Table of contents for issues of Statistical Science

Last update: Fri Oct 18 07:41:23 MDT 2024                Valid HTML 3.2!

Volume 1, Number 1, February, 1986
Volume 1, Number 2, May, 1986
Volume 1, Number 3, August, 1986
Volume 1, Number 4, November, 1986
Volume 2, Number 1, February, 1987
Volume 2, Number 2, May, 1987
Volume 2, Number 3, August, 1987
Volume 2, Number 4, November, 1987
Volume 3, Number 1, February, 1988
Volume 3, Number 2, May, 1988
Volume 3, Number 3, August, 1988
Volume 3, Number 4, November, 1988
Volume 4, Number 1, February, 1989
Volume 4, Number 2, May, 1989
Volume 4, Number 3, August, 1989
Volume 4, Number 4, November, 1989
Volume 5, Number 1, February, 1990
Volume 5, Number 2, May, 1990
Volume 5, Number 3, August, 1990
Volume 5, Number 4, November, 1990
Volume 6, Number 1, February, 1991
Volume 6, Number 2, May, 1991
Volume 6, Number 3, August, 1991
Volume 6, Number 4, November, 1991
Volume 7, Number 1, February, 1992
Volume 7, Number 2, May, 1992
Volume 7, Number 3, August, 1992
Volume 7, Number 4, November, 1992
Volume 8, Number 1, February, 1993
Volume 8, Number 2, May, 1993
Volume 8, Number 3, August, 1993
Volume 8, Number 4, November, 1993
Volume 9, Number 1, February, 1994
Volume 9, Number 2, May, 1994
Volume 9, Number 3, August, 1994
Volume 9, Number 4, November, 1994
Volume 10, Number 1, February, 1995
Volume 10, Number 2, May, 1995
Volume 10, Number 3, August, 1995
Volume 10, Number 4, November, 1995
Volume 11, Number 1, February, 1996
Volume 11, Number 2, May, 1996
Volume 11, Number 3, August, 1996
Volume 11, Number 4, November, 1996
Volume 12, Number 1, February, 1997
Volume 12, Number 2, May, 1997
Volume 12, Number 3, August, 1997
Volume 12, Number 4, November, 1997
Volume 13, Number 1, February, 1998
Volume 13, Number 2, May, 1998
Volume 13, Number 3, August, 1998
Volume 13, Number 4, November, 1998
Volume 14, Number 1, February, 1999
Volume 14, Number 2, May, 1999
Volume 14, Number 3, August, 1999
Volume 14, Number 4, November, 1999
Volume 15, Number 1, February, 2000
Volume 15, Number 2, May, 2000
Volume 15, Number 3, August, 2000
Volume 15, Number 4, November, 2000
Volume 16, Number 1, February, 2001
Volume 16, Number 2, May, 2001
Volume 16, Number 3, August, 2001
Volume 16, Number 4, November, 2001
Volume 17, Number 2, May, 2002
Volume 17, Number 3, August, 2002
Volume 17, Number 4, November, 2002
Volume 18, Number 1, February, 2003
Volume 18, Number 2, May, 2003
Volume 18, Number 3, August, 2003
Volume 18, Number 4, November, 2003
Volume 19, Number 1, February, 2004
Volume 19, Number 2, May, 2004
Volume 19, Number 3, August, 2004
Volume 19, Number 4, November, 2004
Volume 20, Number 1, February, 2005
Volume 20, Number 2, May, 2005
Volume 20, Number 3, August, 2005
Volume 20, Number 4, November, 2005
Volume 21, Number 1, February, 2006
Volume 21, Number 2, May, 2006
Volume 21, Number 3, August, 2006
Volume 21, Number 4, November, 2006
Volume 22, Number 1, February, 2007
Volume 22, Number 2, May, 2007
Volume 22, Number 3, August, 2007
Volume 22, Number 4, November, 2007
Volume 23, Number 1, February, 2008
Volume 23, Number 2, May, 2008
Volume 23, Number 3, August, 2008
Volume 23, Number 4, November, 2008
Volume 24, Number 1, February, 2009
Volume 24, Number 2, May, 2009
Volume 24, Number 3, August, 2009
Volume 24, Number 4, November, 2009
Volume 25, Number 1, February, 2010
Volume 25, Number 2, May, 2010
Volume 25, Number 3, August, 2010
Volume 25, Number 4, November, 2010
Volume 26, Number 1, February, 2011
Volume 26, Number 2, May, 2011
Volume 26, Number 3, August, 2011
Volume 26, Number 4, November, 2011
Volume 27, Number 1, February, 2012
Volume 27, Number 2, May, 2012
Volume 27, Number 3, August, 2012
Volume 27, Number 4, November, 2012
Volume 28, Number 1, February, 2013
Volume 28, Number 2, May, 2013
Volume 28, Number 3, August, 2013
Volume 28, Number 4, November, 2013
Volume 29, Number 1, February, 2014
Volume 29, Number 2, May, 2014
Volume 29, Number 3, August, 2014
Volume 29, Number 4, November, 2014
Volume 30, Number 1, February, 2015
Volume 30, Number 2, May, 2015
Volume 30, Number 3, August, 2015
Volume 30, Number 4, November, 2015
Volume 31, Number 1, February, 2016
Volume 31, Number 2, May, 2016
Volume 31, Number 3, August, 2016
Volume 31, Number 4, November, 2016
Volume 32, Number 1, February, 2017
Volume 32, Number 2, May, 2017
Volume 32, Number 3, August, 2017
Volume 32, Number 4, 11, 2017
Volume 33, Number 1, 02, 2018
Volume 33, Number 2, May, 2018
Volume 33, Number 3, August, 2018
Volume 33, Number 4, November, 2018
Volume 34, Number 1, February, 2019
Volume 34, Number 2, May, 2019
Volume 34, Number 3, August, 2019
Volume 34, Number 4, November, 2019
Volume 35, Number 1, February, 2020
Volume 35, Number 2, May, 2020
Volume 35, Number 3, August, 2020
Volume 35, Number 4, November, 2020
Volume 36, Number 1, February, 2021
Volume 36, Number 2, May, 2021
Volume 36, Number 3, August, 2021
Volume 36, Number 4, November, 2021
Volume 37, Number 1, February, 2022
Volume 37, Number 2, May, 2022
Volume 37, Number 3, August, 2022
Volume 37, Number 4, November, 2022
Volume 38, Number 1, February, 2023
Volume 38, Number 2, May, 2023
Volume 38, Number 3, August, 2023
Volume 38, Number 4, November, 2023
Volume 39, Number 1, February, 2024
Volume 39, Number 2, May, 2024
Volume 39, Number 3, August, 2024


Statistical Science
Volume 1, Number 1, February, 1986

                      Anonymous   Editorial  . . . . . . . . . . . . . . . 1--2
             D. A. Freedman and   
                   W. C. Navidi   Regression Models for Adjusting the 1980
                                  Census . . . . . . . . . . . . . . . . . 3--11
               Joseph B. Kadane   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 12--17
             Eugene P. Ericksen   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 18--21
                 A. P. Dempster   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 21--23
                 Kirk M. Wolter   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 24--28
                Albert Madansky   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 28--30
                  I. P. Fellegi   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 30--33
               Lincoln E. Moses   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 33--34
                     Gad Nathan   [Regression Models for Adjusting the
                                  1980 Census]: Comment  . . . . . . . . . 34--35
             D. A. Freedman and   
                   W. C. Navidi   [Regression Models for Adjusting the
                                  1980 Census]: Rejoinder  . . . . . . . . 35--39
              Morris H. DeGroot   A Conversation with David Blackwell  . . 40--53
                   B. Efron and   
                  R. Tibshirani   Bootstrap Methods for Standard Errors,
                                  Confidence Intervals, and Other Measures
                                  of Statistical Accuracy  . . . . . . . . 54--75
                 J. A. Hartigan   [Bootstrap Methods for Standard Errors,
                                  Confidence Intervals, and Other Measures
                                  of Statistical Accuracy]: Comment  . . . 75--77
                   B. Efron and   
                  R. Tibshirani   [Bootstrap Methods for Standard Errors,
                                  Confidence Intervals, and Other Measures
                                  of Statistical Accuracy]: Rejoinder  . . 77
                      L. Le Cam   The Central Limit Theorem Around 1935    78--91
                  H. F. Trotter   [The Central Limit Theorem Around 1935]:
                                  Comment  . . . . . . . . . . . . . . . . 92--93
                     J. L. Doob   [The Central Limit Theorem Around 1935]:
                                  Comment  . . . . . . . . . . . . . . . . 93--94
                  David Pollard   [The Central Limit Theorem Around 1935]:
                                  Comment  . . . . . . . . . . . . . . . . 94--95
                      L. Le Cam   [The Central Limit Theorem Around 1935]:
                                  Rejoinder  . . . . . . . . . . . . . . . 95--96
              Morris H. DeGroot   A Conversation with T. W. Anderson . . . 97--105
                Seymour Geisser   Opera Selecta Boxi . . . . . . . . . . . 106--113
           Christian Genest and   
                 James V. Zidek   Combining Probability Distributions: A
                                  Critique and an Annotated Bibliography   114--135
                   Glenn Shafer   [Combining Probability Distributions: A
                                  Critique and an Annotated Bibliography]:
                                  Comment  . . . . . . . . . . . . . . . . 135--137
                   Simon French   [Combining Probability Distributions: A
                                  Critique and an Annotated Bibliography]:
                                  Comment  . . . . . . . . . . . . . . . . 138
              Robert L. Winkler   [Combining Probability Distributions: A
                                  Critique and an Annotated Bibliography]:
                                  Comment  . . . . . . . . . . . . . . . . 138--140
                Peter A. Morris   [Combining Probability Distributions: A
                                  Critique and an Annotated Bibliography]:
                                  Comment  . . . . . . . . . . . . . . . . 141--144
               Robin M. Hogarth   [Combining Probability Distributions: A
                                  Critique and an Annotated Bibliography]:
                                  Comment  . . . . . . . . . . . . . . . . 145--147
           Christian Genest and   
                 James V. Zidek   [Combining Probability Distributions: A
                                  Critique and an Annotated Bibliography]:
                                  Rejoinder  . . . . . . . . . . . . . . . 147--148
              Morris H. DeGroot   The First Issue of the Annals of
                                  Mathematical Statistics  . . . . . . . . 149--152
                      Anonymous   Publications Received  . . . . . . . . . 153--154

Statistical Science
Volume 1, Number 2, May, 1986

                      Anonymous   In This Issue  . . . . . . . . . . . . . 155--156
                     I. J. Good   Some Statistical Applications of
                                  Poisson's Work . . . . . . . . . . . . . 157--170
             Persi Diaconis and   
                  Eduardo Engel   [Some Statistical Applications of
                                  Poisson's Work]: Comment . . . . . . . . 171--174
                Herbert Solomon   [Some Statistical Applications of
                                  Poisson's Work]: Comment . . . . . . . . 174--176
                    C. C. Heyde   [Some Statistical Applications of
                                  Poisson's Work]: Comment . . . . . . . . 176--177
          Nozer D. Singpurwalla   [Some Statistical Applications of
                                  Poisson's Work]: Comment . . . . . . . . 177--178
                     I. J. Good   [Some Statistical Applications of
                                  Poisson's Work]: Rejoinder . . . . . . . 179--180
              Fred L. Bookstein   Size and Shape Spaces for Landmark Data
                                  in Two Dimensions  . . . . . . . . . . . 181--222
               David G. Kendall   [Size and Shape Spaces for Landmark Data
                                  in Two Dimensions]: Comment  . . . . . . 222--226
                   Noel Cressie   [Size and Shape Spaces for Landmark Data
                                  in Two Dimensions]: Comment  . . . . . . 226
               Gregory Campbell   [Size and Shape Spaces for Landmark Data
                                  in Two Dimensions]: Comment  . . . . . . 227--228
                Paul D. Sampson   [Size and Shape Spaces for Landmark Data
                                  in Two Dimensions]: Comment  . . . . . . 229--234
                  Colin Goodall   [Size and Shape Spaces for Landmark Data
                                  in Two Dimensions]: Comment  . . . . . . 234--238
              Fred L. Bookstein   [Size and Shape Spaces for Landmark Data
                                  in Two Dimensions]: Rejoinder  . . . . . 238--242
              Morris H. DeGroot   A Conversation with Erich L. Lehmann . . 243--258
              Ronald A. Thisted   Computing Environments for Data Analysis 259--271
               John M. Chambers   [Computing Environments for Data
                                  Analysis]: Comment . . . . . . . . . . . 271--272
                 Peter J. Huber   [Computing Environments for Data
                                  Analysis]: Comment . . . . . . . . . . . 273
              Ronald A. Thisted   [Computing Environments for Data
                                  Analysis]: Rejoinder . . . . . . . . . . 274--275
              Tze Leung Lai and   
                 David Siegmund   The Contributions of Herbert Robbins to
                                  Mathematical Statistics  . . . . . . . . 276--284
                 Robert V. Hogg   On the Origins of the Institute of
                                  Mathematical Statistics  . . . . . . . . 285--291
                 Cecil C. Craig   Early Days in Statistics at Michigan . . 292--293

Statistical Science
Volume 1, Number 3, August, 1986

                      Anonymous   In This Issue  . . . . . . . . . . . . . 295--296
              Trevor Hastie and   
              Robert Tibshirani   Generalized Additive Models  . . . . . . 297--310
            David R. Brillinger   [Generalized Additive Models]: Comment   310--312
                   J. A. Nelder   [Generalized Additive Models]: Comment   312
               Charles J. Stone   [Generalized Additive Models]: Comment   312--314
                Peter McCullagh   [Generalized Additive Models]: Comment   314
              Trevor Hastie and   
              Robert Tibshirani   [Generalized Additive Models]: Rejoinder 314--318
              Morris H. DeGroot   A Conversation with Persi Diaconis . . . 319--334
              Peter C. Fishburn   The Axioms of Subjective Probability . . 335--345
                     I. J. Good   [The Axioms of Subjective Probability]:
                                  Comment  . . . . . . . . . . . . . . . . 346--347
                 Patrick Suppes   [The Axioms of Subjective Probability]:
                                  Comment  . . . . . . . . . . . . . . . . 347--350
                James O. Berger   [The Axioms of Subjective Probability]:
                                  Comment  . . . . . . . . . . . . . . . . 351--352
               Terrence L. Fine   [The Axioms of Subjective Probability]:
                                  Comment  . . . . . . . . . . . . . . . . 352--354
               Teddy Seidenfeld   [The Axioms of Subjective Probability]:
                                  Comment  . . . . . . . . . . . . . . . . 354--356
                   Mervyn Stone   [The Axioms of Subjective Probability]:
                                  Comment  . . . . . . . . . . . . . . . . 356--357
            William D. Sudderth   [The Axioms of Subjective Probability]:
                                  Comment  . . . . . . . . . . . . . . . . 357--358
              Peter C. Fishburn   The Axioms of Subjective Probability:
                                  Rejoinder  . . . . . . . . . . . . . . . 358
             Stephen M. Stigler   Laplace's 1774 Memoir on Inverse
                                  Probability  . . . . . . . . . . . . . . 359--363
           Pierre Simon Laplace   Memoir on the Probability of the Causes
                                  of Events  . . . . . . . . . . . . . . . 364--378
         Samprit Chatterjee and   
                    Ali S. Hadi   Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression . . . . . . . . . . . . . . . 379--393
                 R. Dennis Cook   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Comment . . . . . . . . . . 393--397
                 A. C. Atkinson   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Comment: Aspects of
                                  Diagnostic Regression Analysis . . . . . 397--402
                  Roy E. Welsch   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Comment . . . . . . . . . . 403--405
                   Rollin Brant   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Comment . . . . . . . . . . 405--407
           David C. Hoaglin and   
            Peter J. Kempthorne   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Comment . . . . . . . . . . 408--412
               Paul F. Velleman   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Comment . . . . . . . . . . 412--413
               Sanford Weisberg   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Comment . . . . . . . . . . 414--415
         Samprit Chatterjee and   
                    Ali S. Hadi   [Influential Observations, High Leverage
                                  Points, and Outliers in Linear
                                  Regression]: Rejoinder . . . . . . . . . 415--416

Statistical Science
Volume 1, Number 4, November, 1986

                      Anonymous   In This Issue  . . . . . . . . . . . . . 417--418
                William F. Eddy   Computers in Statistical Research  . . . 419--437
                   Jessica Utts   [Computers in Statistical Research]:
                                  Comment  . . . . . . . . . . . . . . . . 437--439
               Andreas Buja and   
              E. B. Fowlkes and   
               J. R. Kettenring   [Computers in Statistical Research]:
                                  Comment  . . . . . . . . . . . . . . . . 440--442
                 David W. Scott   [Computers in Statistical Research]:
                                  Comment  . . . . . . . . . . . . . . . . 442--444
                   Prem K. Goel   [Computers in Statistical Research]:
                                  Comment  . . . . . . . . . . . . . . . . 444--445
                  Lynne Billard   [Computers in Statistical Research]:
                                  Comment  . . . . . . . . . . . . . . . . 446--448
               Douglas M. Bates   [Computers in Statistical Research]:
                                  Comment  . . . . . . . . . . . . . . . . 448--449
               Edward J. Wegman   [Computers in Statistical Research]:
                                  Comment  . . . . . . . . . . . . . . . . 449--451
                William F. Eddy   [Computers in Statistical Research]:
                                  Rejoinder  . . . . . . . . . . . . . . . 451--453
              Morris H. DeGroot   A Conversation with Charles Stein  . . . 454--462
                   Glenn Shafer   Savage Revisited . . . . . . . . . . . . 463--485
                  D. V. Lindley   [Savage Revisited]: Comment  . . . . . . 486--488
                    A. P. Dawid   [Savage Revisited]: Comment  . . . . . . 488--492
              Peter C. Fishburn   [Savage Revisited]: Comment  . . . . . . 492--495
                 Robyn M. Dawes   [Savage Revisited]: Comment  . . . . . . 495--497
                  John W. Pratt   [Savage Revisited]: Comment  . . . . . . 498--499
                   Glenn Shafer   [Savage Revisited]: Rejoinder  . . . . . 499--501
             Finbarr O'Sullivan   A Statistical Perspective on Ill-Posed
                                  Inverse Problems . . . . . . . . . . . . 502--518
             D. M. Titterington   [A Statistical Perspective on Ill-Posed
                                  Inverse Problems]: Comment . . . . . . . 519--521
                    Grace Wahba   [A Statistical Perspective on Ill-Posed
                                  Inverse Problems]: Comment . . . . . . . 521--522
                   John A. Rice   [A Statistical Perspective on Ill-Posed
                                  Inverse Problems]: Comment . . . . . . . 522--523
                Freeman Gilbert   [A Statistical Perspective on Ill-Posed
                                  Inverse Problems]: Comment . . . . . . . 523
             Finbarr O'Sullivan   [A Statistical Perspective on Ill-Posed
                                  Inverse Problems]: Rejoinder . . . . . . 523--527
               Edward J. Wegman   Some Personal Recollections of Harald
                                  Cramér on the Development of Statistics
                                  and Probability  . . . . . . . . . . . . 528--535


