notes in Mathematics
Volume 2056, 2012

          Mahmoud H. Annaby and   
              Zeinab S. Mansour   Front Matter . . . . . . . . . . . . . . i--xix
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   Preliminaries  . . . . . . . . . . . . . 1--39
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   $q$-Difference Equations . . . . . . . . 41--71
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   $q$-Sturm--Liouville Problems  . . . . . 73--105
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   Riemann--Liouville $q$-Fractional
                                  Calculi  . . . . . . . . . . . . . . . . 107--146
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   Other $q$-Fractional Calculi . . . . . . 147--173
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   Fractional $q$-Leibniz Rule and
                                  Applications . . . . . . . . . . . . . . 175--199
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   $q$-Mittag-Leffler Functions . . . . . . 201--222
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   Fractional $q$-Difference Equations  . . 223--270
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   $q$-Integral Transforms for Solving
                                  Fractional $q$-Difference Equations  . . 271--293
          Mahmoud H. Annaby and   
              Zeinab S. Mansour   Back Matter  . . . . . . . . . . . . . . 295--318


Lecture Notes in Mathematics
Volume 2059, 2012

      Hidetoshi Marubayashi and   
             Fred Van Oystaeyen   Front Matter . . . . . . . . . . . . . . i--ix
      Hidetoshi Marubayashi and   
             Fred Van Oystaeyen   General Theory of Primes . . . . . . . . 1--107
      Hidetoshi Marubayashi and   
             Fred Van Oystaeyen   Maximal Orders and Primes  . . . . . . . 109--173
      Hidetoshi Marubayashi and   
             Fred Van Oystaeyen   Extensions of Valuations to Quantized
                                  Algebras . . . . . . . . . . . . . . . . 175--211
      Hidetoshi Marubayashi and   
             Fred Van Oystaeyen   Back Matter  . . . . . . . . . . . . . . 213--218


Lecture Notes in Mathematics
Volume 2061, 2012

                Serge Cohen and   
           Alexey Kuznetsov and   
       Andreas E. Kyprianou and   
                  Victor Rivero   Front Matter . . . . . . . . . . . . . . i--xii
                    Serge Cohen   Fractional Lévy Fields  . . . . . . . . . 1--95
           Alexey Kuznetsov and   
       Andreas E. Kyprianou and   
                  Victor Rivero   The Theory of Scale Functions for
                                  Spectrally Negative Lévy Processes  . . . 97--186
           Alexey Kuznetsov and   
       Andreas E. Kyprianou and   
                  Victor Rivero   Back Matter  . . . . . . . . . . . . . . 187--188


Lecture Notes in Mathematics
Volume 2054, 2013

                     Jakob Stix   Front Matter . . . . . . . . . . . . . . i--xx
                     Jakob Stix   Front Matter . . . . . . . . . . . . . . 1--1
                     Jakob Stix   Continuous Non-abelian $ H^1 $ with
                                  Profinite Coefficients . . . . . . . . . 3--11
                     Jakob Stix   The Fundamental Groupoid . . . . . . . . 13--23
                     Jakob Stix   Basic Geometric Operations in Terms of
                                  Sections . . . . . . . . . . . . . . . . 25--36
                     Jakob Stix   The Space of Sections as a Topological
                                  Space  . . . . . . . . . . . . . . . . . 37--44
                     Jakob Stix   Evaluation of Units  . . . . . . . . . . 45--51
                     Jakob Stix   Cycle Classes in Anabelian Geometry  . . 53--66
                     Jakob Stix   Front Matter . . . . . . . . . . . . . . 67--67
                     Jakob Stix   Injectivity in the Section Conjecture    69--79
                     Jakob Stix   Reduction of Sections  . . . . . . . . . 81--93
                     Jakob Stix   The Space of Sections in the Arithmetic
                                  Case and the Section Conjecture in
                                  Covers . . . . . . . . . . . . . . . . . 95--103
                     Jakob Stix   Front Matter . . . . . . . . . . . . . . 105--105
                     Jakob Stix   Local Obstructions at a $p$-adic Place   107--117
                     Jakob Stix   Brauer--Manin and Descent Obstructions   119--146
                     Jakob Stix   Fragments of Non-abelian Tate--Poitou
                                  Duality  . . . . . . . . . . . . . . . . 147--154
                     Jakob Stix   Front Matter . . . . . . . . . . . . . . 155--155
                     Jakob Stix   On the Section Conjecture for Torsors    157--174
                     Jakob Stix   Nilpotent Sections . . . . . . . . . . . 175--196
                     Jakob Stix   Sections over Finite Fields  . . . . . . 197--205
                     Jakob Stix   On the Section Conjecture over Local
                                  Fields . . . . . . . . . . . . . . . . . 207--212
                     Jakob Stix   Fields of Cohomological Dimension 1  . . 213--218
                     Jakob Stix   Cuspidal Sections and Birational
                                  Analogues  . . . . . . . . . . . . . . . 219--231
                     Jakob Stix   Back Matter  . . . . . . . . . . . . . . 233--249


Lecture Notes in Mathematics
Volume 2057, 2013

              Andrzej Cegielski   Front Matter . . . . . . . . . . . . . . i--xvi
              Andrzej Cegielski   Introduction . . . . . . . . . . . . . . 1--38
              Andrzej Cegielski   Algorithmic Operators  . . . . . . . . . 39--103
              Andrzej Cegielski   Convergence of Iterative Methods . . . . 105--127
              Andrzej Cegielski   Algorithmic Projection Operators . . . . 129--202
              Andrzej Cegielski   Projection Methods . . . . . . . . . . . 203--274
              Andrzej Cegielski   Back Matter  . . . . . . . . . . . . . . 275--298


Lecture Notes in Mathematics
Volume 2058, 2013

             Mostafa Bachar and   
               Jerry Batzel and   
              Susanne Ditlevsen   Front Matter . . . . . . . . . . . . . . i--xvi
             Mostafa Bachar and   
               Jerry Batzel and   
              Susanne Ditlevsen   Front Matter . . . . . . . . . . . . . . 1--1
          Susanne Ditlevsen and   
                 Adeline Samson   Introduction to Stochastic Models in
                                  Biology  . . . . . . . . . . . . . . . . 3--35
                Martin Jacobsen   One-Dimensional Homogeneous Diffusions   37--55
                 Gilles Wainrib   A Brief Introduction to Large Deviations
                                  Theory . . . . . . . . . . . . . . . . . 57--72
                 Gilles Wainrib   Some Numerical Methods for Rare Events
                                  Simulation and Analysis  . . . . . . . . 73--95
                 Gilles Wainrib   Front Matter . . . . . . . . . . . . . . 97--97
            Laura Sacerdote and   
           Maria Teresa Giraudo   Stochastic Integrate and Fire Models: a
                                  Review on Mathematical Methods and Their
                                  Applications . . . . . . . . . . . . . . 99--148
              Henry C. Tuckwell   Stochastic Partial Differential
                                  Equations in Neurobiology: Linear and
                                  Nonlinear Models for Spiking Neurons . . 149--173
            Mich\`ele Thieullen   Deterministic and Stochastic
                                  FitzHugh--Nagumo Systems . . . . . . . . 175--186
              Henry C. Tuckwell   Stochastic Modeling of Spreading
                                  Cortical Depression  . . . . . . . . . . 187--200
              Henry C. Tuckwell   Back Matter  . . . . . . . . . . . . . . 201--206


Lecture Notes in Mathematics
Volume 2060, 2013

                  Claude Sabbah   Front Matter . . . . . . . . . . . . . . i--xiv
                  Claude Sabbah   $ \mathcal {I}$-Filtrations  . . . . . . 1--19
                  Claude Sabbah   Front Matter . . . . . . . . . . . . . . 21--21
                  Claude Sabbah   Stokes-Filtered Local Systems in
                                  Dimension One  . . . . . . . . . . . . . 23--38
                  Claude Sabbah   Abelianity and Strictness  . . . . . . . 39--50
                  Claude Sabbah   Stokes-Perverse Sheaves on Riemann
                                  Surfaces . . . . . . . . . . . . . . . . 51--64
                  Claude Sabbah   The Riemann--Hilbert Correspondence for
                                  Holonomic $ \mathcal {D}$-Modules on
                                  Curves . . . . . . . . . . . . . . . . . 65--78
                  Claude Sabbah   Applications of the Riemann--Hilbert
                                  Correspondence to Holonomic
                                  Distributions  . . . . . . . . . . . . . 79--88
                  Claude Sabbah   Riemann--Hilbert and Laplace on the
                                  Affine Line (the Regular Case) . . . . . 89--111
                  Claude Sabbah   Front Matter . . . . . . . . . . . . . . 113--113
                  Claude Sabbah   Real Blow-Up Spaces and Moderate de Rham
                                  Complexes  . . . . . . . . . . . . . . . 115--129
                  Claude Sabbah   Stokes-Filtered Local Systems Along a
                                  Divisor with Normal Crossings  . . . . . 131--146
                  Claude Sabbah   The Riemann--Hilbert Correspondence for
                                  Good Meromorphic Connections (Case of a
                                  Smooth Divisor)  . . . . . . . . . . . . 147--157
                  Claude Sabbah   Good Meromorphic Connections (Formal
                                  Theory)  . . . . . . . . . . . . . . . . 159--175
                  Claude Sabbah   Good Meromorphic Connections (Analytic
                                  Theory) and the Riemann--Hilbert
                                  Correspondence . . . . . . . . . . . . . 177--193
                  Claude Sabbah   Push-Forward of Stokes-Filtered Local
                                  Systems  . . . . . . . . . . . . . . . . 195--206
                  Claude Sabbah   Irregular Nearby Cycles  . . . . . . . . 207--225
                  Claude Sabbah   Nearby Cycles of Stokes-Filtered Local
                                  Systems  . . . . . . . . . . . . . . . . 227--238
                  Claude Sabbah   Back Matter  . . . . . . . . . . . . . . 239--249


Lecture Notes in Mathematics
Volume 2062, 2013

             Luigi Ambrosio and   
            Alberto Bressan and   
               Dirk Helbing and   
                  Axel Klar and   
                 Enrique Zuazua   Front Matter . . . . . . . . . . . . . . i--xiv
             Luigi Ambrosio and   
                   Nicola Gigli   A User's Guide to Optimal Transport  . . 1--155
                Alberto Bressan   Hyperbolic Conservation Laws: an
                                  Illustrated Tutorial . . . . . . . . . . 157--245
                   Dirk Helbing   Derivation of Non-local Macroscopic
                                  Traffic Equations and Consistent Traffic
                                  Pressures from Microscopic Car-Following
                                  Models . . . . . . . . . . . . . . . . . 247--269
               Dirk Helbing and   
               Anders Johansson   On the Controversy Around Daganzo's
                                  Requiem for and Aw--Rascle's
                                  Resurrection of Second-Order Traffic
                                  Flow Models  . . . . . . . . . . . . . . 271--302
               Dirk Helbing and   
             Martin Treiber and   
               Arne Kesting and   
           Martin Schönhof   Theoretical vs. Empirical Classification
                                  and Prediction of Congested Traffic
                                  States . . . . . . . . . . . . . . . . . 303--333
               Dirk Helbing and   
              Jan Siegmeier and   
             Stefan Lämmer   Self-Organized Network Flows . . . . . . 335--355
               Dirk Helbing and   
                Amin Mazloumian   Operation Regimes and
                                  Slower-is-Faster-Effect in the Control
                                  of Traffic Intersections . . . . . . . . 357--394
       Simone Göttlich and   
                      Axel Klar   Modeling and Optimization of Scalar
                                  Flows on Networks  . . . . . . . . . . . 395--461
                 Enrique Zuazua   Control and Stabilization of Waves on
                                  $1$-D Networks . . . . . . . . . . . . . 463--493
                 Enrique Zuazua   Back Matter  . . . . . . . . . . . . . . 495--497


Lecture Notes in Mathematics
Volume 2063, 2013

               Irina Mitrea and   
                  Marius Mitrea   Front Matter . . . . . . . . . . . . . . i--x
               Irina Mitrea and   
                  Marius Mitrea   Introduction . . . . . . . . . . . . . . 1--19
               Irina Mitrea and   
                  Marius Mitrea   Smoothness Scales and Calderón--Zygmund
                                  Theory in the Scalar-Valued Case . . . . 21--124
               Irina Mitrea and   
                  Marius Mitrea   Function Spaces of Whitney Arrays  . . . 125--197
               Irina Mitrea and   
                  Marius Mitrea   The Double Multi-Layer Potential
                                  Operator . . . . . . . . . . . . . . . . 199--252
               Irina Mitrea and   
                  Marius Mitrea   The Single Multi-Layer Potential
                                  Operator . . . . . . . . . . . . . . . . 253--291
               Irina Mitrea and   
                  Marius Mitrea   Functional Analytic Properties of
                                  Multi-Layer Potentials and Boundary
                                  Value Problems . . . . . . . . . . . . . 293--403
               Irina Mitrea and   
                  Marius Mitrea   Back Matter  . . . . . . . . . . . . . . 405--424


Lecture Notes in Mathematics
Volume 2064, 2013

            Jerry J. Batzel and   
             Mostafa Bachar and   
                   Franz Kappel   Front Matter . . . . . . . . . . . . . . i--xx
            Jerry J. Batzel and   
             Mostafa Bachar and   
                   Franz Kappel   Front Matter . . . . . . . . . . . . . . 1--1
            Jerry J. Batzel and   
             Mostafa Bachar and   
          John M. Karemaker and   
                   Franz Kappel   Merging Mathematical and Physiological
                                  Knowledge: Dimensions and Challenges . . 3--19
               Thomas Heldt and   
         George C. Verghese and   
                  Roger G. Mark   Mathematical Modeling of Physiological
                                  Systems  . . . . . . . . . . . . . . . . 21--41
                H. T. Banks and   
 Ariel Cintrón-Arias and   
                   Franz Kappel   Parameter Selection Methods in Inverse
                                  Problem Formulation  . . . . . . . . . . 43--73
              Adam Attarian and   
            Jerry J. Batzel and   
              Brett Matzuka and   
                      Hien Tran   Application of the Unscented Kalman
                                  Filtering to Parameter Estimation  . . . 75--88
                  Chung Tin and   
                  Chi-Sang Poon   Integrative and Reductionist Approaches
                                  to Modeling of Control of Breathing  . . 89--103
             Ferenc Hartung and   
                     Janos Turi   Parameter Identification in a
                                  Respiratory Control System Model with
                                  Delay  . . . . . . . . . . . . . . . . . 105--118
             Ferenc Hartung and   
                     Janos Turi   Front Matter . . . . . . . . . . . . . . 119--119
                Eugene N. Bruce   Experimental Studies of Respiration and
                                  Apnea  . . . . . . . . . . . . . . . . . 121--132
                   James Duffin   Model Validation and Control Issues in
                                  the Respiratory System . . . . . . . . . 133--162
                 Clive M. Brown   Experimental Studies of the Baroreflex   163--176
          Johnny T. Ottesen and   
                 Vera Novak and   
               Mette S. Olufsen   Development of Patient Specific
                                  Cardiovascular Models Predicting
                                  Dynamics in Response to Orthostatic
                                  Stress Challenges  . . . . . . . . . . . 177--213
             Karl Thomaseth and   
            Jerry J. Batzel and   
             Mostafa Bachar and   
               Raffaello Furlan   Parameter Estimation of a Model for
                                  Baroreflex Control of Unstressed Volume  215--246
             Karl Thomaseth and   
            Jerry J. Batzel and   
             Mostafa Bachar and   
               Raffaello Furlan   Back Matter  . . . . . . . . . . . . . . 247--254


