Last update: Fri Oct 18 07:41:23 MDT 2024
Volume 1, Number 1, February, 1986Anonymous Editorial . . . . . . . . . . . . . . . 1--2 D. A. Freedman and W. C. Navidi Regression Models for Adjusting the 1980 Census . . . . . . . . . . . . . . . . . 3--11 Joseph B. Kadane [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 12--17 Eugene P. Ericksen [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 18--21 A. P. Dempster [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 21--23 Kirk M. Wolter [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 24--28 Albert Madansky [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 28--30 I. P. Fellegi [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 30--33 Lincoln E. Moses [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 33--34 Gad Nathan [Regression Models for Adjusting the 1980 Census]: Comment . . . . . . . . . 34--35 D. A. Freedman and W. C. Navidi [Regression Models for Adjusting the 1980 Census]: Rejoinder . . . . . . . . 35--39 Morris H. DeGroot A Conversation with David Blackwell . . 40--53 B. Efron and R. Tibshirani Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy . . . . . . . . 54--75 J. A. Hartigan [Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy]: Comment . . . 75--77 B. Efron and R. Tibshirani [Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy]: Rejoinder . . 77 L. Le Cam The Central Limit Theorem Around 1935 78--91 H. F. Trotter [The Central Limit Theorem Around 1935]: Comment . . . . . . . . . . . . . . . . 92--93 J. L. Doob [The Central Limit Theorem Around 1935]: Comment . . . . . . . . . . . . . . . . 93--94 David Pollard [The Central Limit Theorem Around 1935]: Comment . . . . . . . . . . . . . . . . 94--95 L. Le Cam [The Central Limit Theorem Around 1935]: Rejoinder . . . . . . . . . . . . . . . 95--96 Morris H. DeGroot A Conversation with T. W. Anderson . . . 97--105 Seymour Geisser Opera Selecta Boxi . . . . . . . . . . . 106--113 Christian Genest and James V. Zidek Combining Probability Distributions: A Critique and an Annotated Bibliography 114--135 Glenn Shafer [Combining Probability Distributions: A Critique and an Annotated Bibliography]: Comment . . . . . . . . . . . . . . . . 135--137 Simon French [Combining Probability Distributions: A Critique and an Annotated Bibliography]: Comment . . . . . . . . . . . . . . . . 138 Robert L. Winkler [Combining Probability Distributions: A Critique and an Annotated Bibliography]: Comment . . . . . . . . . . . . . . . . 138--140 Peter A. Morris [Combining Probability Distributions: A Critique and an Annotated Bibliography]: Comment . . . . . . . . . . . . . . . . 141--144 Robin M. Hogarth [Combining Probability Distributions: A Critique and an Annotated Bibliography]: Comment . . . . . . . . . . . . . . . . 145--147 Christian Genest and James V. Zidek [Combining Probability Distributions: A Critique and an Annotated Bibliography]: Rejoinder . . . . . . . . . . . . . . . 147--148 Morris H. DeGroot The First Issue of the Annals of Mathematical Statistics . . . . . . . . 149--152 Anonymous Publications Received . . . . . . . . . 153--154
Anonymous In This Issue . . . . . . . . . . . . . 155--156 I. J. Good Some Statistical Applications of Poisson's Work . . . . . . . . . . . . . 157--170 Persi Diaconis and Eduardo Engel [Some Statistical Applications of Poisson's Work]: Comment . . . . . . . . 171--174 Herbert Solomon [Some Statistical Applications of Poisson's Work]: Comment . . . . . . . . 174--176 C. C. Heyde [Some Statistical Applications of Poisson's Work]: Comment . . . . . . . . 176--177 Nozer D. Singpurwalla [Some Statistical Applications of Poisson's Work]: Comment . . . . . . . . 177--178 I. J. Good [Some Statistical Applications of Poisson's Work]: Rejoinder . . . . . . . 179--180 Fred L. Bookstein Size and Shape Spaces for Landmark Data in Two Dimensions . . . . . . . . . . . 181--222 David G. Kendall [Size and Shape Spaces for Landmark Data in Two Dimensions]: Comment . . . . . . 222--226 Noel Cressie [Size and Shape Spaces for Landmark Data in Two Dimensions]: Comment . . . . . . 226 Gregory Campbell [Size and Shape Spaces for Landmark Data in Two Dimensions]: Comment . . . . . . 227--228 Paul D. Sampson [Size and Shape Spaces for Landmark Data in Two Dimensions]: Comment . . . . . . 229--234 Colin Goodall [Size and Shape Spaces for Landmark Data in Two Dimensions]: Comment . . . . . . 234--238 Fred L. Bookstein [Size and Shape Spaces for Landmark Data in Two Dimensions]: Rejoinder . . . . . 238--242 Morris H. DeGroot A Conversation with Erich L. Lehmann . . 243--258 Ronald A. Thisted Computing Environments for Data Analysis 259--271 John M. Chambers [Computing Environments for Data Analysis]: Comment . . . . . . . . . . . 271--272 Peter J. Huber [Computing Environments for Data Analysis]: Comment . . . . . . . . . . . 273 Ronald A. Thisted [Computing Environments for Data Analysis]: Rejoinder . . . . . . . . . . 274--275 Tze Leung Lai and David Siegmund The Contributions of Herbert Robbins to Mathematical Statistics . . . . . . . . 276--284 Robert V. Hogg On the Origins of the Institute of Mathematical Statistics . . . . . . . . 285--291 Cecil C. Craig Early Days in Statistics at Michigan . . 292--293
Anonymous In This Issue . . . . . . . . . . . . . 295--296 Trevor Hastie and Robert Tibshirani Generalized Additive Models . . . . . . 297--310 David R. Brillinger [Generalized Additive Models]: Comment 310--312 J. A. Nelder [Generalized Additive Models]: Comment 312 Charles J. Stone [Generalized Additive Models]: Comment 312--314 Peter McCullagh [Generalized Additive Models]: Comment 314 Trevor Hastie and Robert Tibshirani [Generalized Additive Models]: Rejoinder 314--318 Morris H. DeGroot A Conversation with Persi Diaconis . . . 319--334 Peter C. Fishburn The Axioms of Subjective Probability . . 335--345 I. J. Good [The Axioms of Subjective Probability]: Comment . . . . . . . . . . . . . . . . 346--347 Patrick Suppes [The Axioms of Subjective Probability]: Comment . . . . . . . . . . . . . . . . 347--350 James O. Berger [The Axioms of Subjective Probability]: Comment . . . . . . . . . . . . . . . . 351--352 Terrence L. Fine [The Axioms of Subjective Probability]: Comment . . . . . . . . . . . . . . . . 352--354 Teddy Seidenfeld [The Axioms of Subjective Probability]: Comment . . . . . . . . . . . . . . . . 354--356 Mervyn Stone [The Axioms of Subjective Probability]: Comment . . . . . . . . . . . . . . . . 356--357 William D. Sudderth [The Axioms of Subjective Probability]: Comment . . . . . . . . . . . . . . . . 357--358 Peter C. Fishburn The Axioms of Subjective Probability: Rejoinder . . . . . . . . . . . . . . . 358 Stephen M. Stigler Laplace's 1774 Memoir on Inverse Probability . . . . . . . . . . . . . . 359--363 Pierre Simon Laplace Memoir on the Probability of the Causes of Events . . . . . . . . . . . . . . . 364--378 Samprit Chatterjee and Ali S. Hadi Influential Observations, High Leverage Points, and Outliers in Linear Regression . . . . . . . . . . . . . . . 379--393 R. Dennis Cook [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Comment . . . . . . . . . . 393--397 A. C. Atkinson [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Comment: Aspects of Diagnostic Regression Analysis . . . . . 397--402 Roy E. Welsch [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Comment . . . . . . . . . . 403--405 Rollin Brant [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Comment . . . . . . . . . . 405--407 David C. Hoaglin and Peter J. Kempthorne [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Comment . . . . . . . . . . 408--412 Paul F. Velleman [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Comment . . . . . . . . . . 412--413 Sanford Weisberg [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Comment . . . . . . . . . . 414--415 Samprit Chatterjee and Ali S. Hadi [Influential Observations, High Leverage Points, and Outliers in Linear Regression]: Rejoinder . . . . . . . . . 415--416
Anonymous In This Issue . . . . . . . . . . . . . 417--418 William F. Eddy Computers in Statistical Research . . . 419--437 Jessica Utts [Computers in Statistical Research]: Comment . . . . . . . . . . . . . . . . 437--439 Andreas Buja and E. B. Fowlkes and J. R. Kettenring [Computers in Statistical Research]: Comment . . . . . . . . . . . . . . . . 440--442 David W. Scott [Computers in Statistical Research]: Comment . . . . . . . . . . . . . . . . 442--444 Prem K. Goel [Computers in Statistical Research]: Comment . . . . . . . . . . . . . . . . 444--445 Lynne Billard [Computers in Statistical Research]: Comment . . . . . . . . . . . . . . . . 446--448 Douglas M. Bates [Computers in Statistical Research]: Comment . . . . . . . . . . . . . . . . 448--449 Edward J. Wegman [Computers in Statistical Research]: Comment . . . . . . . . . . . . . . . . 449--451 William F. Eddy [Computers in Statistical Research]: Rejoinder . . . . . . . . . . . . . . . 451--453 Morris H. DeGroot A Conversation with Charles Stein . . . 454--462 Glenn Shafer Savage Revisited . . . . . . . . . . . . 463--485 D. V. Lindley [Savage Revisited]: Comment . . . . . . 486--488 A. P. Dawid [Savage Revisited]: Comment . . . . . . 488--492 Peter C. Fishburn [Savage Revisited]: Comment . . . . . . 492--495 Robyn M. Dawes [Savage Revisited]: Comment . . . . . . 495--497 John W. Pratt [Savage Revisited]: Comment . . . . . . 498--499 Glenn Shafer [Savage Revisited]: Rejoinder . . . . . 499--501 Finbarr O'Sullivan A Statistical Perspective on Ill-Posed Inverse Problems . . . . . . . . . . . . 502--518 D. M. Titterington [A Statistical Perspective on Ill-Posed Inverse Problems]: Comment . . . . . . . 519--521 Grace Wahba [A Statistical Perspective on Ill-Posed Inverse Problems]: Comment . . . . . . . 521--522 John A. Rice [A Statistical Perspective on Ill-Posed Inverse Problems]: Comment . . . . . . . 522--523 Freeman Gilbert [A Statistical Perspective on Ill-Posed Inverse Problems]: Comment . . . . . . . 523 Finbarr O'Sullivan [A Statistical Perspective on Ill-Posed Inverse Problems]: Rejoinder . . . . . . 523--527 Edward J. Wegman Some Personal Recollections of Harald Cramér on the Development of Statistics and Probability . . . . . . . . . . . . 528--535
Anonymous In This Issue . . . . . . . . . . . . . 1--2 Glenn Shafer Probability Judgment in Artificial Intelligence and Expert Systems . . . . 3--16 Dennis V. Lindley The Probability Approach to the Treatment of Uncertainty in Artificial Intelligence and Expert Systems . . . . 17--24 David J. Spiegelhalter Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty . . . . . . . . . . . . . . 25--30 Stephen R. Watson [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Comment . . . . . . . . . 30--32 A. P. Dempster and Augustine Kong [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Comment . . . . . . . . . 32--36 Glenn Shafer [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Comment . . . . . . . . . 37--38 Dennis V. Lindley [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Comment: A Tale of Two Wells . . . . . . . . . . . . . . . . . 38--40 David J. Spiegelhalter [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Comment . . . . . . . . . 40--41 Glenn Shafer [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Rejoinder . . . . . . . . 41--42 Dennis V. Lindley [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Rejoinder . . . . . . . . 42--43 David J. Spiegelhalter [Probabilistic Expert Systems in Medicine: Practical Issues in Handling Uncertainty]: Rejoinder . . . . . . . . 43--44 Joan Fisher Box Guinness, Gosset, Fisher, and Small Samples . . . . . . . . . . . . . . . . 45--52 Morris H. DeGroot A Conversation with C. R. Rao . . . . . 53--67 G. W. Stewart Collinearity and Least Squares Regression . . . . . . . . . . . . . . . 68--84 Donald W. Marquardt [Collinearity and Least Squares Regression]: Comment . . . . . . . . . . 84--85 David A. Belsley [Collinearity and Least Squares Regression]: Comment: Well-Conditioned Collinearity Indices . . . . . . . . . . 86--91 Ronald A. Thisted [Collinearity and Least Squares Regression]: Comment . . . . . . . . . . 91--93 Ali S. Hadi and Paul F. Velleman [Collinearity and Least Squares Regression]: Comment: Diagnosing Near Collinearities in Least Squares Regression . . . . . . . . . . . . . . . 93--98 G. W. Stewart [Collinearity and Least Squares Regression]: Rejoinder . . . . . . . . . 98--100 Anonymous Publications Received . . . . . . . . . 101--103 Anonymous Acknowledgment of Referees' Services . . 104
Anonymous In This Issue . . . . . . . . . . . . . 105--106 B. S. Everitt Statistics in Psychiatry . . . . . . . . 107--116 Donald Guthrie [Statistics in Psychiatry]: Comment . . 116--117 Samuel W. Greenhouse [Statistics in Psychiatry]: Comment . . 118--120 Joseph L. Fleiss [Statistics in Psychiatry]: Comment . . 120--121 Joseph Zubin [Statistics in Psychiatry]: Comment: The Biometric Approach to Psychiatry . . . . 121--125 Juan E. Mezzich and Chul Woo Ahn [Statistics in Psychiatry]: Comment: Psychiatric Statistics and Clinical Information . . . . . . . . . . . . . . 125--127 Joel B. Greenhouse [Statistics in Psychiatry]: Comment . . 127--129 Craig D. Turnbull [Statistics in Psychiatry]: Comment . . 129--132 Joseph S. Verducci [Statistics in Psychiatry]: Comment . . 132--133 B. S. Everitt [Statistics in Psychiatry]: Rejoinder 134 E. J. Hannan Rational Transfer Function Approximation 135--151 R. J. Bhansali [Rational Transfer Function Approximation]: Comment . . . . . . . . 151--152 David R. Brillinger [Rational Transfer Function Approximation]: Comment . . . . . . . . 152--154 R. Dahlhaus [Rational Transfer Function Approximation]: Comment . . . . . . . . 154--156 Jorma Rissanen [Rational Transfer Function Approximation]: Comment . . . . . . . . 156--157 Ritei Shibata [Rational Transfer Function Approximation]: Comment . . . . . . . . 157--158 V. Solo [Rational Transfer Function Approximation]: Comment . . . . . . . . 158--159 E. J. Hannan [Rational Transfer Function Approximation]: Rejoinder . . . . . . . 160--161 Ingram Olkin A Conversation with Morris Hansen . . . 162--179 Morris H. Hansen Some History and Reminiscences on Survey Sampling . . . . . . . . . . . . . . . . 180--190 Daniel Barry and J. A. Hartigan Statistical Analysis of Hominoid Molecular Evolution . . . . . . . . . . 191--207 Stephen Portnoy [Statistical Analysis of Hominoid Molecular Evolution]: Comment . . . . . 207--208 Joseph Felsenstein [Statistical Analysis of Hominoid Molecular Evolution]: Comment . . . . . 208--209 Daniel Barry and J. A. Hartigan [Statistical Analysis of Hominoid Molecular Evolution]: Rejoinder . . . . 209--210
Anonymous In This Issue . . . . . . . . . . . . . 211--212 Joseph L. Gastwirth The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data 213--222 D. H. Kaye [The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data]: Comment: The Polygraph and the PVP . . . . . . . . . . . . . . . . . . 223--226 John C. Kircher and David C. Raskin [The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data]: Comment: Base Rates and the Statistical Precision . . . . . . . . . 226--228 Janet Wittes [The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data]: Comment . . . . . . . . . . . . . 228--230 Judith D. Goldberg [The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data]: Comment . . . . . . . . . . . . . 230--231 Seymour Geisser [The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data]: Comment . . . . . . . . . . . . . 231--232 Beth C. Gladen [The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data]: Comment . . . . . . . . . . . . . 233 Joseph L. Gastwirth [The Statistical Precision of Medical Screening Procedures: Application to Polygraph and AIDS Antibodies Test Data]: Rejoinder . . . . . . . . . . . . 234--238 Morris H. DeGroot A Conversation with George Box . . . . . 239--258 James S. Hodges Uncertainty, Policy Analysis and Statistics . . . . . . . . . . . . . . . 259--275 David Freedman [Uncertainty, Policy Analysis and Statistics]: Comment . . . . . . . . . . 276--277 Seymour Geisser [Uncertainty, Policy Analysis and Statistics]: Comment . . . . . . . . . . 277--279 Peter J. Huber [Uncertainty, Policy Analysis and Statistics]: Comment . . . . . . . . . . 279--281 Joseph B. Kadane [Uncertainty, Policy Analysis and Statistics]: Comment . . . . . . . . . . 281--282 Albert Madansky [Uncertainty, Policy Analysis and Statistics]: Comment . . . . . . . . . . 282--286 Adrian F. M. Smith [Uncertainty, Policy Analysis and Statistics]: Comment . . . . . . . . . . 286--287 James S. Hodges [Uncertainty, Policy Analysis and Statistics]: Rejoinder . . . . . . . . . 288--291 Paul R. Rosenbaum The Role of a Second Control Group in an Observational Study . . . . . . . . . . 292--306 Paul W. Holland [The Role of a Second Control Group in an Observational Study]: Comment . . . . 306--308 Barry H. Margolin [The Role of a Second Control Group in an Observational Study]: Comment: The Use of Multiple Control Groups in Designed Experiments . . . . . . . . . . 308--310 Richard G. Cornell [The Role of a Second Control Group in an Observational Study]: Comment . . . . 310--311 Norman Breslow [The Role of a Second Control Group in an Observational Study]: Comment . . . . 311--312 Paul R. Rosenbaum [The Role of a Second Control Group in an Observational Study]: Rejoinder . . . 313--316 James O. Berger and Mohan Delampady Testing Precise Hypotheses . . . . . . . 317--335 D. R. Cox [Testing Precise Hypotheses]: Comment 335--336 Morris L. Eaton [Testing Precise Hypotheses]: Comment 337--338 Arnold Zellner [Testing Precise Hypotheses]: Comment 339--341 M. J. Bayarri [Testing Precise Hypotheses]: Comment 342--344 George Casella and Roger L. Berger [Testing Precise Hypotheses]: Comment 344--347 Joseph B. Kadane [Testing Precise Hypotheses]: Comment 347--348 James O. Berger and Mohan Delampady [Testing Precise Hypotheses]: Rejoinder 348--352
Anonymous In This Issue . . . . . . . . . . . . . 353--354 Richard A. Becker and William S. Cleveland and Allan R. Wilks Dynamic Graphics for Data Analysis . . . 355--383 John W. Tukey [Dynamic Graphics for Data Analysis]: Comment . . . . . . . . . . . . . . . . 383--385 Peter J. Huber [Dynamic Graphics for Data Analysis]: Comment . . . . . . . . . . . . . . . . 385--386 William F. Eddy [Dynamic Graphics for Data Analysis]: Comment . . . . . . . . . . . . . . . . 386--387 Howard Wainer [Dynamic Graphics for Data Analysis]: Comment: Deja View . . . . . . . . . . . 388--389 Edward R. Tufte [Dynamic Graphics for Data Analysis]: Comment . . . . . . . . . . . . . . . . 389--392 Richard A. Becker and William S. Cleveland and Allan R. Wilks [Dynamic Graphics for Data Analysis]: Rejoinder . . . . . . . . . . . . . . . 392--395 Mark J. Schervish A Review of Multivariate Analysis . . . 396--413 T. W. Anderson [A Review of Multivariate Analysis]: Comment . . . . . . . . . . . . . . . . 413--417 Matthew Goldstein [A Review of Multivariate Analysis]: Comment . . . . . . . . . . . . . . . . 418--420 Michael D. Perlman [A Review of Multivariate Analysis]: Comment: Group Symmetry Covariance Models . . . . . . . . . . . . . . . . . 421--425 Pranab Kumar Sen [A Review of Multivariate Analysis]: Comment . . . . . . . . . . . . . . . . 426--428 R. Gnanadesikan and J. R. Kettenring [A Review of Multivariate Analysis]: Comment . . . . . . . . . . . . . . . . 428--430 S. James Press [A Review of Multivariate Analysis]: Comment . . . . . . . . . . . . . . . . 430--432 Mark J. Schervish [A Review of Multivariate Analysis]: Rejoinder . . . . . . . . . . . . . . . 432--433 C. Radhakrishna Rao Prediction of Future Observations in Growth Curve Models . . . . . . . . . . 434--447 David R. Brillinger [Prediction of Future Observations in Growth Curve Models]: Comment . . . . . 448--450 Nan Laird and Nick Lange [Prediction of Future Observations in Growth Curve Models]: Comment . . . . . 451--454 David Draper [Prediction of Future Observations in Growth Curve Models]: Comment: On Exchangeability Judgments in Predictive Modeling and the Role of Data in Statistical Research . . . . . . . . . . 454--461 Alan Julian Izenman [Prediction of Future Observations in Growth Curve Models]: Comment . . . . . 461--463 Hirotugu Akaike [Prediction of Future Observations in Growth Curve Models]: Comment . . . . . 464--465 Seymour Geisser [Prediction of Future Observations in Growth Curve Models]: Comment . . . . . 465--467 C. Radhakrishna Rao [Prediction of Future Observations in Growth Curve Models]: Rejoinder . . . . 467--471 Ingram Olkin A Conversation with Albert H. Bowker . . 472--483 Andrew L. Rukhin and H. K. Hsieh Survey of Soviet Work in Reliability . . 484--495 Richard E. Barlow and Zohel S. Khalil [Survey of Soviet Work in Reliability]: Comment . . . . . . . . . . . . . . . . 495--497 Nozer D. Singpurwalla [Survey of Soviet Work in Reliability]: Comment . . . . . . . . . . . . . . . . 497--499 Elliot H. Weinberg [Survey of Soviet Work in Reliability]: Comment . . . . . . . . . . . . . . . . 499--501 Llya Gertsbakh [Survey of Soviet Work in Reliability]: Comment . . . . . . . . . . . . . . . . 501--502 Asit P. Basu [Survey of Soviet Work in Reliability]: Comment . . . . . . . . . . . . . . . . 502--503 Andrew L. Rukhin and H. K. Hsieh [Survey of Soviet Work in Reliability]: Rejoinder . . . . . . . . . . . . . . . 503
Anonymous In This Issue . . . . . . . . . . . . . 1--2 D. A. Freedman and H. Zeisel From Mouse-to-Man: The Quantitative Assessment of Cancer Risks . . . . . . . 3--28 Norman Breslow [From Mouse-to-Man: The Quantitative Assessment of Cancer Risks]: Comment: Risk Assessment: Science or Policy? . . 28--33 J. K. Haseman [From Mouse-to-Man: The Quantitative Assessment of Cancer Risks]: Comment . . 33--39 Suresh H. Moolgavkar and Anup Dewanji [From Mouse-to-Man: The Quantitative Assessment of Cancer Risks]: Comment . . 39--41 J. Kaldor and L. Tomatis [From Mouse-to-Man: The Quantitative Assessment of Cancer Risks]: Comment: The Use of Animal Experiments in Cancer Risk Assessment . . . . . . . . . . . . 41--43 William DuMouchel [From Mouse-to-Man: The Quantitative Assessment of Cancer Risks]: Comment . . 43--44 D. A. Freedman and H. Zeisel [From Mouse-to-Man: The Quantitative Assessment of Cancer Risks]: Rejoinder 45--56 Adrian C. Darnell Harold Hotelling 1895--1973 . . . . . . 57--62 Harold Hotelling Golden Oldies: Classic Articles from the World of Statistics and Probability: The Teaching of Statistics . . . . . . . . . 63--71 Harold Hotelling Golden Oldies: Classic Articles from the World of Statistics and Probability: The Place of Statistics in the University 72--83 David S. Moore [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment . . . . . . . . . 84--87 James V. Zidek [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment . . . . . . . . . 87--90 Kenneth J. Arrow [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment . . . . . . . . . 90--91 Harold Hotelling [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment: Academic Politics and the Teaching of Statistics . . . . . 92--95 Robert V. Hogg [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment . . . . . . . . . 95--97 Ralph A. Bradley [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment: Harold Hotelling's Views on Statistics . . . . 98--103 W. Edwards Deming [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment: Recollections About Harold Hotelling . . . . . . . . . 103--104 Shanti S. Gupta [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment . . . . . . . . . 104--106 Ingram Olkin [Golden Oldies: Classic Articles from the World of Statistics and Probability]: Comment . . . . . . . . . 107--108 Satish Iyengar and Joel B. Greenhouse Selection Models and the File Drawer Problem . . . . . . . . . . . . . . . . 109--117 Larry V. Hedges [Selection Models and the File Drawer Problem]: Comment . . . . . . . . . . . 118--120 Robert Rosenthal and Donald B. Rubin [Selection Models and the File Drawer Problem]: Comment: Assumptions and Procedures in the File Drawer Problem 120--125 Nan Laird and G. P. Patil and C. Taillie [Selection Models and the File Drawer Problem]: Comment . . . . . . . . . . . 126--128 M. J. Bayarri [Selection Models and the File Drawer Problem]: Comment . . . . . . . . . . . 128--131 C. Radhakrishna Rao [Selection Models and the File Drawer Problem]: Comment . . . . . . . . . . . 131 William DuMouchel [Selection Models and the File Drawer Problem]: Comment . . . . . . . . . . . 132--133 Satish Iyengar and Joel B. Greenhouse [Selection Models and the File Drawer Problem]: Rejoinder . . . . . . . . . . 133--135 Francis J. Anscombe Frederick Mosteller and John W. Tukey: A Conversation . . . . . . . . . . . . . . 136--144 Anonymous Publications Received . . . . . . . . . 145--146
Anonymous In This Issue . . . . . . . . . . . . . 147--148 Arthur P. Dempster Employment Discrimination and Statistical Science . . . . . . . . . . 149--161 Franklin M. Fisher [Employment Discrimination and Statistical Science]: Comment . . . . . 161--165 Arthur S. Goldberger [Employment Discrimination and Statistical Science]: Comment . . . . . 165--166 Harry V. Roberts [Employment Discrimination and Statistical Science]: Comment . . . . . 167--170 Delores A. Conway [Employment Discrimination and Statistical Science]: Comment . . . . . 171--175 Joseph L. Gastwirth [Employment Discrimination and Statistical Science]: Comment . . . . . 175--183 Gail Blattenberger [Employment Discrimination and Statistical Science]: Comment . . . . . 183--185 Paul W. Holland [Employment Discrimination and Statistical Science]: Comment: Causal Mechanism or Causal Effect: Which Is Best for Statistical Science? . . . . . 186--188 John Geweke [Employment Discrimination and Statistical Science]: Comment: Statistical Science and Economic Science 188--189 Stephen E. Fienberg [Employment Discrimination and Statistical Science]: Comment . . . . . 190--191 Arthur P. Dempster [Employment Discrimination and Statistical Science]: Rejoinder . . . . 191--195 Morris H. DeGroot A Conversation with George A. Barnard 196--212 N. Reid Saddlepoint Methods and Statistical Inference . . . . . . . . . . . . . . . 213--227 O. E. Barndorff-Nielsen [Saddlepoint Methods and Statistical Inference]: Comment . . . . . . . . . . 228--229 H. E. Daniels [Saddlepoint Methods and Statistical Inference]: Comment . . . . . . . . . . 229 Philip Hougaard [Saddlepoint Methods and Statistical Inference]: Comment . . . . . . . . . . 230--231 D. V. Hinkley and S. Wang [Saddlepoint Methods and Statistical Inference]: Comment . . . . . . . . . . 232--233 Luke Tierney [Saddlepoint Methods and Statistical Inference]: Comment . . . . . . . . . . 233--234 Robert E. Kass [Saddlepoint Methods and Statistical Inference]: Comment . . . . . . . . . . 234--236 Ann F. S. Mitchell [Saddlepoint Methods and Statistical Inference]: Comment . . . . . . . . . . 237 N. Reid [Saddlepoint Methods and Statistical Inference]: Rejoinder . . . . . . . . . 237--238 David Draper Rank-Based Robust Analysis of Linear Models. I. Exposition and Review . . . . 239--257 A. H. Welsh [Rank-Based Robust Analysis of Linear Models. I. Exposition and Review]: Comment . . . . . . . . . . . . . . . . 258--259 Roger Koenker and Stephen Portnoy [Rank-Based Robust Analysis of Linear Models. I. Exposition and Review]: Comment . . . . . . . . . . . . . . . . 259--261 T. P. Hettmansperger and James C. Aubuchon [Rank-Based Robust Analysis of Linear Models. I. Exposition and Review]: Comment . . . . . . . . . . . . . . . . 262--263 Peter J. Bickel [Rank-Based Robust Analysis of Linear Models. I. Exposition and Review]: Comment . . . . . . . . . . . . . . . . 263--264 R. Douglas Martin [Rank-Based Robust Analysis of Linear Models. I. Exposition and Review]: Comment . . . . . . . . . . . . . . . . 264--266 David Draper [Rank-Based Robust Analysis of Linear Models. I. Exposition and Review]: Rejoinder . . . . . . . . . . . . . . . 266--271
Anonymous In This Issue . . . . . . . . . . . . . 273 John C. Bailar Foreword . . . . . . . . . . . . . . . . 274 David E. Lilienfeld Changing Research Methods in Environmental Epidemiology . . . . . . . 275--280 Devra Lee Davis Changing Policy Roles of Environmental Epidemiology . . . . . . . . . . . . . . 281--285 Jack B. Weinstein Litigation and Statistics . . . . . . . 286--297 L. A. Rosen Animal Studies of Human Hazards . . . . 298--305 David A. Savitz Human Studies of Human Health Hazards: Comparison of Epidemiology and Toxicology . . . . . . . . . . . . . . . 306--313 M. Granger Morgan Quantitative Risk Assessment: Low Frequency Electromagnetic Fields as an Example . . . . . . . . . . . . . . . . 314--319 Paul D. Anderson Scientific Origins of Incompatibility in Risk Assessment . . . . . . . . . . . . 320--327 Jack Needleman Sources and Policy Implications of Uncertainty in Risk Assessment . . . . . 328--338 Michael S. Baram Insurability of Hazardous Materials Activities . . . . . . . . . . . . . . . 339--345 Mortimer L. Mendelsohn Tests for Biologic Markers of Genotoxic Exposure and Effect . . . . . . . . . . 346--350 Barry H. Margolin Statistical Aspects of Using Biologic Markers . . . . . . . . . . . . . . . . 351--357 Dale Hattis The Use of Biological Markers in Risk Assessment . . . . . . . . . . . . . . . 358--366 Ralph H. Johnson Biological Markers in Tort Litigation 367--370 Michael E. Ginevan Radon As an Indoor Air Pollutant . . . . 371--373 Kevin Yale Teichman A Little Exposure to Radon . . . . . . . 374--376 Nicholas A. Ashford Science and Values in the Regulatory Process . . . . . . . . . . . . . . . . 377--383