Statistical Science
Volume 2, Number 1, February, 1987

                      Anonymous   In This Issue  . . . . . . . . . . . . . 1--2
                   Glenn Shafer   Probability Judgment in Artificial
                                  Intelligence and Expert Systems  . . . . 3--16
              Dennis V. Lindley   The Probability Approach to the
                                  Treatment of Uncertainty in Artificial
                                  Intelligence and Expert Systems  . . . . 17--24
         David J. Spiegelhalter   Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty  . . . . . . . . . . . . . . 25--30
              Stephen R. Watson   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Comment  . . . . . . . . . 30--32
             A. P. Dempster and   
                 Augustine Kong   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Comment  . . . . . . . . . 32--36
                   Glenn Shafer   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Comment  . . . . . . . . . 37--38
              Dennis V. Lindley   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Comment: A Tale of Two
                                  Wells  . . . . . . . . . . . . . . . . . 38--40
         David J. Spiegelhalter   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Comment  . . . . . . . . . 40--41
                   Glenn Shafer   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Rejoinder  . . . . . . . . 41--42
              Dennis V. Lindley   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Rejoinder  . . . . . . . . 42--43
         David J. Spiegelhalter   [Probabilistic Expert Systems in
                                  Medicine: Practical Issues in Handling
                                  Uncertainty]: Rejoinder  . . . . . . . . 43--44
                Joan Fisher Box   Guinness, Gosset, Fisher, and Small
                                  Samples  . . . . . . . . . . . . . . . . 45--52
              Morris H. DeGroot   A Conversation with C. R. Rao  . . . . . 53--67
                  G. W. Stewart   Collinearity and Least Squares
                                  Regression . . . . . . . . . . . . . . . 68--84
            Donald W. Marquardt   [Collinearity and Least Squares
                                  Regression]: Comment . . . . . . . . . . 84--85
               David A. Belsley   [Collinearity and Least Squares
                                  Regression]: Comment: Well-Conditioned
                                  Collinearity Indices . . . . . . . . . . 86--91
              Ronald A. Thisted   [Collinearity and Least Squares
                                  Regression]: Comment . . . . . . . . . . 91--93
                Ali S. Hadi and   
               Paul F. Velleman   [Collinearity and Least Squares
                                  Regression]: Comment: Diagnosing Near
                                  Collinearities in Least Squares
                                  Regression . . . . . . . . . . . . . . . 93--98
                  G. W. Stewart   [Collinearity and Least Squares
                                  Regression]: Rejoinder . . . . . . . . . 98--100
                      Anonymous   Publications Received  . . . . . . . . . 101--103
                      Anonymous   Acknowledgment of Referees' Services . . 104

Statistical Science
Volume 2, Number 2, May, 1987

                      Anonymous   In This Issue  . . . . . . . . . . . . . 105--106
                  B. S. Everitt   Statistics in Psychiatry . . . . . . . . 107--116
                 Donald Guthrie   [Statistics in Psychiatry]: Comment  . . 116--117
           Samuel W. Greenhouse   [Statistics in Psychiatry]: Comment  . . 118--120
               Joseph L. Fleiss   [Statistics in Psychiatry]: Comment  . . 120--121
                   Joseph Zubin   [Statistics in Psychiatry]: Comment: The
                                  Biometric Approach to Psychiatry . . . . 121--125
            Juan E. Mezzich and   
                   Chul Woo Ahn   [Statistics in Psychiatry]: Comment:
                                  Psychiatric Statistics and Clinical
                                  Information  . . . . . . . . . . . . . . 125--127
             Joel B. Greenhouse   [Statistics in Psychiatry]: Comment  . . 127--129
              Craig D. Turnbull   [Statistics in Psychiatry]: Comment  . . 129--132
             Joseph S. Verducci   [Statistics in Psychiatry]: Comment  . . 132--133
                  B. S. Everitt   [Statistics in Psychiatry]: Rejoinder    134
                   E. J. Hannan   Rational Transfer Function Approximation 135--151
                 R. J. Bhansali   [Rational Transfer Function
                                  Approximation]: Comment  . . . . . . . . 151--152
            David R. Brillinger   [Rational Transfer Function
                                  Approximation]: Comment  . . . . . . . . 152--154
                    R. Dahlhaus   [Rational Transfer Function
                                  Approximation]: Comment  . . . . . . . . 154--156
                 Jorma Rissanen   [Rational Transfer Function
                                  Approximation]: Comment  . . . . . . . . 156--157
                  Ritei Shibata   [Rational Transfer Function
                                  Approximation]: Comment  . . . . . . . . 157--158
                        V. Solo   [Rational Transfer Function
                                  Approximation]: Comment  . . . . . . . . 158--159
                   E. J. Hannan   [Rational Transfer Function
                                  Approximation]: Rejoinder  . . . . . . . 160--161
                   Ingram Olkin   A Conversation with Morris Hansen  . . . 162--179
               Morris H. Hansen   Some History and Reminiscences on Survey
                                  Sampling . . . . . . . . . . . . . . . . 180--190
               Daniel Barry and   
                 J. A. Hartigan   Statistical Analysis of Hominoid
                                  Molecular Evolution  . . . . . . . . . . 191--207
                Stephen Portnoy   [Statistical Analysis of Hominoid
                                  Molecular Evolution]: Comment  . . . . . 207--208
             Joseph Felsenstein   [Statistical Analysis of Hominoid
                                  Molecular Evolution]: Comment  . . . . . 208--209
               Daniel Barry and   
                 J. A. Hartigan   [Statistical Analysis of Hominoid
                                  Molecular Evolution]: Rejoinder  . . . . 209--210

Statistical Science
Volume 2, Number 3, August, 1987

                      Anonymous   In This Issue  . . . . . . . . . . . . . 211--212
            Joseph L. Gastwirth   The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test Data  213--222
                     D. H. Kaye   [The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test
                                  Data]: Comment: The Polygraph and the
                                  PVP  . . . . . . . . . . . . . . . . . . 223--226
            John C. Kircher and   
                David C. Raskin   [The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test
                                  Data]: Comment: Base Rates and the
                                  Statistical Precision  . . . . . . . . . 226--228
                   Janet Wittes   [The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test
                                  Data]: Comment . . . . . . . . . . . . . 228--230
             Judith D. Goldberg   [The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test
                                  Data]: Comment . . . . . . . . . . . . . 230--231
                Seymour Geisser   [The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test
                                  Data]: Comment . . . . . . . . . . . . . 231--232
                 Beth C. Gladen   [The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test
                                  Data]: Comment . . . . . . . . . . . . . 233
            Joseph L. Gastwirth   [The Statistical Precision of Medical
                                  Screening Procedures: Application to
                                  Polygraph and AIDS Antibodies Test
                                  Data]: Rejoinder . . . . . . . . . . . . 234--238
              Morris H. DeGroot   A Conversation with George Box . . . . . 239--258
                James S. Hodges   Uncertainty, Policy Analysis and
                                  Statistics . . . . . . . . . . . . . . . 259--275
                 David Freedman   [Uncertainty, Policy Analysis and
                                  Statistics]: Comment . . . . . . . . . . 276--277
                Seymour Geisser   [Uncertainty, Policy Analysis and
                                  Statistics]: Comment . . . . . . . . . . 277--279
                 Peter J. Huber   [Uncertainty, Policy Analysis and
                                  Statistics]: Comment . . . . . . . . . . 279--281
               Joseph B. Kadane   [Uncertainty, Policy Analysis and
                                  Statistics]: Comment . . . . . . . . . . 281--282
                Albert Madansky   [Uncertainty, Policy Analysis and
                                  Statistics]: Comment . . . . . . . . . . 282--286
             Adrian F. M. Smith   [Uncertainty, Policy Analysis and
                                  Statistics]: Comment . . . . . . . . . . 286--287
                James S. Hodges   [Uncertainty, Policy Analysis and
                                  Statistics]: Rejoinder . . . . . . . . . 288--291
              Paul R. Rosenbaum   The Role of a Second Control Group in an
                                  Observational Study  . . . . . . . . . . 292--306
                Paul W. Holland   [The Role of a Second Control Group in
                                  an Observational Study]: Comment . . . . 306--308
              Barry H. Margolin   [The Role of a Second Control Group in
                                  an Observational Study]: Comment: The
                                  Use of Multiple Control Groups in
                                  Designed Experiments . . . . . . . . . . 308--310
             Richard G. Cornell   [The Role of a Second Control Group in
                                  an Observational Study]: Comment . . . . 310--311
                 Norman Breslow   [The Role of a Second Control Group in
                                  an Observational Study]: Comment . . . . 311--312
              Paul R. Rosenbaum   [The Role of a Second Control Group in
                                  an Observational Study]: Rejoinder . . . 313--316
            James O. Berger and   
                Mohan Delampady   Testing Precise Hypotheses . . . . . . . 317--335
                      D. R. Cox   [Testing Precise Hypotheses]: Comment    335--336
                Morris L. Eaton   [Testing Precise Hypotheses]: Comment    337--338
                 Arnold Zellner   [Testing Precise Hypotheses]: Comment    339--341
                  M. J. Bayarri   [Testing Precise Hypotheses]: Comment    342--344
             George Casella and   
                Roger L. Berger   [Testing Precise Hypotheses]: Comment    344--347
               Joseph B. Kadane   [Testing Precise Hypotheses]: Comment    347--348
            James O. Berger and   
                Mohan Delampady   [Testing Precise Hypotheses]: Rejoinder  348--352

Statistical Science
Volume 2, Number 4, November, 1987

                      Anonymous   In This Issue  . . . . . . . . . . . . . 353--354
          Richard A. Becker and   
       William S. Cleveland and   
                 Allan R. Wilks   Dynamic Graphics for Data Analysis . . . 355--383
                  John W. Tukey   [Dynamic Graphics for Data Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 383--385
                 Peter J. Huber   [Dynamic Graphics for Data Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 385--386
                William F. Eddy   [Dynamic Graphics for Data Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 386--387
                  Howard Wainer   [Dynamic Graphics for Data Analysis]:
                                  Comment: Deja View . . . . . . . . . . . 388--389
                Edward R. Tufte   [Dynamic Graphics for Data Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 389--392
          Richard A. Becker and   
       William S. Cleveland and   
                 Allan R. Wilks   [Dynamic Graphics for Data Analysis]:
                                  Rejoinder  . . . . . . . . . . . . . . . 392--395
              Mark J. Schervish   A Review of Multivariate Analysis  . . . 396--413
                 T. W. Anderson   [A Review of Multivariate Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 413--417
              Matthew Goldstein   [A Review of Multivariate Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 418--420
             Michael D. Perlman   [A Review of Multivariate Analysis]:
                                  Comment: Group Symmetry Covariance
                                  Models . . . . . . . . . . . . . . . . . 421--425
               Pranab Kumar Sen   [A Review of Multivariate Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 426--428
            R. Gnanadesikan and   
               J. R. Kettenring   [A Review of Multivariate Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 428--430
                 S. James Press   [A Review of Multivariate Analysis]:
                                  Comment  . . . . . . . . . . . . . . . . 430--432
              Mark J. Schervish   [A Review of Multivariate Analysis]:
                                  Rejoinder  . . . . . . . . . . . . . . . 432--433
            C. Radhakrishna Rao   Prediction of Future Observations in
                                  Growth Curve Models  . . . . . . . . . . 434--447
            David R. Brillinger   [Prediction of Future Observations in
                                  Growth Curve Models]: Comment  . . . . . 448--450
                  Nan Laird and   
                     Nick Lange   [Prediction of Future Observations in
                                  Growth Curve Models]: Comment  . . . . . 451--454
                   David Draper   [Prediction of Future Observations in
                                  Growth Curve Models]: Comment: On
                                  Exchangeability Judgments in Predictive
                                  Modeling and the Role of Data in
                                  Statistical Research . . . . . . . . . . 454--461
            Alan Julian Izenman   [Prediction of Future Observations in
                                  Growth Curve Models]: Comment  . . . . . 461--463
                Hirotugu Akaike   [Prediction of Future Observations in
                                  Growth Curve Models]: Comment  . . . . . 464--465
                Seymour Geisser   [Prediction of Future Observations in
                                  Growth Curve Models]: Comment  . . . . . 465--467
            C. Radhakrishna Rao   [Prediction of Future Observations in
                                  Growth Curve Models]: Rejoinder  . . . . 467--471
                   Ingram Olkin   A Conversation with Albert H. Bowker . . 472--483
           Andrew L. Rukhin and   
                    H. K. Hsieh   Survey of Soviet Work in Reliability . . 484--495
          Richard E. Barlow and   
                Zohel S. Khalil   [Survey of Soviet Work in Reliability]:
                                  Comment  . . . . . . . . . . . . . . . . 495--497
          Nozer D. Singpurwalla   [Survey of Soviet Work in Reliability]:
                                  Comment  . . . . . . . . . . . . . . . . 497--499
             Elliot H. Weinberg   [Survey of Soviet Work in Reliability]:
                                  Comment  . . . . . . . . . . . . . . . . 499--501
                 Llya Gertsbakh   [Survey of Soviet Work in Reliability]:
                                  Comment  . . . . . . . . . . . . . . . . 501--502
                   Asit P. Basu   [Survey of Soviet Work in Reliability]:
                                  Comment  . . . . . . . . . . . . . . . . 502--503
           Andrew L. Rukhin and   
                    H. K. Hsieh   [Survey of Soviet Work in Reliability]:
                                  Rejoinder  . . . . . . . . . . . . . . . 503


Statistical Science
Volume 3, Number 1, February, 1988

                      Anonymous   In This Issue  . . . . . . . . . . . . . 1--2
             D. A. Freedman and   
                      H. Zeisel   From Mouse-to-Man: The Quantitative
                                  Assessment of Cancer Risks . . . . . . . 3--28
                 Norman Breslow   [From Mouse-to-Man: The Quantitative
                                  Assessment of Cancer Risks]: Comment:
                                  Risk Assessment: Science or Policy?  . . 28--33
                  J. K. Haseman   [From Mouse-to-Man: The Quantitative
                                  Assessment of Cancer Risks]: Comment . . 33--39
       Suresh H. Moolgavkar and   
                   Anup Dewanji   [From Mouse-to-Man: The Quantitative
                                  Assessment of Cancer Risks]: Comment . . 39--41
                  J. Kaldor and   
                     L. Tomatis   [From Mouse-to-Man: The Quantitative
                                  Assessment of Cancer Risks]: Comment:
                                  The Use of Animal Experiments in Cancer
                                  Risk Assessment  . . . . . . . . . . . . 41--43
              William DuMouchel   [From Mouse-to-Man: The Quantitative
                                  Assessment of Cancer Risks]: Comment . . 43--44
             D. A. Freedman and   
                      H. Zeisel   [From Mouse-to-Man: The Quantitative
                                  Assessment of Cancer Risks]: Rejoinder   45--56
              Adrian C. Darnell   Harold Hotelling 1895--1973  . . . . . . 57--62
               Harold Hotelling   Golden Oldies: Classic Articles from the
                                  World of Statistics and Probability: The
                                  Teaching of Statistics . . . . . . . . . 63--71
               Harold Hotelling   Golden Oldies: Classic Articles from the
                                  World of Statistics and Probability: The
                                  Place of Statistics in the University    72--83
                 David S. Moore   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment  . . . . . . . . . 84--87
                 James V. Zidek   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment  . . . . . . . . . 87--90
               Kenneth J. Arrow   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment  . . . . . . . . . 90--91
               Harold Hotelling   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment: Academic Politics
                                  and the Teaching of Statistics . . . . . 92--95
                 Robert V. Hogg   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment  . . . . . . . . . 95--97
               Ralph A. Bradley   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment: Harold
                                  Hotelling's Views on Statistics  . . . . 98--103
              W. Edwards Deming   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment: Recollections
                                  About Harold Hotelling . . . . . . . . . 103--104
                Shanti S. Gupta   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment  . . . . . . . . . 104--106
                   Ingram Olkin   [Golden Oldies: Classic Articles from
                                  the World of Statistics and
                                  Probability]: Comment  . . . . . . . . . 107--108
             Satish Iyengar and   
             Joel B. Greenhouse   Selection Models and the File Drawer
                                  Problem  . . . . . . . . . . . . . . . . 109--117
                Larry V. Hedges   [Selection Models and the File Drawer
                                  Problem]: Comment  . . . . . . . . . . . 118--120
           Robert Rosenthal and   
                Donald B. Rubin   [Selection Models and the File Drawer
                                  Problem]: Comment: Assumptions and
                                  Procedures in the File Drawer Problem    120--125
                  Nan Laird and   
                G. P. Patil and   
                     C. Taillie   [Selection Models and the File Drawer
                                  Problem]: Comment  . . . . . . . . . . . 126--128
                  M. J. Bayarri   [Selection Models and the File Drawer
                                  Problem]: Comment  . . . . . . . . . . . 128--131
            C. Radhakrishna Rao   [Selection Models and the File Drawer
                                  Problem]: Comment  . . . . . . . . . . . 131
              William DuMouchel   [Selection Models and the File Drawer
                                  Problem]: Comment  . . . . . . . . . . . 132--133
             Satish Iyengar and   
             Joel B. Greenhouse   [Selection Models and the File Drawer
                                  Problem]: Rejoinder  . . . . . . . . . . 133--135
            Francis J. Anscombe   Frederick Mosteller and John W. Tukey: A
                                  Conversation . . . . . . . . . . . . . . 136--144
                      Anonymous   Publications Received  . . . . . . . . . 145--146