Lecture Notes in Mathematics
Volume 2065, 2013

              Anna Capietto and   
              Peter Kloeden and   
                Jean Mawhin and   
                Sylvia Novo and   
                  Rafael Ortega   Front Matter . . . . . . . . . . . . . . i--ix
          Alberto Boscaggin and   
              Anna Capietto and   
               Walter Dambrosio   The Maslov Index and Global Bifurcation
                                  for Nonlinear Boundary Value Problems    1--34
              P. E. Kloeden and   
           C. Pötzsche and   
                   M. Rasmussen   Discrete-Time Nonautonomous Dynamical
                                  Systems  . . . . . . . . . . . . . . . . 35--102
                    Jean Mawhin   Resonance Problems for Some
                                  Non-autonomous Ordinary Differential
                                  Equations  . . . . . . . . . . . . . . . 103--184
                Sylvia Novo and   
                   Rafael Obaya   Non-autonomous Functional Differential
                                  Equations and Applications . . . . . . . 185--263
               Markus Kunze and   
                  Rafael Ortega   Twist Mappings with Non-Periodic Angles  265--300
               Markus Kunze and   
                  Rafael Ortega   Back Matter  . . . . . . . . . . . . . . 301--303


Lecture Notes in Mathematics
Volume 2066, 2013

          Augustin Fruchard and   
          Reinhard Schäfke   Front Matter . . . . . . . . . . . . . . i--x
          Augustin Fruchard and   
          Reinhard Schäfke   Four Introductory Examples . . . . . . . 1--15
          Augustin Fruchard and   
          Reinhard Schäfke   Composite Asymptotic Expansions: General
                                  Study  . . . . . . . . . . . . . . . . . 17--41
          Augustin Fruchard and   
          Reinhard Schäfke   Composite Asymptotic Expansions: Gevrey
                                  Theory . . . . . . . . . . . . . . . . . 43--61
          Augustin Fruchard and   
          Reinhard Schäfke   A Theorem of Ramis--Sibuya Type  . . . . 63--80
          Augustin Fruchard and   
          Reinhard Schäfke   Composite Expansions and Singularly
                                  Perturbed Differential Equations . . . . 81--118
          Augustin Fruchard and   
          Reinhard Schäfke   Applications . . . . . . . . . . . . . . 119--150
          Augustin Fruchard and   
          Reinhard Schäfke   Historical Remarks . . . . . . . . . . . 151--153
          Augustin Fruchard and   
          Reinhard Schäfke   Back Matter  . . . . . . . . . . . . . . 155--161


Lecture Notes in Mathematics
Volume 2067, 2013

              Frederik Herzberg   Front Matter . . . . . . . . . . . . . . i--xviii
           Frederik S. Herzberg   Infinitesimal Calculus, Consistently and
                                  Accessibly . . . . . . . . . . . . . . . 1--5
           Frederik S. Herzberg   Radically Elementary Probability Theory  7--17
           Frederik S. Herzberg   Radically Elementary Stochastic
                                  Integrals  . . . . . . . . . . . . . . . 19--34
           Frederik S. Herzberg   The Radically Elementary Girsanov
                                  Theorem and the Diffusion Invariance
                                  Principle  . . . . . . . . . . . . . . . 35--44
           Frederik S. Herzberg   Excursion to Financial Economics: a
                                  Radically Elementary Approach to the
                                  Fundamental Theorems of Asset Pricing    45--53
           Frederik S. Herzberg   Excursion to Financial Engineering:
                                  Volatility Invariance in the
                                  Black--Scholes Model . . . . . . . . . . 55--59
           Frederik S. Herzberg   A Radically Elementary Theory of Itô
                                  Diffusions and Associated Partial
                                  Differential Equations . . . . . . . . . 61--70
           Frederik S. Herzberg   Excursion to Mathematical Physics: a
                                  Radically Elementary Definition of
                                  Feynman Path Integrals . . . . . . . . . 71--75
           Frederik S. Herzberg   A Radically Elementary Theory of Lévy
                                  Processes  . . . . . . . . . . . . . . . 77--92
           Frederik S. Herzberg   Final Remarks  . . . . . . . . . . . . . 93--93
           Frederik S. Herzberg   Back Matter  . . . . . . . . . . . . . . 95--112


Lecture Notes in Mathematics
Volume 2068, 2013

                 Ilya Molchanov   Foundations of Stochastic Geometry and
                                  Theory of Random Sets  . . . . . . . . . 1--20
                Markus Kiderlen   Introduction into Integral Geometry and
                                  Stereology . . . . . . . . . . . . . . . 21--48
                Adrian Baddeley   Spatial Point Patterns: Models and
                                  Statistics . . . . . . . . . . . . . . . 49--114
                Lothar Heinrich   Asymptotic Methods in Statistics of
                                  Random Point Processes . . . . . . . . . 115--150
               Florian Voss and   
         Catherine Gloaguen and   
                 Volker Schmidt   Random Tessellations and Cox Processes   151--182
                   Pierre Calka   Asymptotic Methods for Random
                                  Tessellations  . . . . . . . . . . . . . 183--204
                     Daniel Hug   Random Polytopes . . . . . . . . . . . . 205--238
                  Joseph Yukich   Limit Theorems in Discrete Stochastic
                                  Geometry . . . . . . . . . . . . . . . . 239--275
         Alexander Bulinski and   
                Evgeny Spodarev   Introduction to Random Fields  . . . . . 277--335
         Alexander Bulinski and   
                Evgeny Spodarev   Central Limit Theorems for Weakly
                                  Dependent Random Fields  . . . . . . . . 337--383
        Ulrich Stadtmüller   Strong Limit Theorems for Increments of
                                  Random Fields  . . . . . . . . . . . . . 385--398
                   Yuri Bakhtin   Geometry of Large Random Trees: SPDE
                                  Approximation  . . . . . . . . . . . . . 399--420
                   Yuri Bakhtin   Back Matter  . . . . . . . . . . . . . . 421--448


Lecture Notes in Mathematics
Volume 2069, 2013

                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Front Matter . . . . . . . . . . . . . . i--x
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Introduction . . . . . . . . . . . . . . 1--15
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Decomposition into $3$-Balls . . . . . . 17--33
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Ideal Polyhedra  . . . . . . . . . . . . 35--51
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   $I$-Bundles and Essential Product Disks  53--72
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Guts and Fibers  . . . . . . . . . . . . 73--90
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Recognizing Essential Product Disks  . . 91--108
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Diagrams Without Non-prime Arcs  . . . . 109--118
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Montesinos Links . . . . . . . . . . . . 119--138
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Applications . . . . . . . . . . . . . . 139--154
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Discussion and Questions . . . . . . . . 155--161
                David Futer and   
      Efstratia Kalfagianni and   
                Jessica Purcell   Back Matter  . . . . . . . . . . . . . . 163--170


Lecture Notes in Mathematics
Volume 2070, 2013

              Martin W. Liebeck   Probabilistic and Asymptotic Aspects of
                                  Finite Simple Groups . . . . . . . . . . 1--34
          Alice C. Niemeyer and   
          Cheryl E. Praeger and   
             Ákos Seress   Estimation Problems and Randomised Group
                                  Algorithms . . . . . . . . . . . . . . . 35--82
             Leonard H. Soicher   Designs, Groups and Computing  . . . . . 83--107
             Leonard H. Soicher   Back Matter  . . . . . . . . . . . . . . 107--107


Lecture Notes in Mathematics
Volume 2071, 2013

              Mark A. Lewis and   
            Philip K. Maini and   
           Sergei V. Petrovskii   Front Matter . . . . . . . . . . . . . . i--xiv
              Mark A. Lewis and   
            Philip K. Maini and   
           Sergei V. Petrovskii   Front Matter . . . . . . . . . . . . . . 1--1
         Frederic Bartumeus and   
          Ernesto P. Raposo and   
      Gandhi M. Viswanathan and   
            Marcos G. E. da Luz   Stochastic Optimal Foraging Theory . . . 3--32
           Michael J. Plank and   
Marie Auger-Méthé and   
              Edward A. Codling   Lévy or Not? Analysing Positional Data
                                  from Animal Movement Paths . . . . . . . 33--52
                  Andy Reynolds   Beyond Optimal Searching: Recent
                                  Developments in the Modelling of Animal
                                  Movement Patterns as Lévy Walks . . . . . 53--76
                  Andy Reynolds   Front Matter . . . . . . . . . . . . . . 77--77
             Hans G. Othmer and   
                      Chuan Xue   The Mathematical Analysis of Biological
                                  Aggregation and Dispersal: Progress,
                                  Problems and Perspectives  . . . . . . . 79--127
             Benjamin Franz and   
                    Radek Erban   Hybrid Modelling of Individual Movement
                                  and Collective Behaviour . . . . . . . . 129--157
               Hsin-Hua Wei and   
              Frithjof Lutscher   From Individual Movement Rules to
                                  Population Level Patterns: The Case of
                                  Central-Place Foragers . . . . . . . . . 159--175
              Thomas Hillen and   
               Kevin J. Painter   Transport and Anisotropic Diffusion
                                  Models for Movement in Oriented Habitats 177--222
             Andrew Yu. Morozov   Incorporating Complex Foraging of
                                  Zooplankton in Models: Role of Micro-
                                  and Mesoscale Processes in Macroscale
                                  Patterns . . . . . . . . . . . . . . . . 223--259
             Andrew Yu. Morozov   Front Matter . . . . . . . . . . . . . . 261--261
                  Ying Zhou and   
                       Mark Kot   Life on the Move: Modeling the Effects
                                  of Climate-Driven Range Shifts with
                                  Integrodifference Equations  . . . . . . 263--292
              Horst Malchow and   
                 Alex James and   
                  Richard Brown   Control of Competitive Bioinvasion . . . 293--305
                Nick F. Britton   Destruction and Diversity: Effects of
                                  Habitat Loss on Ecological Communities   307--330
             Vitaly Volpert and   
               Vitali Vougalter   Emergence and Propagation of Patterns in
                                  Nonlocal Reaction-Diffusion Equations
                                  Arising in the Theory of Speciation  . . 331--353
        Natalia Petrovskaya and   
              Nina Embleton and   
           Sergei V. Petrovskii   Numerical Study of Pest Population Size
                                  at Various Diffusion Rates . . . . . . . 355--385
        Natalia Petrovskaya and   
              Nina Embleton and   
           Sergei V. Petrovskii   Back Matter  . . . . . . . . . . . . . . 387--388


Lecture Notes in Mathematics
Volume 2072, 2013

                    Igor Reider   Front Matter . . . . . . . . . . . . . . i--viii
                    Igor Reider   Introduction . . . . . . . . . . . . . . 1--15
                    Igor Reider   Nonabelian Jacobian $ J(X; L, d) $: Main
                                  Properties . . . . . . . . . . . . . . . 17--32
                    Igor Reider   Some Properties of the Filtration $
                                  \mathbf {\tilde {H}}_{- \bullet } $  . . 33--38
                    Igor Reider   The Sheaf of Lie Algebras $ \mathcal
                                  {G}_{\Gamma } $  . . . . . . . . . . . . 39--73
                    Igor Reider   Period Maps and Torelli Problems . . . . 75--98
                    Igor Reider   $ {\rm sl}_2$-Structures on $ {\mathcal
                                  {F}}^{{\prime }}$  . . . . . . . . . . . 99--111
                    Igor Reider   $ {\rm sl}_2$-Structures on $ {\mathcal
                                  {G}}_{\Gamma }$  . . . . . . . . . . . . 113--122
                    Igor Reider   Involution on $ \mathcal {G}_\Gamma $    123--132
                    Igor Reider   Stratification of $ T_\pi $  . . . . . . 133--144
                    Igor Reider   Configurations and Theirs Equations  . . 145--173
                    Igor Reider   Representation Theoretic Constructions   175--196
                    Igor Reider   $ J(X; L, d) $ and the Langlands Duality 197--212
                    Igor Reider   Back Matter  . . . . . . . . . . . . . . 213--216


Lecture Notes in Mathematics
Volume 2073, 2013

           Peter Constantin and   
           Arnaud Debussche and   
          Giovanni P. Galdi and   
      Michael R\ru\vzi\vcka and   
                Gregory Seregin   Front Matter . . . . . . . . . . . . . . i--ix
               Peter Constantin   Complex Fluids and Lagrangian Particles  1--21
               Arnaud Debussche   Ergodicity Results for the Stochastic
                                  Navier--Stokes Equations: an
                                  Introduction . . . . . . . . . . . . . . 23--108
              Giovanni P. Galdi   Steady-State Navier--Stokes Problem Past
                                  a Rotating Body: Geometric-Functional
                                  Properties and Related Questions . . . . 109--197
          Michael R\ru\vzi\vcka   Analysis of Generalized Newtonian Fluids 199--238
          Michael R\ru\vzi\vcka   Analysis of Generalized Newtonian Fluids 199--238
                Gregory Seregin   Selected Topics of Local Regularity
                                  Theory for Navier--Stokes Equations  . . 239--313
                Gregory Seregin   Back Matter  . . . . . . . . . . . . . . 315--316


Lecture Notes in Mathematics
Volume 2074, 2013

                Yves Achdou and   
                 Guy Barles and   
              Hitoshi Ishii and   
            Grigory L. Litvinov   Front Matter . . . . . . . . . . . . . . i--xv
                    Yves Achdou   Finite Difference Methods for Mean Field
                                  Games  . . . . . . . . . . . . . . . . . 1--47
                     Guy Barles   An Introduction to the Theory of
                                  Viscosity Solutions for First-Order
                                  Hamilton--Jacobi Equations and
                                  Applications . . . . . . . . . . . . . . 49--109
                  Hitoshi Ishii   A Short Introduction to Viscosity
                                  Solutions and the Large Time Behavior of
                                  Solutions of Hamilton--Jacobi Equations  111--249
            Grigory L. Litvinov   Idempotent/Tropical Analysis, the
                                  Hamilton--Jacobi and Bellman Equations   251--301
            Grigory L. Litvinov   Back Matter  . . . . . . . . . . . . . . 303--304


Lecture Notes in Mathematics
Volume 2075, 2013

           Giorgio Patrizio and   
           Zbigniew B\locki and   
  François Berteloot and   
           Jean Pierre Demailly   Front Matter . . . . . . . . . . . . . . i--ix
      François Berteloot   Bifurcation Currents in Holomorphic
                                  Families of Rational Maps  . . . . . . . 1--93
               Zbigniew B\locki   The Complex Monge--Amp\`ere Equation in
                                  Kähler Geometry . . . . . . . . . . . . . 95--141
           Jean-Pierre Demailly   Applications of Pluripotential Theory to
                                  Algebraic Geometry . . . . . . . . . . . 143--263
                G. Patrizio and   
                       A. Spiro   Pluripotential Theory and
                                  Monge--Amp\`ere Foliations . . . . . . . 265--319
                G. Patrizio and   
                       A. Spiro   Back Matter  . . . . . . . . . . . . . . 321--322