Anonymous In This Issue . . . . . . . . . . . . . 385 I. J. Good The Interface Between Statistics and Philosophy of Science . . . . . . . . . 386--397 Patrick Suppes [The Interface Between Statistics and Philosophy of Science]: Comment: Causality, Complexity and Determinism 398--400 George A. Barnard [The Interface Between Statistics and Philosophy of Science]: Comment . . . . 401--403 James O. Berger [The Interface Between Statistics and Philosophy of Science]: Comment . . . . 403--404 David L. Banks [The Interface Between Statistics and Philosophy of Science]: Comment . . . . 404--406 I. J. Good [The Interface Between Statistics and Philosophy of Science]: Rejoinder . . . 406--412 Edward R. Tufte A Conversation with Cuthbert Daniel . . 413--424 J. O. Ramsay Monotone Regression Splines in Action 425--441 Leo Breiman [Monotone Regression Splines in Action]: Comment . . . . . . . . . . . . . . . . 442--445 Randy Eubank [Monotone Regression Splines in Action]: Comment . . . . . . . . . . . . . . . . 446--450 Trevor Hastie and Robert Tibshirani [Monotone Regression Splines in Action]: Comment . . . . . . . . . . . . . . . . 450--456 Grace Wahba [Monotone Regression Splines in Action]: Comment . . . . . . . . . . . . . . . . 456--458 J. O. Ramsay [Monotone Regression Splines in Action]: Rejoinder . . . . . . . . . . . . . . . 459--461 A. S. Hedayat and Mike Jacroux and Dibyen Majumdar Optimal Designs for Comparing Test Treatments with Controls . . . . . . . . 462--476 Robert E. Bechhofer and Ajit C. Tamhane [Optimal Designs for Comparing Test Treatments with Controls]: Comment . . . 477--480 William I. Notz [Optimal Designs for Comparing Test Treatments with Controls]: Comment . . . 480--482 A. Giovagnoli and I. Verdinelli [Optimal Designs for Comparing Test Treatments with Controls]: Comment . . . 482--484 John D. Spurrier [Optimal Designs for Comparing Test Treatments with Controls]: Comment . . . 485--486 R. J. Owen [Optimal Designs for Comparing Test Treatments with Controls]: Comment . . . 486--487 A. S. Hedayat and Mike Jacroux and Dibyen Majumdar [Optimal Designs for Comparing Test Treatments with Controls]: Rejoinder . . 487--491
Anonymous In this Issue . . . . . . . . . . . . . 1 Anonymous Statistical Models and Analysis in Auditing: Panel on Nonstandard Mixtures of Distributions . . . . . . . . . . . . 2--33 Anonymous Discriminant Analysis and Clustering: Panel on Discriminant Analysis, Classification, and Clustering . . . . . 34--69 Anonymous Publications Received . . . . . . . . . 70--71
Stephen M. Stigler Francis Galton's Account of the Invention of Correlation . . . . . . . . 73--79 Francis Galton Kinship and Correlation . . . . . . . . 81--86 David G. Kendall A Survey of the Statistical Theory of Shape . . . . . . . . . . . . . . . . . 87--99 Fred L. Bookstein [A Survey of the Statistical Theory of Shape]: Comment . . . . . . . . . . . . 99--105 Christopher G. Small [A Survey of the Statistical Theory of Shape]: Comment . . . . . . . . . . . . 105--108 Kanti V. Mardia [A Survey of the Statistical Theory of Shape]: Comment: Some Contributions to Shape Analysis . . . . . . . . . . . . . 108--111 Wilfrid S. Kendall [A Survey of the Statistical Theory of Shape]: Comment . . . . . . . . . . . . 111--113 Geoffrey S. Watson [A Survey of the Statistical Theory of Shape]: Comment . . . . . . . . . . . . 113--115 Dietrich Stoyan [A Survey of the Statistical Theory of Shape]: Comment . . . . . . . . . . . . 115--116 David G. Kendall [A Survey of the Statistical Theory of Shape]: Rejoinder . . . . . . . . . . . 116--120 B. E. Trumbo How to Get Your First Research Grant . . 121--131 James V. Zidek [How to Get Your First Research Grant]: Comment . . . . . . . . . . . . . . . . 132--134 Adrian F. M. Smith [How to Get Your First Research Grant]: Comment . . . . . . . . . . . . . . . . 134--136 Giorgio Dall'Aglio [How to Get Your First Research Grant]: Comment . . . . . . . . . . . . . . . . 136--138 Jose M. Bernardo [How to Get Your First Research Grant]: Comment . . . . . . . . . . . . . . . . 138--139 N. Flournoy [How to Get Your First Research Grant]: Comment . . . . . . . . . . . . . . . . 139--141 Yashaswini Mittal [How to Get Your First Research Grant]: Comment . . . . . . . . . . . . . . . . 141--143 Judith S. Sunley [How to Get Your First Research Grant]: Comment: Thinking about a Research Proposal? . . . . . . . . . . . . . . . 144--146 Edward J. Wegman [How to Get Your First Research Grant]: Comment . . . . . . . . . . . . . . . . 146--148 B. E. Trumbo [How to Get Your First Research Grant]: Rejoinder . . . . . . . . . . . . . . . 148--150 Ingram Olkin A Conversation with Maurice Bartlett . . 151--163 Daniel F. Heitjan Inference from Grouped Continuous Data: A Review . . . . . . . . . . . . . . . . 164--179 James Burridge [Inference from Grouped Continuous Data: A Review]: Comment . . . . . . . . . . . 179--181 Daniel F. Heitjan [Inference from Grouped Continuous Data: A Review]: Rejoinder . . . . . . . . . . 182--183 Anonymous Acknowledgment of Referees' Services . . 184 Ingram Olkin Correction Note: A Conversation with Morris Hansen . . . . . . . . . . . . . 185
C. N. Morris In This Issue . . . . . . . . . . . . . 187 Robert E. Kass The Geometry of Asymptotic Inference . . 188--219 S. I. Amari [The Geometry of Asymptotic Inference]: Comment . . . . . . . . . . . . . . . . 220--222 O. E. Barndorff-Nielsen [The Geometry of Asymptotic Inference]: Comment . . . . . . . . . . . . . . . . 222--227 Jose M. Bernardo [The Geometry of Asymptotic Inference]: Comment: On Multivariate Jeffreys' Priors . . . . . . . . . . . . . . . . . 227--229 C. R. Rao [The Geometry of Asymptotic Inference]: Comment . . . . . . . . . . . . . . . . 229--231 N. Reid and D. A. S. Fraser [The Geometry of Asymptotic Inference]: Comment . . . . . . . . . . . . . . . . 231--233 Robert E. Kass [The Geometry of Asymptotic Inference]: Rejoinder . . . . . . . . . . . . . . . 233--234 Nan M. Laird A Conversation with F. N. David . . . . 235--246 Sandy Zabell R. A. Fisher on the History of Inverse Probability . . . . . . . . . . . . . . 247--256 Robin L. Plackett [R. A. Fisher on the History of Inverse Probability]: Comment . . . . . . . . . 256--258 G. A. Barnard [R. A. Fisher on the History of Inverse Probability]: Comment . . . . . . . . . 258--260 Sandy Zabell [R. A. Fisher on the History of Inverse Probability]: Rejoinder . . . . . . . . 261--263 R. E. Fusaro and N. P. Jewell and W. W. Hauck and D. C. Heilbron and J. D. Kalbfleisch and J. M. Neuhaus An Annotated Bibliography of Quantitative Methodology Relating to the AIDS Epidemic . . . . . . . . . . . . . 264--281 Thomas S. Ferguson Who Solved the Secretary Problem? . . . 282--289 Stephen M. Samuels [Who Solved the Secretary Problem?]: Comment: Who will Solve the Secretary Problem? . . . . . . . . . . . . . . . . 289--291 Herbert Robbins [Who Solved the Secretary Problem?]: Comment . . . . . . . . . . . . . . . . 291 Minoru Sakaguchi [Who Solved the Secretary Problem?]: Comment . . . . . . . . . . . . . . . . 292--293 Peter R. Freeman [Who Solved the Secretary Problem?]: Comment . . . . . . . . . . . . . . . . 294 Thomas S. Ferguson [Who Solved the Secretary Problem?]: Rejoinder . . . . . . . . . . . . . . . 294--296
Anonymous In This Issue . . . . . . . . . . . . . 297 James H. Ware Investigating Therapies of Potentially Great Benefit: ECMO . . . . . . . . . . 298--306 Donald A. Berry [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment: Ethics and ECMO . . . . . . . . . . . . . . . . 306--310 Robert E. Kass and Joel B. Greenhouse [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment: A Bayesian Perspective . . . . . . . . . . 310--317 Richard Royall [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment . . . . . 318--319 Colin B. Begg [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment . . . . . 320--322 Peter Armitage and D. Stephen Coad [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment . . . . . 322--323 D. Y. Lin and L. J. Wei [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment . . . . . 324--325 Richard G. Cornell [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment . . . . . 326--327 Janis Hardwick [Investigating Therapies of Potentially Great Benefit: ECMO]: Comment: Recent Progress in Clinical Trial Designs that Adapt for Ethical Purposes . . . . . . . 327--336 James H. Ware [Investigating Therapies of Potentially Great Benefit: ECMO]: Rejoinder . . . . 337--340 David Pollard Asymptotics via Empirical Processes . . 341--354 R. M. Dudley [Asymptotics via Empirical Processes]: Comment . . . . . . . . . . . . . . . . 354 Evarist Gine and Joel Zinn [Asymptotics via Empirical Processes]: Comment . . . . . . . . . . . . . . . . 355--356 Ron Pyke [Asymptotics via Empirical Processes]: Comment . . . . . . . . . . . . . . . . 357--360 Miklós Csörg\Ho and Lájos Horváth [Asymptotics via Empirical Processes]: Comment . . . . . . . . . . . . . . . . 360--365 David Pollard [Asymptotics via Empirical Processes]: Rejoinder . . . . . . . . . . . . . . . 365--366 Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone . . . . 367--377 Adrian E. Raftery Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone: Comment: Are Ozone Exceedance Rates Decreasing? . . . . . . . . . . . . . . 378--381 David Fairley [Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone]: Comment . . . . . . . . . . . . . . . . 381--383 Harry Joe [Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone]: Comment . . . . . . . . . . . . . . . . 384--385 Ishay Weissman [Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone]: Comment . . . . . . . . . . . . . . . . 385--386 Nozer D. Singpurwalla [Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone]: Comment . . . . . . . . . . . . . . . . 386--387 James Pickands III [Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone]: Comment . . . . . . . . . . . . . . . . 388 Richard L. Smith [Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone]: Rejoinder . . . . . . . . . . . . . . . 389--393 Guido del Pino The Unifying Role of Iterative Generalized Least Squares in Statistical Algorithms . . . . . . . . . . . . . . . 394--403 Bent Jorgensen [The Unifying Role of Iterative Generalized Least Squares in Statistical Algorithms]: Comment . . . . . . . . . . 403--404 Peter McCullagh [The Unifying Role of Iterative Generalized Least Squares in Statistical Algorithms]: Comment . . . . . . . . . . 404--405 Joe R. Hill [The Unifying Role of Iterative Generalized Least Squares in Statistical Algorithms]: Comment . . . . . . . . . . 406 Guido del Pino [The Unifying Role of Iterative Generalized Least Squares in Statistical Algorithms]: Rejoinder . . . . . . . . . 407--408 Jerome Sacks and William J. Welch and Toby J. Mitchell and Henry P. Wynn Design and Analysis of Computer Experiments . . . . . . . . . . . . . . 409--423 Max D. Morris [Design and Analysis of Computer Experiments]: Comment . . . . . . . . . 423--425 Robert G. Easterling [Design and Analysis of Computer Experiments]: Comment . . . . . . . . . 425--427 Mark E. Johnson and Donald Ylvisaker [Design and Analysis of Computer Experiments]: Comment . . . . . . . . . 428 A. Owen and J. Koehler and S. Sharifzadeh [Design and Analysis of Computer Experiments]: Comment . . . . . . . . . 429--430 Anthony O'Hagan [Design and Analysis of Computer Experiments]: Comment . . . . . . . . . 430--432 Michael L. Stein [Design and Analysis of Computer Experiments]: Comment . . . . . . . . . 432--433 Jerome Sacks and William J. Welch and Toby J. Mitchell and Henry P. Wynn [Design and Analysis of Computer Experiments]: Rejoinder . . . . . . . . 433--435
Anonymous In This Issue . . . . . . . . . . . . . 1 Frederick Mosteller and Cleo Youtz Quantifying Probabilistic Expressions 2--12 Herbert H. Clark [Quantifying Probabilistic Expressions]: Comment . . . . . . . . . . . . . . . . 12--16 Norman Cliff [Quantifying Probabilistic Expressions]: Comment . . . . . . . . . . . . . . . . 16--18 Joseph B. Kadane [Quantifying Probabilistic Expressions]: Comment: Codifying Chance . . . . . . . 18--20 William Kruskal [Quantifying Probabilistic Expressions]: Comment . . . . . . . . . . . . . . . . 20--21 Judith M. Tanur [Quantifying Probabilistic Expressions]: Comment: On the Possible Dangers of Isolation . . . . . . . . . . . . . . . 21--22 Thomas S. Wallsten and David V. Budescu [Quantifying Probabilistic Expressions]: Comment . . . . . . . . . . . . . . . . 23--26 Robert L. Winkler [Quantifying Probabilistic Expressions]: Comment: Representing and Communicating Uncertainty . . . . . . . . . . . . . . 26--30 Charles Wolf [Quantifying Probabilistic Expressions]: Comment . . . . . . . . . . . . . . . . 31--32 Frederick Mosteller and Cleo Youtz [Quantifying Probabilistic Expressions]: Rejoinder . . . . . . . . . . . . . . . 32--34 Alexander M. Mood Miscellaneous Reminiscences . . . . . . 35--43 Dennis V. Lindley The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics 44--65 George A. Barnard [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 65--71 James O. Berger [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 71--75 Jose M. Bernardo [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 75--76 David R. Cox [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 76--78 Simon French [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 78--80 Joseph B. Kadane [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 80--82 E. L. Lehmann [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 82--83 Michel Mouchart [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Comment . . . . . . . . . . 84--85 Dennis V. Lindley [The 1988 Wald Memorial Lectures: The Present Position in Bayesian Statistics]: Rejoinder . . . . . . . . . 85--89 Jon M. Maatta and George Casella Developments in Decision-Theoretic Variance Estimation . . . . . . . . . . 90--101 James O. Berger [Developments in Decision-Theoretic Variance Estimation]: Comment . . . . . 102--103 Lawrence D. Brown [Developments in Decision-Theoretic Variance Estimation]: Comment . . . . . 103--106 Arthur Cohen [Developments in Decision-Theoretic Variance Estimation]: Comment . . . . . 106--107 Edward I. George [Developments in Decision-Theoretic Variance Estimation]: Comment . . . . . 107--109 Jiunn T. Hwang [Developments in Decision-Theoretic Variance Estimation]: Comment: How Much Can the Improvements be Realized? . . . 110--111 K. Brenda MacGibbon and Glenn E. Shorrock [Developments in Decision-Theoretic Variance Estimation]: Comment . . . . . 112--113 Andrew L. Rukhin [Developments in Decision-Theoretic Variance Estimation]: Comment . . . . . 113--116 William E. Strawderman [Developments in Decision-Theoretic Variance Estimation]: Comment . . . . . 117--118 Jon M. Maatta and George Casella [Developments in Decision-Theoretic Variance Estimation]: Rejoinder . . . . 118--120 IMS Panel on Cross-Disciplinary Research in the Statistical Sciences Cross-Disciplinary Research in the Statistical Sciences . . . . . . . . . . 121--146 Stephen M. Stigler The 1988 Neyman Memorial Lecture: A Galtonian Perspective on Shrinkage Estimators . . . . . . . . . . . . . . . 147--155 Anonymous Publications Received . . . . . . . . . 156--158
C. N. Morris In This Issue . . . . . . . . . . . . . 159 E. L. Lehmann Model Specification: The Views of Fisher and Neyman, and Later Developments . . . 160--168 D. R. Cox Role of Models in Statistical Analysis 169--174 Claus Weihs and Heinz Schmidli OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure . . . . . . . . . . . . . 175--208 A. Buja and C. Hurley [OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure]: Comment . . . . . . . . 208--211 Frank Critchley [OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure]: Comment . . . . . . . . 211--213 N. I. Fisher [OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure]: Comment . . . . . . . . 213--215 J. C. Gower [OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure]: Comment . . . . . . . . 216--217 Werner Stuetzle [OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure]: Comment . . . . . . . . 217--219 Forrest W. Young [OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure]: Comment: Industrial Strength VEDA . . . . . . . . . . . . . 219--222 Claus Weihs and Heinz Schmidli [OMEGA (Online Multivariate Exploratory Graphical Analysis): Routine Searching for Structure]: Rejoinder . . . . . . . 222--226 Albert W. Marshall A Conversation with Z. William Birnbaum 227--241 Jan F. Bjòrnstad Predictive Likelihood: A Review . . . . 242--254 Ronald W. Butler [Predictive Likelihood: A Review]: Comment . . . . . . . . . . . . . . . . 255--259 Tom Leonard and Kam-Wah Tsui and John S. J. Hsu [Predictive Likelihood: A Review]: Comment . . . . . . . . . . . . . . . . 259--262 Jan F. Bjòrnstad [Predictive Likelihood: A Review]: Rejoinder . . . . . . . . . . . . . . . 262--265
C. N. Morris In This Issue . . . . . . . . . . . . . 267--268 Norman Breslow Biostatistics and Bayes . . . . . . . . 269--284 Peter Armitage [Biostatistics and Bayes]: Comment . . . 284--286 H. Fluhler [Biostatistics and Bayes]: Comment . . . 286--287 C. Jennison [Biostatistics and Bayes]: Comment . . . 288--291 David J. Spiegelhalter and Laurence S. Freedman [Biostatistics and Bayes]: Comment . . . 292--294 M. Zelen [Biostatistics and Bayes]: Comment . . . 294--295 Norman Breslow [Biostatistics and Bayes]: Rejoinder . . 295--298 Christopher Jennison and Bruce W. Turnbull Statistical Approaches to Interim Monitoring of Medical Trials: A Review and Commentary . . . . . . . . . . . . . 299--317 Patricia Costigan-Eaves and Michael Macdonald-Ross William Playfair (1759--1823) . . . . . 318--326 John W. Tukey Data-Based Graphics: Visual Display in the Decades to Come . . . . . . . . . . 327--339 Howard Wainer Graphical Visions from William Playfair to John Tukey . . . . . . . . . . . . . 340--346 Peter J. Bickel and Lucien Le Cam A Conversation with Ildar Ibragimov . . 347--355 Ann Cohen Brandwein and William E. Strawderman Stein Estimation: The Spherically Symmetric Case . . . . . . . . . . . . . 356--369 O. E. Barndorff-Nielsen Correction Note: Comment by O. E. Barndorff-Nielsen on ``The Geometry of Asymptotic Inference,'' by R. E. Kass, 1989, Vol. \bf 4, 222--227 . . . . . . . 370
C. N. Morris In This Issue . . . . . . . . . . . . . 371 Harry V. Roberts Applications in Business and Economic Statistics: Some Personal Views . . . . 372--390 George Box [Applications in Business and Economic Statistics: Some Personal Views]: Comment . . . . . . . . . . . . . . . . 390--391 W. Edwards Deming [Applications in Business and Economic Statistics: Some Personal Views]: Comment . . . . . . . . . . . . . . . . 391--392 Peter G. Moore [Applications in Business and Economic Statistics: Some Personal Views]: Comment: A U.K. Perspective on Applications in Business and Economic Statistics . . . . . . . . . . . . . . . 392--395 John Neter [Applications in Business and Economic Statistics: Some Personal Views]: Comment . . . . . . . . . . . . . . . . 395--397 John W. Pratt [Applications in Business and Economic Statistics: Some Personal Views]: Comment . . . . . . . . . . . . . . . . 397--399 Harry V. Roberts [Applications in Business and Economic Statistics: Some Personal Views]: Rejoinder . . . . . . . . . . . . . . . 399--402 Richard Arratia and Larry Goldstein and Louis Gordon Poisson Approximation and the Chen-Stein Method . . . . . . . . . . . . . . . . . 403--424 J. Michael Steele [Poisson Approximation and the Chen-Stein Method]: Comment . . . . . . 424--425 A. D. Barbour [Poisson Approximation and the Chen-Stein Method]: Comment . . . . . . 425--427 Michael S. Waterman [Poisson Approximation and the Chen-Stein Method]: Comment . . . . . . 427--429 Louis H. Y. Chen [Poisson Approximation and the Chen-Stein Method]: Comment . . . . . . 429--432 Richard Arratia and Larry Goldstein and Louis Gordon [Poisson Approximation and the Chen-Stein Method]: Rejoinder . . . . . 432--434 Glenn Shafer The Unity and Diversity of Probability 435--444 Hirotugu Akaike [The Unity and Diversity of Probability]: Comment . . . . . . . . . 444--446 David Aldous [The Unity and Diversity of Probability]: Comment . . . . . . . . . 446--447 George Box [The Unity and Diversity of Probability]: Comment . . . . . . . . . 448--449 A. P. Dempster [The Unity and Diversity of Probability]: Comment . . . . . . . . . 449 B. Efron [The Unity and Diversity of Probability]: Comment . . . . . . . . . 450 Ian Hacking [The Unity and Diversity of Probability]: Comment: In Praise of the Diversity of Probabilities . . . . . . . 450--454 David S. Moore [The Unity and Diversity of Probability]: Comment . . . . . . . . . 454--456 Glenn Shafer [The Unity and Diversity of Probability]: Rejoinder . . . . . . . . 457--462 T. P. Speed Introductory Remarks on Neyman (1923) 463--464 Jerzy Splawa-Neyman and D. M. Dabrowska and T. P. Speed On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9 . . . . . . . . . 465--472 Donald B. Rubin [On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.] Comment: Neyman (1923) and Causal Inference in Experiments and Observational Studies . . . . . . . . . 472--480
C. N. Morris In This Issue . . . . . . . . . . . . . 1 Carl Morris Dedication . . . . . . . . . . . . . . . 2 Anonymous Biography of Morris H. DeGroot . . . . . 3--14 G. K. Robinson That BLUP is a Good Thing: The Estimation of Random Effects . . . . . . 15--32 Katherine Campbell [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment 32--34 David A. Harville [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment 35--39 James C. Spall [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment: The Kalman Filter and BLUP . . . . . . . 39--41 Terry Speed [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment 42--44 Duane Steffey and Robert E. Kass [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment 45--47 Robin Thompson [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment 47 G. K. Robinson [That BLUP is a Good Thing: The Estimation of Random Effects]: Rejoinder 48--51 Richard M. Royall Ethics and Statistics in Randomized Clinical Trials . . . . . . . . . . . . 52--62 Robert H. Bartlett and Richard G. Cornell [Ethics and Statistics in Randomized Clinical Trials]: Comment . . . . . . . 63--65 David P. Byar [Ethics and Statistics in Randomized Clinical Trials]: Comment . . . . . . . 65--68 William D. Dupont [Ethics and Statistics in Randomized Clinical Trials]: Comment . . . . . . . 69--71 Robert J. Levine [Ethics and Statistics in Randomized Clinical Trials]: Comment . . . . . . . 71--74 Foster Lindley [Ethics and Statistics in Randomized Clinical Trials]: Comment: Personal and Impersonal Care . . . . . . . . . . . . 74--77 R. John Simes [Ethics and Statistics in Randomized Clinical Trials]: Comment . . . . . . . 78--80 M. Zelen [Ethics and Statistics in Randomized Clinical Trials]: Comment: The Ethos of Clinical Trials . . . . . . . . . . . . 81--83 Richard M. Royall [Ethics and Statistics in Randomized Clinical Trials]: Rejoinder . . . . . . 83--88 Stephen M. Stigler Stochastic Simulation in the Nineteenth Century . . . . . . . . . . . . . . . . 89--97 Anonymous Rupert G. Miller, Jr., 1933--1986: A Tribute . . . . . . . . . . . . . . . . 98--99 John W. Tukey The Philosophy of Multiple Comparisons 100--116 Anonymous Publications Received . . . . . . . . . 117--118
C. N. Morris In This Issue . . . . . . . . . . . . . 119--120 Ingram Olkin A Conversation with W. Allen Wallis . . 121--140 D. R. Bellhouse The Genoese Lottery . . . . . . . . . . 141--148 Peter Kempthorne and Nitis Mukhopadhyay and Pranab K. Sen and Shelemyahu Zacks Research --- How to Do It: A Panel Discussion . . . . . . . . . . . . . . . 149--162 N. Altman and D. Banks and P. Chen and D. Duffy and J. Hardwick and C. Leger and A. Owen and T. Stukel Meeting the Needs of New Statistical Researchers . . . . . . . . . . . . . . 163--174 Donald A. Berry Inferences Using DNA Profiling in Forensic Identification and Paternity Cases . . . . . . . . . . . . . . . . . 175--189 Kenneth Lange [Inferences Using DNA Profiling in Forensic Identification and Paternity Cases]: Comment . . . . . . . . . . . . 190--192 Herman Chernoff [Inferences Using DNA Profiling in Forensic Identification and Paternity Cases]: Comment . . . . . . . . . . . . 192--196 D. H. Kaye [Inferences Using DNA Profiling in Forensic Identification and Paternity Cases]: Comment: Uncertainty in DNA Profile Evidence . . . . . . . . . . . . 196--200 Ian Evett [Inferences Using DNA Profiling in Forensic Identification and Paternity Cases]: Comment . . . . . . . . . . . . 200--202 Donald A. Berry [Inferences Using DNA Profiling in Forensic Identification and Paternity Cases]: Rejoinder . . . . . . . . . . . 202--205 L. Billard and Marianne A. Ferber Elizabeth Scott: Scholar, Teacher, Administrator . . . . . . . . . . . . . 206--216
C. N. Morris In This Issue . . . . . . . . . . . . . 217--218 George T. Duncan and Robert W. Pearson Enhancing Access to Microdata While Protecting Confidentiality: Prospects for the Future . . . . . . . . . . . . . 219--232 Lawrence H. Cox [Enhancing Access to Microdata While Protecting Confidentiality: Prospects for the Future]: Comment . . . . . . . . 232--234 Sallie Keller-McNulty [Enhancing Access to Microdata While Protecting Confidentiality: Prospects for the Future]: Comment . . . . . . . . 234--235 Janet L. Norwood [Enhancing Access to Microdata While Protecting Confidentiality: Prospects for the Future]: Comment . . . . . . . . 236--237 George T. Duncan and Robert W. Pearson [Enhancing Access to Microdata While Protecting Confidentiality: Prospects for the Future]: Rejoinder . . . . . . . 237--239 Christopher Chatfield Avoiding Statistical Pitfalls . . . . . 240--252 D. F. Andrews [Avoiding Statistical Pitfalls]: Comment 253 R. A. Bailey [Avoiding Statistical Pitfalls]: Comment 254--255 Murray K. Clayton and Erik V. Nordheim [Avoiding Statistical Pitfalls]: Comment 255--257 Ned Glick [Avoiding Statistical Pitfalls]: Comment 258--262 C. L. Mallows and D. Pregibon [Avoiding Statistical Pitfalls]: Comment 263--264 Douglas A. Zahn [Avoiding Statistical Pitfalls]: Comment 264--267 Christopher Chatfield [Avoiding Statistical Pitfalls]: Rejoinder . . . . . . . . . . . . . . . 267--268 Peter Jagers The Growth and Stabilization of Populations . . . . . . . . . . . . . . 269--274 Joel E. Cohen [The Growth and Stabilization of Populations]: Comment: Partially Observed Markov Chains and Genetic Demography . . . . . . . . . . . . . . . 275--277 Peter Donnelly [The Growth and Stabilization of Populations]: Comment . . . . . . . . . 277--279 Stanley Sawyer [The Growth and Stabilization of Populations]: Comment: The Geographical Structure of Populations . . . . . . . . 280--281 Peter Jagers [The Growth and Stabilization of Populations]: Rejoinder . . . . . . . . 282--283 Persi Diaconis and Sandy Zabell Closed Form Summation for Classical Distributions: Variations on a Theme of De Moivre . . . . . . . . . . . . . . . 284--302 David G. Kendall Kolmogorov as I Remember Him . . . . . . 303--312 A. N. Shiryaev and Andrew L. Rukhin and Paul Shaman Everything About Kolmogorov Was Unusual.. . . . . . . . . . . . . . . . 313--318
Anonymous In This Issue . . . . . . . . . . . . . 319 Lawrence Klein The Statistics Seminar, MIT, 1942--1943 320--330 Paul A. Samuelson Statistical Flowers Caught in Amber . . 330--338 Anonymous Editor's Introduction . . . . . . . . . 339 Ron Baxter and Murray Cameron Comment . . . . . . . . . . . . . . . . 339--343 C. Weihs Comment . . . . . . . . . . . . . . . . 344--348 Forrest W. Young Comment . . . . . . . . . . . . . . . . 349--352 David J. Lubinsky Comment: Two Functional Programming Environments for Statistics --- Lisp-Stat and S . . . . . . . . . . . . 352--360 Anonymous Rejoinder . . . . . . . . . . . . . . . 360--362 Jessica Utts Replication and Meta-Analysis in Parapsychology . . . . . . . . . . . . . 363--378 M. J. Bayarri and James Berger [Replication and Meta-Analysis in Parapsychology]: Comment . . . . . . . . 379--382 Ree Dawson [Replication and Meta-Analysis in Parapsychology]: Comment . . . . . . . . 382--385 Persi Diaconis [Replication and Meta-Analysis in Parapsychology]: Comment . . . . . . . . 386 Joel B. Greenhouse [Replication and Meta-Analysis in Parapsychology]: Comment: Parapsychology --- On the Margins of Science? . . . . . 386--389 Ray Hyman [Replication and Meta-Analysis in Parapsychology]: Comment . . . . . . . . 389--392 Robert L. Morris [Replication and Meta-Analysis in Parapsychology]: Comment . . . . . . . . 393--395 Frederick Mosteller [Replication and Meta-Analysis in Parapsychology]: Comment . . . . . . . . 395--396 Jessica Utts [Replication and Meta-Analysis in Parapsychology]: Rejoinder . . . . . . . 396--403 C.-K. Chu and J. S. Marron Choosing a Kernel Regression Estimator 404--419 Theo Gasser and Christine Jennen-Steinmetz and Joachim Engel [Choosing a Kernel Regression Estimator]: Comment . . . . . . . . . . 419--421 Birgit Grund and Wolfgang Hardle [Choosing a Kernel Regression Estimator]: Comment . . . . . . . . . . 421--425 Jeffrey D. Hart [Choosing a Kernel Regression Estimator]: Comment . . . . . . . . . . 425--427 M. C. Jones [Choosing a Kernel Regression Estimator]: Comment . . . . . . . . . . 427--430 B. W. Silverman [Choosing a Kernel Regression Estimator]: Comment: Should We Use Kernel Methods at All? . . . . . . . . . 430--433 C.-K. Chu and J. S. Marron [Choosing a Kernel Regression Estimator]: Rejoinder . . . . . . . . . 433--436 Hermann Witting A Conversation with Leopold Schmetterer 437--447 Anonymous Correction Note: Biography of Morris H. DeGroot . . . . . . . . . . . . . . . . 448