Statistical Science
Volume 3, Number 2, May, 1988

                      Anonymous   In This Issue  . . . . . . . . . . . . . 147--148
             Arthur P. Dempster   Employment Discrimination and
                                  Statistical Science  . . . . . . . . . . 149--161
             Franklin M. Fisher   [Employment Discrimination and
                                  Statistical Science]: Comment  . . . . . 161--165
           Arthur S. Goldberger   [Employment Discrimination and
                                  Statistical Science]: Comment  . . . . . 165--166
               Harry V. Roberts   [Employment Discrimination and
                                  Statistical Science]: Comment  . . . . . 167--170
              Delores A. Conway   [Employment Discrimination and
                                  Statistical Science]: Comment  . . . . . 171--175
            Joseph L. Gastwirth   [Employment Discrimination and
                                  Statistical Science]: Comment  . . . . . 175--183
             Gail Blattenberger   [Employment Discrimination and
                                  Statistical Science]: Comment  . . . . . 183--185
                Paul W. Holland   [Employment Discrimination and
                                  Statistical Science]: Comment: Causal
                                  Mechanism or Causal Effect: Which Is
                                  Best for Statistical Science?  . . . . . 186--188
                    John Geweke   [Employment Discrimination and
                                  Statistical Science]: Comment:
                                  Statistical Science and Economic Science 188--189
            Stephen E. Fienberg   [Employment Discrimination and
                                  Statistical Science]: Comment  . . . . . 190--191
             Arthur P. Dempster   [Employment Discrimination and
                                  Statistical Science]: Rejoinder  . . . . 191--195
              Morris H. DeGroot   A Conversation with George A. Barnard    196--212
                        N. Reid   Saddlepoint Methods and Statistical
                                  Inference  . . . . . . . . . . . . . . . 213--227
        O. E. Barndorff-Nielsen   [Saddlepoint Methods and Statistical
                                  Inference]: Comment  . . . . . . . . . . 228--229
                  H. E. Daniels   [Saddlepoint Methods and Statistical
                                  Inference]: Comment  . . . . . . . . . . 229
                Philip Hougaard   [Saddlepoint Methods and Statistical
                                  Inference]: Comment  . . . . . . . . . . 230--231
              D. V. Hinkley and   
                        S. Wang   [Saddlepoint Methods and Statistical
                                  Inference]: Comment  . . . . . . . . . . 232--233
                   Luke Tierney   [Saddlepoint Methods and Statistical
                                  Inference]: Comment  . . . . . . . . . . 233--234
                 Robert E. Kass   [Saddlepoint Methods and Statistical
                                  Inference]: Comment  . . . . . . . . . . 234--236
             Ann F. S. Mitchell   [Saddlepoint Methods and Statistical
                                  Inference]: Comment  . . . . . . . . . . 237
                        N. Reid   [Saddlepoint Methods and Statistical
                                  Inference]: Rejoinder  . . . . . . . . . 237--238
                   David Draper   Rank-Based Robust Analysis of Linear
                                  Models. I. Exposition and Review . . . . 239--257
                    A. H. Welsh   [Rank-Based Robust Analysis of Linear
                                  Models. I. Exposition and Review]:
                                  Comment  . . . . . . . . . . . . . . . . 258--259
              Roger Koenker and   
                Stephen Portnoy   [Rank-Based Robust Analysis of Linear
                                  Models. I. Exposition and Review]:
                                  Comment  . . . . . . . . . . . . . . . . 259--261
       T. P. Hettmansperger and   
              James C. Aubuchon   [Rank-Based Robust Analysis of Linear
                                  Models. I. Exposition and Review]:
                                  Comment  . . . . . . . . . . . . . . . . 262--263
                Peter J. Bickel   [Rank-Based Robust Analysis of Linear
                                  Models. I. Exposition and Review]:
                                  Comment  . . . . . . . . . . . . . . . . 263--264
              R. Douglas Martin   [Rank-Based Robust Analysis of Linear
                                  Models. I. Exposition and Review]:
                                  Comment  . . . . . . . . . . . . . . . . 264--266
                   David Draper   [Rank-Based Robust Analysis of Linear
                                  Models. I. Exposition and Review]:
                                  Rejoinder  . . . . . . . . . . . . . . . 266--271

Statistical Science
Volume 3, Number 3, August, 1988

                      Anonymous   In This Issue  . . . . . . . . . . . . . 273
                 John C. Bailar   Foreword . . . . . . . . . . . . . . . . 274
            David E. Lilienfeld   Changing Research Methods in
                                  Environmental Epidemiology . . . . . . . 275--280
                Devra Lee Davis   Changing Policy Roles of Environmental
                                  Epidemiology . . . . . . . . . . . . . . 281--285
              Jack B. Weinstein   Litigation and Statistics  . . . . . . . 286--297
                    L. A. Rosen   Animal Studies of Human Hazards  . . . . 298--305
                David A. Savitz   Human Studies of Human Health Hazards:
                                  Comparison of Epidemiology and
                                  Toxicology . . . . . . . . . . . . . . . 306--313
              M. Granger Morgan   Quantitative Risk Assessment: Low
                                  Frequency Electromagnetic Fields as an
                                  Example  . . . . . . . . . . . . . . . . 314--319
               Paul D. Anderson   Scientific Origins of Incompatibility in
                                  Risk Assessment  . . . . . . . . . . . . 320--327
                 Jack Needleman   Sources and Policy Implications of
                                  Uncertainty in Risk Assessment . . . . . 328--338
               Michael S. Baram   Insurability of Hazardous Materials
                                  Activities . . . . . . . . . . . . . . . 339--345
         Mortimer L. Mendelsohn   Tests for Biologic Markers of Genotoxic
                                  Exposure and Effect  . . . . . . . . . . 346--350
              Barry H. Margolin   Statistical Aspects of Using Biologic
                                  Markers  . . . . . . . . . . . . . . . . 351--357
                    Dale Hattis   The Use of Biological Markers in Risk
                                  Assessment . . . . . . . . . . . . . . . 358--366
               Ralph H. Johnson   Biological Markers in Tort Litigation    367--370
             Michael E. Ginevan   Radon As an Indoor Air Pollutant . . . . 371--373
            Kevin Yale Teichman   A Little Exposure to Radon . . . . . . . 374--376
            Nicholas A. Ashford   Science and Values in the Regulatory
                                  Process  . . . . . . . . . . . . . . . . 377--383

Statistical Science
Volume 3, Number 4, November, 1988

                      Anonymous   In This Issue  . . . . . . . . . . . . . 385
                     I. J. Good   The Interface Between Statistics and
                                  Philosophy of Science  . . . . . . . . . 386--397
                 Patrick Suppes   [The Interface Between Statistics and
                                  Philosophy of Science]: Comment:
                                  Causality, Complexity and Determinism    398--400
              George A. Barnard   [The Interface Between Statistics and
                                  Philosophy of Science]: Comment  . . . . 401--403
                James O. Berger   [The Interface Between Statistics and
                                  Philosophy of Science]: Comment  . . . . 403--404
                 David L. Banks   [The Interface Between Statistics and
                                  Philosophy of Science]: Comment  . . . . 404--406
                     I. J. Good   [The Interface Between Statistics and
                                  Philosophy of Science]: Rejoinder  . . . 406--412
                Edward R. Tufte   A Conversation with Cuthbert Daniel  . . 413--424
                   J. O. Ramsay   Monotone Regression Splines in Action    425--441
                    Leo Breiman   [Monotone Regression Splines in Action]:
                                  Comment  . . . . . . . . . . . . . . . . 442--445
                   Randy Eubank   [Monotone Regression Splines in Action]:
                                  Comment  . . . . . . . . . . . . . . . . 446--450
              Trevor Hastie and   
              Robert Tibshirani   [Monotone Regression Splines in Action]:
                                  Comment  . . . . . . . . . . . . . . . . 450--456
                    Grace Wahba   [Monotone Regression Splines in Action]:
                                  Comment  . . . . . . . . . . . . . . . . 456--458
                   J. O. Ramsay   [Monotone Regression Splines in Action]:
                                  Rejoinder  . . . . . . . . . . . . . . . 459--461
              A. S. Hedayat and   
               Mike Jacroux and   
                Dibyen Majumdar   Optimal Designs for Comparing Test
                                  Treatments with Controls . . . . . . . . 462--476
        Robert E. Bechhofer and   
                Ajit C. Tamhane   [Optimal Designs for Comparing Test
                                  Treatments with Controls]: Comment . . . 477--480
                William I. Notz   [Optimal Designs for Comparing Test
                                  Treatments with Controls]: Comment . . . 480--482
              A. Giovagnoli and   
                  I. Verdinelli   [Optimal Designs for Comparing Test
                                  Treatments with Controls]: Comment . . . 482--484
               John D. Spurrier   [Optimal Designs for Comparing Test
                                  Treatments with Controls]: Comment . . . 485--486
                     R. J. Owen   [Optimal Designs for Comparing Test
                                  Treatments with Controls]: Comment . . . 486--487
              A. S. Hedayat and   
               Mike Jacroux and   
                Dibyen Majumdar   [Optimal Designs for Comparing Test
                                  Treatments with Controls]: Rejoinder . . 487--491


Statistical Science
Volume 4, Number 1, February, 1989

                      Anonymous   In this Issue  . . . . . . . . . . . . . 1
                      Anonymous   Statistical Models and Analysis in
                                  Auditing: Panel on Nonstandard Mixtures
                                  of Distributions . . . . . . . . . . . . 2--33
                      Anonymous   Discriminant Analysis and Clustering:
                                  Panel on Discriminant Analysis,
                                  Classification, and Clustering . . . . . 34--69
                      Anonymous   Publications Received  . . . . . . . . . 70--71

Statistical Science
Volume 4, Number 2, May, 1989

             Stephen M. Stigler   Francis Galton's Account of the
                                  Invention of Correlation . . . . . . . . 73--79
                 Francis Galton   Kinship and Correlation  . . . . . . . . 81--86
               David G. Kendall   A Survey of the Statistical Theory of
                                  Shape  . . . . . . . . . . . . . . . . . 87--99
              Fred L. Bookstein   [A Survey of the Statistical Theory of
                                  Shape]: Comment  . . . . . . . . . . . . 99--105
           Christopher G. Small   [A Survey of the Statistical Theory of
                                  Shape]: Comment  . . . . . . . . . . . . 105--108
                Kanti V. Mardia   [A Survey of the Statistical Theory of
                                  Shape]: Comment: Some Contributions to
                                  Shape Analysis . . . . . . . . . . . . . 108--111
             Wilfrid S. Kendall   [A Survey of the Statistical Theory of
                                  Shape]: Comment  . . . . . . . . . . . . 111--113
             Geoffrey S. Watson   [A Survey of the Statistical Theory of
                                  Shape]: Comment  . . . . . . . . . . . . 113--115
                Dietrich Stoyan   [A Survey of the Statistical Theory of
                                  Shape]: Comment  . . . . . . . . . . . . 115--116
               David G. Kendall   [A Survey of the Statistical Theory of
                                  Shape]: Rejoinder  . . . . . . . . . . . 116--120
                   B. E. Trumbo   How to Get Your First Research Grant . . 121--131
                 James V. Zidek   [How to Get Your First Research Grant]:
                                  Comment  . . . . . . . . . . . . . . . . 132--134
             Adrian F. M. Smith   [How to Get Your First Research Grant]:
                                  Comment  . . . . . . . . . . . . . . . . 134--136
             Giorgio Dall'Aglio   [How to Get Your First Research Grant]:
                                  Comment  . . . . . . . . . . . . . . . . 136--138
               Jose M. Bernardo   [How to Get Your First Research Grant]:
                                  Comment  . . . . . . . . . . . . . . . . 138--139
                    N. Flournoy   [How to Get Your First Research Grant]:
                                  Comment  . . . . . . . . . . . . . . . . 139--141
              Yashaswini Mittal   [How to Get Your First Research Grant]:
                                  Comment  . . . . . . . . . . . . . . . . 141--143
               Judith S. Sunley   [How to Get Your First Research Grant]:
                                  Comment: Thinking about a Research
                                  Proposal?  . . . . . . . . . . . . . . . 144--146
               Edward J. Wegman   [How to Get Your First Research Grant]:
                                  Comment  . . . . . . . . . . . . . . . . 146--148
                   B. E. Trumbo   [How to Get Your First Research Grant]:
                                  Rejoinder  . . . . . . . . . . . . . . . 148--150
                   Ingram Olkin   A Conversation with Maurice Bartlett . . 151--163
              Daniel F. Heitjan   Inference from Grouped Continuous Data:
                                  A Review . . . . . . . . . . . . . . . . 164--179
                 James Burridge   [Inference from Grouped Continuous Data:
                                  A Review]: Comment . . . . . . . . . . . 179--181
              Daniel F. Heitjan   [Inference from Grouped Continuous Data:
                                  A Review]: Rejoinder . . . . . . . . . . 182--183
                      Anonymous   Acknowledgment of Referees' Services . . 184
                   Ingram Olkin   Correction Note: A Conversation with
                                  Morris Hansen  . . . . . . . . . . . . . 185

Statistical Science
Volume 4, Number 3, August, 1989

                   C. N. Morris   In This Issue  . . . . . . . . . . . . . 187
                 Robert E. Kass   The Geometry of Asymptotic Inference . . 188--219
                    S. I. Amari   [The Geometry of Asymptotic Inference]:
                                  Comment  . . . . . . . . . . . . . . . . 220--222
        O. E. Barndorff-Nielsen   [The Geometry of Asymptotic Inference]:
                                  Comment  . . . . . . . . . . . . . . . . 222--227
               Jose M. Bernardo   [The Geometry of Asymptotic Inference]:
                                  Comment: On Multivariate Jeffreys'
                                  Priors . . . . . . . . . . . . . . . . . 227--229
                      C. R. Rao   [The Geometry of Asymptotic Inference]:
                                  Comment  . . . . . . . . . . . . . . . . 229--231
                    N. Reid and   
                D. A. S. Fraser   [The Geometry of Asymptotic Inference]:
                                  Comment  . . . . . . . . . . . . . . . . 231--233
                 Robert E. Kass   [The Geometry of Asymptotic Inference]:
                                  Rejoinder  . . . . . . . . . . . . . . . 233--234
                   Nan M. Laird   A Conversation with F. N. David  . . . . 235--246
                   Sandy Zabell   R. A. Fisher on the History of Inverse
                                  Probability  . . . . . . . . . . . . . . 247--256
              Robin L. Plackett   [R. A. Fisher on the History of Inverse
                                  Probability]: Comment  . . . . . . . . . 256--258
                  G. A. Barnard   [R. A. Fisher on the History of Inverse
                                  Probability]: Comment  . . . . . . . . . 258--260
                   Sandy Zabell   [R. A. Fisher on the History of Inverse
                                  Probability]: Rejoinder  . . . . . . . . 261--263
               R. E. Fusaro and   
               N. P. Jewell and   
                W. W. Hauck and   
             D. C. Heilbron and   
          J. D. Kalbfleisch and   
                  J. M. Neuhaus   An Annotated Bibliography of
                                  Quantitative Methodology Relating to the
                                  AIDS Epidemic  . . . . . . . . . . . . . 264--281
             Thomas S. Ferguson   Who Solved the Secretary Problem?  . . . 282--289
             Stephen M. Samuels   [Who Solved the Secretary Problem?]:
                                  Comment: Who will Solve the Secretary
                                  Problem? . . . . . . . . . . . . . . . . 289--291
                Herbert Robbins   [Who Solved the Secretary Problem?]:
                                  Comment  . . . . . . . . . . . . . . . . 291
               Minoru Sakaguchi   [Who Solved the Secretary Problem?]:
                                  Comment  . . . . . . . . . . . . . . . . 292--293
               Peter R. Freeman   [Who Solved the Secretary Problem?]:
                                  Comment  . . . . . . . . . . . . . . . . 294
             Thomas S. Ferguson   [Who Solved the Secretary Problem?]:
                                  Rejoinder  . . . . . . . . . . . . . . . 294--296

Statistical Science
Volume 4, Number 4, November, 1989

                      Anonymous   In This Issue  . . . . . . . . . . . . . 297
                  James H. Ware   Investigating Therapies of Potentially
                                  Great Benefit: ECMO  . . . . . . . . . . 298--306
                Donald A. Berry   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment: Ethics
                                  and ECMO . . . . . . . . . . . . . . . . 306--310
             Robert E. Kass and   
             Joel B. Greenhouse   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment: A
                                  Bayesian Perspective . . . . . . . . . . 310--317
                 Richard Royall   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment  . . . . . 318--319
                  Colin B. Begg   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment  . . . . . 320--322
             Peter Armitage and   
                D. Stephen Coad   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment  . . . . . 322--323
                  D. Y. Lin and   
                      L. J. Wei   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment  . . . . . 324--325
             Richard G. Cornell   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment  . . . . . 326--327
                 Janis Hardwick   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Comment: Recent
                                  Progress in Clinical Trial Designs that
                                  Adapt for Ethical Purposes . . . . . . . 327--336
                  James H. Ware   [Investigating Therapies of Potentially
                                  Great Benefit: ECMO]: Rejoinder  . . . . 337--340
                  David Pollard   Asymptotics via Empirical Processes  . . 341--354
                   R. M. Dudley   [Asymptotics via Empirical Processes]:
                                  Comment  . . . . . . . . . . . . . . . . 354
               Evarist Gine and   
                      Joel Zinn   [Asymptotics via Empirical Processes]:
                                  Comment  . . . . . . . . . . . . . . . . 355--356
                       Ron Pyke   [Asymptotics via Empirical Processes]:
                                  Comment  . . . . . . . . . . . . . . . . 357--360
Miklós Csörg\Ho and   
    Lájos Horváth   [Asymptotics via Empirical Processes]:
                                  Comment  . . . . . . . . . . . . . . . . 360--365
                  David Pollard   [Asymptotics via Empirical Processes]:
                                  Rejoinder  . . . . . . . . . . . . . . . 365--366
               Richard L. Smith   Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone  . . . . 367--377
              Adrian E. Raftery   Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone:
                                  Comment: Are Ozone Exceedance Rates
                                  Decreasing?  . . . . . . . . . . . . . . 378--381
                  David Fairley   [Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone]:
                                  Comment  . . . . . . . . . . . . . . . . 381--383
                      Harry Joe   [Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone]:
                                  Comment  . . . . . . . . . . . . . . . . 384--385
                 Ishay Weissman   [Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone]:
                                  Comment  . . . . . . . . . . . . . . . . 385--386
          Nozer D. Singpurwalla   [Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone]:
                                  Comment  . . . . . . . . . . . . . . . . 386--387
             James Pickands III   [Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone]:
                                  Comment  . . . . . . . . . . . . . . . . 388
               Richard L. Smith   [Extreme Value Analysis of Environmental
                                  Time Series: An Application to Trend
                                  Detection in Ground-Level Ozone]:
                                  Rejoinder  . . . . . . . . . . . . . . . 389--393
                 Guido del Pino   The Unifying Role of Iterative
                                  Generalized Least Squares in Statistical
                                  Algorithms . . . . . . . . . . . . . . . 394--403
                 Bent Jorgensen   [The Unifying Role of Iterative
                                  Generalized Least Squares in Statistical
                                  Algorithms]: Comment . . . . . . . . . . 403--404
                Peter McCullagh   [The Unifying Role of Iterative
                                  Generalized Least Squares in Statistical
                                  Algorithms]: Comment . . . . . . . . . . 404--405
                    Joe R. Hill   [The Unifying Role of Iterative
                                  Generalized Least Squares in Statistical
                                  Algorithms]: Comment . . . . . . . . . . 406
                 Guido del Pino   [The Unifying Role of Iterative
                                  Generalized Least Squares in Statistical
                                  Algorithms]: Rejoinder . . . . . . . . . 407--408
               Jerome Sacks and   
           William J. Welch and   
           Toby J. Mitchell and   
                  Henry P. Wynn   Design and Analysis of Computer
                                  Experiments  . . . . . . . . . . . . . . 409--423
                  Max D. Morris   [Design and Analysis of Computer
                                  Experiments]: Comment  . . . . . . . . . 423--425
           Robert G. Easterling   [Design and Analysis of Computer
                                  Experiments]: Comment  . . . . . . . . . 425--427
            Mark E. Johnson and   
               Donald Ylvisaker   [Design and Analysis of Computer
                                  Experiments]: Comment  . . . . . . . . . 428
                    A. Owen and   
                 J. Koehler and   
                 S. Sharifzadeh   [Design and Analysis of Computer
                                  Experiments]: Comment  . . . . . . . . . 429--430
                Anthony O'Hagan   [Design and Analysis of Computer
                                  Experiments]: Comment  . . . . . . . . . 430--432
               Michael L. Stein   [Design and Analysis of Computer
                                  Experiments]: Comment  . . . . . . . . . 432--433
               Jerome Sacks and   
           William J. Welch and   
           Toby J. Mitchell and   
                  Henry P. Wynn   [Design and Analysis of Computer
                                  Experiments]: Rejoinder  . . . . . . . . 433--435


