Last update: Fri Oct 13 09:03:22 MDT 2017
Volume 1294, 2010Martine Queffélec Front Matter . . . . . . . . . . . . . . I--XV Martine Queffélec The Banach Algebra $ M(T) $ . . . . . . 1--19 Martine Queffélec Spectral Theory of Unitary Operators . . 21--48 Martine Queffélec Spectral Theory of Dynamical Systems . . 49--86 Martine Queffélec Dynamical Systems Associated with Sequences . . . . . . . . . . . . . . . 87--124 Martine Queffélec Dynamical Systems Arising from Substitutions . . . . . . . . . . . . . 125--160 Martine Queffélec Eigenvalues of Substitution Dynamical Systems . . . . . . . . . . . . . . . . 161--192 Martine Queffélec Matrices of Measures . . . . . . . . . . 193--207 Martine Queffélec Matrix Riesz Products . . . . . . . . . 209--224 Martine Queffélec Bijective Automata . . . . . . . . . . . 225--242 Martine Queffélec Maximal Spectral Type of General Automata . . . . . . . . . . . . . . . . 243--264 Martine Queffélec Spectral Multiplicity of General Automata . . . . . . . . . . . . . . . . 265--280 Martine Queffélec Compact Automata . . . . . . . . . . . . 281--291 Martine Queffélec Back Matter . . . . . . . . . . . . . . 293--351
J. W. Neuberger Front Matter . . . . . . . . . . . . . . i--xiii J. W. Neuberger Several Gradients . . . . . . . . . . . 1--4 J. W. Neuberger Comparison of Two Gradients . . . . . . 5--13 J. W. Neuberger Continuous Steepest Descent in Hilbert Space: Linear Case . . . . . . . . . . . 15--17 J. W. Neuberger Continuous Steepest Descent in Hilbert Space: Nonlinear Case . . . . . . . . . 19--34 J. W. Neuberger Orthogonal Projections, Adjoints and Laplacians . . . . . . . . . . . . . . . 35--51 J. W. Neuberger Ordinary Differential Equations and Sobolev Gradients . . . . . . . . . . . 53--55 J. W. Neuberger Convexity and Gradient Inequalities . . 57--61 J. W. Neuberger Boundary and Supplementary Conditions 63--78 J. W. Neuberger Continuous Newton's Method . . . . . . . 79--83 J. W. Neuberger More About Finite Differences . . . . . 85--97 J. W. Neuberger Sobolev Gradients for Variational Problems . . . . . . . . . . . . . . . . 99--102 J. W. Neuberger An Introduction to Sobolev Gradients in Non-Inner Product Spaces . . . . . . . . 103--107 J. W. Neuberger Singularities and a Simple Ginzburg--Landau Functional . . . . . . 109--111 J. W. Neuberger The Superconductivity Equations of Ginzburg--Landau . . . . . . . . . . . . 113--121 J. W. Neuberger Tricomi Equation: a Case Study . . . . . 123--127 J. W. Neuberger Minimal Surfaces . . . . . . . . . . . . 129--145 J. W. Neuberger Flow Problems and Non-Inner Product Sobolev Spaces . . . . . . . . . . . . . 147--152 J. W. Neuberger An Alternate Approach to Time-dependent PDEs . . . . . . . . . . . . . . . . . . 153--158 J. W. Neuberger Foliations and Supplementary Conditions I . . . . . . . . . . . . . . . . . . . 159--169 J. W. Neuberger Foliations and Supplementary Conditions II . . . . . . . . . . . . . . . . . . . 171--175
Vicent Caselles and Pascal Monasse Introduction . . . . . . . . . . . . . . 1--7 Vicent Caselles and Pascal Monasse Introduction . . . . . . . . . . . . . . 1--7 Vicent Caselles and Pascal Monasse Front Matter . . . . . . . . . . . . . . 1--14 Vicent Caselles and Pascal Monasse Front Matter . . . . . . . . . . . . . . 1--14 Vicent Caselles and Pascal Monasse Back Matter . . . . . . . . . . . . . . 1--18 Vicent Caselles and Pascal Monasse Back Matter . . . . . . . . . . . . . . 1--18 Vicent Caselles and Pascal Monasse The Tree of Shapes of an Image . . . . . 9--34 Vicent Caselles and Pascal Monasse The Tree of Shapes of an Image . . . . . 9--34 Vicent Caselles and Pascal Monasse Grain Filters . . . . . . . . . . . . . 35--73 Vicent Caselles and Pascal Monasse Grain Filters . . . . . . . . . . . . . 35--73 Vicent Caselles and Pascal Monasse A Topological Description of the Topographic Map . . . . . . . . . . . . 75--102 Vicent Caselles and Pascal Monasse A Topological Description of the Topographic Map . . . . . . . . . . . . 75--102 Vicent Caselles and Pascal Monasse Merging the Component Trees . . . . . . 103--113 Vicent Caselles and Pascal Monasse Merging the Component Trees . . . . . . 103--113 Vicent Caselles and Pascal Monasse Computation of the Tree of Shapes of a Digital Image . . . . . . . . . . . . . 115--140 Vicent Caselles and Pascal Monasse Computation of the Tree of Shapes of a Digital Image . . . . . . . . . . . . . 115--140 Vicent Caselles and Pascal Monasse Computation of the Tree of Bilinear Level Lines . . . . . . . . . . . . . . 141--153 Vicent Caselles and Pascal Monasse Computation of the Tree of Bilinear Level Lines . . . . . . . . . . . . . . 141--153 Vicent Caselles and Pascal Monasse Applications . . . . . . . . . . . . . . 155--171 Vicent Caselles and Pascal Monasse Applications . . . . . . . . . . . . . . 155--171
Torsten Linß Introduction . . . . . . . . . . . . . . 1--4 Torsten Linß Introduction . . . . . . . . . . . . . . 1--4 Torsten Linß Front Matter . . . . . . . . . . . . . . 1--10 Torsten Linß Front Matter . . . . . . . . . . . . . . 1--10 Torsten Linß Back Matter . . . . . . . . . . . . . . 1--18 Torsten Linß Back Matter . . . . . . . . . . . . . . 1--18 Torsten Linß Layer-Adapted Meshes . . . . . . . . . . 5--29 Torsten Linß Layer-Adapted Meshes . . . . . . . . . . 5--29 Torsten Linß Front Matter . . . . . . . . . . . . . . 31--31 Torsten Linß Front Matter . . . . . . . . . . . . . . 31--31 Torsten Linß The Analytical Behaviour of Solutions 33--76 Torsten Linß The Analytical Behaviour of Solutions 33--76 Torsten Linß Finite Difference Schemes for Convection-Diffusion Problems . . . . . 77--149 Torsten Linß Finite Difference Schemes for Convection-Diffusion Problems . . . . . 77--149 Torsten Linß Finite Element and Finite Volume Methods 151--182 Torsten Linß Finite Element and Finite Volume Methods 151--182 Torsten Linß Discretisations of Reaction-Convection-Diffusion Problems 183--231 Torsten Linß Discretisations of Reaction-Convection-Diffusion Problems 183--231 Torsten Linß Front Matter . . . . . . . . . . . . . . 233--233 Torsten Linß Front Matter . . . . . . . . . . . . . . 233--233 Torsten Linß The Analytical Behaviour of Solutions 235--246 Torsten Linß The Analytical Behaviour of Solutions 235--246 Torsten Linß Reaction-Diffusion Problems . . . . . . 247--256 Torsten Linß Reaction-Diffusion Problems . . . . . . 247--256 Torsten Linß Convection-Diffusion Problems . . . . . 257--307 Torsten Linß Convection-Diffusion Problems . . . . . 257--307
Michel Broué Front Matter . . . . . . . . . . . . . . I--XI Michel Broué Preliminaries . . . . . . . . . . . . . 1--9 Michel Broué Prerequisites and Complements in Commutative Algebra . . . . . . . . . . 11--33 Michel Broué Polynomial Invariants of Finite Linear Groups . . . . . . . . . . . . . . . . . 35--56 Michel Broué Finite Reflection Groups in Characteristic Zero . . . . . . . . . . 57--96 Michel Broué Eigenspaces and Regular Elements . . . . 97--118 Michel Broué Back Matter . . . . . . . . . . . . . . 119--138
Immanuel M. Bomze and Vladimir F. Demyanov and Roger Fletcher and Tamás Terlaky Front Matter . . . . . . . . . . . . . . i--xiii Immanuel M. Bomze Global Optimization: a Quadratic Programming Perspective . . . . . . . . 1--53 Vladimir F. Demyanov Nonsmooth Optimization . . . . . . . . . 55--163 Roger Fletcher The Sequential Quadratic Programming Method . . . . . . . . . . . . . . . . . 165--214 Imre Pólik and Tamás Terlaky Interior Point Methods for Nonlinear Optimization . . . . . . . . . . . . . . 215--276 Imre Pólik and Tamás Terlaky Back Matter . . . . . . . . . . . . . . 277--289
Serge Bouc Front Matter . . . . . . . . . . . . . . I--IX Serge Bouc Examples . . . . . . . . . . . . . . . . 1--11 Serge Bouc Front Matter . . . . . . . . . . . . . . 14--14 Serge Bouc $G$-Sets and $ (H, G)$-Bisets . . . . . 15--40 Serge Bouc Biset Functors . . . . . . . . . . . . . 41--51 Serge Bouc Simple Functors . . . . . . . . . . . . 53--72 Serge Bouc Front Matter . . . . . . . . . . . . . . 74--74 Serge Bouc The Burnside Functor . . . . . . . . . . 75--95 Serge Bouc Endomorphism Algebras . . . . . . . . . 97--119 Serge Bouc The Functor $ \mathbb {C}R_{\mathbb {C}} $ . . . . . . . . . . . . . . . . . . . 121--134 Serge Bouc Tensor Product and Internal Hom . . . . 135--152 Serge Bouc Front Matter . . . . . . . . . . . . . . 154--154 Serge Bouc Rational Representations of $p$-Groups 155--181 Serge Bouc $p$-Biset Functors . . . . . . . . . . . 183--213 Serge Bouc Applications . . . . . . . . . . . . . . 215--240 Serge Bouc The Dade Group . . . . . . . . . . . . . 241--292 Serge Bouc Back Matter . . . . . . . . . . . . . . 293--299
Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Front Matter . . . . . . . . . . . . . . i--xviii Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Models of Higher Order . . . . . . . . . 1--25 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Linear Problems . . . . . . . . . . . . 27--60 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Eigenvalue Problems . . . . . . . . . . 61--98 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Kernel Estimates . . . . . . . . . . . . 99--146 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Positivity and Lower Order Perturbations 147--185 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Dominance of Positivity in Linear Equations . . . . . . . . . . . . . . . 187--226 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Semilinear Problems . . . . . . . . . . 227--370 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Willmore Surfaces of Revolution . . . . 371--392 Filippo Gazzola and Hans-Christoph Grunau and Guido Sweers Back Matter . . . . . . . . . . . . . . 393--429
Alberto Parmeggiani Front Matter . . . . . . . . . . . . . . i--xi Alberto Parmeggiani Introduction . . . . . . . . . . . . . . 1--5 Alberto Parmeggiani The Harmonic Oscillator . . . . . . . . 7--13 Alberto Parmeggiani The Weyl--Hörmander Calculus . . . . . . 15--53 Alberto Parmeggiani The Spectral Counting Function $ N(\lambda) $ and the Behavior of the Eigenvalues: Part 1 . . . . . . . . . . 55--66 Alberto Parmeggiani The Heat-Semigroup, Functional Calculus and Kernels . . . . . . . . . . . . . . 67--77 Alberto Parmeggiani The Spectral Counting Function $ N(\lambda) $ and the Behavior of the Eigenvalues: Part 2 . . . . . . . . . . 79--92 Alberto Parmeggiani The Spectral Zeta Function . . . . . . . 93--110 Alberto Parmeggiani Some Properties of the Eigenvalues of $ Q_{\left ({\alpha, \beta } \right)}^{\rm w (x, D)} $ . . . . . . . . . . . . . . 111--120 Alberto Parmeggiani Some Tools from the Semiclassical Calculus . . . . . . . . . . . . . . . . 121--147 Alberto Parmeggiani On Operators Induced by General Finite-Rank Orthogonal Projections . . . 149--159 Alberto Parmeggiani Energy-Levels, Dynamics, and the Maslov Index . . . . . . . . . . . . . . . . . 161--190 Alberto Parmeggiani Localization and Multiplicity of a Self-Adjoint Elliptic $ 2 \times 2 $ Positive NCHO in $ \mathbb {R}^n $ . . . 191--238 Alberto Parmeggiani Back Matter . . . . . . . . . . . . . . 239--260
Pandelis Dodos Front Matter . . . . . . . . . . . . . . i--xi Pandelis Dodos Basic Concepts . . . . . . . . . . . . . 1--8 Pandelis Dodos The Standard Borel Space of All Separable Banach Spaces . . . . . . . . 9--35 Pandelis Dodos The $ \ell_2 $ Baire Sum . . . . . . . . 37--56 Pandelis Dodos Amalgamated Spaces . . . . . . . . . . . 57--70 Pandelis Dodos Zippin's Embedding Theorem . . . . . . . 71--88 Pandelis Dodos The Bourgain--Pisier Construction . . . 89--114 Pandelis Dodos Strongly Bounded Classes of Banach Spaces . . . . . . . . . . . . . . . . . 115--126 Pandelis Dodos Back Matter . . . . . . . . . . . . . . 127--167
Árpád Baricz Front Matter . . . . . . . . . . . . . . i--xiv Árpád Baricz Introduction and Preliminary Results . . 1--22 Árpád Baricz Geometric Properties of Generalized Bessel Functions . . . . . . . . . . . . 23--69 Árpád Baricz Inequalities Involving Bessel and Hypergeometric Functions . . . . . . . . 71--186 Árpád Baricz Back Matter . . . . . . . . . . . . . . 187--212
Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . i--xv Alexander Y. Khapalov Introduction . . . . . . . . . . . . . . 1--12 Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 14--14 Alexander Y. Khapalov Global Nonnegative Controllability of the $ 1 - D $ Semilinear Parabolic Equation . . . . . . . . . . . . . . . . 15--31 Alexander Y. Khapalov Multiplicative Controllability of the Semilinear Parabolic Equation: a Qualitative Approach . . . . . . . . . . 33--48 Alexander Y. Khapalov The Case of the Reaction-Diffusion Term Satisfying Newton's Law . . . . . . . . 49--65 Alexander Y. Khapalov Classical Controllability for the Semilinear Parabolic Equations with Superlinear Terms . . . . . . . . . . . 67--80 Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 82--82 Alexander Y. Khapalov Controllability Properties of a Vibrating String with Variable Axial Load and Damping Gain . . . . . . . . . 83--104 Alexander Y. Khapalov Controllability Properties of a Vibrating String with Variable Axial Load Only . . . . . . . . . . . . . . . 105--119 Alexander Y. Khapalov Reachability of Nonnegative Equilibrium States for the Semilinear Vibrating String . . . . . . . . . . . . . . . . . 121--145 Alexander Y. Khapalov The $1$-D Wave and Rod Equations Governed by Controls That Are Time-Dependent Only . . . . . . . . . . 147--156 Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 158--158 Alexander Y. Khapalov Introduction . . . . . . . . . . . . . . 159--164 Alexander Y. Khapalov A ``Basic'' $2$-D Swimming Model . . . . 165--170 Alexander Y. Khapalov The Well-Posedness of a $2$-D Swimming Model . . . . . . . . . . . . . . . . . 171--193 Alexander Y. Khapalov Geometric Aspects of Controllability for a Swimming Phenomenon . . . . . . . . . 195--217 Alexander Y. Khapalov Local Controllability for a Swimming Model . . . . . . . . . . . . . . . . . 219--236 Alexander Y. Khapalov Global Controllability for a ``Rowing'' Swimming Model . . . . . . . . . . . . . 237--262 Alexander Y. Khapalov Front Matter . . . . . . . . . . . . . . 264--264 Alexander Y. Khapalov Multiplicative Controllability for the Schrödinger Equation . . . . . . . . . . 265--274 Alexander Y. Khapalov Back Matter . . . . . . . . . . . . . . 275--290
Thomas Lorenz Front Matter . . . . . . . . . . . . . . i--xiv Thomas Lorenz Introduction . . . . . . . . . . . . . . 1--29 Thomas Lorenz Extending Ordinary Differential Equations to Metric Spaces: Aubin's Suggestion . . . . . . . . . . . . . . . 31--101 Thomas Lorenz Adapting Mutational Equations to Examples in Vector Spaces: Local Parameters of Continuity . . . . . . . . 103--179 Thomas Lorenz Less Restrictive Conditions on Distance Functions: Continuity Instead of Triangle Inequality . . . . . . . . . . 181--330 Thomas Lorenz Introducing Distribution-Like Solutions to Mutational Equations . . . . . . . . 331--384 Thomas Lorenz Mutational Inclusions in Metric Spaces 385--438 Thomas Lorenz Back Matter . . . . . . . . . . . . . . 439--515
Markus Banagl Front Matter . . . . . . . . . . . . . . i--xvi Markus Banagl Homotopy Theory . . . . . . . . . . . . 1--106 Markus Banagl Intersection Spaces . . . . . . . . . . 107--189 Markus Banagl String Theory . . . . . . . . . . . . . 191--209 Markus Banagl Back Matter . . . . . . . . . . . . . . 211--223
Marco Abate and Eric Bedford and Marco Brunella and Tien-Cuong Dinh and Dierk Schleicher and Nessim Sibony Front Matter . . . . . . . . . . . . . . i--xiii Marco Abate Discrete Holomorphic Local Dynamical Systems . . . . . . . . . . . . . . . . 1--55 Eric Bedford Dynamics of Rational Surface Automorphisms . . . . . . . . . . . . . 57--104 Marco Brunella Uniformisation of Foliations by Curves 105--163 Tien-Cuong Dinh and Nessim Sibony Dynamics in Several Complex Variables: Endomorphisms of Projective Spaces and Polynomial-like Mappings . . . . . . . . 165--294 Dierk Schleicher Dynamics of Entire Functions . . . . . . 295--339 Dierk Schleicher Back Matter . . . . . . . . . . . . . . 341--348
Hans Schoutens Front Matter . . . . . . . . . . . . . . i--x Hans Schoutens Introduction . . . . . . . . . . . . . . 1--6 Hans Schoutens Ultraproducts and \Lo\'s' Theorem . . . 7--27 Hans Schoutens Flatness . . . . . . . . . . . . . . . . 29--50 Hans Schoutens Uniform Bounds . . . . . . . . . . . . . 51--63 Hans Schoutens Tight Closure in Positive Characteristic 65--80 Hans Schoutens Tight Closure in Characteristic Zero. Affine Case . . . . . . . . . . . . . . 81--95 Hans Schoutens Tight Closure in Characteristic Zero. Local Case . . . . . . . . . . . . . . . 97--112 Hans Schoutens Cataproducts . . . . . . . . . . . . . . 113--125 Hans Schoutens Protoproducts . . . . . . . . . . . . . 127--148 Hans Schoutens Asymptotic Homological Conjectures in Mixed Characteristic . . . . . . . . . . 149--169 Hans Schoutens Back Matter . . . . . . . . . . . . . . 171--210
Harry Yserentant Front Matter . . . . . . . . . . . . . . i--viii Harry Yserentant Introduction and Outline . . . . . . . . 1--11 Harry Yserentant Fourier Analysis . . . . . . . . . . . . 13--26 Harry Yserentant The Basics of Quantum Mechanics . . . . 27--50 Harry Yserentant The Electronic Schrödinger Equation . . . 51--58 Harry Yserentant Spectrum and Exponential Decay . . . . . 59--85 Harry Yserentant Existence and Decay of Mixed Derivatives 87--116 Harry Yserentant Eigenfunction Expansions . . . . . . . . 117--125 Harry Yserentant Convergence Rates and Complexity Bounds 127--140 Harry Yserentant The Radial-Angular Decomposition . . . . 141--176 Harry Yserentant Back Matter . . . . . . . . . . . . . . 177--188
Thomas Duquesne and Oleg Reichmann and Ken-iti Sato and Christoph Schwab Front Matter . . . . . . . . . . . . . . i--xiv Ken-iti Sato Fractional Integrals and Extensions of Selfdecomposability . . . . . . . . . . 1--91 Thomas Duquesne Packing and Hausdorff Measures of Stable Trees . . . . . . . . . . . . . . . . . 93--136 Oleg Reichmann and Christoph Schwab Numerical Analysis of Additive, Lévy and Feller Processes with Applications to Option Pricing . . . . . . . . . . . . . 137--196 Oleg Reichmann and Christoph Schwab Back Matter . . . . . . . . . . . . . . 197--204
Christian Pötzsche Front Matter . . . . . . . . . . . . . . i--xxiv Christian Pötzsche Nonautonomous Dynamical Systems . . . . 1--36 Christian Pötzsche Nonautonomous Difference Equations . . . 37--94 Christian Pötzsche Linear Difference Equations . . . . . . 95--185 Christian Pötzsche Invariant Fiber Bundles . . . . . . . . 187--316 Christian Pötzsche Linearization . . . . . . . . . . . . . 317--343 Christian Pötzsche Back Matter . . . . . . . . . . . . . . 345--405
Kai Diethelm Front Matter . . . . . . . . . . . . . . i--viii Kai Diethelm Front Matter . . . . . . . . . . . . . . 1--1 Kai Diethelm Introduction . . . . . . . . . . . . . . 3--12 Kai Diethelm Riemann--Liouville Differential and Integral Operators . . . . . . . . . . . 13--47 Kai Diethelm Caputo's Approach . . . . . . . . . . . 49--65 Kai Diethelm Mittag-Leffler Functions . . . . . . . . 67--73 Kai Diethelm Front Matter . . . . . . . . . . . . . . 75--75 Kai Diethelm Existence and Uniqueness Results for Riemann-Liouville Fractional Differential Equations . . . . . . . . . 77--83 Kai Diethelm Single-Term Caputo Fractional Differential Equations: Basic Theory and Fundamental Results . . . . . . . . . . 85--132 Kai Diethelm Single-Term Caputo Fractional Differential Equations: Advanced Results for Special Cases . . . . . . . . . . . 133--166 Kai Diethelm Multi-Term Caputo Fractional Differential Equations . . . . . . . . . 167--186 Kai Diethelm Back Matter . . . . . . . . . . . . . . 187--253
Wen Yuan and Winfried Sickel and Dachun Yang Front Matter . . . . . . . . . . . . . . i--xi Wen Yuan and Winfried Sickel and Dachun Yang Introduction . . . . . . . . . . . . . . 1--19 Wen Yuan and Winfried Sickel and Dachun Yang The Spaces $ B_{p, q}^{s, \tau }({\mathbb {R}}^n) $ and $ F_{p, q}^{s, \tau }({\mathbb {R}}^n) $ . . . . . . . 21--48 Wen Yuan and Winfried Sickel and Dachun Yang Almost Diagonal Operators and Atomic and Molecular Decompositions . . . . . . . . 49--64 Wen Yuan and Winfried Sickel and Dachun Yang Several Equivalent Characterizations . . 65--135 Wen Yuan and Winfried Sickel and Dachun Yang Pseudo-Differential Operators . . . . . 137--146 Wen Yuan and Winfried Sickel and Dachun Yang Key Theorems . . . . . . . . . . . . . . 147--175 Wen Yuan and Winfried Sickel and Dachun Yang Inhomogeneous Besov--Hausdorff and Triebel--Lizorkin--Hausdorff Spaces . . 177--250 Wen Yuan and Winfried Sickel and Dachun Yang Homogeneous Spaces . . . . . . . . . . . 251--269 Wen Yuan and Winfried Sickel and Dachun Yang Back Matter . . . . . . . . . . . . . . 271--288
Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki Front Matter . . . . . . . . . . . . . . i--xx Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki Preliminaries . . . . . . . . . . . . . 1--20 Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces . . . . . 21--32 Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki Counting Ovals of Symmetries of Riemann Surfaces . . . . . . . . . . . . . . . . 33--63 Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki Symmetry Types of Some Families of Riemann Surfaces . . . . . . . . . . . . 65--90 Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms . . . . . 91--143 Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki Appendix . . . . . . . . . . . . . . . . 145--149 Emilio Bujalance and Francisco Javier Cirre and José Manuel Gamboa and Grzegorz Gromadzki Back Matter . . . . . . . . . . . . . . 151--158
Jean-Louis Colliot-Thél\`ene and Peter Swinnerton-Dyer and Paul Vojta Front Matter . . . . . . . . . . . . . . i--xi Jean-Louis Colliot-Thél\`ene Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences. (French) [Nearly rational varieties, their rational points, and their degenerations] . . . . . . . . . . . . . 1--44 Sir Peter Swinnerton-Dyer Topics in Diophantine Equations . . . . 45--110 Paul Vojta Diophantine Approximation and Nevanlinna Theory . . . . . . . . . . . . . . . . . 111--224 Paul Vojta Back Matter . . . . . . . . . . . . . . 225--232
Areski Cousin and Stéphane Crépey and Olivier Guéant and David Hobson and Monique Jeanblanc and Jean-Michel Lasry and Jean-Paul Laurent and Pierre-Louis Lions and Peter Tankov Front Matter . . . . . . . . . . . . . . i--x Areski Cousin and Monique Jeanblanc and Jean-Paul Laurent Hedging CDO Tranches in a Markovian Environment . . . . . . . . . . . . . . 1--61 Stéphane Crépey About the Pricing Equations in Finance 63--203 Olivier Guéant and Jean-Michel Lasry and Pierre-Louis Lions Mean Field Games and Applications . . . 205--266 David Hobson The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices . . . . . . . . . . . . . . . . . 267--318 Peter Tankov Pricing and Hedging in Exponential Lévy Models: Review of Recent Results . . . . 319--359 Peter Tankov Back Matter . . . . . . . . . . . . . . 361--366
Catherine Donati-Martin and Antoine Lejay and Alain Rouault Front Matter . . . . . . . . . . . . . . i--xi Catherine Donati-Martin and Antoine Lejay and Alain Rouault Front Matter . . . . . . . . . . . . . . 1--1 Jean Picard Representation Formulae for the Fractional Brownian Motion . . . . . . . 3--70 Catherine Donati-Martin and Antoine Lejay and Alain Rouault Front Matter . . . . . . . . . . . . . . 71--71 Jean Picard Front Matter . . . . . . . . . . . . . . 71--71 Marc Arnaudon and Koléh\`e Abdoulaye Coulibaly and Anton Thalmaier Horizontal Diffusion in $ C^1 $ Path Space . . . . . . . . . . . . . . . . . 73--94 Marc Arnaudon and Koléh\`e Abdoulaye Coulibaly and Anton Thalmaier Horizontal Diffusion in $ C^1 $ Path Space . . . . . . . . . . . . . . . . . 73--94 Jay Rosen A Stochastic Calculus Proof of the CLT for the $ L^2 $ Modulus of Continuity of Local Time . . . . . . . . . . . . . . . 95--104 Ayako Matsumoto and Kouji Yano On a Zero-One Law for the Norm Process of Transient Random Walk . . . . . . . . 105--126 Stéphane Laurent On Standardness and $I$-cosiness . . . . 127--186 Claude Dellacherie On Isomorphic Probability Spaces . . . . 187--189 Markus Riedle Cylindrical Wiener Processes . . . . . . 191--214 Maurizio Pratelli A Remark on the $ 1 / H $-Variation of the Fractional Brownian Motion . . . . . 215--219 Maurizio Pratelli A Remark on the $ 1 / H $-Variation of the Fractional Brownian Motion . . . . . 215--219 Matthieu Marouby Simulation of a Local Time Fractional Stable Motion . . . . . . . . . . . . . 221--239 Blandine Bérard Bergery and Pierre Vallois Convergence at First and Second Order of Some Approximations of Stochastic Integrals . . . . . . . . . . . . . . . 241--268 Gilles Pag\`es and Afef Sellami Convergence of Multi-Dimensional Quantized SDE's . . . . . . . . . . . . 269--307 Ciprian A. Tudor Asymptotic Cramér's Theorem and Analysis on Wiener Space . . . . . . . . . . . . 309--325 Joseph Lehec Moments of the Gaussian Chaos . . . . . 327--340 Nicolas Bouleau The Lent Particle Method for Marked Point Processes . . . . . . . . . . . . 341--349 Paul Bourgade and Ashkan Nikeghbali and Alain Rouault Ewens Measures on Compact Groups and Hypergeometric Kernels . . . . . . . . . 351--377 Stéphane Attal and Ion Nechita Discrete Approximation of the Free Fock Space . . . . . . . . . . . . . . . . . 379--394 Christoph Czichowsky and Nicholas Westray and Harry Zheng Convergence in the Semimartingale Topology and Constrained Portfolios . . 395--412 Christoph Czichowsky and Martin Schweizer Closedness in the Semimartingale Topology for Spaces of Stochastic Integrals with Constrained Integrands 413--436 David Baker and Marc Yor On Martingales with Given Marginals and the Scaling Property . . . . . . . . . . 437--439 David Baker and Catherine Donati-Martin and Marc Yor A Sequence of Albin Type Continuous Martingales with Brownian Marginals and Scaling . . . . . . . . . . . . . . . . 441--449 Francis Hirsch and Christophe Profeta and Bernard Roynette and Marc Yor Constructing Self-Similar Martingales via Two Skorokhod Embeddings . . . . . . 451--503 David Baker and Catherine Donati-Martin and Marc Yor Back Matter . . . . . . . . . . . . . . 505--510 Francis Hirsch and Christophe Profeta and Bernard Roynette and Marc Yor Back Matter . . . . . . . . . . . . . . 505--510
Paul Frank Baum and Guillermo Cortiñas and Ralf Meyer and Rubén Sánchez-García and Marco Schlichting and Bertrand Toën Front Matter . . . . . . . . . . . . . . i--xvi Paul F. Baum and Rubén J. Sánchez-García $K$-Theory for Group $ C*$-algebras . . 1--43 Ralf Meyer Universal Coefficient Theorems and Assembly Maps in $ K K $-Theory . . . . 45--102 Guillermo Cortiñas Algebraic v. Topological $K$-Theory: a Friendly Match . . . . . . . . . . . . . 103--165 Marco Schlichting Higher Algebraic $K$-Theory (After Quillen, Thomason and Others) . . . . . 167--241 Bertrand Toën Lectures on DG-Categories . . . . . . . 243--302 Bertrand Toën Back Matter . . . . . . . . . . . . . . 303--308
Angiolo Farina and Axel Klar and Robert M. M. Mattheij and Andro Mikeli\'c and Norbert Siedow Front Matter . . . . . . . . . . . . . . i--xi J. A. W. M. Groot and Robert M. M. Mattheij and K. Y. Laevsky Mathematical Modelling of Glass Forming Processes . . . . . . . . . . . . . . . 1--56 Martin Frank and Axel Klar Radiative Heat Transfer and Applications for Glass Production Processes . . . . . 57--134 Norbert Siedow Radiative Heat Transfer and Applications for Glass Production Processes II . . . 135--171 Angiolo Farina and Antonio Fasano and Andro Mikeli\'c Non-Isothermal Flow of Molten Glass: Mathematical Challenges and Industrial Questions . . . . . . . . . . . . . . . 173--224 Angiolo Farina and Antonio Fasano and Andro Mikeli\'c Back Matter . . . . . . . . . . . . . . 225--227
Ben Andrews and Christopher Hopper Front Matter . . . . . . . . . . . . . . i--xvii Ben Andrews and Christopher Hopper Introduction . . . . . . . . . . . . . . 1--9 Ben Andrews and Christopher Hopper Background Material . . . . . . . . . . 11--47 Ben Andrews and Christopher Hopper Harmonic Mappings . . . . . . . . . . . 49--62 Ben Andrews and Christopher Hopper Evolution of the Curvature . . . . . . . 63--82 Ben Andrews and Christopher Hopper Short-Time Existence . . . . . . . . . . 83--95 Ben Andrews and Christopher Hopper Uhlenbeck's Trick . . . . . . . . . . . 97--113 Ben Andrews and Christopher Hopper The Weak Maximum Principle . . . . . . . 115--135 Ben Andrews and Christopher Hopper Regularity and Long-Time Existence . . . 137--143 Ben Andrews and Christopher Hopper The Compactness Theorem for Riemannian Manifolds . . . . . . . . . . . . . . . 145--159 Ben Andrews and Christopher Hopper The $ \mathcal {F}$-Functional and Gradient Flows . . . . . . . . . . . . . 161--171 Ben Andrews and Christopher Hopper The $ \mathcal {W}$-Functional and Local Noncollapsing . . . . . . . . . . . . . 173--191 Ben Andrews and Christopher Hopper An Algebraic Identity for Curvature Operators . . . . . . . . . . . . . . . 193--221 Ben Andrews and Christopher Hopper The Cone Construction of Böhm and Wilking 223--233 Ben Andrews and Christopher Hopper Preserving Positive Isotropic Curvature 235--258 Ben Andrews and Christopher Hopper The Final Argument . . . . . . . . . . . 259--269 Ben Andrews and Christopher Hopper Back Matter . . . . . . . . . . . . . . 287--296
Alison Etheridge Front Matter . . . . . . . . . . . . . . i--viii Alison Etheridge Introduction . . . . . . . . . . . . . . 1--3 Alison Etheridge Mutation and Random Genetic Drift . . . 5--32 Alison Etheridge One Dimensional Diffusions . . . . . . . 33--51 Alison Etheridge More than Two Types . . . . . . . . . . 53--64 Alison Etheridge Selection . . . . . . . . . . . . . . . 65--87 Alison Etheridge Spatial Structure . . . . . . . . . . . 89--107 Alison Etheridge Back Matter . . . . . . . . . . . . . . 109--119
Alexander I. Bobenko Introduction to Compact Riemann Surfaces 3--64 Alexander I. Bobenko Front Matter . . . . . . . . . . . . . . 65--65 Bernard Deconinck and Matthew S. Patterson Computing with Plane Algebraic Curves and Riemann Surfaces: The Algorithms of the Maple Package ``Algcurves'' . . . . 67--123 Jörg Frauendiener and Christian Klein Algebraic Curves and Riemann Surfaces in Matlab . . . . . . . . . . . . . . . . . 125--162 Jörg Frauendiener and Christian Klein Front Matter . . . . . . . . . . . . . . 163--163 Markus Schmies Computing Poincaré Theta Series for Schottky Groups . . . . . . . . . . . . 165--182 Darren Crowdy and Jonathan S. Marshall Uniformizing Real Hyperelliptic $M$-Curves Using the Schottky--Klein Prime Function . . . . . . . . . . . . . 183--193 Rubén A. Hidalgo and Mika Seppälä Numerical Schottky Uniformizations: Myrberg's Opening Process . . . . . . . 195--209 Rubén A. Hidalgo and Mika Seppälä Front Matter . . . . . . . . . . . . . . 211--211 Alexander I. Bobenko and Christian Mercat and Markus Schmies Period Matrices of Polyhedral Surfaces 213--226 Alexey Kokotov On the Spectral Theory of the Laplacian on Compact Polyhedral Surfaces of Arbitrary Genus . . . . . . . . . . . . 227--253 Alexey Kokotov Back Matter . . . . . . . . . . . . . . 255--257
Mich\`ele Audin Front Matter . . . . . . . . . . . . . . i--viii Mich\`ele Audin Introduction . . . . . . . . . . . . . . 1--12 Mich\`ele Audin The Great Prize, the framework . . . . . 13--57 Mich\`ele Audin The Great Prize of Mathematical Sciences 59--89 Mich\`ele Audin The memoirs . . . . . . . . . . . . . . 91--114 Mich\`ele Audin After Fatou and Julia . . . . . . . . . 115--133 Mich\`ele Audin On Pierre Fatou . . . . . . . . . . . . 135--192 Mich\`ele Audin History's scars --- a scientific controversy \ldots in 1965 . . . . . . . 193--235 Mich\`ele Audin Back Matter . . . . . . . . . . . . . . 237--332
Franco Flandoli Front Matter . . . . . . . . . . . . . . i--ix Franco Flandoli Introduction to Uniqueness and Blow-Up 1--16 Franco Flandoli Regularization by Additive Noise . . . . 17--69 Franco Flandoli Dyadic Models . . . . . . . . . . . . . 71--99 Franco Flandoli Transport Equation . . . . . . . . . . . 101--131 Franco Flandoli Other Models: Uniqueness and Singularities . . . . . . . . . . . . . 133--159 Franco Flandoli Back Matter . . . . . . . . . . . . . . 161--176
Jan Lang and David Edmunds Front Matter . . . . . . . . . . . . . . i--xi Prof. Jan Lang and Prof. David Edmunds Basic Material . . . . . . . . . . . . . 1--31 Prof. Jan Lang and Prof. David Edmunds Trigonometric Generalisations . . . . . 33--48 Prof. Jan Lang and Prof. David Edmunds The Laplacian and Some Natural Variants 49--63 Prof. Jan Lang and Prof. David Edmunds Hardy Operators . . . . . . . . . . . . 65--71 Prof. Jan Lang and Prof. David Edmunds $s$-Numbers and Generalised Trigonometric Functions . . . . . . . . 73--104 Prof. Jan Lang and Prof. David Edmunds Estimates of $s$-Numbers of Weighted Hardy Operators . . . . . . . . . . . . 105--128 Prof. Jan Lang and Prof. David Edmunds More Refined Estimates . . . . . . . . . 129--151 Prof. Jan Lang and Prof. David Edmunds A Non-Linear Integral System . . . . . . 153--182 Prof. Jan Lang and Prof. David Edmunds Hardy Operators on Variable Exponent Spaces . . . . . . . . . . . . . . . . . 183--209 Prof. Jan Lang and Prof. David Edmunds Back Matter . . . . . . . . . . . . . . 211--220
Lars Diening and Petteri Harjulehto and Peter Hästö and Michael Ruzicka Front Matter . . . . . . . . . . . . . . i--ix Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Introduction . . . . . . . . . . . . . . 1--17 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Front Matter . . . . . . . . . . . . . . 19--19 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka A Framework for Function Spaces . . . . 21--68 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Variable Exponent Lebesgue Spaces . . . 69--97 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka The Maximal Operator . . . . . . . . . . 99--141 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka The Generalized Muckenhoupt Condition 143--197 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Classical Operators . . . . . . . . . . 199--212 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Transfer Techniques . . . . . . . . . . 213--244 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Front Matter . . . . . . . . . . . . . . 245--245 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Introduction to Sobolev Spaces . . . . . 247--288 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Density of Regular Functions . . . . . . 289--314 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Capacities . . . . . . . . . . . . . . . 315--338 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Fine Properties of Sobolev Functions . . 339--366 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Other Spaces of Differentiable Functions 367--398 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Front Matter . . . . . . . . . . . . . . 399--399 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Dirichlet Energy Integral and Laplace Equation . . . . . . . . . . . . . . . . 401--436 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka PDEs and Fluid Dynamics . . . . . . . . 437--481 Lars Diening and Petteri Harjulehto and Peter Hästö and Michael R\ru\vzi\vcka Back Matter . . . . . . . . . . . . . . 483--509
Bei Hu Front Matter . . . . . . . . . . . . . . i--x Bei Hu Introduction . . . . . . . . . . . . . . 1--5 Bei Hu A Review of Elliptic Theories . . . . . 7--18 Bei Hu A Review of Parabolic Theories . . . . . 19--27 Bei Hu A Review of Fixed Point Theorems . . . . 29--31 Bei Hu Finite Time Blow-Up for Evolution Equations . . . . . . . . . . . . . . . 33--46 Bei Hu Steady-State Solutions . . . . . . . . . 47--63 Bei Hu Blow-Up Rate . . . . . . . . . . . . . . 65--83 Bei Hu Asymptotically Self-Similar Blow-Up Solutions . . . . . . . . . . . . . . . 85--95 Bei Hu One Space Variable Case . . . . . . . . 97--118 Bei Hu Back Matter . . . . . . . . . . . . . . 127--127
Robert J. Adler and Jonathan E. Taylor Front Matter . . . . . . . . . . . . . . i--viii Robert J. Adler and Jonathan E. Taylor Introduction . . . . . . . . . . . . . . 1--12 Robert J. Adler and Jonathan E. Taylor Gaussian Processes . . . . . . . . . . . 13--35 Robert J. Adler and Jonathan E. Taylor Some Geometry and Some Topology . . . . 37--58 Robert J. Adler and Jonathan E. Taylor The Gaussian Kinematic Formula . . . . . 59--85 Robert J. Adler and Jonathan E. Taylor On Applications: Topological Inference 87--106 Robert J. Adler and Jonathan E. Taylor Algebraic Topology of Excursion Sets: a New Challenge . . . . . . . . . . . . . 107--114 Robert J. Adler and Jonathan E. Taylor Back Matter . . . . . . . . . . . . . . 115--122
Alexander Isaev Front Matter . . . . . . . . . . . . . . i--xii Prof. Alexander Isaev Invariants of CR-Hypersurfaces . . . . . 1--33 Prof. Alexander Isaev Rigid Hypersurfaces . . . . . . . . . . 35--40 Prof. Alexander Isaev Tube Hypersurfaces . . . . . . . . . . . 41--53 Prof. Alexander Isaev General Methods for Solving Defining Systems . . . . . . . . . . . . . . . . 55--82 Prof. Alexander Isaev Strongly Pseudoconvex Spherical Tube Hypersurfaces . . . . . . . . . . . . . 83--96 Prof. Alexander Isaev $ (n - 1, 1)$-Spherical Tube Hypersurfaces . . . . . . . . . . . . . 97--121 Prof. Alexander Isaev $ (n - 2, 2)$-Spherical Tube Hypersurfaces . . . . . . . . . . . . . 123--184 Prof. Alexander Isaev Number of Affine Equivalence Classes of $ (k, n - k)$-Spherical Tube Hypersurfaces for $ k \leq (n - 2)$ . . 185--194 Prof. Alexander Isaev Further Results . . . . . . . . . . . . 195--212 Prof. Alexander Isaev Back Matter . . . . . . . . . . . . . . 213--220
Andreas Defant Front Matter . . . . . . . . . . . . . . i--viii Andreas Defant Introduction . . . . . . . . . . . . . . 1--13 Andreas Defant Commutative Theory . . . . . . . . . . . 15--78 Andreas Defant Noncommutative Theory . . . . . . . . . 79--158 Andreas Defant Back Matter . . . . . . . . . . . . . . 159--173
Ingemar Nåsell Front Matter . . . . . . . . . . . . . . i--xi Ingemar Nåsell Introduction . . . . . . . . . . . . . . 1--7 Ingemar Nåsell Model Formulation . . . . . . . . . . . 9--16 Ingemar Nåsell Stochastic Process Background . . . . . 17--40 Ingemar Nåsell The SIS Model: First Approximations of the Quasi-stationary Distribution . . . 41--46 Ingemar Nåsell Some Approximations Involving the Normal Distribution . . . . . . . . . . . . . . 47--72 Ingemar Nåsell Preparations for the Study of the Stationary Distribution $ p^{(1)} $ of the SIS Model . . . . . . . . . . . . . 73--91 Ingemar Nåsell Approximation of the Stationary Distribution $ p^{(1)} $ of the SIS Model . . . . . . . . . . . . . . . . . 93--99 Ingemar Nåsell Preparations for the Study of the Stationary Distribution $ p^{(0)} $ of the SIS Model . . . . . . . . . . . . . 101--113 Ingemar Nåsell Approximation of the Stationary Distribution $ p^{(0)} $ of the SIS Model . . . . . . . . . . . . . . . . . 115--118 Ingemar Nåsell Approximation of Some Images Under $ \Psi $ for the SIS Model . . . . . . . . 119--139 Ingemar Nåsell Approximation of the Quasi-stationary Distribution $q$ of the SIS Model . . . 141--147 Ingemar Nåsell Approximation of the Time to Extinction for the SIS Model . . . . . . . . . . . 149--154 Ingemar Nåsell Uniform Approximations for the SIS Model 155--170 Ingemar Nåsell Thresholds for the SIS Model . . . . . . 171--175 Ingemar Nåsell Concluding Comments . . . . . . . . . . 177--182 Ingemar Nåsell Back Matter . . . . . . . . . . . . . . 183--199
Kre\vsimir Veseli\'c Front Matter . . . . . . . . . . . . . . i--xv Kre\vsimir Veseli\'c The Model . . . . . . . . . . . . . . . 1--13 Kre\vsimir Veseli\'c Simultaneous Diagonalisation (Modal Damping) . . . . . . . . . . . . . . . . 15--22 Kre\vsimir Veseli\'c Phase Space . . . . . . . . . . . . . . 23--28 Kre\vsimir Veseli\'c The Singular Mass Case . . . . . . . . . 29--37 Kre\vsimir Veseli\'c `Indefinite Metric' . . . . . . . . . . 39--48 Kre\vsimir Veseli\'c Matrices and Indefinite Scalar Products 49--54 Kre\vsimir Veseli\'c Oblique Projections . . . . . . . . . . 55--60 Kre\vsimir Veseli\'c $J$-Orthogonal Projections . . . . . . . 61--65 Kre\vsimir Veseli\'c Spectral Properties and Reduction of $J$-Hermitian Matrices . . . . . . . . . 67--71 Kre\vsimir Veseli\'c Definite Spectra . . . . . . . . . . . . 73--88 Kre\vsimir Veseli\'c General Hermitian Matrix Pairs . . . . . 89--92 Kre\vsimir Veseli\'c Spectral Decomposition of a General $J$-Hermitian Matrix . . . . . . . . . . 93--111 Kre\vsimir Veseli\'c The Matrix Exponential . . . . . . . . . 113--120 Kre\vsimir Veseli\'c The Quadratic Eigenvalue Problem . . . . 121--127 Kre\vsimir Veseli\'c Simple Eigenvalue Inclusions . . . . . . 129--134 Kre\vsimir Veseli\'c Spectral Shift . . . . . . . . . . . . . 135--138 Kre\vsimir Veseli\'c Resonances and Resolvents . . . . . . . 139--141 Kre\vsimir Veseli\'c Well-Posedness . . . . . . . . . . . . . 143--143 Kre\vsimir Veseli\'c Modal Approximation . . . . . . . . . . 145--157 Kre\vsimir Veseli\'c Modal Approximation and Overdampedness 159--166
Mariarosaria Padula Front Matter . . . . . . . . . . . . . . i--xiv Mariarosaria Padula Topics in Fluid Mechanics . . . . . . . 1--52 Mariarosaria Padula Topics in Stability . . . . . . . . . . 53--86 Mariarosaria Padula Barotropic Fluids with Rigid Boundary 87--132 Mariarosaria Padula Isothermal Fluids with Free Boundaries 133--195 Mariarosaria Padula Polytropic Fluids with Rigid Boundary 197--221 Mariarosaria Padula Back Matter . . . . . . . . . . . . . . 223--235