Robert E. Kass Editorial . . . . . . . . . . . . . . . 1--2 Anonymous In This Issue . . . . . . . . . . . . . 3--4 George A. Barnard Review of \booktitleStatistical Inference and Analysis: Selected Correspondence of R. A. Fisher . . . . . 5--12 Samuel Karlin R. A. Fisher and Evolutionary Theory . . 13--33 C. Radhakrishna Rao R. A. Fisher: The Founder of Modern Statistics . . . . . . . . . . . . . . . 34--48 Sangit Chatterjee and Mustafa R. Yilmaz Chaos, Fractals and Statistics . . . . . 49--68 L. Mark Berliner Statistics, Probability and Chaos . . . 69--90 Colleen D. Cutler [Statistics, Probability and Chaos]: Comment . . . . . . . . . . . . . . . . 91--94 John Geweke [Statistics, Probability and Chaos]: Comment: Inference and Prediction in the Presence of Uncertainty and Determinism 94--101 Clive W. J. Granger [Statistics, Probability and Chaos]: Comment . . . . . . . . . . . . . . . . 102--104 David Griffeath [Statistics, Probability and Chaos]: Comment: Randomness in Complex Systems 104--108 Richard L. Smith [Statistics, Probability and Chaos]: Comment: Relation Between Statistics and Chaos . . . . . . . . . . . . . . . . . 109--113 Ruey S. Tsay [Statistics, Probability and Chaos]: Comment: Simplicity and Nonlinearity . . 113--114 Sangit Chatterjee and Mustafa R. Yilmaz [Statistics, Probability and Chaos]: Rejoinder (Part 1) . . . . . . . . . . . 114--117 L. Mark Berliner [Statistics, Probability and Chaos]: Rejoinder (Part 2) . . . . . . . . . . . 118--122 Larry Shepp A Conversation with Yuri Vasilyevich Prokhorov . . . . . . . . . . . . . . . 123--130 Alan Agresti A Survey of Exact Inference for Contingency Tables . . . . . . . . . . . 131--153 Edward J. Bedrick and Joe R. Hill [A Survey of Exact Inference for Contingency Tables]: Comment . . . . . . 153--157 Diana E. Duffy [A Survey of Exact Inference for Contingency Tables]: Comment . . . . . . 157--160 Leonardo D. Epstein and Stephen E. Fienberg [A Survey of Exact Inference for Contingency Tables]: Comment . . . . . . 160--162 Svend Kreiner [A Survey of Exact Inference for Contingency Tables]: Comment: Exact Inference in Multidimensional Tables . . 163--165 D. Y. Lin and L. J. Wei [A Survey of Exact Inference for Contingency Tables]: Comment . . . . . . 166--167 Cyrus R. Mehta [A Survey of Exact Inference for Contingency Tables]: Comment: An Interdisciplinary Approach to Exact Inference for Contingency Tables . . . . 167--170 Samy Suissa [A Survey of Exact Inference for Contingency Tables]: Comment . . . . . . 170--172 Alan Agresti [A Survey of Exact Inference for Contingency Tables]: Rejoinder . . . . . 173--177 Anonymous Publications Received . . . . . . . . . 178--179
Anonymous In This Issue . . . . . . . . . . . . . 181 Carl N. Morris Parting Remarks from the Outgoing Editor 182 Clifford C. Clogg The Impact of Sociological Methodology on Statistical Methodology . . . . . . . 183--196 David J. Bartholomew [The Impact of Sociological Methodology on Statistical Methodology]: Comment . . 196--198 Paul W. Holland [The Impact of Sociological Methodology on Statistical Methodology]: Comment: It's the Interplay That's Important . . 198--201 Charles F. Manski [The Impact of Sociological Methodology on Statistical Methodology]: Comment . . 201--203 Ivo W. Molenaar [The Impact of Sociological Methodology on Statistical Methodology]: Comment: The Fence Between Statistics and Social Research . . . . . . . . . . . . . . . . 203--205 Clifford C. Clogg [The Impact of Sociological Methodology on Statistical Methodology]: Rejoinder 205--207 Stephen E. Fienberg A Brief History of Statistics in Three and One-Half Chapters: A Review Essay 208--225 Ingram Olkin Editor's Introduction . . . . . . . . . 226 Frederick Mosteller and Thomas C. Chalmers Some Progress and Problems in Meta-Analysis of Clinical Trials . . . . 227--236 Keith B. G. Dear and Colin B. Begg An Approach for Assessing Publication Bias Prior to Performing a Meta-Analysis 237--245 Larry V. Hedges Modeling Publication Selection Effects in Meta-Analysis . . . . . . . . . . . . 246--255 Judith Sunley and N. Altman and J. F. Angers and D. Banks and D. Duffy and J. Hardwick and C. Leger and M. Martin and D. Nolan and A. Owen and D. Politis and Peter Arzberger and K. Roeder and T. N. Sriram and T. Stukel and Z. Ying and Keith Crank and Nell Sedransk and James R. Maar and Michael R. Chernick and Cindy L. Christiansen and Agnes M. Herzberg and R. L. Tweedie Readers' Comments to the New Researchers' Committee Report . . . . . 256--266 Deborah Nolan Women in Statistics in Academe: Mentors Matter . . . . . . . . . . . . . . . . . 267--272 Nozer D. Singpurwalla and Richard L. Smith A Conversation with Boris Vladimirovich Gnedenko . . . . . . . . . . . . . . . . 273--283 Anonymous Acknowledgment of Referees' Services . . 284--285
Robert E. Kass In This Issue . . . . . . . . . . . . . 287--288 Sue Leurgans and Robert T. Ross Multilinear Models: Applications in Spectroscopy . . . . . . . . . . . . . . 289--310 Jan deLeeuw [Multilinear Models: Applications in Spectroscopy]: Comment . . . . . . . . . 310--311 Pieter M. Kroonenberg [Multilinear Models: Applications in Spectroscopy]: Comment: PARAFAC in Three-Way Land . . . . . . . . . . . . . 312--314 Donald S. Burdick [Multilinear Models: Applications in Spectroscopy]: Comment . . . . . . . . . 314--315 Sue Leurgens and Robert T. Ross [Multilinear Models: Applications in Spectroscopy]: Rejoinder . . . . . . . . 315--319 Joseph W. Duncan and William C. Shelton U.S. Government Contributions to Probability Sampling and Statistical Analysis . . . . . . . . . . . . . . . . 320--338 Ester Samuel-Cahn A Conversation with Esther Seiden . . . 339--357 Teddy Seidenfeld R. A. Fisher's Fiducial Argument and Bayes' Theorem . . . . . . . . . . . . . 358--368 S. L. Zabell R. A. Fisher and Fiducial Argument . . . 369--387 Paul Switzer A Conversation With Herbert Solomon . . 388--401
Robert E. Kass In This Issue . . . . . . . . . . . . . 403 Jan Beran Statistical Methods for Data with Long-Range Dependence . . . . . . . . . 404--416 Arthur P. Dempster and Jing-Shiang Hwang [Statistical Methods for Data with Long-Range Dependence]: Comment: Short- Range Consequences of Long-Range Dependence . . . . . . . . . . . . . . . 416--420 Emanuel Parzen [Statistical Methods for Data with Long-Range Dependence]: Comment . . . . 420 Adrian E. Raftery [Statistical Methods for Data with Long-Range Dependence]: Comment: Computational Aspects of Fractionally Differenced ARIMA Modeling for Long- Memory Time Series . . . . . . . . . . . 421--422 Richard L. Smith [Statistical Methods for Data with Long-Range Dependence]: Comment . . . . 422--425 Jan Beran [Statistical Methods for Data with Long-Range Dependence]: Rejoinder . . . 425--427 Thomas R. Fleming Evaluating Therapeutic Interventions: Some Issues and Experiences . . . . . . 428--441 John Crowley and Stephanie Green [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Comment 441--443 David L. DeMets [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Comment 443--444 Susan S. Ellenberg [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Comment 445--446 Vern T. Farewell and Richard J. Cook [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Comment 446--448 Stephen Lagakos [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Comment 449--450 Thomas A. Louis [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Comment 450--452 Thomas R. Fleming [Evaluating Therapeutic Interventions: Some Issues and Experiences]: Rejoinder 452--456 Andrew Gelman and Donald B. Rubin Inference from Iterative Simulation Using Multiple Sequences . . . . . . . . 457--472 Charles J. Geyer Practical Markov Chain Monte Carlo . . . 473--483 Lu Cui and Martin A. Tanner and Debajyoti Sinha and W. J. Hall [Practical Markov Chain Monte Carlo]: Comment: Monitoring Convergence of the Gibbs Sampler: Further Experience with the Gibbs Stopper . . . . . . . . . . . 483--486 Alan E. Gelfand [Practical Markov Chain Monte Carlo]: Comment . . . . . . . . . . . . . . . . 486--487 Neal Madras [Practical Markov Chain Monte Carlo]: Comment . . . . . . . . . . . . . . . . 488--489 Nicholas G. Polson [Practical Markov Chain Monte Carlo]: Comment . . . . . . . . . . . . . . . . 490--491 Amy Racine-Poon [Practical Markov Chain Monte Carlo]: Comment . . . . . . . . . . . . . . . . 492--493 Adrian E. Raftery and Steven M. Lewis [Practical Markov Chain Monte Carlo]: Comment: One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo . . . . . . . . . . . 493--497 Jeffrey S. Rosenthal [Practical Markov Chain Monte Carlo]: Comment . . . . . . . . . . . . . . . . 498 Bruce Schmeiser [Practical Markov Chain Monte Carlo]: Comment . . . . . . . . . . . . . . . . 498--499 Luke Tierney [Practical Markov Chain Monte Carlo]: Comment . . . . . . . . . . . . . . . . 499--501 Charles J. Geyer [Practical Markov Chain Monte Carlo]: Rejoinder . . . . . . . . . . . . . . . 502--503 Andrew Gelman and Donald B. Rubin [Practical Markov Chain Monte Carlo]: Rejoinder: Replication without Contrition . . . . . . . . . . . . . . . 503--511 Ingram Olkin A Conversation with Churchill Eisenhart 512--530
J. Michael Steele In This Issue . . . . . . . . . . . . . 1--2 David Aldous and J. Michael Steele Introduction to the Interface of Probability and Algorithms . . . . . . . 3--9 Dimitris Bertsimas and John Tsitsiklis Simulated Annealing . . . . . . . . . . 10--15 David Aldous Approximate Counting via Markov Chains 16--19 Joan Feigenbaum and Jeffrey C. Lagarias Probabilistic Algorithms for Speedup . . 20--25 Joan Feigenbaum Probabilistic Algorithms for Defeating Adversaries . . . . . . . . . . . . . . 26--30 Jeffrey C. Lagarias Pseudorandom Numbers . . . . . . . . . . 31--39 E. G. Coffman and D. S. Johnson and G. S. Lueker and P. W. Shor Probabilistic Analysis of Packing and Related Partitioning Problems . . . . . 40--47 J. Michael Steele Probability and Problems in Euclidean Combinatorial Optimization . . . . . . . 48--56 Ron Shamir Probabilistic Analysis in Linear Programming . . . . . . . . . . . . . . 57--64 Vijaya Ramachandran Randomization in Parallel Algorithms . . 65--69 Bruce M. Maggs Randomly Wired Multistage Networks . . . 70--75 J. Michael Steele Missing Pieces, Derandomization and Concluding Remarks . . . . . . . . . . . 76--77 Anonymous Acknowledgment of Referees' Services . . 78 Anonymous Publications Received . . . . . . . . . 79--80
Robert E. Kass In This Issue . . . . . . . . . . . . . 81 Peter Bacchetti and Mark R. Segal and Nicholas P. Jewell Backcalculation of HIV Infection Rates 82--101 Ron Brookmeyer [Backcalculation of HIV Infection Rates]: Comment . . . . . . . . . . . . 102--104 John B. Carlin and Andrew Gelman [Backcalculation of HIV Infection Rates]: Comment: Assessing Uncertainty in Backprojection . . . . . . . . . . . 104--106 Mitchell H. Gail and Philip S. Rosenberg [Backcalculation of HIV Infection Rates]: Comment . . . . . . . . . . . . 107--109 Victor De Gruttola and Marcello Pagano [Backcalculation of HIV Infection Rates]: Comment . . . . . . . . . . . . 109 John M. Karon and Glen A. Satten [Backcalculation of HIV Infection Rates]: Comment . . . . . . . . . . . . 109--112 Patricia J. Solomon and Susan R. Wilson [Backcalculation of HIV Infection Rates]: Comment . . . . . . . . . . . . 112--114 Peter Bacchetti and Mark R. Segal and Nicholas P. Jewell [Backcalculation of HIV Infection Rates]: Rejoinder . . . . . . . . . . . 114--119 Trevor Hastie and Clive Loader Local Regression: Automatic Kernel Carpentry . . . . . . . . . . . . . . . 120--129 J. Fan and J. S. Marron [Local Regression: Automatic Kernel Carpentry]: Comment . . . . . . . . . . 129--134 Hans-Georg Muller [Local Regression: Automatic Kernel Carpentry]: Comment . . . . . . . . . . 134--139 Trevor Hastie and Clive Loader [Local Regression: Automatic Kernel Carpentry]: Rejoinder . . . . . . . . . 139--143 Mary W. Gray Can Statistics Tell Us What We Do Not Want to Hear? The Case of Complex Salary Structures . . . . . . . . . . . . . . . 144--158 Delores A. Conway [Can Statistics Tell Us What We Do Not Want to Hear? The Case of Complex Salary Structures]: Comment . . . . . . . . . . 158--165 Joseph L. Gastwirth [Can Statistics Tell Us What We Do Not Want to Hear? The Case of Complex Salary Structures]: Comment . . . . . . . . . . 165--171 Harry V. Roberts [Can Statistics Tell Us What We Do Not Want to Hear? The Case of Complex Salary Structures]: Comment . . . . . . . . . . 171--176 Mary W. Gray [Can Statistics Tell Us What We Do Not Want to Hear? The Case of Complex Salary Structures]: Rejoinder . . . . . . . . . 177--179 Eugene Seneta Lewis Carroll's ``Pillow Problems'': On the 1993 Centenary . . . . . . . . . . . 180--186 Ian MacNeill A Conversation with David J. Finney . . 187--201
Robert E. Kass In This Issue . . . . . . . . . . . . . 203 D. R. Cox and Nanny Wermuth Linear Dependencies Represented by Chain Graphs . . . . . . . . . . . . . . . . . 204--218 David J. Spiegelhalter and A. Philip Dawid and Steffen L. Lauritzen and Robert G. Cowell Bayesian Analysis in Expert Systems . . 219--247 A. P. Dempster [Bayesian Analysis in Expert Systems]: Comment: Assessing the Science Behind Graphical Modelling Techniques . . . . . 247--250 Clark Glymour and Peter Spirtes [Bayesian Analysis in Expert Systems]: Comment: Conditional Independence and Causal Inference . . . . . . . . . . . . 250--257 Joe R. Hill [Bayesian Analysis in Expert Systems]: Comment . . . . . . . . . . . . . . . . 258--261 David Madigan [Bayesian Analysis in Expert Systems]: Comment: What's Next? . . . . . . . . . 261--263 Sharon-Lise Normand [Bayesian Analysis in Expert Systems]: Comment . . . . . . . . . . . . . . . . 263--265 Judea Pearl [Bayesian Analysis in Expert Systems]: Comment: Graphical Models, Causality and Intervention . . . . . . . . . . . . . . 266--269 Michael E. Sobel [Bayesian Analysis in Expert Systems]: Comment . . . . . . . . . . . . . . . . 269--273 Joe Whittaker [Bayesian Analysis in Expert Systems]: Comment . . . . . . . . . . . . . . . . 273--276 D. R. Cox and Nanny Wermuth [Bayesian Analysis in Expert Systems]: Rejoinder . . . . . . . . . . . . . . . 276--277 David J. Spiegelhalter and A. Philip Dawid and Steffen L. Lauritzen and Robert G. Cowell [Bayesian Analysis in Expert Systems]: Rejoinder . . . . . . . . . . . . . . . 277--283 Garrett M. Fitzmaurice and Nan M. Laird and Andrea G. Rotnitzky Regression Models for Discrete Longitudinal Responses . . . . . . . . . 284--299 Melinda Drum and Peter McCullagh [Regression Models for Discrete Longitudinal Responses]: Comment . . . . 300--301 Ross L. Prentice and Lloyd A. Mancl [Regression Models for Discrete Longitudinal Responses]: Comment . . . . 302--304 Scott L. Zeger and Kung-Yee Liang and Patrick Heagerty [Regression Models for Discrete Longitudinal Responses]: Comment . . . . 304--306 Garrett M. Fitzmaurice and Nan M. Laird and Andrea G. Rotnitzky [Regression Models for Discrete Longitudinal Responses]: Rejoinder . . . 306--309 David Cox and Leon Gleser and Michael Perlman and Nancy Reid and Kathryn Roeder Report of the Ad Hoc Committee on Double-Blind Refereeing . . . . . . . . 310--317 Jacqueline Benedetti and Stephanie Green and Mei-Ling Lee and John Crowley Report of the Ad Hoc Committee on Design of an Experiment on Double-Blind Refereeing . . . . . . . . . . . . . . . 318--320 L. Billard [Report of the Ad Hoc Committee on Design of an Experiment on Double-Blind Refereeing]: Comment . . . . . . . . . . 320--322 R. J. Carroll [Report of the Ad Hoc Committee on Design of an Experiment on Double-Blind Refereeing]: Comment . . . . . . . . . . 323 Christian Genest [Report of the Ad Hoc Committee on Design of an Experiment on Double-Blind Refereeing]: Comment . . . . . . . . . . 323--327 Willem R. van Zwet [Report of the Ad Hoc Committee on Design of an Experiment on Double-Blind Refereeing]: Comment . . . . . . . . . . 327--330 E. L. Lehmann Mentors and Early Collaborators: Reminiscences from the Years 1940--1956 with an Epilogue . . . . . . . . . . . . 331--341 Peter Whittle A Conversation with Henry Daniels . . . 342--353
Robert E. Kass In This Issue . . . . . . . . . . . . . 355 David Banks Is Industrial Statistics Out of Control? 356--377 Avital Cnaan [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 378--379 Diane E. Duffy [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 380--384 Gerald J. Hahn [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 384--387 Robert V. Hogg [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 387--391 Vijayan N. Nair and Daryl Pregibon [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 391--394 T. J. Orchard [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 394--395 G. K. Robinson [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 395--397 William H. Woodall [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 397--399 C. F. J. Wu [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 399--400 H. P. Wynn [Is Industrial Statistics Out of Control?]: Comment . . . . . . . . . . . 400--402 David Banks [Is Industrial Statistics Out of Control?]: Rejoinder . . . . . . . . . . 402--409 David Bellhouse The Role of Roguery in the History of Probability . . . . . . . . . . . . . . 410--420 Pietro Muliere and Giovanni Parmigiani Utility and Means in the 1930s . . . . . 421--432 James D. Malley and John Hornstein Quantum Statistical Inference . . . . . 433--457 Nancy Flournoy A Conversation with Wilfrid J. Dixon . . 458--477
Robert E. Kass In This Issue . . . . . . . . . . . . . 1 Bing Cheng and D. M. Titterington Neural Networks: A Review from a Statistical Perspective . . . . . . . . 2--30 S. Amari [Neural Networks: A Review from Statistical Perspective]: Comment . . . 31--32 Andrew R. Barron [Neural Networks: A Review from Statistical Perspective]: Comment . . . 33--35 Elie Bienenstock and Stuart Geman [Neural Networks: A Review from Statistical Perspective]: Comment . . . 36--38 Leo Breiman [Neural Networks: A Review from Statistical Perspective]: Comment . . . 38--42 James L. McClelland [Neural Networks: A Review from Statistical Perspective]: Comment: Neural Networks and Cognitive Science: Motivations and Applications . . . . . . 42--45 B. D. Ripley [Neural Networks: A Review from Statistical Perspective]: Comment . . . 45--48 Robert Tibshirani [Neural Networks: A Review from Statistical Perspective]: Comment . . . 48--49 Bing Cheng and D. M. Titterington [Neural Networks: A Review from Statistical Perspective]: Rejoinder . . 49--54 M. Ghosh and J. N. K. Rao Small Area Estimation: An Appraisal . . 55--76 Noel Cressie and Mark S. Kaiser [Small Area Estimation: An Appraisal]: Comment . . . . . . . . . . . . . . . . 76--80 D. Holt [Small Area Estimation: An Appraisal]: Comment . . . . . . . . . . . . . . . . 80--82 Wesley L. Schaible and Robert J. Casady [Small Area Estimation: An Appraisal]: Comment . . . . . . . . . . . . . . . . 82--84 Avinash C. Singh [Small Area Estimation: An Appraisal]: Comment . . . . . . . . . . . . . . . . 84--87 Elizabeth A. Stasny [Small Area Estimation: An Appraisal]: Comment . . . . . . . . . . . . . . . . 87--89 Ib Thomsen [Small Area Estimation: An Appraisal]: Comment . . . . . . . . . . . . . . . . 89--90 M. Ghosh and J. N. K. Rao [Small Area Estimation: An Appraisal]: Rejoinder . . . . . . . . . . . . . . . 90--93 Stephen M. Stigler Citation Patterns in the Journals of Statistics and Probability . . . . . . . 94--108 Aleksander Janicki and Aleksander Weron Can One See $ \alpha $-Stable Variables and Processes? . . . . . . . . . . . . . 109--126 Miron Straf and Ingram Olkin A Conversation with Margaret Martin . . 127--145 Anonymous Acknowledgment of Referees' Services . . 146 Anonymous Publications Received . . . . . . . . . 147--148
Anonymous In This Issue . . . . . . . . . . . . . 149 Dudley B. Chelton Physical Oceanography: A Brief Overview for Statisticians . . . . . . . . . . . 150--166 Panel on Statistics and Oceanography Report on Statistics and Physical Oceanography . . . . . . . . . . . . . . 167--201 David R. Brillinger [Report on Statistics and Physical Oceanography]: Comment . . . . . . . . . 201--202 Ngai Hang Chan and Wilfredo Palma [Report on Statistics and Physical Oceanography]: Comment: Unit Root and Structural Changes in Tropical Sea Levels . . . . . . . . . . . . . . . . . 203--207 Anand Gnanadesikan [Report on Statistics and Physical Oceanography]: Comment . . . . . . . . . 208--212 Greg Holloway [Report on Statistics and Physical Oceanography]: Comment . . . . . . . . . 212--213 Andrew R. Solow [Report on Statistics and Physical Oceanography]: Comment . . . . . . . . . 213--215 Hans von Storch [Report on Statistics and Physical Oceanography]: Comment . . . . . . . . . 215--221 Kathryn Roeder DNA Fingerprinting: A Review of the Controversy . . . . . . . . . . . . . . 222--247 David J. Balding and Peter Donnelly and Richard A. Nichols [DNA Fingerprinting: A Review of the Controversy]: Comment: Some Causes for Concern about DNA Profiles . . . . . . . 248--251 Donald A. Berry [DNA Fingerprinting: A Review of the Controversy]: Comment . . . . . . . . . 252--255 Richard Lempert [DNA Fingerprinting: A Review of the Controversy]: Comment: Theory and Practice in DNA Fingerprinting . . . . . 255--258 R. C. Lewontin [DNA Fingerprinting: A Review of the Controversy]: Comment: The Use of DNA Profiles in Forensic Contexts . . . . . 259--262 Aidan Sudbury [DNA Fingerprinting: A Review of the Controversy]: Comment . . . . . . . . . 262--263 William C. Thompson [DNA Fingerprinting: A Review of the Controversy]: Comment . . . . . . . . . 263--266 B. S. Weir [DNA Fingerprinting: A Review of the Controversy]: Comment . . . . . . . . . 266--267 Kathryn Roeder [DNA Fingerprinting: A Review of the Controversy]: Rejoinder . . . . . . . . 267--278 Stephen Portnoy A Lewis Carroll Pillow Problem: Probability of an Obtuse Triangle . . . 279--284 Sandy Zabell A Conversation with William Kruskal . . 285--303
Anonymous In This Issue . . . . . . . . . . . . . 305--306 R. C. Griffiths and Simon Tavaré Ancestral Inference in Population Genetics . . . . . . . . . . . . . . . . 307--319 W. Navidi and N. Arnheim Analysis of Genetic Data from the Polymerase Chain Reaction . . . . . . . 320--333 David O. Nelson and Terence P. Speed Statistical Issues in Constructing High Resolution Physical Maps . . . . . . . . 334--354 E. A. Thompson Monte Carlo Likelihood in Genetic Mapping . . . . . . . . . . . . . . . . 355--366 Michael S. Waterman and Martin Vingron Sequence Comparison Significance and Poisson Approximation . . . . . . . . . 367--381 G. Alastair Young Bootstrap: More than a Stab in the Dark? 382--395 Rudolf Beran [Bootstrap: More than a Stab in the Dark?]: Comment . . . . . . . . . . . . 395--396 B. Efron [Bootstrap: More than a Stab in the Dark?]: Comment . . . . . . . . . . . . 396--398 Patricia M. Gramsbsch and Mary Kathryn Cowles and Thomas A. Louis [Bootstrap: More than a Stab in the Dark?]: Comment . . . . . . . . . . . . 398--400 David Hinkley [Bootstrap: More than a Stab in the Dark?]: Comment . . . . . . . . . . . . 400--403 Michael P. Meredith and Jorge G. Morel [Bootstrap: More than a Stab in the Dark?]: Comment . . . . . . . . . . . . 404--406 William Navidi [Bootstrap: More than a Stab in the Dark?]: Comment . . . . . . . . . . . . 407--408 Mark J. Schervish [Bootstrap: More than a Stab in the Dark?]: Comment . . . . . . . . . . . . 408--410 G. Alastair Young [Bootstrap: More than a Stab in the Dark?]: Rejoinder . . . . . . . . . . . 411--415 Kai-Tai Fang and Yuan Wang and Peter M. Bentler Some Applications of Number-Theoretic Methods in Statistics . . . . . . . . . 416--428 Doron Witztum and Eliyahu Rips and Yoav Rosenberg Equidistant Letter Sequences in the Book of Genesis . . . . . . . . . . . . . . . 429--438 Nancy Reid A Conversation with Sir David Cox . . . 439--455 Anonymous Author's Clarification: [DNA Fingerprinting: A Review of the Controversy] . . . . . . . . . . . . . . 456
Anonymous In This Issue . . . . . . . . . . . . . 457 Leo Breiman The 1991 Census Adjustment: Undercount or Bad Data? . . . . . . . . . . . . . . 458--475 D. Freedman and K. Wachter Heterogeneity and Census Adjustment for the Intercensal Base . . . . . . . . . . 476--485 Thomas R. Belin and John E. Rolph Can We Reach Consensus on Census Adjustment? . . . . . . . . . . . . . . 486--508 Ian Diamond and Chris Skinner [Can We Reach Consensus on Census Adjustment?]: Comment . . . . . . . . . 508--510 Eugene P. Ericksen and Stephen E. Fienberg and Joseph B. Kadane [Can We Reach Consensus on Census Adjustment?]: Comment . . . . . . . . . 511--515 Lars Lyberg and Sixten Lundstrom [Can We Reach Consensus on Census Adjustment?]: Comment . . . . . . . . . 515--517 David Steel [Can We Reach Consensus on Census Adjustment?]: Comment . . . . . . . . . 517--519 Thomas R. Belin and John E. Rolph [Can We Reach Consensus on Census Adjustment?]: Rejoinder . . . . . . . . 520--521 Leo Breiman [Can We Reach Consensus on Census Adjustment?]: Rejoinder . . . . . . . . 521--527 D. Freedman and K. Wachter [Can We Reach Consensus on Census Adjustment?]: Rejoinder . . . . . . . . 527--537 Xiao-Li Meng Multiple-Imputation Inferences with Uncongenial Sources of Input . . . . . . 538--558 Robert E. Fay [Multiple-Imputation Inferences with Uncongenial Sources of Input]: Comment 558--560 Joseph L. Schafer [Multiple-Imputation Inferences with Uncongenial Sources of Input]: Comment 560--561 Chris Skinner [Multiple-Imputation Inferences with Uncongenial Sources of Input]: Comment 561--563 Alan M. Zaslavsky [Multiple-Imputation Inferences with Uncongenial Sources of Input]: Comment: Using the Full Toolkit . . . . . . . . . 563--565 Xiao-Li Meng [Multiple-Imputation Inferences with Uncongenial Sources of Input]: Rejoinder 566--573 Stephen E. Fienberg A Conversation with Janet L. Norwood . . 574--590 Anonymous Guidelines on Writing for Statistical Science . . . . . . . . . . . . . . . . 591
Anonymous In This Issue . . . . . . . . . . . . . 1--2 Julian Besag and Peter Green and David Higdon and Kerrie Mengersen Bayesian Computation and Stochastic Systems . . . . . . . . . . . . . . . . 3--41 Arnoldo Frigessi [Bayesian Computation and Stochastic Systems]: Comment . . . . . . . . . . . 41--43 Alan E. Gelfand and Bradley P. Carlin [Bayesian Computation and Stochastic Systems]: Comment . . . . . . . . . . . 43--46 Charles J. Geyer [Bayesian Computation and Stochastic Systems]: Comment . . . . . . . . . . . 46--48 G. O. Roberts and S. K. Sahu and W. R. Gilks [Bayesian Computation and Stochastic Systems]: Comment . . . . . . . . . . . 49--51 Wing Hung Wong [Bayesian Computation and Stochastic Systems]: Comment . . . . . . . . . . . 52--53 Bin Yu [Bayesian Computation and Stochastic Systems]: Comment: Extracting More Diagnostic Information from a Single Run Using Cusum Path Plot . . . . . . . . . 54--58 Julian Besag and Peter Green and David Higdon and Kerrie Mengersen [Bayesian Computation and Stochastic Systems]: Rejoinder . . . . . . . . . . 58--66 Walter Willinger and Murad S. Taqqu and Will E. Leland and Daniel V. Wilson Self-Similarity in High-Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measurements . . . . . 67--85 Nozer D. Singpurwalla Survival in Dynamic Environments . . . . 86--103 David F. Findley and Emanuel Parzen A Conversation with Hirotugu Akaike . . 104--117 Myles Hollander and Albert W. Marshall A Conversation with Frank Proschan . . . 118--133 Anonymous Acknowledgment of Referees' Services . . 134 Anonymous Publications Received . . . . . . . . . 135--136
Anonymous In This Issue . . . . . . . . . . . . . 137 N. Reid The Roles of Conditioning in Inference 138--157 Kung-Yee Liang and Scott L. Zeger Inference Based on Estimating Functions in the Presence of Nuisance Parameters 158--173 V. P. Godambe [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Comment . . . . . . . . . . . . . . . . 173--174 Bruce G. Lindsay and Bing Li [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Comment . . . . . . . . . . . . . . . . 175--177 Peter McCullagh [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Comment . . . . . . . . . . . . . . . . 177--179 George Casella and Thomas J. DiCiccio and Martin T. Wells [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Comment: Alternative Aspects of Conditional Inference . . . . . . . . . 179--185 A. P. Dawid and C. Goutis [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Comment . . . . . . . . . . . . . . . . 185--186 Thomas A. Severini [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Comment . . . . . . . . . . . . . . . . 187--189 Louise M. Ryan [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Comment . . . . . . . . . . . . . . . . 189--193 N. Reid [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Rejoinder . . . . . . . . . . . . . . . 193--196 Kung-Yee Liang and Scott L. Zeger [Inference Based on Estimating Functions in the Presence of Nuisance Parameters]: Rejoinder . . . . . . . . . . . . . . . 196--199 Robin Pemantle Tree-Indexed Processes . . . . . . . . . 200--213 Chris Heyde A Conversation with Joe Gani . . . . . . 214--230