Statistical Science
Volume 5, Number 1, February, 1990

                      Anonymous   In This Issue  . . . . . . . . . . . . . 1
        Frederick Mosteller and   
                     Cleo Youtz   Quantifying Probabilistic Expressions    2--12
               Herbert H. Clark   [Quantifying Probabilistic Expressions]:
                                  Comment  . . . . . . . . . . . . . . . . 12--16
                   Norman Cliff   [Quantifying Probabilistic Expressions]:
                                  Comment  . . . . . . . . . . . . . . . . 16--18
               Joseph B. Kadane   [Quantifying Probabilistic Expressions]:
                                  Comment: Codifying Chance  . . . . . . . 18--20
                William Kruskal   [Quantifying Probabilistic Expressions]:
                                  Comment  . . . . . . . . . . . . . . . . 20--21
                Judith M. Tanur   [Quantifying Probabilistic Expressions]:
                                  Comment: On the Possible Dangers of
                                  Isolation  . . . . . . . . . . . . . . . 21--22
         Thomas S. Wallsten and   
               David V. Budescu   [Quantifying Probabilistic Expressions]:
                                  Comment  . . . . . . . . . . . . . . . . 23--26
              Robert L. Winkler   [Quantifying Probabilistic Expressions]:
                                  Comment: Representing and Communicating
                                  Uncertainty  . . . . . . . . . . . . . . 26--30
                   Charles Wolf   [Quantifying Probabilistic Expressions]:
                                  Comment  . . . . . . . . . . . . . . . . 31--32
        Frederick Mosteller and   
                     Cleo Youtz   [Quantifying Probabilistic Expressions]:
                                  Rejoinder  . . . . . . . . . . . . . . . 32--34
              Alexander M. Mood   Miscellaneous Reminiscences  . . . . . . 35--43
              Dennis V. Lindley   The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian Statistics  44--65
              George A. Barnard   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 65--71
                James O. Berger   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 71--75
               Jose M. Bernardo   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 75--76
                   David R. Cox   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 76--78
                   Simon French   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 78--80
               Joseph B. Kadane   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 80--82
                  E. L. Lehmann   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 82--83
                Michel Mouchart   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Comment . . . . . . . . . . 84--85
              Dennis V. Lindley   [The 1988 Wald Memorial Lectures: The
                                  Present Position in Bayesian
                                  Statistics]: Rejoinder . . . . . . . . . 85--89
              Jon M. Maatta and   
                 George Casella   Developments in Decision-Theoretic
                                  Variance Estimation  . . . . . . . . . . 90--101
                James O. Berger   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment  . . . . . 102--103
              Lawrence D. Brown   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment  . . . . . 103--106
                   Arthur Cohen   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment  . . . . . 106--107
               Edward I. George   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment  . . . . . 107--109
                 Jiunn T. Hwang   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment: How Much
                                  Can the Improvements be Realized?  . . . 110--111
        K. Brenda MacGibbon and   
              Glenn E. Shorrock   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment  . . . . . 112--113
               Andrew L. Rukhin   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment  . . . . . 113--116
         William E. Strawderman   [Developments in Decision-Theoretic
                                  Variance Estimation]: Comment  . . . . . 117--118
              Jon M. Maatta and   
                 George Casella   [Developments in Decision-Theoretic
                                  Variance Estimation]: Rejoinder  . . . . 118--120
IMS Panel on Cross-Disciplinary Research in the Statistical Sciences   Cross-Disciplinary Research in the
                                  Statistical Sciences . . . . . . . . . . 121--146
             Stephen M. Stigler   The 1988 Neyman Memorial Lecture: A
                                  Galtonian Perspective on Shrinkage
                                  Estimators . . . . . . . . . . . . . . . 147--155
                      Anonymous   Publications Received  . . . . . . . . . 156--158

Statistical Science
Volume 5, Number 2, May, 1990

                   C. N. Morris   In This Issue  . . . . . . . . . . . . . 159
                  E. L. Lehmann   Model Specification: The Views of Fisher
                                  and Neyman, and Later Developments . . . 160--168
                      D. R. Cox   Role of Models in Statistical Analysis   169--174
                Claus Weihs and   
                 Heinz Schmidli   OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure  . . . . . . . . . . . . . 175--208
                    A. Buja and   
                      C. Hurley   [OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure]: Comment  . . . . . . . . 208--211
                Frank Critchley   [OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure]: Comment  . . . . . . . . 211--213
                   N. I. Fisher   [OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure]: Comment  . . . . . . . . 213--215
                    J. C. Gower   [OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure]: Comment  . . . . . . . . 216--217
                Werner Stuetzle   [OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure]: Comment  . . . . . . . . 217--219
               Forrest W. Young   [OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure]: Comment: Industrial
                                  Strength VEDA  . . . . . . . . . . . . . 219--222
                Claus Weihs and   
                 Heinz Schmidli   [OMEGA (Online Multivariate Exploratory
                                  Graphical Analysis): Routine Searching
                                  for Structure]: Rejoinder  . . . . . . . 222--226
             Albert W. Marshall   A Conversation with Z. William Birnbaum  227--241
        Jan F. Bjòrnstad   Predictive Likelihood: A Review  . . . . 242--254
               Ronald W. Butler   [Predictive Likelihood: A Review]:
                                  Comment  . . . . . . . . . . . . . . . . 255--259
                Tom Leonard and   
               Kam-Wah Tsui and   
                 John S. J. Hsu   [Predictive Likelihood: A Review]:
                                  Comment  . . . . . . . . . . . . . . . . 259--262
        Jan F. Bjòrnstad   [Predictive Likelihood: A Review]:
                                  Rejoinder  . . . . . . . . . . . . . . . 262--265

Statistical Science
Volume 5, Number 3, August, 1990

                   C. N. Morris   In This Issue  . . . . . . . . . . . . . 267--268
                 Norman Breslow   Biostatistics and Bayes  . . . . . . . . 269--284
                 Peter Armitage   [Biostatistics and Bayes]: Comment . . . 284--286
                     H. Fluhler   [Biostatistics and Bayes]: Comment . . . 286--287
                    C. Jennison   [Biostatistics and Bayes]: Comment . . . 288--291
     David J. Spiegelhalter and   
           Laurence S. Freedman   [Biostatistics and Bayes]: Comment . . . 292--294
                       M. Zelen   [Biostatistics and Bayes]: Comment . . . 294--295
                 Norman Breslow   [Biostatistics and Bayes]: Rejoinder . . 295--298
       Christopher Jennison and   
              Bruce W. Turnbull   Statistical Approaches to Interim
                                  Monitoring of Medical Trials: A Review
                                  and Commentary . . . . . . . . . . . . . 299--317
    Patricia Costigan-Eaves and   
         Michael Macdonald-Ross   William Playfair (1759--1823)  . . . . . 318--326
                  John W. Tukey   Data-Based Graphics: Visual Display in
                                  the Decades to Come  . . . . . . . . . . 327--339
                  Howard Wainer   Graphical Visions from William Playfair
                                  to John Tukey  . . . . . . . . . . . . . 340--346
            Peter J. Bickel and   
                  Lucien Le Cam   A Conversation with Ildar Ibragimov  . . 347--355
        Ann Cohen Brandwein and   
         William E. Strawderman   Stein Estimation: The Spherically
                                  Symmetric Case . . . . . . . . . . . . . 356--369
        O. E. Barndorff-Nielsen   Correction Note: Comment by O. E.
                                  Barndorff-Nielsen on ``The Geometry of
                                  Asymptotic Inference,'' by R. E. Kass,
                                  1989, Vol. \bf 4, 222--227 . . . . . . . 370

Statistical Science
Volume 5, Number 4, November, 1990

                   C. N. Morris   In This Issue  . . . . . . . . . . . . . 371
               Harry V. Roberts   Applications in Business and Economic
                                  Statistics: Some Personal Views  . . . . 372--390
                     George Box   [Applications in Business and Economic
                                  Statistics: Some Personal Views]:
                                  Comment  . . . . . . . . . . . . . . . . 390--391
              W. Edwards Deming   [Applications in Business and Economic
                                  Statistics: Some Personal Views]:
                                  Comment  . . . . . . . . . . . . . . . . 391--392
                 Peter G. Moore   [Applications in Business and Economic
                                  Statistics: Some Personal Views]:
                                  Comment: A U.K. Perspective on
                                  Applications in Business and Economic
                                  Statistics . . . . . . . . . . . . . . . 392--395
                     John Neter   [Applications in Business and Economic
                                  Statistics: Some Personal Views]:
                                  Comment  . . . . . . . . . . . . . . . . 395--397
                  John W. Pratt   [Applications in Business and Economic
                                  Statistics: Some Personal Views]:
                                  Comment  . . . . . . . . . . . . . . . . 397--399
               Harry V. Roberts   [Applications in Business and Economic
                                  Statistics: Some Personal Views]:
                                  Rejoinder  . . . . . . . . . . . . . . . 399--402
            Richard Arratia and   
            Larry Goldstein and   
                   Louis Gordon   Poisson Approximation and the Chen-Stein
                                  Method . . . . . . . . . . . . . . . . . 403--424
              J. Michael Steele   [Poisson Approximation and the
                                  Chen-Stein Method]: Comment  . . . . . . 424--425
                  A. D. Barbour   [Poisson Approximation and the
                                  Chen-Stein Method]: Comment  . . . . . . 425--427
            Michael S. Waterman   [Poisson Approximation and the
                                  Chen-Stein Method]: Comment  . . . . . . 427--429
               Louis H. Y. Chen   [Poisson Approximation and the
                                  Chen-Stein Method]: Comment  . . . . . . 429--432
            Richard Arratia and   
            Larry Goldstein and   
                   Louis Gordon   [Poisson Approximation and the
                                  Chen-Stein Method]: Rejoinder  . . . . . 432--434
                   Glenn Shafer   The Unity and Diversity of Probability   435--444
                Hirotugu Akaike   [The Unity and Diversity of
                                  Probability]: Comment  . . . . . . . . . 444--446
                   David Aldous   [The Unity and Diversity of
                                  Probability]: Comment  . . . . . . . . . 446--447
                     George Box   [The Unity and Diversity of
                                  Probability]: Comment  . . . . . . . . . 448--449
                 A. P. Dempster   [The Unity and Diversity of
                                  Probability]: Comment  . . . . . . . . . 449
                       B. Efron   [The Unity and Diversity of
                                  Probability]: Comment  . . . . . . . . . 450
                    Ian Hacking   [The Unity and Diversity of
                                  Probability]: Comment: In Praise of the
                                  Diversity of Probabilities . . . . . . . 450--454
                 David S. Moore   [The Unity and Diversity of
                                  Probability]: Comment  . . . . . . . . . 454--456
                   Glenn Shafer   [The Unity and Diversity of
                                  Probability]: Rejoinder  . . . . . . . . 457--462
                    T. P. Speed   Introductory Remarks on Neyman (1923)    463--464
        Jerzy Splawa-Neyman and   
            D. M. Dabrowska and   
                    T. P. Speed   On the Application of Probability Theory
                                  to Agricultural Experiments. Essay on
                                  Principles. Section 9  . . . . . . . . . 465--472
                Donald B. Rubin   [On the Application of Probability
                                  Theory to Agricultural Experiments.
                                  Essay on Principles. Section 9.]
                                  Comment: Neyman (1923) and Causal
                                  Inference in Experiments and
                                  Observational Studies  . . . . . . . . . 472--480


Statistical Science
Volume 6, Number 1, February, 1991

                   C. N. Morris   In This Issue  . . . . . . . . . . . . . 1
                    Carl Morris   Dedication . . . . . . . . . . . . . . . 2
                      Anonymous   Biography of Morris H. DeGroot . . . . . 3--14
                 G. K. Robinson   That BLUP is a Good Thing: The
                                  Estimation of Random Effects . . . . . . 15--32
             Katherine Campbell   [That BLUP is a Good Thing: The
                                  Estimation of Random Effects]: Comment   32--34
              David A. Harville   [That BLUP is a Good Thing: The
                                  Estimation of Random Effects]: Comment   35--39
                 James C. Spall   [That BLUP is a Good Thing: The
                                  Estimation of Random Effects]: Comment:
                                  The Kalman Filter and BLUP . . . . . . . 39--41
                    Terry Speed   [That BLUP is a Good Thing: The
                                  Estimation of Random Effects]: Comment   42--44
              Duane Steffey and   
                 Robert E. Kass   [That BLUP is a Good Thing: The
                                  Estimation of Random Effects]: Comment   45--47
                 Robin Thompson   [That BLUP is a Good Thing: The
                                  Estimation of Random Effects]: Comment   47
                 G. K. Robinson   [That BLUP is a Good Thing: The
                                  Estimation of Random Effects]: Rejoinder 48--51
              Richard M. Royall   Ethics and Statistics in Randomized
                                  Clinical Trials  . . . . . . . . . . . . 52--62
         Robert H. Bartlett and   
             Richard G. Cornell   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Comment  . . . . . . . 63--65
                  David P. Byar   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Comment  . . . . . . . 65--68
              William D. Dupont   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Comment  . . . . . . . 69--71
               Robert J. Levine   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Comment  . . . . . . . 71--74
                 Foster Lindley   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Comment: Personal and
                                  Impersonal Care  . . . . . . . . . . . . 74--77
                  R. John Simes   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Comment  . . . . . . . 78--80
                       M. Zelen   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Comment: The Ethos of
                                  Clinical Trials  . . . . . . . . . . . . 81--83
              Richard M. Royall   [Ethics and Statistics in Randomized
                                  Clinical Trials]: Rejoinder  . . . . . . 83--88
             Stephen M. Stigler   Stochastic Simulation in the Nineteenth
                                  Century  . . . . . . . . . . . . . . . . 89--97
                      Anonymous   Rupert G. Miller, Jr., 1933--1986: A
                                  Tribute  . . . . . . . . . . . . . . . . 98--99
                  John W. Tukey   The Philosophy of Multiple Comparisons   100--116
                      Anonymous   Publications Received  . . . . . . . . . 117--118

Statistical Science
Volume 6, Number 2, May, 1991

                   C. N. Morris   In This Issue  . . . . . . . . . . . . . 119--120
                   Ingram Olkin   A Conversation with W. Allen Wallis  . . 121--140
                D. R. Bellhouse   The Genoese Lottery  . . . . . . . . . . 141--148
           Peter Kempthorne and   
         Nitis Mukhopadhyay and   
              Pranab K. Sen and   
               Shelemyahu Zacks   Research --- How to Do It: A Panel
                                  Discussion . . . . . . . . . . . . . . . 149--162
                  N. Altman and   
                   D. Banks and   
                    P. Chen and   
                   D. Duffy and   
                J. Hardwick and   
                   C. Leger and   
                    A. Owen and   
                      T. Stukel   Meeting the Needs of New Statistical
                                  Researchers  . . . . . . . . . . . . . . 163--174
                Donald A. Berry   Inferences Using DNA Profiling in
                                  Forensic Identification and Paternity
                                  Cases  . . . . . . . . . . . . . . . . . 175--189
                  Kenneth Lange   [Inferences Using DNA Profiling in
                                  Forensic Identification and Paternity
                                  Cases]: Comment  . . . . . . . . . . . . 190--192
                Herman Chernoff   [Inferences Using DNA Profiling in
                                  Forensic Identification and Paternity
                                  Cases]: Comment  . . . . . . . . . . . . 192--196
                     D. H. Kaye   [Inferences Using DNA Profiling in
                                  Forensic Identification and Paternity
                                  Cases]: Comment: Uncertainty in DNA
                                  Profile Evidence . . . . . . . . . . . . 196--200
                      Ian Evett   [Inferences Using DNA Profiling in
                                  Forensic Identification and Paternity
                                  Cases]: Comment  . . . . . . . . . . . . 200--202
                Donald A. Berry   [Inferences Using DNA Profiling in
                                  Forensic Identification and Paternity
                                  Cases]: Rejoinder  . . . . . . . . . . . 202--205
                 L. Billard and   
             Marianne A. Ferber   Elizabeth Scott: Scholar, Teacher,
                                  Administrator  . . . . . . . . . . . . . 206--216

Statistical Science
Volume 6, Number 3, August, 1991

                   C. N. Morris   In This Issue  . . . . . . . . . . . . . 217--218
           George T. Duncan and   
              Robert W. Pearson   Enhancing Access to Microdata While
                                  Protecting Confidentiality: Prospects
                                  for the Future . . . . . . . . . . . . . 219--232
                Lawrence H. Cox   [Enhancing Access to Microdata While
                                  Protecting Confidentiality: Prospects
                                  for the Future]: Comment . . . . . . . . 232--234
          Sallie Keller-McNulty   [Enhancing Access to Microdata While
                                  Protecting Confidentiality: Prospects
                                  for the Future]: Comment . . . . . . . . 234--235
               Janet L. Norwood   [Enhancing Access to Microdata While
                                  Protecting Confidentiality: Prospects
                                  for the Future]: Comment . . . . . . . . 236--237
           George T. Duncan and   
              Robert W. Pearson   [Enhancing Access to Microdata While
                                  Protecting Confidentiality: Prospects
                                  for the Future]: Rejoinder . . . . . . . 237--239
          Christopher Chatfield   Avoiding Statistical Pitfalls  . . . . . 240--252
                  D. F. Andrews   [Avoiding Statistical Pitfalls]: Comment 253
                   R. A. Bailey   [Avoiding Statistical Pitfalls]: Comment 254--255
          Murray K. Clayton and   
               Erik V. Nordheim   [Avoiding Statistical Pitfalls]: Comment 255--257
                      Ned Glick   [Avoiding Statistical Pitfalls]: Comment 258--262
              C. L. Mallows and   
                    D. Pregibon   [Avoiding Statistical Pitfalls]: Comment 263--264
                Douglas A. Zahn   [Avoiding Statistical Pitfalls]: Comment 264--267
          Christopher Chatfield   [Avoiding Statistical Pitfalls]:
                                  Rejoinder  . . . . . . . . . . . . . . . 267--268
                   Peter Jagers   The Growth and Stabilization of
                                  Populations  . . . . . . . . . . . . . . 269--274
                  Joel E. Cohen   [The Growth and Stabilization of
                                  Populations]: Comment: Partially
                                  Observed Markov Chains and Genetic
                                  Demography . . . . . . . . . . . . . . . 275--277
                 Peter Donnelly   [The Growth and Stabilization of
                                  Populations]: Comment  . . . . . . . . . 277--279
                 Stanley Sawyer   [The Growth and Stabilization of
                                  Populations]: Comment: The Geographical
                                  Structure of Populations . . . . . . . . 280--281
                   Peter Jagers   [The Growth and Stabilization of
                                  Populations]: Rejoinder  . . . . . . . . 282--283
             Persi Diaconis and   
                   Sandy Zabell   Closed Form Summation for Classical
                                  Distributions: Variations on a Theme of
                                  De Moivre  . . . . . . . . . . . . . . . 284--302
               David G. Kendall   Kolmogorov as I Remember Him . . . . . . 303--312
             A. N. Shiryaev and   
           Andrew L. Rukhin and   
                    Paul Shaman   Everything About Kolmogorov Was
                                  Unusual..  . . . . . . . . . . . . . . . 313--318