Giambattista Giacomin Front Matter . . . . . . . . . . . . . . i--xi Giambattista Giacomin Introduction . . . . . . . . . . . . . . 1--4 Giambattista Giacomin Homogeneous Pinning Systems: a Class of Exactly Solved Models . . . . . . . . . 5--27 Giambattista Giacomin Introduction to Disordered Pinning Models . . . . . . . . . . . . . . . . . 29--40 Giambattista Giacomin Irrelevant Disorder Estimates . . . . . 41--50 Giambattista Giacomin Relevant Disorder Estimates: The Smoothing Phenomenon . . . . . . . . . . 51--61 Giambattista Giacomin Critical Point Shift: The Fractional Moment Method . . . . . . . . . . . . . 63--90 Giambattista Giacomin The Coarse Graining Procedure . . . . . 91--99 Giambattista Giacomin Path Properties . . . . . . . . . . . . 101--112 Giambattista Giacomin Back Matter . . . . . . . . . . . . . . 113--130
Yves Le Jan Front Matter . . . . . . . . . . . . . . i--viii Yves Le Jan Symmetric Markov Processes on Finite Spaces . . . . . . . . . . . . . . . . . 1--12 Yves Le Jan Loop Measures . . . . . . . . . . . . . 13--28 Yves Le Jan Geodesic Loops . . . . . . . . . . . . . 29--34 Yves Le Jan Poisson Process of Loops . . . . . . . . 35--45 Yves Le Jan The Gaussian Free Field . . . . . . . . 47--56 Yves Le Jan Energy Variation and Representations . . 57--64 Yves Le Jan Decompositions . . . . . . . . . . . . . 65--73 Yves Le Jan Loop Erasure and Spanning Trees . . . . 75--89 Yves Le Jan Reflection Positivity . . . . . . . . . 91--97 Yves Le Jan The Case of General Symmetric Markov Processes . . . . . . . . . . . . . . . 99--113 Yves Le Jan Back Matter . . . . . . . . . . . . . . 115--124
V. S. Varadarajan Introduction . . . . . . . . . . . . . . 1--15 L. Andrianopoli and R. D'Auria and S. Ferrara and M. Trigiante Black Holes and First Order Flows in Supergravity . . . . . . . . . . . . . . 17--43 Claudio Carmeli and Gianni Cassinelli Representations of Super Lie Groups: Some Remarks . . . . . . . . . . . . . . 45--67 D. Cervantes and R. Fioresi and M. A. Lledó On Chiral Quantum Superspaces . . . . . 69--99 R. Fioresi and F. Gavarini On the Construction of Chevalley Supergroups . . . . . . . . . . . . . . 101--123 Hans Plesner Jakobsen Indecomposable Finite-Dimensional Representations of a Class of Lie Algebras and Lie Superalgebras . . . . . 125--138 Stephen Kwok On the Geometry of Super Riemann Surfaces . . . . . . . . . . . . . . . . 139--154 Alessio Marrani Charge Orbits and Moduli Spaces of Black Hole Attractors . . . . . . . . . . . . 155--174 M. V. Movshev and A. Schwarz Maximal Supersymmetry . . . . . . . . . 175--193 Karl-Hermann Neeb and Hadi Salmasian Lie Supergroups, Unitary Representations, and Invariant Cones . . 195--239 Jeffrey M. Rabin Geometry of Dual Pairs of Complex Supercurves . . . . . . . . . . . . . . 241--252 Vera Serganova On the Superdimension of an Irreducible Representation of a Basic Classical Lie Superalgebra . . . . . . . . . . . . . . 253--273 Vera Serganova Back Matter . . . . . . . . . . . . . . 275--276
Stefano Bianchini and Eric A. Carlen and Alexander Mielke and Cédric Villani Front Matter . . . . . . . . . . . . . . i--xiii Stefano Bianchini and Matteo Gloyer Transport Rays and Applications to Hamilton--Jacobi Equations . . . . . . . 1--15 Eric A. Carlen Functional Inequalities and Dynamics . . 17--85 Alexander Mielke Differential, Energetic, and Metric Formulations for Rate-Independent Processes . . . . . . . . . . . . . . . 87--170 Alessio Figalli and Cédric Villani Optimal Transport and Curvature . . . . 171--217 Alessio Figalli and Cédric Villani Back Matter . . . . . . . . . . . . . . 219--224
Pierre Gillibert and Friedrich Wehrung Front Matter . . . . . . . . . . . . . . i--x Pierre Gillibert and Friedrich Wehrung Background . . . . . . . . . . . . . . . 1--34 Pierre Gillibert and Friedrich Wehrung Boolean Algebras That Are Scaled with Respect to a Poset . . . . . . . . . . . 35--50 Pierre Gillibert and Friedrich Wehrung The Condensate Lifting Lemma (CLL) . . . 51--79 Pierre Gillibert and Friedrich Wehrung Getting Larders from Congruence Lattices of First-Order Structures . . . . . . . 81--116 Pierre Gillibert and Friedrich Wehrung Congruence-Permutable, Congruence-Preserving Extensions of Lattices . . . . . . . . . . . . . . . . 117--129 Pierre Gillibert and Friedrich Wehrung Larders from von Neumann Regular Rings 131--138 Pierre Gillibert and Friedrich Wehrung Discussion . . . . . . . . . . . . . . . 139--141 Pierre Gillibert and Friedrich Wehrung Back Matter . . . . . . . . . . . . . . 143--158
Yukio Matsumoto and José María Montesinos-Amilibia Front Matter . . . . . . . . . . . . . . i--xvi Yukio Matsumoto and José María Montesinos-Amilibia Front Matter . . . . . . . . . . . . . . 1--1 Yukio Matsumoto and José María Montesinos-Amilibia Pseudo-periodic Maps . . . . . . . . . . 3--15 Yukio Matsumoto and José María Montesinos-Amilibia Standard Form . . . . . . . . . . . . . 17--52 Yukio Matsumoto and José María Montesinos-Amilibia Generalized Quotient . . . . . . . . . . 53--92 Yukio Matsumoto and José María Montesinos-Amilibia Uniqueness of Minimal Quotient . . . . . 93--129 Yukio Matsumoto and José María Montesinos-Amilibia A Theorem in Elementary Number Theory 131--144 Yukio Matsumoto and José María Montesinos-Amilibia Conjugacy Invariants . . . . . . . . . . 145--169 Yukio Matsumoto and José María Montesinos-Amilibia Front Matter . . . . . . . . . . . . . . 171--171 Yukio Matsumoto and José María Montesinos-Amilibia Topological Monodromy . . . . . . . . . 173--188 Yukio Matsumoto and José María Montesinos-Amilibia Blowing Down Is a Topological Operation 189--198 Yukio Matsumoto and José María Montesinos-Amilibia Singular Open-Book . . . . . . . . . . . 199--220 Yukio Matsumoto and José María Montesinos-Amilibia Back Matter . . . . . . . . . . . . . . 221--238
Jin Akiyama and Mikio Kano Front Matter . . . . . . . . . . . . . . i--xii Jin Akiyama and Mikio Kano Basic Terminology . . . . . . . . . . . 1--14 Jin Akiyama and Mikio Kano Matchings and $1$-Factors . . . . . . . 15--67 Jin Akiyama and Mikio Kano Regular Factors and $f$-Factors . . . . 69--141 Jin Akiyama and Mikio Kano $ (g, f)$-Factors and $ [a, b]$-Factors 143--191 Jin Akiyama and Mikio Kano $ [a, b]$-Factorizations . . . . . . . . 193--218 Jin Akiyama and Mikio Kano Parity Factors . . . . . . . . . . . . . 219--251 Jin Akiyama and Mikio Kano Component Factors . . . . . . . . . . . 253--293 Jin Akiyama and Mikio Kano Spanning Trees . . . . . . . . . . . . . 295--336 Jin Akiyama and Mikio Kano Back Matter . . . . . . . . . . . . . . 337--356
Jonathan A. Barmak Front Matter . . . . . . . . . . . . . . i--xvii Jonathan A. Barmak Preliminaries . . . . . . . . . . . . . 1--18 Jonathan A. Barmak Basic Topological Properties of Finite Spaces . . . . . . . . . . . . . . . . . 19--35 Jonathan A. Barmak Minimal Finite Models . . . . . . . . . 37--47 Jonathan A. Barmak Simple Homotopy Types and Finite Spaces 49--72 Jonathan A. Barmak Strong Homotopy Types . . . . . . . . . 73--84 Jonathan A. Barmak Methods of Reduction . . . . . . . . . . 85--91 Jonathan A. Barmak $h$-Regular Complexes and Quotients . . 93--104 Jonathan A. Barmak Group Actions and a Conjecture of Quillen . . . . . . . . . . . . . . . . 105--120 Jonathan A. Barmak Reduced Lattices . . . . . . . . . . . . 121--127 Jonathan A. Barmak Fixed Points and the Lefschetz Number 129--135 Jonathan A. Barmak The Andrews--Curtis Conjecture . . . . . 137--150 Jonathan A. Barmak Back Matter . . . . . . . . . . . . . . 151--170
Vladimir Koltchinskii Front Matter . . . . . . . . . . . . . . i--ix Prof. Vladimir Koltchinskii Introduction . . . . . . . . . . . . . . 1--16 Prof. Vladimir Koltchinskii Empirical and Rademacher Processes . . . 17--32 Prof. Vladimir Koltchinskii Bounding Expected Sup-Norms of Empirical and Rademacher Processes . . . . . . . . 33--57 Prof. Vladimir Koltchinskii Excess Risk Bounds . . . . . . . . . . . 59--79 Prof. Vladimir Koltchinskii Examples of Excess Risk Bounds in Prediction Problems . . . . . . . . . . 81--97 Prof. Vladimir Koltchinskii Penalized Empirical Risk Minimization and Model Selection Problems . . . . . . 99--119 Prof. Vladimir Koltchinskii Linear Programming in Sparse Recovery 121--149 Prof. Vladimir Koltchinskii Convex Penalization in Sparse Recovery 151--189 Prof. Vladimir Koltchinskii Low Rank Matrix Recovery: Nuclear Norm Penalization . . . . . . . . . . . . . . 191--234 Prof. Vladimir Koltchinskii Back Matter . . . . . . . . . . . . . . 235--254
Volker Mayer and Mariusz Urbanski and Bartlomiej Skorulski Front Matter . . . . . . . . . . . . . . i--x Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Introduction . . . . . . . . . . . . . . 1--4 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Expanding Random Maps . . . . . . . . . 5--15 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski The RPF-Theorem . . . . . . . . . . . . 17--38 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Measurability, Pressure and Gibbs Condition . . . . . . . . . . . . . . . 39--45 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Fractal Structure of Conformal Expanding Random Repellers . . . . . . . . . . . . 47--56 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Multifractal Analysis . . . . . . . . . 57--68 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Expanding in the Mean . . . . . . . . . 69--74 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Classical Expanding Random Systems . . . 75--91 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Real Analyticity of Pressure . . . . . . 93--108 Volker Mayer and Bartlomiej Skorulski and Mariusz Urbanski Back Matter . . . . . . . . . . . . . . 109--112
Andrea Bonfiglioli and Roberta Fulci Front Matter . . . . . . . . . . . . . . i--xxii Andrea Bonfiglioli and Roberta Fulci Historical Overview . . . . . . . . . . 1--45 Andrea Bonfiglioli and Roberta Fulci Front Matter . . . . . . . . . . . . . . 47--47 Andrea Bonfiglioli and Roberta Fulci Background Algebra . . . . . . . . . . . 49--114 Andrea Bonfiglioli and Roberta Fulci The Main Proof of the CBHD Theorem . . . 115--172 Andrea Bonfiglioli and Roberta Fulci Some ``Short'' Proofs of the CBHD Theorem . . . . . . . . . . . . . . . . 173--264 Andrea Bonfiglioli and Roberta Fulci Convergence of the CBHD Series and Associativity of the CBHD Operation . . 265--369 Andrea Bonfiglioli and Roberta Fulci Relationship Between the CBHD Theorem, the PBW Theorem and the Free Lie Algebras . . . . . . . . . . . . . . . . 371--389 Andrea Bonfiglioli and Roberta Fulci Front Matter . . . . . . . . . . . . . . 391--391 Andrea Bonfiglioli and Roberta Fulci Proofs of the Algebraic Prerequisites 393--457 Andrea Bonfiglioli and Roberta Fulci Construction of Free Lie Algebras . . . 459--477 Andrea Bonfiglioli and Roberta Fulci Formal Power Series in One Indeterminate 479--499 Andrea Bonfiglioli and Roberta Fulci Symmetric Algebra . . . . . . . . . . . 501--521 Andrea Bonfiglioli and Roberta Fulci Back Matter . . . . . . . . . . . . . . 523--539
Habib Ammari Front Matter . . . . . . . . . . . . . . i--ix John C. Schotland Direct Reconstruction Methods in Optical Tomography . . . . . . . . . . . . . . . 1--29 Habib Ammari and Josselin Garnier and Vincent Jugnon and Hyeonbae Kang Direct Reconstruction Methods in Ultrasound Imaging of Small Anomalies 31--55 Habib Ammari and Elie Bretin and Vincent Jugnon and Abdul Wahab Photoacoustic Imaging for Attenuating Acoustic Media . . . . . . . . . . . . . 57--84 Richard Kowar and Otmar Scherzer Attenuation Models in Photoacoustics . . 85--130 Hao Gao and Stanley Osher and Hongkai Zhao Quantitative Photoacoustic Tomography 131--158 Hao Gao and Stanley Osher and Hongkai Zhao Back Matter . . . . . . . . . . . . . . 159--160
András Némethi and Ágnes Szilárd Front Matter . . . . . . . . . . . . . . i--xii András Némethi and Ágnes Szilárd Introduction . . . . . . . . . . . . . . 1--7 András Némethi and Ágnes Szilárd Front Matter . . . . . . . . . . . . . . 9--9 András Némethi and Ágnes Szilárd The Topology of a Hypersurface Germ $f$ in Three Variables . . . . . . . . . . . 11--15 András Némethi and Ágnes Szilárd The Topology of a Pair $ (f, g) $ . . . 17--23 András Némethi and Ágnes Szilárd Plumbing Graphs and Oriented Plumbed $3$-Manifolds . . . . . . . . . . . . . 25--43 András Némethi and Ágnes Szilárd Cyclic Coverings of Graphs . . . . . . . 45--54 András Némethi and Ágnes Szilárd The Graph $ \mathit \Gamma_{\mathcal {C}} $ of a pair $ (f, g) $: The Definition . . . . . . . . . . . . . . . 55--61 András Némethi and Ágnes Szilárd The Graph $ \mathit \Gamma_{\mathcal {C}} $: Properties . . . . . . . . . . . 63--77 András Némethi and Ágnes Szilárd Examples: Homogeneous Singularities . . 79--82 András Némethi and Ágnes Szilárd Examples: Families Associated with Plane Curve Singularities . . . . . . . . . . 83--97 András Némethi and Ágnes Szilárd Front Matter . . . . . . . . . . . . . . 99--99 András Némethi and Ágnes Szilárd The Main Algorithm . . . . . . . . . . . 101--115 András Némethi and Ágnes Szilárd Proof of the Main Algorithm . . . . . . 117--130 András Némethi and Ágnes Szilárd The Collapsing Main Algorithm . . . . . 131--138 András Némethi and Ágnes Szilárd Vertical/Horizontal Monodromies . . . . 139--151 András Némethi and Ágnes Szilárd The Algebraic Monodromy of $ H_1 (\partial F) $: Starting Point . . . . . 153--156 András Némethi and Ágnes Szilárd The Ranks of $ H_1 (\partial F) $ and $ H_1 (\partial F \setminus V g) $ via plumbing . . . . . . . . . . . . . . . . 157--160 András Némethi and Ágnes Szilárd The Characteristic Polynomial of $ \partial F $ via $ P^\sharp $ and $ P^\sharp_j $ . . . . . . . . . . . . . . 161--166 András Némethi and Ágnes Szilárd The Proof of the Characteristic Polynomial Formulae . . . . . . . . . . 167--172 András Némethi and Ágnes Szilárd The Mixed Hodge Structure of $ H_1 (\partial F) $ . . . . . . . . . . . . . 173--176 András Némethi and Ágnes Szilárd Front Matter . . . . . . . . . . . . . . 177--177 András Némethi and Ágnes Szilárd Homogeneous Singularities . . . . . . . 179--199 András Némethi and Ágnes Szilárd Cylinders of Plane Curve Singularities: $ f = f^{\prime }(x, y) $ . . . . . . . 201--204
Vincent Guedj Introduction . . . . . . . . . . . . . . 1--10 Vincent Guedj and Ahmed Zeriahi Dirichlet Problem in Domains of $ \mathbb {C}^n $ . . . . . . . . . . . . 13--32 Romain Dujardin and Vincent Guedj Geometric Properties of Maximal psh Functions . . . . . . . . . . . . . . . 33--52 Romain Dujardin and Vincent Guedj Front Matter . . . . . . . . . . . . . . 53--53 François Delarue Probabilistic Approach to Regularity . . 55--198 François Delarue Front Matter . . . . . . . . . . . . . . 199--199 Zbigniew B\locki The Calabi--Yau Theorem . . . . . . . . 201--227 Zbigniew B\locki Front Matter . . . . . . . . . . . . . . 229--229 Boris Kolev The Riemannian Space of Kähler Metrics 231--255 Sébastien Boucksom Monge--Amp\`ere Equations on Complex Manifolds with Boundary . . . . . . . . 257--282 Robert Berman and Julien Keller Bergman Geodesics . . . . . . . . . . . 283--302 Robert Berman and Julien Keller Back Matter . . . . . . . . . . . . . . 303--310
Olaf Post Front Matter . . . . . . . . . . . . . . i--xv Olaf Post Introduction . . . . . . . . . . . . . . 1--56 Olaf Post Graphs and Associated Laplacians . . . . 57--96 Olaf Post The Functional Analytic Part: Scales of Hilbert Spaces and Boundary Triples . . 97--185 Olaf Post The Functional Analytic Part: Two Operators in Different Hilbert Spaces 187--257 Olaf Post Manifolds, Tubular Neighbourhoods and Their Perturbations . . . . . . . . . . 259--289 Olaf Post Plumber's Shop: Estimates for Star Graphs and Related Spaces . . . . . . . 291--366 Olaf Post Global Convergence Results . . . . . . . 367--388 Olaf Post Back Matter . . . . . . . . . . . . . . 389--431
Silvia Bertoluzza and Ricardo H. Nochetto and Alfio Quarteroni and Kunibert G. Siebert and Andreas Veeser Front Matter . . . . . . . . . . . . . . i--xii Silvia Bertoluzza Adaptive Wavelet Methods . . . . . . . . 1--56 Marco Discacciati and Paola Gervasio and Alfio Quarteroni Heterogeneous Mathematical Models in Fluid Dynamics and Associated Solution Algorithms . . . . . . . . . . . . . . . 57--123 Ricardo H. Nochetto and Andreas Veeser Primer of Adaptive Finite Element Methods . . . . . . . . . . . . . . . . 125--225 Kunibert G. Siebert Mathematically Founded Design of Adaptive Finite Element Software . . . . 227--309 Kunibert G. Siebert Back Matter . . . . . . . . . . . . . . 311--314
Benjamin Howard and Tonghai Yang Front Matter . . . . . . . . . . . . . . i--viii Benjamin Howard and Tonghai Yang Introduction . . . . . . . . . . . . . . 1--9 Benjamin Howard and Tonghai Yang Linear Algebra . . . . . . . . . . . . . 11--24 Benjamin Howard and Tonghai Yang Moduli Spaces of Abelian Surfaces . . . 25--41 Benjamin Howard and Tonghai Yang Eisenstein Series . . . . . . . . . . . 43--63 Benjamin Howard and Tonghai Yang The Main Results . . . . . . . . . . . . 65--84 Benjamin Howard and Tonghai Yang Local Calculations . . . . . . . . . . . 85--133 Benjamin Howard and Tonghai Yang Back Matter . . . . . . . . . . . . . . 135--140
William J. Layton and Leo Rebholz Front Matter . . . . . . . . . . . . . . i--viii William J. Layton and Leo G. Rebholz Introduction . . . . . . . . . . . . . . 1--33 William J. Layton and Leo G. Rebholz Large Eddy Simulation . . . . . . . . . 35--60 William J. Layton and Leo G. Rebholz Approximate Deconvolution Operators and Models . . . . . . . . . . . . . . . . . 61--88 William J. Layton and Leo G. Rebholz Phenomenology of ADMs . . . . . . . . . 89--97 William J. Layton and Leo G. Rebholz Time Relaxation Truncates Scales . . . . 99--120 William J. Layton and Leo G. Rebholz The Leray-Deconvolution Regularization 121--144 William J. Layton and Leo G. Rebholz NS-Alpha- and NS-Omega-Deconvolution Regularizations . . . . . . . . . . . . 145--162 William J. Layton and Leo G. Rebholz Back Matter . . . . . . . . . . . . . . 163--184
Thomas H. Otway Front Matter . . . . . . . . . . . . . . i--ix Thomas H. Otway Introduction . . . . . . . . . . . . . . 1--11 Thomas H. Otway Mathematical Preliminaries . . . . . . . 13--45 Thomas H. Otway The Equation of Cinquini--Cibrario . . . 47--85 Thomas H. Otway The Cold Plasma Model . . . . . . . . . 87--120 Thomas H. Otway Light Near a Caustic . . . . . . . . . . 121--144 Thomas H. Otway Projective Geometry . . . . . . . . . . 145--167 Thomas H. Otway Back Matter . . . . . . . . . . . . . . 169--214
Kendall Atkinson and Weimin Han Front Matter . . . . . . . . . . . . . . i--ix Kendall Atkinson and Weimin Han Preliminaries . . . . . . . . . . . . . 1--9 Kendall Atkinson and Weimin Han Spherical Harmonics . . . . . . . . . . 11--86 Kendall Atkinson and Weimin Han Differentiation and Integration over the Sphere . . . . . . . . . . . . . . . . . 87--130 Kendall Atkinson and Weimin Han Approximation Theory . . . . . . . . . . 131--163 Kendall Atkinson and Weimin Han Numerical Quadrature . . . . . . . . . . 165--210 Kendall Atkinson and Weimin Han Applications: Spectral Methods . . . . . 211--236 Kendall Atkinson and Weimin Han Back Matter . . . . . . . . . . . . . . 237--244
John Lewis and Peter Lindqvist and Juan J. Manfredi and Sandro Salsa Front Matter . . . . . . . . . . . . . . i--xi J. Lewis Applications of Boundary Harnack Inequalities for $p$ Harmonic Functions and Related Topics . . . . . . . . . . . 1--72 Peter Lindqvist Regularity of Supersolutions . . . . . . 73--131 Juan J. Manfredi Introduction to Random Tug-of-War Games and PDEs . . . . . . . . . . . . . . . . 133--151 Sandro Salsa The Problems of the Obstacle in Lower Dimension and for the Fractional Laplacian . . . . . . . . . . . . . . . 153--244 Sandro Salsa Back Matter . . . . . . . . . . . . . . 245--247
Peggy Cénac and Brigitte Chauvin and Frédéric Paccaut and Nicolas Pouyanne Context Trees, Variable Length Markov Chains and Dynamical Sources . . . . . . 1--39 Aleksandar Mijatovi\'c and Nika Novak and Mikhail Urusov Martingale Property of Generalized Stochastic Exponentials . . . . . . . . 41--59 Andreas Basse-O'Connor and Svend-Erik Graversen and Jan Pedersen Some Classes of Proper Integrals and Generalized Ornstein--Uhlenbeck Processes . . . . . . . . . . . . . . . 61--74 Zhongmin Qian and Jiangang Ying Martingale Representations for Diffusion Processes and Backward Stochastic Differential Equations . . . . . . . . . 75--103 Markus Mocha and Nicholas Westray Quadratic Semimartingale BSDEs Under an Exponential Moments Condition . . . . . 105--139 Greg Markowsky The Derivative of the Intersection Local Time of Brownian Motion Through Wiener Chaos . . . . . . . . . . . . . . . . . 141--148 Hao Wu On the Occupation Times of Brownian Excursions and Brownian Loops . . . . . 149--166 Hatem Hajri Discrete Approximations to Solution Flows of Tanaka's SDE Related to Walsh Brownian Motion . . . . . . . . . . . . 167--190 Nizar Demni and Taoufik Hmidi Spectral Distribution of the Free Unitary Brownian Motion: Another Approach . . . . . . . . . . . . . . . . 191--206 Nathalie Eisenbaum Another Failure in the Analogy Between Gaussian and Semicircle Laws . . . . . . 207--213 Antoine Lejay Global Solutions to Rough Differential Equations with Unbounded Vector Fields 215--246 Renaud Marty and Knut Sòlna Asymptotic Behavior of Oscillatory Fractional Processes . . . . . . . . . . 247--269 Juha Vuolle-Apiala Time Inversion Property for Rotation Invariant Self-similar Diffusion Processes . . . . . . . . . . . . . . . 271--277 Antoine-Marie Bogso and Christophe Profeta and Bernard Roynette On Peacocks: a General Introduction to Two Articles . . . . . . . . . . . . . . 279--280 Antoine-Marie Bogso and Christophe Profeta and Bernard Roynette Some Examples of Peacocks in a Markovian Set-Up . . . . . . . . . . . . . . . . . 281--315 Antoine-Marie Bogso and Christophe Profeta and Bernard Roynette Peacocks Obtained by Normalisation: Strong and Very Strong Peacocks . . . . 317--374 Simon C. Harris and Matthew I. Roberts Branching Brownian Motion: Almost Sure Growth Along Scaled Paths . . . . . . . 375--399 Jean-Christophe Mourrat On the Delocalized Phase of the Random Pinning Model . . . . . . . . . . . . . 401--407 Bernard Bercu and Jean-François Bony and Vincent Bruneau Large Deviations for Gaussian Stationary Processes and Semi-Classical Analysis 409--428 Christian Léonard Girsanov Theory Under a Finite Entropy Condition . . . . . . . . . . . . . . . 429--465 Christian Léonard Back Matter . . . . . . . . . . . . . . 467--469