Christian P. Robert Convergence Control Methods for Markov Chain Monte Carlo Algorithms . . . . . . 231--253 Michael Evans and Tim Swartz Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems . . . . . 254--272 Kathryn Chaloner and Isabella Verdinelli Bayesian Experimental Design: A Review 273--304 Adrian Smith A Conversation with Dennis Lindley . . . 305--319
J. Leroy Folks A Conversation with Oscar Kempthorne . . 321--336 Tony Lin and Lois Swirsky Gold and David Freedman Carcinogenicity Tests and Interspecies Concordance . . . . . . . . . . . . . . 337--353 Theodore P. Hill A Statistical Derivation of the Significant-Digit Law . . . . . . . . . 354--363 John Aldrich Correlations Genuine and Spurious in Pearson and Yule . . . . . . . . . . . . 364--376 Gerald J. Hahn A Conversation with Donald Marquardt . . 377--393
David L. Banks A conversation with I. J. Good . . . . . 1--19 T. W. Anderson R. A. Fisher and multivariate analysis 20--34 Larry Goldstein and Bryan Langholz Risk set sampling in epidemiologic cohort studies . . . . . . . . . . . . . 35--53 Anonymous Comments on: ``Methods for approximating integrals in statistics with special emphasis on Bayesian integration problems'' by M. Evans and T. Swartz . . 54--64 Martin Frankel and Benjamin King A conversation with Leslie Kish . . . . 65--87
Paul H. C. Eilers and Brian D. Marx Flexible smoothing with B-splines and penalties . . . . . . . . . . . . . . . 89--121 Arden Miller and C. F. J. Wu Parameter design for signal-response systems: a different look at Taguchi's dynamic parameter design . . . . . . . . 122--136 William F. Rosenberger New directions in adaptive designs . . . 137--149 Kenneth S. Alexander A conversation with Ted Harris . . . . . 150--158
N. H. Bingham A conversation with David Kendall . . . 159--188 Thomas J. DiCiccio and Bradley Efron Bootstrap confidence intervals . . . . . 189--228 Bernard Flury and Thaddeus Tarpey Self-consistency: a fundamental concept in statistics . . . . . . . . . . . . . 229--243 Stephen M. Stigler The history of statistics in 1933 . . . 244--252
Donato Michele Cifarelli and Eugenio Regazzini De Finetti's contribution to probability and statistics . . . . . . . . . . . . . 253--282 Roger L. Berger and Jason C. Hsu Bioequivalence trials, intersection-union tests and equivalence confidence sets . . . . . . . . . . . . 283--319 T. Lynn Eudey Statistical considerations in DNA flow cytometry . . . . . . . . . . . . . . . 320--334 John Bather A conversation with Herman Chernoff . . 335--350
Henry W. Block and Thomas H. Savits Burn-In . . . . . . . . . . . . . . . . 1--19 Kenneth G. Manton and Anatoli I. Yashin Effects of unobserved and partially observed covariate processes on system failure: a review of models and estimation strategies . . . . . . . . . 20--34 A. W. F. Edwards Three early papers on efficient parametric estimation . . . . . . . . . 35--47 E. L. Lehmann \booktitleTesting Statistical Hypotheses: the story of a book . . . . 48--52 Lennart Råde A conversation with Harald Bergström . . 53--60 Nitis Mukhopadhyay A conversation with Sujit Kumar Mitra 61--75
Jonas H. Ellenberg and Mitchell H. Gail and Nancy L. Geller Conversations with NIH statisticians: interviews with the pioneers of biostatistics at the United States National Institute of Health . . . . . . 77--81 Samuel W. Greenhouse Some reflections on the beginnings and development of statistics in ``Your Father's NIH'' . . . . . . . . . . . . . 82--87 Mitchell H. Gail A conversation with Nathan Mantel . . . 88--97 Richard M. Simon A conversation with Marvin A. Schneiderman . . . . . . . . . . . . . . 98--102 Jonas H. Ellenberg A conversation with Morton Kramer . . . 103--107 Benjamin Hankey A conversation with William M. Haenszel 108--112 Nancy L. Geller A conversation with Tavia Gordon . . . . 113--118 Susan S. Ellenberg A conversation with John C. Bailar III 119--124 Sylvan B. Green A conversation with Fred Ederer . . . . 125--131
J. O. Berger and B. Boukai and Y. Wang Unified frequentist and Bayesian testing of a precise hypothesis . . . . . . . . 133--160 Stephen E. Fienberg Introduction to R. A. Fisher on inverse probability and likelihood . . . . . . . 161 John Aldrich R. A. Fisher and the making of maximum likelihood 1912--1922 . . . . . . . . . 162--176 A. W. F. Edwards What did Fisher mean by ``inverse probability'' in 1912--1922? . . . . . . 177--184 Daniel Rabinowitz and Steven Shea Random effects analysis of children's blood pressure data . . . . . . . . . . 185--194 R. W. Doerge and B. S. Weir and Z-B. Zeng Statistical issues in the search for genes affecting quantitative traits in experimental populations . . . . . . . . 195--219 Paul Switzer Editor's note regarding the interview with Professor David Kendall, August 1996 issue . . . . . . . . . . . . . . . 220
Geof H. Givens and D. D. Smith and R. L. Tweedie Publication bias in meta-analysis: a Bayesian data-augmentation approach to account for issues exemplified in the passive smoking debate . . . . . . . . . 221--250 Valen E. Johnson An alternative to traditional GPA for evaluating student performance . . . . . 251--278 Stephen Portnoy and Roger Koenker The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators . . . . 279--300 J. Laurie Snell A conversation with Joe Doob . . . . . . 301--311
Richard Tweedie Consulting: real problems, real interactions, real outcomes, with a resources appendix by Sue Taylor . . . . 1--29 Sharon M. Perlmutter and Pamela C. Cosman and Chien-Wen Tseng and Richard A. Olshen and Robert M. Gray and King C. P. Li and Colleen J. Bergin Medical image compression and vector quantization . . . . . . . . . . . . . . 30--53 Trevor Hastie and Patrice Y. Simard Metrics and models for handwritten character recognition . . . . . . . . . 54--65 Herbert A. David Statistics in U.S. universities in 1933 and the establishment of the Statistical Laboratory at Iowa State . . . . . . . . 66--74 R. J. Beran and N. I. Fisher A conversation with Geoff Watson . . . . 75--93
Bradley Efron R. A. Fisher in the 21st century (Invited paper presented at the 1996 R. A. Fisher Lecture) . . . . . . . . . . . 95--122 Aivars Celmi\cn\vs The method of Gauss in 1799 . . . . . . 123--135 Dennis V. Lindley Decision analysis and bioequivalence trials . . . . . . . . . . . . . . . . . 136--141 Jerome V. Braun and Hans-Georg Müller Statistical methods for DNA sequence segmentation . . . . . . . . . . . . . . 142--162 Andrew Gelman and Xiao-Li Meng Simulating normalizing constants: from importance sampling to bridge sampling to path sampling . . . . . . . . . . . . 163--185 Walter W. Piegorsch and Eric P. Smith and Don Edwards and Richard L. Smith Statistical advances in environmental science . . . . . . . . . . . . . . . . 186--208
Edward L. Korn and Sheldon Baumrind Clinician preferences and the estimation of causal treatment differences . . . . 209--235 M. G. Kenward and G. Molenberghs Likelihood based frequentist inference when data are missing at random . . . . 236--247 A. P. Dempster Logicist statistics. I. Models and modeling . . . . . . . . . . . . . . . . 248--276 Leon Jay Gleser Assessing uncertainty in measurement . . 277--290 Gary C. McDonald A conversation with Shanti Gupta . . . . 291--305
George Michailidis and Jan de Leeuw The Gifi system of descriptive multivariate analysis . . . . . . . . . 307--336 Steven P. Ellis Instability of least squares, least absolute deviation and least median of squares linear regression, with a comment by Stephen Portnoy and Ivan Mizera and a rejoinder by the author . . 337--350 J. V. Howard The $ 2 \times 2 $ table: a discussion from a Bayesian viewpoint . . . . . . . 351--367 H. A. David Early sample measures of variability . . 368--377 T. Timothy Chen and John Jen Tai A conversation with C. C. Li . . . . . . 378--387
James O. Berger and Brunero Liseo and Robert L. Wolpert Integrated likelihood methods for eliminating nuisance parameters . . . . 1--28 Sander Greenland and Judea Pearl and James M. Robins Confounding and Collapsibility in Causal Inference . . . . . . . . . . . . . . . 29--46 Jan Beran and Guerino Mazzola Analyzing Musical Structure and Performance --- A Statistical Approach 47--79 David R. Bellhouse and Christian Genest A history of the Statistical Society of Canada: the formative years (with discussion) . . . . . . . . . . . . . . 80--125 Allan R. Sampson A conversation with I. Richard Savage (with the assistance of Bruce Spencer) 126--148
Robert E. Kass Introduction to ``Solving the Bible Code Puzzle'' by Brendan McKay, Dror Bar-Natan, Maya Bar-Hillel and Gil Kalai 149 Maya Bar-Hillel and Dror Bar-Natan and Gil Kalai and Brendan McKay Solving the Bible Code Puzzle . . . . . 150--173 Kenneth Nordström The life and work of Gustav Elfving . . 174--196 J. Fellman Gustav Elfving's contribution to the emergence of the optimal experimental design theory . . . . . . . . . . . . . 197--200 Herman Chernoff Gustav Elfving's impact on experimental design . . . . . . . . . . . . . . . . . 201--205 D. Abbott and G. P. Harmer Parrondo's paradox . . . . . . . . . . . 206--213 Anders Hald On the history of maximum likelihood in relation to inverse probability and least squares . . . . . . . . . . . . . 214--222 Grace L. Yang A conversation with Lucien Le Cam . . . 223--241
David Freedman From association to causation: some remarks on the history of statistics . . 243--258 Paul R. Rosenbaum Choice as an Alternative to Control in Observational Studies . . . . . . . . . 259--304 Andrew Gelman and David H. Krantz and Chiayu Lin and Phillip N. Price Analysis of Local Decisions Using Hierarchical Modeling, Applied to Home Radon Measurement and Remediation . . . 305--337 Byron Wm. Brown, Jr. and Myles Hollander A conversation with Lincoln E. Moses . . 338--354
Michael D. Perlman and Lang Wu The Emperor's new tests . . . . . . . . 355--369 Roger Berger Comment on Perlman and Wu, ``The Emperor's new tests'' (with rejoinder by authors) . . . . . . . . . . . . . . . . 370--381 Jennifer A. Hoeting and David Madigan and Adrian E. Raftery and Chris T. Volinsky Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors) . . . . . . . . . . . . . . . . 382--417 E. L. Lehmann ``Student'' and small-sample theory . . 418--426 Carl J. Schwarz and George A. F. Seber Estimating Animal Abundance: Review III 427--456 Zhaohai Li A conversation with Chin Long Chiang . . 457--470
Patrick J. Heagerty and Scott L. Zeger Marginalized multilevel models and likelihood inference (with comments and a rejoinder by the authors) . . . . . . 1--26 Hugh Salamon and Mark R. Segal and Peter M. Small Comparing DNA Fingerprints of Infectious Organisms . . . . . . . . . . . . . . . 27--45 Ming-Hui Chen and Joseph G. Ibrahim Power prior distributions for regression models . . . . . . . . . . . . . . . . . 46--60 Antti Penttinen and Dietrich Stoyan Recent applications of point process methods in forestry statistics . . . . . 61--78 Luisa T. Fernholz and Stephan Morgenthaler A Conversation With John W. Tukey and Elizabeth Tukey . . . . . . . . . . . . 79--94
Sandra J. Lee and Marvin Zelen Clinical Trials and Sample Size Considerations: Another Perspective . . 95--110 Niall M. Adams and Gordon Blunt and David J. Hand and Mark G. Kelly Data Mining for Fun and Profit . . . . . 111--131 Maxine Pfannkuch and Chris J. Wild Statistical Thinking an Statistical Practice: Themes Gleaned from Professional Statisticians . . . . . . . 132--152 Peter Hall and Nader Tajvidi Nonparametric Analysis of Temporal Trend When Fitting Parametric Models to Extreme-Value Data . . . . . . . . . . . 153--167 Nitis Mukhopadhyay A conversation with Milton Sobel . . . . 168--190 George Michailidis and Jan de Leeuw Acknowledgment and Apology . . . . . . . 191 Anonymous Correction . . . . . . . . . . . . . . . 192
Jennifer A. Hoeting and David Madigan and Adrian E. Raftery and Chris T. Volinsky Correction to: ``Bayesian model averaging: a tutorial'' [Statist. Sci. \bf 14 (1999), no. 4, 382--417; MR 2001a:62033] . . . . . . . . . . . . . . 193--195 Trevor Hastie and Robert Tibshirani Bayesian backfitting (with comments and a rejoinder by the authors) . . . . . . 196--223 David S. Stoffer and David E. Tyler and David A. Wendt The spectral envelope and its applications . . . . . . . . . . . . . . 224--253 R. J. MacKay and R. W. Oldford Scientific Method, Statistical Method and the Speed of Light . . . . . . . . . 254--278 Ronald W. Butler Reliabilities for feedback systems and their saddlepoint approximation . . . . 279--298 David Marker and David Morganstein A conversation with Joseph Waksberg . . 299--312
Christopher G. Small and Jinfang Wang and Zejiang Yang Eliminating multiple root problems in estimation (with comments by John J. Hanfelt, C. C. Heyde and Bing Li, and a rejoinder by the authors) . . . . . . . 313--341 Ted Chang and Daijin Ko and Jiandong Lu and Jean-Yves Royer Regression Techniques in Plate Tectonics 342--356 S. P. Brooks and E. A. Catchpole and B. J. T. Morgan Bayesian Animal Survival Estimation . . 357--376 F. Campolongo and A. Saltelli and S. Tarantola Sensitivity Anaysis as an Ingredient of Modeling . . . . . . . . . . . . . . . . 377--395 Joseph I. Naus A conversation with Johannes H. B. Kemperman . . . . . . . . . . . . . . . 396--408
Odd O. Aalen and Håkon K. Gjessing Understanding the shape of the hazard rate: a process point of view (With comments and a rejoinder by the authors) 1--22 David J. Aldous Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today . . . . . . . . . . . . . 23--34 Alan Julian Izenman Statistical and Legal Aspects of the Forensic Study of Illicit Drugs . . . . 35--57 William DuMouchel and Wen-Hua Ju and Alan F. Karr and Matthias Schonlau and Martin Theusan and Yehuda Vardi Computer Intrusion: Detecting Masquerades . . . . . . . . . . . . . . 58--74 Myles Hollander A conversation with Ralph A. Bradley . . 75--100
Lawrence D. Brown and T. Tony Cai and Anirban DasGupta Interval Estimation for a Binomial Proportion . . . . . . . . . . . . . . . 101--133 Jean Opsomer and Yuedong Wang and Yuhong Yang Nonparametric Regressin with Correlated Errors . . . . . . . . . . . . . . . . . 134--153 Markus Abt and YongBin Lim and Jerome Sacks and Minge Xie and S. Stanley Young Sequential Approach for Identifying Lead Compounds in Large Chemical Databases 154--168 Klaus Hinkelmann Remembering Oscar Kempthorne (1919--2000) . . . . . . . . . . . . . . 169--183 Richard Olshen A Conversation with Leo Breiman . . . . 184--198
Leo Breiman Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) . . . . . . . . . . . . . . . . 199--231 E. Mammen and J. S. Marron and B. A. Turlach and M. P. Wand A General Projection Framework for Constrained Smoothing . . . . . . . . . 232--248 Barry C. Arnold and Enrique Castillo and José María Sarabia Conditionally Specified Distributions: An Introduction (with comments and a rejoinder by the authors) . . . . . . . 249--274 Yasuo Amemiya and Ilker Yalcin Nonlinear Factor Analysis as a Statistical Method . . . . . . . . . . . 275--294 Jon R. Kettenring A Conversation with Ramanathan Gnanadesikan . . . . . . . . . . . . . . 295--309
Morris L. Eaton About this issue . . . . . . . . . . . . 311 James P. Hobert and Galin L. Jones Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo . . . . . . . . . . . 312--334 Louis J. Billera and Persi Diaconis A Geometric Interpretation of the Metropolis--Hastings Algorithm . . . . . 335--339 Antonietta Mira Ordering and Improving the Performance of Monte Carlo Markov Chains . . . . . . 340--350 Gareth O. Roberts and Jeffrey S. Rosenthal Optimal scaling for various Metropolis--Hastings algorithms . . . . 351--367 Henry W. Block A conversation with Richard Barlow . . . 368--388 Henry W. Block Correction . . . . . . . . . . . . . . . 389
Mark H. Hansen and Charles Kooperberg Spline Adaptation in Extended Linear Models (with comments and a rejoinder by the authors) . . . . . . . . . . . . . . 2--51 Peter Bühlmann Bootstraps for Time Series . . . . . . . 52--72 Barry I. Graubardand and Edward L. Korn Inference for Superpopulation Parameters Using Sample Surveys . . . . . . . . . . 73--96 Richard W. Katz Sir Gilbert Walker and a Connection between El Niño and Statistics . . . . . 97--112 Nitis Mukhopadhyay A Conversation with Kanti Mardia . . . . 113--148 Mark Mandelkern Setting confidence intervals for bounded parameters . . . . . . . . . . . . . . . 149--172 Richard A. Berk and Peter Bickel and Katherine Campbell and Robert Fovell and Sallie Keller-McNulty and Elizabeth Kelly and Rodman Linn and Byungkyu Park and Alan Perelson and Nagui Rouphail and Jerome Sacks and Frederic Schoenberg Workshop on statistical approaches for the evaluation of complex computer models . . . . . . . . . . . . . . . . . 173--192 Alan E. Gelfand and Fei Wang A simulation-based approach to Bayesian sample size determination for performance under a given model and for separating models . . . . . . . . . . . 193--208 Dennis V. Lindley and Nozer D. Singpurwalla On exchangeable, causal and cascading failures . . . . . . . . . . . . . . . . 209--219 Saralees Nadarajah A conversation with Samuel Kotz . . . . 220--233
Richard J. Bolton and David J. Hand Statistical Fraud Detection: A Review 235--255 Colin Mallows Parity: Implementing the Telecommunications Act of 1996 . . . . . 256--285 Paul R. Rosenbaum Covariance Adjustment in Randomized Experiments and Observational Studies 286--327 André Berchtold and Adrian Raftery The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series . . . . . . . . 328--356 H. Joseph Newton A Conversation with Emanuel Parzen . . . 357--378 Michael Woodroofe and Tonglin Zhang Correction . . . . . . . . . . . . . . . 379
George Casella and Jeff Gill Voting, elections, and statistical science . . . . . . . . . . . . . . . . 381--382 Jason Gainous and Jeff Gill Why does voting get so complicated? A review of theories for analyzing democratic participation . . . . . . . . 383--404 Kevin M. Quinn and Andrew D. Martin An integrated computational model of multiparty electoral competition . . . . 405--419 Andrew Gelman and Jonathan N. Katz and Francis Tuerlinckx The mathematics and statistics of voting power . . . . . . . . . . . . . . . . . 420--435 Alan Agresti and Brett Presnell Misvotes, undervotes and overvotes: The 2000 presidential election in Florida 436--440 Richard L. Smith A statistical assessment of Buchanan's vote in Palm Beach County . . . . . . . 441--457 Mary E. Thompson A conversation with V. P. Godambe . . . 458--466 H. Joseph Newton Correction to ``A conversation with Emanuel Parzen'' . . . . . . . . . . . . 467 Anonymous Volume Index, \booktitleStatist. Sci. vol. 17 (2002) . . . . . . . . . . . . . 468--469
James O. Berger Could Fisher, Jeffreys and Neyman Have Agreed on Testing? . . . . . . . . . . . 1--32 Paola Sebastiani and Emanuela Gussoni and Isaac S. Kohane and Marco F. Ramoni Statistical Challenges in Functional Genomics . . . . . . . . . . . . . . . . 33--70 Sandrine Dudoit and Juliet Popper Shaffer and Jennifer C. Boldrick Multiple Hypothesis Testing in Microarray Experiments . . . . . . . . . 71--103 Robert Tibshirani and Trevor Hastie and Balasubramanian Narasimhan and Gilbert Chu Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays . . . . . . . . . . . . . . 104--117 Stephen Senn A Conversation with John Nelder . . . . 118--131
George Casella Introduction to the Silver Anniversary of the Bootstrap . . . . . . . . . . . . 133--134 Bradley Efron Second Thoughts on the Bootstrap . . . . 135--140 A. C. Davison and D. V. Hinkley and G. A. Young Recent Developments in Bootstrap Methodology . . . . . . . . . . . . . . 141--157 Peter Hall A Short Prehistory of the Bootstrap . . 158--167 Dennis D. Boos Introduction to the Bootstrap World . . 168--174 Rudolf Beran The Impact of the Bootstrap on Statistical Algorithms and Theory . . . 175--184 Subhash R. Lele Impact of Bootstrap on the Estimating Functions . . . . . . . . . . . . . . . 185--190 Jun Shao Impact of the Bootstrap on Sample Surveys . . . . . . . . . . . . . . . . 191--198 P. Lahiri On the Impact of Bootstrap in Survey Sampling and Small-Area Estimation . . . 199--210 Joel L. Horowitz The Bootstrap in Econometrics . . . . . 211--218 Dimitris N. Politis The Impact of Bootstrap Methods on Time Series Analysis . . . . . . . . . . . . 219--230 Michael D. Ernst and Alan D. Hutson Utilizing a Quantile Function Approach to Obtain Exact Bootstrap Solutions . . 231--240 Susan Holmes Bootstrapping Phylogenetic Trees: Theory and Methods . . . . . . . . . . . . . . 241--255 Pamela S. Soltis and Douglas E. Soltis Applying the Bootstrap in Phylogeny Reconstruction . . . . . . . . . . . . . 256--267 Susan Holmes Bradley Efron: A Conversation with Good Friends . . . . . . . . . . . . . . . . 268--281
George Casella Foreword [to Tribute to John Tukey] . . 283--284 Howard Wainer John Wilder Tukey: Statistical Inventor, Discoverer and Revolutionary . . . . . . 285--286 F. R. Anscombe Quiet Contributor: The Civic Career and Times of John W. Tukey . . . . . . . . . 287--310 David C. Hoaglin John W. Tukey and Data Analysis . . . . 311--318 Karen Kafadar John Tukey and Robustness . . . . . . . 319--331 Colin Mallows John Tukey at Bell Labs . . . . . . . . 332--335 Luisa Turrin Fernholz Remembering John W. Tukey . . . . . . . 336--340 J. A. Hartigan A Memory of John Tukey as a Teacher . . 341--341 Stephan Morgenthaler John W. Tukey as Teacher . . . . . . . . 342--345 Luisa Turrin Fernholz and Stephan Morgenthaler A Conversation with John Tukey . . . . . 346--356 Konstantinos Fokianos and Benjamin Kedem Regression Theory for Categorical Time Series . . . . . . . . . . . . . . . . . 357--376 Brajendra C. Sutradhar An Overview on Regression Models for Discrete Longitudinal Responses . . . . 377--393 Bruce G. Lindsay and Annie Qu Inference Functions and Quadratic Score Tests . . . . . . . . . . . . . . . . . 394--410
Anonymous Introduction to the Special Section on Statistics and the Environment . . . . . 411 David R. Brillinger Three Environmental Probabilistic Risk Problems . . . . . . . . . . . . . . . . 412--421 Andrew R. Solow Statistics in Atmospheric Science . . . 422--429 L. Mark Berliner Uncertainty and Climate Change . . . . . 430--435 Noel Cressie and John Kornak Spatial Statistics in the Presence of Location Error with an Application to Remote Sensing of the Environment . . . 436--456 G. P. Patil and C. Taillie Geographic and Network Surveillance via Scan Statistics for Critical Area Detection . . . . . . . . . . . . . . . 457--465 Louise Ryan Epidemiologically Based Environmental Risk Assessment . . . . . . . . . . . . 466--480 Sylvia R. Esterby A Conversation with Abdel H. El-Shaarawi 481--488 Steffen L. Lauritzen and Nuala A. Sheehan Graphical Models for Genetic Analyses 489--514 A. W. George and E. A. Thompson Discovering Disease Genes: Multipoint Linkage Analysis via a New Markov Chain Monte Carlo Approach . . . . . . . . . . 515--531 Anonymous Volume Index, \booktitleStatist. Sci. vol. 18 (2003) . . . . . . . . . . . . . 532--533
Christian P. Robert and George Casella Introduction to the Special Issue: Bayes Then and Now . . . . . . . . . . . . . . 1--2 D. R. Bellhouse The Reverend Thomas Bayes, FRS: A Biography to Celebrate the Tercentenary of His Birth . . . . . . . . . . . . . . 3--43 A. P. Dawid Probability, Causality and the Empirical World: A Bayes--de Finetti--Popper--Borel Synthesis . . . . 44--57 M. J. Bayarri and J. O. Berger The Interplay of Bayesian and Frequentist Analysis . . . . . . . . . . 58--80 Merlise Clyde and Edward I. George Model Uncertainty . . . . . . . . . . . 81--94 Peter Müller and Fernando A. Quintana Nonparametric Bayesian Data Analysis . . 95--110 Stephen G. Walker Modern Bayesian Asymptotics . . . . . . 111--117 C. Andrieu and A. Doucet and C. P. Robert Computational Advances for and from Bayesian Analysis . . . . . . . . . . . 118--127 D. M. Titterington Bayesian Methods for Neural Networks and Related Models . . . . . . . . . . . . . 128--139 Michael I. Jordan Graphical Models . . . . . . . . . . . . 140--155 David J. Spiegelhalter Incorporating Bayesian Ideas into Health-Care Evaluation . . . . . . . . . 156--174 Donald A. Berry Bayesian Statistics and the Efficiency and Ethics of Clinical Trials . . . . . 175--187 Shane T. Jensen and X. Shirley Liu and Qing Zhou and Jun S. Liu Computational Discovery of Gene Regulatory Binding Motifs: A Bayesian Perspective . . . . . . . . . . . . . . 188--204 Robert L. Wolpert A Conversation with James O. Berger . . 205--218
Youngjo Lee and John A. Nelder Conditional and Marginal Models: Another View . . . . . . . . . . . . . . . . . . 219--238 Wenxin Jiang and Bruce Turnbull The Indirect Method: Inference Based on Intermediate Statistics --- A Synthesis and Examples . . . . . . . . . . . . . . 239--263 Chris Genovese and Larry Wasserman and George Casella Introduction to the Special Section on Astrostatistics . . . . . . . . . . . . 264 Chyng-Lan Liang and John A. Rice and Imke de Pater and Charles Alcock and Tim Axelrod and Andrew Wang and Stuart Marshall Statistical Methods for Detecting Stellar Occultations by Kuiper Belt Objects: The Taiwanese--American Occultation Survey . . . . . . . . . . . 265--274 David A. van Dyk and Hosung Kang Highly Structured Models for Spectral Analysis in High-Energy Astrophysics . . 275--293 Domenico Marinucci Testing for Non-Gaussianity on Cosmic Microwave Background Radiation: A Review 294--307 Christopher R. Genovese and Christopher J. Miller and Robert C. Nichol and Mihir Arjunwadkar and Larry Wasserman Nonparametric Inference for the Cosmic Microwave Background . . . . . . . . . . 308--321 G. Jogesh Babu and S. George Djorgovski Some Statistical and Computational Challenges, and Opportunities in Astronomy . . . . . . . . . . . . . . . 322--332 D. A. S. Fraser Ancillaries and Conditional Inference 333--369 Thomas J. DiCiccio and Mary E. Thompson A Conversation with Donald A. S. Fraser 370--386
Bruce G. Lindsay and Jon Kettenring and David O. Siegmund A Report on the Future of Statistics . . 387--413 Kiros Berhane and W. James Gauderman and Daniel O. Stram and Duncan C. Thomas Statistical Issues in Studies of the Long-Term Effects of Air Pollution: The Southern California Children's Health Study . . . . . . . . . . . . . . . . . 414--449 Robert L. Wolpert and Kerrie L. Mengersen Adjusted Likelihoods for Synthesizing Empirical Evidence from Studies that Differ in Quality and Design: Effects of Environmental Tobacco Smoke . . . . . . 450--471 Nick Duffield Sampling for Passive Internet Measurement: A Review . . . . . . . . . 472--498 Rui Castro and Mark Coates and Gang Liang and Robert Nowak and Bin Yu Network Tomography: Recent Developments 499--517 Jin Cao and William S. Cleveland and Don X. Sun Bandwidth Estimation for Best-Effort Internet Traffic . . . . . . . . . . . . 518--543 Campbell B. Read A Conversation with Norman L. Johnson 544--560
Ronald H. Randles and Thomas P. Hettmansperger and George Casella Introduction to the Special Issue: Nonparametric Statistics . . . . . . . . 561 Joseph W. McKean Robust Analysis of Linear Models . . . . 562--570 Dennis D. Boos and Cavell Brownie Comparing Variances and Other Measures of Dispersion . . . . . . . . . . . . . 571--578 R. T. Elmore and T. P. Hettmansperger and F. Xuan The Sign Statistic, One-Way Layouts and Mixture Models . . . . . . . . . . . . . 579--587 Simon J. Sheather Density Estimation . . . . . . . . . . . 588--597 Hannu Oja and Ronald H. Randles Multivariate Nonparametric Tests . . . . 598--605 John I. Marden Positions and QQ Plots . . . . . . . . . 606--614 Michael G. Akritas Nonparametric Survival Analysis . . . . 615--623 Ted Chang Spatial Statistics . . . . . . . . . . . 624--635 Douglas A. Wolfe Ranked Set Sampling: An Approach to More Efficient Data Collection . . . . . . . 636--643 Myles Hollander and Edsel A. Peña Nonparametric Methods in Reliability . . 644--651 Emanuel Parzen Quantile Probability and Statistical Data Modeling . . . . . . . . . . . . . 652--662 William R. Schucany Kernel Smoothers: An Overview of Curve Estimators for the First Graduate Course in Nonparametric Statistics . . . . . . 663--675 Michael D. Ernst Permutation Methods: A Basis for Exact Inference . . . . . . . . . . . . . . . 676--685 Jun Li and Regina Y. Liu New Nonparametric Tests of Multivariate Locations and Scales Using Data Depth 686--696 Marc Hallin and Davy Paindaveine Multivariate Signed-Rank Tests in Vector Autoregressive Order Identification . . 697--711 Mary E. Putt and Vernon M. Chinchilli Nonparametric Approaches to the Analysis of Crossover Studies . . . . . . . . . . 712--719 Narayanaswamy Balakrishnan and Haikady N. Nagaraja A Conversation with H. A. David . . . . 720--734