Statistical Science
Volume 6, Number 4, November, 1991

                      Anonymous   In This Issue  . . . . . . . . . . . . . 319
                 Lawrence Klein   The Statistics Seminar, MIT, 1942--1943  320--330
              Paul A. Samuelson   Statistical Flowers Caught in Amber  . . 330--338
                      Anonymous   Editor's Introduction  . . . . . . . . . 339
                 Ron Baxter and   
                 Murray Cameron   Comment  . . . . . . . . . . . . . . . . 339--343
                       C. Weihs   Comment  . . . . . . . . . . . . . . . . 344--348
               Forrest W. Young   Comment  . . . . . . . . . . . . . . . . 349--352
              David J. Lubinsky   Comment: Two Functional Programming
                                  Environments for Statistics ---
                                  Lisp-Stat and S  . . . . . . . . . . . . 352--360
                      Anonymous   Rejoinder  . . . . . . . . . . . . . . . 360--362
                   Jessica Utts   Replication and Meta-Analysis in
                                  Parapsychology . . . . . . . . . . . . . 363--378
              M. J. Bayarri and   
                   James Berger   [Replication and Meta-Analysis in
                                  Parapsychology]: Comment . . . . . . . . 379--382
                     Ree Dawson   [Replication and Meta-Analysis in
                                  Parapsychology]: Comment . . . . . . . . 382--385
                 Persi Diaconis   [Replication and Meta-Analysis in
                                  Parapsychology]: Comment . . . . . . . . 386
             Joel B. Greenhouse   [Replication and Meta-Analysis in
                                  Parapsychology]: Comment: Parapsychology
                                  --- On the Margins of Science? . . . . . 386--389
                      Ray Hyman   [Replication and Meta-Analysis in
                                  Parapsychology]: Comment . . . . . . . . 389--392
               Robert L. Morris   [Replication and Meta-Analysis in
                                  Parapsychology]: Comment . . . . . . . . 393--395
            Frederick Mosteller   [Replication and Meta-Analysis in
                                  Parapsychology]: Comment . . . . . . . . 395--396
                   Jessica Utts   [Replication and Meta-Analysis in
                                  Parapsychology]: Rejoinder . . . . . . . 396--403
                  C.-K. Chu and   
                   J. S. Marron   Choosing a Kernel Regression Estimator   404--419
                Theo Gasser and   
 Christine Jennen-Steinmetz and   
                  Joachim Engel   [Choosing a Kernel Regression
                                  Estimator]: Comment  . . . . . . . . . . 419--421
               Birgit Grund and   
                Wolfgang Hardle   [Choosing a Kernel Regression
                                  Estimator]: Comment  . . . . . . . . . . 421--425
                Jeffrey D. Hart   [Choosing a Kernel Regression
                                  Estimator]: Comment  . . . . . . . . . . 425--427
                    M. C. Jones   [Choosing a Kernel Regression
                                  Estimator]: Comment  . . . . . . . . . . 427--430
                B. W. Silverman   [Choosing a Kernel Regression
                                  Estimator]: Comment: Should We Use
                                  Kernel Methods at All? . . . . . . . . . 430--433
                  C.-K. Chu and   
                   J. S. Marron   [Choosing a Kernel Regression
                                  Estimator]: Rejoinder  . . . . . . . . . 433--436
                Hermann Witting   A Conversation with Leopold Schmetterer  437--447
                      Anonymous   Correction Note: Biography of Morris H.
                                  DeGroot  . . . . . . . . . . . . . . . . 448


Statistical Science
Volume 7, Number 1, February, 1992

                 Robert E. Kass   Editorial  . . . . . . . . . . . . . . . 1--2
                      Anonymous   In This Issue  . . . . . . . . . . . . . 3--4
              George A. Barnard   Review of \booktitleStatistical
                                  Inference and Analysis: Selected
                                  Correspondence of R. A. Fisher . . . . . 5--12
                  Samuel Karlin   R. A. Fisher and Evolutionary Theory . . 13--33
            C. Radhakrishna Rao   R. A. Fisher: The Founder of Modern
                                  Statistics . . . . . . . . . . . . . . . 34--48
          Sangit Chatterjee and   
              Mustafa R. Yilmaz   Chaos, Fractals and Statistics . . . . . 49--68
               L. Mark Berliner   Statistics, Probability and Chaos  . . . 69--90
              Colleen D. Cutler   [Statistics, Probability and Chaos]:
                                  Comment  . . . . . . . . . . . . . . . . 91--94
                    John Geweke   [Statistics, Probability and Chaos]:
                                  Comment: Inference and Prediction in the
                                  Presence of Uncertainty and Determinism  94--101
            Clive W. J. Granger   [Statistics, Probability and Chaos]:
                                  Comment  . . . . . . . . . . . . . . . . 102--104
                David Griffeath   [Statistics, Probability and Chaos]:
                                  Comment: Randomness in Complex Systems   104--108
               Richard L. Smith   [Statistics, Probability and Chaos]:
                                  Comment: Relation Between Statistics and
                                  Chaos  . . . . . . . . . . . . . . . . . 109--113
                   Ruey S. Tsay   [Statistics, Probability and Chaos]:
                                  Comment: Simplicity and Nonlinearity . . 113--114
          Sangit Chatterjee and   
              Mustafa R. Yilmaz   [Statistics, Probability and Chaos]:
                                  Rejoinder (Part 1) . . . . . . . . . . . 114--117
               L. Mark Berliner   [Statistics, Probability and Chaos]:
                                  Rejoinder (Part 2) . . . . . . . . . . . 118--122
                    Larry Shepp   A Conversation with Yuri Vasilyevich
                                  Prokhorov  . . . . . . . . . . . . . . . 123--130
                   Alan Agresti   A Survey of Exact Inference for
                                  Contingency Tables . . . . . . . . . . . 131--153
          Edward J. Bedrick and   
                    Joe R. Hill   [A Survey of Exact Inference for
                                  Contingency Tables]: Comment . . . . . . 153--157
                 Diana E. Duffy   [A Survey of Exact Inference for
                                  Contingency Tables]: Comment . . . . . . 157--160
        Leonardo D. Epstein and   
            Stephen E. Fienberg   [A Survey of Exact Inference for
                                  Contingency Tables]: Comment . . . . . . 160--162
                  Svend Kreiner   [A Survey of Exact Inference for
                                  Contingency Tables]: Comment: Exact
                                  Inference in Multidimensional Tables . . 163--165
                  D. Y. Lin and   
                      L. J. Wei   [A Survey of Exact Inference for
                                  Contingency Tables]: Comment . . . . . . 166--167
                 Cyrus R. Mehta   [A Survey of Exact Inference for
                                  Contingency Tables]: Comment: An
                                  Interdisciplinary Approach to Exact
                                  Inference for Contingency Tables . . . . 167--170
                    Samy Suissa   [A Survey of Exact Inference for
                                  Contingency Tables]: Comment . . . . . . 170--172
                   Alan Agresti   [A Survey of Exact Inference for
                                  Contingency Tables]: Rejoinder . . . . . 173--177
                      Anonymous   Publications Received  . . . . . . . . . 178--179

Statistical Science
Volume 7, Number 2, May, 1992

                      Anonymous   In This Issue  . . . . . . . . . . . . . 181
                 Carl N. Morris   Parting Remarks from the Outgoing Editor 182
              Clifford C. Clogg   The Impact of Sociological Methodology
                                  on Statistical Methodology . . . . . . . 183--196
           David J. Bartholomew   [The Impact of Sociological Methodology
                                  on Statistical Methodology]: Comment . . 196--198
                Paul W. Holland   [The Impact of Sociological Methodology
                                  on Statistical Methodology]: Comment:
                                  It's the Interplay That's Important  . . 198--201
              Charles F. Manski   [The Impact of Sociological Methodology
                                  on Statistical Methodology]: Comment . . 201--203
                Ivo W. Molenaar   [The Impact of Sociological Methodology
                                  on Statistical Methodology]: Comment:
                                  The Fence Between Statistics and Social
                                  Research . . . . . . . . . . . . . . . . 203--205
              Clifford C. Clogg   [The Impact of Sociological Methodology
                                  on Statistical Methodology]: Rejoinder   205--207
            Stephen E. Fienberg   A Brief History of Statistics in Three
                                  and One-Half Chapters: A Review Essay    208--225
                   Ingram Olkin   Editor's Introduction  . . . . . . . . . 226
        Frederick Mosteller and   
             Thomas C. Chalmers   Some Progress and Problems in
                                  Meta-Analysis of Clinical Trials . . . . 227--236
           Keith B. G. Dear and   
                  Colin B. Begg   An Approach for Assessing Publication
                                  Bias Prior to Performing a Meta-Analysis 237--245
                Larry V. Hedges   Modeling Publication Selection Effects
                                  in Meta-Analysis . . . . . . . . . . . . 246--255
              Judith Sunley and   
                  N. Altman and   
               J. F. Angers and   
                   D. Banks and   
                   D. Duffy and   
                J. Hardwick and   
                   C. Leger and   
                  M. Martin and   
                   D. Nolan and   
                    A. Owen and   
                 D. Politis and   
            Peter Arzberger and   
                  K. Roeder and   
               T. N. Sriram and   
                  T. Stukel and   
                    Z. Ying and   
                Keith Crank and   
              Nell Sedransk and   
              James R. Maar and   
        Michael R. Chernick and   
      Cindy L. Christiansen and   
          Agnes M. Herzberg and   
                  R. L. Tweedie   Readers' Comments to the New
                                  Researchers' Committee Report  . . . . . 256--266
                  Deborah Nolan   Women in Statistics in Academe: Mentors
                                  Matter . . . . . . . . . . . . . . . . . 267--272
      Nozer D. Singpurwalla and   
               Richard L. Smith   A Conversation with Boris Vladimirovich
                                  Gnedenko . . . . . . . . . . . . . . . . 273--283
                      Anonymous   Acknowledgment of Referees' Services . . 284--285

Statistical Science
Volume 7, Number 3, August, 1992

                 Robert E. Kass   In This Issue  . . . . . . . . . . . . . 287--288
               Sue Leurgans and   
                 Robert T. Ross   Multilinear Models: Applications in
                                  Spectroscopy . . . . . . . . . . . . . . 289--310
                    Jan deLeeuw   [Multilinear Models: Applications in
                                  Spectroscopy]: Comment . . . . . . . . . 310--311
          Pieter M. Kroonenberg   [Multilinear Models: Applications in
                                  Spectroscopy]: Comment: PARAFAC in
                                  Three-Way Land . . . . . . . . . . . . . 312--314
              Donald S. Burdick   [Multilinear Models: Applications in
                                  Spectroscopy]: Comment . . . . . . . . . 314--315
               Sue Leurgens and   
                 Robert T. Ross   [Multilinear Models: Applications in
                                  Spectroscopy]: Rejoinder . . . . . . . . 315--319
           Joseph W. Duncan and   
             William C. Shelton   U.S. Government Contributions to
                                  Probability Sampling and Statistical
                                  Analysis . . . . . . . . . . . . . . . . 320--338
              Ester Samuel-Cahn   A Conversation with Esther Seiden  . . . 339--357
               Teddy Seidenfeld   R. A. Fisher's Fiducial Argument and
                                  Bayes' Theorem . . . . . . . . . . . . . 358--368
                   S. L. Zabell   R. A. Fisher and Fiducial Argument . . . 369--387
                   Paul Switzer   A Conversation With Herbert Solomon  . . 388--401

Statistical Science
Volume 7, Number 4, November, 1992

                 Robert E. Kass   In This Issue  . . . . . . . . . . . . . 403
                      Jan Beran   Statistical Methods for Data with
                                  Long-Range Dependence  . . . . . . . . . 404--416
         Arthur P. Dempster and   
              Jing-Shiang Hwang   [Statistical Methods for Data with
                                  Long-Range Dependence]: Comment: Short-
                                  Range Consequences of Long-Range
                                  Dependence . . . . . . . . . . . . . . . 416--420
                 Emanuel Parzen   [Statistical Methods for Data with
                                  Long-Range Dependence]: Comment  . . . . 420
              Adrian E. Raftery   [Statistical Methods for Data with
                                  Long-Range Dependence]: Comment:
                                  Computational Aspects of Fractionally
                                  Differenced ARIMA Modeling for Long-
                                  Memory Time Series . . . . . . . . . . . 421--422
               Richard L. Smith   [Statistical Methods for Data with
                                  Long-Range Dependence]: Comment  . . . . 422--425
                      Jan Beran   [Statistical Methods for Data with
                                  Long-Range Dependence]: Rejoinder  . . . 425--427
              Thomas R. Fleming   Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences  . . . . . . 428--441
               John Crowley and   
                Stephanie Green   [Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences]: Comment    441--443
                David L. DeMets   [Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences]: Comment    443--444
             Susan S. Ellenberg   [Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences]: Comment    445--446
           Vern T. Farewell and   
                Richard J. Cook   [Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences]: Comment    446--448
                Stephen Lagakos   [Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences]: Comment    449--450
                Thomas A. Louis   [Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences]: Comment    450--452
              Thomas R. Fleming   [Evaluating Therapeutic Interventions:
                                  Some Issues and Experiences]: Rejoinder  452--456
              Andrew Gelman and   
                Donald B. Rubin   Inference from Iterative Simulation
                                  Using Multiple Sequences . . . . . . . . 457--472
               Charles J. Geyer   Practical Markov Chain Monte Carlo . . . 473--483
                     Lu Cui and   
           Martin A. Tanner and   
            Debajyoti Sinha and   
                     W. J. Hall   [Practical Markov Chain Monte Carlo]:
                                  Comment: Monitoring Convergence of the
                                  Gibbs Sampler: Further Experience with
                                  the Gibbs Stopper  . . . . . . . . . . . 483--486
                Alan E. Gelfand   [Practical Markov Chain Monte Carlo]:
                                  Comment  . . . . . . . . . . . . . . . . 486--487
                    Neal Madras   [Practical Markov Chain Monte Carlo]:
                                  Comment  . . . . . . . . . . . . . . . . 488--489
             Nicholas G. Polson   [Practical Markov Chain Monte Carlo]:
                                  Comment  . . . . . . . . . . . . . . . . 490--491
                Amy Racine-Poon   [Practical Markov Chain Monte Carlo]:
                                  Comment  . . . . . . . . . . . . . . . . 492--493
          Adrian E. Raftery and   
                Steven M. Lewis   [Practical Markov Chain Monte Carlo]:
                                  Comment: One Long Run with Diagnostics:
                                  Implementation Strategies for Markov
                                  Chain Monte Carlo  . . . . . . . . . . . 493--497
           Jeffrey S. Rosenthal   [Practical Markov Chain Monte Carlo]:
                                  Comment  . . . . . . . . . . . . . . . . 498
                Bruce Schmeiser   [Practical Markov Chain Monte Carlo]:
                                  Comment  . . . . . . . . . . . . . . . . 498--499
                   Luke Tierney   [Practical Markov Chain Monte Carlo]:
                                  Comment  . . . . . . . . . . . . . . . . 499--501
               Charles J. Geyer   [Practical Markov Chain Monte Carlo]:
                                  Rejoinder  . . . . . . . . . . . . . . . 502--503
              Andrew Gelman and   
                Donald B. Rubin   [Practical Markov Chain Monte Carlo]:
                                  Rejoinder: Replication without
                                  Contrition . . . . . . . . . . . . . . . 503--511
                   Ingram Olkin   A Conversation with Churchill Eisenhart  512--530


Statistical Science
Volume 8, Number 1, February, 1993

              J. Michael Steele   In This Issue  . . . . . . . . . . . . . 1--2
               David Aldous and   
              J. Michael Steele   Introduction to the Interface of
                                  Probability and Algorithms . . . . . . . 3--9
         Dimitris Bertsimas and   
                John Tsitsiklis   Simulated Annealing  . . . . . . . . . . 10--15
                   David Aldous   Approximate Counting via Markov Chains   16--19
            Joan Feigenbaum and   
            Jeffrey C. Lagarias   Probabilistic Algorithms for Speedup . . 20--25
                Joan Feigenbaum   Probabilistic Algorithms for Defeating
                                  Adversaries  . . . . . . . . . . . . . . 26--30
            Jeffrey C. Lagarias   Pseudorandom Numbers . . . . . . . . . . 31--39
              E. G. Coffman and   
              D. S. Johnson and   
               G. S. Lueker and   
                     P. W. Shor   Probabilistic Analysis of Packing and
                                  Related Partitioning Problems  . . . . . 40--47
              J. Michael Steele   Probability and Problems in Euclidean
                                  Combinatorial Optimization . . . . . . . 48--56
                     Ron Shamir   Probabilistic Analysis in Linear
                                  Programming  . . . . . . . . . . . . . . 57--64
            Vijaya Ramachandran   Randomization in Parallel Algorithms . . 65--69
                 Bruce M. Maggs   Randomly Wired Multistage Networks . . . 70--75
              J. Michael Steele   Missing Pieces, Derandomization and
                                  Concluding Remarks . . . . . . . . . . . 76--77
                      Anonymous   Acknowledgment of Referees' Services . . 78
                      Anonymous   Publications Received  . . . . . . . . . 79--80

Statistical Science
Volume 8, Number 2, May, 1993

                 Robert E. Kass   In This Issue  . . . . . . . . . . . . . 81
            Peter Bacchetti and   
              Mark R. Segal and   
             Nicholas P. Jewell   Backcalculation of HIV Infection Rates   82--101
                 Ron Brookmeyer   [Backcalculation of HIV Infection
                                  Rates]: Comment  . . . . . . . . . . . . 102--104
             John B. Carlin and   
                  Andrew Gelman   [Backcalculation of HIV Infection
                                  Rates]: Comment: Assessing Uncertainty
                                  in Backprojection  . . . . . . . . . . . 104--106
           Mitchell H. Gail and   
            Philip S. Rosenberg   [Backcalculation of HIV Infection
                                  Rates]: Comment  . . . . . . . . . . . . 107--109
         Victor De Gruttola and   
                Marcello Pagano   [Backcalculation of HIV Infection
                                  Rates]: Comment  . . . . . . . . . . . . 109
              John M. Karon and   
                 Glen A. Satten   [Backcalculation of HIV Infection
                                  Rates]: Comment  . . . . . . . . . . . . 109--112
        Patricia J. Solomon and   
                Susan R. Wilson   [Backcalculation of HIV Infection
                                  Rates]: Comment  . . . . . . . . . . . . 112--114
            Peter Bacchetti and   
              Mark R. Segal and   
             Nicholas P. Jewell   [Backcalculation of HIV Infection
                                  Rates]: Rejoinder  . . . . . . . . . . . 114--119
              Trevor Hastie and   
                   Clive Loader   Local Regression: Automatic Kernel
                                  Carpentry  . . . . . . . . . . . . . . . 120--129
                     J. Fan and   
                   J. S. Marron   [Local Regression: Automatic Kernel
                                  Carpentry]: Comment  . . . . . . . . . . 129--134
              Hans-Georg Muller   [Local Regression: Automatic Kernel
                                  Carpentry]: Comment  . . . . . . . . . . 134--139
              Trevor Hastie and   
                   Clive Loader   [Local Regression: Automatic Kernel
                                  Carpentry]: Rejoinder  . . . . . . . . . 139--143
                   Mary W. Gray   Can Statistics Tell Us What We Do Not
                                  Want to Hear? The Case of Complex Salary
                                  Structures . . . . . . . . . . . . . . . 144--158
              Delores A. Conway   [Can Statistics Tell Us What We Do Not
                                  Want to Hear? The Case of Complex Salary
                                  Structures]: Comment . . . . . . . . . . 158--165
            Joseph L. Gastwirth   [Can Statistics Tell Us What We Do Not
                                  Want to Hear? The Case of Complex Salary
                                  Structures]: Comment . . . . . . . . . . 165--171
               Harry V. Roberts   [Can Statistics Tell Us What We Do Not
                                  Want to Hear? The Case of Complex Salary
                                  Structures]: Comment . . . . . . . . . . 171--176
                   Mary W. Gray   [Can Statistics Tell Us What We Do Not
                                  Want to Hear? The Case of Complex Salary
                                  Structures]: Rejoinder . . . . . . . . . 177--179
                  Eugene Seneta   Lewis Carroll's ``Pillow Problems'': On
                                  the 1993 Centenary . . . . . . . . . . . 180--186
                   Ian MacNeill   A Conversation with David J. Finney  . . 187--201