Gani T. Stamov Front Matter . . . . . . . . . . . . . . i--xx Gani T. Stamov Impulsive Differential Equations and Almost Periodicity . . . . . . . . . . . 1--32 Gani T. Stamov Almost Periodic Solutions . . . . . . . 33--96 Gani T. Stamov Lyapunov Method and Almost Periodicity 97--149 Gani T. Stamov Applications . . . . . . . . . . . . . . 151--203 Gani T. Stamov Back Matter . . . . . . . . . . . . . . 205--217
Fatiha Alabau-Boussouira and Roger Brockett and Olivier Glass and Jérôme Le Rousseau and Enrique Zuazua Front Matter . . . . . . . . . . . . . . i--xiii Fatiha Alabau-Boussouira On Some Recent Advances on Stabilization for Hyperbolic Equations . . . . . . . . 1--100 Roger Brockett Notes on the Control of the Liouville Equation . . . . . . . . . . . . . . . . 101--129 Olivier Glass Some Questions of Control in Fluid Mechanics . . . . . . . . . . . . . . . 131--206 Jérôme Le Rousseau Carleman Estimates and Some Applications to Control Theory . . . . . . . . . . . 207--243 Sylvain Ervedoza and Enrique Zuazua The Wave Equation: Control and Numerics 245--339 Sylvain Ervedoza and Enrique Zuazua Back Matter . . . . . . . . . . . . . . 341--344
Angelo Favini and Gabriela Marinoschi Front Matter . . . . . . . . . . . . . . i--xxi Angelo Favini and Gabriela Marinoschi Existence for Parabolic--Elliptic Degenerate Diffusion Problems . . . . . 1--56 Angelo Favini and Gabriela Marinoschi Existence for Diffusion Degenerate Problems . . . . . . . . . . . . . . . . 57--90 Angelo Favini and Gabriela Marinoschi Existence for Nonautonomous Parabolic--Elliptic Degenerate Diffusion Equations . . . . . . . . . . . . . . . 91--108 Angelo Favini and Gabriela Marinoschi Parameter Identification in a Parabolic--Elliptic Degenerate Problem 109--133 Angelo Favini and Gabriela Marinoschi Back Matter . . . . . . . . . . . . . . 135--143
Semyon Alesker The $ \alpha $-Cosine Transform and Intertwining Integrals on Real Grassmannians . . . . . . . . . . . . . 1--21 Semyon Alesker On Modules Over Valuations . . . . . . . 23--34 Shiri Artstein-Avidan and Dmitry Faifman and Vitali Milman On Multiplicative Maps of Continuous and Smooth Functions . . . . . . . . . . . . 35--59 Shiri Artstein-Avidan and Dan Florentin and Vitali Milman Order Isomorphisms on Convex Functions in Windows . . . . . . . . . . . . . . . 61--122 Itai Benjamini and Oded Schramm Finite Transitive Graph Embeddings into a Hyperbolic Metric Space Must Stretch or Squeeze . . . . . . . . . . . . . . . 123--126 Itai Benjamini and Ofer Zeitouni Tightness of Fluctuations of First Passage Percolation on Some Large Graphs 127--132 Jean Bourgain Finitely Supported Measures on $ {\rm SL}_2 (\mathbb {R}) $ Which are Absolutely Continuous at Infinity . . . 133--141 Jean Bourgain Möbius Schrödinger . . . . . . . . . . . . 143--150 Dario Cordero-Erausquin and Bo'az Klartag Interpolations, Convexity and Geometric Inequalities . . . . . . . . . . . . . . 151--168 Dario Cordero-Erausquin and Michel Ledoux Hypercontractive Measures, Talagrand's Inequality, and Influences . . . . . . . 169--189 Dmitry Faifman A Family of Unitary Operators Satisfying a Poisson-Type Summation Formula . . . . 191--204 Dan Florentin and Alexander Segal Stability of Order Preserving Transforms 205--225 Apostolos Giannopoulos and Grigoris Paouris and Petros Valettas On the Distribution of the $ \psi_2$-Norm of Linear Functionals on Isotropic Convex Bodies . . . . . . . . 227--253 Efim D. Gluskin and Alexander E. Litvak A Remark on Vertex Index of the Convex Bodies . . . . . . . . . . . . . . . . . 255--265 Bo'az Klartag and Emanuel Milman Inner Regularization of Log-Concave Measures and Small-Ball Estimates . . . 267--278 Hermann König and Vitali Milman An Operator Equation Generalizing the Leibniz Rule for the Second Derivative 279--299 Rafa\l Lata\la Moments of Unconditional Logarithmically Concave Vectors . . . . . . . . . . . . 301--315 Elizabeth Meckes Projections of Probability Distributions: a Measure-Theoretic Dvoretzky Theorem . . . . . . . . . . . 317--326 Piotr Nayar and Tomasz Tkocz On a Loomis--Whitney Type Inequality for Permutationally Invariant Unconditional Convex Bodies . . . . . . . . . . . . . 327--333 Fedor Nazarov The Hörmander Proof of the Bourgain--Milman Theorem . . . . . . . . 335--343
Vincent Rivasseau and Robert Seiringer and Jan Philip Solovej and Thomas Spencer Front Matter . . . . . . . . . . . . . . i--xiii Vincent Rivasseau Introduction to the Renormalization Group with Applications to Non-relativistic Quantum Electron Gases 1--54 Robert Seiringer Cold Quantum Gases and Bose--Einstein Condensation . . . . . . . . . . . . . . 55--92 Jan Philip Solovej Quantum Coulomb Gases . . . . . . . . . 93--124 Thomas Spencer SUSY Statistical Mechanics and Random Band Matrices . . . . . . . . . . . . . 125--177 Thomas Spencer Back Matter . . . . . . . . . . . . . . 179--180
Fabien Morel Front Matter . . . . . . . . . . . . . . i--x Fabien Morel Introduction . . . . . . . . . . . . . . 1--13 Fabien Morel Unramified Sheaves and Strongly $ {\mathbb {A}}^1 $-Invariant Sheaves . . 15--48 Fabien Morel Unramified Milnor--Witt $K$-Theories . . 49--80 Fabien Morel Geometric Versus Canonical Transfers . . 81--112 Fabien Morel The Rost--Schmid Complex of a Strongly $ \mathbb {A}^1 $-Invariant Sheaf . . . . 113--148 Fabien Morel $ {\mathbb {A}}^1 $-Homotopy Sheaves and $ {\mathbb {A}}^1 $-Homology Sheaves . . 149--175 Fabien Morel $ {\mathbb {A}}^1 $-Coverings, $ {\pi }_1^{{\mathbb {A}}^1 }({\mathbb {P}}^n) $ and $ {\pi }_1^{{\mathbb {A}}^1}({\rm SL}_n) $ . . . . . . . . . . . . . . . . 177--197 Fabien Morel $ {\mathbb {A}}^1 $-Homotopy and Algebraic Vector Bundles . . . . . . . . 199--207 Fabien Morel The Affine B.G. Property for the Linear Groups and the Grassmannian . . . . . . 209--226 Fabien Morel Back Matter . . . . . . . . . . . . . . 227--259
Steffen Fröhlich Front Matter . . . . . . . . . . . . . . i--xiv Steffen Fröhlich Surface Geometry . . . . . . . . . . . . 1--29 Steffen Fröhlich Elliptic Systems . . . . . . . . . . . . 31--52 Steffen Fröhlich Normal Coulomb Frames in $ {\mathbb {R}}^4 $ . . . . . . . . . . . . . . . . 53--73 Steffen Fröhlich Normal Coulomb Frames in $ \mathbb {R}^{n + 2} $ . . . . . . . . . . . . . 75--105 Steffen Fröhlich Back Matter . . . . . . . . . . . . . . 107--117
Sungbok Hong and John Kalliongis and Darryl McCullough and J. Hyam Rubinstein Front Matter . . . . . . . . . . . . . . i--x Sungbok Hong and John Kalliongis and Darryl McCullough and J. Hyam Rubinstein Elliptic Three-Manifolds and the Smale Conjecture . . . . . . . . . . . . . . . 1--7 Sungbok Hong and John Kalliongis and Darryl McCullough and J. Hyam Rubinstein Diffeomorphisms and Embeddings of Manifolds . . . . . . . . . . . . . . . 9--17 Sungbok Hong and John Kalliongis and Darryl McCullough and J. Hyam Rubinstein The Method of Cerf and Palais . . . . . 19--51 Sungbok Hong and John Kalliongis and Darryl McCullough and J. Hyam Rubinstein Elliptic Three-Manifolds Containing One-Sided Klein Bottles . . . . . . . . 53--83 Sungbok Hong and John Kalliongis and Darryl McCullough and J. Hyam Rubinstein Lens Spaces . . . . . . . . . . . . . . 85--144 Sungbok Hong and John Kalliongis and Darryl McCullough and J. Hyam Rubinstein Back Matter . . . . . . . . . . . . . . 145--155
Mahmoud H. Annaby and Zeinab S. Mansour Front Matter . . . . . . . . . . . . . . i--xix Mahmoud H. Annaby and Zeinab S. Mansour Preliminaries . . . . . . . . . . . . . 1--39 Mahmoud H. Annaby and Zeinab S. Mansour $q$-Difference Equations . . . . . . . . 41--71 Mahmoud H. Annaby and Zeinab S. Mansour $q$-Sturm--Liouville Problems . . . . . 73--105 Mahmoud H. Annaby and Zeinab S. Mansour Riemann--Liouville $q$-Fractional Calculi . . . . . . . . . . . . . . . . 107--146 Mahmoud H. Annaby and Zeinab S. Mansour Other $q$-Fractional Calculi . . . . . . 147--173 Mahmoud H. Annaby and Zeinab S. Mansour Fractional $q$-Leibniz Rule and Applications . . . . . . . . . . . . . . 175--199 Mahmoud H. Annaby and Zeinab S. Mansour $q$-Mittag-Leffler Functions . . . . . . 201--222 Mahmoud H. Annaby and Zeinab S. Mansour Fractional $q$-Difference Equations . . 223--270 Mahmoud H. Annaby and Zeinab S. Mansour $q$-Integral Transforms for Solving Fractional $q$-Difference Equations . . 271--293 Mahmoud H. Annaby and Zeinab S. Mansour Back Matter . . . . . . . . . . . . . . 295--318
Hidetoshi Marubayashi and Fred Van Oystaeyen Front Matter . . . . . . . . . . . . . . i--ix Hidetoshi Marubayashi and Fred Van Oystaeyen General Theory of Primes . . . . . . . . 1--107 Hidetoshi Marubayashi and Fred Van Oystaeyen Maximal Orders and Primes . . . . . . . 109--173 Hidetoshi Marubayashi and Fred Van Oystaeyen Extensions of Valuations to Quantized Algebras . . . . . . . . . . . . . . . . 175--211 Hidetoshi Marubayashi and Fred Van Oystaeyen Back Matter . . . . . . . . . . . . . . 213--218
Serge Cohen and Alexey Kuznetsov and Andreas E. Kyprianou and Victor Rivero Front Matter . . . . . . . . . . . . . . i--xii Serge Cohen Fractional Lévy Fields . . . . . . . . . 1--95 Alexey Kuznetsov and Andreas E. Kyprianou and Victor Rivero The Theory of Scale Functions for Spectrally Negative Lévy Processes . . . 97--186 Alexey Kuznetsov and Andreas E. Kyprianou and Victor Rivero Back Matter . . . . . . . . . . . . . . 187--188
Jakob Stix Front Matter . . . . . . . . . . . . . . i--xx Jakob Stix Front Matter . . . . . . . . . . . . . . 1--1 Jakob Stix Continuous Non-abelian $ H^1 $ with Profinite Coefficients . . . . . . . . . 3--11 Jakob Stix The Fundamental Groupoid . . . . . . . . 13--23 Jakob Stix Basic Geometric Operations in Terms of Sections . . . . . . . . . . . . . . . . 25--36 Jakob Stix The Space of Sections as a Topological Space . . . . . . . . . . . . . . . . . 37--44 Jakob Stix Evaluation of Units . . . . . . . . . . 45--51 Jakob Stix Cycle Classes in Anabelian Geometry . . 53--66 Jakob Stix Front Matter . . . . . . . . . . . . . . 67--67 Jakob Stix Injectivity in the Section Conjecture 69--79 Jakob Stix Reduction of Sections . . . . . . . . . 81--93 Jakob Stix The Space of Sections in the Arithmetic Case and the Section Conjecture in Covers . . . . . . . . . . . . . . . . . 95--103 Jakob Stix Front Matter . . . . . . . . . . . . . . 105--105 Jakob Stix Local Obstructions at a $p$-adic Place 107--117 Jakob Stix Brauer--Manin and Descent Obstructions 119--146 Jakob Stix Fragments of Non-abelian Tate--Poitou Duality . . . . . . . . . . . . . . . . 147--154 Jakob Stix Front Matter . . . . . . . . . . . . . . 155--155 Jakob Stix On the Section Conjecture for Torsors 157--174 Jakob Stix Nilpotent Sections . . . . . . . . . . . 175--196 Jakob Stix Sections over Finite Fields . . . . . . 197--205 Jakob Stix On the Section Conjecture over Local Fields . . . . . . . . . . . . . . . . . 207--212 Jakob Stix Fields of Cohomological Dimension 1 . . 213--218 Jakob Stix Cuspidal Sections and Birational Analogues . . . . . . . . . . . . . . . 219--231 Jakob Stix Back Matter . . . . . . . . . . . . . . 233--249
Andrzej Cegielski Front Matter . . . . . . . . . . . . . . i--xvi Andrzej Cegielski Introduction . . . . . . . . . . . . . . 1--38 Andrzej Cegielski Algorithmic Operators . . . . . . . . . 39--103 Andrzej Cegielski Convergence of Iterative Methods . . . . 105--127 Andrzej Cegielski Algorithmic Projection Operators . . . . 129--202 Andrzej Cegielski Projection Methods . . . . . . . . . . . 203--274 Andrzej Cegielski Back Matter . . . . . . . . . . . . . . 275--298
Mostafa Bachar and Jerry Batzel and Susanne Ditlevsen Front Matter . . . . . . . . . . . . . . i--xvi Mostafa Bachar and Jerry Batzel and Susanne Ditlevsen Front Matter . . . . . . . . . . . . . . 1--1 Susanne Ditlevsen and Adeline Samson Introduction to Stochastic Models in Biology . . . . . . . . . . . . . . . . 3--35 Martin Jacobsen One-Dimensional Homogeneous Diffusions 37--55 Gilles Wainrib A Brief Introduction to Large Deviations Theory . . . . . . . . . . . . . . . . . 57--72 Gilles Wainrib Some Numerical Methods for Rare Events Simulation and Analysis . . . . . . . . 73--95 Gilles Wainrib Front Matter . . . . . . . . . . . . . . 97--97 Laura Sacerdote and Maria Teresa Giraudo Stochastic Integrate and Fire Models: a Review on Mathematical Methods and Their Applications . . . . . . . . . . . . . . 99--148 Henry C. Tuckwell Stochastic Partial Differential Equations in Neurobiology: Linear and Nonlinear Models for Spiking Neurons . . 149--173 Mich\`ele Thieullen Deterministic and Stochastic FitzHugh--Nagumo Systems . . . . . . . . 175--186 Henry C. Tuckwell Stochastic Modeling of Spreading Cortical Depression . . . . . . . . . . 187--200 Henry C. Tuckwell Back Matter . . . . . . . . . . . . . . 201--206
Claude Sabbah Front Matter . . . . . . . . . . . . . . i--xiv Claude Sabbah $ \mathcal {I}$-Filtrations . . . . . . 1--19 Claude Sabbah Front Matter . . . . . . . . . . . . . . 21--21 Claude Sabbah Stokes-Filtered Local Systems in Dimension One . . . . . . . . . . . . . 23--38 Claude Sabbah Abelianity and Strictness . . . . . . . 39--50 Claude Sabbah Stokes-Perverse Sheaves on Riemann Surfaces . . . . . . . . . . . . . . . . 51--64 Claude Sabbah The Riemann--Hilbert Correspondence for Holonomic $ \mathcal {D}$-Modules on Curves . . . . . . . . . . . . . . . . . 65--78 Claude Sabbah Applications of the Riemann--Hilbert Correspondence to Holonomic Distributions . . . . . . . . . . . . . 79--88 Claude Sabbah Riemann--Hilbert and Laplace on the Affine Line (the Regular Case) . . . . . 89--111 Claude Sabbah Front Matter . . . . . . . . . . . . . . 113--113 Claude Sabbah Real Blow-Up Spaces and Moderate de Rham Complexes . . . . . . . . . . . . . . . 115--129 Claude Sabbah Stokes-Filtered Local Systems Along a Divisor with Normal Crossings . . . . . 131--146 Claude Sabbah The Riemann--Hilbert Correspondence for Good Meromorphic Connections (Case of a Smooth Divisor) . . . . . . . . . . . . 147--157 Claude Sabbah Good Meromorphic Connections (Formal Theory) . . . . . . . . . . . . . . . . 159--175 Claude Sabbah Good Meromorphic Connections (Analytic Theory) and the Riemann--Hilbert Correspondence . . . . . . . . . . . . . 177--193 Claude Sabbah Push-Forward of Stokes-Filtered Local Systems . . . . . . . . . . . . . . . . 195--206 Claude Sabbah Irregular Nearby Cycles . . . . . . . . 207--225 Claude Sabbah Nearby Cycles of Stokes-Filtered Local Systems . . . . . . . . . . . . . . . . 227--238 Claude Sabbah Back Matter . . . . . . . . . . . . . . 239--249
Luigi Ambrosio and Alberto Bressan and Dirk Helbing and Axel Klar and Enrique Zuazua Front Matter . . . . . . . . . . . . . . i--xiv Luigi Ambrosio and Nicola Gigli A User's Guide to Optimal Transport . . 1--155 Alberto Bressan Hyperbolic Conservation Laws: an Illustrated Tutorial . . . . . . . . . . 157--245 Dirk Helbing Derivation of Non-local Macroscopic Traffic Equations and Consistent Traffic Pressures from Microscopic Car-Following Models . . . . . . . . . . . . . . . . . 247--269 Dirk Helbing and Anders Johansson On the Controversy Around Daganzo's Requiem for and Aw--Rascle's Resurrection of Second-Order Traffic Flow Models . . . . . . . . . . . . . . 271--302 Dirk Helbing and Martin Treiber and Arne Kesting and Martin Schönhof Theoretical vs. Empirical Classification and Prediction of Congested Traffic States . . . . . . . . . . . . . . . . . 303--333 Dirk Helbing and Jan Siegmeier and Stefan Lämmer Self-Organized Network Flows . . . . . . 335--355 Dirk Helbing and Amin Mazloumian Operation Regimes and Slower-is-Faster-Effect in the Control of Traffic Intersections . . . . . . . . 357--394 Simone Göttlich and Axel Klar Modeling and Optimization of Scalar Flows on Networks . . . . . . . . . . . 395--461 Enrique Zuazua Control and Stabilization of Waves on $1$-D Networks . . . . . . . . . . . . . 463--493 Enrique Zuazua Back Matter . . . . . . . . . . . . . . 495--497
Irina Mitrea and Marius Mitrea Front Matter . . . . . . . . . . . . . . i--x Irina Mitrea and Marius Mitrea Introduction . . . . . . . . . . . . . . 1--19 Irina Mitrea and Marius Mitrea Smoothness Scales and Calderón--Zygmund Theory in the Scalar-Valued Case . . . . 21--124 Irina Mitrea and Marius Mitrea Function Spaces of Whitney Arrays . . . 125--197 Irina Mitrea and Marius Mitrea The Double Multi-Layer Potential Operator . . . . . . . . . . . . . . . . 199--252 Irina Mitrea and Marius Mitrea The Single Multi-Layer Potential Operator . . . . . . . . . . . . . . . . 253--291 Irina Mitrea and Marius Mitrea Functional Analytic Properties of Multi-Layer Potentials and Boundary Value Problems . . . . . . . . . . . . . 293--403 Irina Mitrea and Marius Mitrea Back Matter . . . . . . . . . . . . . . 405--424
Jerry J. Batzel and Mostafa Bachar and Franz Kappel Front Matter . . . . . . . . . . . . . . i--xx Jerry J. Batzel and Mostafa Bachar and Franz Kappel Front Matter . . . . . . . . . . . . . . 1--1 Jerry J. Batzel and Mostafa Bachar and John M. Karemaker and Franz Kappel Merging Mathematical and Physiological Knowledge: Dimensions and Challenges . . 3--19 Thomas Heldt and George C. Verghese and Roger G. Mark Mathematical Modeling of Physiological Systems . . . . . . . . . . . . . . . . 21--41 H. T. Banks and Ariel Cintrón-Arias and Franz Kappel Parameter Selection Methods in Inverse Problem Formulation . . . . . . . . . . 43--73 Adam Attarian and Jerry J. Batzel and Brett Matzuka and Hien Tran Application of the Unscented Kalman Filtering to Parameter Estimation . . . 75--88 Chung Tin and Chi-Sang Poon Integrative and Reductionist Approaches to Modeling of Control of Breathing . . 89--103 Ferenc Hartung and Janos Turi Parameter Identification in a Respiratory Control System Model with Delay . . . . . . . . . . . . . . . . . 105--118 Ferenc Hartung and Janos Turi Front Matter . . . . . . . . . . . . . . 119--119 Eugene N. Bruce Experimental Studies of Respiration and Apnea . . . . . . . . . . . . . . . . . 121--132 James Duffin Model Validation and Control Issues in the Respiratory System . . . . . . . . . 133--162 Clive M. Brown Experimental Studies of the Baroreflex 163--176 Johnny T. Ottesen and Vera Novak and Mette S. Olufsen Development of Patient Specific Cardiovascular Models Predicting Dynamics in Response to Orthostatic Stress Challenges . . . . . . . . . . . 177--213 Karl Thomaseth and Jerry J. Batzel and Mostafa Bachar and Raffaello Furlan Parameter Estimation of a Model for Baroreflex Control of Unstressed Volume 215--246 Karl Thomaseth and Jerry J. Batzel and Mostafa Bachar and Raffaello Furlan Back Matter . . . . . . . . . . . . . . 247--254
Anna Capietto and Peter Kloeden and Jean Mawhin and Sylvia Novo and Rafael Ortega Front Matter . . . . . . . . . . . . . . i--ix Alberto Boscaggin and Anna Capietto and Walter Dambrosio The Maslov Index and Global Bifurcation for Nonlinear Boundary Value Problems 1--34 P. E. Kloeden and C. Pötzsche and M. Rasmussen Discrete-Time Nonautonomous Dynamical Systems . . . . . . . . . . . . . . . . 35--102 Jean Mawhin Resonance Problems for Some Non-autonomous Ordinary Differential Equations . . . . . . . . . . . . . . . 103--184 Sylvia Novo and Rafael Obaya Non-autonomous Functional Differential Equations and Applications . . . . . . . 185--263 Markus Kunze and Rafael Ortega Twist Mappings with Non-Periodic Angles 265--300 Markus Kunze and Rafael Ortega Back Matter . . . . . . . . . . . . . . 301--303