Fred J. Hickernell and Christiane Lemieux and Art B. Owen Control Variates for Quasi-Monte Carlo 1--31 Stephen Stigler Fisher in 1921 . . . . . . . . . . . . . 32--49 A. Jasra and C. C. Holmes and D. A. Stephens Markov Chain Monte Carlo Methods and the Label Switching Problem in Bayesian Mixture Modeling . . . . . . . . . . . . 50--67 Richard Perline Strong, Weak and False Inverse Power Laws . . . . . . . . . . . . . . . . . . 68--88 Nitis Mukhopadhyay A Conversation with Shelemyahu Zacks . . 89--110
Paul Gustafson On Model Expansion, Model Contraction, Identifiability and Prior Information: Two Illustrative Scenarios Involving Mismeasured Variables . . . . . . . . . 111--140 Xiao-Li Meng From Unit Root to Stein's Estimator to Fisher's $k$ Statistics: If You Have a Moment, I Can Tell You More . . . . . . 141--162 S. Gomatam and A. F. Karr and J. P. Reiter and A. P. Sanil Data Dissemination and Disclosure Limitation in a World Without Microdata: A Risk--Utility Framework for Remote Access Analysis Servers . . . . . . . . 163--177 David R. Bellhouse and Christian Genest A Public Health Controversy in 19th Century Canada . . . . . . . . . . . . . 178--192 Anirban DasGupta A Conversation with Larry Brown . . . . 193--203
J. Michael Steele Darrell Huff and Fifty Years of How to Lie with Statistics . . . . . . . . . . 205--209 Joel Best Lies, Calculations and Constructions: Beyond How to Lie with Statistics . . . 210--214 Mark Monmonier Lying with Maps . . . . . . . . . . . . 215--222 Walter Krämer and Gerd Gigerenzer How to Confuse with Statistics or: The Use and Misuse of Conditional Probabilities . . . . . . . . . . . . . 223--230 Richard D. De Veaux and David J. Hand How to Lie with Bad Data . . . . . . . . 231--238 Charles Murray How to Accuse the Other Guy of Lying with Statistics . . . . . . . . . . . . 239--241 Sally C. Morton Ephedra . . . . . . . . . . . . . . . . 242--248 Stephen E. Fienberg and Paul C. Stern In Search of the Magic Lasso: The Truth About the Polygraph . . . . . . . . . . 249--260 Marie Davidian and Anastasios A. Tsiatis and Selene Leon Semiparametric Estimation of Treatment Effect in a Pretest--Posttest Study with Missing Data . . . . . . . . . . . . . . 261--301 A. S. Hedayat A Conversation with Walter T. Federer 302--315
Jianqing Fan A Selective Overview of Nonparametric Methods in Financial Econometrics . . . 317--337 Peter C. B. Phillips and Jun Yu Comment: A Selective Overview of Nonparametric Methods in Financial Econometrics . . . . . . . . . . . . . . 338--343 Michael Sòrensen Comment: A Selective Overview of Nonparametric Methods in Financial Econometrics . . . . . . . . . . . . . . 344--346 Per A. Mykland and Lan Zhang Comment: A Selective Overview of Nonparametric Methods in Financial Econometrics . . . . . . . . . . . . . . 347--350 Jianqing Fan Rejoinder: A Selective Overview of Nonparametric Methods in Financial Econometrics . . . . . . . . . . . . . . 351--357 Charles J. Geyer and Glen D. Meeden Fuzzy and Randomized Confidence Intervals and $P$-Values . . . . . . . . 358--366 Alan Agresti and Anna Gottard Comment: Randomized Confidence Intervals and the Mid-$P$ Approach . . . . . . . . 367--371 Roger L. Berger and George Casella Comment: Fuzzy and Randomized Confidence Intervals and $P$-Values . . . . . . . . 372--374 Lawrence D. Brown and T. Tony Cai and Anirban DasGupta Comment: Fuzzy and Randomized Confidence Intervals and $P$-Values . . . . . . . . 375--379 Andrew Gelman Comment: Fuzzy and Bayesian $p$-Values and $u$-Values . . . . . . . . . . . . . 380--381 Elizabeth A. Thompson Comment: Fuzzy and Randomized Confidence Intervals and $P$-Values . . . . . . . . 382--383 Charles J. Geyer and Glen D. Meeden Rejoinder: Fuzzy and Randomized Confidence Intervals and $P$-Values . . 384--387 Beatrix Jones and Carlos Carvalho and Adrian Dobra and Chris Hans and Chris Carter and Mike West Experiments in Stochastic Computation for High-Dimensional Graphical Models 388--400 John Aldrich Fisher and Regression . . . . . . . . . 401--417 Daniel Barry A Conversation with John Hartigan . . . 418--430 Anonymous Index to Volume 20 . . . . . . . . . . . 431--432
David J. Hand Classifier Technology and the Illusion of Progress . . . . . . . . . . . . . . 1--14 Jerome H. Friedman Comment: Classifier Technology and the Illusion of Progress . . . . . . . . . . 15--18 Ross W. Gayler Comment: Classifier Technology and the Illusion of Progress --- Credit Scoring 19--23 Robert C. Holte Elaboration on Two Points Raised in ``Classifier Technology and the Illusion of Progress'' . . . . . . . . . . . . . 24--26 Robert A. Stine Comment: Classifier Technology and the Illusion of Progress . . . . . . . . . . 27--29 David J. Hand Rejoinder: Classifier Technology and the Illusion of Progress . . . . . . . . . . 30--34 Y. Zhao and J. Staudenmayer and B. A. Coull and M. P. Wand General Design Bayesian Generalized Linear Mixed Models . . . . . . . . . . 35--51 Ivy Jansen and Caroline Beunckens and Geert Molenberghs and Geert Verbeke and Craig Mallinckrodt Analyzing Incomplete Discrete Longitudinal Clinical Trial Data . . . . 52--69 Glenn Shafer and Vladimir Vovk The Sources of Kolmogorov's Grundbegriffe . . . . . . . . . . . . . 70--98 Zhiliang Ying and Cun-Hui Zhang A Conversation with Yuan Shih Chow . . . 99--112
Wolfgang Jank and Galit Shmueli A Special Issue on Statistical Challenges and Opportunities in Electronic Commerce Research . . . . . . 113--115 Ravi Bapna and Paulo Goes and Ram Gopal and James R. Marsden Moving from Data-Constrained to Data-Enabled Research: Experiences and Challenges in Collecting, Validating and Analyzing Large-Scale e-Commerce Data 116--130 Anindya Ghose and Arun Sundararajan Evaluating Pricing Strategy Using e-Commerce Data: Evidence and Estimation Challenges . . . . . . . . . . . . . . . 131--142 Stephen E. Fienberg Privacy and Confidentiality in an e-Commerce World: Data Mining, Data Warehousing, Matching and Disclosure Limitation . . . . . . . . . . . . . . . 143--154 Wolfgang Jank and Galit Shmueli Functional Data Analysis in Electronic Commerce Research . . . . . . . . . . . 155--166 Katherine J. Stewart and David P. Darcy and Sherae L. Daniel Opportunities and Challenges Applying Functional Data Analysis to the Study of Open Source Software Evolution . . . . . 167--178 Srinivas K. Reddy and Mayukh Dass Modeling On-Line Art Auction Dynamics Using Functional Data Analysis . . . . . 179--193 Sharad Borle and Peter Boatwright and Joseph B. Kadane The Timing of Bid Placement and Extent of Multiple Bidding: An Empirical Investigation Using eBay Online Auctions 194--205 Donald B. Rubin and Richard P. Waterman Estimating the Causal Effects of Marketing Interventions Using Propensity Score Methodology . . . . . . . . . . . 206--222 Sunil Mithas and Daniel Almirall and M. S. Krishnan Do CRM Systems Cause One-to-One Marketing Effectiveness? . . . . . . . . 223--233 David L. Banks and Yasmin H. Said Data Mining in Electronic Commerce . . . 234--246 Avi Goldfarb and Qiang Lu Household-Specific Regressions Using Clickstream Data . . . . . . . . . . . . 247--255 Shawndra Hill and Foster Provost and Chris Volinsky Network-Based Marketing: Identifying Likely Adopters via Consumer Networks 256--276 Chrysanthos Dellarocas and Ritu Narayan A Statistical Measure of a Population's Propensity to Engage in Post-Purchase Online Word-of-Mouth . . . . . . . . . . 277--285 Paul Glasserman and Steven Kou A Conversation with Chris Heyde . . . . 286--298
Donald B. Rubin Causal Inference Through Potential Outcomes and Principal Stratification: Application to Studies with ``Censoring'' Due to Death . . . . . . . 299--309 Edward L. Korn Comment: Causal Inference in the Medical Area . . . . . . . . . . . . . . . . . . 310--312 Paul R. Rosenbaum Comment: The Place of Death in the Quality of Life . . . . . . . . . . . . 313--316 Stephen E. Fienberg Comment: Complex Causal Questions Require Careful Model Formulation: Discussion of Rubin on Experiments with ``Censoring'' Due to Death . . . . . . . 317--318 Donald B. Rubin Rejoinder . . . . . . . . . . . . . . . 319--321 Javier M. Moguerza and Alberto Muñoz Support Vector Machines with Applications . . . . . . . . . . . . . . 322--336 Olivier Bousquet and Bernhard Schölkopf Comment . . . . . . . . . . . . . . . . 337--340 Peter L. Bartlett and Michael I. Jordan and Jon D. McAuliffe Comment . . . . . . . . . . . . . . . . 341--346 Grace Wahba Comment . . . . . . . . . . . . . . . . 347--351 Trevor Hastie and Ji Zhu Comment . . . . . . . . . . . . . . . . 352--357 Javier M. Moguerza and Alberto Muñoz Rejoinder . . . . . . . . . . . . . . . 358--362 Dylan S. Small and Joseph L. Gastwirth and Abba M. Krieger and Paul R. Rosenbaum R-Estimates vs. GMM: A Theoretical Case Study of Validity and Efficiency . . . . 363--375 André I. Khuri and Bhramar Mukherjee and Bikas K. Sinha and Malay Ghosh Design Issues for Generalized Linear Models: A Review . . . . . . . . . . . . 376--399 Stephen M. Stigler Isaac Newton as a Probabilist . . . . . 400--403 Nitis Mukhopadhyay A Conversation with Ulf Grenander . . . 404--426
Sallie Keller-McNulty and Alyson Wilson and Christine Anderson-Cook Reliability . . . . . . . . . . . . . . 427 Tim Bedford and John Quigley and Lesley Walls Expert Elicitation for Reliable System Design . . . . . . . . . . . . . . . . . 428--450 Norman Fenton and Martin Neil Comment: Expert Elicitation for Reliable System Design . . . . . . . . . . . . . 451--453 Andrew Koehler Comment: Expert Elicitation for Reliable System Design . . . . . . . . . . . . . 454--455 Wenbin Wang Comment: Expert Elicitation for Reliable System Design . . . . . . . . . . . . . 456--459 Tim Bedford and John Quigley and Lesley Walls Rejoinder: Expert Elicitation for Reliable System Design . . . . . . . . . 460--462 John M. Chambers and David A. James and Diane Lambert and Scott Vander Wiel Monitoring Networked Applications With Incremental Quantile Estimation . . . . 463--475 Lorraine Denby and James M. Landwehr and Jean Meloche Comment: Monitoring Networked Applications With Incremental Quantile Estimation . . . . . . . . . . . . . . . 476--478 Earl Lawrence and George Michailidis and Vijayan N. Nair Comment: Monitoring Networked Applications With Incremental Quantile Estimation . . . . . . . . . . . . . . . 479--482 Bin Yu Comment: Monitoring Networked Applications With Incremental Quantile Estimation . . . . . . . . . . . . . . . 483--484 John M. Chambers and David A. James and Diane Lambert and Scott Vander Wiel Rejoinder: Monitoring Networked Applications With Incremental Quantile Estimation . . . . . . . . . . . . . . . 485--486 Edsel A. Peña Dynamic Modeling and Statistical Analysis of Event Times . . . . . . . . 487--500 Mei-Ling Ting Lee and G. A. Whitmore Threshold Regression for Survival Analysis: Modeling Event Times by a Stochastic Process Reaching a Boundary 501--513 Alyson G. Wilson and Todd L. Graves and Michael S. Hamada and C. Shane Reese Advances in Data Combination, Analysis and Collection for System Reliability Assessment . . . . . . . . . . . . . . . 514--531 Bo Henry Lindqvist On the Statistical Modeling and Analysis of Repairable Systems . . . . . . . . . 532--551 Luis A. Escobar and William Q. Meeker A Review of Accelerated Test Models . . 552--577 Paul Kvam A Conversation With Harry Martz . . . . 578--585 Anonymous Contents of Volume 21 (2006) . . . . . . 586--588
R. Dennis Cook Fisher Lecture: Dimension Reduction in Regression . . . . . . . . . . . . . . . 1--26 Ronald Christensen Comment: Fisher Lecture: Dimension Reduction in Regression . . . . . . . . 27--31 Bing Li Comment: Fisher Lecture: Dimension Reduction in Regression . . . . . . . . 32--35 Lexin Li and Christopher J. Nachtsheim Comment: Fisher Lecture: Dimension Reduction in Regression . . . . . . . . 36--39 R. Dennis Cook Rejoinder: Fisher Lecture: Dimension Reduction in Regression . . . . . . . . 40--43 Stephen T. Buckland and Ken B. Newman and Carmen Fernández and Len Thomas and John Harwood Embedding Population Dynamics Models in Inference . . . . . . . . . . . . . . . 44--58 Omiros Papaspiliopoulos and Gareth O. Roberts and Martin Sköld A General Framework for the Parametrization of Hierarchical Models 59--73 Marshall M. Joffe and Dylan Small and Chi-Yuan Hsu Defining and Estimating Intervention Effects for Groups that will Develop an Auxiliary Outcome . . . . . . . . . . . 74--97 Mark R. Segal Chess, Chance and Conspiracy . . . . . . 98--108 David R. Bellhouse and Christian Genest Maty's Biography of Abraham De Moivre, Translated, Annotated and Augmented . . 109--136 Ronald Herman Randles A Conversation with Robert V. Hogg . . . 137--152
Andrew Gelman Struggles with Survey Weighting and Regression Modeling . . . . . . . . . . 153--164 Robert M. Bell and Michael L. Cohen Comment: Struggles with Survey Weighting and Regression Modeling . . . . . . . . 165--167 F. Jay Breidt and Jean D. Opsomer Comment: Struggles with Survey Weighting and Regression Modeling . . . . . . . . 168--170 Roderick J. Little Comment: Struggles with Survey Weighting and Regression Modeling . . . . . . . . 171--174 Sharon L. Lohr Comment: Struggles with Survey Weighting and Regression Modeling . . . . . . . . 175--178 Danny Pfeffermann Comment: Struggles with Survey Weighting and Regression Modeling . . . . . . . . 179--183 Andrew Gelman Rejoinder: Struggles with Survey Weighting and Regression Modeling . . . 184--188 Feng Liang and Sayan Mukherjee and Mike West The Use of Unlabeled Data in Predictive Modeling . . . . . . . . . . . . . . . . 189--205 Sharon-Lise T. Normand and David M. Shahian Statistical and Clinical Aspects of Hospital Outcomes Profiling . . . . . . 206--226 K. Mengersen and S. A. Moynihan and R. L. Tweedie Causality and Association: The Statistical and Legal Approaches . . . . 227--254 Stephen E. Fienberg and Stephen M. Stigler and Judith M. Tanur The William Kruskal Legacy: 1919--2005 255--261 Norman M. Bradburn A Tribute to Bill Kruskal . . . . . . . 262--263 Morris L. Eaton William H. Kruskal and the Development of Coordinate-Free Methods . . . . . . . 264--265 Stephen E. Fienberg William Kruskal: My Scholarly and Scientific Model . . . . . . . . . . . . 266--268 Leo A. Goodman Working with Bill Kruskal: From 1950 Onward . . . . . . . . . . . . . . . . . 269--272 Margaret E. Martin Bill Kruskal and the Committee on National Statistics . . . . . . . . . . 273--274 Stephen M. Stigler William Kruskal Remembered . . . . . . . 275--276 Judith M. Tanur William H. Kruskal, Mentor and Friend 277--278 Tathagata Banerjee and Rahul Mukerjee A Conversation with Shoutir Kishore Chatterjee . . . . . . . . . . . . . . . 279--290 Edward J. Wegman and Wendy L. Martinez A Conversation with Dorothy Gilford . . 291--300
M. Bédard and D. A. S. Fraser and A. Wong Higher Accuracy for Bayesian and Frequentist Inference: Large Sample Theory for Small Sample Likelihood . . . 301--321 M. J. Bayarri and M. E. Castellanos Bayesian Checking of the Second Levels of Hierarchical Models . . . . . . . . . 322--343 M. Evans Comment: Bayesian Checking of the Second Levels of Hierarchical Models . . . . . 344--348 Andrew Gelman Comment: Bayesian Checking of the Second Levels of Hierarchical Models . . . . . 349--352 Valen E. Johnson Comment: Bayesian Checking of the Second Levels of Hierarchical Models . . . . . 353--358 Michael D. Larsen and Lu Lu Comment: Bayesian Checking of the Second Level of Hierarchical Models: Cross-Validated Posterior Predictive Checks Using Discrepancy Measures . . . 359--362 M. J. Bayarri and M. E. Castellanos Rejoinder: Bayesian Checking of the Second Levels of Hierarchical Models . . 363--367 Michael Friendly A.-M. Guerry's Moral Statistics of France: Challenges for Multivariable Spatial Analysis . . . . . . . . . . . . 368--399 Edward I. George A Tribute to Ingram Olkin . . . . . . . 400 Betsy Jane Becker Multivariate Meta-Analysis: Contributions of Ingram Olkin . . . . . 401--406 Barry C. Arnold Majorization: Here, There and Everywhere 407--413 Betsy Jane Becker and Meng-Jia Wu The Synthesis of Regression Slopes in Meta-Analysis . . . . . . . . . . . . . 414--429 Mathias Drton and Michael D. Perlman Multiple Testing and Error Control in Gaussian Graphical Model Selection . . . 430--449 Allan R. Sampson A Conversation with Ingram Olkin . . . . 450--475
Peter Bühlmann and Torsten Hothorn Boosting Algorithms: Regularization, Prediction and Model Fitting . . . . . . 477--505 Andreas Buja and David Mease and Abraham J. Wyner Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting . . . . . . . . . . . . . . . . 506--512 Trevor Hastie Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting . . . . . . . . . . . . . . . . 513--515 Peter Bühlmann and Torsten Hothorn Rejoinder: Boosting Algorithms: Regularization, Prediction and Model Fitting . . . . . . . . . . . . . . . . 516--522 Joseph D. Y. Kang and Joseph L. Schafer Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data . . . . . . . . . . . . 523--539 Greg Ridgeway and Daniel F. McCaffrey Comment: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data . . . . . . . . . . . . 540--543 James Robins and Mariela Sued and Quanhong Lei-Gomez and Andrea Rotnitzky Comment: Performance of Double-Robust Estimators When ``Inverse Probability'' Weights Are Highly Variable . . . . . . 544--559 Zhiqiang Tan Comment: Understanding OR, PS and DR . . 560--568 Anastasios A. Tsiatis and Marie Davidian Comment: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data . . . . . . . . . . . . 569--573 Joseph D. Y. Kang and Joseph L. Schafer Rejoinder: Demystifying Double Robustness: A Comparison of Alternative Strategies for Estimating a Population Mean from Incomplete Data . . . . . . . 574--580 Peter J. Bickel and Chao Chen and Jaimyoung Kwon and John Rice and Erik van Zwet and Pravin Varaiya Measuring Traffic . . . . . . . . . . . 581--597 Stephen M. Stigler The Epic Story of Maximum Likelihood . . 598--620 Ronald Christensen and Wesley Johnson A Conversation with Seymour Geisser . . 621--636 Barry I. Graubard and Paul S. Levy and Gordon B. Willis A Conversation with Monroe Sirken . . . 637--650 Anonymous Contents of Volume 22 (2007) . . . . . . 651--652
Bradley Efron Microarrays, Empirical Bayes and the Two-Groups Model . . . . . . . . . . . . 1--22 Yoav Benjamini Comment: Microarrays, Empirical Bayes and the Two-Groups Model . . . . . . . . 23--28 T. Tony Cai Comment: Microarrays, Empirical Bayes and the Two-Group Model . . . . . . . . 29--33 Carl N. Morris Comment: Microarrays, Empirical Bayes and the Two-Groups Model . . . . . . . . 34--40 Kenneth Rice and David Spiegelhalter Comment: Microarrays, Empirical Bayes and the Two-Groups Model . . . . . . . . 41--44 Bradley Efron Rejoinder: Microarrays, Empirical Bayes and the Two-Groups Model . . . . . . . . 45--47 David R. Brillinger The 2005 Neyman Lecture: Dynamic Indeterminism in Science . . . . . . . . 48--64 Hans R. Künsch Comment: The 2005 Neyman Lecture: Dynamic Indeterminism in Science . . . . 65--68 Grace L. Yang Comment: The 2005 Neyman Lecture: Dynamic Indeterminism in Science . . . . 69--75 David R. Brillinger Rejoinder: The 2005 Neyman Lecture: Dynamic Indeterminism in Science . . . . 76--77 Gary King and Ying Lu Verbal Autopsy Methods with Multiple Causes of Death . . . . . . . . . . . . 78--91 Mia Hubert and Peter J. Rousseeuw and Stefan Van Aelst High-Breakdown Robust Multivariate Methods . . . . . . . . . . . . . . . . 92--119 Andreas Buja and Hans R. Künsch A Conversation with Peter Huber . . . . 120--135 Stephen E. Fienberg The Early Statistical Years: 1947--1967. A Conversation with Howard Raiffa . . . 136--149
Persi Diaconis and Kshitij Khare and Laurent Saloff-Coste Gibbs Sampling, Exponential Families and Orthogonal Polynomials . . . . . . . . . 151--178 Patrizia Berti and Guido Consonni and Luca Pratelli and Pietro Rigo Comment: Gibbs Sampling, Exponential Families and Orthogonal Polynomials . . 179--182 Galin L. Jones and Alicia A. Johnson Comment: Gibbs Sampling, Exponential Families, and Orthogonal Polynomials . . 183--186 Gérard Letac Comment: Lancaster Probabilities and Gibbs Sampling . . . . . . . . . . . . . 187--191 Richard A. Levine and George Casella Comment: On Random Scan Gibbs Samplers 192--195 Persi Diaconis and Kshitij Khare and Laurent Saloff-Coste Rejoinder: Gibbs Sampling, Exponential Families and Orthogonal Polynomials . . 196--200 Geert Verbeke and Geert Molenberghs and Caroline Beunckens Formal and Informal Model Selection with Incomplete Data . . . . . . . . . . . . 201--218 Ben B. Hansen and Jake Bowers Covariate Balance in Simple, Stratified and Clustered Comparative Studies . . . 219--236 David A. Freedman Randomization Does Not Justify Logistic Regression . . . . . . . . . . . . . . . 237--249 James M. Flegal and Murali Haran and Galin L. Jones Markov Chain Monte Carlo: Can We Trust the Third Significant Figure? . . . . . 250--260 Stephen M. Stigler Karl Pearson's Theoretical Errors and the Advances They Inspired . . . . . . . 261--271 Myles Hollander A Conversation with Jayaram Sethuraman 272--285
Dan L. Nicolae and Xiao-Li Meng and Augustine Kong Quantifying the Fraction of Missing Information for Hypothesis Testing in Statistical and Genetic Studies . . . . 287--312 Hani Doss Comment: Quantifying Information Loss in Survival Studies . . . . . . . . . . . . 313--317 I-Shou Chang and Chung-Hsing Chen and Li-Chu Chien and Chao A. Hsiung Comment: Quantifying the Fraction of Missing Information for Hypothesis Testing in Statistical and Genetic Studies . . . . . . . . . . . . . . . . 318--320 Tian Zheng and Shaw-Hwa Lo Comment: Quantifying the Fraction of Missing Information for Hypothesis Testing in Statistical and Genetic Studies . . . . . . . . . . . . . . . . 321--324 Dan L. Nicolae and Xiao-Li Meng and Augustine Kong Rejoinder: Quantifying the Fraction of Missing Information for Hypothesis Testing in Statistical and Genetic Studies . . . . . . . . . . . . . . . . 325--331 Guido Consonni and Piero Veronese Compatibility of Prior Specifications Across Linear Models . . . . . . . . . . 332--353 A. C. Davison and N. Sartori The Banff Challenge: Statistical Detection of a Noisy Signal . . . . . . 354--364 Ryan Martin and Jayanta K. Ghosh Stochastic Approximation and Newton's Estimate of a Mixing Distribution . . . 365--382 Zhihua Zhang and Michael I. Jordan Multiway Spectral Clustering: A Margin-Based Perspective . . . . . . . . 383--403 William F. Rosenberger and Oleksandr Sverdlov Handling Covariates in the Design of Clinical Trials . . . . . . . . . . . . 404--419 Francisco J. Samaniego A Conversation with Myles Hollander . . 420--438
Martin A. Lindquist The Statistical Analysis of fMRI Data 439--464 Alessandra R. Brazzale and Anthony C. Davison Accurate Parametric Inference for Small Samples . . . . . . . . . . . . . . . . 465--484 R. Dennis Cook and Liliana Forzani Principal Fitted Components for Dimension Reduction in Regression . . . 485--501 Michael Friendly The Golden Age of Statistical Graphics 502--535 Nicholas I. Fisher and Willem R. van Zwet Remembering Wassily Hoeffding . . . . . 536--547 Malay Ghosh and Michael J. Schell A Conversation with Pranab Kumar Sen . . 548--564 Anonymous Contents of Volume 23 (2008) . . . . . . 565--566
Robert Adler and John Ewing and Peter Taylor Citation Statistics: A Report from the International Mathematical Union (IMU) in Cooperation with the International Council of Industrial and Applied Mathematics (ICIAM) and the Institute of Mathematical Statistics (IMS) . . . . . 1--14 Bernard W. Silverman Comment: Bibliometrics in the Context of the UK Research Assessment Exercise . . 15--16 Sune Lehmann and Benny E. Lautrup and Andrew D. Jackson Comment: Citation Statistics . . . . . . 17--20 David Spiegelhalter and Harvey Goldstein Comment: Citation Statistics . . . . . . 21--24 Peter Gavin Hall Comment: Citation Statistics . . . . . . 25--26 Robert Adler and John Ewing and Peter Taylor Rejoinder: Citation Statistics . . . . . 27--28 Kosuke Imai and Gary King and Clayton Nall The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation . . . . . . 29--53 Jennifer Hill and Marc Scott Comment: The Essential Role of Pair Matching . . . . . . . . . . . . . . . . 54--58 Kai Zhang and Dylan S. Small Comment: The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation . . . . . . . . . . . . . . . 59--64 Kosuke Imai and Gary King and Clayton Nall Rejoinder: Matched Pairs and the Future of Cluster-Randomized Experiments . . . 65--72 Vladimir Vovk Superefficiency from the Vantage Point of Computability . . . . . . . . . . . . 73--86 R. J. Beran and N. I. Fisher An Evening Spent with Bill van Zwet . . 87--115 David R. Brillinger and Richard A. Davis A Conversation with Murray Rosenblatt 116--140
Christian P. Robert and Nicolas Chopin and Judith Rousseau Harold Jeffreys's Theory of Probability Revisited . . . . . . . . . . . . . . . 141--172 José M. Bernardo Comment . . . . . . . . . . . . . . . . 173--175 Andrew Gelman Bayes, Jeffreys, Prior Distributions and the Philosophy of Statistics . . . . . . 176--178 Robert Kass Comment: The Importance of Jeffreys's Legacy . . . . . . . . . . . . . . . . . 179--182 Dennis Lindley Comment . . . . . . . . . . . . . . . . 183--184 Stephen Senn Comment . . . . . . . . . . . . . . . . 185--186 Arnold Zellner Comment . . . . . . . . . . . . . . . . 187--190 Christian P. Robert and Nicolas Chopin and Judith Rousseau Rejoinder: Harold Jeffreys's Theory of Probability Revisited . . . . . . . . . 191--194 Sander Greenland Relaxation Penalties and Priors for Plausible Modeling of Nonidentified Bias Sources . . . . . . . . . . . . . . . . 195--210 Brenda F. Kurland and Laura L. Johnson and Brian L. Egleston and Paula H. Diehr Longitudinal Data with Follow-up Truncated by Death: Match the Analysis Method to Research Aims . . . . . . . . 211--222 James G. Booth and Walter T. Federer and Martin T. Wells and Russell D. Wolfinger A Multivariate Variance Components Model for Analysis of Covariance in Designed Experiments . . . . . . . . . . . . . . 223--237 Joseph B. Kadane Bayesian Thought in Early Modern Detective Stories: Monsieur Lecoq, C. Auguste Dupin and Sherlock Holmes . . . 238--243 Martin T. Wells A Conversation with Shayle R. Searle . . 244--254
Youngjo Lee and John A. Nelder Likelihood Inference for Models with Unobservables: Another View . . . . . . 255--269 Thomas A. Louis Discussion of Likelihood Inference for Models with Unobservables: Another View 270--272 Geert Molenberghs and Michael G. Kenward and Geert Verbeke Discussion of Likelihood Inference for Models with Unobservables: Another View 273--279 Xiao-Li Meng Decoding the H-likelihood . . . . . . . 280--293 Youngjo Lee and John A. Nelder Rejoinder: Likelihood Inference for Models with Unobservables Another View 294--302 Bruce Lindsay and Jiawei Liu Model Assessment Tools for a Model False World . . . . . . . . . . . . . . . . . 303--318 Guenther Walther Inference and Modeling with Log-concave Distributions . . . . . . . . . . . . . 319--327 Paul Gustafson and Sander Greenland Interval Estimation for Messy Observational Data . . . . . . . . . . . 328--342 Joseph L. Gastwirth and Yulia R. Gel and Weiwen Miao The Impact of Levene's Test of Equality of Variances on Statistical Theory and Practice . . . . . . . . . . . . . . . . 343--360 Mark P. Becker A Conversation with Leo Goodman . . . . 361--385
Gang Zheng and Jonathan Marchini and Nancy L. Geller Introduction to the Special Issue: Genome-Wide Association Studies . . . . 387 Nan M. Laird and Christoph Lange The Role of Family-Based Designs in Genome-Wide Association Studies . . . . 388--397 Kathryn Roeder and Larry Wasserman Genome-Wide Significance Levels and Weighted Hypothesis Testing . . . . . . 398--413 Duncan C. Thomas and Graham Casey and David V. Conti and Robert W. Haile and Juan Pablo Lewinger and Daniel O. Stram Methodological Issues in Multistage Genome-Wide Association Studies . . . . 414--429 Zhan Su and Niall Cardin and the Wellcome Trust Case Control Consortium and Peter Donnelly and Jonathan Marchini A Bayesian Method for Detecting and Characterizing Allelic Heterogeneity and Boosting Signals in Genome-Wide Association Studies . . . . . . . . . . 430--450 William Astle and David J. Balding Population Structure and Cryptic Relatedness in Genetic Association Studies . . . . . . . . . . . . . . . . 451--471 Charles Kooperberg and Michael LeBlanc and James Y. Dai and Indika Rajapakse Structures and Assumptions: Strategies to Harness Gene--Gene and Gene--Environment Interactions in GWAS 472--488 Nilanjan Chatterjee and Yi-Hau Chen and Sheng Luo and Raymond J. Carroll Analysis of Case-Control Association Studies: SNPs, Imputation and Haplotypes 489--502 Gang Zheng and Jungnam Joo and Dmitri Zaykin and Colin Wu and Nancy Geller Robust Tests in Genome-Wide Scans under Incomplete Linkage Disequilibrium . . . 503--516 Michael E. Goddard and Naomi R. Wray and Klara Verbyla and Peter M. Visscher Estimating Effects and Making Predictions from Genome-Wide Marker Data 517--529 Sebastian Zöllner and Tanya M. Teslovich Using GWAS Data to Identify Copy Number Variants Contributing to Common Complex Diseases . . . . . . . . . . . . . . . . 530--546 Ruth M. Pfeiffer and Mitchell H. Gail and David Pee On Combining Data From Genome-Wide Association Studies to Discover Disease-Associated SNPs . . . . . . . . 547--560 Peter Kraft and Eleftheria Zeggini and John P. A. Ioannidis Replication in Genome-Wide Association Studies . . . . . . . . . . . . . . . . 561--573 Anonymous Contents of Volume 24 (2009) . . . . . . 574--576