Lecture Notes in Mathematics
Volume 2076, 2013

         Valeri Obukhovskii and   
               Pietro Zecca and   
             Nguyen Van Loi and   
                  Sergei Kornev   Front Matter . . . . . . . . . . . . . . i--xiii
         Valeri Obukhovskii and   
               Pietro Zecca and   
             Nguyen Van Loi and   
                  Sergei Kornev   Background . . . . . . . . . . . . . . . 1--24
         Valeri Obukhovskii and   
               Pietro Zecca and   
             Nguyen Van Loi and   
                  Sergei Kornev   Method of Guiding Functions in
                                  Finite-Dimensional Spaces  . . . . . . . 25--67
         Valeri Obukhovskii and   
               Pietro Zecca and   
             Nguyen Van Loi and   
                  Sergei Kornev   Method of Guiding Functions in Hilbert
                                  Spaces . . . . . . . . . . . . . . . . . 69--104
         Valeri Obukhovskii and   
               Pietro Zecca and   
             Nguyen Van Loi and   
                  Sergei Kornev   Second-Order Differential Inclusions . . 105--129
         Valeri Obukhovskii and   
               Pietro Zecca and   
             Nguyen Van Loi and   
                  Sergei Kornev   Nonlinear Fredholm Inclusions and
                                  Applications . . . . . . . . . . . . . . 131--165
         Valeri Obukhovskii and   
               Pietro Zecca and   
             Nguyen Van Loi and   
                  Sergei Kornev   Back Matter  . . . . . . . . . . . . . . 167--180


Lecture Notes in Mathematics
Volume 2077, 2013

            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Front Matter . . . . . . . . . . . . . . i--xvii
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Front Matter . . . . . . . . . . . . . . 1--1
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Uniform Asymptotic Formulae for Green's
                                  Functions for the Laplacian in Domains
                                  with Small Perforations  . . . . . . . . 3--19
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Mixed and Neumann Boundary Conditions
                                  for Domains with Small Holes and
                                  Inclusions: Uniform Asymptotics of
                                  Green's Kernels  . . . . . . . . . . . . 21--57
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Green's Function for the Dirichlet
                                  Boundary Value Problem in a Domain with
                                  Several Inclusions . . . . . . . . . . . 59--73
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Numerical Simulations Based on the
                                  Asymptotic Approximations  . . . . . . . 75--81
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Other Examples of Asymptotic
                                  Approximations of Green's Functions in
                                  Singularly Perturbed Domains . . . . . . 83--94
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Front Matter . . . . . . . . . . . . . . 95--95
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Green's Tensor for the Dirichlet
                                  Boundary Value Problem in a Domain with
                                  a Single Inclusion . . . . . . . . . . . 97--137
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Green's Tensor in Bodies with Multiple
                                  Rigid Inclusions . . . . . . . . . . . . 139--167
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Green's Tensor for the Mixed Boundary
                                  Value Problem in a Domain with a Small
                                  Hole . . . . . . . . . . . . . . . . . . 169--188
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Front Matter . . . . . . . . . . . . . . 189--189
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Meso-scale Approximations for Solutions
                                  of Dirichlet Problems  . . . . . . . . . 191--219
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Mixed Boundary Value Problems in
                                  Multiply-Perforated Domains  . . . . . . 221--247
            Vladimir Maz'ya and   
          Alexander Movchan and   
                 Michael Nieves   Back Matter  . . . . . . . . . . . . . . 249--260


Lecture Notes in Mathematics
Volume 2078, 2013

                   Ivan Nourdin   Lectures on Gaussian Approximations with
                                  Malliavin Calculus . . . . . . . . . . . 3--89
                   Ivan Nourdin   Front Matter . . . . . . . . . . . . . . 91--91
                  Vilmos Prokaj   Some Sufficient Conditions for the
                                  Ergodicity of the Lévy Transformation . . 93--121
        Stéphane Laurent   Vershik's Intermediate Level
                                  Standardness Criterion and the Scale of
                                  an Automorphism  . . . . . . . . . . . . 123--139
         Claude Dellacherie and   
            Michel Émery   Filtrations Indexed by Ordinals;
                                  Application to a Conjecture of S.
                                  Laurent  . . . . . . . . . . . . . . . . 141--157
            Michel Émery   A Planar Borel Set Which Divides Every
                                  Non-negligible Borel Product . . . . . . 159--165
              Jean Brossard and   
            Christophe Leuridan   Characterising Ocone Local Martingales
                                  with Reflections . . . . . . . . . . . . 167--180
               Hiroya Hashimoto   Approximation and Stability of Solutions
                                  of SDEs Driven by a Symmetric $ \alpha $
                                  Stable Process with Non-Lipschitz
                                  Coefficients . . . . . . . . . . . . . . 181--199
           Christa Cuchiero and   
                Josef Teichmann   Path Properties and Regularity of Affine
                                  Processes on General State Spaces  . . . 201--244
                 Emmanuel Jacob   Langevin Process Reflected on a
                                  Partially Elastic Boundary II  . . . . . 245--275
                R. A. Doney and   
                  S. Vakeroudis   Windings of Planar Stable Processes  . . 277--300
                Alexander Sokol   An Elementary Proof that the First
                                  Hitting Time of an Open Set by a Jump
                                  Process is a Stopping Time . . . . . . . 301--304
           Leif Döring and   
             Matthew I. Roberts   Catalytic Branching Processes via Spine
                                  Techniques and Renewal Theory  . . . . . 305--322
           Solesne Bourguin and   
               Ciprian A. Tudor   Malliavin Calculus and Self Normalized
                                  Sums . . . . . . . . . . . . . . . . . . 323--351
          Pedro J. Catuogno and   
           Diego S. Ledesma and   
               Paulo R. Ruffino   A Note on Stochastic Calculus in Vector
                                  Bundles  . . . . . . . . . . . . . . . . 353--364
                 Gilles Pag\`es   Functional Co-monotony of Processes with
                                  Applications to Peacocks and Barrier
                                  Options  . . . . . . . . . . . . . . . . 365--400
                Salim Noreddine   Fluctuations of the Traces of
                                  Complex-Valued Random Matrices . . . . . 401--431
                Janosch Ortmann   Functionals of the Brownian Bridge . . . 433--458
              Laurent Miclo and   
        Pierre Monmarché   Étude spectrale minutieuse de processus
                                  moins indécis que les autres. (French) [A
                                  careful spectral study of processes less
                                  undecided than others] . . . . . . . . . 459--481
              Franck Barthe and   
              Charles Bordenave   Combinatorial Optimization Over Two
                                  Random Point Sets  . . . . . . . . . . . 483--535
               Igor Kortchemski   A Simple Proof of Duquesne's Theorem on
                                  Contour Processes of Conditioned
                                  Galton--Watson Trees . . . . . . . . . . 537--558
               Igor Kortchemski   Back Matter  . . . . . . . . . . . . . . 559--560


Lecture Notes in Mathematics
Volume 2079, 2013

             Péter Major   Front Matter . . . . . . . . . . . . . . i--xiii
             Péter Major   Introduction . . . . . . . . . . . . . . 1--3
             Péter Major   Motivation of the Investigation:
                                  Discussion of Some Problems  . . . . . . 5--13
             Péter Major   Some Estimates About Sums of Independent
                                  Random Variables . . . . . . . . . . . . 15--20
             Péter Major   On the Supremum of a Nice Class of
                                  Partial Sums . . . . . . . . . . . . . . 21--33
             Péter Major   Vapnik--\vCervonenkis Classes and $ L_2
                                  $-Dense Classes of Functions . . . . . . 35--39
             Péter Major   The Proof of Theorems 4.1 and 4.2 on the
                                  Supremum of Random Sums  . . . . . . . . 41--51
             Péter Major   The Completion of the Proof of Theorem
                                  4.1  . . . . . . . . . . . . . . . . . . 53--64
             Péter Major   Formulation of the Main Results of This
                                  Work . . . . . . . . . . . . . . . . . . 65--78
             Péter Major   Some Results About $U$-statistics  . . . 79--95
             Péter Major   Multiple Wiener--Itô Integrals and Their
                                  Properties . . . . . . . . . . . . . . . 97--120
             Péter Major   The Diagram Formula for Products of
                                  Degenerate $U$-Statistics  . . . . . . . 121--138
             Péter Major   The Proof of the Diagram Formula for
                                  $U$-Statistics . . . . . . . . . . . . . 139--149
             Péter Major   The Proof of Theorems 8.3, 8.5 and
                                  Example 8.7  . . . . . . . . . . . . . . 151--168
             Péter Major   Reduction of the Main Result in This
                                  Work . . . . . . . . . . . . . . . . . . 169--179
             Péter Major   The Strategy of the Proof for the Main
                                  Result of This Work  . . . . . . . . . . 181--189
             Péter Major   A Symmetrization Argument  . . . . . . . 191--208
             Péter Major   The Proof of the Main Result . . . . . . 209--225
             Péter Major   An Overview of the Results and a
                                  Discussion of the Literature . . . . . . 227--245
             Péter Major   Back Matter  . . . . . . . . . . . . . . 247--290


Lecture Notes in Mathematics
Volume 2080, 2013

            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Front Matter . . . . . . . . . . . . . . i--xix
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Poset Theory . . . . . . . . . . . . . . 1--38
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Basics on the Theory of Local Rings  . . 39--95
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Lefschetz Properties . . . . . . . . . . 97--140
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Complete Intersections with the SLP  . . 141--156
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   A Generalization of Lefschetz Elements   157--170
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   $k$-Lefschetz Properties . . . . . . . . 171--188
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Cohomology Rings and the Strong
                                  Lefschetz Property . . . . . . . . . . . 189--199
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Invariant Theory and Lefschetz
                                  Properties . . . . . . . . . . . . . . . 201--209
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   The Strong Lefschetz Property and the
                                  Schur--Weyl Duality  . . . . . . . . . . 211--234
            Tadahito Harima and   
             Toshiaki Maeno and   
             Hideaki Morita and   
            Yasuhide Numata and   
              Akihito Wachi and   
                 Junzo Watanabe   Back Matter  . . . . . . . . . . . . . . 235--252


Lecture Notes in Mathematics
Volume 2081, 2013

           Fred Espen Benth and   
                 Dan Crisan and   
              Paolo Guasoni and   
   Konstantinos Manolarakis and   
       Johannes Muhle-Karbe and   
                   Colm Nee and   
                 Philip Protter   Front Matter . . . . . . . . . . . . . . i--ix
                 Philip Protter   A Mathematical Theory of Financial
                                  Bubbles  . . . . . . . . . . . . . . . . 1--108
               Fred Espen Benth   Stochastic Volatility and Dependency in
                                  Energy Markets: Multi-Factor Modelling   109--167
              Paolo Guasoni and   
           Johannes Muhle-Karbe   Portfolio Choice with Transaction Costs:
                                  a User's Guide . . . . . . . . . . . . . 169--201
                  D. Crisan and   
             K. Manolarakis and   
                         C. Nee   Cubature Methods and Applications  . . . 203--316
                  D. Crisan and   
             K. Manolarakis and   
                         C. Nee   Back Matter  . . . . . . . . . . . . . . 317--318


Lecture Notes in Mathematics
Volume 2083, 2013

             Jürgen Herzog   A Survey on Stanley Depth  . . . . . . . 3--45
         Anna Maria Bigatti and   
              Emanuela De Negri   Stanley Decompositions Using CoCoA . . . 47--59
         Anna Maria Bigatti and   
              Emanuela De Negri   Front Matter . . . . . . . . . . . . . . 61--61
                  Adam Van Tuyl   A Beginner's Guide to Edge and Cover
                                  Ideals . . . . . . . . . . . . . . . . . 63--94
                  Adam Van Tuyl   Edge Ideals Using Macaulay2  . . . . . . 95--105
                  Adam Van Tuyl   Front Matter . . . . . . . . . . . . . . 107--107
       Josep \`Alvarez Montaner   Local Cohomology Modules Supported on
                                  Monomial Ideals  . . . . . . . . . . . . 109--178
   Josep \`Alvarez Montaner and   
   Oscar Fernández-Ramos   Local Cohomology Using Macaulay2 . . . . 179--185
   Josep \`Alvarez Montaner and   
   Oscar Fernández-Ramos   Back Matter  . . . . . . . . . . . . . . 187--196


Lecture Notes in Mathematics
Volume 2084, 2013

                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Front Matter . . . . . . . . . . . . . . i--xiii
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Front Matter . . . . . . . . . . . . . . 1--3
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Preliminaries  . . . . . . . . . . . . . 5--22
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Approximations of the Identity . . . . . 23--58
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   The Hardy Space $ H^1 (\mu) $  . . . . . 59--136
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   The Local Atomic Hardy Space $ h^1 (\mu)
                                  $  . . . . . . . . . . . . . . . . . . . 137--214
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Boundedness of Operators over $
                                  ({\mathbb {R}}^D, \mu) $ . . . . . . . . 215--328
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Littlewood--Paley Operators and Maximal
                                  Operators Related to Approximations of
                                  the Identity . . . . . . . . . . . . . . 329--412
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Front Matter . . . . . . . . . . . . . . 413--415
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   The Hardy Space $ H^1 (\mathcal {X},
                                  \nu) $ and Its Dual Space $ \mathrm
                                  {RBMO}(\mathcal {X}, \nu) $  . . . . . . 417--481
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Boundedness of Operators over $
                                  (\mathcal {X}, \nu) $  . . . . . . . . . 483--642
                Dachun Yang and   
              Dongyong Yang and   
                       Guoen Hu   Back Matter  . . . . . . . . . . . . . . 643--656


Lecture Notes in Mathematics
Volume 2085, 2013

           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   Front Matter . . . . . . . . . . . . . . i--xiii
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   Introduction . . . . . . . . . . . . . . 1--10
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   The Fine Dynamics of the Chafee--Infante
                                  Equation . . . . . . . . . . . . . . . . 11--43
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   The Stochastic Chafee--Infante Equation  45--68
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   The Small Deviation of the Small Noise
                                  Solution . . . . . . . . . . . . . . . . 69--85
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   Asymptotic Exit Times  . . . . . . . . . 87--120
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   Asymptotic Transition Times  . . . . . . 121--130
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   Localization and Metastability . . . . . 131--149
           Arnaud Debussche and   
        Michael Högele and   
                 Peter Imkeller   Back Matter  . . . . . . . . . . . . . . 151--165