Statistical Science
Volume 8, Number 3, August, 1993

                 Robert E. Kass   In This Issue  . . . . . . . . . . . . . 203
                  D. R. Cox and   
                  Nanny Wermuth   Linear Dependencies Represented by Chain
                                  Graphs . . . . . . . . . . . . . . . . . 204--218
     David J. Spiegelhalter and   
            A. Philip Dawid and   
       Steffen L. Lauritzen and   
               Robert G. Cowell   Bayesian Analysis in Expert Systems  . . 219--247
                 A. P. Dempster   [Bayesian Analysis in Expert Systems]:
                                  Comment: Assessing the Science Behind
                                  Graphical Modelling Techniques . . . . . 247--250
              Clark Glymour and   
                  Peter Spirtes   [Bayesian Analysis in Expert Systems]:
                                  Comment: Conditional Independence and
                                  Causal Inference . . . . . . . . . . . . 250--257
                    Joe R. Hill   [Bayesian Analysis in Expert Systems]:
                                  Comment  . . . . . . . . . . . . . . . . 258--261
                  David Madigan   [Bayesian Analysis in Expert Systems]:
                                  Comment: What's Next?  . . . . . . . . . 261--263
            Sharon-Lise Normand   [Bayesian Analysis in Expert Systems]:
                                  Comment  . . . . . . . . . . . . . . . . 263--265
                    Judea Pearl   [Bayesian Analysis in Expert Systems]:
                                  Comment: Graphical Models, Causality and
                                  Intervention . . . . . . . . . . . . . . 266--269
               Michael E. Sobel   [Bayesian Analysis in Expert Systems]:
                                  Comment  . . . . . . . . . . . . . . . . 269--273
                  Joe Whittaker   [Bayesian Analysis in Expert Systems]:
                                  Comment  . . . . . . . . . . . . . . . . 273--276
                  D. R. Cox and   
                  Nanny Wermuth   [Bayesian Analysis in Expert Systems]:
                                  Rejoinder  . . . . . . . . . . . . . . . 276--277
     David J. Spiegelhalter and   
            A. Philip Dawid and   
       Steffen L. Lauritzen and   
               Robert G. Cowell   [Bayesian Analysis in Expert Systems]:
                                  Rejoinder  . . . . . . . . . . . . . . . 277--283
     Garrett M. Fitzmaurice and   
               Nan M. Laird and   
            Andrea G. Rotnitzky   Regression Models for Discrete
                                  Longitudinal Responses . . . . . . . . . 284--299
               Melinda Drum and   
                Peter McCullagh   [Regression Models for Discrete
                                  Longitudinal Responses]: Comment . . . . 300--301
           Ross L. Prentice and   
                 Lloyd A. Mancl   [Regression Models for Discrete
                                  Longitudinal Responses]: Comment . . . . 302--304
             Scott L. Zeger and   
             Kung-Yee Liang and   
               Patrick Heagerty   [Regression Models for Discrete
                                  Longitudinal Responses]: Comment . . . . 304--306
     Garrett M. Fitzmaurice and   
               Nan M. Laird and   
            Andrea G. Rotnitzky   [Regression Models for Discrete
                                  Longitudinal Responses]: Rejoinder . . . 306--309
                  David Cox and   
                Leon Gleser and   
            Michael Perlman and   
                 Nancy Reid and   
                 Kathryn Roeder   Report of the Ad Hoc Committee on
                                  Double-Blind Refereeing  . . . . . . . . 310--317
       Jacqueline Benedetti and   
            Stephanie Green and   
               Mei-Ling Lee and   
                   John Crowley   Report of the Ad Hoc Committee on Design
                                  of an Experiment on Double-Blind
                                  Refereeing . . . . . . . . . . . . . . . 318--320
                     L. Billard   [Report of the Ad Hoc Committee on
                                  Design of an Experiment on Double-Blind
                                  Refereeing]: Comment . . . . . . . . . . 320--322
                  R. J. Carroll   [Report of the Ad Hoc Committee on
                                  Design of an Experiment on Double-Blind
                                  Refereeing]: Comment . . . . . . . . . . 323
               Christian Genest   [Report of the Ad Hoc Committee on
                                  Design of an Experiment on Double-Blind
                                  Refereeing]: Comment . . . . . . . . . . 323--327
             Willem R. van Zwet   [Report of the Ad Hoc Committee on
                                  Design of an Experiment on Double-Blind
                                  Refereeing]: Comment . . . . . . . . . . 327--330
                  E. L. Lehmann   Mentors and Early Collaborators:
                                  Reminiscences from the Years 1940--1956
                                  with an Epilogue . . . . . . . . . . . . 331--341
                  Peter Whittle   A Conversation with Henry Daniels  . . . 342--353

Statistical Science
Volume 8, Number 4, November, 1993

                 Robert E. Kass   In This Issue  . . . . . . . . . . . . . 355
                    David Banks   Is Industrial Statistics Out of Control? 356--377
                   Avital Cnaan   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 378--379
                 Diane E. Duffy   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 380--384
                 Gerald J. Hahn   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 384--387
                 Robert V. Hogg   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 387--391
            Vijayan N. Nair and   
                 Daryl Pregibon   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 391--394
                  T. J. Orchard   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 394--395
                 G. K. Robinson   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 395--397
             William H. Woodall   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 397--399
                    C. F. J. Wu   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 399--400
                     H. P. Wynn   [Is Industrial Statistics Out of
                                  Control?]: Comment . . . . . . . . . . . 400--402
                    David Banks   [Is Industrial Statistics Out of
                                  Control?]: Rejoinder . . . . . . . . . . 402--409
                David Bellhouse   The Role of Roguery in the History of
                                  Probability  . . . . . . . . . . . . . . 410--420
             Pietro Muliere and   
            Giovanni Parmigiani   Utility and Means in the 1930s . . . . . 421--432
            James D. Malley and   
                 John Hornstein   Quantum Statistical Inference  . . . . . 433--457
                 Nancy Flournoy   A Conversation with Wilfrid J. Dixon . . 458--477


Statistical Science
Volume 9, Number 1, February, 1994

                 Robert E. Kass   In This Issue  . . . . . . . . . . . . . 1
                 Bing Cheng and   
             D. M. Titterington   Neural Networks: A Review from a
                                  Statistical Perspective  . . . . . . . . 2--30
                       S. Amari   [Neural Networks: A Review from
                                  Statistical Perspective]: Comment  . . . 31--32
               Andrew R. Barron   [Neural Networks: A Review from
                                  Statistical Perspective]: Comment  . . . 33--35
           Elie Bienenstock and   
                   Stuart Geman   [Neural Networks: A Review from
                                  Statistical Perspective]: Comment  . . . 36--38
                    Leo Breiman   [Neural Networks: A Review from
                                  Statistical Perspective]: Comment  . . . 38--42
            James L. McClelland   [Neural Networks: A Review from
                                  Statistical Perspective]: Comment:
                                  Neural Networks and Cognitive Science:
                                  Motivations and Applications . . . . . . 42--45
                   B. D. Ripley   [Neural Networks: A Review from
                                  Statistical Perspective]: Comment  . . . 45--48
              Robert Tibshirani   [Neural Networks: A Review from
                                  Statistical Perspective]: Comment  . . . 48--49
                 Bing Cheng and   
             D. M. Titterington   [Neural Networks: A Review from
                                  Statistical Perspective]: Rejoinder  . . 49--54
                   M. Ghosh and   
                   J. N. K. Rao   Small Area Estimation: An Appraisal  . . 55--76
               Noel Cressie and   
                 Mark S. Kaiser   [Small Area Estimation: An Appraisal]:
                                  Comment  . . . . . . . . . . . . . . . . 76--80
                        D. Holt   [Small Area Estimation: An Appraisal]:
                                  Comment  . . . . . . . . . . . . . . . . 80--82
         Wesley L. Schaible and   
               Robert J. Casady   [Small Area Estimation: An Appraisal]:
                                  Comment  . . . . . . . . . . . . . . . . 82--84
               Avinash C. Singh   [Small Area Estimation: An Appraisal]:
                                  Comment  . . . . . . . . . . . . . . . . 84--87
            Elizabeth A. Stasny   [Small Area Estimation: An Appraisal]:
                                  Comment  . . . . . . . . . . . . . . . . 87--89
                     Ib Thomsen   [Small Area Estimation: An Appraisal]:
                                  Comment  . . . . . . . . . . . . . . . . 89--90
                   M. Ghosh and   
                   J. N. K. Rao   [Small Area Estimation: An Appraisal]:
                                  Rejoinder  . . . . . . . . . . . . . . . 90--93
             Stephen M. Stigler   Citation Patterns in the Journals of
                                  Statistics and Probability . . . . . . . 94--108
         Aleksander Janicki and   
               Aleksander Weron   Can One See $ \alpha $-Stable Variables
                                  and Processes? . . . . . . . . . . . . . 109--126
                Miron Straf and   
                   Ingram Olkin   A Conversation with Margaret Martin  . . 127--145
                      Anonymous   Acknowledgment of Referees' Services . . 146
                      Anonymous   Publications Received  . . . . . . . . . 147--148

Statistical Science
Volume 9, Number 2, May, 1994

                      Anonymous   In This Issue  . . . . . . . . . . . . . 149
              Dudley B. Chelton   Physical Oceanography: A Brief Overview
                                  for Statisticians  . . . . . . . . . . . 150--166
        Panel on Statistics and   
                   Oceanography   Report on Statistics and Physical
                                  Oceanography . . . . . . . . . . . . . . 167--201
            David R. Brillinger   [Report on Statistics and Physical
                                  Oceanography]: Comment . . . . . . . . . 201--202
             Ngai Hang Chan and   
                 Wilfredo Palma   [Report on Statistics and Physical
                                  Oceanography]: Comment: Unit Root and
                                  Structural Changes in Tropical Sea
                                  Levels . . . . . . . . . . . . . . . . . 203--207
             Anand Gnanadesikan   [Report on Statistics and Physical
                                  Oceanography]: Comment . . . . . . . . . 208--212
                  Greg Holloway   [Report on Statistics and Physical
                                  Oceanography]: Comment . . . . . . . . . 212--213
                Andrew R. Solow   [Report on Statistics and Physical
                                  Oceanography]: Comment . . . . . . . . . 213--215
                Hans von Storch   [Report on Statistics and Physical
                                  Oceanography]: Comment . . . . . . . . . 215--221
                 Kathryn Roeder   DNA Fingerprinting: A Review of the
                                  Controversy  . . . . . . . . . . . . . . 222--247
           David J. Balding and   
             Peter Donnelly and   
             Richard A. Nichols   [DNA Fingerprinting: A Review of the
                                  Controversy]: Comment: Some Causes for
                                  Concern about DNA Profiles . . . . . . . 248--251
                Donald A. Berry   [DNA Fingerprinting: A Review of the
                                  Controversy]: Comment  . . . . . . . . . 252--255
                Richard Lempert   [DNA Fingerprinting: A Review of the
                                  Controversy]: Comment: Theory and
                                  Practice in DNA Fingerprinting . . . . . 255--258
                 R. C. Lewontin   [DNA Fingerprinting: A Review of the
                                  Controversy]: Comment: The Use of DNA
                                  Profiles in Forensic Contexts  . . . . . 259--262
                  Aidan Sudbury   [DNA Fingerprinting: A Review of the
                                  Controversy]: Comment  . . . . . . . . . 262--263
            William C. Thompson   [DNA Fingerprinting: A Review of the
                                  Controversy]: Comment  . . . . . . . . . 263--266
                     B. S. Weir   [DNA Fingerprinting: A Review of the
                                  Controversy]: Comment  . . . . . . . . . 266--267
                 Kathryn Roeder   [DNA Fingerprinting: A Review of the
                                  Controversy]: Rejoinder  . . . . . . . . 267--278
                Stephen Portnoy   A Lewis Carroll Pillow Problem:
                                  Probability of an Obtuse Triangle  . . . 279--284
                   Sandy Zabell   A Conversation with William Kruskal  . . 285--303

Statistical Science
Volume 9, Number 3, August, 1994

                      Anonymous   In This Issue  . . . . . . . . . . . . . 305--306
            R. C. Griffiths and   
            Simon Tavaré   Ancestral Inference in Population
                                  Genetics . . . . . . . . . . . . . . . . 307--319
                  W. Navidi and   
                     N. Arnheim   Analysis of Genetic Data from the
                                  Polymerase Chain Reaction  . . . . . . . 320--333
            David O. Nelson and   
               Terence P. Speed   Statistical Issues in Constructing High
                                  Resolution Physical Maps . . . . . . . . 334--354
                 E. A. Thompson   Monte Carlo Likelihood in Genetic
                                  Mapping  . . . . . . . . . . . . . . . . 355--366
        Michael S. Waterman and   
                 Martin Vingron   Sequence Comparison Significance and
                                  Poisson Approximation  . . . . . . . . . 367--381
              G. Alastair Young   Bootstrap: More than a Stab in the Dark? 382--395
                   Rudolf Beran   [Bootstrap: More than a Stab in the
                                  Dark?]: Comment  . . . . . . . . . . . . 395--396
                       B. Efron   [Bootstrap: More than a Stab in the
                                  Dark?]: Comment  . . . . . . . . . . . . 396--398
      Patricia M. Gramsbsch and   
        Mary Kathryn Cowles and   
                Thomas A. Louis   [Bootstrap: More than a Stab in the
                                  Dark?]: Comment  . . . . . . . . . . . . 398--400
                  David Hinkley   [Bootstrap: More than a Stab in the
                                  Dark?]: Comment  . . . . . . . . . . . . 400--403
        Michael P. Meredith and   
                 Jorge G. Morel   [Bootstrap: More than a Stab in the
                                  Dark?]: Comment  . . . . . . . . . . . . 404--406
                 William Navidi   [Bootstrap: More than a Stab in the
                                  Dark?]: Comment  . . . . . . . . . . . . 407--408
              Mark J. Schervish   [Bootstrap: More than a Stab in the
                                  Dark?]: Comment  . . . . . . . . . . . . 408--410
              G. Alastair Young   [Bootstrap: More than a Stab in the
                                  Dark?]: Rejoinder  . . . . . . . . . . . 411--415
               Kai-Tai Fang and   
                  Yuan Wang and   
               Peter M. Bentler   Some Applications of Number-Theoretic
                                  Methods in Statistics  . . . . . . . . . 416--428
              Doron Witztum and   
               Eliyahu Rips and   
                 Yoav Rosenberg   Equidistant Letter Sequences in the Book
                                  of Genesis . . . . . . . . . . . . . . . 429--438
                     Nancy Reid   A Conversation with Sir David Cox  . . . 439--455
                      Anonymous   Author's Clarification: [DNA
                                  Fingerprinting: A Review of the
                                  Controversy] . . . . . . . . . . . . . . 456

Statistical Science
Volume 9, Number 4, November, 1994

                      Anonymous   In This Issue  . . . . . . . . . . . . . 457
                    Leo Breiman   The 1991 Census Adjustment: Undercount
                                  or Bad Data? . . . . . . . . . . . . . . 458--475
                D. Freedman and   
                     K. Wachter   Heterogeneity and Census Adjustment for
                                  the Intercensal Base . . . . . . . . . . 476--485
            Thomas R. Belin and   
                  John E. Rolph   Can We Reach Consensus on Census
                                  Adjustment?  . . . . . . . . . . . . . . 486--508
                Ian Diamond and   
                  Chris Skinner   [Can We Reach Consensus on Census
                                  Adjustment?]: Comment  . . . . . . . . . 508--510
         Eugene P. Ericksen and   
        Stephen E. Fienberg and   
               Joseph B. Kadane   [Can We Reach Consensus on Census
                                  Adjustment?]: Comment  . . . . . . . . . 511--515
                Lars Lyberg and   
               Sixten Lundstrom   [Can We Reach Consensus on Census
                                  Adjustment?]: Comment  . . . . . . . . . 515--517
                    David Steel   [Can We Reach Consensus on Census
                                  Adjustment?]: Comment  . . . . . . . . . 517--519
            Thomas R. Belin and   
                  John E. Rolph   [Can We Reach Consensus on Census
                                  Adjustment?]: Rejoinder  . . . . . . . . 520--521
                    Leo Breiman   [Can We Reach Consensus on Census
                                  Adjustment?]: Rejoinder  . . . . . . . . 521--527
                D. Freedman and   
                     K. Wachter   [Can We Reach Consensus on Census
                                  Adjustment?]: Rejoinder  . . . . . . . . 527--537
                   Xiao-Li Meng   Multiple-Imputation Inferences with
                                  Uncongenial Sources of Input . . . . . . 538--558
                  Robert E. Fay   [Multiple-Imputation Inferences with
                                  Uncongenial Sources of Input]: Comment   558--560
              Joseph L. Schafer   [Multiple-Imputation Inferences with
                                  Uncongenial Sources of Input]: Comment   560--561
                  Chris Skinner   [Multiple-Imputation Inferences with
                                  Uncongenial Sources of Input]: Comment   561--563
              Alan M. Zaslavsky   [Multiple-Imputation Inferences with
                                  Uncongenial Sources of Input]: Comment:
                                  Using the Full Toolkit . . . . . . . . . 563--565
                   Xiao-Li Meng   [Multiple-Imputation Inferences with
                                  Uncongenial Sources of Input]: Rejoinder 566--573
            Stephen E. Fienberg   A Conversation with Janet L. Norwood . . 574--590
                      Anonymous   Guidelines on Writing for Statistical
                                  Science  . . . . . . . . . . . . . . . . 591