Elizabeth A. Stuart Matching Methods for Causal Inference: A Review and a Look Forward . . . . . . . 1--21 Vanessa Didelez and Sha Meng and Nuala A. Sheehan Assumptions of IV Methods for Observational Epidemiology . . . . . . . 22--40 Nell Sedransk and Lawrence H. Cox and Deborah Nolan and Keith Soper and Cliff Spiegelman and Linda J. Young and Katrina L. Kelner and Robert A. Moffitt and Ani Thakar and Jordan Raddick and Edward J. Ungvarsky and Richard W. Carlson and Rolf Apweiler Make Research Data Public? --- Not Always so Simple: A Dialogue for Statisticians and Science Editors . . . 41--50 Kosuke Imai and Luke Keele and Teppei Yamamoto Identification, Inference and Sensitivity Analysis for Causal Mediation Effects . . . . . . . . . . . 51--71 Ryan Martin and Jianchun Zhang and Chuanhai Liu Dempster--Shafer Theory and Statistical Inference with Weak Beliefs . . . . . . 72--87 Carlos M. Carvalho and Michael S. Johannes and Hedibert F. Lopes and Nicholas G. Polson Particle Learning and Smoothing . . . . 88--106 Christopher J. Paciorek The Importance of Scale for Spatial-Confounding Bias and Precision of Spatial Regression Estimators . . . . 107--125 Dennis Gilliland and R. V. Ramamoorthi A Conversation with James Hannan . . . . 126--144
Bradley Efron The Future of Indirect Evidence . . . . 145--157 Sander Greenland Comment: The Need for Syncretism in Applied Statistics . . . . . . . . . . . 158--161 Andrew Gelman Bayesian Statistics Then and Now . . . . 162--165 Robert E. Kass Comment: How Should Indirect Evidence Be Used? . . . . . . . . . . . . . . . . . 166--169 Bradley Efron Rejoinder: The Future of Indirect Evidence . . . . . . . . . . . . . . . . 170--171 Chris Sherlock and Paul Fearnhead and Gareth O. Roberts The Random Walk Metropolis: Linking Theory and Practice Through a Case Study 172--190 Ying Kuen Cheung Stochastic Approximation and Modern Model-Based Designs for Dose-Finding Clinical Trials . . . . . . . . . . . . 191--201 John O'Quigley and Mark Conaway Continual Reassessment and Related Dose-Finding Designs . . . . . . . . . . 202--216 Mourad Tighiouart and André Rogatko Dose Finding with Escalation with Overdose Control (EWOC) in Cancer Clinical Trials . . . . . . . . . . . . 217--226 Peter F. Thall Bayesian Models and Decision Algorithms for Complex Early Phase Clinical Trials 227--244 Jay Bartroff and Tze Leung Lai Approximate Dynamic Programming and Its Applications to the Design of Phase I Cancer Trials . . . . . . . . . . . . . 245--257 Christian Genest and Gordon Brackstone A Conversation with Martin Bradbury Wilk 258--273
David J. Aldous and Julian Shun Connected Spatial Networks over Random Points and a Route-Length Statistic . . 275--288 Galit Shmueli To Explain or to Predict? . . . . . . . 289--310 Hua Zhou and Kenneth Lange and Marc A. Suchard Graphics Processing Units and High-Dimensional Optimization . . . . . 311--324 Geert Molenberghs and Geert Verbeke and Clarice G. B. Demétrio and Afrânio M. C. Vieira A Family of Generalized Linear Models for Repeated Measures with Normal and Conjugate Random Effects . . . . . . . . 325--347 Nader Ebrahimi and Ehsan S. Soofi and Refik Soyer On the Sample Information About Parameter and Prediction . . . . . . . . 348--367 Vanessa Didelez and Svend Kreiner and Niels Keiding Graphical Models for Inference Under Outcome-Dependent Sampling . . . . . . . 368--387 Haim Bar and James Booth and Elizabeth Schifano and Martin T. Wells Laplace Approximated EM Microarray Analysis: An Empirical Bayes Approach for Comparative Microarray Experiments 388--407 Daniel Peña and Ruey S. Tsay A Conversation with George C. Tiao . . . 408--428
David A. van Dyk and Xiao-Li Meng Cross-Fertilizing Strategies for Better EM Mountain Climbing and DA Field Exploration: A Graphical Guide Book . . 429--449 Nan M. Laird The EM Algorithm in Genetics, Genomics and Public Health . . . . . . . . . . . 450--457 Zhangzhang Si and Haifeng Gong and Song-Chun Zhu and Ying Nian Wu Learning Active Basis Models by EM-Type Algorithms . . . . . . . . . . . . . . . 458--475 Xiaodan Fan and Yuan Yuan and Jun S. Liu The EM Algorithm and the Rise of Computational Biology . . . . . . . . . 476--491 Tong Tong Wu and Kenneth Lange The MM Alternative to EM . . . . . . . . 492--505 Martin A. Tanner and Wing H. Wong From EM to Data Augmentation: The Emergence of MCMC Bayesian Computation in the 1980s . . . . . . . . . . . . . . 506--516 Yan Zhou and Roderick J. A. Little and John D. Kalbfleisch Block-Conditional Missing at Random Models for Missing Data . . . . . . . . 517--532 Andrew Lewandowski and Chuanhai Liu and Scott Vander Wiel Parameter Expansion and Efficient Inference . . . . . . . . . . . . . . . 533--544 Ana M. Pires and João A. Branco A Statistical Model to Explain the Mendel--Fisher Controversy . . . . . . . 545--565 Debasis Bhattacharya and Francisco J. Samaniego A Conversation with George G. Roussas 566--587 Anonymous Index of Volume 25 . . . . . . . . . . . 588--589
Robert E. Kass Statistical Inference: The Big Picture 1--9 Andrew Gelman Bayesian Statistical Pragmatism . . . . 10--11 Steven N. Goodman Discussion of ``Statistical Inference: The Big Picture'' by R. E. Kass . . . . 12--14 Robert McCulloch Discussion of ``Statistical Inference: The Big Picture'' by R. E. Kass . . . . 15--16 Hal Stern Discussion of ``Statistical Inference: The Big Picture'' by R. E. Kass . . . . 17--18 Robert E. Kass Rejoinder . . . . . . . . . . . . . . . 19--20 Yingcun Xia and Howell Tong Feature Matching in Time Series Modeling 21--46 Bruce E. Hansen Discussion of ``Feature Matching in Time Series Modeling'' by Y. Xia and H. Tong 47--48 Edward L. Ionides Discussion of ``Feature Matching in Time Series Modeling'' by Y. Xia and H. Tong 49--52 Kung-Sik Chan and Ruey S. Tsay Discussion of ``Feature Matching in Time Series Modeling'' by Y. Xia and H. Tong 53--56 Qiwei Yao Discussion of ``Feature Matching in Time Series Modeling'' by Y. Xia and H. Tong 57--58 Yingcun Xia and Howell Tong Rejoinder . . . . . . . . . . . . . . . 59--61 Julia Salzman and Hui Jiang and Wing Hung Wong Statistical Modeling of RNA-Seq Data . . 62--83 Glenn Shafer and Alexander Shen and Nikolai Vereshchagin and Vladimir Vovk Test Martingales, Bayes Factors and $p$-Values . . . . . . . . . . . . . . . 84--101 Christian Robert and George Casella A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data . . . . . . . . . . . . 102--115 Heping Zhang Statistical Analysis in Genetic Studies of Mental Illnesses . . . . . . . . . . 116--129 Terrance Savitsky and Marina Vannucci and Naijun Sha Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies . . . . . . . . 130--149 Ya'acov Ritov A Random Walk with Drift: Interview with Peter J. Bickel . . . . . . . . . . . . 150--159
P. Lahiri and Eric Slud Introduction . . . . . . . . . . . . . . 161 Roderick Little Calibrated Bayes, for Statistics in General, and Missing Data in Particular 162--174 Michael D. Larsen Discussion of ``Calibrated Bayes, for Statistics in General, and Missing Data in Particular'' by R. J. A. Little . . . 175--178 Nathaniel Schenker Discussion of ``Calibrated Bayes, for Statistics in General, and Missing Data in Particular'' by R. J. A. Little . . . 179--184 Roderick Little Rejoinder . . . . . . . . . . . . . . . 185--186 Malay Ghosh Objective Priors: An Introduction for Frequentists . . . . . . . . . . . . . . 187--202 José M. Bernardo Discussion of ``Objective Priors: An Introduction for Frequentists'' by M. Ghosh . . . . . . . . . . . . . . . . . 203--205 Trevor Sweeting Discussion of ``Objective Priors: An Introduction for Frequentists'' by M. Ghosh . . . . . . . . . . . . . . . . . 206--209 Malay Ghosh Rejoinder . . . . . . . . . . . . . . . 210--211 Stephen E. Fienberg Bayesian Models and Methods in Public Policy and Government Settings . . . . . 212--226 David J. Hand Discussion of ``Bayesian Models and Methods in Public Policy and Government Settings'' by S. E. Fienberg . . . . . . 227--230 Graham Kalton Discussion of ``Bayesian Models and Methods in Public Policy and Government Settings'' by S. E. Fienberg . . . . . . 231--234 Alan M. Zaslavsky Sampling from a Bayesian Menu . . . . . 235--237 Stephen E. Fienberg Rejoinder . . . . . . . . . . . . . . . 238--239 J. N. K. Rao Impact of Frequentist and Bayesian Methods on Survey Sampling Practice: A Selective Appraisal . . . . . . . . . . 240--256 Glen Meeden Discussion of ``Impact of Frequentist and Bayesian Methods on Survey Sampling Practice: A Selective Appraisal'' by J. N. K. Rao . . . . . . . . . . . . . . . 257--259 J. Sedransk Discussion of ``Impact of Frequentist and Bayesian Methods on Survey Sampling Practice: A Selective Appraisal'' by J. N. K. Rao . . . . . . . . . . . . . . . 260--261 Eric Slud Discussion of ``Impact of Frequentist and Bayesian Methods on Survey Sampling Practice: A Selective Appraisal'' by J. N. K. Rao . . . . . . . . . . . . . . . 262--265 J. N. K. Rao Rejoinder . . . . . . . . . . . . . . . 266--270 Carl Morris and Ruoxi Tang Estimating Random Effects via Adjustment for Density Maximization . . . . . . . . 271--287 Claudio Fuentes and George Casella Discussion of ``Estimating Random Effects via Adjustment for Density Maximization'' by C. Morris and R. Tang 288--290 P. Lahiri and Santanu Pramanik Discussion of ``Estimating Random Effects via Adjustment for Density Maximization'' by C. Morris and R. Tang 291--295 Carl Morris Rejoinder . . . . . . . . . . . . . . . 296--298
D. A. S. Fraser Is Bayes Posterior just Quick and Dirty Confidence? . . . . . . . . . . . . . . 299--316 Christian P. Robert Discussion of ``Is Bayes Posterior just Quick and Dirty Confidence?'' by D. A. S. Fraser . . . . . . . . . . . . . . . 317--318 Kesar Singh and Minge Xie Discussion of ``Is Bayes Posterior just Quick and Dirty Confidence?'' by D. A. S. Fraser . . . . . . . . . . . . . . . 319--321 Larry Wasserman Frasian Inference . . . . . . . . . . . 322--325 Tong Zhang Discussion of ``Is Bayes Posterior just Quick and Dirty Confidence?'' by D. A. S. Fraser . . . . . . . . . . . . . . . 326--328 D. A. S. Fraser Rejoinder . . . . . . . . . . . . . . . 329--331 James P. Hobert and Vivekananda Roy and Christian P. Robert Improving the Convergence Properties of the Data Augmentation Algorithm with an Application to Bayesian Mixture Modeling 332--351 Joshua Landon and Frank X. Lee and Nozer D. Singpurwalla A Problem in Particle Physics and Its Bayesian Analysis . . . . . . . . . . . 352--368 Mohsen Pourahmadi Covariance Estimation: The GLM and Regularization Perspectives . . . . . . 369--387 Charles E. McCulloch and John M. Neuhaus Misspecifying the Shape of a Random Effects Distribution: Why Getting It Wrong May Not Matter . . . . . . . . . . 388--402 Stijn Vansteelandt and Jack Bowden and Manoochehr Babanezhad and Els Goetghebeur On Instrumental Variables Estimation of Causal Odds Ratios . . . . . . . . . . . 403--422 Michael Evans and Gun Ho Jang Weak Informativity and the Information in One Prior Relative to Another . . . . 423--439 Victor M. Panaretos A Conversation with David R. Brillinger 440--469
Alicia L. Carriquiry Election Forensics and the 2004 Venezuelan Presidential Recall Referendum as a Case Study . . . . . . . 471--478 Gustavo Delfino and Guillermo Salas Analysis of the 2004 Venezuela Referendum: The Official Results Versus the Petition Signatures . . . . . . . . 479--501 Luis Pericchi and David Torres Quick anomaly detection by the Newcomb--Benford law, with applications to electoral processes data from the USA, Puerto Rico and Venezuela . . . . . 502--516 Raquel Prado and Bruno Sansó The 2004 Venezuelan Presidential Recall Referendum: Discrepancies Between Two Exit Polls and Official Results . . . . 517--527 Isbelia Martín 2004 Venezuelan Presidential Recall Referendum (2004 PRR): A Statistical Analysis from the Point of View of Electronic Voting Data Transmissions . . 528--542 Ricardo Hausmann and Roberto Rigobon In Search of the Black Swan: Analysis of the Statistical Evidence of Electoral Fraud in Venezuela . . . . . . . . . . . 543--563 Raúl Jiménez Forensic Analysis of the Venezuelan Recall Referendum . . . . . . . . . . . 564--583 Jelle J. Goeman and Aldo Solari Multiple Testing for Exploratory Research . . . . . . . . . . . . . . . . 584--597 Ruth Heller Discussion of ``Multiple Testing for Exploratory Research'' by J. J. Goeman and A. Solari . . . . . . . . . . . . . 598--600 Nicolai Meinshausen Discussion of ``Multiple Testing for Exploratory Research'' by J. J. Goeman and A. Solari . . . . . . . . . . . . . 601--603 Peter H. Westfall Discussion of ``Multiple Testing for Exploratory Research'' by J. J. Goeman and A. Solari . . . . . . . . . . . . . 604--607 Jelle J. Goeman and Aldo Solari Rejoinder . . . . . . . . . . . . . . . 608--612 Adrian Baddeley and Ege Rubak and Jesper Mòller Score, Pseudo-Score and Residual Diagnostics for Spatial Point Process Models . . . . . . . . . . . . . . . . . 613--646 Antonio Lijoi and Igor Prünster A Conversation with Eugenio Regazzini 647--672 Anonymous Index of Volume 26 (2011) . . . . . . . 673--675
Edward I. George and William E. Strawderman A Tribute to Charles Stein . . . . . . . 1--2 James Berger and William H. Jefferys and Peter Müller Bayesian Nonparametric Shrinkage Applied to Cepheid Star Oscillations . . . . . . 3--10 Ann Cohen Brandwein and William E. Strawderman Stein Estimation for Spherically Symmetric Distributions: Recent Developments . . . . . . . . . . . . . . 11--23 Lawrence D. Brown and Linda H. Zhao A Geometrical Explanation of Stein Shrinkage . . . . . . . . . . . . . . . 24--30 T. Tony Cai Minimax and Adaptive Inference in Nonparametric Function Estimation . . . 31--50 George Casella and J. T. Gene Hwang Shrinkage Confidence Procedures . . . . 51--60 Dominique Fourdrinier and Martin T. Wells On Improved Loss Estimation for Shrinkage Estimators . . . . . . . . . . 61--81 Edward I. George and Feng Liang and Xinyi Xu From Minimax Shrinkage Estimation to Minimax Shrinkage Prediction . . . . . . 82--94 G. Datta and M. Ghosh Small Area Shrinkage Estimation . . . . 95--114 Carl N. Morris and Martin Lysy Shrinkage Estimation in Multilevel Normal Models . . . . . . . . . . . . . 115--134 Michael D. Perlman and Sanjay Chaudhuri Reversing the Stein Effect . . . . . . . 135--143 Dalene Stangl and Lurdes Y. T. Inoue and Telba Z. Irony Celebrating 70: An Interview with Don Berry . . . . . . . . . . . . . . . . . 144--159
A. C. Davison and S. A. Padoan and M. Ribatet Statistical Modeling of Spatial Extremes 161--186 D. Cooley and S. R. Sain Discussion of ``Statistical Modeling of Spatial Extremes'' by A. C. Davison, S. A. Padoan and M. Ribatet . . . . . . . . 187--188 Darmesah Gabda and Ross Towe and Jennifer Wadsworth and Jonathan Tawn Discussion of ``Statistical Modeling of Spatial Extremes'' by A. C. Davison, S. A. Padoan and M. Ribatet . . . . . . . . 189--192 Johan Segers Nonparametric Inference for Max-Stable Dependence . . . . . . . . . . . . . . . 193--196 Benjamin Shaby and Brian J. Reich Discussion of ``Statistical Modeling of Spatial Extremes'' by A. C. Davison, S. A. Padoan and M. Ribatet . . . . . . . . 197--198 A. C. Davison and S. A. Padoan and M. Ribatet Rejoinder . . . . . . . . . . . . . . . 199--201 Andrey Feuerverger and Yu He and Shashi Khatri Statistical Significance of the Netflix Challenge . . . . . . . . . . . . . . . 202--231 Petros Dellaportas and Jonathan J. Forster and Ioannis Ntzoufras Joint Specification of Model Space and Parameter Space Prior Distributions . . 232--246 Tilmann Gneiting and Hana \vSev\vcíková and Donald B. Percival Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data . . . . . . . . . . . . 247--277 Christine Choirat and Raffaello Seri Estimation in Discrete Parameter Models 278--293 Arthur Cohen and Harold Sackrowitz The Interval Property in Multiple Testing of Pairwise Differences . . . . 294--307 Jerome Sacks and Donald Ylvisaker After 50+ Years in Statistics, An Exchange . . . . . . . . . . . . . . . . 308--318
William DuMouchel Multivariate Bayesian Logistic Regression for Analysis of Clinical Study Safety Issues . . . . . . . . . . 319--339 Bradley W. McEvoy and Ram C. Tiwari Discussion of ``Multivariate Bayesian Logistic Regression for Analysis of Clinical Trial Safety Issues'' by W. DuMouchel . . . . . . . . . . . . . . . 340--343 Don Berry Discussion of ``Multivariate Bayesian Logistic Regression for Analysis of Clinical Trial Safety Issues'' by W. DuMouchel . . . . . . . . . . . . . . . 344--345 Stephen Evans An Answer to Multiple Problems with Analysis of Data on Harms? . . . . . . . 346--347 William DuMouchel Rejoinder . . . . . . . . . . . . . . . 348--349 Yoonkyung Lee and Steven N. MacEachern and Yoonsuh Jung Regularization of Case-Specific Parameters for Robustness and Efficiency 350--372 Yazhen Wang Quantum Computation and Quantum Information . . . . . . . . . . . . . . 373--394 Arvid Sjölander and Anna L. V. Johansson and Cecilia Lundholm and Daniel Altman and Catarina Almqvist and Yudi Pawitan Analysis of $ 1 \colon 1 $ Matched Cohort Studies and Twin Studies, with Binary Exposures and Binary Outcomes . . 395--411 Manuela Cattelan Models for Paired Comparison Data: A Review with Emphasis on Dependent Data 412--433 Dayue Chen and Ingram Olkin Pao-Lu Hsu (Xu, Bao-lu): The Grandparent of Probability and Statistics in China 434--445
Jon Wellner and Tong Zhang Introduction to the Special Issue on Sparsity and Regularization Methods . . 447--449 Francis Bach and Rodolphe Jenatton and Julien Mairal and Guillaume Obozinski Structured Sparsity through Convex Optimization . . . . . . . . . . . . . . 450--468 Sara van de Geer and Patric Müller Quasi-Likelihood and/or Robust Estimation in High Dimensions . . . . . 469--480 Jian Huang and Patrick Breheny and Shuangge Ma A Selective Review of Group Selection in High-Dimensional Models . . . . . . . . 481--499 Christophe Giraud and Sylvie Huet and Nicolas Verzelen High-Dimensional Regression with Unknown Variance . . . . . . . . . . . . . . . . 500--518 John Lafferty and Han Liu and Larry Wasserman Sparse Nonparametric Graphical Models 519--537 Sahand N. Negahban and Pradeep Ravikumar and Martin J. Wainwright and Bin Yu A Unified Framework for High-Dimensional Analysis of $M$-Estimators with Decomposable Regularizers . . . . . . . 538--557 Philippe Rigollet and Alexandre B. Tsybakov Sparse Estimation by Exponential Weighting . . . . . . . . . . . . . . . 558--575 Cun-Hui Zhang and Tong Zhang A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems . . . . . . . 576--593 Tucker S. McElroy and Scott H. Holan A Conversation with David Findley . . . 594--606
Michael Friendly and Georges Monette and John Fox Elliptical Insights: Understanding Statistical Methods through Elliptical Geometry . . . . . . . . . . . . . . . . 1--39 Danny Pfeffermann New Important Developments in Small Area Estimation . . . . . . . . . . . . . . . 40--68 Ming Lin and Rong Chen and Jun S. Liu Lookahead Strategies for Sequential Monte Carlo . . . . . . . . . . . . . . 69--94 Ritabrata Dutta and Jayanta K. Ghosh Bayes Model Selection with Path Sampling: Factor Models and Other Examples . . . . . . . . . . . . . . . . 95--115 Matthew Reimherr and Dan L. Nicolae On Quantifying Dependence: A Framework for Developing Interpretable Measures 116--130 Murad S. Taqqu Beno\^\it Mandelbrot and Fractional Brownian Motion . . . . . . . . . . . . 131--134
Samuel Müller and J. L. Scealy and A. H. Welsh Model Selection in Linear Mixed Models 135--167 Linda S. L. Tan and David J. Nott Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations . . . . . . 168--188 M. G. B. Blum and M. A. Nunes and D. Prangle and S. A. Sisson A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation . . . . . . . . . . 189--208 Jaeyong Lee and Fernando A. Quintana and Peter Müller and Lorenzo Trippa Defining Predictive Probability Functions for Species Sampling Models 209--222 David Johnstone and Dennis Lindley Mean--Variance and Expected Utility: The Borch Paradox . . . . . . . . . . . . . 223--237 Yiting Deng and D. Sunshine Hillygus and Jerome P. Reiter and Yajuan Si and Siyu Zheng Handling Attrition in Longitudinal Studies: The Case for Refreshment Samples . . . . . . . . . . . . . . . . 238--256 Shaun Seaman and John Galati and Dan Jackson and John Carlin What Is Meant by ``Missing at Random''? 257--268 David Aldous Another Conversation with Persi Diaconis 269--281
Stephen M. Stigler The True Title of Bayes's Essay . . . . 283--288 Tamara Broderick and Michael I. Jordan and Jim Pitman Cluster and Feature Modeling from Combinatorial Stochastic Processes . . . 289--312 Ernesto Barrios and Antonio Lijoi and Luis E. Nieto-Barajas and Igor Prünster Modeling with Normalized Random Measure Mixture Models . . . . . . . . . . . . . 313--334 Stefano Favaro and Yee Whye Teh MCMC for Normalized Random Measure Mixture Models . . . . . . . . . . . . . 335--359 Alicia A. Johnson and Galin L. Jones and Ronald C. Neath Component-Wise Markov Chain Monte Carlo: Uniform and Geometric Ergodicity under Mixing and Composition . . . . . . . . . 360--375 Anne M. Presanis and David Ohlssen and David J. Spiegelhalter and Daniela De Angelis Conflict Diagnostics in Directed Acyclic Graphs, with Applications in Bayesian Evidence Synthesis . . . . . . . . . . . 376--397 Guido Consonni and Jonathan J. Forster and Luca La Rocca The Whetstone and the Alum Block: Balanced Objective Bayesian Comparison of Nested Models for Discrete Data . . . 398--423 S. L. Cotter and G. O. Roberts and A. M. Stuart and D. White MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster . . . 424--446 Miron L. Straf and Judith M. Tanur A Conversation with Stephen E. Fienberg 447--463 Jelle J. Goeman and Aldo Solari Correction Note . . . . . . . . . . . . 464
Michael Dekking and Michel Stein and Jon Wellner Editorial . . . . . . . . . . . . . . . 465 Christopher K. Wikle and Ralph F. Milliff and Radu Herbei and William B. Leeds Modern Statistical Methods in Oceanography: A Hierarchical Perspective 466--486 Jorge M. Ramirez and Enrique A. Thomann and Edward C. Waymire Advection--Dispersion Across Interfaces 487--509 Andrew Bray and Frederic Paik Schoenberg Assessment of Point Process Models for Earthquake Forecasting . . . . . . . . . 510--520 Yosihiko Ogata A Prospect of Earthquake Prediction Research . . . . . . . . . . . . . . . . 521--541 Peter J. Diggle and Paula Moraga and Barry Rowlingson and Benjamin M. Taylor Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm . . . . . . . . 542--563 Pierre Pinson Wind Energy: Forecasting Challenges for Its Operational Management . . . . . . . 564--585 S. W. Taylor and Douglas G. Woolford and C. B. Dean and David L. Martell Wildfire Prediction to Inform Fire Management: Statistical Science Challenges . . . . . . . . . . . . . . . 586--615 Roman Schefzik and Thordis L. Thorarinsdottir and Tilmann Gneiting Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling . . . . . . . . . . . . . . . . 616--640 Alan E. Gelfand and Souparno Ghosh and James S. Clark Scaling Integral Projection Models for Analyzing Size Demography . . . . . . . 641--658 Anonymous Contents of Volume 28 . . . . . . . . . 659--660
Kerrie L. Mengersen and Christian P. Robert Big Bayes Stories --- Foreword . . . . . 1 Raymond J. Carroll Estimating the Distribution of Dietary Consumption Patterns . . . . . . . . . . 2--8 Daniela De Angelis and Anne M. Presanis and Stefano Conti and A. E. Ades Estimation of HIV Burden through Bayesian Evidence Synthesis . . . . . . 9--17 Mariel M. Finucane and Christopher J. Paciorek and Goodarz Danaei and Majid Ezzati Bayesian Estimation of Population-Level Trends in Measures of Health Status . . 18--25 Andrew Gelman How Bayesian Analysis Cracked the Red-State, Blue-State Problem . . . . . 26--35 Sandra Johnson and Eva Abal and Kathleen Ahern and Grant Hamilton From Science to Management: Using Bayesian Networks to Learn about Lyngbya 36--41 Sakari Kuikka and Jarno Vanhatalo and Henni Pulkkinen and Samu Mäntyniemi and Jukka Corander Experiences in Bayesian Inference in Baltic Salmon Management . . . . . . . . 42--49 Daniel Mortlock Finding the Most Distant Quasars Using Bayesian Selection Methods . . . . . . . 50--57 Adrian E. Raftery and Leontine Alkema and Patrick Gerland Bayesian Population Projections for the United Nations . . . . . . . . . . . . . 58--68 Lawrence D. Stone and Colleen M. Keller and Thomas M. Kratzke and Johan P. Strumpfer Search for the Wreckage of Air France Flight AF 447 . . . . . . . . . . . . . 69--80 Ian Vernon and Michael Goldstein and Richard Bower Galaxy Formation: Bayesian History Matching for the Observable Universe . . 81--90 Peter Bühlmann Discussion of Big Bayes Stories and BayesBag . . . . . . . . . . . . . . . . 91--94 Stephen E. Fienberg and Rebecca C. Steorts Discussion of ``Estimating the Distribution of Dietary Consumption Patterns'' . . . . . . . . . . . . . . . 95--96 Mark A. Girolami Contribution by M. A. Girolami . . . . . 97 David J. Hand Wonderful Examples, but Let's not Close Our Eyes . . . . . . . . . . . . . . . . 98--100 A. H. Welsh Discussion . . . . . . . . . . . . . . . 101--102 Raymond J. Carroll Reply to the Discussion of ``Estimating the Distribution of Dietary Consumption Patterns'' . . . . . . . . . . . . . . . 103 Lawrence D. Stone Response to Discussion by A. H. Welsh on the AF 447 Paper . . . . . . . . . . . . 104--105 Kenneth F. Wallis The Two-Piece Normal, Binormal, or Double Gaussian Distribution: Its Origin and Rediscoveries . . . . . . . . . . . 106--112 Liang Peng and Yongcheng Qi and Fang Wang Test for a Mean Vector with Fixed or Divergent Dimension . . . . . . . . . . 113--127 Marco Riani and Anthony C. Atkinson and Domenico Perrotta A Parametric Framework for the Comparison of Methods of Very Robust Regression . . . . . . . . . . . . . . . 128--143 Anthony C. Atkinson Selecting a Biased-Coin Design . . . . . 144--163
Vincent Carey and Dianne Cook Four Papers on Contemporary Software Design Strategies for Statistical Methodologists . . . . . . . . . . . . . 165--166 John M. Chambers Object-Oriented Programming, Functional Programming and R . . . . . . . . . . . 167--180 Duncan Temple Lang Enhancing R with Advanced Compilation Tools and Methods . . . . . . . . . . . 181--200 Yihui Xie and Heike Hofmann and Xiaoyue Cheng Reactive Programming for Interactive Graphics . . . . . . . . . . . . . . . . 201--213 Michael Lawrence and Martin Morgan Scalable Genomics with R and Bioconductor . . . . . . . . . . . . . . 214--226 Deborah G. Mayo On the Birnbaum Argument for the Strong Likelihood Principle . . . . . . . . . . 227--239 A. P. Dawid Discussion of ``On the Birnbaum Argument for the Strong Likelihood Principle'' 240--241 Michael Evans Discussion of ``On the Birnbaum Argument for the Strong Likelihood Principle'' 242--246 Ryan Martin and Chuanhai Liu Discussion: Foundations of Statistical Inference, Revisited . . . . . . . . . . 247--251 D. A. S. Fraser Discussion: On Arguments Concerning Statistical Principles . . . . . . . . . 252--253 Jan Hannig Discussion of ``On the Birnbaum Argument for the Strong Likelihood Principle'' 254--258 Jan F. Bjòrnstad Discussion of ``On the Birnbaum Argument for the Strong Likelihood Principle'' 259--260 Deborah G. Mayo Rejoinder: ``On the Birnbaum Argument for the Strong Likelihood Principle'' 261--266 Arman Sabbaghi and Donald B. Rubin Comments on the Neyman--Fisher Controversy and Its Consequences . . . . 267--284 Bradley Efron Two Modeling Strategies for Empirical Bayes Estimation . . . . . . . . . . . . 285--301 Andriy Derkach and Jerry F. Lawless and Lei Sun Pooled Association Tests for Rare Genetic Variants: A Review and Some New Results . . . . . . . . . . . . . . . . 302--321
Guido W. Imbens Instrumental Variables: An Econometrician's Perspective . . . . . . 323--358 Toru Kitagawa Instrumental Variables Before and LATEr 359--362 Thomas S. Richardson and James M. Robins ACE Bounds; SEMs with Equilibrium Conditions . . . . . . . . . . . . . . . 363--366 Ilya Shpitser Causal Graphs: Addressing the Confounding Problem Without Instruments or Ignorability . . . . . . . . . . . . 367--370 Sonja A. Swanson and Miguel A. Hernán Think Globally, Act Globally: An Epidemiologist's Perspective on Instrumental Variable Estimation . . . . 371--374 Guido Imbens Rejoinder . . . . . . . . . . . . . . . 375--379 Kwun Chuen Gary Chan and Sheung Chi Phillip Yam Oracle, Multiple Robust and Multipurpose Calibration in a Missing Response Problem . . . . . . . . . . . . . . . . 380--396 Ewan Cameron and Anthony Pettitt Recursive Pathways to Marginal Likelihood Estimation with Prior-Sensitivity Analysis . . . . . . . 397--419 Kenneth F. Wallis Revisiting Francis Galton's Forecasting Competition . . . . . . . . . . . . . . 420--424 Kung-Sik Chan and Qiwei Yao A Conversation with Howell Tong . . . . 425--438 Fan Li and Fabrizia Mealli A Conversation with Donald B. Rubin . . 439--457