Lecture Notes in Mathematics
Volume 2086, 2013

  Sébastien Boucksom and   
        Philippe Eyssidieux and   
                  Vincent Guedj   Introduction . . . . . . . . . . . . . . 1--6
               Cyril Imbert and   
                 Luis Silvestre   An Introduction to Fully Nonlinear
                                  Parabolic Equations  . . . . . . . . . . 7--88
                  Jian Song and   
                   Ben Weinkove   An Introduction to the Kähler--Ricci Flow 89--188
  Sébastien Boucksom and   
                  Vincent Guedj   Regularizing Properties of the
                                  Kähler--Ricci Flow  . . . . . . . . . . . 189--237
                  Huai-Dong Cao   The Kähler--Ricci Flow on Fano Manifolds  239--297
                  Vincent Guedj   Convergence of the Kähler--Ricci Flow on
                                  a Kähler--Einstein Fano Manifold  . . . . 299--333
                  Vincent Guedj   Back Matter  . . . . . . . . . . . . . . 335--336


Lecture Notes in Mathematics
Volume 2088, 2013

                  Ju-Yi Yen and   
                       Marc Yor   Front Matter . . . . . . . . . . . . . . i--ix
                  Ju-Yi Yen and   
                       Marc Yor   Prerequisites  . . . . . . . . . . . . . 1--10
                  Ju-Yi Yen and   
                       Marc Yor   Front Matter . . . . . . . . . . . . . . 11--11
                  Ju-Yi Yen and   
                       Marc Yor   The Existence and Regularity of
                                  Semimartingale Local Times . . . . . . . 13--28
                  Ju-Yi Yen and   
                       Marc Yor   Lévy's Representation of Reflecting BM
                                  and Pitman's Representation of $ {\rm
                                  BES}(3) $  . . . . . . . . . . . . . . . 29--41
                  Ju-Yi Yen and   
                       Marc Yor   Paul Lévy's Arcsine Laws  . . . . . . . . 43--54
                  Ju-Yi Yen and   
                       Marc Yor   Front Matter . . . . . . . . . . . . . . 55--55
                  Ju-Yi Yen and   
                       Marc Yor   Brownian Excursion Theory: a First
                                  Approach . . . . . . . . . . . . . . . . 57--64
                  Ju-Yi Yen and   
                       Marc Yor   Two Descriptions of $n$: Itô's and
                                  Williams'  . . . . . . . . . . . . . . . 65--77
                  Ju-Yi Yen and   
                       Marc Yor   A Simple Path Decomposition of Brownian
                                  Motion Around Time $ t = 1 $ . . . . . . 79--92
                  Ju-Yi Yen and   
                       Marc Yor   The Laws of, and Conditioning with
                                  Respect to, Last Passage Times . . . . . 93--100
                  Ju-Yi Yen and   
                       Marc Yor   Integral Representations Relating $W$
                                  and $n$  . . . . . . . . . . . . . . . . 101--104
                  Ju-Yi Yen and   
                       Marc Yor   Front Matter . . . . . . . . . . . . . . 105--105
                  Ju-Yi Yen and   
                       Marc Yor   The Feynman--Kac Formula and Excursion
                                  Theory . . . . . . . . . . . . . . . . . 107--110
                  Ju-Yi Yen and   
                       Marc Yor   Some Identities in Law . . . . . . . . . 111--131
                  Ju-Yi Yen and   
                       Marc Yor   Back Matter  . . . . . . . . . . . . . . 133--138


Lecture Notes in Mathematics
Volume 2089, 2013

                Christoph Kawan   Front Matter . . . . . . . . . . . . . . i--xxii
                Christoph Kawan   Basic Properties of Control Systems  . . 1--42
                Christoph Kawan   Introduction to Invariance Entropy . . . 43--87
                Christoph Kawan   Linear and Bilinear Systems  . . . . . . 89--105
                Christoph Kawan   General Estimates  . . . . . . . . . . . 107--120
                Christoph Kawan   Controllability, Lyapunov Exponents, and
                                  Upper Bounds . . . . . . . . . . . . . . 121--150
                Christoph Kawan   Escape Rates and Lower Bounds  . . . . . 151--175
                Christoph Kawan   Examples . . . . . . . . . . . . . . . . 177--220
                Christoph Kawan   Back Matter  . . . . . . . . . . . . . . 221--272


Lecture Notes in Mathematics
Volume 2090, 2013

              Martin Burger and   
      Andrea C. G. Mennucci and   
              Stanley Osher and   
                   Martin Rumpf   Front Matter . . . . . . . . . . . . . . i--vii
              Martin Burger and   
                  Stanley Osher   A Guide to the TV Zoo  . . . . . . . . . 1--70
              Alex Sawatzky and   
            Christoph Brune and   
        Thomas Kösters and   
       Frank Wübbeling and   
                  Martin Burger   EM--TV Methods for Inverse Problems with
                                  Poisson Noise  . . . . . . . . . . . . . 71--142
                   Martin Rumpf   Variational Methods in Image Matching
                                  and Motion Extraction  . . . . . . . . . 143--204
          Andrea C. G. Mennucci   Metrics of Curves in Shape Optimization
                                  and Analysis . . . . . . . . . . . . . . 205--319
          Andrea C. G. Mennucci   Back Matter  . . . . . . . . . . . . . . 321--322


Lecture Notes in Mathematics
Volume 2098, 2013

               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . i--xvii
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 1--1
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Preliminaries  . . . . . . . . . . . . . 3--50
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Layer Potential Techniques . . . . . . . 51--94
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 95--95
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Small Volume Expansions  . . . . . . . . 97--113
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Generalized Polarization Tensors . . . . 115--131
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Frequency Dependent Generalized
                                  Polarization Tensors . . . . . . . . . . 133--142
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 143--143
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Multistatic Response Matrix: Statistical
                                  Structure  . . . . . . . . . . . . . . . 145--161
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   MSR Matrices Using Multipolar Expansions 163--169
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 171--171
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Direct Imaging Functionals for
                                  Inclusions in the Continuum
                                  Approximation  . . . . . . . . . . . . . 173--188
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Detection and Imaging from MSR
                                  Measurements . . . . . . . . . . . . . . 189--202
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 203--203
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Reconstruction of GPTs from MSR
                                  Measurements . . . . . . . . . . . . . . 205--210
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Target Identification and Tracking . . . 211--226
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 227--227
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Time-Reversal and Diffraction Tomography
                                  for Inverse Source Problems  . . . . . . 229--238
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Imaging Small Shape Deformations of an
                                  Extended Target from MSR Measurements    239--252
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Nonlinear Optimization Algorithms  . . . 253--266
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 267--267
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   GPT- and $S$-Vanishing Structures for
                                  Near-Cloaking  . . . . . . . . . . . . . 269--286
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Anomalous Resonance Cloaking . . . . . . 287--299
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Front Matter . . . . . . . . . . . . . . 301--301
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Numerical Implementations  . . . . . . . 303--330
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Numerical Results  . . . . . . . . . . . 331--349
               Habib Ammari and   
           Josselin Garnier and   
                Wenjia Jing and   
              Hyeonbae Kang and   
               Mikyoung Lim and   
          Knut Sòlna and   
                       Han Wang   Back Matter  . . . . . . . . . . . . . . 351--382


Lecture Notes in Mathematics
Volume 2099, 2013

   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Front Matter . . . . . . . . . . . . . . i--xviii
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   A Primer on Feller Semigroups and Feller
                                  Processes  . . . . . . . . . . . . . . . 1--30
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Feller Generators and Symbols  . . . . . 31--67
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Construction of Feller Processes . . . . 69--98
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Transformations of Feller Processes  . . 99--110
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Sample Path Properties . . . . . . . . . 111--140
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Global Properties  . . . . . . . . . . . 141--165
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Approximation  . . . . . . . . . . . . . 167--175
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Open Problems  . . . . . . . . . . . . . 177--179
   Björn Böttcher and   
      René Schilling and   
                      Jian Wang   Back Matter  . . . . . . . . . . . . . . 181--202


Lecture Notes in Mathematics
Volume 2100, 2013

                 Itai Benjamini   Front Matter . . . . . . . . . . . . . . i--vii
                 Itai Benjamini   Introductory Graph and Metric Notions    1--18
                 Itai Benjamini   On the Structure of Vertex Transitive
                                  Graphs . . . . . . . . . . . . . . . . . 19--21
                 Itai Benjamini   The Hyperbolic Plane and Hyperbolic
                                  Graphs . . . . . . . . . . . . . . . . . 23--31
                 Itai Benjamini   Percolation on Graphs  . . . . . . . . . 33--40
                 Itai Benjamini   Local Limits of Graphs . . . . . . . . . 41--51
                 Itai Benjamini   Random Planar Geometry . . . . . . . . . 53--58
                 Itai Benjamini   Growth and Isoperimetric Profile of
                                  Planar Graphs  . . . . . . . . . . . . . 59--61
                 Itai Benjamini   Critical Percolation on Non-Amenable
                                  Groups . . . . . . . . . . . . . . . . . 63--68
                 Itai Benjamini   Uniqueness of the Infinite Percolation
                                  Cluster  . . . . . . . . . . . . . . . . 69--84
                 Itai Benjamini   Percolation Perturbations  . . . . . . . 85--95
                 Itai Benjamini   Percolation on Expanders . . . . . . . . 97--105
                 Itai Benjamini   Harmonic Functions on Graphs . . . . . . 107--120
                 Itai Benjamini   Nonamenable Liouville Graphs . . . . . . 121--124
                 Itai Benjamini   Back Matter  . . . . . . . . . . . . . . 125--132


Lecture Notes in Mathematics
Volume 2102, 2013

           Peter E. Kloeden and   
        Christian Pötzsche   Front Matter . . . . . . . . . . . . . . i--xviii
           Peter E. Kloeden and   
        Christian Pötzsche   Front Matter . . . . . . . . . . . . . . 1--1
           Peter E. Kloeden and   
        Christian Pötzsche   Nonautonomous Dynamical Systems in the
                                  Life Sciences  . . . . . . . . . . . . . 3--39
Michael Marcondes de Freitas and   
              Eduardo D. Sontag   Random Dynamical Systems with Inputs . . 41--87
       Martin Wechselberger and   
                 John Mitry and   
                    John Rinzel   Canard Theory and Excitability . . . . . 89--132
       Martin Wechselberger and   
                 John Mitry and   
                    John Rinzel   Front Matter . . . . . . . . . . . . . . 133--133
                   Kevin K. Lin   Stimulus-Response Reliability of
                                  Biological Networks  . . . . . . . . . . 135--161
          Philip T. Clemson and   
             Spase Petkoski and   
        Tomislav Stankovski and   
              Aneta Stefanovska   Coupled Nonautonomous Oscillators  . . . 163--197
        Germán A. Enciso   Multisite Mechanisms for
                                  Ultrasensitivity in Signal Transduction  199--224
               Gilbert Koch and   
               Johannes Schropp   Mathematical Concepts in
                                  Pharmacokinetics and Pharmacodynamics
                                  with Application to Tumor Growth . . . . 225--250
               Eva Herrmann and   
                    Yusuke Asai   Viral Kinetic Modeling of Chronic
                                  Hepatitis C and B Infection  . . . . . . 251--268
        Christina Surulescu and   
              Nicolae Surulescu   Some Classes of Stochastic Differential
                                  Equations as an Alternative Modeling
                                  Approach to Biomedical Problems  . . . . 269--307
        Christina Surulescu and   
              Nicolae Surulescu   Back Matter  . . . . . . . . . . . . . . 309--314


Lecture Notes in Mathematics
Volume 849, 2014

             Péter Major   Front Matter . . . . . . . . . . . . . . i--xiii
             Péter Major   On a Limit Problem . . . . . . . . . . . 1--8
             Péter Major   Wick Polynomials . . . . . . . . . . . . 9--14
             Péter Major   Random Spectral Measures . . . . . . . . 15--26
             Péter Major   Multiple Wiener--Itô Integrals  . . . . . 27--42
             Péter Major   The Proof of Itô's Formula: The Diagram
                                  Formula and Some of Its Consequences . . 43--64
             Péter Major   Subordinated Random Fields: Construction
                                  of Self-similar Fields . . . . . . . . . 65--79
             Péter Major   On the Original Wiener--Itô Integral  . . 81--86
             Péter Major   Non-central Limit Theorems . . . . . . . 87--112
             Péter Major   History of the Problems: Comments  . . . 113--122
             Péter Major   Back Matter  . . . . . . . . . . . . . . 123--128


Lecture Notes in Mathematics
Volume 2082, 2014

      Wolf-Jürgen Beyn and   
                 Luca Dieci and   
           Nicola Guglielmi and   
               Ernst Hairer and   
Jesús María Sanz-Serna and   
                 Marino Zennaro   Front Matter . . . . . . . . . . . . . . i--ix
              Paola Console and   
                   Ernst Hairer   Long-Term Stability of Symmetric
                                  Partitioned Linear Multistep Methods . . 1--37
               J. M. Sanz-Serna   Markov Chain Monte Carlo and Numerical
                                  Differential Equations . . . . . . . . . 39--88
      Wolf-Jürgen Beyn and   
                Denny Otten and   
          Jens Rottmann-Matthes   Stability and Computation of Dynamic
                                  Patterns in PDEs . . . . . . . . . . . . 89--172
                 Luca Dieci and   
          Alessandra Papini and   
        Alessandro Pugliese and   
             Alessandro Spadoni   Continuous Decompositions and Coalescing
                                  Eigenvalues for Matrices Depending on
                                  Parameters . . . . . . . . . . . . . . . 173--264
           Nicola Guglielmi and   
                 Marino Zennaro   Stability of Linear Problems: Joint
                                  Spectral Radius of Sets of Matrices  . . 265--313
           Nicola Guglielmi and   
                 Marino Zennaro   Back Matter  . . . . . . . . . . . . . . 315--316


Lecture Notes in Mathematics
Volume 2087, 2014

               Luca Capogna and   
               Pengfei Guan and   
Cristian E. Gutiérrez and   
            Annamaria Montanari   Front Matter . . . . . . . . . . . . . . i--xi
                   Luca Capogna   $ L^\infty $-Extremal Mappings in AMLE
                                  and Teichmüller Theory  . . . . . . . . . 1--46
                   Pengfei Guan   Curvature Measures, Isoperimetric Type
                                  Inequalities and Fully Nonlinear PDEs    47--94
   Cristian E. Gutiérrez   Refraction Problems in Geometric Optics  95--150
            Annamaria Montanari   On the Levi Monge--Ampére Equation  . . . 151--208
            Annamaria Montanari   Back Matter  . . . . . . . . . . . . . . 209--212


Lecture Notes in Mathematics
Volume 2091, 2014

            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Front Matter . . . . . . . . . . . . . . i--xvi
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Intervals  . . . . . . . . . . . . . . . 1--16
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Modal Intervals  . . . . . . . . . . . . 17--37
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Modal Interval Extensions  . . . . . . . 39--72
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Interpretability and Optimality  . . . . 73--120
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Interval Arithmetic  . . . . . . . . . . 121--141
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Equations and Systems  . . . . . . . . . 143--158
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Twins and $ f^\ast $ Algorithm . . . . . 159--183
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Marks  . . . . . . . . . . . . . . . . . 185--228
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Intervals of Marks . . . . . . . . . . . 229--264
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Some Related Problems  . . . . . . . . . 265--305
            Miguel A. Sainz and   
           Joaquim Armengol and   
                 Remei Calm and   
                Pau Herrero and   
              Lambert Jorba and   
                     Josep Vehi   Back Matter  . . . . . . . . . . . . . . 307--318