Augustin Fruchard and Reinhard Schäfke Front Matter . . . . . . . . . . . . . . i--x Augustin Fruchard and Reinhard Schäfke Four Introductory Examples . . . . . . . 1--15 Augustin Fruchard and Reinhard Schäfke Composite Asymptotic Expansions: General Study . . . . . . . . . . . . . . . . . 17--41 Augustin Fruchard and Reinhard Schäfke Composite Asymptotic Expansions: Gevrey Theory . . . . . . . . . . . . . . . . . 43--61 Augustin Fruchard and Reinhard Schäfke A Theorem of Ramis--Sibuya Type . . . . 63--80 Augustin Fruchard and Reinhard Schäfke Composite Expansions and Singularly Perturbed Differential Equations . . . . 81--118 Augustin Fruchard and Reinhard Schäfke Applications . . . . . . . . . . . . . . 119--150 Augustin Fruchard and Reinhard Schäfke Historical Remarks . . . . . . . . . . . 151--153 Augustin Fruchard and Reinhard Schäfke Back Matter . . . . . . . . . . . . . . 155--161
Frederik Herzberg Front Matter . . . . . . . . . . . . . . i--xviii Frederik S. Herzberg Infinitesimal Calculus, Consistently and Accessibly . . . . . . . . . . . . . . . 1--5 Frederik S. Herzberg Radically Elementary Probability Theory 7--17 Frederik S. Herzberg Radically Elementary Stochastic Integrals . . . . . . . . . . . . . . . 19--34 Frederik S. Herzberg The Radically Elementary Girsanov Theorem and the Diffusion Invariance Principle . . . . . . . . . . . . . . . 35--44 Frederik S. Herzberg Excursion to Financial Economics: a Radically Elementary Approach to the Fundamental Theorems of Asset Pricing 45--53 Frederik S. Herzberg Excursion to Financial Engineering: Volatility Invariance in the Black--Scholes Model . . . . . . . . . . 55--59 Frederik S. Herzberg A Radically Elementary Theory of Itô Diffusions and Associated Partial Differential Equations . . . . . . . . . 61--70 Frederik S. Herzberg Excursion to Mathematical Physics: a Radically Elementary Definition of Feynman Path Integrals . . . . . . . . . 71--75 Frederik S. Herzberg A Radically Elementary Theory of Lévy Processes . . . . . . . . . . . . . . . 77--92 Frederik S. Herzberg Final Remarks . . . . . . . . . . . . . 93--93 Frederik S. Herzberg Back Matter . . . . . . . . . . . . . . 95--112
Ilya Molchanov Foundations of Stochastic Geometry and Theory of Random Sets . . . . . . . . . 1--20 Markus Kiderlen Introduction into Integral Geometry and Stereology . . . . . . . . . . . . . . . 21--48 Adrian Baddeley Spatial Point Patterns: Models and Statistics . . . . . . . . . . . . . . . 49--114 Lothar Heinrich Asymptotic Methods in Statistics of Random Point Processes . . . . . . . . . 115--150 Florian Voss and Catherine Gloaguen and Volker Schmidt Random Tessellations and Cox Processes 151--182 Pierre Calka Asymptotic Methods for Random Tessellations . . . . . . . . . . . . . 183--204 Daniel Hug Random Polytopes . . . . . . . . . . . . 205--238 Joseph Yukich Limit Theorems in Discrete Stochastic Geometry . . . . . . . . . . . . . . . . 239--275 Alexander Bulinski and Evgeny Spodarev Introduction to Random Fields . . . . . 277--335 Alexander Bulinski and Evgeny Spodarev Central Limit Theorems for Weakly Dependent Random Fields . . . . . . . . 337--383 Ulrich Stadtmüller Strong Limit Theorems for Increments of Random Fields . . . . . . . . . . . . . 385--398 Yuri Bakhtin Geometry of Large Random Trees: SPDE Approximation . . . . . . . . . . . . . 399--420 Yuri Bakhtin Back Matter . . . . . . . . . . . . . . 421--448
David Futer and Efstratia Kalfagianni and Jessica Purcell Front Matter . . . . . . . . . . . . . . i--x David Futer and Efstratia Kalfagianni and Jessica Purcell Introduction . . . . . . . . . . . . . . 1--15 David Futer and Efstratia Kalfagianni and Jessica Purcell Decomposition into $3$-Balls . . . . . . 17--33 David Futer and Efstratia Kalfagianni and Jessica Purcell Ideal Polyhedra . . . . . . . . . . . . 35--51 David Futer and Efstratia Kalfagianni and Jessica Purcell $I$-Bundles and Essential Product Disks 53--72 David Futer and Efstratia Kalfagianni and Jessica Purcell Guts and Fibers . . . . . . . . . . . . 73--90 David Futer and Efstratia Kalfagianni and Jessica Purcell Recognizing Essential Product Disks . . 91--108 David Futer and Efstratia Kalfagianni and Jessica Purcell Diagrams Without Non-prime Arcs . . . . 109--118 David Futer and Efstratia Kalfagianni and Jessica Purcell Montesinos Links . . . . . . . . . . . . 119--138 David Futer and Efstratia Kalfagianni and Jessica Purcell Applications . . . . . . . . . . . . . . 139--154 David Futer and Efstratia Kalfagianni and Jessica Purcell Discussion and Questions . . . . . . . . 155--161 David Futer and Efstratia Kalfagianni and Jessica Purcell Back Matter . . . . . . . . . . . . . . 163--170
Martin W. Liebeck Probabilistic and Asymptotic Aspects of Finite Simple Groups . . . . . . . . . . 1--34 Alice C. Niemeyer and Cheryl E. Praeger and Ákos Seress Estimation Problems and Randomised Group Algorithms . . . . . . . . . . . . . . . 35--82 Leonard H. Soicher Designs, Groups and Computing . . . . . 83--107 Leonard H. Soicher Back Matter . . . . . . . . . . . . . . 107--107
Mark A. Lewis and Philip K. Maini and Sergei V. Petrovskii Front Matter . . . . . . . . . . . . . . i--xiv Mark A. Lewis and Philip K. Maini and Sergei V. Petrovskii Front Matter . . . . . . . . . . . . . . 1--1 Frederic Bartumeus and Ernesto P. Raposo and Gandhi M. Viswanathan and Marcos G. E. da Luz Stochastic Optimal Foraging Theory . . . 3--32 Michael J. Plank and Marie Auger-Méthé and Edward A. Codling Lévy or Not? Analysing Positional Data from Animal Movement Paths . . . . . . . 33--52 Andy Reynolds Beyond Optimal Searching: Recent Developments in the Modelling of Animal Movement Patterns as Lévy Walks . . . . . 53--76 Andy Reynolds Front Matter . . . . . . . . . . . . . . 77--77 Hans G. Othmer and Chuan Xue The Mathematical Analysis of Biological Aggregation and Dispersal: Progress, Problems and Perspectives . . . . . . . 79--127 Benjamin Franz and Radek Erban Hybrid Modelling of Individual Movement and Collective Behaviour . . . . . . . . 129--157 Hsin-Hua Wei and Frithjof Lutscher From Individual Movement Rules to Population Level Patterns: The Case of Central-Place Foragers . . . . . . . . . 159--175 Thomas Hillen and Kevin J. Painter Transport and Anisotropic Diffusion Models for Movement in Oriented Habitats 177--222 Andrew Yu. Morozov Incorporating Complex Foraging of Zooplankton in Models: Role of Micro- and Mesoscale Processes in Macroscale Patterns . . . . . . . . . . . . . . . . 223--259 Andrew Yu. Morozov Front Matter . . . . . . . . . . . . . . 261--261 Ying Zhou and Mark Kot Life on the Move: Modeling the Effects of Climate-Driven Range Shifts with Integrodifference Equations . . . . . . 263--292 Horst Malchow and Alex James and Richard Brown Control of Competitive Bioinvasion . . . 293--305 Nick F. Britton Destruction and Diversity: Effects of Habitat Loss on Ecological Communities 307--330 Vitaly Volpert and Vitali Vougalter Emergence and Propagation of Patterns in Nonlocal Reaction-Diffusion Equations Arising in the Theory of Speciation . . 331--353 Natalia Petrovskaya and Nina Embleton and Sergei V. Petrovskii Numerical Study of Pest Population Size at Various Diffusion Rates . . . . . . . 355--385 Natalia Petrovskaya and Nina Embleton and Sergei V. Petrovskii Back Matter . . . . . . . . . . . . . . 387--388
Igor Reider Front Matter . . . . . . . . . . . . . . i--viii Igor Reider Introduction . . . . . . . . . . . . . . 1--15 Igor Reider Nonabelian Jacobian $ J(X; L, d) $: Main Properties . . . . . . . . . . . . . . . 17--32 Igor Reider Some Properties of the Filtration $ \mathbf {\tilde {H}}_{- \bullet } $ . . 33--38 Igor Reider The Sheaf of Lie Algebras $ \mathcal {G}_{\Gamma } $ . . . . . . . . . . . . 39--73 Igor Reider Period Maps and Torelli Problems . . . . 75--98 Igor Reider $ {\rm sl}_2$-Structures on $ {\mathcal {F}}^{{\prime }}$ . . . . . . . . . . . 99--111 Igor Reider $ {\rm sl}_2$-Structures on $ {\mathcal {G}}_{\Gamma }$ . . . . . . . . . . . . 113--122 Igor Reider Involution on $ \mathcal {G}_\Gamma $ 123--132 Igor Reider Stratification of $ T_\pi $ . . . . . . 133--144 Igor Reider Configurations and Theirs Equations . . 145--173 Igor Reider Representation Theoretic Constructions 175--196 Igor Reider $ J(X; L, d) $ and the Langlands Duality 197--212 Igor Reider Back Matter . . . . . . . . . . . . . . 213--216
Peter Constantin and Arnaud Debussche and Giovanni P. Galdi and Michael R\ru\vzi\vcka and Gregory Seregin Front Matter . . . . . . . . . . . . . . i--ix Peter Constantin Complex Fluids and Lagrangian Particles 1--21 Arnaud Debussche Ergodicity Results for the Stochastic Navier--Stokes Equations: an Introduction . . . . . . . . . . . . . . 23--108 Giovanni P. Galdi Steady-State Navier--Stokes Problem Past a Rotating Body: Geometric-Functional Properties and Related Questions . . . . 109--197 Michael R\ru\vzi\vcka Analysis of Generalized Newtonian Fluids 199--238 Michael R\ru\vzi\vcka Analysis of Generalized Newtonian Fluids 199--238 Gregory Seregin Selected Topics of Local Regularity Theory for Navier--Stokes Equations . . 239--313 Gregory Seregin Back Matter . . . . . . . . . . . . . . 315--316
Yves Achdou and Guy Barles and Hitoshi Ishii and Grigory L. Litvinov Front Matter . . . . . . . . . . . . . . i--xv Yves Achdou Finite Difference Methods for Mean Field Games . . . . . . . . . . . . . . . . . 1--47 Guy Barles An Introduction to the Theory of Viscosity Solutions for First-Order Hamilton--Jacobi Equations and Applications . . . . . . . . . . . . . . 49--109 Hitoshi Ishii A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton--Jacobi Equations 111--249 Grigory L. Litvinov Idempotent/Tropical Analysis, the Hamilton--Jacobi and Bellman Equations 251--301 Grigory L. Litvinov Back Matter . . . . . . . . . . . . . . 303--304
Giorgio Patrizio and Zbigniew B\locki and François Berteloot and Jean Pierre Demailly Front Matter . . . . . . . . . . . . . . i--ix François Berteloot Bifurcation Currents in Holomorphic Families of Rational Maps . . . . . . . 1--93 Zbigniew B\locki The Complex Monge--Amp\`ere Equation in Kähler Geometry . . . . . . . . . . . . . 95--141 Jean-Pierre Demailly Applications of Pluripotential Theory to Algebraic Geometry . . . . . . . . . . . 143--263 G. Patrizio and A. Spiro Pluripotential Theory and Monge--Amp\`ere Foliations . . . . . . . 265--319 G. Patrizio and A. Spiro Back Matter . . . . . . . . . . . . . . 321--322
Valeri Obukhovskii and Pietro Zecca and Nguyen Van Loi and Sergei Kornev Front Matter . . . . . . . . . . . . . . i--xiii Valeri Obukhovskii and Pietro Zecca and Nguyen Van Loi and Sergei Kornev Background . . . . . . . . . . . . . . . 1--24 Valeri Obukhovskii and Pietro Zecca and Nguyen Van Loi and Sergei Kornev Method of Guiding Functions in Finite-Dimensional Spaces . . . . . . . 25--67 Valeri Obukhovskii and Pietro Zecca and Nguyen Van Loi and Sergei Kornev Method of Guiding Functions in Hilbert Spaces . . . . . . . . . . . . . . . . . 69--104 Valeri Obukhovskii and Pietro Zecca and Nguyen Van Loi and Sergei Kornev Second-Order Differential Inclusions . . 105--129 Valeri Obukhovskii and Pietro Zecca and Nguyen Van Loi and Sergei Kornev Nonlinear Fredholm Inclusions and Applications . . . . . . . . . . . . . . 131--165 Valeri Obukhovskii and Pietro Zecca and Nguyen Van Loi and Sergei Kornev Back Matter . . . . . . . . . . . . . . 167--180
Vladimir Maz'ya and Alexander Movchan and Michael Nieves Front Matter . . . . . . . . . . . . . . i--xvii Vladimir Maz'ya and Alexander Movchan and Michael Nieves Front Matter . . . . . . . . . . . . . . 1--1 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Uniform Asymptotic Formulae for Green's Functions for the Laplacian in Domains with Small Perforations . . . . . . . . 3--19 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Mixed and Neumann Boundary Conditions for Domains with Small Holes and Inclusions: Uniform Asymptotics of Green's Kernels . . . . . . . . . . . . 21--57 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Green's Function for the Dirichlet Boundary Value Problem in a Domain with Several Inclusions . . . . . . . . . . . 59--73 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Numerical Simulations Based on the Asymptotic Approximations . . . . . . . 75--81 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Other Examples of Asymptotic Approximations of Green's Functions in Singularly Perturbed Domains . . . . . . 83--94 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Front Matter . . . . . . . . . . . . . . 95--95 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Green's Tensor for the Dirichlet Boundary Value Problem in a Domain with a Single Inclusion . . . . . . . . . . . 97--137 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Green's Tensor in Bodies with Multiple Rigid Inclusions . . . . . . . . . . . . 139--167 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Green's Tensor for the Mixed Boundary Value Problem in a Domain with a Small Hole . . . . . . . . . . . . . . . . . . 169--188 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Front Matter . . . . . . . . . . . . . . 189--189 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Meso-scale Approximations for Solutions of Dirichlet Problems . . . . . . . . . 191--219 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Mixed Boundary Value Problems in Multiply-Perforated Domains . . . . . . 221--247 Vladimir Maz'ya and Alexander Movchan and Michael Nieves Back Matter . . . . . . . . . . . . . . 249--260
Ivan Nourdin Lectures on Gaussian Approximations with Malliavin Calculus . . . . . . . . . . . 3--89 Ivan Nourdin Front Matter . . . . . . . . . . . . . . 91--91 Vilmos Prokaj Some Sufficient Conditions for the Ergodicity of the Lévy Transformation . . 93--121 Stéphane Laurent Vershik's Intermediate Level Standardness Criterion and the Scale of an Automorphism . . . . . . . . . . . . 123--139 Claude Dellacherie and Michel Émery Filtrations Indexed by Ordinals; Application to a Conjecture of S. Laurent . . . . . . . . . . . . . . . . 141--157 Michel Émery A Planar Borel Set Which Divides Every Non-negligible Borel Product . . . . . . 159--165 Jean Brossard and Christophe Leuridan Characterising Ocone Local Martingales with Reflections . . . . . . . . . . . . 167--180 Hiroya Hashimoto Approximation and Stability of Solutions of SDEs Driven by a Symmetric $ \alpha $ Stable Process with Non-Lipschitz Coefficients . . . . . . . . . . . . . . 181--199 Christa Cuchiero and Josef Teichmann Path Properties and Regularity of Affine Processes on General State Spaces . . . 201--244 Emmanuel Jacob Langevin Process Reflected on a Partially Elastic Boundary II . . . . . 245--275 R. A. Doney and S. Vakeroudis Windings of Planar Stable Processes . . 277--300 Alexander Sokol An Elementary Proof that the First Hitting Time of an Open Set by a Jump Process is a Stopping Time . . . . . . . 301--304 Leif Döring and Matthew I. Roberts Catalytic Branching Processes via Spine Techniques and Renewal Theory . . . . . 305--322 Solesne Bourguin and Ciprian A. Tudor Malliavin Calculus and Self Normalized Sums . . . . . . . . . . . . . . . . . . 323--351 Pedro J. Catuogno and Diego S. Ledesma and Paulo R. Ruffino A Note on Stochastic Calculus in Vector Bundles . . . . . . . . . . . . . . . . 353--364 Gilles Pag\`es Functional Co-monotony of Processes with Applications to Peacocks and Barrier Options . . . . . . . . . . . . . . . . 365--400 Salim Noreddine Fluctuations of the Traces of Complex-Valued Random Matrices . . . . . 401--431 Janosch Ortmann Functionals of the Brownian Bridge . . . 433--458 Laurent Miclo and Pierre Monmarché Étude spectrale minutieuse de processus moins indécis que les autres. (French) [A careful spectral study of processes less undecided than others] . . . . . . . . . 459--481 Franck Barthe and Charles Bordenave Combinatorial Optimization Over Two Random Point Sets . . . . . . . . . . . 483--535 Igor Kortchemski A Simple Proof of Duquesne's Theorem on Contour Processes of Conditioned Galton--Watson Trees . . . . . . . . . . 537--558 Igor Kortchemski Back Matter . . . . . . . . . . . . . . 559--560
Péter Major Front Matter . . . . . . . . . . . . . . i--xiii Péter Major Introduction . . . . . . . . . . . . . . 1--3 Péter Major Motivation of the Investigation: Discussion of Some Problems . . . . . . 5--13 Péter Major Some Estimates About Sums of Independent Random Variables . . . . . . . . . . . . 15--20 Péter Major On the Supremum of a Nice Class of Partial Sums . . . . . . . . . . . . . . 21--33 Péter Major Vapnik--\vCervonenkis Classes and $ L_2 $-Dense Classes of Functions . . . . . . 35--39 Péter Major The Proof of Theorems 4.1 and 4.2 on the Supremum of Random Sums . . . . . . . . 41--51 Péter Major The Completion of the Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . 53--64 Péter Major Formulation of the Main Results of This Work . . . . . . . . . . . . . . . . . . 65--78 Péter Major Some Results About $U$-statistics . . . 79--95 Péter Major Multiple Wiener--Itô Integrals and Their Properties . . . . . . . . . . . . . . . 97--120 Péter Major The Diagram Formula for Products of Degenerate $U$-Statistics . . . . . . . 121--138 Péter Major The Proof of the Diagram Formula for $U$-Statistics . . . . . . . . . . . . . 139--149 Péter Major The Proof of Theorems 8.3, 8.5 and Example 8.7 . . . . . . . . . . . . . . 151--168 Péter Major Reduction of the Main Result in This Work . . . . . . . . . . . . . . . . . . 169--179 Péter Major The Strategy of the Proof for the Main Result of This Work . . . . . . . . . . 181--189 Péter Major A Symmetrization Argument . . . . . . . 191--208 Péter Major The Proof of the Main Result . . . . . . 209--225 Péter Major An Overview of the Results and a Discussion of the Literature . . . . . . 227--245 Péter Major Back Matter . . . . . . . . . . . . . . 247--290
Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Front Matter . . . . . . . . . . . . . . i--xix Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Poset Theory . . . . . . . . . . . . . . 1--38 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Basics on the Theory of Local Rings . . 39--95 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Lefschetz Properties . . . . . . . . . . 97--140 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Complete Intersections with the SLP . . 141--156 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe A Generalization of Lefschetz Elements 157--170 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe $k$-Lefschetz Properties . . . . . . . . 171--188 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Cohomology Rings and the Strong Lefschetz Property . . . . . . . . . . . 189--199 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Invariant Theory and Lefschetz Properties . . . . . . . . . . . . . . . 201--209 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe The Strong Lefschetz Property and the Schur--Weyl Duality . . . . . . . . . . 211--234 Tadahito Harima and Toshiaki Maeno and Hideaki Morita and Yasuhide Numata and Akihito Wachi and Junzo Watanabe Back Matter . . . . . . . . . . . . . . 235--252
Fred Espen Benth and Dan Crisan and Paolo Guasoni and Konstantinos Manolarakis and Johannes Muhle-Karbe and Colm Nee and Philip Protter Front Matter . . . . . . . . . . . . . . i--ix Philip Protter A Mathematical Theory of Financial Bubbles . . . . . . . . . . . . . . . . 1--108 Fred Espen Benth Stochastic Volatility and Dependency in Energy Markets: Multi-Factor Modelling 109--167 Paolo Guasoni and Johannes Muhle-Karbe Portfolio Choice with Transaction Costs: a User's Guide . . . . . . . . . . . . . 169--201 D. Crisan and K. Manolarakis and C. Nee Cubature Methods and Applications . . . 203--316 D. Crisan and K. Manolarakis and C. Nee Back Matter . . . . . . . . . . . . . . 317--318
Jürgen Herzog A Survey on Stanley Depth . . . . . . . 3--45 Anna Maria Bigatti and Emanuela De Negri Stanley Decompositions Using CoCoA . . . 47--59 Anna Maria Bigatti and Emanuela De Negri Front Matter . . . . . . . . . . . . . . 61--61 Adam Van Tuyl A Beginner's Guide to Edge and Cover Ideals . . . . . . . . . . . . . . . . . 63--94 Adam Van Tuyl Edge Ideals Using Macaulay2 . . . . . . 95--105 Adam Van Tuyl Front Matter . . . . . . . . . . . . . . 107--107 Josep \`Alvarez Montaner Local Cohomology Modules Supported on Monomial Ideals . . . . . . . . . . . . 109--178 Josep \`Alvarez Montaner and Oscar Fernández-Ramos Local Cohomology Using Macaulay2 . . . . 179--185 Josep \`Alvarez Montaner and Oscar Fernández-Ramos Back Matter . . . . . . . . . . . . . . 187--196
Dachun Yang and Dongyong Yang and Guoen Hu Front Matter . . . . . . . . . . . . . . i--xiii Dachun Yang and Dongyong Yang and Guoen Hu Front Matter . . . . . . . . . . . . . . 1--3 Dachun Yang and Dongyong Yang and Guoen Hu Preliminaries . . . . . . . . . . . . . 5--22 Dachun Yang and Dongyong Yang and Guoen Hu Approximations of the Identity . . . . . 23--58 Dachun Yang and Dongyong Yang and Guoen Hu The Hardy Space $ H^1 (\mu) $ . . . . . 59--136 Dachun Yang and Dongyong Yang and Guoen Hu The Local Atomic Hardy Space $ h^1 (\mu) $ . . . . . . . . . . . . . . . . . . . 137--214 Dachun Yang and Dongyong Yang and Guoen Hu Boundedness of Operators over $ ({\mathbb {R}}^D, \mu) $ . . . . . . . . 215--328 Dachun Yang and Dongyong Yang and Guoen Hu Littlewood--Paley Operators and Maximal Operators Related to Approximations of the Identity . . . . . . . . . . . . . . 329--412 Dachun Yang and Dongyong Yang and Guoen Hu Front Matter . . . . . . . . . . . . . . 413--415 Dachun Yang and Dongyong Yang and Guoen Hu The Hardy Space $ H^1 (\mathcal {X}, \nu) $ and Its Dual Space $ \mathrm {RBMO}(\mathcal {X}, \nu) $ . . . . . . 417--481 Dachun Yang and Dongyong Yang and Guoen Hu Boundedness of Operators over $ (\mathcal {X}, \nu) $ . . . . . . . . . 483--642 Dachun Yang and Dongyong Yang and Guoen Hu Back Matter . . . . . . . . . . . . . . 643--656