Thomas S. Richardson and Andrea Rotnitzky Causal Etiology of the Research of James M. Robins . . . . . . . . . . . . . . . 459--484 Miroslav Dudík and Dumitru Erhan and John Langford and Lihong Li Doubly Robust Policy Evaluation and Optimization . . . . . . . . . . . . . . 485--511 Richard D. Gill Statistics, Causality and Bell's Theorem 512--528 Niels Keiding and David Clayton Standardization and Control for Confounding in Observational Studies: A Historical Perspective . . . . . . . . . 529--558 Elizabeth L. Ogburn and Tyler J. VanderWeele Causal Diagrams for Interference . . . . 559--578 Judea Pearl and Elias Bareinboim External Validity: From Do-Calculus to Transportability Across Populations . . 579--595 Amy Richardson and Michael G. Hudgens and Peter B. Gilbert and Jason P. Fine Nonparametric Bounds and Sensitivity Analysis of Treatment Effects . . . . . 596--618 Y. Ritov and P. J. Bickel and A. C. Gamst and B. J. K. Kleijn The Bayesian Analysis of Complex, High-Dimensional Models: Can It Be CODA? 619--639 Phillip J. Schulte and Anastasios A. Tsiatis and Eric B. Laber and Marie Davidian $ \mathbf {Q} $- and $ \mathbf {A} $-Learning Methods for Estimating Optimal Dynamic Treatment Regimes . . . 640--661 Peter Spirtes and Jiji Zhang A Uniformly Consistent Estimator of Causal Effects under the $k$-Triangle-Faithfulness Assumption . . 662--678 Aad van der Vaart Higher Order Tangent Spaces and Influence Functions . . . . . . . . . . 679--686 Tyler J. VanderWeele and Eric J. Tchetgen Tchetgen and M. Elizabeth Halloran Interference and Sensitivity Analysis 687--706 Stijn Vansteelandt and Marshall Joffe Structural Nested Models and $G$-estimation: The Partially Realized Promise . . . . . . . . . . . . . . . . 707--731
David Donoho and Jiashun Jin Higher Criticism for Large-Scale Inference, Especially for Rare and Weak Effects . . . . . . . . . . . . . . . . 1--25 David R. Bellhouse and Nicolas Fillion Le Her and Other Problems in Probability Discussed by Bernoulli, Montmort and Waldegrave . . . . . . . . . . . . . . . 26--39 Frank Lad and Giuseppe Sanfilippo and Gianna Agr\`o Extropy: Complementary Dual of Entropy 40--58 Egil Ferkingstad and Lars Holden and Geir Kjetil Sandve Monte Carlo Null Models for Genomic Data 59--71 Christopher C. Drovandi and Anthony N. Pettitt and Anthony Lee Bayesian Indirect Inference Using a Parametric Auxiliary Model . . . . . . . 72--95 Paul S. Clarke and Tom M. Palmer and Frank Windmeijer Estimating Structural Mean Models with Multiple Instrumental Variables Using the Generalised Method of Moments . . . 96--117 John A. Rice A Conversation with Richard A. Olshen 118--132 William F. Rosenberger A Conversation with Nancy Flournoy . . . 133--146
Marc G. Genton and William Kleiber Cross-Covariance Functions for Multivariate Geostatistics . . . . . . . 147--163 Daniel Simpson and Finn Lindgren and Håvard Rue Beyond the Valley of the Covariance Function . . . . . . . . . . . . . . . . 164--166 Moreno Bevilacqua and Amanda S. Hering and Emilio Porcu On the Flexibility of Multivariate Covariance Models: Comment on the Paper by Genton and Kleiber . . . . . . . . . 167--169 Noel Cressie and Sandy Burden and Walter Davis and Pavel N. Krivitsky and Payam Mokhtarian and Thomas Suesse and Andrew Zammit-Mangion Capturing Multivariate Spatial Dependence: Model, Estimate and then Predict . . . . . . . . . . . . . . . . 170--175 Hao Zhang and Wenxiang Cai When Doesn't Cokriging Outperform Kriging? . . . . . . . . . . . . . . . . 176--180 Marc G. Genton and William Kleiber Rejoinder . . . . . . . . . . . . . . . 181--183 Pavel N. Krivitsky and Eric D. Kolaczyk On the Question of Effective Sample Size in Network Modeling: An Asymptotic Inquiry . . . . . . . . . . . . . . . . 184--198 Sofía S. Villar and Jack Bowden and James Wason Multi-armed Bandit Models for the Optimal Design of Clinical Trials: Benefits and Challenges . . . . . . . . 199--215 Hannes Leeb and Benedikt M. Pötscher and Karl Ewald On Various Confidence Intervals Post-Model-Selection . . . . . . . . . . 216--227 Elías Moreno and Javier Girón and George Casella Posterior Model Consistency in Variable Selection as the Model Dimension Grows 228--241 Leonhard Held and Daniel Sabanés Bové and Isaac Gravestock Approximate Bayesian Model Selection with the Deviance Statistic . . . . . . 242--257 Gang Zheng and Zhaohai Li and Nancy L. Geller A Conversation with Robert C. Elston . . 258--267 N. I. Fisher A Conversation with Jerry Friedman . . . 268--295
Alice Xiang and Donald B. Rubin Assessing the Potential Impact of a Nationwide Class-Based Affirmative Action System . . . . . . . . . . . . . 297--327 Nikolas Kantas and Arnaud Doucet and Sumeetpal S. Singh and Jan Maciejowski and Nicolas Chopin On Particle Methods for Parameter Estimation in State-Space Models . . . . 328--351 Joseph B. Lang A Closer Look at Testing the ``No-Treatment-Effect'' Hypothesis in a Comparative Experiment . . . . . . . . . 352--371 Jari Miettinen and Sara Taskinen and Klaus Nordhausen and Hannu Oja Fourth Moments and Independent Component Analysis . . . . . . . . . . . . . . . . 372--390 Laurent Mazliak The Ghosts of the École Normale . . . . . 391--412 Bradley P. Carlin and Amy H. Herring A Conversation with Alan Gelfand . . . . 413--422 Anthony C. Atkinson and Barbara Bogacka A Conversation with Professor Tadeusz Cali\'nski . . . . . . . . . . . . . . . 423--442
Anne-Marie Lyne and Mark Girolami and Yves Atchadé and Heiko Strathmann and Daniel Simpson On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods . . . . . 443--467 J. S. Marron and James O. Ramsay and Laura M. Sangalli and Anuj Srivastava Functional Data Analysis of Amplitude and Phase Variation . . . . . . . . . . 468--484 Giovanni Puccetti and Ruodu Wang Extremal Dependence Concepts . . . . . . 485--517 José E. Chacón A Population Background for Nonparametric Density-Based Clustering 518--532 Nicholas G. Polson and James G. Scott and Brandon T. Willard Proximal Algorithms in Statistics and Machine Learning . . . . . . . . . . . . 559--581 Louise Ryan A Conversation with Nan Laird . . . . . 582--596
Harry Crane The Ubiquitous Ewens Sampling Formula 1--19 Shui Feng Diffusion Processes and the Ewens Sampling Formula . . . . . . . . . . . . 20--22 Peter McCullagh Two Early Contributions to the Ewens Saga . . . . . . . . . . . . . . . . . . 23--26 Richard Arratia and A. D. Barbour and Simon Tavaré Exploiting the Feller Coupling for the Ewens Sampling Formula . . . . . . . . . 27--29 Stefano Favaro and Lancelot F. James Relatives of the Ewens Sampling Formula in Bayesian Nonparametrics . . . . . . . 30--33 Yee Whye Teh Bayesian Nonparametric Modeling and the Ubiquitous Ewens Sampling Formula . . . 34--36 Harry Crane Rejoinder: The Ubiquitous Ewens Sampling Formula . . . . . . . . . . . . . . . . 37--39 Hao Chen and Jason L. Loeppky and Jerome Sacks and William J. Welch Analysis Methods for Computer Experiments: How to Assess and What Counts? . . . . . . . . . . . . . . . . 40--60 Alicia Nieto-Reyes and Heather Battey A Topologically Valid Definition of Depth for Functional Data . . . . . . . 61--79 Joseph Antonelli and Lorenzo Trippa and Sebastien Haneuse Mitigating Bias in Generalized Linear Mixed Models: The Case for Bayesian Nonparametrics . . . . . . . . . . . . . 80--95 Matteo Fasiolo and Natalya Pya and Simon N. Wood A Comparison of Inferential Methods for Highly Nonlinear State Space Models in Ecology and Epidemiology . . . . . . . . 96--118 Art B. Owen and Jingshu Wang Bi-Cross-Validation for Factor Analysis 119--139
Stephen T. Buckland and Byron J. T. Morgan $ 50$-Year Anniversary of Papers by Cormack, Jolly and Seber . . . . . . . . 141--141 Stephen T. Buckland A Conversation with Richard M. Cormack 142--150 Richard Barker A Conversation with G. A. F. Seber . . . 151--160 Matthew Schofield and Richard Barker $ 50$-Year-Old Curiosities: Ancillarity and Inference in Capture--Recapture Models . . . . . . . . . . . . . . . . . 161--174 James D. Nichols And the First One Now Will Later Be Last: Time-Reversal in Cormack--Jolly--Seber Models . . . . . . 175--190 Gordon Hay and Clive Richardson Estimating the Prevalence of Drug Use Using Mark--Recapture Methods . . . . . 191--204 Dankmar Böhning Ratio Plot and Ratio Regression with Applications to Social and Medical Sciences . . . . . . . . . . . . . . . . 205--218 David Borchers and Rachel Fewster Spatial Capture--Recapture Models . . . 219--232 Devin S. Johnson and Jeff L. Laake and Sharon R. Melin and Robert L. DeLong Multivariate State Hidden Markov Models for Mark--Recapture Data . . . . . . . . 233--244 R. M. Fewster and B. C. Stevenson and D. L. Borchers Trace-Contrast Models for Capture--Recapture Without Capture Histories . . . . . . . . . . . . . . . 245--258 Mark V. Bravington and Hans J. Skaug and Eric C. Anderson Close-Kin Mark--Recapture . . . . . . . 259--274 Aurore Delaigle and Matt P. Wand A Conversation with Peter Hall . . . . . 275--304
Zachary D. Weller and Jennifer A. Hoeting A Review of Nonparametric Hypothesis Tests of Isotropy Properties in Spatial Data . . . . . . . . . . . . . . . . . . 305--324 Debashis Mondal and Nina Hinrichs Rank Tests from Partially Ordered Data Using Importance and MCMC Sampling Methods . . . . . . . . . . . . . . . . 325--347 Tamar Sofer and David B. Richardson and Elena Colicino and Joel Schwartz and Eric J. Tchetgen Tchetgen On Negative Outcome Control of Unobserved Confounding as a Generalization of Difference-in-Differences . . . . . . . 348--361 Yazhen Wang and Shang Wu and Jian Zou Quantum Annealing with Markov Chain Monte Carlo Simulations and $D$-Wave Quantum Computers . . . . . . . . . . . 362--398 Eugene Seneta Markov Chains as Models in Statistical Mechanics . . . . . . . . . . . . . . . 399--414 Shu Yang and Jae Kwang Kim Fractional Imputation in Survey Sampling: A Comparative Review . . . . . 415--432 Moulinath Banerjee and Bodhisattva Sen A Conversation with Michael Woodroofe 433--441 Joseph Naus A Conversation with Arthur Cohen . . . . 442--452 Hira L. Koul and Roger Koenker A Conversation with Estate V. Khmaladze 453--464
James Watson and Chris Holmes Approximate Models and Robust Decisions 465--489 Ingrid Glad and Nils Lid Hjort Model Uncertainty First, Not Afterwards 490--494 Peter Grünwald Contextuality of Misspecification and Data-Dependent Losses . . . . . . . . . 495--498 Natalia A. Bochkina Selection of KL Neighbourhood in Robust Bayesian Inference . . . . . . . . . . . 499--502 Michael Goldstein Issues in Robustness Analysis . . . . . 503--505 Christian P. Robert and Judith Rousseau Nonparametric Bayesian Clay for Robust Decision Bricks . . . . . . . . . . . . 506--510 Lars Peter Hansen and Massimo Marinacci Ambiguity Aversion and Model Misspecification: An Economic Perspective . . . . . . . . . . . . . . 511--515 James Watson and Chris Holmes Rejoinder: Approximate Models and Robust Decisions . . . . . . . . . . . . . . . 516--520 Nozer D. Singpurwalla Filtering and Tracking Survival Propensity (Reconsidering the Foundations of Reliability) . . . . . . 521--540 Frank P. A. Coolen On Software and System Reliability Growth and Testing . . . . . . . . . . . 541--544 Elja Arjas How About Wearing Two Hats, First Popper's and then de Finetti's? . . . . 545--548 Jane Hutton What Does ``Propensity'' Add? . . . . . 549--551 Glenn Shafer Reconciling the Subjective and Objective Aspects of Probability . . . . . . . . . 552--554 Nozer D. Singpurwalla Rejoinder: Concert Unlikely, ``Jugalbandi'' Perhaps . . . . . . . . . 555--557 Anthony J. Lawrance Chaos Communication: A Case of Statistical Engineering . . . . . . . . 558--577 D. A. S. Fraser and M. Bédard and A. Wong and Wei Lin and A. M. Fraser Bayes, Reproducibility and the Quest for Truth . . . . . . . . . . . . . . . . . 578--590 Theresa R. Smith and Jon Wakefield A Review and Comparison of Age-Period-Cohort Models for Cancer Incidence . . . . . . . . . . . . . . . 591--610 Yue S. Niu and Ning Hao and Heping Zhang Multiple Change-Point Detection: A Selective Overview . . . . . . . . . . . 611--623 Hugh A. Chipman and V. Roshan Joseph A Conversation with Jeff Wu . . . . . . 624--636 Ryan Martin and John Stufken and Min Yang A Conversation with Samad Hedayat . . . 637--647 Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ??
Daniel Simpson and Håvard Rue and Andrea Riebler and Thiago G. Martins and Sigrunn H. Sòrbye Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors . . . . . . . . . . 1--28 James G. Scott Prior Specification Is Engineering, Not Mathematics . . . . . . . . . . . . . . 29--32 James S. Hodges Swinging for the Fence in a League Where Everyone Bunts . . . . . . . . . . . . . 33--35 Christian P. Robert and Judith Rousseau How Principled and Practical Are Penalised Complexity Priors? . . . . . . 36--40 David B. Dunson Toward Automated Prior Choice . . . . . 41--43 Daniel Simpson and Håvard Rue and Andrea Riebler and Thiago G. Martins and Sigrunn H. Sòrbye You Just Keep on Pushing My Love over the Borderline: A Rejoinder . . . . . . 44--46 Jiahua Chen Consistency of the MLE under Mixture Models . . . . . . . . . . . . . . . . . 47--63 Nicolas Chopin and James Ridgway Leave Pima Indians Alone: Binary Regression as a Benchmark for Bayesian Computation . . . . . . . . . . . . . . 64--87 Cheryl J. Flynn and Clifford M. Hurvich and Jeffrey S. Simonoff On the Sensitivity of the Lasso to the Number of Predictor Variables . . . . . 88--105 Sebastian Lerch and Thordis L. Thorarinsdottir and Francesco Ravazzolo and Tilmann Gneiting Forecaster's Dilemma: Extreme Events and Forecast Evaluation . . . . . . . . . . 106--127 Hermann Habermann and Courtney Kennedy and Partha Lahiri A Conversation with Robert Groves . . . 128--137 Nitis Mukhopadhyay A Conversation with Lynne Billard . . . 138--164
Chris Skinner and Jon Wakefield Introduction to the Design and Analysis of Complex Survey Data . . . . . . . . . 165--175 Yves Tillé and Matthieu Wilhelm Probability Sampling Designs: Principles for Choice of Design and Balancing . . . 176--189 F. Jay Breidt and Jean D. Opsomer Model-Assisted Survey Estimation with Modern Prediction Techniques . . . . . . 190--205 David Haziza and Jean-François Beaumont Construction of Weights in Surveys: A Review . . . . . . . . . . . . . . . . . 206--226 Qixuan Chen and Michael R. Elliott and David Haziza and Ye Yang and Malay Ghosh and Roderick J. A. Little and Joseph Sedransk and Mary Thompson Approaches to Improving Survey-Weighted Estimates . . . . . . . . . . . . . . . 227--248 Michael R. Elliott and Richard Valliant Inference for Nonprobability Samples . . 249--264 Thomas Lumley and Alastair Scott Fitting Regression Models to Survey Data 265--278 Matthias Schonlau and Mick P. Couper Options for Conducting Web Surveys . . . 279--292 Sharon L. Lohr and Trivellore E. Raghunathan Combining Survey Data with Other Data Sources . . . . . . . . . . . . . . . . 293--312 Alexander Etz and Eric-Jan Wagenmakers J. B. S. Haldane's Contribution to the Bayes Factor Hypothesis Test . . . . . . 313--329
Peng Ding A Paradox from Randomization-Based Causal Inference . . . . . . . . . . . . 331--345 Peter M. Aronow and Molly R. Offer-Westort Understanding Ding's Apparent Paradox 346--348 EunYi Chung Randomization-Based Tests for ``No Treatment Effects'' . . . . . . . . . . 349--351 R. A. Bailey Inference from Randomized (Factorial) Experiments . . . . . . . . . . . . . . 352--355 Wen Wei Loh and Thomas S. Richardson and James M. Robins An Apparent Paradox Explained . . . . . 356--361 Peng Ding Rejoinder: A Paradox from Randomization-Based Causal Inference . . 362--366 Dimitris Bertsimas and Angela King Logistic Regression: From Art to Science 367--384 Christopher C. Drovandi and Christopher C. Holmes and James M. McGree and Kerrie Mengersen and Sylvia Richardson and Elizabeth G. Ryan Principles of Experimental Design for Big Data Analysis . . . . . . . . . . . 385--404 S. Agapiou and O. Papaspiliopoulos and D. Sanz-Alonso and A. M. Stuart Importance Sampling: Intrinsic Dimension and Computational Cost . . . . . . . . . 405--431 Michael J. Lopez and Roee Gutman Estimation of Causal Effects with Multiple Treatments: A Review and New Ideas . . . . . . . . . . . . . . . . . 432--454 Wenlin Dai and Tiejun Tong and Lixing Zhu On the Choice of Difference Sequence in a Unified Framework for Variance Estimation in Nonparametric Regression 455--468 P. C. Álvarez-Esteban and E. del Barrio and J. A. Cuesta-Albertos and C. Matrán Models for the Assessment of Treatment Improvement: The Ideal and the Feasible 469--485
S. Bacallado and M. Battiston and S. Favaro and L. Trippa Sufficientness Postulates for Gibbs-Type Priors and Hierarchical Generalizations 487--500 Jaehong Jeong and Mikyoung Jun and Marc G. Genton Spherical Process Models for Global Spatial Statistics . . . . . . . . . . . 501--513 Paul R. Rosenbaum The General Structure of Evidence Factors in Observational Studies . . . . 514--530 Xiaohan Yan and Jacob Bien Hierarchical Sparse Modeling: A Choice of Two Group Lasso Formulations . . . . 531--560 Dylan S. Small and Zhiqiang Tan and Roland R. Ramsahai and Scott A. Lorch and M. Alan Brookhart Instrumental Variable Estimation with a Stochastic Monotonicity Assumption . . . 561--579 Pantelis Samartsidis and Silvia Montagna and Timothy D. Johnson and Thomas E. Nichols The Coordinate-Based Meta-Analysis of Neuroimaging Data . . . . . . . . . . . 580--599 Enrico Ripamonti and Chris Lloyd and Piero Quatto Contemporary Frequentist Views of the $ 2 \times 2 $ Binomial Trial . . . . . . 600--615 David Aldous Elo Ratings and the Sports Model: A Neglected Topic in Applied Probability? 616--629 Ir\`ene Gijbels and Stanislav Nagy On a General Definition of Depth for Functional Data . . . . . . . . . . . . 630--639 Alicia Nieto-Reyes and Heather Battey Correction to A Topologically Valid Definition of Depth for Functional Data 640
Theodore Kypraios and Vladimir N. Minin Introduction to the Special Section on Inference for Infectious Disease Dynamics . . . . . . . . . . . . . . . . 1--3 Trevelyan J. McKinley and Ian Vernon and Ioannis Andrianakis and Nicky McCreesh and Jeremy E. Oakley and Rebecca N. Nsubuga and Michael Goldstein and Richard G. White Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models . . . . . . . 4--18 Gavin J. Gibson and George Streftaris and David Thong Comparison and Assessment of Epidemic Models . . . . . . . . . . . . . . . . . 19--33 Paul J. Birrell and Daniela De Angelis and Anne M. Presanis Evidence Synthesis for Stochastic Epidemic Models . . . . . . . . . . . . 34--43 Theodore Kypraios and Philip D. O. Neill Bayesian Nonparametrics for Stochastic Epidemic Models . . . . . . . . . . . . 44--56 Carles Bretó Modeling and Inference for Infectious Disease Dynamics: A Likelihood-Based Approach . . . . . . . . . . . . . . . . 57--69 Michelle Kendall and Diepreye Ayabina and Yuanwei Xu and James Stimson and Caroline Colijn Estimating Transmission from Genetic and Epidemiological Data: A Metric to Compare Transmission Trees . . . . . . . 70--85 Paul Gustafson and Lawrence C. McCandless When Is a Sensitivity Parameter Exactly That? . . . . . . . . . . . . . . . . . 86--95 Shuyang Bai and Murad S. Taqqu How the Instability of Ranks Under Long Memory Affects Large-Sample Inference 96--116 Stephen M. Stigler Richard Price, the First Bayesian . . . 117--125 Ofer Zeitouni A Conversation with S. R. S. Varadhan 126--137
Julie Josse and Jerome P. Reiter Introduction to the Special Section on Missing Data . . . . . . . . . . . . . . 139--141 Jared S. Murray Multiple Imputation: A Review of Practical and Theoretical Findings . . . 142--159 Vincent Audigier and Ian R. White and Shahab Jolani and Thomas P. A. Debray and Matteo Quartagno and James Carpenter and Stef van Buuren and Matthieu Resche-Rigon Multiple Imputation for Multilevel Data with Continuous and Binary Variables . . 160--183 Shaun R. Seaman and Stijn Vansteelandt Introduction to Double Robust Methods for Incomplete Data . . . . . . . . . . 184--197 Antonio R. Linero and Michael J. Daniels Bayesian Approaches for Missing Not at Random Outcome Data: The Role of Identifying Restrictions . . . . . . . . 198--213 Peng Ding and Fan Li Causal Inference: A Missing Data Perspective . . . . . . . . . . . . . . 214--237 William Fithian and Rahul Mazumder Flexible Low-Rank Statistical Modeling with Missing Data and Side Information 238--260 Yifei Sun and Jing Qin and Chiung-Yu Huang Missing Information Principle: A Unified Approach for General Truncated and Censored Survival Data Problems . . . . 261--276 Glenn Shafer Marie-France Bru and Bernard Bru on Dice Games and Contracts . . . . . . . . . . 277--284 Marie-France Bru and Bernard Bru Dice Games . . . . . . . . . . . . . . . 285--297
Alex Reinhart A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications . . . . . . . . . . . 299--318 Yosihiko Ogata Comment on ``A Review of Self-Exciting Spatiotemporal Point Process and Their Applications'' by Alex Reinhart . . . . 319--322 Jiancang Zhuang Comment on ``A Review of Self-Exciting Spatio-Temporal Point Process and Their Applications'' by Alex Reinhart . . . . 323--324 Frederic Paik Schoenberg Comment on ``A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications'' by Alex Reinhart 325--326 Sebastian Meyer Self-Exciting Point Processes: Infections and Implementations . . . . . 327--329 Alex Reinhart Rejoinder: ``A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications'' . . . . . . . . . . 330--333 Rainer Dahlhaus and István Z. Kiss and Jan C. Neddermeyer On the Relationship between the Theory of Cointegration and the Theory of Phase Synchronization . . . . . . . . . . . . 334--357 Yosef Rinott and Christine M. O'Keefe and Natalie Shlomo and Chris Skinner Confidentiality and Differential Privacy in the Dissemination of Frequency Tables 358--385 Paul Fearnhead and Joris Bierkens and Murray Pollock and Gareth O. Roberts Piecewise Deterministic Markov Processes for Continuous-Time Monte Carlo . . . . 386--412 G. S. Dissanayake and M. S. Peiris and T. Proietti Fractionally Differenced Gegenbauer Processes with Long Memory: A Review . . 413--426 Matey Neykov and Yang Ning and Jun S. Liu and Han Liu A Unified Theory of Confidence Regions and Testing for High-Dimensional Estimating Equations . . . . . . . . . . 427--443 Lance A. Waller A Conversation with Tom Louis . . . . . 444--457 David Aldous A Conversation with Jim Pitman . . . . . 458--467
Richard J. Samworth and Bodhisattva Sen Editorial: Special Issue on ``Nonparametric Inference Under Shape Constraints'' . . . . . . . . . . . . . 469--472 Piet Groeneboom and Geurt Jongbloed Some Developments in the Theory of Shape Constrained Inference . . . . . . . . . 473--492 Richard J. Samworth Recent Progress in Log-Concave Density Estimation . . . . . . . . . . . . . . . 493--509 Roger Koenker and Ivan Mizera Shape Constrained Density Estimation Via Penalized Rényi Divergence . . . . . . . 510--526 Andrew L. Johnson and Daniel R. Jiang Shape Constraints in Economics and Operations Research . . . . . . . . . . 527--546 Cécile Durot and Hendrik P. Lopuhaä Limit Theory in Monotone Function Estimation . . . . . . . . . . . . . . . 547--567 Adityanand Guntuboyina and Bodhisattva Sen Nonparametric Shape-Restricted Regression . . . . . . . . . . . . . . . 568--594 Mary C. Meyer A Framework for Estimation and Inference in Generalized Additive Models with Shape and Order Restrictions . . . . . . 595--614 Victor-Emmanuel Brunel Methods for Estimation of Convex Sets 615--632 Moulinath Banerjee and Richard J. Samworth A Conversation with Jon Wellner . . . . 633--651
François-Xavier Briol and Chris J. Oates and Mark Girolami and Michael A. Osborne and Dino Sejdinovic Probabilistic Integration: A Role in Statistical Computation? . . . . . . . . 1--22 Fred J. Hickernell and R. Jagadeeswaran Comment on ``Probabilistic Integration: A Role in Statistical Computation?'' . . 23--28 Art B. Owen Comment: Unreasonable Effectiveness of Monte Carlo . . . . . . . . . . . . . . 29--33 Michael L. Stein and Ying Hung Comment on ``Probabilistic Integration: A Role in Statistical Computation?'' . . 34--37 François-Xavier Briol and Chris J. Oates and Mark Girolami and Michael A. Osborne and Dino Sejdinovic Rejoinder: Probabilistic Integration: A Role in Statistical Computation? . . . . 38--42 Vincent Dorie and Jennifer Hill and Uri Shalit and Marc Scott and Dan Cervone Automated versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition . . . . 43--68 Miguel A. Hernán Comment: Spherical Cows in a Vacuum: Data Analysis Competitions for Causal Inference . . . . . . . . . . . . . . . 69--71 Qingyuan Zhao and Luke J. Keele and Dylan S. Small Comment: Will Competition-Winning Methods for Causal Inference Also Succeed in Practice? . . . . . . . . . . 72--76 David Jensen Comment: Strengthening Empirical Evaluation of Causal Inference Methods 77--81 Susan Gruber and Mark J. van der Laan Comment on ``Automated Versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition'' . . . . . . . . . 82--85 Ehud Karavani and Tal El-Hay and Yishai Shimoni and Chen Yanover Comment: Causal Inference Competitions: Where Should We Aim? . . . . . . . . . . 86--89 Nicole Bohme Carnegie Comment: Contributions of Model Features to BART Causal Inference Performance Using ACIC 2016 Competition Data . . . . 90--93 Vincent Dorie and Jennifer Hill and Uri Shalit and Marc Scott and Dan Cervone Rejoinder: Response to Discussions and a Look Ahead . . . . . . . . . . . . . . . 94--99 Georg Lindgren Gaussian Integrals and Rice Series in Crossing Distributions-to Compute the Distribution of Maxima and Other Features of Gaussian Processes . . . . . 100--128 Víctor Elvira and Luca Martino and David Luengo and Mónica F. Bugallo Generalized Multiple Importance Sampling 129--155 Geurt Jongbloed A Conversation with Piet Groeneboom . . 156--168 Vladimir Koltchinskii and Richard Nickl and Philippe Rigollet A Conversation with Dick Dudley . . . . 169--175
Bradley Efron Bayes, Oracle Bayes and Empirical Bayes 177--201 Thomas A. Louis Comment: Bayes, Oracle Bayes, and Empirical Bayes . . . . . . . . . . . . 202--205 Nan Laird Comment: Bayes, Oracle Bayes, and Empirical Bayes . . . . . . . . . . . . 206--208 Aad van der Vaart Comment: Bayes, Oracle Bayes and Empirical Bayes . . . . . . . . . . . . 214--218 Wenhua Jiang Comment: Empirical Bayes Interval Estimation . . . . . . . . . . . . . . . 219--223 Eitan Greenshtein and Ya'acov Ritov Comment: Empirical Bayes, Compound Decisions and Exchangeability . . . . . 224--228 Yixin Wang and Andrew C. Miller and David M. Blei Comment: Variational Autoencoders as Empirical Bayes . . . . . . . . . . . . 229--233 Bradley Efron Rejoinder: Bayes, Oracle Bayes, and Empirical Bayes . . . . . . . . . . . . 234--235 Gregorio Quintana-Ortí and Amelia Simó A Kernel Regression Procedure in the $3$D Shape Space with an Application to Online Sales of Children's Wear . . . . 236--252 Lei Liu and Ya-Chen Tina Shih and Robert L. Strawderman and Daowen Zhang and Bankole A. Johnson and Haitao Chai Statistical Analysis of Zero-Inflated Nonnegative Continuous Data: A Review 253--279 Laura Anderlucci and Angela Montanari and Cinzia Viroli The Importance of Being Clustered: Uncluttering the Trends of Statistics from 1970 to 2015 . . . . . . . . . . . 280--300 Nathan B. Cruze and Andreea L. Erciulescu and Balgobin Nandram and Wendy J. Barboza and Linda J. Young Producing Official County-Level Agricultural Estimates in the United States: Needs and Challenges . . . . . . 301--316 Qingyuan Zhao and Jingshu Wang and Wes Spiller and Jack Bowden and Dylan S. Small Two-Sample Instrumental Variable Analyses Using Heterogeneous Samples . . 317--333 Sam Behseta A Conversation with Robert E. Kass . . . 334--348 Christopher K. Wikle and Jay M. Ver Hoef A Conversation with Noel Cressie . . . . 349--359
Jacqueline J. Meulman and Anita J. van der Kooij and Kevin L. W. Duisters ROS Regression: Integrating Regularization with Optimal Scaling Regression . . . . . . . . . . . . . . . 361--390 Sijia Xiang and Weixin Yao and Guangren Yang An Overview of Semiparametric Extensions of Finite Mixture Models . . . . . . . . 391--404 Anindya Bhadra and Jyotishka Datta and Nicholas G. Polson and Brandon Willard Lasso Meets Horseshoe: a Survey . . . . 405--427 Anna L. Smith and Dena M. Asta and Catherine A. Calder The Geometry of Continuous Latent Space Models for Network Data . . . . . . . . 428--453 Yuan Ke and Stanislav Minsker and Zhao Ren and Qiang Sun and Wen-Xin Zhou User-Friendly Covariance Estimation for Heavy-Tailed Distributions . . . . . . . 454--471 Daniele Durante and Tommaso Rigon Conditionally Conjugate Mean-Field Variational Bayes for Logistic Models 472--485 Pantelis Samartsidis and Shaun R. Seaman and Anne M. Presanis and Matthew Hickman and Daniela De Angelis Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units . . . . . . 486--503 Peter M. Atkinson and Jorge Mateu A Conversation with Peter Diggle . . . . 504--521