Statistical Science
Volume 10, Number 1, February, 1995

                      Anonymous   In This Issue  . . . . . . . . . . . . . 1--2
               Julian Besag and   
                Peter Green and   
               David Higdon and   
               Kerrie Mengersen   Bayesian Computation and Stochastic
                                  Systems  . . . . . . . . . . . . . . . . 3--41
               Arnoldo Frigessi   [Bayesian Computation and Stochastic
                                  Systems]: Comment  . . . . . . . . . . . 41--43
            Alan E. Gelfand and   
              Bradley P. Carlin   [Bayesian Computation and Stochastic
                                  Systems]: Comment  . . . . . . . . . . . 43--46
               Charles J. Geyer   [Bayesian Computation and Stochastic
                                  Systems]: Comment  . . . . . . . . . . . 46--48
              G. O. Roberts and   
                 S. K. Sahu and   
                    W. R. Gilks   [Bayesian Computation and Stochastic
                                  Systems]: Comment  . . . . . . . . . . . 49--51
                 Wing Hung Wong   [Bayesian Computation and Stochastic
                                  Systems]: Comment  . . . . . . . . . . . 52--53
                         Bin Yu   [Bayesian Computation and Stochastic
                                  Systems]: Comment: Extracting More
                                  Diagnostic Information from a Single Run
                                  Using Cusum Path Plot  . . . . . . . . . 54--58
               Julian Besag and   
                Peter Green and   
               David Higdon and   
               Kerrie Mengersen   [Bayesian Computation and Stochastic
                                  Systems]: Rejoinder  . . . . . . . . . . 58--66
           Walter Willinger and   
             Murad S. Taqqu and   
             Will E. Leland and   
               Daniel V. Wilson   Self-Similarity in High-Speed Packet
                                  Traffic: Analysis and Modeling of
                                  Ethernet Traffic Measurements  . . . . . 67--85
          Nozer D. Singpurwalla   Survival in Dynamic Environments . . . . 86--103
           David F. Findley and   
                 Emanuel Parzen   A Conversation with Hirotugu Akaike  . . 104--117
            Myles Hollander and   
             Albert W. Marshall   A Conversation with Frank Proschan . . . 118--133
                      Anonymous   Acknowledgment of Referees' Services . . 134
                      Anonymous   Publications Received  . . . . . . . . . 135--136

Statistical Science
Volume 10, Number 2, May, 1995

                      Anonymous   In This Issue  . . . . . . . . . . . . . 137
                        N. Reid   The Roles of Conditioning in Inference   138--157
             Kung-Yee Liang and   
                 Scott L. Zeger   Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters   158--173
                  V. P. Godambe   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Comment  . . . . . . . . . . . . . . . . 173--174
           Bruce G. Lindsay and   
                        Bing Li   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Comment  . . . . . . . . . . . . . . . . 175--177
                Peter McCullagh   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Comment  . . . . . . . . . . . . . . . . 177--179
             George Casella and   
         Thomas J. DiCiccio and   
                Martin T. Wells   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Comment: Alternative Aspects of
                                  Conditional Inference  . . . . . . . . . 179--185
                A. P. Dawid and   
                      C. Goutis   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Comment  . . . . . . . . . . . . . . . . 185--186
             Thomas A. Severini   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Comment  . . . . . . . . . . . . . . . . 187--189
                 Louise M. Ryan   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Comment  . . . . . . . . . . . . . . . . 189--193
                        N. Reid   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Rejoinder  . . . . . . . . . . . . . . . 193--196
             Kung-Yee Liang and   
                 Scott L. Zeger   [Inference Based on Estimating Functions
                                  in the Presence of Nuisance Parameters]:
                                  Rejoinder  . . . . . . . . . . . . . . . 196--199
                 Robin Pemantle   Tree-Indexed Processes . . . . . . . . . 200--213
                    Chris Heyde   A Conversation with Joe Gani . . . . . . 214--230

Statistical Science
Volume 10, Number 3, August, 1995

            Christian P. Robert   Convergence Control Methods for Markov
                                  Chain Monte Carlo Algorithms . . . . . . 231--253
              Michael Evans and   
                     Tim Swartz   Methods for Approximating Integrals in
                                  Statistics with Special Emphasis on
                                  Bayesian Integration Problems  . . . . . 254--272
           Kathryn Chaloner and   
            Isabella Verdinelli   Bayesian Experimental Design: A Review   273--304
                   Adrian Smith   A Conversation with Dennis Lindley . . . 305--319

Statistical Science
Volume 10, Number 4, November, 1995

                 J. Leroy Folks   A Conversation with Oscar Kempthorne . . 321--336
                   Tony Lin and   
          Lois Swirsky Gold and   
                 David Freedman   Carcinogenicity Tests and Interspecies
                                  Concordance  . . . . . . . . . . . . . . 337--353
               Theodore P. Hill   A Statistical Derivation of the
                                  Significant-Digit Law  . . . . . . . . . 354--363
                   John Aldrich   Correlations Genuine and Spurious in
                                  Pearson and Yule . . . . . . . . . . . . 364--376
                 Gerald J. Hahn   A Conversation with Donald Marquardt . . 377--393


Statistical Science
Volume 11, Number 1, February, 1996

                 David L. Banks   A conversation with I. J. Good . . . . . 1--19
                 T. W. Anderson   R. A. Fisher and multivariate analysis   20--34
            Larry Goldstein and   
                 Bryan Langholz   Risk set sampling in epidemiologic
                                  cohort studies . . . . . . . . . . . . . 35--53
                      Anonymous   Comments on: ``Methods for approximating
                                  integrals in statistics with special
                                  emphasis on Bayesian integration
                                  problems'' by M. Evans and T. Swartz . . 54--64
             Martin Frankel and   
                  Benjamin King   A conversation with Leslie Kish  . . . . 65--87

Statistical Science
Volume 11, Number 2, May, 1996

          Paul H. C. Eilers and   
                  Brian D. Marx   Flexible smoothing with B-splines and
                                  penalties  . . . . . . . . . . . . . . . 89--121
               Arden Miller and   
                    C. F. J. Wu   Parameter design for signal-response
                                  systems: a different look at Taguchi's
                                  dynamic parameter design . . . . . . . . 122--136
         William F. Rosenberger   New directions in adaptive designs . . . 137--149
           Kenneth S. Alexander   A conversation with Ted Harris . . . . . 150--158

Statistical Science
Volume 11, Number 3, August, 1996

                  N. H. Bingham   A conversation with David Kendall  . . . 159--188
         Thomas J. DiCiccio and   
                  Bradley Efron   Bootstrap confidence intervals . . . . . 189--228
              Bernard Flury and   
                Thaddeus Tarpey   Self-consistency: a fundamental concept
                                  in statistics  . . . . . . . . . . . . . 229--243
             Stephen M. Stigler   The history of statistics in 1933  . . . 244--252

Statistical Science
Volume 11, Number 4, November, 1996

   Donato Michele Cifarelli and   
              Eugenio Regazzini   De Finetti's contribution to probability
                                  and statistics . . . . . . . . . . . . . 253--282
            Roger L. Berger and   
                   Jason C. Hsu   Bioequivalence trials,
                                  intersection-union tests and equivalence
                                  confidence sets  . . . . . . . . . . . . 283--319
                  T. Lynn Eudey   Statistical considerations in DNA flow
                                  cytometry  . . . . . . . . . . . . . . . 320--334
                    John Bather   A conversation with Herman Chernoff  . . 335--350


Statistical Science
Volume 12, Number 1, February, 1997

             Henry W. Block and   
               Thomas H. Savits   Burn-In  . . . . . . . . . . . . . . . . 1--19
          Kenneth G. Manton and   
              Anatoli I. Yashin   Effects of unobserved and partially
                                  observed covariate processes on system
                                  failure: a review of models and
                                  estimation strategies  . . . . . . . . . 20--34
               A. W. F. Edwards   Three early papers on efficient
                                  parametric estimation  . . . . . . . . . 35--47
                  E. L. Lehmann   \booktitleTesting Statistical
                                  Hypotheses: the story of a book  . . . . 48--52
             Lennart Råde   A conversation with Harald Bergström  . . 53--60
             Nitis Mukhopadhyay   A conversation with Sujit Kumar Mitra    61--75

Statistical Science
Volume 12, Number 2, May, 1997

         Jonas H. Ellenberg and   
           Mitchell H. Gail and   
                Nancy L. Geller   Conversations with NIH statisticians:
                                  interviews with the pioneers of
                                  biostatistics at the United States
                                  National Institute of Health . . . . . . 77--81
           Samuel W. Greenhouse   Some reflections on the beginnings and
                                  development of statistics in ``Your
                                  Father's NIH'' . . . . . . . . . . . . . 82--87
               Mitchell H. Gail   A conversation with Nathan Mantel  . . . 88--97
               Richard M. Simon   A conversation with Marvin A.
                                  Schneiderman . . . . . . . . . . . . . . 98--102
             Jonas H. Ellenberg   A conversation with Morton Kramer  . . . 103--107
                Benjamin Hankey   A conversation with William M. Haenszel  108--112
                Nancy L. Geller   A conversation with Tavia Gordon . . . . 113--118
             Susan S. Ellenberg   A conversation with John C. Bailar III   119--124
                Sylvan B. Green   A conversation with Fred Ederer  . . . . 125--131

Statistical Science
Volume 12, Number 3, August, 1997

               J. O. Berger and   
                  B. Boukai and   
                        Y. Wang   Unified frequentist and Bayesian testing
                                  of a precise hypothesis  . . . . . . . . 133--160
            Stephen E. Fienberg   Introduction to R. A. Fisher on inverse
                                  probability and likelihood . . . . . . . 161
                   John Aldrich   R. A. Fisher and the making of maximum
                                  likelihood 1912--1922  . . . . . . . . . 162--176
               A. W. F. Edwards   What did Fisher mean by ``inverse
                                  probability'' in 1912--1922? . . . . . . 177--184
          Daniel Rabinowitz and   
                    Steven Shea   Random effects analysis of children's
                                  blood pressure data  . . . . . . . . . . 185--194
               R. W. Doerge and   
                 B. S. Weir and   
                      Z-B. Zeng   Statistical issues in the search for
                                  genes affecting quantitative traits in
                                  experimental populations . . . . . . . . 195--219
                   Paul Switzer   Editor's note regarding the interview
                                  with Professor David Kendall, August
                                  1996 issue . . . . . . . . . . . . . . . 220

Statistical Science
Volume 12, Number 4, November, 1997

             Geof H. Givens and   
                D. D. Smith and   
                  R. L. Tweedie   Publication bias in meta-analysis: a
                                  Bayesian data-augmentation approach to
                                  account for issues exemplified in the
                                  passive smoking debate . . . . . . . . . 221--250
               Valen E. Johnson   An alternative to traditional GPA for
                                  evaluating student performance . . . . . 251--278
            Stephen Portnoy and   
                  Roger Koenker   The Gaussian hare and the Laplacian
                                  tortoise: computability of squared-error
                                  versus absolute-error estimators . . . . 279--300
                J. Laurie Snell   A conversation with Joe Doob . . . . . . 301--311


Statistical Science
Volume 13, Number 1, February, 1998

                Richard Tweedie   Consulting: real problems, real
                                  interactions, real outcomes, with a
                                  resources appendix by Sue Taylor . . . . 1--29
       Sharon M. Perlmutter and   
           Pamela C. Cosman and   
            Chien-Wen Tseng and   
          Richard A. Olshen and   
             Robert M. Gray and   
              King C. P. Li and   
              Colleen J. Bergin   Medical image compression and vector
                                  quantization . . . . . . . . . . . . . . 30--53
              Trevor Hastie and   
              Patrice Y. Simard   Metrics and models for handwritten
                                  character recognition  . . . . . . . . . 54--65
               Herbert A. David   Statistics in U.S. universities in 1933
                                  and the establishment of the Statistical
                                  Laboratory at Iowa State . . . . . . . . 66--74
                R. J. Beran and   
                   N. I. Fisher   A conversation with Geoff Watson . . . . 75--93

Statistical Science
Volume 13, Number 2, May, 1998

                  Bradley Efron   R. A. Fisher in the 21st century
                                  (Invited paper presented at the 1996 R.
                                  A. Fisher Lecture) . . . . . . . . . . . 95--122
             Aivars Celmi\cn\vs   The method of Gauss in 1799  . . . . . . 123--135
              Dennis V. Lindley   Decision analysis and bioequivalence
                                  trials . . . . . . . . . . . . . . . . . 136--141
            Jerome V. Braun and   
         Hans-Georg Müller   Statistical methods for DNA sequence
                                  segmentation . . . . . . . . . . . . . . 142--162
              Andrew Gelman and   
                   Xiao-Li Meng   Simulating normalizing constants: from
                                  importance sampling to bridge sampling
                                  to path sampling . . . . . . . . . . . . 163--185
        Walter W. Piegorsch and   
              Eric P. Smith and   
                Don Edwards and   
               Richard L. Smith   Statistical advances in environmental
                                  science  . . . . . . . . . . . . . . . . 186--208

Statistical Science
Volume 13, Number 3, August, 1998

             Edward L. Korn and   
               Sheldon Baumrind   Clinician preferences and the estimation
                                  of causal treatment differences  . . . . 209--235
              M. G. Kenward and   
                 G. Molenberghs   Likelihood based frequentist inference
                                  when data are missing at random  . . . . 236--247
                 A. P. Dempster   Logicist statistics. I. Models and
                                  modeling . . . . . . . . . . . . . . . . 248--276
                Leon Jay Gleser   Assessing uncertainty in measurement . . 277--290
               Gary C. McDonald   A conversation with Shanti Gupta . . . . 291--305

Statistical Science
Volume 13, Number 4, November, 1998

         George Michailidis and   
                   Jan de Leeuw   The Gifi system of descriptive
                                  multivariate analysis  . . . . . . . . . 307--336
                Steven P. Ellis   Instability of least squares, least
                                  absolute deviation and least median of
                                  squares linear regression, with a
                                  comment by Stephen Portnoy and Ivan
                                  Mizera and a rejoinder by the author . . 337--350
                   J. V. Howard   The $ 2 \times 2 $ table: a discussion
                                  from a Bayesian viewpoint  . . . . . . . 351--367
                    H. A. David   Early sample measures of variability . . 368--377
            T. Timothy Chen and   
                   John Jen Tai   A conversation with C. C. Li . . . . . . 378--387


Statistical Science
Volume 14, Number 1, February, 1999

            James O. Berger and   
              Brunero Liseo and   
              Robert L. Wolpert   Integrated likelihood methods for
                                  eliminating nuisance parameters  . . . . 1--28
           Sander Greenland and   
                Judea Pearl and   
                James M. Robins   Confounding and Collapsibility in Causal
                                  Inference  . . . . . . . . . . . . . . . 29--46
                  Jan Beran and   
                Guerino Mazzola   Analyzing Musical Structure and
                                  Performance --- A Statistical Approach   47--79
         David R. Bellhouse and   
               Christian Genest   A history of the Statistical Society of
                                  Canada: the formative years (with
                                  discussion)  . . . . . . . . . . . . . . 80--125
               Allan R. Sampson   A conversation with I. Richard Savage
                                  (with the assistance of Bruce Spencer)   126--148

Statistical Science
Volume 14, Number 2, May, 1999

                 Robert E. Kass   Introduction to ``Solving the Bible Code
                                  Puzzle'' by Brendan McKay, Dror
                                  Bar-Natan, Maya Bar-Hillel and Gil Kalai 149
            Maya Bar-Hillel and   
             Dror Bar-Natan and   
                  Gil Kalai and   
                  Brendan McKay   Solving the Bible Code Puzzle  . . . . . 150--173
         Kenneth Nordström   The life and work of Gustav Elfving  . . 174--196
                     J. Fellman   Gustav Elfving's contribution to the
                                  emergence of the optimal experimental
                                  design theory  . . . . . . . . . . . . . 197--200
                Herman Chernoff   Gustav Elfving's impact on experimental
                                  design . . . . . . . . . . . . . . . . . 201--205
                  D. Abbott and   
                   G. P. Harmer   Parrondo's paradox . . . . . . . . . . . 206--213
                    Anders Hald   On the history of maximum likelihood in
                                  relation to inverse probability and
                                  least squares  . . . . . . . . . . . . . 214--222
                  Grace L. Yang   A conversation with Lucien Le Cam  . . . 223--241

Statistical Science
Volume 14, Number 3, August, 1999

                 David Freedman   From association to causation: some
                                  remarks on the history of statistics . . 243--258
              Paul R. Rosenbaum   Choice as an Alternative to Control in
                                  Observational Studies  . . . . . . . . . 259--304
              Andrew Gelman and   
            David H. Krantz and   
                 Chiayu Lin and   
               Phillip N. Price   Analysis of Local Decisions Using
                                  Hierarchical Modeling, Applied to Home
                                  Radon Measurement and Remediation  . . . 305--337
       Byron Wm. Brown, Jr. and   
                Myles Hollander   A conversation with Lincoln E. Moses . . 338--354

Statistical Science
Volume 14, Number 4, November, 1999

         Michael D. Perlman and   
                        Lang Wu   The Emperor's new tests  . . . . . . . . 355--369
                   Roger Berger   Comment on Perlman and Wu, ``The
                                  Emperor's new tests'' (with rejoinder by
                                  authors) . . . . . . . . . . . . . . . . 370--381
        Jennifer A. Hoeting and   
              David Madigan and   
          Adrian E. Raftery and   
              Chris T. Volinsky   Bayesian model averaging: a tutorial
                                  (with comments by M. Clyde, David Draper
                                  and E. I. George, and a rejoinder by the
                                  authors) . . . . . . . . . . . . . . . . 382--417
                  E. L. Lehmann   ``Student'' and small-sample theory  . . 418--426
            Carl J. Schwarz and   
             George A. F. Seber   Estimating Animal Abundance: Review III  427--456
                     Zhaohai Li   A conversation with Chin Long Chiang . . 457--470


Statistical Science
Volume 15, Number 1, February, 2000

        Patrick J. Heagerty and   
                 Scott L. Zeger   Marginalized multilevel models and
                                  likelihood inference (with comments and
                                  a rejoinder by the authors)  . . . . . . 1--26
               Hugh Salamon and   
              Mark R. Segal and   
                 Peter M. Small   Comparing DNA Fingerprints of Infectious
                                  Organisms  . . . . . . . . . . . . . . . 27--45
              Ming-Hui Chen and   
              Joseph G. Ibrahim   Power prior distributions for regression
                                  models . . . . . . . . . . . . . . . . . 46--60
            Antti Penttinen and   
                Dietrich Stoyan   Recent applications of point process
                                  methods in forestry statistics . . . . . 61--78
          Luisa T. Fernholz and   
           Stephan Morgenthaler   A Conversation With John W. Tukey and
                                  Elizabeth Tukey  . . . . . . . . . . . . 79--94