Arnaud Debussche and Michael Högele and Peter Imkeller Front Matter . . . . . . . . . . . . . . i--xiii Arnaud Debussche and Michael Högele and Peter Imkeller Introduction . . . . . . . . . . . . . . 1--10 Arnaud Debussche and Michael Högele and Peter Imkeller The Fine Dynamics of the Chafee--Infante Equation . . . . . . . . . . . . . . . . 11--43 Arnaud Debussche and Michael Högele and Peter Imkeller The Stochastic Chafee--Infante Equation 45--68 Arnaud Debussche and Michael Högele and Peter Imkeller The Small Deviation of the Small Noise Solution . . . . . . . . . . . . . . . . 69--85 Arnaud Debussche and Michael Högele and Peter Imkeller Asymptotic Exit Times . . . . . . . . . 87--120 Arnaud Debussche and Michael Högele and Peter Imkeller Asymptotic Transition Times . . . . . . 121--130 Arnaud Debussche and Michael Högele and Peter Imkeller Localization and Metastability . . . . . 131--149 Arnaud Debussche and Michael Högele and Peter Imkeller Back Matter . . . . . . . . . . . . . . 151--165
Sébastien Boucksom and Philippe Eyssidieux and Vincent Guedj Introduction . . . . . . . . . . . . . . 1--6 Cyril Imbert and Luis Silvestre An Introduction to Fully Nonlinear Parabolic Equations . . . . . . . . . . 7--88 Jian Song and Ben Weinkove An Introduction to the Kähler--Ricci Flow 89--188 Sébastien Boucksom and Vincent Guedj Regularizing Properties of the Kähler--Ricci Flow . . . . . . . . . . . 189--237 Huai-Dong Cao The Kähler--Ricci Flow on Fano Manifolds 239--297 Vincent Guedj Convergence of the Kähler--Ricci Flow on a Kähler--Einstein Fano Manifold . . . . 299--333 Vincent Guedj Back Matter . . . . . . . . . . . . . . 335--336
Ju-Yi Yen and Marc Yor Front Matter . . . . . . . . . . . . . . i--ix Ju-Yi Yen and Marc Yor Prerequisites . . . . . . . . . . . . . 1--10 Ju-Yi Yen and Marc Yor Front Matter . . . . . . . . . . . . . . 11--11 Ju-Yi Yen and Marc Yor The Existence and Regularity of Semimartingale Local Times . . . . . . . 13--28 Ju-Yi Yen and Marc Yor Lévy's Representation of Reflecting BM and Pitman's Representation of $ {\rm BES}(3) $ . . . . . . . . . . . . . . . 29--41 Ju-Yi Yen and Marc Yor Paul Lévy's Arcsine Laws . . . . . . . . 43--54 Ju-Yi Yen and Marc Yor Front Matter . . . . . . . . . . . . . . 55--55 Ju-Yi Yen and Marc Yor Brownian Excursion Theory: a First Approach . . . . . . . . . . . . . . . . 57--64 Ju-Yi Yen and Marc Yor Two Descriptions of $n$: Itô's and Williams' . . . . . . . . . . . . . . . 65--77 Ju-Yi Yen and Marc Yor A Simple Path Decomposition of Brownian Motion Around Time $ t = 1 $ . . . . . . 79--92 Ju-Yi Yen and Marc Yor The Laws of, and Conditioning with Respect to, Last Passage Times . . . . . 93--100 Ju-Yi Yen and Marc Yor Integral Representations Relating $W$ and $n$ . . . . . . . . . . . . . . . . 101--104 Ju-Yi Yen and Marc Yor Front Matter . . . . . . . . . . . . . . 105--105 Ju-Yi Yen and Marc Yor The Feynman--Kac Formula and Excursion Theory . . . . . . . . . . . . . . . . . 107--110 Ju-Yi Yen and Marc Yor Some Identities in Law . . . . . . . . . 111--131 Ju-Yi Yen and Marc Yor Back Matter . . . . . . . . . . . . . . 133--138
Christoph Kawan Front Matter . . . . . . . . . . . . . . i--xxii Christoph Kawan Basic Properties of Control Systems . . 1--42 Christoph Kawan Introduction to Invariance Entropy . . . 43--87 Christoph Kawan Linear and Bilinear Systems . . . . . . 89--105 Christoph Kawan General Estimates . . . . . . . . . . . 107--120 Christoph Kawan Controllability, Lyapunov Exponents, and Upper Bounds . . . . . . . . . . . . . . 121--150 Christoph Kawan Escape Rates and Lower Bounds . . . . . 151--175 Christoph Kawan Examples . . . . . . . . . . . . . . . . 177--220 Christoph Kawan Back Matter . . . . . . . . . . . . . . 221--272
Martin Burger and Andrea C. G. Mennucci and Stanley Osher and Martin Rumpf Front Matter . . . . . . . . . . . . . . i--vii Martin Burger and Stanley Osher A Guide to the TV Zoo . . . . . . . . . 1--70 Alex Sawatzky and Christoph Brune and Thomas Kösters and Frank Wübbeling and Martin Burger EM--TV Methods for Inverse Problems with Poisson Noise . . . . . . . . . . . . . 71--142 Martin Rumpf Variational Methods in Image Matching and Motion Extraction . . . . . . . . . 143--204 Andrea C. G. Mennucci Metrics of Curves in Shape Optimization and Analysis . . . . . . . . . . . . . . 205--319 Andrea C. G. Mennucci Back Matter . . . . . . . . . . . . . . 321--322
Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . i--xvii Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 1--1 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Preliminaries . . . . . . . . . . . . . 3--50 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Layer Potential Techniques . . . . . . . 51--94 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 95--95 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Small Volume Expansions . . . . . . . . 97--113 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Generalized Polarization Tensors . . . . 115--131 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Frequency Dependent Generalized Polarization Tensors . . . . . . . . . . 133--142 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 143--143 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Multistatic Response Matrix: Statistical Structure . . . . . . . . . . . . . . . 145--161 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang MSR Matrices Using Multipolar Expansions 163--169 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 171--171 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Direct Imaging Functionals for Inclusions in the Continuum Approximation . . . . . . . . . . . . . 173--188 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Detection and Imaging from MSR Measurements . . . . . . . . . . . . . . 189--202 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 203--203 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Reconstruction of GPTs from MSR Measurements . . . . . . . . . . . . . . 205--210 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Target Identification and Tracking . . . 211--226 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 227--227 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Time-Reversal and Diffraction Tomography for Inverse Source Problems . . . . . . 229--238 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Imaging Small Shape Deformations of an Extended Target from MSR Measurements 239--252 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Nonlinear Optimization Algorithms . . . 253--266 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 267--267 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang GPT- and $S$-Vanishing Structures for Near-Cloaking . . . . . . . . . . . . . 269--286 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Anomalous Resonance Cloaking . . . . . . 287--299 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Front Matter . . . . . . . . . . . . . . 301--301 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Numerical Implementations . . . . . . . 303--330 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Numerical Results . . . . . . . . . . . 331--349 Habib Ammari and Josselin Garnier and Wenjia Jing and Hyeonbae Kang and Mikyoung Lim and Knut Sòlna and Han Wang Back Matter . . . . . . . . . . . . . . 351--382
Björn Böttcher and René Schilling and Jian Wang Front Matter . . . . . . . . . . . . . . i--xviii Björn Böttcher and René Schilling and Jian Wang A Primer on Feller Semigroups and Feller Processes . . . . . . . . . . . . . . . 1--30 Björn Böttcher and René Schilling and Jian Wang Feller Generators and Symbols . . . . . 31--67 Björn Böttcher and René Schilling and Jian Wang Construction of Feller Processes . . . . 69--98 Björn Böttcher and René Schilling and Jian Wang Transformations of Feller Processes . . 99--110 Björn Böttcher and René Schilling and Jian Wang Sample Path Properties . . . . . . . . . 111--140 Björn Böttcher and René Schilling and Jian Wang Global Properties . . . . . . . . . . . 141--165 Björn Böttcher and René Schilling and Jian Wang Approximation . . . . . . . . . . . . . 167--175 Björn Böttcher and René Schilling and Jian Wang Open Problems . . . . . . . . . . . . . 177--179 Björn Böttcher and René Schilling and Jian Wang Back Matter . . . . . . . . . . . . . . 181--202
Itai Benjamini Front Matter . . . . . . . . . . . . . . i--vii Itai Benjamini Introductory Graph and Metric Notions 1--18 Itai Benjamini On the Structure of Vertex Transitive Graphs . . . . . . . . . . . . . . . . . 19--21 Itai Benjamini The Hyperbolic Plane and Hyperbolic Graphs . . . . . . . . . . . . . . . . . 23--31 Itai Benjamini Percolation on Graphs . . . . . . . . . 33--40 Itai Benjamini Local Limits of Graphs . . . . . . . . . 41--51 Itai Benjamini Random Planar Geometry . . . . . . . . . 53--58 Itai Benjamini Growth and Isoperimetric Profile of Planar Graphs . . . . . . . . . . . . . 59--61 Itai Benjamini Critical Percolation on Non-Amenable Groups . . . . . . . . . . . . . . . . . 63--68 Itai Benjamini Uniqueness of the Infinite Percolation Cluster . . . . . . . . . . . . . . . . 69--84 Itai Benjamini Percolation Perturbations . . . . . . . 85--95 Itai Benjamini Percolation on Expanders . . . . . . . . 97--105 Itai Benjamini Harmonic Functions on Graphs . . . . . . 107--120 Itai Benjamini Nonamenable Liouville Graphs . . . . . . 121--124 Itai Benjamini Back Matter . . . . . . . . . . . . . . 125--132
Peter E. Kloeden and Christian Pötzsche Front Matter . . . . . . . . . . . . . . i--xviii Peter E. Kloeden and Christian Pötzsche Front Matter . . . . . . . . . . . . . . 1--1 Peter E. Kloeden and Christian Pötzsche Nonautonomous Dynamical Systems in the Life Sciences . . . . . . . . . . . . . 3--39 Michael Marcondes de Freitas and Eduardo D. Sontag Random Dynamical Systems with Inputs . . 41--87 Martin Wechselberger and John Mitry and John Rinzel Canard Theory and Excitability . . . . . 89--132 Martin Wechselberger and John Mitry and John Rinzel Front Matter . . . . . . . . . . . . . . 133--133 Kevin K. Lin Stimulus-Response Reliability of Biological Networks . . . . . . . . . . 135--161 Philip T. Clemson and Spase Petkoski and Tomislav Stankovski and Aneta Stefanovska Coupled Nonautonomous Oscillators . . . 163--197 Germán A. Enciso Multisite Mechanisms for Ultrasensitivity in Signal Transduction 199--224 Gilbert Koch and Johannes Schropp Mathematical Concepts in Pharmacokinetics and Pharmacodynamics with Application to Tumor Growth . . . . 225--250 Eva Herrmann and Yusuke Asai Viral Kinetic Modeling of Chronic Hepatitis C and B Infection . . . . . . 251--268 Christina Surulescu and Nicolae Surulescu Some Classes of Stochastic Differential Equations as an Alternative Modeling Approach to Biomedical Problems . . . . 269--307 Christina Surulescu and Nicolae Surulescu Back Matter . . . . . . . . . . . . . . 309--314
Péter Major Front Matter . . . . . . . . . . . . . . i--xiii Péter Major On a Limit Problem . . . . . . . . . . . 1--8 Péter Major Wick Polynomials . . . . . . . . . . . . 9--14 Péter Major Random Spectral Measures . . . . . . . . 15--26 Péter Major Multiple Wiener--Itô Integrals . . . . . 27--42 Péter Major The Proof of Itô's Formula: The Diagram Formula and Some of Its Consequences . . 43--64 Péter Major Subordinated Random Fields: Construction of Self-similar Fields . . . . . . . . . 65--79 Péter Major On the Original Wiener--Itô Integral . . 81--86 Péter Major Non-central Limit Theorems . . . . . . . 87--112 Péter Major History of the Problems: Comments . . . 113--122 Péter Major Back Matter . . . . . . . . . . . . . . 123--128
Wolf-Jürgen Beyn and Luca Dieci and Nicola Guglielmi and Ernst Hairer and Jesús María Sanz-Serna and Marino Zennaro Front Matter . . . . . . . . . . . . . . i--ix Paola Console and Ernst Hairer Long-Term Stability of Symmetric Partitioned Linear Multistep Methods . . 1--37 J. M. Sanz-Serna Markov Chain Monte Carlo and Numerical Differential Equations . . . . . . . . . 39--88 Wolf-Jürgen Beyn and Denny Otten and Jens Rottmann-Matthes Stability and Computation of Dynamic Patterns in PDEs . . . . . . . . . . . . 89--172 Luca Dieci and Alessandra Papini and Alessandro Pugliese and Alessandro Spadoni Continuous Decompositions and Coalescing Eigenvalues for Matrices Depending on Parameters . . . . . . . . . . . . . . . 173--264 Nicola Guglielmi and Marino Zennaro Stability of Linear Problems: Joint Spectral Radius of Sets of Matrices . . 265--313 Nicola Guglielmi and Marino Zennaro Back Matter . . . . . . . . . . . . . . 315--316
Luca Capogna and Pengfei Guan and Cristian E. Gutiérrez and Annamaria Montanari Front Matter . . . . . . . . . . . . . . i--xi Luca Capogna $ L^\infty $-Extremal Mappings in AMLE and Teichmüller Theory . . . . . . . . . 1--46 Pengfei Guan Curvature Measures, Isoperimetric Type Inequalities and Fully Nonlinear PDEs 47--94 Cristian E. Gutiérrez Refraction Problems in Geometric Optics 95--150 Annamaria Montanari On the Levi Monge--Ampére Equation . . . 151--208 Annamaria Montanari Back Matter . . . . . . . . . . . . . . 209--212
Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Front Matter . . . . . . . . . . . . . . i--xvi Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Intervals . . . . . . . . . . . . . . . 1--16 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Modal Intervals . . . . . . . . . . . . 17--37 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Modal Interval Extensions . . . . . . . 39--72 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Interpretability and Optimality . . . . 73--120 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Interval Arithmetic . . . . . . . . . . 121--141 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Equations and Systems . . . . . . . . . 143--158 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Twins and $ f^\ast $ Algorithm . . . . . 159--183 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Marks . . . . . . . . . . . . . . . . . 185--228 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Intervals of Marks . . . . . . . . . . . 229--264 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Some Related Problems . . . . . . . . . 265--305 Miguel A. Sainz and Joaquim Armengol and Remei Calm and Pau Herrero and Lambert Jorba and Josep Vehi Back Matter . . . . . . . . . . . . . . 307--318
Donald A. Dawson and Andreas Greven Front Matter . . . . . . . . . . . . . . i--xvii Donald A. Dawson and Andreas Greven Introduction . . . . . . . . . . . . . . 1--10 Donald A. Dawson and Andreas Greven Mean-Field Emergence and Fixation of Rare Mutants in the Fisher--Wright Model with Two Types . . . . . . . . . . . . . 11--38 Donald A. Dawson and Andreas Greven Formulation of the Multitype and Multiscale Model . . . . . . . . . . . . 39--53 Donald A. Dawson and Andreas Greven Formulation of the Main Results in the General Case . . . . . . . . . . . . . . 55--104 Donald A. Dawson and Andreas Greven A Basic Tool: Dual Representations . . . 105--145 Donald A. Dawson and Andreas Greven Long-Time Behaviour: Ergodicity and Non-ergodicity . . . . . . . . . . . . . 147--159 Donald A. Dawson and Andreas Greven Mean-Field Emergence and Fixation of Rare Mutants: Concepts, Strategy and a Caricature Model . . . . . . . . . . . . 161--165 Donald A. Dawson and Andreas Greven Methods and Proofs for the Fisher--Wright Model with Two Types . . 167--375 Donald A. Dawson and Andreas Greven Emergence with $ M \geq 2 $ Lower Order Types (Phases $0$, $1$, $2$) . . . . . . 377--714 Donald A. Dawson and Andreas Greven The General $ (M, M) $-Type Mean-Field Model: Emergence, Fixation and Droplets 715--780 Donald A. Dawson and Andreas Greven Neutral Evolution on $ E_1 $ After Fixation (Phase 3) . . . . . . . . . . . 781--786 Donald A. Dawson and Andreas Greven Re-equilibration on Higher Level $ E_1 $ (Phase 4) . . . . . . . . . . . . . . . 787--810 Donald A. Dawson and Andreas Greven Iteration of the Cycle I: Emergence and Fixation on $ E_2 $ . . . . . . . . . . 811--828 Donald A. Dawson and Andreas Greven Iteration of the Cycle II: Extension to the General Multilevel Hierarchy . . . . 829--837 Donald A. Dawson and Andreas Greven Winding-Up: Proofs of the Theorems $3$--$ 11$ . . . . . . . . . . . . . . . 839--839 Donald A. Dawson and Andreas Greven Back Matter . . . . . . . . . . . . . . 841--858
Raphael Kruse Front Matter . . . . . . . . . . . . . . i--xiv Raphael Kruse Introduction . . . . . . . . . . . . . . 1--10 Raphael Kruse Stochastic Evolution Equations in Hilbert Spaces . . . . . . . . . . . . . 11--49 Raphael Kruse Optimal Strong Error Estimates for Galerkin Finite Element Methods . . . . 51--84 Raphael Kruse A Short Review of the Malliavin Calculus in Hilbert Spaces . . . . . . . . . . . 85--108 Raphael Kruse A Malliavin Calculus Approach to Weak Convergence . . . . . . . . . . . . . . 109--127 Raphael Kruse Numerical Experiments . . . . . . . . . 129--153 Raphael Kruse Back Matter . . . . . . . . . . . . . . 155--180
Andrea Braides Front Matter . . . . . . . . . . . . . . i--xi Andrea Braides Introduction . . . . . . . . . . . . . . 1--6 Andrea Braides Global Minimization . . . . . . . . . . 7--24 Andrea Braides Parameterized Motion Driven by Global Minimization . . . . . . . . . . . . . . 25--52 Andrea Braides Local Minimization as a Selection Criterion . . . . . . . . . . . . . . . 53--66 Andrea Braides Convergence of Local Minimizers . . . . 67--78 Andrea Braides Small-Scale Stability . . . . . . . . . 79--89 Andrea Braides Minimizing Movements . . . . . . . . . . 91--101 Andrea Braides Minimizing Movements Along a Sequence of Functionals . . . . . . . . . . . . . . 103--128 Andrea Braides Geometric Minimizing Movements . . . . . 129--143 Andrea Braides Different Time Scales . . . . . . . . . 145--158 Andrea Braides Stability Theorems . . . . . . . . . . . 159--171 Andrea Braides Back Matter . . . . . . . . . . . . . . 173--176
Daniele Angella Front Matter . . . . . . . . . . . . . . i--xxv Daniele Angella Preliminaries on (Almost-)Complex Manifolds . . . . . . . . . . . . . . . 1--63 Daniele Angella Cohomology of Complex Manifolds . . . . 65--94 Daniele Angella Cohomology of Nilmanifolds . . . . . . . 95--150 Daniele Angella Cohomology of Almost-Complex Manifolds 151--232 Daniele Angella Back Matter . . . . . . . . . . . . . . 233--264
Stanislav Hencl and Pekka Koskela Front Matter . . . . . . . . . . . . . . i--xi Stanislav Hencl and Pekka Koskela Introduction . . . . . . . . . . . . . . 1--15 Stanislav Hencl and Pekka Koskela Continuity . . . . . . . . . . . . . . . 17--39 Stanislav Hencl and Pekka Koskela Openness and Discreteness . . . . . . . 41--61 Stanislav Hencl and Pekka Koskela Images and Preimages of Null Sets . . . 63--79 Stanislav Hencl and Pekka Koskela Homeomorphisms of Finite Distortion . . 81--105 Stanislav Hencl and Pekka Koskela Integrability of $ J_f $ and $ 1 / J_f $ 107--121 Stanislav Hencl and Pekka Koskela Final Comments . . . . . . . . . . . . . 123--138 Stanislav Hencl and Pekka Koskela Back Matter . . . . . . . . . . . . . . 139--178
Tatsuo Nishitani Front Matter . . . . . . . . . . . . . . i--viii Tatsuo Nishitani Introduction . . . . . . . . . . . . . . 1--29 Tatsuo Nishitani Necessary Conditions for Strong Hyperbolicity . . . . . . . . . . . . . 31--84 Tatsuo Nishitani Two by Two Systems with Two Independent Variables . . . . . . . . . . . . . . . 85--160 Tatsuo Nishitani Systems with Nondegenerate Characteristics . . . . . . . . . . . . 161--229 Tatsuo Nishitani Back Matter . . . . . . . . . . . . . . 231--240
Takashi Kumagai Front Matter . . . . . . . . . . . . . . i--x Takashi Kumagai Introduction . . . . . . . . . . . . . . 1--2 Takashi Kumagai Weighted Graphs and the Associated Markov Chains . . . . . . . . . . . . . 3--19 Takashi Kumagai Heat Kernel Estimates: General Theory 21--41 Takashi Kumagai Heat Kernel Estimates Using Effective Resistance . . . . . . . . . . . . . . . 43--58 Takashi Kumagai Heat Kernel Estimates for Random Weighted Graphs . . . . . . . . . . . . 59--64 Takashi Kumagai Alexander--Orbach Conjecture Holds When Two-Point Functions Behave Nicely . . . 65--77 Takashi Kumagai Further Results for Random Walk on IIC 79--93 Takashi Kumagai Random Conductance Model . . . . . . . . 95--134 Takashi Kumagai Back Matter . . . . . . . . . . . . . . 135--150