Andreas Buja and Lawrence Brown and Richard Berk and Edward George and Emil Pitkin and Mikhail Traskin and Kai Zhang and Linda Zhao Models as Approximations I: Consequences Illustrated with Linear Regression . . . 523--544 Andreas Buja and Lawrence Brown and Arun Kumar Kuchibhotla and Richard Berk and Edward George and Linda Zhao Models as Approximations II: a Model-Free Theory of Parametric Regression . . . . . . . . . . . . . . . 545--565 Sara van de Geer Discussion of Models as Approximations I & II . . . . . . . . . . . . . . . . . . 566--568 Jerald F. Lawless Comment on Models as Approximations, Parts I and II, by Buja et al. . . . . . 569--571 Nikki L. B. Freeman and Xiaotong Jiang and Owen E. Leete and Daniel J. Luckett and Teeranan Pokaprakarn and Michael R. Kosorok Comment: Models as Approximations . . . 572--574 Dag Tjòstheim Discussion of Models as Approximations I & II . . . . . . . . . . . . . . . . . . 575--579 Roderick J. Little Comment: ``Models as Approximations I: Consequences Illustrated with Linear Regression'' by A. Buja, R. Berk, L. Brown, E. George, E. Pitkin, L. Zhan and K. Zhang . . . . . . . . . . . . . . . . 580--583 Anthony C. Davison and Erwan Koch and Jonathan Koh Comment: Models Are Approximations! . . 584--590 David Whitney and Ali Shojaie and Marco Carone Comment: Models as (Deliberate) Approximations . . . . . . . . . . . . . 591--598 Alessandro Rinaldo and Ryan J. Tibshirani and Larry Wasserman Comment: Statistical Inference from a Predictive Perspective . . . . . . . . . 599--603 Dalia Ghanem and Todd A. Kuffner Discussion: Models as Approximations . . 604--605 Andreas Buja and Arun Kumar Kuchibhotla and Richard Berk and Edward George and Eric Tchetgen Tchetgen and Linda Zhao Models as Approximations --- Rejoinder 606--620 James O. Berger and Anirban DasGupta Larry Brown's Contributions to Parametric Inference, Decision Theory and Foundations: a Survey . . . . . . . 621--634 T. Tony Cai Gaussianization Machines for Non-Gaussian Function Estimation Models 635--656 Iain M. Johnstone Larry Brown's Work on Admissibility . . 657--668 Junhui Cai and Avishai Mandelbaum and Chaitra H. Nagaraja and Haipeng Shen and Linda Zhao Statistical Theory Powering Data Science 669--691
Anonymous Introduction to the Special Issue . . . 1 Zhixiang Lin and Mahdi Zamanighomi and Timothy Daley and Shining Ma and Wing Hung Wong Model-Based Approach to the Joint Analysis of Single-Cell Data on Chromatin Accessibility and Gene Expression . . . . . . . . . . . . . . . 2--13 Adam R. Brentnall and Jack Cuzick Risk Models for Breast Cancer and Their Validation . . . . . . . . . . . . . . . 14--30 Michael L. Stein Some Statistical Issues in Climate Science . . . . . . . . . . . . . . . . 31--41 Peter J. Diggle and Emanuele Giorgi and Julienne Atsame and Sylvie Ntsame Ella and Kisito Ogoussan and Katherine Gass A Tale of Two Parasites: Statistical Modelling to Support Disease Control Programmes in Africa . . . . . . . . . . 42--50 Yazhen Wang and Xinyu Song Quantum Science and Quantum Technology 51--74 Chao Du and S. C. Kou Statistical Methodology in Single-Molecule Experiments . . . . . . 75--91 Thomas Staudt and Timo Aspelmeier and Oskar Laitenberger and Claudia Geisler and Alexander Egner and Axel Munk Statistical Molecule Counting in Super-Resolution Fluorescence Microscopy: Towards Quantitative Nanoscopy . . . . . . . . . . . . . . . 92--111 Divyansh Agarwal and Jingshu Wang and Nancy R. Zhang Data Denoising and Post-Denoising Corrections in Single Cell RNA Sequencing . . . . . . . . . . . . . . . 112--128 Khanh N. Dinh and Roman Jaksik and Marek Kimmel and Amaury Lambert and Simon Tavaré Statistical Inference for the Evolutionary History of Cancer Genomes 129--144 Ruosi Guo and Chunming Zhang and Zhengjun Zhang Maximum Independent Component Analysis with Application to EEG Data . . . . . . 145--157
Joshua B. Miller and Andrew Gelman Laplace's Theories of Cognitive Illusions, Heuristics and Biases . . . . 159--170 Daniel Kahneman and Maya Bar-Hillel Comment: Laplace and Cognitive Illusions 171--172 Glenn Shafer Comment: Illusions, Then and Now . . . . 173--174 Joshua B. Miller and Andrew Gelman Rejoinder: Laplace's theories of cognitive illusions, heuristics and biases . . . . . . . . . . . . . . . . . 175--177 Sébastien Gerchinovitz and Pierre Ménard and Gilles Stoltz Fano's Inequality for Random Variables 178--201 Yakir A. Reshef and David N. Reshef and Pardis C. Sabeti and Michael Mitzenmacher Equitability, Interval Estimation, and Statistical Power . . . . . . . . . . . 202--217 Óli Páll Geirsson and Birgir Hrafnkelsson and Daniel Simpson and Helgi Sigurdarson LGM Split Sampler: An Efficient MCMC Sampling Scheme for Latent Gaussian Models . . . . . . . . . . . . . . . . . 218--233 David J. Nott and Xueou Wang and Michael Evans and Berthold-Georg Englert Checking for Prior-Data Conflict Using Prior-to-Posterior Divergences . . . . . 234--253 Kirk Bansak A Generalized Approach to Power Analysis for Local Average Treatment Effects . . 254--271 Jing Lei and Joseph B. Kadane On the Probability That Two Random Integers Are Coprime . . . . . . . . . . 272--279 Claire McKay Bowen and Fang Liu Comparative Study of Differentially Private Data Synthesis Methods . . . . . 280--307 Douglas Nychka and Ping Ma and Douglas Bates A Conversation with Grace Wahba . . . . 308--320 George G. Roussas and Debasis Bhattacharya A Conversation with Francisco J. Samaniego . . . . . . . . . . . . . . . 321--333
Ruoqi Yu and Jeffrey H. Silber and Paul R. Rosenbaum Matching Methods for Observational Studies Derived from Large Administrative Databases . . . . . . . . 338--355 Tianchen Qian and Predrag Klasnja and Susan A. Murphy Linear Mixed Models with Endogenous Covariates: Modeling Sequential Treatment Effects with Application to a Mobile Health Study . . . . . . . . . . 375--390 Kristin A. Linn Moving Toward Rigorous Evaluation of Mobile Health Interventions . . . . . . 394--395 Hunyong Cho and Joshua P. Zitovsky and Xinyi Li and Minxin Lu and Kushal Shah and John Sperger and Matthew C. B. Tsilimigras and Michael R. Kosorok Comment: Diagnostics and Kernel-based Extensions for Linear Mixed Effects Models with Endogenous Covariates . . . 396--399 Peter Bühlmann Invariance, Causality and Robustness . . 404--426 Peter Bühlmann Rejoinder: Invariance, Causality and Robustness . . . . . . . . . . . . . . . 434--436 Tyler J. VanderWeele and Maya B. Mathur and Ying Chen Outcome-Wide Longitudinal Designs for Causal Inference: A New Template for Empirical Studies . . . . . . . . . . . 437--466 David Benkeser and Weixin Cai and Mark J. van der Laan A Nonparametric Super-Efficient Estimator of the Average Treatment Effect . . . . . . . . . . . . . . . . . 484--495 Fan Li Comment: Stabilizing the Doubly-Robust Estimators of the Average Treatment Effect under Positivity Violations . . . 503--510 Lin Liu and Rajarshi Mukherjee and James M. Robins On Nearly Assumption-Free Tests of Nominal Confidence Interval Coverage for Causal Parameters Estimated by Machine Learning . . . . . . . . . . . . . . . . 518--539 Lin Liu and Rajarshi Mukherjee and James M. Robins Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning . . . . . . . . . . 545--554
Dimitris Bertsimas and Jean Pauphilet and Bart Van Parys Sparse Regression: Scalable Algorithms and Empirical Performance . . . . . . . 555--578 Trevor Hastie and Robert Tibshirani and Ryan Tibshirani Best Subset, Forward Stepwise or Lasso? Analysis and Recommendations Based on Extensive Comparisons . . . . . . . . . 579--592 Owais Sarwar and Benjamin Sauk and Nikolaos V. Sahinidis A Discussion on Practical Considerations with Sparse Regression Methodologies . . 593--601 Yuansi Chen and Armeen Taeb and Peter Bühlmann A Look at Robustness and Stability of $ \ell_1$-versus $ \ell_0$-Regularization: Discussion of Papers by Bertsimas et al. and Hastie et al. . . . . . . . . . . . 614--622 Michael Schweinberger and Pavel N. Krivitsky and Carter T. Butts and Jonathan R. Stewart Exponential-Family Models of Random Graphs: Inference in Finite, Super and Infinite Population Scenarios . . . . . 627--662 Richard D. De Veaux A Conversation with J. Stuart (Stu) Hunter . . . . . . . . . . . . . . . . . 663--671
Xiaodong Li and Yudong Chen and Jiaming Xu Convex Relaxation Methods for Community Detection . . . . . . . . . . . . . . . 2--15 Chao Gao and Zongming Ma Minimax Rates in Network Analysis: Graphon Estimation, Community Detection and Hypothesis Testing . . . . . . . . . 16--33 Peter Hoff Additive and Multiplicative Effects Network Models . . . . . . . . . . . . . 34--50 Harry Crane and Walter Dempsey A Statistical Framework for Modern Network Science . . . . . . . . . . . . 51--67 Avanti Athreya and Minh Tang and Youngser Park and Carey E. Priebe On Estimation and Inference in Latent Structure Random Graphs . . . . . . . . 68--88 Y. X. Rachel Wang and Lexin Li and Jingyi Jessica Li and Haiyan Huang Network Modeling in Biology: Statistical Methods for Gene and Brain Networks . . 89--108 Corwin M. Zigler and Georgia Papadogeorgou Bipartite Causal Inference with Interference . . . . . . . . . . . . . . 109--123 Matthias Katzfuss and Joseph Guinness A General Framework for Vecchia Approximations of Gaussian Processes . . 124--141 Yijun Zuo On General Notions of Depth for Regression . . . . . . . . . . . . . . . 142--157 Ying Lu and Dylan S. Small and Zhiliang Ying A Conversation with Tze Leung Lai . . . 158--167
Ruobin Gong and Xiao-Li Meng Judicious Judgment Meets Unsettling Updating: Dilation, Sure Loss and Simpson's Paradox . . . . . . . . . . . 169--190 Glenn Shafer Comment: On the History and Limitations of Probability Updating . . . . . . . . 191--195 Chuanhai Liu and Ryan Martin Comment: Settle the Unsettling: An Inferential Models Perspective . . . . . 196--200 Gregory Wheeler Comment: Moving Beyond Sets of Probabilities . . . . . . . . . . . . . 201--204 Thomas Augustin and Georg Schollmeyer Comment: On Focusing, Soft and Strong Revision of Choquet Capacities and Their Role in Statistics . . . . . . . . . . . 205--209 Jian Huang and Yuling Jiao and Bangti Jin and Jin Liu and Xiliang Lu and Can Yang A Unified Primal Dual Active Set Algorithm for Nonconvex Sparse Recovery 215--238 Anthony C. Atkinson and Marco Riani and Aldo Corbellini The Box--Cox Transformation: Review and Extensions . . . . . . . . . . . . . . . 239--255 Ian W. McKeague Noncommutative Probability and Multiplicative Cascades . . . . . . . . 256--263 Jianqing Fan and Cong Ma and Yiqiao Zhong A Selective Overview of Deep Learning 264--290 Tze Leung Lai and Hongsong Yuan Stochastic Approximation: From Statistical Origin to Big-Data, Multidisciplinary Applications . . . . . 291--302 Jianqing Fan and Kaizheng Wang and Yiqiao Zhong and Ziwei Zhu Robust High-Dimensional Factor Models with Applications to Statistical Machine Learning . . . . . . . . . . . . . . . . 303--327 Efstathia Bura and Bing Li and Lexin Li and Christopher Nachtsheim and Daniel Pena and Claude Setodji and Robert E. Weiss A Conversation with Dennis Cook . . . . 328--337
Lukas M. Verburgt Khinchin's 1929 Paper on von Mises' Frequency Theory of Probability . . . . 339--343 Danica M. Ommen and Christopher P. Saunders A Problem in Forensic Science Highlighting the Differences between the Bayes Factor and Likelihood Ratio . . . 344--359 Axel Bücher and Chen Zhou A Horse Race between the Block Maxima Method and the Peak-over-Threshold Approach . . . . . . . . . . . . . . . . 360--378 Grant Backlund and James P. Hobert and Yeun Ji Jung and Kshitij Khare A Hybrid Scan Gibbs Sampler for Bayesian Models with Latent Variables . . . . . . 379--399 Paul T. von Hippel and Jonathan W. Bartlett Maximum Likelihood Multiple Imputation: Faster Imputations and Consistent Standard Errors Without Posterior Draws 400--420 Alan Julian Izenman Random Matrix Theory and Its Applications . . . . . . . . . . . . . . 421--442 Eric Tchetgen Tchetgen and BaoLuo Sun and Stefan Walter The GENIUS Approach to Robust Mendelian Randomization Inference . . . . . . . . 443--464 Ian C. Marschner A General Framework for the Analysis of Adaptive Experiments . . . . . . . . . . 465--492
Zhichao Jiang and Peng Ding Identification of Causal Effects Within Principal Strata Using Auxiliary Variables . . . . . . . . . . . . . . . 493--508 Yudi Pawitan and Youngjo Lee Confidence as Likelihood . . . . . . . . 509--517 Dootika Vats and Christina Knudson Revisiting the Gelman--Rubin Diagnostic 518--529 Jie Zhou and Xiao-Hua Zhou and Liuquan Sun Comparison of Two Frameworks for Analyzing Longitudinal Data . . . . . . 530--541 Rosaria Lombardo and Eric J. Beh and Pieter M. Kroonenberg Symmetrical and Non-symmetrical Variants of Three-Way Correspondence Analysis for Ordered Variables . . . . . . . . . . . 542--561 Sen Zhao and Daniela Witten and Ali Shojaie In Defense of the Indefensible: a Very Na\"\ive Approach to High-Dimensional Inference . . . . . . . . . . . . . . . 562--577 Kris De Brabanter and Jos De Brabanter Robustness by Reweighting for Kernel Estimators: an Overview . . . . . . . . 578--594 Vladimir Vovk Testing Randomness Online . . . . . . . 595--611 Bouchra R. Nasri and Bruno N. Rémillard and Barbara Szyszkowicz and Jean Vaillancourt A Conversation with Don Dawson . . . . . 612--622
Xinran Li and Dingdong Yi and Jun S. Liu Bayesian Analysis of Rank Data with Covariates and Heterogeneous Rankers . . 1--23 Fernando A. Quintana and Peter Müller and Alejandro Jara and Steven N. MacEachern The Dependent Dirichlet Process and Related Models . . . . . . . . . . . . . 24--41 Marco Oesting and Kirstin Strokorb A Comparative Tour through the Simulation Algorithms for Max-Stable Processes . . . . . . . . . . . . . . . 42--63 Evan Baker and Pierre Barbillon and Arindam Fadikar and Robert B. Gramacy and Radu Herbei and David Higdon and Jiangeng Huang and Leah R. Johnson and Pulong Ma and Anirban Mondal and Bianica Pires and Jerome Sacks and Vadim Sokolov Analyzing Stochastic Computer Models: a Review with Opportunities . . . . . . . 64--89 Dag Tjòstheim and Håkon Otneim and Bård Stòve Statistical Dependence: Beyond Pearson's $ \rho $ . . . . . . . . . . . . . . . . 90--109 H. S. Battey and D. R. Cox Some Perspectives on Inference in High Dimensions . . . . . . . . . . . . . . . 110--122 Adrian Baddeley and Tilman M. Davies and Suman Rakshit and Gopalan Nair and Greg McSwiggan Diffusion Smoothing for Spatial Point Patterns . . . . . . . . . . . . . . . . 123--142 Li Hsu and Charles Kooperberg A Conversation with Ross Prentice . . . 143--158
Lorenzo Cappello and Jaehee Kim and Sifan Liu and Julia A. Palacios Statistical Challenges in Tracking the Evolution of SARS-CoV-2 . . . . . . . . 162--182 George Nicholson and Marta Blangiardo and Mark Briers and Peter J. Diggle and Tor Erlend Fjelde and Hong Ge and Robert J. B. Goudie and Radka Jersakova and Ruairidh E. King and Brieuc C. L. Lehmann and Ann-Marie Mallon and Tullia Padellini and Yee Whye Teh and Chris Holmes and Sylvia Richardson Interoperability of Statistical Models in Pandemic Preparedness: Principles and Reality . . . . . . . . . . . . . . . . 183--206 Maria Jahja and Andrew Chin and Ryan J. Tibshirani Real-Time Estimation of COVID-19 Infections: Deconvolution and Sensor Fusion . . . . . . . . . . . . . . . . . 207--228 Saskia Comess and Hannah Wang and Susan Holmes and Claire Donnat Statistical Modeling for Practical Pooled Testing During the COVID-19 Pandemic . . . . . . . . . . . . . . . . 229--250 Zitong Wang and Mary Grace Bowring and Antony Rosen and Brian Garibaldi and Scott Zeger and Akihiko Nishimura Learning and Predicting from Dynamic Models for COVID-19 Patient Monitoring 251--265 Bin Yu and Chandan Singh Seven Principles for Rapid-Response Data Science: Lessons Learned from COVID-19 Forecasting . . . . . . . . . . . . . . 266--269 Bhramar Mukherjee Being a Public Health Statistician During a Global Pandemic . . . . . . . . 270--277 Xihong Lin Lessons Learned from the COVID-19 Pandemic: a Statistician's Reflection 278--283 John M. Chambers Data, Science, and Global Disasters . . 284--288
Persi Diaconis and Stewart N. Ethier Gambler's Ruin and the ICM . . . . . . . 289--305 Thomas J. DiCiccio and David M. Ritzwoller and Joseph P. Romano and Azeem M. Shaikh Confidence Intervals for Seroprevalence 306--321 Yosef Rinott and Tomer Shoham and Gil Kalai Statistical Aspects of the Quantum Supremacy Demonstration . . . . . . . . 322--347 Karl Mosler and Pavlo Mozharovskyi Choosing Among Notions of Multivariate Depth Statistics . . . . . . . . . . . . 348--368 Charlotte Micheloud and Leonhard Held Power Calculations for Replication Studies . . . . . . . . . . . . . . . . 369--379 Ross L. Prentice and Aaron K. Aragaki Intention-to-Treat Comparisons in Randomized Trials . . . . . . . . . . . 380--393 Roel Verbelen and Katrien Antonio and Gerda Claeskens and Jonas Crevecoeur Modeling the Occurrence of Events Subject to a Reporting Delay via an EM Algorithm . . . . . . . . . . . . . . . 394--410 Shanshan Cao and Xiaoming Huo and Jong-Shi Pang A Unifying Framework of High-Dimensional Sparse Estimation with Difference-of-Convex (DC) Regularizations . . . . . . . . . . . . 411--424 Theodore Papamarkou and Jacob Hinkle and M. Todd Young and David Womble Challenges in Markov Chain Monte Carlo for Bayesian Neural Networks . . . . . . 425--442 Xuming He and Xiaofeng Shao A Conversation with Stephen Portnoy . . 443--454
Michael P. Fay and Michael A. Proschan and Erica H. Brittain and Ram Tiwari Interpreting $p$-Values and Confidence Intervals Using Well-Calibrated Null Preference Priors . . . . . . . . . . . 455--472 Zhirui Hu and Zheng Tracy Ke and Jun S. Liu Measurement Error Models: From Nonparametric Methods to Deep Neural Networks . . . . . . . . . . . . . . . . 473--493 Seyoon Ko and Hua Zhou and Jin J. Zhou and Joong-Ho Won High-Performance Statistical Computing in the Computing Environments of the 2020s . . . . . . . . . . . . . . . . . 494--518 Daniel Sanz-Alonso and Ruiyi Yang The SPDE Approach to Matérn Fields: Graph Representations . . . . . . . . . . . . 519--540 Vanda Inácio and María Xosé Rodríguez-Álvarez The Covariate-Adjusted ROC Curve: The Concept and Its Importance, Review of Inferential Methods, and a New Bayesian Estimator . . . . . . . . . . . . . . . 541--561 Dominic Edelmann and Jelle Goeman A Regression Perspective on Generalized Distance Covariance and the Hilbert--Schmidt Independence Criterion 562--579 Qinglong Tian and Daniel J. Nordman and William Q. Meeker Methods to Compute Prediction Intervals: a Review and New Results . . . . . . . . 580--597 Per Gösta Andersson Approximate Confidence Intervals for a Binomial $p$ --- Once Again . . . . . . 598--606 Shankar Bhamidi A Conversation with David J. Aldous . . 607--624 Michael Lavine and Jan F. Bjòrnstad Comments on Confidence as Likelihood by Pawitan and Lee in \booktitleStatistical Science, November 2021 . . . . . . . . . 625--627 Yudi Pawitan and Youngjo Lee Rejoinder: Confidence as Likelihood . . 628--629
Niloofar Moosavi and Jenny Häggström and Xavier de Luna The Costs and Benefits of Uniformly Valid Causal Inference with High-Dimensional Nuisance Parameters . . 1--12 David Rossell and Francisco Javier Rubio Additive Bayesian Variable Selection under Censoring and Misspecification . . 13--29 Davide La Vecchia and Elvezio Ronchetti and Andrej Ilievski On Some Connections Between Esscher's Tilting, Saddlepoint Approximations, and Optimal Transportation: a Statistical Perspective . . . . . . . . . . . . . . 30--51 Alessandra Giovagnoli and Isabella Verdinelli Bayesian Adaptive Randomization with Compound Utility Functions . . . . . . . 52--67 Rajen D. Shah and Peter Bühlmann Double-Estimation-Friendly Inference for High-Dimensional Misspecified Models . . 68--91 Xinran Li and Dylan S. Small Randomization-Based Test for Censored Outcomes: a New Look at the Logrank Test 92--107 Wenpin Tang and Fengmin Tang The Poisson Binomial Distribution --- Old & New . . . . . . . . . . . . . . . . 108--119 Andreas Anastasiou and Alessandro Barp and François-Xavier Briol and Bruno Ebner and Robert E. Gaunt and Fatemeh Ghaderinezhad and Jackson Gorham and Arthur Gretton and Christophe Ley and Qiang Liu and Lester Mackey and Chris J. Oates and Gesine Reinert and Yvik Swan Stein's Method Meets Computational Statistics: a Review of Some Recent Developments . . . . . . . . . . . . . . 120--139 David Bolin and Jonas Wallin Local scale invariance and robustness of proper scoring rules . . . . . . . . . . 140--159 Persi Diaconis and Sandy Zabell In Praise (and Search) of J. V. Uspensky 160--183
Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? David S. Robertson and Kim May Lee and Boryana C. López-Kolkovska and Sofía S. Villar Response-Adaptive Randomization in Clinical Trials: From Myths to Practical Considerations . . . . . . . . . . . . . 185--208 Anastasia Ivanova and William F. Rosenberger Comment: A Quarter Century of Methodological Research in Response-Adaptive Randomization . . . . 209--211 Yunshan Duan and Peter Müller and Yuan Ji Comment: Response-Adaptive Randomization in Clinical Trials: From Myths to Practical Considerations . . . . . . . . 212--215 Lorenzo Trippa and Yanxun Xu Comment: Advancing Clinical Trials with Novel Designs and Implementations . . . 216--218 Christopher Jennison Comment: Group Sequential Designs with Response-Adaptive Randomisation . . . . 219--223 Alessandra Giovagnoli Comment: Is Response-Adaptive Randomization a ``Good Thing'' or Not in Clinical Trials? Why We Cannot Take Sides . . . . . . . . . . . . . . . . . 224--228 Scott M. Berry and Kert Viele Comment: Response Adaptive Randomization in Practice . . . . . . . . . . . . . . 229--232 David S. Robertson and Kim May Lee and Boryana C. López-Kolkovska and Sofía S. Villar Rejoinder: Response-Adaptive Randomization in Clinical Trials . . . . 233--239 Linda S. L. Tan Efficient Data Augmentation Techniques for Some Classes of State Space Models 240--261 Rajarshi Guhaniyogi and Cheng Li and Terrance Savitsky and Sanvesh Srivastava Distributed Bayesian Inference in Massive Spatial Data . . . . . . . . . . 262--284 Sandy Zabell The Secret Life of I. J. Good . . . . . 285--302 Lorenzo Masoero and Emma Thomas and Giovanni Parmigiani and Svitlana Tyekucheva and Lorenzo Trippa Cross-Study Replicability in Cluster Analysis . . . . . . . . . . . . . . . . 303--316 Kosuke Imai and Zhichao Jiang Principal Fairness for Human and Algorithmic Decision-Making . . . . . . 317--328 Vladimir Vovk and Ruodu Wang Confidence and Discoveries with $E$-values . . . . . . . . . . . . . . . 329--354 Yulia R. Gel and Edsel A. Peña and Huixia Judy Wang Conversations with Gábor J. Székely . . . 355--367
Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Olli Saarela and David A. Stephens and Erica E. M. Moodie The Role of Exchangeability in Causal Inference . . . . . . . . . . . . . . . 369--385 Michael Greenacre and Eric Grunsky and John Bacon-Shone and Ionas Erb and Thomas Quinn Aitchison's Compositional Data Analysis 40 Years on: a Reappraisal . . . . . . . 386--410 Dag Tjòstheim and Martin Jullum and Anders Lòland Statistical Embedding: Beyond Principal Components . . . . . . . . . . . . . . . 411--439 Paul R. Rosenbaum Can We Reliably Detect Biases that Matter in Observational Studies? . . . . 440--457 Patrick Bajari and Brian Burdick and Guido W. Imbens and Lorenzo Masoero and James McQueen and Thomas S. Richardson and Ido M. Rosen Experimental Design in Marketplaces . . 458--476 Paul Gustafson Parameter Restrictions for the Sake of Identification: Is There Utility in Asserting That Perhaps a Restriction Holds? . . . . . . . . . . . . . . . . . 477--489 Xuejun Yu and David J. Nott and Michael Stanley Smith Variational Inference for Cutting Feedback in Misspecified Models . . . . 490--509 Jukka Nyblom Note on Legendre's Method of Least Squares . . . . . . . . . . . . . . . . 510--513 Rhonda J. Rosychuk A Conversation with Mary E. Thompson . . 514--524
Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Alicia L. Carriquiry and Michael J. Daniels and Nancy Reid Editorial: Special Issue on Reproducibility and Replicability . . . 525--526 Dominik Rothenhäusler and Peter Bühlmann Distributionally Robust and Generalizable Inference . . . . . . . . 527--542 Giovanni Parmigiani Defining Replicability of Prediction Rules . . . . . . . . . . . . . . . . . 543--556 David S. Robertson and James M. S. Wason and Aaditya Ramdas Online Multiple Hypothesis Testing . . . 557--575 Aaditya Ramdas and Peter Grünwald and Vladimir Vovk and Glenn Shafer Game-Theoretic Statistics and Safe Anytime-Valid Inference . . . . . . . . 576--601 Marina Bogomolov and Ruth Heller Replicability Across Multiple Studies 602--620 Francesca Freuli and Leonhard Held and Rachel Heyard Replication Success Under Questionable Research Practices-a Simulation Study 621--639 Carly Lupton Brantner and Ting-Hsuan Chang and Trang Quynh Nguyen and Hwanhee Hong and Leon Di Stefano and Elizabeth A. Stuart Methods for Integrating Trials and Non-experimental Data to Examine Treatment Effect Heterogeneity . . . . . 640--654 Antonio Possolo Tracking Truth Through Measurement and the Spyglass of Statistics . . . . . . . 655--671
Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Christian P. Robert and Dennis Prangle Editorial: Bayesian Computations in the 21st Century . . . . . . . . . . . . . . 1--2 Gael M. Martin and David T. Frazier and Christian P. Robert Computing Bayes: From Then `Til Now . . 3--19 Gael M. Martin and David T. Frazier and Christian P. Robert Approximating Bayes in the 21st Century 20--45 Erik Strumbelj and Alexandre Bouchard-Côté and Jukka Corander and Andrew Gelman and Håvard Rue and Lawrence Murray and Henri Pesonen and Martyn Plummer and Aki Vehtari Past, Present and Future of Software for Bayesian Inference . . . . . . . . . . . 46--61 Steven Winter and Trevor Campbell and Lizhen Lin and Sanvesh Srivastava and David B. Dunson Emerging Directions in Bayesian Computation . . . . . . . . . . . . . . 62--89 Jeremy Heng and Valentin De Bortoli and Arnaud Doucet Diffusion Schrödinger Bridges for Bayesian Computation . . . . . . . . . . 90--99 Tom Rainforth and Adam Foster and Desi R. Ivanova and Freddie Bickford Smith Modern Bayesian Experimental Design . . 100--114 Roberto Casarin and Radu V. Craiu and Lorenzo Frattarolo and Christian P. Robert Living on the Edge: an Unified Approach to Antithetic Sampling . . . . . . . . . 115--136 Michael F. Faulkner and Samuel Livingstone Sampling Algorithms in Statistical Physics: a Guide for Statistics and Machine Learning . . . . . . . . . . . . 137--164 Bénédicte Colnet and Imke Mayer and Guanhua Chen and Awa Dieng and Ruohong Li and Gaël Varoquaux and Jean-Philippe Vert and Julie Josse and Shu Yang Causal Inference Methods for Combining Randomized Trials and Observational Studies: a Review . . . . . . . . . . . 165--191 Sam Behseta and Robert E. Kass A Conversation with Stephen M. Stigler 192--208 Bhramar Mukherjee In Conversation with Sir David Spiegelhalter and Professor Sylvia Richardson . . . . . . . . . . . . . . . 209--220
Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Jörg Drechsler and Anna-Carolina Haensch 30 Years of Synthetic Data . . . . . . . 221--242 Tianjian Zhou and Yuan Ji Statistical Frameworks for Oncology Dose-Finding Designs with Late-Onset Toxicities: a Review . . . . . . . . . . 243--261 Raoul Müller and Dominic Schuhmacher and Jorge Mateu ANOVA for Metric Spaces, with Applications to Spatial Data . . . . . . 262--285 Chuji Luo and Michael J. Daniels Variable Selection Using Bayesian Additive Regression Trees . . . . . . . 286--304 Federico Castelletti and Guido Consonni Bayesian Sample Size Determination for Causal Discovery . . . . . . . . . . . . 305--321 Alessandra R. Brazzale and Valentina Mameli Likelihood Asymptotics in Nonregular Settings: a Review with Emphasis on the Likelihood Ratio . . . . . . . . . . . . 322--345 Eric-Jan Wagenmakers and Sandy Zabell and Quentin F. Gronau J. B. S. Haldane's Rule of Succession 346--354 Frank Tuyl and Richard Gerlach and Kerrie Mengersen On the Certainty of an Inductive Inference: The Binomial Case . . . . . . 355--356 Fabrizia Mealli and Julie Holland Mortimer A Conversation with Guido W. Imbens . . 357--373
Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Eric J. Tchetgen Tchetgen and Andrew Ying and Yifan Cui and Xu Shi and Wang Miao An Introduction to Proximal Causal Inference . . . . . . . . . . . . . . . 375--390 Jean-François Quessy A General Construction of Multivariate Dependence Structures with Nonmonotone Mappings and Its Applications . . . . . 391--408 Dimitris N. Politis Studentization Versus Variance Stabilization: a Simple Way Out of an Old Dilemma . . . . . . . . . . . . . . 409--427 Soudeep Deb and Kaushik Jana Nonparametric Quantile Regression for Time Series with Replicated Observations and Its Application to Climate Data . . 428--448 Víctor Gallego and Roi Naveiro and Alberto Redondo and David Ríos Insua and Fabrizio Ruggeri Protecting Classifiers from Attacks . . 449--468 Emilio Porcu and Moreno Bevilacqua and Robert Schaback and Chris J. Oates The Matérn Model: a Journey Through Statistics, Numerical Analysis and Machine Learning . . . . . . . . . . . . 469--492 David R. Bellhouse and Christian Genest Antoine Gombaud, Chevalier de Méré . . . . 493--507 Xihong Lin and Nilanjan Chatterjee A Conversation with Raymond J. Carroll 508--517