Lecture Notes in Mathematics
Volume 2092, 2014

           Donald A. Dawson and   
                 Andreas Greven   Front Matter . . . . . . . . . . . . . . i--xvii
           Donald A. Dawson and   
                 Andreas Greven   Introduction . . . . . . . . . . . . . . 1--10
           Donald A. Dawson and   
                 Andreas Greven   Mean-Field Emergence and Fixation of
                                  Rare Mutants in the Fisher--Wright Model
                                  with Two Types . . . . . . . . . . . . . 11--38
           Donald A. Dawson and   
                 Andreas Greven   Formulation of the Multitype and
                                  Multiscale Model . . . . . . . . . . . . 39--53
           Donald A. Dawson and   
                 Andreas Greven   Formulation of the Main Results in the
                                  General Case . . . . . . . . . . . . . . 55--104
           Donald A. Dawson and   
                 Andreas Greven   A Basic Tool: Dual Representations . . . 105--145
           Donald A. Dawson and   
                 Andreas Greven   Long-Time Behaviour: Ergodicity and
                                  Non-ergodicity . . . . . . . . . . . . . 147--159
           Donald A. Dawson and   
                 Andreas Greven   Mean-Field Emergence and Fixation of
                                  Rare Mutants: Concepts, Strategy and a
                                  Caricature Model . . . . . . . . . . . . 161--165
           Donald A. Dawson and   
                 Andreas Greven   Methods and Proofs for the
                                  Fisher--Wright Model with Two Types  . . 167--375
           Donald A. Dawson and   
                 Andreas Greven   Emergence with $ M \geq 2 $ Lower Order
                                  Types (Phases $0$, $1$, $2$) . . . . . . 377--714
           Donald A. Dawson and   
                 Andreas Greven   The General $ (M, M) $-Type Mean-Field
                                  Model: Emergence, Fixation and Droplets  715--780
           Donald A. Dawson and   
                 Andreas Greven   Neutral Evolution on $ E_1 $ After
                                  Fixation (Phase 3) . . . . . . . . . . . 781--786
           Donald A. Dawson and   
                 Andreas Greven   Re-equilibration on Higher Level $ E_1 $
                                  (Phase 4)  . . . . . . . . . . . . . . . 787--810
           Donald A. Dawson and   
                 Andreas Greven   Iteration of the Cycle I: Emergence and
                                  Fixation on $ E_2 $  . . . . . . . . . . 811--828
           Donald A. Dawson and   
                 Andreas Greven   Iteration of the Cycle II: Extension to
                                  the General Multilevel Hierarchy . . . . 829--837
           Donald A. Dawson and   
                 Andreas Greven   Winding-Up: Proofs of the Theorems
                                  $3$--$ 11$ . . . . . . . . . . . . . . . 839--839
           Donald A. Dawson and   
                 Andreas Greven   Back Matter  . . . . . . . . . . . . . . 841--858


Lecture Notes in Mathematics
Volume 2093, 2014

                  Raphael Kruse   Front Matter . . . . . . . . . . . . . . i--xiv
                  Raphael Kruse   Introduction . . . . . . . . . . . . . . 1--10
                  Raphael Kruse   Stochastic Evolution Equations in
                                  Hilbert Spaces . . . . . . . . . . . . . 11--49
                  Raphael Kruse   Optimal Strong Error Estimates for
                                  Galerkin Finite Element Methods  . . . . 51--84
                  Raphael Kruse   A Short Review of the Malliavin Calculus
                                  in Hilbert Spaces  . . . . . . . . . . . 85--108
                  Raphael Kruse   A Malliavin Calculus Approach to Weak
                                  Convergence  . . . . . . . . . . . . . . 109--127
                  Raphael Kruse   Numerical Experiments  . . . . . . . . . 129--153
                  Raphael Kruse   Back Matter  . . . . . . . . . . . . . . 155--180


Lecture Notes in Mathematics
Volume 2094, 2014

                 Andrea Braides   Front Matter . . . . . . . . . . . . . . i--xi
                 Andrea Braides   Introduction . . . . . . . . . . . . . . 1--6
                 Andrea Braides   Global Minimization  . . . . . . . . . . 7--24
                 Andrea Braides   Parameterized Motion Driven by Global
                                  Minimization . . . . . . . . . . . . . . 25--52
                 Andrea Braides   Local Minimization as a Selection
                                  Criterion  . . . . . . . . . . . . . . . 53--66
                 Andrea Braides   Convergence of Local Minimizers  . . . . 67--78
                 Andrea Braides   Small-Scale Stability  . . . . . . . . . 79--89
                 Andrea Braides   Minimizing Movements . . . . . . . . . . 91--101
                 Andrea Braides   Minimizing Movements Along a Sequence of
                                  Functionals  . . . . . . . . . . . . . . 103--128
                 Andrea Braides   Geometric Minimizing Movements . . . . . 129--143
                 Andrea Braides   Different Time Scales  . . . . . . . . . 145--158
                 Andrea Braides   Stability Theorems . . . . . . . . . . . 159--171
                 Andrea Braides   Back Matter  . . . . . . . . . . . . . . 173--176


Lecture Notes in Mathematics
Volume 2095, 2014

                Daniele Angella   Front Matter . . . . . . . . . . . . . . i--xxv
                Daniele Angella   Preliminaries on (Almost-)Complex
                                  Manifolds  . . . . . . . . . . . . . . . 1--63
                Daniele Angella   Cohomology of Complex Manifolds  . . . . 65--94
                Daniele Angella   Cohomology of Nilmanifolds . . . . . . . 95--150
                Daniele Angella   Cohomology of Almost-Complex Manifolds   151--232
                Daniele Angella   Back Matter  . . . . . . . . . . . . . . 233--264


Lecture Notes in Mathematics
Volume 2096, 2014

            Stanislav Hencl and   
                  Pekka Koskela   Front Matter . . . . . . . . . . . . . . i--xi
            Stanislav Hencl and   
                  Pekka Koskela   Introduction . . . . . . . . . . . . . . 1--15
            Stanislav Hencl and   
                  Pekka Koskela   Continuity . . . . . . . . . . . . . . . 17--39
            Stanislav Hencl and   
                  Pekka Koskela   Openness and Discreteness  . . . . . . . 41--61
            Stanislav Hencl and   
                  Pekka Koskela   Images and Preimages of Null Sets  . . . 63--79
            Stanislav Hencl and   
                  Pekka Koskela   Homeomorphisms of Finite Distortion  . . 81--105
            Stanislav Hencl and   
                  Pekka Koskela   Integrability of $ J_f $ and $ 1 / J_f $ 107--121
            Stanislav Hencl and   
                  Pekka Koskela   Final Comments . . . . . . . . . . . . . 123--138
            Stanislav Hencl and   
                  Pekka Koskela   Back Matter  . . . . . . . . . . . . . . 139--178


Lecture Notes in Mathematics
Volume 2097, 2014

               Tatsuo Nishitani   Front Matter . . . . . . . . . . . . . . i--viii
               Tatsuo Nishitani   Introduction . . . . . . . . . . . . . . 1--29
               Tatsuo Nishitani   Necessary Conditions for Strong
                                  Hyperbolicity  . . . . . . . . . . . . . 31--84
               Tatsuo Nishitani   Two by Two Systems with Two Independent
                                  Variables  . . . . . . . . . . . . . . . 85--160
               Tatsuo Nishitani   Systems with Nondegenerate
                                  Characteristics  . . . . . . . . . . . . 161--229
               Tatsuo Nishitani   Back Matter  . . . . . . . . . . . . . . 231--240


Lecture Notes in Mathematics
Volume 2101, 2014

                Takashi Kumagai   Front Matter . . . . . . . . . . . . . . i--x
                Takashi Kumagai   Introduction . . . . . . . . . . . . . . 1--2
                Takashi Kumagai   Weighted Graphs and the Associated
                                  Markov Chains  . . . . . . . . . . . . . 3--19
                Takashi Kumagai   Heat Kernel Estimates: General Theory    21--41
                Takashi Kumagai   Heat Kernel Estimates Using Effective
                                  Resistance . . . . . . . . . . . . . . . 43--58
                Takashi Kumagai   Heat Kernel Estimates for Random
                                  Weighted Graphs  . . . . . . . . . . . . 59--64
                Takashi Kumagai   Alexander--Orbach Conjecture Holds When
                                  Two-Point Functions Behave Nicely  . . . 65--77
                Takashi Kumagai   Further Results for Random Walk on IIC   79--93
                Takashi Kumagai   Random Conductance Model . . . . . . . . 95--134
                Takashi Kumagai   Back Matter  . . . . . . . . . . . . . . 135--150


Lecture Notes in Mathematics
Volume 2103, 2014

           Manfred Knebusch and   
                  Tobias Kaiser   Front Matter . . . . . . . . . . . . . . i--xii
           Manfred Knebusch and   
                  Tobias Kaiser   Overrings and PM-Spectra . . . . . . . . 1--57
           Manfred Knebusch and   
                  Tobias Kaiser   Approximation Theorems . . . . . . . . . 59--121
           Manfred Knebusch and   
                  Tobias Kaiser   Kronecker Extensions and Star Operations 123--178
           Manfred Knebusch and   
                  Tobias Kaiser   Back Matter  . . . . . . . . . . . . . . 179--192


Lecture Notes in Mathematics
Volume 2104, 2014

           Christian Weiß   Front Matter . . . . . . . . . . . . . . i--xvi
           Christian Weiß   Introduction . . . . . . . . . . . . . . 1--10
           Christian Weiß   Background . . . . . . . . . . . . . . . 11--37
           Christian Weiß   Teichmüller Curves  . . . . . . . . . . . 39--51
           Christian Weiß   Twisted Teichmüller Curves  . . . . . . . 53--59
           Christian Weiß   Stabilizer and Maximality  . . . . . . . 61--84
           Christian Weiß   Calculations for Twisted Teichmüller
                                  Curves . . . . . . . . . . . . . . . . . 85--119
           Christian Weiß   Prym Varieties and Teichmüller Curves . . 121--125
           Christian Weiß   Lyapunov Exponents . . . . . . . . . . . 127--133
           Christian Weiß   Kobayashi Curves Revisited . . . . . . . 135--144
           Christian Weiß   Back Matter  . . . . . . . . . . . . . . 145--168


Lecture Notes in Mathematics
Volume 2105, 2014

                Siegfried Bosch   Front Matter . . . . . . . . . . . . . . i--viii
                Siegfried Bosch   Introduction . . . . . . . . . . . . . . 1--5
                Siegfried Bosch   Front Matter . . . . . . . . . . . . . . 7--7
                Siegfried Bosch   Tate Algebras  . . . . . . . . . . . . . 9--29
                Siegfried Bosch   Affinoid Algebras and Their Associated
                                  Spaces . . . . . . . . . . . . . . . . . 31--63
                Siegfried Bosch   Affinoid Functions . . . . . . . . . . . 65--91
                Siegfried Bosch   Towards the Notion of Rigid Spaces . . . 93--116
                Siegfried Bosch   Coherent Sheaves on Rigid Spaces . . . . 117--147
                Siegfried Bosch   Front Matter . . . . . . . . . . . . . . 149--149
                Siegfried Bosch   Adic Rings and Their Associated Formal
                                  Schemes  . . . . . . . . . . . . . . . . 151--173
                Siegfried Bosch   Raynaud's View on Rigid Spaces . . . . . 175--214
                Siegfried Bosch   More Advanced Stuff  . . . . . . . . . . 215--227
                Siegfried Bosch   Back Matter  . . . . . . . . . . . . . . 229--256


Lecture Notes in Mathematics
Volume 2106, 2014

               Krzysztof Burdzy   Front Matter . . . . . . . . . . . . . . i--xii
               Krzysztof Burdzy   Brownian Motion  . . . . . . . . . . . . 1--10
               Krzysztof Burdzy   Probabilistic Proofs of Classical
                                  Theorems . . . . . . . . . . . . . . . . 11--19
               Krzysztof Burdzy   Overview of the ``Hot Spots'' Problem    21--29
               Krzysztof Burdzy   Neumann Eigenfunctions and Eigenvalues   31--39
               Krzysztof Burdzy   Synchronous and Mirror Couplings . . . . 41--62
               Krzysztof Burdzy   Parabolic Boundary Harnack Principle . . 63--75
               Krzysztof Burdzy   Scaling Coupling . . . . . . . . . . . . 77--87
               Krzysztof Burdzy   Nodal Lines  . . . . . . . . . . . . . . 89--96
               Krzysztof Burdzy   Neumann Heat Kernel Monotonicity . . . . 97--105
               Krzysztof Burdzy   Reflected Brownian Motion in Time
                                  Dependent Domains  . . . . . . . . . . . 107--131
               Krzysztof Burdzy   Back Matter  . . . . . . . . . . . . . . 133--140


Lecture Notes in Mathematics
Volume 2107, 2014

               William Chen and   
            Anand Srivastav and   
           Giancarlo Travaglini   Front Matter . . . . . . . . . . . . . . i--xvi
               William Chen and   
            Anand Srivastav and   
           Giancarlo Travaglini   Front Matter . . . . . . . . . . . . . . 1--1
               William Chen and   
                Maxim Skriganov   Upper Bounds in Classical Discrepancy
                                  Theory . . . . . . . . . . . . . . . . . 3--69
                  Dmitriy Bilyk   Roth's Orthogonal Function Method in
                                  Discrepancy Theory and Some New
                                  Connections  . . . . . . . . . . . . . . 71--158
            Luca Brandolini and   
            Giacomo Gigante and   
           Giancarlo Travaglini   Irregularities of Distribution and
                                  Average Decay of Fourier Transforms  . . 159--220
             József Beck   Superirregularity  . . . . . . . . . . . 221--316
             József Beck   Front Matter . . . . . . . . . . . . . . 317--317
           Nils Hebbinghaus and   
                Anand Srivastav   Multicolor Discrepancy of Arithmetic
                                  Structures . . . . . . . . . . . . . . . 319--424
                  Nikhil Bansal   Algorithmic Aspects of Combinatorial
                                  Discrepancy  . . . . . . . . . . . . . . 425--457
                 Lasse Kliemann   Practical Algorithms for Low-Discrepancy
                                  $2$-Colorings  . . . . . . . . . . . . . 459--484
                 Lasse Kliemann   Front Matter . . . . . . . . . . . . . . 485--485
             Ákos Magyar   On the Distribution of Solutions to
                                  Diophantine Equations  . . . . . . . . . 487--538
                 Josef Dick and   
       Friedrich Pillichshammer   Discrepancy Theory and Quasi-Monte Carlo
                                  Integration  . . . . . . . . . . . . . . 539--619
               Carola Doerr and   
            Michael Gnewuch and   
          Magnus Wahlström   Calculation of Discrepancy Measures and
                                  Applications . . . . . . . . . . . . . . 621--678
               Carola Doerr and   
            Michael Gnewuch and   
          Magnus Wahlström   Back Matter  . . . . . . . . . . . . . . 679--698