Manfred Knebusch and Tobias Kaiser Front Matter . . . . . . . . . . . . . . i--xii Manfred Knebusch and Tobias Kaiser Overrings and PM-Spectra . . . . . . . . 1--57 Manfred Knebusch and Tobias Kaiser Approximation Theorems . . . . . . . . . 59--121 Manfred Knebusch and Tobias Kaiser Kronecker Extensions and Star Operations 123--178 Manfred Knebusch and Tobias Kaiser Back Matter . . . . . . . . . . . . . . 179--192
Christian Weiß Front Matter . . . . . . . . . . . . . . i--xvi Christian Weiß Introduction . . . . . . . . . . . . . . 1--10 Christian Weiß Background . . . . . . . . . . . . . . . 11--37 Christian Weiß Teichmüller Curves . . . . . . . . . . . 39--51 Christian Weiß Twisted Teichmüller Curves . . . . . . . 53--59 Christian Weiß Stabilizer and Maximality . . . . . . . 61--84 Christian Weiß Calculations for Twisted Teichmüller Curves . . . . . . . . . . . . . . . . . 85--119 Christian Weiß Prym Varieties and Teichmüller Curves . . 121--125 Christian Weiß Lyapunov Exponents . . . . . . . . . . . 127--133 Christian Weiß Kobayashi Curves Revisited . . . . . . . 135--144 Christian Weiß Back Matter . . . . . . . . . . . . . . 145--168
Siegfried Bosch Front Matter . . . . . . . . . . . . . . i--viii Siegfried Bosch Introduction . . . . . . . . . . . . . . 1--5 Siegfried Bosch Front Matter . . . . . . . . . . . . . . 7--7 Siegfried Bosch Tate Algebras . . . . . . . . . . . . . 9--29 Siegfried Bosch Affinoid Algebras and Their Associated Spaces . . . . . . . . . . . . . . . . . 31--63 Siegfried Bosch Affinoid Functions . . . . . . . . . . . 65--91 Siegfried Bosch Towards the Notion of Rigid Spaces . . . 93--116 Siegfried Bosch Coherent Sheaves on Rigid Spaces . . . . 117--147 Siegfried Bosch Front Matter . . . . . . . . . . . . . . 149--149 Siegfried Bosch Adic Rings and Their Associated Formal Schemes . . . . . . . . . . . . . . . . 151--173 Siegfried Bosch Raynaud's View on Rigid Spaces . . . . . 175--214 Siegfried Bosch More Advanced Stuff . . . . . . . . . . 215--227 Siegfried Bosch Back Matter . . . . . . . . . . . . . . 229--256
Krzysztof Burdzy Front Matter . . . . . . . . . . . . . . i--xii Krzysztof Burdzy Brownian Motion . . . . . . . . . . . . 1--10 Krzysztof Burdzy Probabilistic Proofs of Classical Theorems . . . . . . . . . . . . . . . . 11--19 Krzysztof Burdzy Overview of the ``Hot Spots'' Problem 21--29 Krzysztof Burdzy Neumann Eigenfunctions and Eigenvalues 31--39 Krzysztof Burdzy Synchronous and Mirror Couplings . . . . 41--62 Krzysztof Burdzy Parabolic Boundary Harnack Principle . . 63--75 Krzysztof Burdzy Scaling Coupling . . . . . . . . . . . . 77--87 Krzysztof Burdzy Nodal Lines . . . . . . . . . . . . . . 89--96 Krzysztof Burdzy Neumann Heat Kernel Monotonicity . . . . 97--105 Krzysztof Burdzy Reflected Brownian Motion in Time Dependent Domains . . . . . . . . . . . 107--131 Krzysztof Burdzy Back Matter . . . . . . . . . . . . . . 133--140
William Chen and Anand Srivastav and Giancarlo Travaglini Front Matter . . . . . . . . . . . . . . i--xvi William Chen and Anand Srivastav and Giancarlo Travaglini Front Matter . . . . . . . . . . . . . . 1--1 William Chen and Maxim Skriganov Upper Bounds in Classical Discrepancy Theory . . . . . . . . . . . . . . . . . 3--69 Dmitriy Bilyk Roth's Orthogonal Function Method in Discrepancy Theory and Some New Connections . . . . . . . . . . . . . . 71--158 Luca Brandolini and Giacomo Gigante and Giancarlo Travaglini Irregularities of Distribution and Average Decay of Fourier Transforms . . 159--220 József Beck Superirregularity . . . . . . . . . . . 221--316 József Beck Front Matter . . . . . . . . . . . . . . 317--317 Nils Hebbinghaus and Anand Srivastav Multicolor Discrepancy of Arithmetic Structures . . . . . . . . . . . . . . . 319--424 Nikhil Bansal Algorithmic Aspects of Combinatorial Discrepancy . . . . . . . . . . . . . . 425--457 Lasse Kliemann Practical Algorithms for Low-Discrepancy $2$-Colorings . . . . . . . . . . . . . 459--484 Lasse Kliemann Front Matter . . . . . . . . . . . . . . 485--485 Ákos Magyar On the Distribution of Solutions to Diophantine Equations . . . . . . . . . 487--538 Josef Dick and Friedrich Pillichshammer Discrepancy Theory and Quasi-Monte Carlo Integration . . . . . . . . . . . . . . 539--619 Carola Doerr and Michael Gnewuch and Magnus Wahlström Calculation of Discrepancy Measures and Applications . . . . . . . . . . . . . . 621--678 Carola Doerr and Michael Gnewuch and Magnus Wahlström Back Matter . . . . . . . . . . . . . . 679--698
Aldo Conca and Sandra Di Rocco and Jan Draisma and June Huh and Bernd Sturmfels and Filippo Viviani Front Matter . . . . . . . . . . . . . . i--vii Aldo Conca Koszul Algebras and Their Syzygies . . . 1--31 Jan Draisma Noetherianity up to Symmetry . . . . . . 33--61 June Huh and Bernd Sturmfels Likelihood Geometry . . . . . . . . . . 63--117 Sandra Di Rocco Linear Toric Fibrations . . . . . . . . 119--147 Filippo Viviani A Tour on Hermitian Symmetric Manifolds 149--239 Filippo Viviani Back Matter . . . . . . . . . . . . . . 241--242
Stefan Witzel Front Matter . . . . . . . . . . . . . . i--xvi Stefan Witzel Basic Definitions and Properties . . . . 1--44 Stefan Witzel Finiteness Properties of $ \mathbf {G}(F_q[t]) $ . . . . . . . . . . . . . 45--79 Stefan Witzel Finiteness Properties of $ \mathbf {G}(F_q[t, t^{-1}]) $ . . . . . . . . . 81--97 Stefan Witzel Back Matter . . . . . . . . . . . . . . 99--116
Owen Dearricott and Fernando Galaz-García and Lee Kennard and Catherine Searle and Gregor Weingart and Wolfgang Ziller Front Matter . . . . . . . . . . . . . . i--vii Wolfgang Ziller Riemannian Manifolds with Positive Sectional Curvature . . . . . . . . . . 1--19 Catherine Searle An Introduction to Isometric Group Actions with Applications to Spaces with Curvature Bounded from Below . . . . . . 21--43 Fernando Galaz-Garcia A Note on Maximal Symmetry Rank, Quasipositive Curvature, and Low Dimensional Manifolds . . . . . . . . . 45--55 Owen Dearricott Lectures on $n$-Sasakian Manifolds . . . 57--109 Lee Kennard On the Hopf Conjecture with Symmetry . . 111--116 Gregor Weingart An Introduction to Exterior Differential Systems . . . . . . . . . . . . . . . . 117--196 Gregor Weingart Back Matter . . . . . . . . . . . . . . 197--198
Lou van den Dries and Jochen Koenigsmann and H. Dugald Macpherson and Anand Pillay and Carlo Toffalori and Alex J. Wilkie Front Matter . . . . . . . . . . . . . . i--vii Dugald Macpherson and Carlo Toffalori Model Theory in Algebra, Analysis and Arithmetic: a Preface . . . . . . . . . 1--11 Anand Pillay Some Themes Around First Order Theories Without the Independence Property . . . 13--33 A. J. Wilkie Lectures on the Model Theory of Real and Complex Exponentiation . . . . . . . . . 35--53 Lou van den Dries Lectures on the Model Theory of Valued Fields . . . . . . . . . . . . . . . . . 55--157 Jochen Koenigsmann Undecidability in Number Theory . . . . 159--195 Jochen Koenigsmann Back Matter . . . . . . . . . . . . . . 197--198
Christian Bär and Christian Becker Front Matter . . . . . . . . . . . . . . i--viii Christian Bär and Christian Becker Differential Characters and Geometric Chains . . . . . . . . . . . . . . . . . 1--90 Christian Becker Relative Differential Cohomology . . . . 91--180 Christian Becker Back Matter . . . . . . . . . . . . . . 181--189
Daniel Scott Farley and Ivonne Johanna Ortiz Front Matter . . . . . . . . . . . . . . i--x Daniel Scott Farley and Ivonne Johanna Ortiz Introduction . . . . . . . . . . . . . . 1--8 Daniel Scott Farley and Ivonne Johanna Ortiz Three-Dimensional Point Groups . . . . . 9--21 Daniel Scott Farley and Ivonne Johanna Ortiz Arithmetic Classification of Pairs $ (L, H) $ . . . . . . . . . . . . . . . . . . 23--39 Daniel Scott Farley and Ivonne Johanna Ortiz The Split Three-Dimensional Crystallographic Groups . . . . . . . . 41--43 Daniel Scott Farley and Ivonne Johanna Ortiz A Splitting Formula for Lower Algebraic $K$-Theory . . . . . . . . . . . . . . . 45--57 Daniel Scott Farley and Ivonne Johanna Ortiz Fundamental Domains for the Maximal Groups . . . . . . . . . . . . . . . . . 59--79 Daniel Scott Farley and Ivonne Johanna Ortiz The Homology Groups $ H_n^\varGamma (E_{\mathcal {FIN}}(\varGamma); \mathbb {K} \mathbb {Z}^{- \infty }) $ . . . . . 81--98 Daniel Scott Farley and Ivonne Johanna Ortiz Fundamental Domains for Actions on Spaces of Planes . . . . . . . . . . . . 99--117 Daniel Scott Farley and Ivonne Johanna Ortiz Cokernels of the Relative Assembly Maps for $ \mathcal {V} \mathcal {C}_\infty $ 119--136 Daniel Scott Farley and Ivonne Johanna Ortiz Summary . . . . . . . . . . . . . . . . 137--141 Daniel Scott Farley and Ivonne Johanna Ortiz Back Matter . . . . . . . . . . . . . . 143--150
Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Front Matter . . . . . . . . . . . . . . i--xiii Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Introduction . . . . . . . . . . . . . . 1--23 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Slow Integral Manifolds . . . . . . . . 25--42 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell The Book of Numbers . . . . . . . . . . 43--80 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Representations of Slow Integral Manifolds . . . . . . . . . . . . . . . 81--92 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Singular Singularly Perturbed Systems 93--110 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Reduction Methods for Chemical Systems 111--117 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Specific Cases . . . . . . . . . . . . . 119--139 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Canards and Black Swans . . . . . . . . 141--182 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Appendix: Proofs . . . . . . . . . . . . 183--198 Elena Shchepakina and Vladimir Sobolev and Michael P. Mortell Back Matter . . . . . . . . . . . . . . 199--214
François Rouvi\`ere Front Matter . . . . . . . . . . . . . . i--xxi François Rouvi\`ere The Kashiwara--Vergne Method for Lie Groups . . . . . . . . . . . . . . . . . 1--49 François Rouvi\`ere Convolution on Homogeneous Spaces . . . 51--56 François Rouvi\`ere The Role of $e$-Functions . . . . . . . 57--117 François Rouvi\`ere $e$-Functions and the Campbell--Hausdorff Formula . . . . . . 119--175 François Rouvi\`ere Back Matter . . . . . . . . . . . . . . 177--198
Bo'az Klartag and Emanuel Milman Front Matter . . . . . . . . . . . . . . i--ix Dominique Bakry and Marguerite Zani Dyson Processes Associated with Associative Algebras: The Clifford Case 1--37 Itai Benjamini Gaussian Free Field on Hyperbolic Lattices . . . . . . . . . . . . . . . . 39--45 Itai Benjamini and Pascal Maillard Point-to-Point Distance in First Passage Percolation on (Tree) $ \times Z $ . . . 47--51 Zbigniew B\locki A Lower Bound for the Bergman Kernel and the Bourgain--Milman Inequality . . . . 53--63 Jean Bourgain An Improved Estimate in the Restricted Isometry Problem . . . . . . . . . . . . 65--70 Jean Bourgain On Eigenvalue Spacings for the $1$-D Anderson Model with Singular Site Distribution . . . . . . . . . . . . . . 71--83 Jean Bourgain On the Local Eigenvalue Spacings for Certain Anderson--Bernoulli Hamiltonians 85--96 Jean Bourgain On the Control Problem for Schrödinger Operators on Tori . . . . . . . . . . . 97--105 Ronen Eldan and Joseph Lehec Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates . . . . 107--122 Dmitry Faifman and Bo'az Klartag and Vitali Milman On the Oscillation Rigidity of a Lipschitz Function on a High-Dimensional Flat Torus . . . . . . . . . . . . . . . 123--131 Dan Florentin and Vitali Milman and Alexander Segal Identifying Set Inclusion by Projective Positions and Mixed Volumes . . . . . . 133--145 Omer Friedland and Yosef Yomdin Vitushkin-Type Theorems . . . . . . . . 147--157 Apostolos Giannopoulos and Emanuel Milman $M$-Estimates for Isotropic Convex Bodies and Their $ L_q$-Centroid Bodies 159--182 Uri Grupel Remarks on the Central Limit Theorem for Non-convex Bodies . . . . . . . . . . . 183--198 Benjamin Jaye and Fedor Nazarov Reflectionless Measures and the Mattila--Melnikov--Verdera Uniform Rectifiability Theorem . . . . . . . . . 199--229 Bo'az Klartag Logarithmically-Concave Moment Measures I . . . . . . . . . . . . . . . . . . . 231--260 Alexander Koldobsky Estimates for Measures of Sections of Convex Bodies . . . . . . . . . . . . . 261--271 Alexander V. Kolesnikov and Emanuel Milman Remarks on the KLS Conjecture and Hardy-Type Inequalities . . . . . . . . 273--292 Rafa\l Lata\la Modified Paouris Inequality . . . . . . 293--307 Michel Ledoux Remarks on Gaussian Noise Stability, Brascamp--Lieb and Slepian Inequalities 309--333
Claude Dellacherie and Servet Martinez and Jaime San Martin Front Matter . . . . . . . . . . . . . . i--x Claude Dellacherie and Servet Martinez and Jaime San Martin Introduction . . . . . . . . . . . . . . 1--3 Claude Dellacherie and Servet Martinez and Jaime San Martin Inverse $M$-Matrices and Potentials . . 5--55 Claude Dellacherie and Servet Martinez and Jaime San Martin Ultrametric Matrices . . . . . . . . . . 57--84 Claude Dellacherie and Servet Martinez and Jaime San Martin Graph of Ultrametric Type Matrices . . . 85--117 Claude Dellacherie and Servet Martinez and Jaime San Martin Filtered Matrices . . . . . . . . . . . 119--163 Claude Dellacherie and Servet Martinez and Jaime San Martin Hadamard Functions of Inverse $M$-Matrices . . . . . . . . . . . . . . 165--213 Claude Dellacherie and Servet Martinez and Jaime San Martin Back Matter . . . . . . . . . . . . . . 215--238
Daniel Robertz Front Matter . . . . . . . . . . . . . . i--viii Daniel Robertz Introduction . . . . . . . . . . . . . . 1--4 Daniel Robertz Formal Methods for PDE Systems . . . . . 5--117 Daniel Robertz Differential Elimination for Analytic Functions . . . . . . . . . . . . . . . 119--231 Daniel Robertz Back Matter . . . . . . . . . . . . . . 233--285
Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Front Matter . . . . . . . . . . . . . . i--x Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Introduction . . . . . . . . . . . . . . 1--16 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Singular Curves . . . . . . . . . . . . 17--26 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Combinatorial Results . . . . . . . . . 27--44 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Preliminaries on GIT . . . . . . . . . . 45--59 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Potential Pseudo-Stability Theorem . . . 61--72 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Stabilizer Subgroups . . . . . . . . . . 73--80 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Behavior at the Extremes of the Basic Inequality . . . . . . . . . . . . . . . 81--90 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani A Criterion of Stability for Tails . . . 91--105 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Elliptic Tails and Tacnodes with a Line 107--116 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani A Stratification of the Semistable Locus 117--130 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Semistable, Polystable and Stable Points (Part I) . . . . . . . . . . . . . . . . 131--139 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Stability of Elliptic Tails . . . . . . 141--147 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Semistable, Polystable and Stable Points (Part II) . . . . . . . . . . . . . . . 149--154 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Geometric Properties of the GIT Quotient 155--165 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Extra Components of the GIT Quotient . . 167--170 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Compactifications of the Universal Jacobian . . . . . . . . . . . . . . . . 171--195 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Appendix: Positivity Properties of Balanced Line Bundles . . . . . . . . . 197--203 Gilberto Bini and Fabio Felici and Margarida Melo and Filippo Viviani Back Matter . . . . . . . . . . . . . . 205--214
Catherine Donati-Martin and Antoine Lejay and Alain Rouault Front Matter . . . . . . . . . . . . . . i--viii Sergey Bocharov and Simon C. Harris Branching Random Walk in an Inhomogeneous Breeding Potential . . . . 1--32 A. E. Kyprianou and J-L. Pérez and Y.-X. Ren The Backbone Decomposition for Spatially Dependent Supercritical Superprocesses 33--59 Lucian Beznea and Iulian C\^\impean On Bochner--Kolmogorov Theorem . . . . . 61--70 Jacques Franchi Small Time Asymptotics for an Example of Strictly Hypoelliptic Heat Kernel . . . 71--103 Koléh\`e A. Coulibaly-Pasquier Onsager--Machlup Functional for Uniformly Elliptic Time-Inhomogeneous Diffusion . . . . . . . . . . . . . . . 105--123 Xi Geng and Zhongmin Qian and Danyu Yang $G$-Brownian Motion as Rough Paths and Differential Equations Driven by $G$-Brownian Motion . . . . . . . . . . 125--193 Ismaël Bailleul Flows Driven by Banach Space-Valued Rough Paths . . . . . . . . . . . . . . 195--205 Christian Léonard Some Properties of Path Measures . . . . 207--230 P. Cattiaux and A. Guillin Semi Log-Concave Markov Diffusions . . . 231--292 Carlo Marinelli and Michael Röckner On Maximal Inequalities for Purely Discontinuous Martingales in Infinite Dimensions . . . . . . . . . . . . . . . 293--315 Walter Schachermayer Admissible Trading Strategies Under Transaction Costs . . . . . . . . . . . 317--331 A. E. Kyprianou and A. R. Watson Potentials of Stable Processes . . . . . 333--343 Julien Letemplier and Thomas Simon Unimodality of Hitting Times for Stable Processes . . . . . . . . . . . . . . . 345--357 Mathieu Rosenbaum and Marc Yor On the Law of a Triplet Associated with the Pseudo-Brownian Bridge . . . . . . . 359--375 Jean Brossard and Michel Émery and Christophe Leuridan Skew-Product Decomposition of Planar Brownian Motion and Complementability 377--394 Vilmos Prokaj On the Exactness of the Lévy-Transformation. . . . . . . . . . . 395--400 Yinshan Chang Multi-Occupation Field Generates the Borel--Sigma-Field of Loops . . . . . . 401--410 Ramon van Handel Ergodicity, Decisions, and Partial Information . . . . . . . . . . . . . . 411--459 Laurent Serlet Invariance Principle for the Random Walk Conditioned to Have Few Zeros . . . . . 461--472 Dario Trevisan A Short Proof of Stein's Universal Multiplier Theorem . . . . . . . . . . . 473--479
Benjamin Sambale Front Matter . . . . . . . . . . . . . . i--xiii Benjamin Sambale Front Matter . . . . . . . . . . . . . . 1--1 Benjamin Sambale Definitions and Facts . . . . . . . . . 3--17 Benjamin Sambale Open Conjectures . . . . . . . . . . . . 19--22 Benjamin Sambale Front Matter . . . . . . . . . . . . . . 23--23 Benjamin Sambale Quadratic Forms . . . . . . . . . . . . 25--32 Benjamin Sambale The Cartan Method . . . . . . . . . . . 33--46 Benjamin Sambale A Bound in Terms of Fusion Systems . . . 47--61 Benjamin Sambale Essential Subgroups and Alperin's Fusion Theorem . . . . . . . . . . . . . . . . 63--70 Benjamin Sambale Reduction to Quasisimple Groups and the Classification . . . . . . . . . . . . . 71--78 Benjamin Sambale Front Matter . . . . . . . . . . . . . . 79--79 Benjamin Sambale Metacyclic Defect Groups . . . . . . . . 81--94 Benjamin Sambale Products of Metacyclic Groups . . . . . 95--125 Benjamin Sambale Bicyclic Groups . . . . . . . . . . . . 127--157 Benjamin Sambale Defect Groups of $p$-Rank $2$ . . . . . 159--165 Benjamin Sambale Minimal Non-abelian Defect Groups . . . 167--179 Benjamin Sambale Small Defect Groups . . . . . . . . . . 181--203 Benjamin Sambale Abelian Defect Groups . . . . . . . . . 205--217 Benjamin Sambale Blocks with Few Characters . . . . . . . 219--227 Benjamin Sambale Back Matter . . . . . . . . . . . . . . 229--246
Stefan Liebscher Front Matter . . . . . . . . . . . . . . i--xii Stefan Liebscher Front Matter . . . . . . . . . . . . . . 1--1 Stefan Liebscher Introduction . . . . . . . . . . . . . . 3--12 Stefan Liebscher Methods and Concepts . . . . . . . . . . 13--19 Stefan Liebscher Cosymmetries . . . . . . . . . . . . . . 21--23 Stefan Liebscher Front Matter . . . . . . . . . . . . . . 25--25 Stefan Liebscher Transcritical Bifurcation . . . . . . . 27--34 Stefan Liebscher Poincaré--Andronov--Hopf Bifurcation . . 35--41 Stefan Liebscher Application: Decoupling in Networks . . 43--47 Stefan Liebscher Application: Oscillatory Profiles in Systems of Hyperbolic Balance Laws . . . 49--54 Stefan Liebscher Front Matter . . . . . . . . . . . . . . 55--55 Stefan Liebscher Degenerate Transcritical Bifurcation . . 57--65 Stefan Liebscher Degenerate Poincaré--Andronov--Hopf Bifurcation . . . . . . . . . . . . . . 67--79 Stefan Liebscher Bogdanov--Takens Bifurcation . . . . . . 81--102 Stefan Liebscher Zero-Hopf Bifurcation . . . . . . . . . 103--108 Stefan Liebscher Double-Hopf Bifurcation . . . . . . . . 109--113 Stefan Liebscher Application: Cosmological Models of Bianchi Type, the Tumbling Universe . . 115--118 Stefan Liebscher Application: Fluid Flow in a Planar Channel, Spatial Dynamics with Reversible Bogdanov--Takens Bifurcation 119--128 Stefan Liebscher Front Matter . . . . . . . . . . . . . . 129--129 Stefan Liebscher Codimension-One Manifolds of Equilibria 131--133 Stefan Liebscher Summary and Outlook . . . . . . . . . . 135--137 Stefan Liebscher Back Matter . . . . . . . . . . . . . . 139--144
Antoine Ducros and Charles Favre and Johannes Nicaise Front Matter . . . . . . . . . . . . . . i--xix Antoine Ducros and Charles Favre and Johannes Nicaise Front Matter . . . . . . . . . . . . . . 1--1 Michael Temkin Introduction to Berkovich Analytic Spaces . . . . . . . . . . . . . . . . . 3--66 Antoine Ducros Étale Cohomology of Schemes and Analytic Spaces . . . . . . . . . . . . . . . . . 67--118 Charles Favre Countability Properties of Some Berkovich Spaces . . . . . . . . . . . . 119--132 Charles Favre Front Matter . . . . . . . . . . . . . . 133--133 Antoine Ducros Cohomological Finiteness of Proper Morphisms in Algebraic Geometry: a Purely Transcendental Proof, Without Projective Tools . . . . . . . . . . . . 135--140 Bertrand Rémy and Amaury Thuillier and Annette Werner Bruhat--Tits Buildings and Analytic Geometry . . . . . . . . . . . . . . . . 141--202 Bertrand Rémy and Amaury Thuillier and Annette Werner Front Matter . . . . . . . . . . . . . . 203--203 Mattias Jonsson Dynamics on Berkovich Spaces in Low Dimensions . . . . . . . . . . . . . . . 205--366 Jean-Pierre Otal Compactification of Spaces of Representations After Culler, Morgan and Shalen . . . . . . . . . . . . . . . . . 367--413 Jean-Pierre Otal Back Matter . . . . . . . . . . . . . . 415--416
Volker Schmidt Front Matter . . . . . . . . . . . . . . i--xxiv Dominic Schuhmacher Stein's Method for Approximating Complex Distributions, with a View towards Point Processes . . . . . . . . . . . . . . . 1--30 Bart\lomiej B\laszczyszyn and Dhandapani Yogeshwaran Clustering Comparison of Point Processes, with Applications to Random Geometric Models . . . . . . . . . . . . 31--71 Claudia Redenbach and André Liebscher Random Tessellations and their Application to the Modelling of Cellular Materials . . . . . . . . . . . . . . . 73--93 Volker Schmidt and Gerd Gaiselmann and Ole Stenzel Stochastic $3$D Models for the Micro-structure of Advanced Functional Materials . . . . . . . . . . . . . . . 95--141 Dominique Jeulin Boolean Random Functions . . . . . . . . 143--169 Viktor Bene\vs and Jakub Stan\uek and Bla\vzena Kratochvílová and Ond\vrej \vSedivý Random Marked Sets and Dimension Reduction . . . . . . . . . . . . . . . 171--203 Viktor Bene\vs and Michaela Proke\vsová and Kate\vrina Sta\vnková Helisová and Markéta Zikmundová Space-Time Models in Stochastic Geometry 205--232 Eva B. Vedel Jensen and Allan Rasmusson Rotational Integral Geometry and Local Stereology --- with a View to Image Analysis . . . . . . . . . . . . . . . . 233--255 Ulrich Stadtmüller and Marta Zampiceni An Introduction to Functional Data Analysis . . . . . . . . . . . . . . . . 257--292 Alexander Bulinski Some Statistical Methods in Genetics . . 293--320 Evgeny Spodarev and Elena Shmileva and Stefan Roth Extrapolation of Stationary Random Fields . . . . . . . . . . . . . . . . . 321--368 Dirk P. Kroese and Zdravko I. Botev Spatial Process Simulation . . . . . . . 369--404 Wilfrid S. Kendall Introduction to Coupling-from-the-Past using R . . . . . . . . . . . . . . . . 405--439 Wilfrid S. Kendall Back Matter . . . . . . . . . . . . . . 441--466
Ka\"\is Ammari and Serge Nicaise Front Matter . . . . . . . . . . . . . . i--xi Ka\"\is Ammari and Serge Nicaise Some Backgrounds . . . . . . . . . . . . 1--35 Ka\"\is Ammari and Serge Nicaise Stabilization of Second Order Evolution Equations by a Class of Unbounded Feedbacks . . . . . . . . . . . . . . . 37--60 Ka\"\is Ammari and Serge Nicaise Stabilization of Second Order Evolution Equations with Unbounded Feedback with Delay . . . . . . . . . . . . . . . . . 61--71 Ka\"\is Ammari and Serge Nicaise Asymptotic Behaviour of Concrete Dissipative Systems . . . . . . . . . . 73--146 Ka\"\is Ammari and Serge Nicaise Systems with Delay . . . . . . . . . . . 147--168 Ka\"\is Ammari and Serge Nicaise Back Matter . . . . . . . . . . . . . . 169--180
Jacek Banasiak and Mustapha Mokhtar-Kharroubi Front Matter . . . . . . . . . . . . . . i--xi Wilson Lamb Applying Functional Analytic Techniques to Evolution Equations . . . . . . . . . 1--46 Adam Bobrowski Boundary Conditions in Evolutionary Equations in Biology . . . . . . . . . . 47--92 Ernesto Estrada Introduction to Complex Networks: Structure and Dynamics . . . . . . . . . 93--131 Jacek Banasiak Kinetic Models in Natural Sciences . . . 133--198 Philippe Laurençot Weak Compactness Techniques and Coagulation Equations . . . . . . . . . 199--253 Ryszard Rudnicki Stochastic Operators and Semigroups and Their Applications in Physics and Biology . . . . . . . . . . . . . . . . 255--318 Mustapha Mokhtar-Kharroubi Spectral Theory for Neutron Transport 319--386 Anna Marciniak-Czochra Reaction-Diffusion-ODE Models of Pattern Formation . . . . . . . . . . . . . . . 387--438 Mapundi Kondwani Banda Nonlinear Hyperbolic Systems of Conservation Laws and Related Applications . . . . . . . . . . . . . . 439--493 Mapundi Kondwani Banda Back Matter . . . . . . . . . . . . . . 495--496
Denis Belomestny and Fabienne Comte and Valentine Genon-Catalot and Hiroki Masuda and Markus Reiß Front Matter . . . . . . . . . . . . . . i--xv Denis Belomestny and Markus Reiß Estimation and Calibration of Lévy Models via Fourier Methods . . . . . . . . . . 1--76 Fabienne Comte and Valentine Genon-Catalot Adaptive Estimation for Lévy Processes 77--177 Hiroki Masuda Parametric Estimation of Lévy Processes 179--286 Hiroki Masuda Back Matter . . . . . . . . . . . . . . 287--288
Sigrun Bodine and Donald A. Lutz Front Matter . . . . . . . . . . . . . . i--xi Sigrun Bodine and Donald A. Lutz Introduction, Notation, and Background 1--10 Sigrun Bodine and Donald A. Lutz Asymptotic Integration for Differential Systems . . . . . . . . . . . . . . . . 11--67 Sigrun Bodine and Donald A. Lutz Asymptotic Representation for Solutions of Difference Systems . . . . . . . . . 69--117 Sigrun Bodine and Donald A. Lutz Conditioning Transformations for Differential Systems . . . . . . . . . . 119--177 Sigrun Bodine and Donald A. Lutz Conditioning Transformations for Difference Systems . . . . . . . . . . . 179--208 Sigrun Bodine and Donald A. Lutz Perturbations of Jordan Differential Systems . . . . . . . . . . . . . . . . 209--232 Sigrun Bodine and Donald A. Lutz Perturbations of Jordan Difference Systems . . . . . . . . . . . . . . . . 233--236 Sigrun Bodine and Donald A. Lutz Applications to Classes of Scalar Linear Differential Equations . . . . . . . . . 237--294 Sigrun Bodine and Donald A. Lutz Applications to Classes of Scalar Linear Difference Equations . . . . . . . . . . 295--368 Sigrun Bodine and Donald A. Lutz Asymptotics for Dynamic Equations on Time Scales . . . . . . . . . . . . . . 369--391 Sigrun Bodine and Donald A. Lutz Back Matter . . . . . . . . . . . . . . 393--404
Hatice Boylan Front Matter . . . . . . . . . . . . . . i--xix Hatice Boylan Finite Quadratic Modules . . . . . . . . 1--17 Hatice Boylan Weil Representations of Finite Quadratic Modules . . . . . . . . . . . . . . . . 19--64 Hatice Boylan Jacobi Forms over Totally Real Number Fields . . . . . . . . . . . . . . . . . 65--101 Hatice Boylan Singular Jacobi Forms . . . . . . . . . 103--122 Hatice Boylan Back Matter . . . . . . . . . . . . . . 123--132
David Alonso-Gutiérrez and Jesús Bastero Front Matter . . . . . . . . . . . . . . i--x David Alonso-Gutiérrez and Jesús Bastero The Conjectures . . . . . . . . . . . . 1--64 David Alonso-Gutiérrez and Jesús Bastero Main Examples . . . . . . . . . . . . . 65--101 David Alonso-Gutiérrez and Jesús Bastero Relating the Conjectures . . . . . . . . 103--135 David Alonso-Gutiérrez and Jesús Bastero Back Matter . . . . . . . . . . . . . . 137--150
Paolo Butt\`a and Guido Cavallaro and Carlo Marchioro Front Matter . . . . . . . . . . . . . . i--xiv Paolo Butt\`a and Guido Cavallaro and Carlo Marchioro Gas of Point Particles . . . . . . . . . 1--41 Paolo Butt\`a and Guido Cavallaro and Carlo Marchioro Vlasov Approximation . . . . . . . . . . 43--61 Paolo Butt\`a and Guido Cavallaro and Carlo Marchioro Motion of a Body Immersed in a Vlasov System . . . . . . . . . . . . . . . . . 63--100 Paolo Butt\`a and Guido Cavallaro and Carlo Marchioro Motion of a Body Immersed in a Stokes Fluid . . . . . . . . . . . . . . . . . 101--116 Paolo Butt\`a and Guido Cavallaro and Carlo Marchioro Back Matter . . . . . . . . . . . . . . 117--136
P. R. Kumar and Martin J. Wainwright and Riccardo Zecchina Front Matter . . . . . . . . . . . . . . i--vii Fabio Fagnani and Sophie M. Fosson and Chiara Ravazzi Some Introductory Notes on Random Graphs 1--26 Carlo Baldassi and Alfredo Braunstein and Abolfazl Ramezanpour and Riccardo Zecchina Statistical Physics and Network Optimization Problems . . . . . . . . . 27--49 Martin J. Wainwright Graphical Models and Message-Passing Algorithms: Some Introductory Lectures 51--108 P. R. Kumar Bridging the Gap Between Information Theory and Wireless Networking . . . . . 109--135 P. R. Kumar Back Matter . . . . . . . . . . . . . . 137--138
Sara van de Geer Front Matter . . . . . . . . . . . . . . i--xiii Sara van de Geer Introduction . . . . . . . . . . . . . . 1--4 Sara van de Geer The Lasso . . . . . . . . . . . . . . . 5--25 Sara van de Geer The Square-Root Lasso . . . . . . . . . 27--39 Sara van de Geer The Bias of the Lasso and Worst Possible Sub-directions . . . . . . . . . . . . . 41--60 Sara van de Geer Confidence Intervals Using the Lasso . . 61--74 Sara van de Geer Structured Sparsity . . . . . . . . . . 75--101 Sara van de Geer General Loss with Norm-Penalty . . . . . 103--119 Sara van de Geer Empirical Process Theory for Dual Norms 121--131 Sara van de Geer Probability Inequalities for Matrices 133--137 Sara van de Geer Inequalities for the Centred Empirical Risk and Its Derivative . . . . . . . . 139--150 Sara van de Geer The Margin Condition . . . . . . . . . . 151--165 Sara van de Geer Some Worked-Out Examples . . . . . . . . 167--197 Sara van de Geer Brouwer's Fixed Point Theorem and Sparsity . . . . . . . . . . . . . . . . 199--214 Sara van de Geer Asymptotically Linear Estimators of the Precision Matrix . . . . . . . . . . . . 215--221 Sara van de Geer Lower Bounds for Sparse Quadratic Forms 223--231 Sara van de Geer Symmetrization, Contraction and Concentration . . . . . . . . . . . . . 233--238 Sara van de Geer Chaining Including Concentration . . . . 239--253 Sara van de Geer Metric Structure of Convex Hulls . . . . 255--266 Sara van de Geer Back Matter . . . . . . . . . . . . . . 267--276
Palle Jorgensen and Steen Pedersen and Feng Tian Front Matter . . . . . . . . . . . . . . i--xxvi Palle Jorgensen and Steen Pedersen and Feng Tian Introduction . . . . . . . . . . . . . . 1--16 Palle Jorgensen and Steen Pedersen and Feng Tian Extensions of Continuous Positive Definite Functions . . . . . . . . . . . 17--46 Palle Jorgensen and Steen Pedersen and Feng Tian The Case of More General Groups . . . . 47--66 Palle Jorgensen and Steen Pedersen and Feng Tian Examples . . . . . . . . . . . . . . . . 67--92 Palle Jorgensen and Steen Pedersen and Feng Tian Type I vs. Type II Extensions . . . . . 93--113 Palle Jorgensen and Steen Pedersen and Feng Tian Spectral Theory for Mercer Operators, and Implications for $ {\rm Ext}(F) $ 115--150 Palle Jorgensen and Steen Pedersen and Feng Tian Green's Functions . . . . . . . . . . . 151--169 Palle Jorgensen and Steen Pedersen and Feng Tian Comparing the Different RKHSs $ \mathcal {H}_F $ and $ \mathcal {H}_K $ . . . . . 171--191 Palle Jorgensen and Steen Pedersen and Feng Tian Convolution Products . . . . . . . . . . 193--195 Palle Jorgensen and Steen Pedersen and Feng Tian Models for, and Spectral Representations of, Operator Extensions . . . . . . . . 197--216 Palle Jorgensen and Steen Pedersen and Feng Tian Overview and Open Questions . . . . . . 217--218 Palle Jorgensen and Steen Pedersen and Feng Tian Back Matter . . . . . . . . . . . . . . 219--233
Annalisa Buffa and Giancarlo Sangalli Front Matter . . . . . . . . . . . . . . i--ix Carla Manni and Hendrik Speleers Standard and Non-standard CAGD Tools for Isogeometric Analysis: a Tutorial . . . 1--69 Vibeke Skytt and Tor Dokken Models for Isogeometric Analysis from CAD . . . . . . . . . . . . . . . . . . 71--86 L. Beirão da Veiga and A. Buffa and G. Sangalli and R. Vázquez An Introduction to the Numerical Analysis of Isogeometric Methods . . . . 87--154 John A. Evans and Thomas J. R. Hughes Isogeometric Compatible Discretizations for Viscous Incompressible Flow . . . . 155--193 John A. Evans and Thomas J. R. Hughes Back Matter . . . . . . . . . . . . . . 195--196
Patrick Popescu-Pampu Front Matter . . . . . . . . . . . . . . i--xvii Patrick Popescu-Pampu The $ \gamma \acute {\varepsilon } \nu o \varsigma $ According to Aristotle . . . 1--1 Patrick Popescu-Pampu Front Matter . . . . . . . . . . . . . . 3--3 Patrick Popescu-Pampu Descartes and the New World of Curves 5--6 Patrick Popescu-Pampu Newton and the Classification of Curves 7--8 Patrick Popescu-Pampu When Integrals Hide Curves . . . . . . . 9--10 Patrick Popescu-Pampu Jakob Bernoulli and the Construction of Curves . . . . . . . . . . . . . . . . . 11--13 Patrick Popescu-Pampu Fagnano and the Lemniscate . . . . . . . 15--16 Patrick Popescu-Pampu Euler and the Addition of Lemniscatic Integrals . . . . . . . . . . . . . . . 17--18 Patrick Popescu-Pampu Legendre and Elliptic Functions . . . . 19--20 Patrick Popescu-Pampu Abel and the New Transcendental Functions . . . . . . . . . . . . . . . 21--22 Patrick Popescu-Pampu A Proof by Abel . . . . . . . . . . . . 23--24 Patrick Popescu-Pampu Abel's Motivations . . . . . . . . . . . 25--26 Patrick Popescu-Pampu Cauchy and the Integration Paths . . . . 27--30 Patrick Popescu-Pampu Puiseux and the Permutations of Roots 31--33 Patrick Popescu-Pampu Riemann and the Cutting of Surfaces . . 35--40 Patrick Popescu-Pampu Riemann and the Birational Invariance of Genus . . . . . . . . . . . . . . . . . 41--42 Patrick Popescu-Pampu The Riemann--Roch Theorem . . . . . . . 43--44 Patrick Popescu-Pampu A Reinterpretation of Abel's Works . . . 45--49 Patrick Popescu-Pampu Jordan and the Topological Classification . . . . . . . . . . . . . 51--52 Patrick Popescu-Pampu Clifford and the Number of Holes . . . . 53--57 Patrick Popescu-Pampu Clebsch and the Choice of the Term ``Genus'' . . . . . . . . . . . . . . . 59--61
Viorel Barbu and Giuseppe Da Prato and Michael Röckner Front Matter . . . . . . . . . . . . . . i--ix Viorel Barbu and Giuseppe Da Prato and Michael Röckner Introduction . . . . . . . . . . . . . . 1--18 Viorel Barbu and Giuseppe Da Prato and Michael Röckner Equations with Lipschitz Nonlinearities 19--47 Viorel Barbu and Giuseppe Da Prato and Michael Röckner Equations with Maximal Monotone Nonlinearities . . . . . . . . . . . . . 49--93 Viorel Barbu and Giuseppe Da Prato and Michael Röckner Variational Approach to Stochastic Porous Media Equations . . . . . . . . . 95--106 Viorel Barbu and Giuseppe Da Prato and Michael Röckner $ L^1 $-Based Approach to Existence Theory for Stochastic Porous Media Equations . . . . . . . . . . . . . . . 107--131 Viorel Barbu and Giuseppe Da Prato and Michael Röckner The Stochastic Porous Media Equations in $ \mathbb {R}^d $ . . . . . . . . . . . 133--165 Viorel Barbu and Giuseppe Da Prato and Michael Röckner Transition Semigroup . . . . . . . . . . 167--195 Viorel Barbu and Giuseppe Da Prato and Michael Röckner Back Matter . . . . . . . . . . . . . . 197--204
James Damon and Peter Giblin and Gareth Haslinger Front Matter . . . . . . . . . . . . . . i--x James Damon and Peter Giblin and Gareth Haslinger Front Matter . . . . . . . . . . . . . . 1--1 James Damon and Peter Giblin and Gareth Haslinger Introduction . . . . . . . . . . . . . . 3--10 James Damon and Peter Giblin and Gareth Haslinger Overview . . . . . . . . . . . . . . . . 11--20 James Damon and Peter Giblin and Gareth Haslinger Front Matter . . . . . . . . . . . . . . 21--21 James Damon and Peter Giblin and Gareth Haslinger Apparent Contours for Projections of Smooth Surfaces . . . . . . . . . . . . 23--33 James Damon and Peter Giblin and Gareth Haslinger Abstract Classification of Singularities Preserving Features . . . . . . . . . . 35--39 James Damon and Peter Giblin and Gareth Haslinger Singularity Equivalence Groups Capturing Interactions . . . . . . . . . . . . . . 41--71 James Damon and Peter Giblin and Gareth Haslinger Methods for Classification of Singularities . . . . . . . . . . . . . 73--99 James Damon and Peter Giblin and Gareth Haslinger Methods for Topological Classification of Singularities . . . . . . . . . . . . 101--114 James Damon and Peter Giblin and Gareth Haslinger Front Matter . . . . . . . . . . . . . . 115--115 James Damon and Peter Giblin and Gareth Haslinger Stratifications of Generically Illuminated Surfaces with Geometric Features . . . . . . . . . . . . . . . . 117--134 James Damon and Peter Giblin and Gareth Haslinger Realizations of Abstract Mappings Representing Projection Singularities 135--155 James Damon and Peter Giblin and Gareth Haslinger Statements of the Main Classification Results . . . . . . . . . . . . . . . . 157--177 James Damon and Peter Giblin and Gareth Haslinger Front Matter . . . . . . . . . . . . . . 179--179 James Damon and Peter Giblin and Gareth Haslinger Stable View Projections and Transitions Involving Shade/Shadow Curves on a Smooth Surface (SC) . . . . . . . . . . 181--191 James Damon and Peter Giblin and Gareth Haslinger Transitions Involving Views of Geometric Features (FC) . . . . . . . . . . . . . 193--212 James Damon and Peter Giblin and Gareth Haslinger Front Matter . . . . . . . . . . . . . . 213--213 James Damon and Peter Giblin and Gareth Haslinger Transitions Involving Geometric Features and Shade/Shadow Curves (SFC) . . . . . 215--241 James Damon and Peter Giblin and Gareth Haslinger Classifications of Stable Multilocal Configurations and Their Generic Transitions . . . . . . . . . . . . . . 243--252 James Damon and Peter Giblin and Gareth Haslinger Back Matter . . . . . . . . . . . . . . 253--257
Michel Boileau and Gerard Besson and Carlo Sinestrari and Gang Tian Front Matter . . . . . . . . . . . . . . i--xi Gérard Besson The Differentiable Sphere Theorem (After S. Brendle and R. Schoen) . . . . . . . 1--19 Michel Boileau Thick/Thin Decomposition of Three-Manifolds and the Geometrisation Conjecture . . . . . . . . . . . . . . . 21--70 Carlo Sinestrari Singularities of Three-Dimensional Ricci Flows . . . . . . . . . . . . . . . . . 71--104 Gang Tian Notes on Kähler--Ricci Flow . . . . . . . 105--136 Gang Tian Back Matter . . . . . . . . . . . . . . 137--138
Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Front Matter . . . . . . . . . . . . . . i--ix Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Introduction . . . . . . . . . . . . . . 1--12 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Symmetry Breaking Operators and Principal Series Representations of $ G = O(n + 1, 1) $ . . . . . . . . . . . . 13--30 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner $F$-method for Matrix-Valued Differential Operators . . . . . . . . . 31--39 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Matrix-Valued $F$-method for $ O(n + 1, 1)$ . . . . . . . . . . . . . . . . . . 41--49 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Application of Finite-Dimensional Representation Theory . . . . . . . . . 51--65 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner $F$-system for Symmetry Breaking Operators $ (j = i - 1, i {\rm case})$ 67--85 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner $F$-system for Symmetry Breaking Operators $ (j = i - - 2, i + 1 {\rm case})$ . . . . . . . . . . . . . . . . 87--91 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Basic Operators in Differential Geometry and Conformal Covariance . . . . . . . . 93--109 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Identities of Scalar-Valued Differential Operators $ {\mathfrak {D}_l^\mu } $ . . 111--119 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Construction of Differential Symmetry Breaking Operators . . . . . . . . . . . 121--129 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Solutions to Problems A and B for $ (S^n, S^{n - 1}) $ . . . . . . . . . . . 131--139 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Intertwining Operators . . . . . . . . . 141--153 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Matrix-Valued Factorization Identities 155--172 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Appendix: Gegenbauer Polynomials . . . . 173--184 Toshiyuki Kobayashi and Toshihisa Kubo and Michael Pevzner Back Matter . . . . . . . . . . . . . . 185--192