Lecture Notes in Mathematics
Volume 2108, 2014

                 Aldo Conca and   
            Sandra Di Rocco and   
                Jan Draisma and   
                   June Huh and   
            Bernd Sturmfels and   
                Filippo Viviani   Front Matter . . . . . . . . . . . . . . i--vii
                     Aldo Conca   Koszul Algebras and Their Syzygies . . . 1--31
                    Jan Draisma   Noetherianity up to Symmetry . . . . . . 33--61
                   June Huh and   
                Bernd Sturmfels   Likelihood Geometry  . . . . . . . . . . 63--117
                Sandra Di Rocco   Linear Toric Fibrations  . . . . . . . . 119--147
                Filippo Viviani   A Tour on Hermitian Symmetric Manifolds  149--239
                Filippo Viviani   Back Matter  . . . . . . . . . . . . . . 241--242


Lecture Notes in Mathematics
Volume 2109, 2014

                  Stefan Witzel   Front Matter . . . . . . . . . . . . . . i--xvi
                  Stefan Witzel   Basic Definitions and Properties . . . . 1--44
                  Stefan Witzel   Finiteness Properties of $ \mathbf
                                  {G}(F_q[t]) $  . . . . . . . . . . . . . 45--79
                  Stefan Witzel   Finiteness Properties of $ \mathbf
                                  {G}(F_q[t, t^{-1}]) $  . . . . . . . . . 81--97
                  Stefan Witzel   Back Matter  . . . . . . . . . . . . . . 99--116


Lecture Notes in Mathematics
Volume 2110, 2014

            Owen Dearricott and   
Fernando Galaz-García and   
                Lee Kennard and   
           Catherine Searle and   
            Gregor Weingart and   
                Wolfgang Ziller   Front Matter . . . . . . . . . . . . . . i--vii
                Wolfgang Ziller   Riemannian Manifolds with Positive
                                  Sectional Curvature  . . . . . . . . . . 1--19
               Catherine Searle   An Introduction to Isometric Group
                                  Actions with Applications to Spaces with
                                  Curvature Bounded from Below . . . . . . 21--43
          Fernando Galaz-Garcia   A Note on Maximal Symmetry Rank,
                                  Quasipositive Curvature, and Low
                                  Dimensional Manifolds  . . . . . . . . . 45--55
                Owen Dearricott   Lectures on $n$-Sasakian Manifolds . . . 57--109
                    Lee Kennard   On the Hopf Conjecture with Symmetry . . 111--116
                Gregor Weingart   An Introduction to Exterior Differential
                                  Systems  . . . . . . . . . . . . . . . . 117--196
                Gregor Weingart   Back Matter  . . . . . . . . . . . . . . 197--198


Lecture Notes in Mathematics
Volume 2111, 2014

          Lou van den Dries and   
         Jochen Koenigsmann and   
       H. Dugald Macpherson and   
               Anand Pillay and   
            Carlo Toffalori and   
                 Alex J. Wilkie   Front Matter . . . . . . . . . . . . . . i--vii
          Dugald Macpherson and   
                Carlo Toffalori   Model Theory in Algebra, Analysis and
                                  Arithmetic: a Preface  . . . . . . . . . 1--11
                   Anand Pillay   Some Themes Around First Order Theories
                                  Without the Independence Property  . . . 13--33
                   A. J. Wilkie   Lectures on the Model Theory of Real and
                                  Complex Exponentiation . . . . . . . . . 35--53
              Lou van den Dries   Lectures on the Model Theory of Valued
                                  Fields . . . . . . . . . . . . . . . . . 55--157
             Jochen Koenigsmann   Undecidability in Number Theory  . . . . 159--195
             Jochen Koenigsmann   Back Matter  . . . . . . . . . . . . . . 197--198


Lecture Notes in Mathematics
Volume 2112, 2014

         Christian Bär and   
               Christian Becker   Front Matter . . . . . . . . . . . . . . i--viii
         Christian Bär and   
               Christian Becker   Differential Characters and Geometric
                                  Chains . . . . . . . . . . . . . . . . . 1--90
               Christian Becker   Relative Differential Cohomology . . . . 91--180
               Christian Becker   Back Matter  . . . . . . . . . . . . . . 181--189


Lecture Notes in Mathematics
Volume 2113, 2014

        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Front Matter . . . . . . . . . . . . . . i--x
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Introduction . . . . . . . . . . . . . . 1--8
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Three-Dimensional Point Groups . . . . . 9--21
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Arithmetic Classification of Pairs $ (L,
                                  H) $ . . . . . . . . . . . . . . . . . . 23--39
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   The Split Three-Dimensional
                                  Crystallographic Groups  . . . . . . . . 41--43
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   A Splitting Formula for Lower Algebraic
                                  $K$-Theory . . . . . . . . . . . . . . . 45--57
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Fundamental Domains for the Maximal
                                  Groups . . . . . . . . . . . . . . . . . 59--79
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   The Homology Groups $ H_n^\varGamma
                                  (E_{\mathcal {FIN}}(\varGamma); \mathbb
                                  {K} \mathbb {Z}^{- \infty }) $ . . . . . 81--98
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Fundamental Domains for Actions on
                                  Spaces of Planes . . . . . . . . . . . . 99--117
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Cokernels of the Relative Assembly Maps
                                  for $ \mathcal {V} \mathcal {C}_\infty $ 119--136
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Summary  . . . . . . . . . . . . . . . . 137--141
        Daniel Scott Farley and   
           Ivonne Johanna Ortiz   Back Matter  . . . . . . . . . . . . . . 143--150


Lecture Notes in Mathematics
Volume 2114, 2014

          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Front Matter . . . . . . . . . . . . . . i--xiii
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Introduction . . . . . . . . . . . . . . 1--23
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Slow Integral Manifolds  . . . . . . . . 25--42
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   The Book of Numbers  . . . . . . . . . . 43--80
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Representations of Slow Integral
                                  Manifolds  . . . . . . . . . . . . . . . 81--92
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Singular Singularly Perturbed Systems    93--110
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Reduction Methods for Chemical Systems   111--117
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Specific Cases . . . . . . . . . . . . . 119--139
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Canards and Black Swans  . . . . . . . . 141--182
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Appendix: Proofs . . . . . . . . . . . . 183--198
          Elena Shchepakina and   
           Vladimir Sobolev and   
             Michael P. Mortell   Back Matter  . . . . . . . . . . . . . . 199--214


Lecture Notes in Mathematics
Volume 2115, 2014

     François Rouvi\`ere   Front Matter . . . . . . . . . . . . . . i--xxi
     François Rouvi\`ere   The Kashiwara--Vergne Method for Lie
                                  Groups . . . . . . . . . . . . . . . . . 1--49
     François Rouvi\`ere   Convolution on Homogeneous Spaces  . . . 51--56
     François Rouvi\`ere   The Role of $e$-Functions  . . . . . . . 57--117
     François Rouvi\`ere   $e$-Functions and the
                                  Campbell--Hausdorff Formula  . . . . . . 119--175
     François Rouvi\`ere   Back Matter  . . . . . . . . . . . . . . 177--198


Lecture Notes in Mathematics
Volume 2116, 2014

              Bo'az Klartag and   
                 Emanuel Milman   Front Matter . . . . . . . . . . . . . . i--ix
            Dominique Bakry and   
                Marguerite Zani   Dyson Processes Associated with
                                  Associative Algebras: The Clifford Case  1--37
                 Itai Benjamini   Gaussian Free Field on Hyperbolic
                                  Lattices . . . . . . . . . . . . . . . . 39--45
             Itai Benjamini and   
                Pascal Maillard   Point-to-Point Distance in First Passage
                                  Percolation on (Tree) $ \times Z $ . . . 47--51
               Zbigniew B\locki   A Lower Bound for the Bergman Kernel and
                                  the Bourgain--Milman Inequality  . . . . 53--63
                  Jean Bourgain   An Improved Estimate in the Restricted
                                  Isometry Problem . . . . . . . . . . . . 65--70
                  Jean Bourgain   On Eigenvalue Spacings for the $1$-D
                                  Anderson Model with Singular Site
                                  Distribution . . . . . . . . . . . . . . 71--83
                  Jean Bourgain   On the Local Eigenvalue Spacings for
                                  Certain Anderson--Bernoulli Hamiltonians 85--96
                  Jean Bourgain   On the Control Problem for Schrödinger
                                  Operators on Tori  . . . . . . . . . . . 97--105
                Ronen Eldan and   
                   Joseph Lehec   Bounding the Norm of a Log-Concave
                                  Vector Via Thin-Shell Estimates  . . . . 107--122
             Dmitry Faifman and   
              Bo'az Klartag and   
                  Vitali Milman   On the Oscillation Rigidity of a
                                  Lipschitz Function on a High-Dimensional
                                  Flat Torus . . . . . . . . . . . . . . . 123--131
              Dan Florentin and   
              Vitali Milman and   
                Alexander Segal   Identifying Set Inclusion by Projective
                                  Positions and Mixed Volumes  . . . . . . 133--145
             Omer Friedland and   
                   Yosef Yomdin   Vitushkin-Type Theorems  . . . . . . . . 147--157
     Apostolos Giannopoulos and   
                 Emanuel Milman   $M$-Estimates for Isotropic Convex
                                  Bodies and Their $ L_q$-Centroid Bodies  159--182
                     Uri Grupel   Remarks on the Central Limit Theorem for
                                  Non-convex Bodies  . . . . . . . . . . . 183--198
              Benjamin Jaye and   
                  Fedor Nazarov   Reflectionless Measures and the
                                  Mattila--Melnikov--Verdera Uniform
                                  Rectifiability Theorem . . . . . . . . . 199--229
                  Bo'az Klartag   Logarithmically-Concave Moment Measures
                                  I  . . . . . . . . . . . . . . . . . . . 231--260
            Alexander Koldobsky   Estimates for Measures of Sections of
                                  Convex Bodies  . . . . . . . . . . . . . 261--271
    Alexander V. Kolesnikov and   
                 Emanuel Milman   Remarks on the KLS Conjecture and
                                  Hardy-Type Inequalities  . . . . . . . . 273--292
                 Rafa\l Lata\la   Modified Paouris Inequality  . . . . . . 293--307
                  Michel Ledoux   Remarks on Gaussian Noise Stability,
                                  Brascamp--Lieb and Slepian Inequalities  309--333


Lecture Notes in Mathematics
Volume 2118, 2014

         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Front Matter . . . . . . . . . . . . . . i--x
         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Introduction . . . . . . . . . . . . . . 1--3
         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Inverse $M$-Matrices and Potentials  . . 5--55
         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Ultrametric Matrices . . . . . . . . . . 57--84
         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Graph of Ultrametric Type Matrices . . . 85--117
         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Filtered Matrices  . . . . . . . . . . . 119--163
         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Hadamard Functions of Inverse
                                  $M$-Matrices . . . . . . . . . . . . . . 165--213
         Claude Dellacherie and   
            Servet Martinez and   
               Jaime San Martin   Back Matter  . . . . . . . . . . . . . . 215--238


Lecture Notes in Mathematics
Volume 2121, 2014

                 Daniel Robertz   Front Matter . . . . . . . . . . . . . . i--viii
                 Daniel Robertz   Introduction . . . . . . . . . . . . . . 1--4
                 Daniel Robertz   Formal Methods for PDE Systems . . . . . 5--117
                 Daniel Robertz   Differential Elimination for Analytic
                                  Functions  . . . . . . . . . . . . . . . 119--231
                 Daniel Robertz   Back Matter  . . . . . . . . . . . . . . 233--285


Lecture Notes in Mathematics
Volume 2122, 2014

              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Front Matter . . . . . . . . . . . . . . i--x
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Introduction . . . . . . . . . . . . . . 1--16
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Singular Curves  . . . . . . . . . . . . 17--26
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Combinatorial Results  . . . . . . . . . 27--44
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Preliminaries on GIT . . . . . . . . . . 45--59
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Potential Pseudo-Stability Theorem . . . 61--72
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Stabilizer Subgroups . . . . . . . . . . 73--80
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Behavior at the Extremes of the Basic
                                  Inequality . . . . . . . . . . . . . . . 81--90
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   A Criterion of Stability for Tails . . . 91--105
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Elliptic Tails and Tacnodes with a Line  107--116
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   A Stratification of the Semistable Locus 117--130
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Semistable, Polystable and Stable Points
                                  (Part I) . . . . . . . . . . . . . . . . 131--139
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Stability of Elliptic Tails  . . . . . . 141--147
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Semistable, Polystable and Stable Points
                                  (Part II)  . . . . . . . . . . . . . . . 149--154
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Geometric Properties of the GIT Quotient 155--165
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Extra Components of the GIT Quotient . . 167--170
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Compactifications of the Universal
                                  Jacobian . . . . . . . . . . . . . . . . 171--195
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Appendix: Positivity Properties of
                                  Balanced Line Bundles  . . . . . . . . . 197--203
              Gilberto Bini and   
               Fabio Felici and   
             Margarida Melo and   
                Filippo Viviani   Back Matter  . . . . . . . . . . . . . . 205--214


Lecture Notes in Mathematics
Volume 2123, 2014

    Catherine Donati-Martin and   
              Antoine Lejay and   
                  Alain Rouault   Front Matter . . . . . . . . . . . . . . i--viii
            Sergey Bocharov and   
                Simon C. Harris   Branching Random Walk in an
                                  Inhomogeneous Breeding Potential . . . . 1--32
            A. E. Kyprianou and   
          J-L. Pérez and   
                      Y.-X. Ren   The Backbone Decomposition for Spatially
                                  Dependent Supercritical Superprocesses   33--59
              Lucian Beznea and   
              Iulian C\^\impean   On Bochner--Kolmogorov Theorem . . . . . 61--70
                Jacques Franchi   Small Time Asymptotics for an Example of
                                  Strictly Hypoelliptic Heat Kernel  . . . 71--103
Koléh\`e A. Coulibaly-Pasquier   Onsager--Machlup Functional for
                                  Uniformly Elliptic Time-Inhomogeneous
                                  Diffusion  . . . . . . . . . . . . . . . 105--123
                    Xi Geng and   
              Zhongmin Qian and   
                     Danyu Yang   $G$-Brownian Motion as Rough Paths and
                                  Differential Equations Driven by
                                  $G$-Brownian Motion  . . . . . . . . . . 125--193
           Ismaël Bailleul   Flows Driven by Banach Space-Valued
                                  Rough Paths  . . . . . . . . . . . . . . 195--205
       Christian Léonard   Some Properties of Path Measures . . . . 207--230
                P. Cattiaux and   
                     A. Guillin   Semi Log-Concave Markov Diffusions . . . 231--292
            Carlo Marinelli and   
           Michael Röckner   On Maximal Inequalities for Purely
                                  Discontinuous Martingales in Infinite
                                  Dimensions . . . . . . . . . . . . . . . 293--315
           Walter Schachermayer   Admissible Trading Strategies Under
                                  Transaction Costs  . . . . . . . . . . . 317--331
            A. E. Kyprianou and   
                   A. R. Watson   Potentials of Stable Processes . . . . . 333--343
          Julien Letemplier and   
                   Thomas Simon   Unimodality of Hitting Times for Stable
                                  Processes  . . . . . . . . . . . . . . . 345--357
          Mathieu Rosenbaum and   
                       Marc Yor   On the Law of a Triplet Associated with
                                  the Pseudo-Brownian Bridge . . . . . . . 359--375
              Jean Brossard and   
        Michel Émery and   
            Christophe Leuridan   Skew-Product Decomposition of Planar
                                  Brownian Motion and Complementability    377--394
                  Vilmos Prokaj   On the Exactness of the
                                  Lévy-Transformation.  . . . . . . . . . . 395--400
                  Yinshan Chang   Multi-Occupation Field Generates the
                                  Borel--Sigma-Field of Loops  . . . . . . 401--410
               Ramon van Handel   Ergodicity, Decisions, and Partial
                                  Information  . . . . . . . . . . . . . . 411--459
                 Laurent Serlet   Invariance Principle for the Random Walk
                                  Conditioned to Have Few Zeros  . . . . . 461--472
                 Dario Trevisan   A Short Proof of Stein's Universal
                                  Multiplier Theorem . . . . . . . . . . . 473--479


Lecture Notes in Mathematics
Volume 2127, 2014

               Benjamin Sambale   Front Matter . . . . . . . . . . . . . . i--xiii
               Benjamin Sambale   Front Matter . . . . . . . . . . . . . . 1--1
               Benjamin Sambale   Definitions and Facts  . . . . . . . . . 3--17
               Benjamin Sambale   Open Conjectures . . . . . . . . . . . . 19--22
               Benjamin Sambale   Front Matter . . . . . . . . . . . . . . 23--23
               Benjamin Sambale   Quadratic Forms  . . . . . . . . . . . . 25--32
               Benjamin Sambale   The Cartan Method  . . . . . . . . . . . 33--46
               Benjamin Sambale   A Bound in Terms of Fusion Systems . . . 47--61
               Benjamin Sambale   Essential Subgroups and Alperin's Fusion
                                  Theorem  . . . . . . . . . . . . . . . . 63--70
               Benjamin Sambale   Reduction to Quasisimple Groups and the
                                  Classification . . . . . . . . . . . . . 71--78
               Benjamin Sambale   Front Matter . . . . . . . . . . . . . . 79--79
               Benjamin Sambale   Metacyclic Defect Groups . . . . . . . . 81--94
               Benjamin Sambale   Products of Metacyclic Groups  . . . . . 95--125
               Benjamin Sambale   Bicyclic Groups  . . . . . . . . . . . . 127--157
               Benjamin Sambale   Defect Groups of $p$-Rank $2$  . . . . . 159--165
               Benjamin Sambale   Minimal Non-abelian Defect Groups  . . . 167--179
               Benjamin Sambale   Small Defect Groups  . . . . . . . . . . 181--203
               Benjamin Sambale   Abelian Defect Groups  . . . . . . . . . 205--217
               Benjamin Sambale   Blocks with Few Characters . . . . . . . 219--227
               Benjamin Sambale   Back Matter  . . . . . . . . . . . . . . 229--246


Lecture Notes in Mathematics
Volume 2117, 2015

               Stefan Liebscher   Front Matter . . . . . . . . . . . . . . i--xii
               Stefan Liebscher   Front Matter . . . . . . . . . . . . . . 1--1
               Stefan Liebscher   Introduction . . . . . . . . . . . . . . 3--12
               Stefan Liebscher   Methods and Concepts . . . . . . . . . . 13--19
               Stefan Liebscher   Cosymmetries . . . . . . . . . . . . . . 21--23
               Stefan Liebscher   Front Matter . . . . . . . . . . . . . . 25--25
               Stefan Liebscher   Transcritical Bifurcation  . . . . . . . 27--34
               Stefan Liebscher   Poincaré--Andronov--Hopf Bifurcation  . . 35--41
               Stefan Liebscher   Application: Decoupling in Networks  . . 43--47
               Stefan Liebscher   Application: Oscillatory Profiles in
                                  Systems of Hyperbolic Balance Laws . . . 49--54
               Stefan Liebscher   Front Matter . . . . . . . . . . . . . . 55--55
               Stefan Liebscher   Degenerate Transcritical Bifurcation . . 57--65
               Stefan Liebscher   Degenerate Poincaré--Andronov--Hopf
                                  Bifurcation  . . . . . . . . . . . . . . 67--79
               Stefan Liebscher   Bogdanov--Takens Bifurcation . . . . . . 81--102
               Stefan Liebscher   Zero-Hopf Bifurcation  . . . . . . . . . 103--108
               Stefan Liebscher   Double-Hopf Bifurcation  . . . . . . . . 109--113
               Stefan Liebscher   Application: Cosmological Models of
                                  Bianchi Type, the Tumbling Universe  . . 115--118
               Stefan Liebscher   Application: Fluid Flow in a Planar
                                  Channel, Spatial Dynamics with
                                  Reversible Bogdanov--Takens Bifurcation  119--128
               Stefan Liebscher   Front Matter . . . . . . . . . . . . . . 129--129
               Stefan Liebscher   Codimension-One Manifolds of Equilibria  131--133
               Stefan Liebscher   Summary and Outlook  . . . . . . . . . . 135--137
               Stefan Liebscher   Back Matter  . . . . . . . . . . . . . . 139--144


Lecture Notes in Mathematics
Volume 2119, 2015

             Antoine Ducros and   
              Charles Favre and   
               Johannes Nicaise   Front Matter . . . . . . . . . . . . . . i--xix
             Antoine Ducros and   
              Charles Favre and   
               Johannes Nicaise   Front Matter . . . . . . . . . . . . . . 1--1
                 Michael Temkin   Introduction to Berkovich Analytic
                                  Spaces . . . . . . . . . . . . . . . . . 3--66
                 Antoine Ducros   Étale Cohomology of Schemes and Analytic
                                  Spaces . . . . . . . . . . . . . . . . . 67--118
                  Charles Favre   Countability Properties of Some
                                  Berkovich Spaces . . . . . . . . . . . . 119--132
                  Charles Favre   Front Matter . . . . . . . . . . . . . . 133--133
                 Antoine Ducros   Cohomological Finiteness of Proper
                                  Morphisms in Algebraic Geometry: a
                                  Purely Transcendental Proof, Without
                                  Projective Tools . . . . . . . . . . . . 135--140
       Bertrand Rémy and   
           Amaury Thuillier and   
                 Annette Werner   Bruhat--Tits Buildings and Analytic
                                  Geometry . . . . . . . . . . . . . . . . 141--202
       Bertrand Rémy and   
           Amaury Thuillier and   
                 Annette Werner   Front Matter . . . . . . . . . . . . . . 203--203
                Mattias Jonsson   Dynamics on Berkovich Spaces in Low
                                  Dimensions . . . . . . . . . . . . . . . 205--366
               Jean-Pierre Otal   Compactification of Spaces of
                                  Representations After Culler, Morgan and
                                  Shalen . . . . . . . . . . . . . . . . . 367--413
               Jean-Pierre Otal   Back Matter  . . . . . . . . . . . . . . 415--416


Lecture Notes in Mathematics
Volume 2120, 2015

                 Volker Schmidt   Front Matter . . . . . . . . . . . . . . i--xxiv
            Dominic Schuhmacher   Stein's Method for Approximating Complex
                                  Distributions, with a View towards Point
                                  Processes  . . . . . . . . . . . . . . . 1--30
  Bart\lomiej B\laszczyszyn and   
         Dhandapani Yogeshwaran   Clustering Comparison of Point
                                  Processes, with Applications to Random
                                  Geometric Models . . . . . . . . . . . . 31--71
          Claudia Redenbach and   
         André Liebscher   Random Tessellations and their
                                  Application to the Modelling of Cellular
                                  Materials  . . . . . . . . . . . . . . . 73--93
             Volker Schmidt and   
            Gerd Gaiselmann and   
                    Ole Stenzel   Stochastic $3$D Models for the
                                  Micro-structure of Advanced Functional
                                  Materials  . . . . . . . . . . . . . . . 95--141
               Dominique Jeulin   Boolean Random Functions . . . . . . . . 143--169
             Viktor Bene\vs and   
             Jakub Stan\uek and   
Bla\vzena Kratochvílová and   
       Ond\vrej \vSedivý   Random Marked Sets and Dimension
                                  Reduction  . . . . . . . . . . . . . . . 171--203
             Viktor Bene\vs and   
Michaela Proke\vsová and   
Kate\vrina Sta\vnková Helisová and   
Markéta Zikmundová   Space-Time Models in Stochastic Geometry 205--232
        Eva B. Vedel Jensen and   
                Allan Rasmusson   Rotational Integral Geometry and Local
                                  Stereology --- with a View to Image
                                  Analysis . . . . . . . . . . . . . . . . 233--255
    Ulrich Stadtmüller and   
                Marta Zampiceni   An Introduction to Functional Data
                                  Analysis . . . . . . . . . . . . . . . . 257--292
             Alexander Bulinski   Some Statistical Methods in Genetics . . 293--320
            Evgeny Spodarev and   
             Elena Shmileva and   
                    Stefan Roth   Extrapolation of Stationary Random
                                  Fields . . . . . . . . . . . . . . . . . 321--368
             Dirk P. Kroese and   
               Zdravko I. Botev   Spatial Process Simulation . . . . . . . 369--404
             Wilfrid S. Kendall   Introduction to Coupling-from-the-Past
                                  using R  . . . . . . . . . . . . . . . . 405--439
             Wilfrid S. Kendall   Back Matter  . . . . . . . . . . . . . . 441--466


Lecture Notes in Mathematics
Volume 2124, 2015

             Ka\"\is Ammari and   
                  Serge Nicaise   Front Matter . . . . . . . . . . . . . . i--xi
             Ka\"\is Ammari and   
                  Serge Nicaise   Some Backgrounds . . . . . . . . . . . . 1--35
             Ka\"\is Ammari and   
                  Serge Nicaise   Stabilization of Second Order Evolution
                                  Equations by a Class of Unbounded
                                  Feedbacks  . . . . . . . . . . . . . . . 37--60
             Ka\"\is Ammari and   
                  Serge Nicaise   Stabilization of Second Order Evolution
                                  Equations with Unbounded Feedback with
                                  Delay  . . . . . . . . . . . . . . . . . 61--71
             Ka\"\is Ammari and   
                  Serge Nicaise   Asymptotic Behaviour of Concrete
                                  Dissipative Systems  . . . . . . . . . . 73--146
             Ka\"\is Ammari and   
                  Serge Nicaise   Systems with Delay . . . . . . . . . . . 147--168
             Ka\"\is Ammari and   
                  Serge Nicaise   Back Matter  . . . . . . . . . . . . . . 169--180


Lecture Notes in Mathematics
Volume 2126, 2015

             Jacek Banasiak and   
     Mustapha Mokhtar-Kharroubi   Front Matter . . . . . . . . . . . . . . i--xi
                    Wilson Lamb   Applying Functional Analytic Techniques
                                  to Evolution Equations . . . . . . . . . 1--46
                 Adam Bobrowski   Boundary Conditions in Evolutionary
                                  Equations in Biology . . . . . . . . . . 47--92
                Ernesto Estrada   Introduction to Complex Networks:
                                  Structure and Dynamics . . . . . . . . . 93--131
                 Jacek Banasiak   Kinetic Models in Natural Sciences . . . 133--198
      Philippe Laurençot   Weak Compactness Techniques and
                                  Coagulation Equations  . . . . . . . . . 199--253
               Ryszard Rudnicki   Stochastic Operators and Semigroups and
                                  Their Applications in Physics and
                                  Biology  . . . . . . . . . . . . . . . . 255--318
     Mustapha Mokhtar-Kharroubi   Spectral Theory for Neutron Transport    319--386
         Anna Marciniak-Czochra   Reaction-Diffusion-ODE Models of Pattern
                                  Formation  . . . . . . . . . . . . . . . 387--438
         Mapundi Kondwani Banda   Nonlinear Hyperbolic Systems of
                                  Conservation Laws and Related
                                  Applications . . . . . . . . . . . . . . 439--493
         Mapundi Kondwani Banda   Back Matter  . . . . . . . . . . . . . . 495--496


Lecture Notes in Mathematics
Volume 2128, 2015

           Denis Belomestny and   
             Fabienne Comte and   
    Valentine Genon-Catalot and   
              Hiroki Masuda and   
              Markus Reiß   Front Matter . . . . . . . . . . . . . . i--xv
           Denis Belomestny and   
              Markus Reiß   Estimation and Calibration of Lévy Models
                                  via Fourier Methods  . . . . . . . . . . 1--76
             Fabienne Comte and   
        Valentine Genon-Catalot   Adaptive Estimation for Lévy Processes    77--177
                  Hiroki Masuda   Parametric Estimation of Lévy Processes   179--286
                  Hiroki Masuda   Back Matter  . . . . . . . . . . . . . . 287--288


Lecture Notes in Mathematics
Volume 2129, 2015

              Sigrun Bodine and   
                 Donald A. Lutz   Front Matter . . . . . . . . . . . . . . i--xi
              Sigrun Bodine and   
                 Donald A. Lutz   Introduction, Notation, and Background   1--10
              Sigrun Bodine and   
                 Donald A. Lutz   Asymptotic Integration for Differential
                                  Systems  . . . . . . . . . . . . . . . . 11--67
              Sigrun Bodine and   
                 Donald A. Lutz   Asymptotic Representation for Solutions
                                  of Difference Systems  . . . . . . . . . 69--117
              Sigrun Bodine and   
                 Donald A. Lutz   Conditioning Transformations for
                                  Differential Systems . . . . . . . . . . 119--177
              Sigrun Bodine and   
                 Donald A. Lutz   Conditioning Transformations for
                                  Difference Systems . . . . . . . . . . . 179--208
              Sigrun Bodine and   
                 Donald A. Lutz   Perturbations of Jordan Differential
                                  Systems  . . . . . . . . . . . . . . . . 209--232
              Sigrun Bodine and   
                 Donald A. Lutz   Perturbations of Jordan Difference
                                  Systems  . . . . . . . . . . . . . . . . 233--236
              Sigrun Bodine and   
                 Donald A. Lutz   Applications to Classes of Scalar Linear
                                  Differential Equations . . . . . . . . . 237--294
              Sigrun Bodine and   
                 Donald A. Lutz   Applications to Classes of Scalar Linear
                                  Difference Equations . . . . . . . . . . 295--368
              Sigrun Bodine and   
                 Donald A. Lutz   Asymptotics for Dynamic Equations on
                                  Time Scales  . . . . . . . . . . . . . . 369--391
              Sigrun Bodine and   
                 Donald A. Lutz   Back Matter  . . . . . . . . . . . . . . 393--404


Lecture Notes in Mathematics
Volume 2130, 2015

                  Hatice Boylan   Front Matter . . . . . . . . . . . . . . i--xix
                  Hatice Boylan   Finite Quadratic Modules . . . . . . . . 1--17
                  Hatice Boylan   Weil Representations of Finite Quadratic
                                  Modules  . . . . . . . . . . . . . . . . 19--64
                  Hatice Boylan   Jacobi Forms over Totally Real Number
                                  Fields . . . . . . . . . . . . . . . . . 65--101
                  Hatice Boylan   Singular Jacobi Forms  . . . . . . . . . 103--122
                  Hatice Boylan   Back Matter  . . . . . . . . . . . . . . 123--132


Lecture Notes in Mathematics
Volume 2131, 2015

David Alonso-Gutiérrez and   
           Jesús Bastero   Front Matter . . . . . . . . . . . . . . i--x
David Alonso-Gutiérrez and   
           Jesús Bastero   The Conjectures  . . . . . . . . . . . . 1--64
David Alonso-Gutiérrez and   
           Jesús Bastero   Main Examples  . . . . . . . . . . . . . 65--101
David Alonso-Gutiérrez and   
           Jesús Bastero   Relating the Conjectures . . . . . . . . 103--135
David Alonso-Gutiérrez and   
           Jesús Bastero   Back Matter  . . . . . . . . . . . . . . 137--150


Lecture Notes in Mathematics
Volume 2135, 2015

              Paolo Butt\`a and   
            Guido Cavallaro and   
                Carlo Marchioro   Front Matter . . . . . . . . . . . . . . i--xiv
              Paolo Butt\`a and   
            Guido Cavallaro and   
                Carlo Marchioro   Gas of Point Particles . . . . . . . . . 1--41
              Paolo Butt\`a and   
            Guido Cavallaro and   
                Carlo Marchioro   Vlasov Approximation . . . . . . . . . . 43--61
              Paolo Butt\`a and   
            Guido Cavallaro and   
                Carlo Marchioro   Motion of a Body Immersed in a Vlasov
                                  System . . . . . . . . . . . . . . . . . 63--100
              Paolo Butt\`a and   
            Guido Cavallaro and   
                Carlo Marchioro   Motion of a Body Immersed in a Stokes
                                  Fluid  . . . . . . . . . . . . . . . . . 101--116
              Paolo Butt\`a and   
            Guido Cavallaro and   
                Carlo Marchioro   Back Matter  . . . . . . . . . . . . . . 117--136


Lecture Notes in Mathematics
Volume 2141, 2015

                P. R. Kumar and   
       Martin J. Wainwright and   
              Riccardo Zecchina   Front Matter . . . . . . . . . . . . . . i--vii
              Fabio Fagnani and   
           Sophie M. Fosson and   
                 Chiara Ravazzi   Some Introductory Notes on Random Graphs 1--26
             Carlo Baldassi and   
         Alfredo Braunstein and   
       Abolfazl Ramezanpour and   
              Riccardo Zecchina   Statistical Physics and Network
                                  Optimization Problems  . . . . . . . . . 27--49
           Martin J. Wainwright   Graphical Models and Message-Passing
                                  Algorithms: Some Introductory Lectures   51--108
                    P. R. Kumar   Bridging the Gap Between Information
                                  Theory and Wireless Networking . . . . . 109--135
                    P. R. Kumar   Back Matter  . . . . . . . . . . . . . . 137--138


Lecture Notes in Mathematics
Volume 2159, 2016

               Sara van de Geer   Front Matter . . . . . . . . . . . . . . i--xiii
               Sara van de Geer   Introduction . . . . . . . . . . . . . . 1--4
               Sara van de Geer   The Lasso  . . . . . . . . . . . . . . . 5--25
               Sara van de Geer   The Square-Root Lasso  . . . . . . . . . 27--39
               Sara van de Geer   The Bias of the Lasso and Worst Possible
                                  Sub-directions . . . . . . . . . . . . . 41--60
               Sara van de Geer   Confidence Intervals Using the Lasso . . 61--74
               Sara van de Geer   Structured Sparsity  . . . . . . . . . . 75--101
               Sara van de Geer   General Loss with Norm-Penalty . . . . . 103--119
               Sara van de Geer   Empirical Process Theory for Dual Norms  121--131
               Sara van de Geer   Probability Inequalities for Matrices    133--137
               Sara van de Geer   Inequalities for the Centred Empirical
                                  Risk and Its Derivative  . . . . . . . . 139--150
               Sara van de Geer   The Margin Condition . . . . . . . . . . 151--165
               Sara van de Geer   Some Worked-Out Examples . . . . . . . . 167--197
               Sara van de Geer   Brouwer's Fixed Point Theorem and
                                  Sparsity . . . . . . . . . . . . . . . . 199--214
               Sara van de Geer   Asymptotically Linear Estimators of the
                                  Precision Matrix . . . . . . . . . . . . 215--221
               Sara van de Geer   Lower Bounds for Sparse Quadratic Forms  223--231
               Sara van de Geer   Symmetrization, Contraction and
                                  Concentration  . . . . . . . . . . . . . 233--238
               Sara van de Geer   Chaining Including Concentration . . . . 239--253
               Sara van de Geer   Metric Structure of Convex Hulls . . . . 255--266
               Sara van de Geer   Back Matter  . . . . . . . . . . . . . . 267--276


Lecture Notes in Mathematics
Volume 2160, 2016

            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Front Matter . . . . . . . . . . . . . . i--xxvi
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Introduction . . . . . . . . . . . . . . 1--16
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Extensions of Continuous Positive
                                  Definite Functions . . . . . . . . . . . 17--46
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   The Case of More General Groups  . . . . 47--66
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Examples . . . . . . . . . . . . . . . . 67--92
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Type I vs. Type II Extensions  . . . . . 93--113
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Spectral Theory for Mercer Operators,
                                  and Implications for $ {\rm Ext}(F) $    115--150
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Green's Functions  . . . . . . . . . . . 151--169
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Comparing the Different RKHSs $ \mathcal
                                  {H}_F $ and $ \mathcal {H}_K $ . . . . . 171--191
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Convolution Products . . . . . . . . . . 193--195
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Models for, and Spectral Representations
                                  of, Operator Extensions  . . . . . . . . 197--216
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Overview and Open Questions  . . . . . . 217--218
            Palle Jorgensen and   
             Steen Pedersen and   
                      Feng Tian   Back Matter  . . . . . . . . . . . . . . 219--233


Lecture Notes in Mathematics
Volume 2161, 2016

             Annalisa Buffa and   
             Giancarlo Sangalli   Front Matter . . . . . . . . . . . . . . i--ix
                Carla Manni and   
               Hendrik Speleers   Standard and Non-standard CAGD Tools for
                                  Isogeometric Analysis: a Tutorial  . . . 1--69
               Vibeke Skytt and   
                     Tor Dokken   Models for Isogeometric Analysis from
                                  CAD  . . . . . . . . . . . . . . . . . . 71--86
  L. Beirão da Veiga and   
                   A. Buffa and   
                G. Sangalli and   
              R. Vázquez   An Introduction to the Numerical
                                  Analysis of Isogeometric Methods . . . . 87--154
              John A. Evans and   
            Thomas J. R. Hughes   Isogeometric Compatible Discretizations
                                  for Viscous Incompressible Flow  . . . . 155--193
              John A. Evans and   
            Thomas J. R. Hughes   Back Matter  . . . . . . . . . . . . . . 195--196


Lecture Notes in Mathematics
Volume 2162, 2016

          Patrick Popescu-Pampu   Front Matter . . . . . . . . . . . . . . i--xvii
          Patrick Popescu-Pampu   The $ \gamma \acute {\varepsilon } \nu o
                                  \varsigma $ According to Aristotle . . . 1--1
          Patrick Popescu-Pampu   Front Matter . . . . . . . . . . . . . . 3--3
          Patrick Popescu-Pampu   Descartes and the New World of Curves    5--6
          Patrick Popescu-Pampu   Newton and the Classification of Curves  7--8
          Patrick Popescu-Pampu   When Integrals Hide Curves . . . . . . . 9--10
          Patrick Popescu-Pampu   Jakob Bernoulli and the Construction of
                                  Curves . . . . . . . . . . . . . . . . . 11--13
          Patrick Popescu-Pampu   Fagnano and the Lemniscate . . . . . . . 15--16
          Patrick Popescu-Pampu   Euler and the Addition of Lemniscatic
                                  Integrals  . . . . . . . . . . . . . . . 17--18
          Patrick Popescu-Pampu   Legendre and Elliptic Functions  . . . . 19--20
          Patrick Popescu-Pampu   Abel and the New Transcendental
                                  Functions  . . . . . . . . . . . . . . . 21--22
          Patrick Popescu-Pampu   A Proof by Abel  . . . . . . . . . . . . 23--24
          Patrick Popescu-Pampu   Abel's Motivations . . . . . . . . . . . 25--26
          Patrick Popescu-Pampu   Cauchy and the Integration Paths . . . . 27--30
          Patrick Popescu-Pampu   Puiseux and the Permutations of Roots    31--33
          Patrick Popescu-Pampu   Riemann and the Cutting of Surfaces  . . 35--40
          Patrick Popescu-Pampu   Riemann and the Birational Invariance of
                                  Genus  . . . . . . . . . . . . . . . . . 41--42
          Patrick Popescu-Pampu   The Riemann--Roch Theorem  . . . . . . . 43--44
          Patrick Popescu-Pampu   A Reinterpretation of Abel's Works . . . 45--49
          Patrick Popescu-Pampu   Jordan and the Topological
                                  Classification . . . . . . . . . . . . . 51--52
          Patrick Popescu-Pampu   Clifford and the Number of Holes . . . . 53--57
          Patrick Popescu-Pampu   Clebsch and the Choice of the Term
                                  ``Genus''  . . . . . . . . . . . . . . . 59--61


Lecture Notes in Mathematics
Volume 2163, 2016

               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   Front Matter . . . . . . . . . . . . . . i--ix
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   Introduction . . . . . . . . . . . . . . 1--18
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   Equations with Lipschitz Nonlinearities  19--47
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   Equations with Maximal Monotone
                                  Nonlinearities . . . . . . . . . . . . . 49--93
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   Variational Approach to Stochastic
                                  Porous Media Equations . . . . . . . . . 95--106
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   $ L^1 $-Based Approach to Existence
                                  Theory for Stochastic Porous Media
                                  Equations  . . . . . . . . . . . . . . . 107--131
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   The Stochastic Porous Media Equations in
                                  $ \mathbb {R}^d $  . . . . . . . . . . . 133--165
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   Transition Semigroup . . . . . . . . . . 167--195
               Viorel Barbu and   
          Giuseppe Da Prato and   
           Michael Röckner   Back Matter  . . . . . . . . . . . . . . 197--204


Lecture Notes in Mathematics
Volume 2165, 2016

                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Front Matter . . . . . . . . . . . . . . i--x
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Front Matter . . . . . . . . . . . . . . 1--1
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Introduction . . . . . . . . . . . . . . 3--10
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Overview . . . . . . . . . . . . . . . . 11--20
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Front Matter . . . . . . . . . . . . . . 21--21
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Apparent Contours for Projections of
                                  Smooth Surfaces  . . . . . . . . . . . . 23--33
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Abstract Classification of Singularities
                                  Preserving Features  . . . . . . . . . . 35--39
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Singularity Equivalence Groups Capturing
                                  Interactions . . . . . . . . . . . . . . 41--71
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Methods for Classification of
                                  Singularities  . . . . . . . . . . . . . 73--99
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Methods for Topological Classification
                                  of Singularities . . . . . . . . . . . . 101--114
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Front Matter . . . . . . . . . . . . . . 115--115
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Stratifications of Generically
                                  Illuminated Surfaces with Geometric
                                  Features . . . . . . . . . . . . . . . . 117--134
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Realizations of Abstract Mappings
                                  Representing Projection Singularities    135--155
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Statements of the Main Classification
                                  Results  . . . . . . . . . . . . . . . . 157--177
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Front Matter . . . . . . . . . . . . . . 179--179
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Stable View Projections and Transitions
                                  Involving Shade/Shadow Curves on a
                                  Smooth Surface (SC)  . . . . . . . . . . 181--191
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Transitions Involving Views of Geometric
                                  Features (FC)  . . . . . . . . . . . . . 193--212
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Front Matter . . . . . . . . . . . . . . 213--213
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Transitions Involving Geometric Features
                                  and Shade/Shadow Curves (SFC)  . . . . . 215--241
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Classifications of Stable Multilocal
                                  Configurations and Their Generic
                                  Transitions  . . . . . . . . . . . . . . 243--252
                James Damon and   
               Peter Giblin and   
               Gareth Haslinger   Back Matter  . . . . . . . . . . . . . . 253--257


Lecture Notes in Mathematics
Volume 2166, 2016

             Michel Boileau and   
              Gerard Besson and   
           Carlo Sinestrari and   
                      Gang Tian   Front Matter . . . . . . . . . . . . . . i--xi
           Gérard Besson   The Differentiable Sphere Theorem (After
                                  S. Brendle and R. Schoen)  . . . . . . . 1--19
                 Michel Boileau   Thick/Thin Decomposition of
                                  Three-Manifolds and the Geometrisation
                                  Conjecture . . . . . . . . . . . . . . . 21--70
               Carlo Sinestrari   Singularities of Three-Dimensional Ricci
                                  Flows  . . . . . . . . . . . . . . . . . 71--104
                      Gang Tian   Notes on Kähler--Ricci Flow . . . . . . . 105--136
                      Gang Tian   Back Matter  . . . . . . . . . . . . . . 137--138


Lecture Notes in Mathematics
Volume 2170, 2016

        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Front Matter . . . . . . . . . . . . . . i--ix
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Introduction . . . . . . . . . . . . . . 1--12
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Symmetry Breaking Operators and
                                  Principal Series Representations of $ G
                                  = O(n + 1, 1) $  . . . . . . . . . . . . 13--30
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   $F$-method for Matrix-Valued
                                  Differential Operators . . . . . . . . . 31--39
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Matrix-Valued $F$-method for $ O(n + 1,
                                  1)$  . . . . . . . . . . . . . . . . . . 41--49
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Application of Finite-Dimensional
                                  Representation Theory  . . . . . . . . . 51--65
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   $F$-system for Symmetry Breaking
                                  Operators $ (j = i - 1, i {\rm case})$   67--85
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   $F$-system for Symmetry Breaking
                                  Operators $ (j = i - - 2, i + 1 {\rm
                                  case})$  . . . . . . . . . . . . . . . . 87--91
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Basic Operators in Differential Geometry
                                  and Conformal Covariance . . . . . . . . 93--109
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Identities of Scalar-Valued Differential
                                  Operators $ {\mathfrak {D}_l^\mu } $ . . 111--119
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Construction of Differential Symmetry
                                  Breaking Operators . . . . . . . . . . . 121--129
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Solutions to Problems A and B for $
                                  (S^n, S^{n - 1}) $ . . . . . . . . . . . 131--139
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Intertwining Operators . . . . . . . . . 141--153
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Matrix-Valued Factorization Identities   155--172
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Appendix: Gegenbauer Polynomials . . . . 173--184
        Toshiyuki Kobayashi and   
             Toshihisa Kubo and   
                Michael Pevzner   Back Matter  . . . . . . . . . . . . . . 185--192