Statistical Science
Volume 15, Number 2, May, 2000

              Sandra J. Lee and   
                   Marvin Zelen   Clinical Trials and Sample Size
                                  Considerations: Another Perspective  . . 95--110
             Niall M. Adams and   
               Gordon Blunt and   
              David J. Hand and   
                  Mark G. Kelly   Data Mining for Fun and Profit . . . . . 111--131
           Maxine Pfannkuch and   
                  Chris J. Wild   Statistical Thinking an Statistical
                                  Practice: Themes Gleaned from
                                  Professional Statisticians . . . . . . . 132--152
                 Peter Hall and   
                  Nader Tajvidi   Nonparametric Analysis of Temporal Trend
                                  When Fitting Parametric Models to
                                  Extreme-Value Data . . . . . . . . . . . 153--167
             Nitis Mukhopadhyay   A conversation with Milton Sobel . . . . 168--190
         George Michailidis and   
                   Jan de Leeuw   Acknowledgment and Apology . . . . . . . 191
                      Anonymous   Correction . . . . . . . . . . . . . . . 192

Statistical Science
Volume 15, Number 3, August, 2000

        Jennifer A. Hoeting and   
              David Madigan and   
          Adrian E. Raftery and   
              Chris T. Volinsky   Correction to: ``Bayesian model
                                  averaging: a tutorial'' [Statist. Sci.
                                  \bf 14 (1999), no. 4, 382--417; MR
                                  2001a:62033] . . . . . . . . . . . . . . 193--195
              Trevor Hastie and   
              Robert Tibshirani   Bayesian backfitting (with comments and
                                  a rejoinder by the authors)  . . . . . . 196--223
           David S. Stoffer and   
             David E. Tyler and   
                 David A. Wendt   The spectral envelope and its
                                  applications . . . . . . . . . . . . . . 224--253
               R. J. MacKay and   
                  R. W. Oldford   Scientific Method, Statistical Method
                                  and the Speed of Light . . . . . . . . . 254--278
               Ronald W. Butler   Reliabilities for feedback systems and
                                  their saddlepoint approximation  . . . . 279--298
               David Marker and   
              David Morganstein   A conversation with Joseph Waksberg  . . 299--312

Statistical Science
Volume 15, Number 4, November, 2000

       Christopher G. Small and   
               Jinfang Wang and   
                   Zejiang Yang   Eliminating multiple root problems in
                                  estimation (with comments by John J.
                                  Hanfelt, C. C. Heyde and Bing Li, and a
                                  rejoinder by the authors)  . . . . . . . 313--341
                  Ted Chang and   
                  Daijin Ko and   
                Jiandong Lu and   
                Jean-Yves Royer   Regression Techniques in Plate Tectonics 342--356
               S. P. Brooks and   
            E. A. Catchpole and   
                B. J. T. Morgan   Bayesian Animal Survival Estimation  . . 357--376
              F. Campolongo and   
                A. Saltelli and   
                   S. Tarantola   Sensitivity Anaysis as an Ingredient of
                                  Modeling . . . . . . . . . . . . . . . . 377--395
                 Joseph I. Naus   A conversation with Johannes H. B.
                                  Kemperman  . . . . . . . . . . . . . . . 396--408


Statistical Science
Volume 16, Number 1, February, 2001

               Odd O. Aalen and   
        Håkon K. Gjessing   Understanding the shape of the hazard
                                  rate: a process point of view (With
                                  comments and a rejoinder by the authors) 1--22
                David J. Aldous   Stochastic models and descriptive
                                  statistics for phylogenetic trees, from
                                  Yule to today  . . . . . . . . . . . . . 23--34
            Alan Julian Izenman   Statistical and Legal Aspects of the
                                  Forensic Study of Illicit Drugs  . . . . 35--57
          William DuMouchel and   
                 Wen-Hua Ju and   
               Alan F. Karr and   
          Matthias Schonlau and   
             Martin Theusan and   
                   Yehuda Vardi   Computer Intrusion: Detecting
                                  Masquerades  . . . . . . . . . . . . . . 58--74
                Myles Hollander   A conversation with Ralph A. Bradley . . 75--100

Statistical Science
Volume 16, Number 2, May, 2001

          Lawrence D. Brown and   
                T. Tony Cai and   
               Anirban DasGupta   Interval Estimation for a Binomial
                                  Proportion . . . . . . . . . . . . . . . 101--133
               Jean Opsomer and   
               Yuedong Wang and   
                    Yuhong Yang   Nonparametric Regressin with Correlated
                                  Errors . . . . . . . . . . . . . . . . . 134--153
                 Markus Abt and   
                YongBin Lim and   
               Jerome Sacks and   
                  Minge Xie and   
               S. Stanley Young   Sequential Approach for Identifying Lead
                                  Compounds in Large Chemical Databases    154--168
               Klaus Hinkelmann   Remembering Oscar Kempthorne
                                  (1919--2000) . . . . . . . . . . . . . . 169--183
                 Richard Olshen   A Conversation with Leo Breiman  . . . . 184--198

Statistical Science
Volume 16, Number 3, August, 2001

                    Leo Breiman   Statistical Modeling: The Two Cultures
                                  (with comments and a rejoinder by the
                                  author)  . . . . . . . . . . . . . . . . 199--231
                  E. Mammen and   
               J. S. Marron and   
              B. A. Turlach and   
                     M. P. Wand   A General Projection Framework for
                                  Constrained Smoothing  . . . . . . . . . 232--248
            Barry C. Arnold and   
           Enrique Castillo and   
José María Sarabia   Conditionally Specified Distributions:
                                  An Introduction (with comments and a
                                  rejoinder by the authors)  . . . . . . . 249--274
              Yasuo Amemiya and   
                   Ilker Yalcin   Nonlinear Factor Analysis as a
                                  Statistical Method . . . . . . . . . . . 275--294
              Jon R. Kettenring   A Conversation with Ramanathan
                                  Gnanadesikan . . . . . . . . . . . . . . 295--309

Statistical Science
Volume 16, Number 4, November, 2001

                Morris L. Eaton   About this issue . . . . . . . . . . . . 311
            James P. Hobert and   
                 Galin L. Jones   Honest Exploration of Intractable
                                  Probability Distributions via Markov
                                  Chain Monte Carlo  . . . . . . . . . . . 312--334
           Louis J. Billera and   
                 Persi Diaconis   A Geometric Interpretation of the
                                  Metropolis--Hastings Algorithm . . . . . 335--339
                Antonietta Mira   Ordering and Improving the Performance
                                  of Monte Carlo Markov Chains . . . . . . 340--350
          Gareth O. Roberts and   
           Jeffrey S. Rosenthal   Optimal scaling for various
                                  Metropolis--Hastings algorithms  . . . . 351--367
                 Henry W. Block   A conversation with Richard Barlow . . . 368--388
                 Henry W. Block   Correction . . . . . . . . . . . . . . . 389


Statistical Science
Volume 17, Number 2, May, 2002

             Mark H. Hansen and   
             Charles Kooperberg   Spline Adaptation in Extended Linear
                                  Models (with comments and a rejoinder by
                                  the authors) . . . . . . . . . . . . . . 2--51
            Peter Bühlmann   Bootstraps for Time Series . . . . . . . 52--72
       Barry I. Graubardand and   
                 Edward L. Korn   Inference for Superpopulation Parameters
                                  Using Sample Surveys . . . . . . . . . . 73--96
                Richard W. Katz   Sir Gilbert Walker and a Connection
                                  between El Niño and Statistics  . . . . . 97--112
             Nitis Mukhopadhyay   A Conversation with Kanti Mardia . . . . 113--148
                Mark Mandelkern   Setting confidence intervals for bounded
                                  parameters . . . . . . . . . . . . . . . 149--172
            Richard A. Berk and   
               Peter Bickel and   
         Katherine Campbell and   
              Robert Fovell and   
      Sallie Keller-McNulty and   
            Elizabeth Kelly and   
                Rodman Linn and   
              Byungkyu Park and   
              Alan Perelson and   
             Nagui Rouphail and   
               Jerome Sacks and   
            Frederic Schoenberg   Workshop on statistical approaches for
                                  the evaluation of complex computer
                                  models . . . . . . . . . . . . . . . . . 173--192
            Alan E. Gelfand and   
                       Fei Wang   A simulation-based approach to Bayesian
                                  sample size determination for
                                  performance under a given model and for
                                  separating models  . . . . . . . . . . . 193--208
          Dennis V. Lindley and   
          Nozer D. Singpurwalla   On exchangeable, causal and cascading
                                  failures . . . . . . . . . . . . . . . . 209--219
             Saralees Nadarajah   A conversation with Samuel Kotz  . . . . 220--233

Statistical Science
Volume 17, Number 3, August, 2002

          Richard J. Bolton and   
                  David J. Hand   Statistical Fraud Detection: A Review    235--255
                  Colin Mallows   Parity: Implementing the
                                  Telecommunications Act of 1996 . . . . . 256--285
              Paul R. Rosenbaum   Covariance Adjustment in Randomized
                                  Experiments and Observational Studies    286--327
     André Berchtold and   
                 Adrian Raftery   The Mixture Transition Distribution
                                  Model for High-Order Markov Chains and
                                  Non-Gaussian Time Series . . . . . . . . 328--356
               H. Joseph Newton   A Conversation with Emanuel Parzen . . . 357--378
          Michael Woodroofe and   
                  Tonglin Zhang   Correction . . . . . . . . . . . . . . . 379

Statistical Science
Volume 17, Number 4, November, 2002

             George Casella and   
                      Jeff Gill   Voting, elections, and statistical
                                  science  . . . . . . . . . . . . . . . . 381--382
              Jason Gainous and   
                      Jeff Gill   Why does voting get so complicated? A
                                  review of theories for analyzing
                                  democratic participation . . . . . . . . 383--404
             Kevin M. Quinn and   
               Andrew D. Martin   An integrated computational model of
                                  multiparty electoral competition . . . . 405--419
              Andrew Gelman and   
           Jonathan N. Katz and   
             Francis Tuerlinckx   The mathematics and statistics of voting
                                  power  . . . . . . . . . . . . . . . . . 420--435
               Alan Agresti and   
                 Brett Presnell   Misvotes, undervotes and overvotes: The
                                  2000 presidential election in Florida    436--440
               Richard L. Smith   A statistical assessment of Buchanan's
                                  vote in Palm Beach County  . . . . . . . 441--457
               Mary E. Thompson   A conversation with V. P. Godambe  . . . 458--466
               H. Joseph Newton   Correction to ``A conversation with
                                  Emanuel Parzen'' . . . . . . . . . . . . 467
                      Anonymous   Volume Index, \booktitleStatist. Sci.
                                  vol. 17 (2002) . . . . . . . . . . . . . 468--469


Statistical Science
Volume 18, Number 1, February, 2003

                James O. Berger   Could Fisher, Jeffreys and Neyman Have
                                  Agreed on Testing? . . . . . . . . . . . 1--32
           Paola Sebastiani and   
           Emanuela Gussoni and   
            Isaac S. Kohane and   
                Marco F. Ramoni   Statistical Challenges in Functional
                                  Genomics . . . . . . . . . . . . . . . . 33--70
            Sandrine Dudoit and   
      Juliet Popper Shaffer and   
           Jennifer C. Boldrick   Multiple Hypothesis Testing in
                                  Microarray Experiments . . . . . . . . . 71--103
          Robert Tibshirani and   
              Trevor Hastie and   
 Balasubramanian Narasimhan and   
                    Gilbert Chu   Class Prediction by Nearest Shrunken
                                  Centroids, with Applications to DNA
                                  Microarrays  . . . . . . . . . . . . . . 104--117
                   Stephen Senn   A Conversation with John Nelder  . . . . 118--131

Statistical Science
Volume 18, Number 2, May, 2003

                 George Casella   Introduction to the Silver Anniversary
                                  of the Bootstrap . . . . . . . . . . . . 133--134
                  Bradley Efron   Second Thoughts on the Bootstrap . . . . 135--140
              A. C. Davison and   
              D. V. Hinkley and   
                    G. A. Young   Recent Developments in Bootstrap
                                  Methodology  . . . . . . . . . . . . . . 141--157
                     Peter Hall   A Short Prehistory of the Bootstrap  . . 158--167
                 Dennis D. Boos   Introduction to the Bootstrap World  . . 168--174
                   Rudolf Beran   The Impact of the Bootstrap on
                                  Statistical Algorithms and Theory  . . . 175--184
                Subhash R. Lele   Impact of Bootstrap on the Estimating
                                  Functions  . . . . . . . . . . . . . . . 185--190
                       Jun Shao   Impact of the Bootstrap on Sample
                                  Surveys  . . . . . . . . . . . . . . . . 191--198
                      P. Lahiri   On the Impact of Bootstrap in Survey
                                  Sampling and Small-Area Estimation . . . 199--210
               Joel L. Horowitz   The Bootstrap in Econometrics  . . . . . 211--218
            Dimitris N. Politis   The Impact of Bootstrap Methods on Time
                                  Series Analysis  . . . . . . . . . . . . 219--230
           Michael D. Ernst and   
                 Alan D. Hutson   Utilizing a Quantile Function Approach
                                  to Obtain Exact Bootstrap Solutions  . . 231--240
                   Susan Holmes   Bootstrapping Phylogenetic Trees: Theory
                                  and Methods  . . . . . . . . . . . . . . 241--255
           Pamela S. Soltis and   
              Douglas E. Soltis   Applying the Bootstrap in Phylogeny
                                  Reconstruction . . . . . . . . . . . . . 256--267
                   Susan Holmes   Bradley Efron: A Conversation with Good
                                  Friends  . . . . . . . . . . . . . . . . 268--281

Statistical Science
Volume 18, Number 3, August, 2003

                 George Casella   Foreword [to Tribute to John Tukey]  . . 283--284
                  Howard Wainer   John Wilder Tukey: Statistical Inventor,
                                  Discoverer and Revolutionary . . . . . . 285--286
                 F. R. Anscombe   Quiet Contributor: The Civic Career and
                                  Times of John W. Tukey . . . . . . . . . 287--310
               David C. Hoaglin   John W. Tukey and Data Analysis  . . . . 311--318
                  Karen Kafadar   John Tukey and Robustness  . . . . . . . 319--331
                  Colin Mallows   John Tukey at Bell Labs  . . . . . . . . 332--335
          Luisa Turrin Fernholz   Remembering John W. Tukey  . . . . . . . 336--340
                 J. A. Hartigan   A Memory of John Tukey as a Teacher  . . 341--341
           Stephan Morgenthaler   John W. Tukey as Teacher . . . . . . . . 342--345
      Luisa Turrin Fernholz and   
           Stephan Morgenthaler   A Conversation with John Tukey . . . . . 346--356
      Konstantinos Fokianos and   
                 Benjamin Kedem   Regression Theory for Categorical Time
                                  Series . . . . . . . . . . . . . . . . . 357--376
         Brajendra C. Sutradhar   An Overview on Regression Models for
                                  Discrete Longitudinal Responses  . . . . 377--393
           Bruce G. Lindsay and   
                       Annie Qu   Inference Functions and Quadratic Score
                                  Tests  . . . . . . . . . . . . . . . . . 394--410

Statistical Science
Volume 18, Number 4, November, 2003

                      Anonymous   Introduction to the Special Section on
                                  Statistics and the Environment . . . . . 411
            David R. Brillinger   Three Environmental Probabilistic Risk
                                  Problems . . . . . . . . . . . . . . . . 412--421
                Andrew R. Solow   Statistics in Atmospheric Science  . . . 422--429
               L. Mark Berliner   Uncertainty and Climate Change . . . . . 430--435
               Noel Cressie and   
                    John Kornak   Spatial Statistics in the Presence of
                                  Location Error with an Application to
                                  Remote Sensing of the Environment  . . . 436--456
                G. P. Patil and   
                     C. Taillie   Geographic and Network Surveillance via
                                  Scan Statistics for Critical Area
                                  Detection  . . . . . . . . . . . . . . . 457--465
                    Louise Ryan   Epidemiologically Based Environmental
                                  Risk Assessment  . . . . . . . . . . . . 466--480
              Sylvia R. Esterby   A Conversation with Abdel H. El-Shaarawi 481--488
       Steffen L. Lauritzen and   
               Nuala A. Sheehan   Graphical Models for Genetic Analyses    489--514
               A. W. George and   
                 E. A. Thompson   Discovering Disease Genes: Multipoint
                                  Linkage Analysis via a New Markov Chain
                                  Monte Carlo Approach . . . . . . . . . . 515--531
                      Anonymous   Volume Index, \booktitleStatist. Sci.
                                  vol. 18 (2003) . . . . . . . . . . . . . 532--533


Statistical Science
Volume 19, Number 1, February, 2004

        Christian P. Robert and   
                 George Casella   Introduction to the Special Issue: Bayes
                                  Then and Now . . . . . . . . . . . . . . 1--2
                D. R. Bellhouse   The Reverend Thomas Bayes, FRS: A
                                  Biography to Celebrate the Tercentenary
                                  of His Birth . . . . . . . . . . . . . . 3--43
                    A. P. Dawid   Probability, Causality and the Empirical
                                  World: A Bayes--de
                                  Finetti--Popper--Borel Synthesis . . . . 44--57
              M. J. Bayarri and   
                   J. O. Berger   The Interplay of Bayesian and
                                  Frequentist Analysis . . . . . . . . . . 58--80
              Merlise Clyde and   
               Edward I. George   Model Uncertainty  . . . . . . . . . . . 81--94
          Peter Müller and   
           Fernando A. Quintana   Nonparametric Bayesian Data Analysis . . 95--110
              Stephen G. Walker   Modern Bayesian Asymptotics  . . . . . . 111--117
                 C. Andrieu and   
                  A. Doucet and   
                   C. P. Robert   Computational Advances for and from
                                  Bayesian Analysis  . . . . . . . . . . . 118--127
             D. M. Titterington   Bayesian Methods for Neural Networks and
                                  Related Models . . . . . . . . . . . . . 128--139
              Michael I. Jordan   Graphical Models . . . . . . . . . . . . 140--155
         David J. Spiegelhalter   Incorporating Bayesian Ideas into
                                  Health-Care Evaluation . . . . . . . . . 156--174
                Donald A. Berry   Bayesian Statistics and the Efficiency
                                  and Ethics of Clinical Trials  . . . . . 175--187
            Shane T. Jensen and   
             X. Shirley Liu and   
                  Qing Zhou and   
                     Jun S. Liu   Computational Discovery of Gene
                                  Regulatory Binding Motifs: A Bayesian
                                  Perspective  . . . . . . . . . . . . . . 188--204
              Robert L. Wolpert   A Conversation with James O. Berger  . . 205--218

Statistical Science
Volume 19, Number 2, May, 2004

                Youngjo Lee and   
                 John A. Nelder   Conditional and Marginal Models: Another
                                  View . . . . . . . . . . . . . . . . . . 219--238
               Wenxin Jiang and   
                 Bruce Turnbull   The Indirect Method: Inference Based on
                                  Intermediate Statistics --- A Synthesis
                                  and Examples . . . . . . . . . . . . . . 239--263
             Chris Genovese and   
            Larry Wasserman and   
                 George Casella   Introduction to the Special Section on
                                  Astrostatistics  . . . . . . . . . . . . 264
            Chyng-Lan Liang and   
               John A. Rice and   
              Imke de Pater and   
             Charles Alcock and   
                Tim Axelrod and   
                Andrew Wang and   
                Stuart Marshall   Statistical Methods for Detecting
                                  Stellar Occultations by Kuiper Belt
                                  Objects: The Taiwanese--American
                                  Occultation Survey . . . . . . . . . . . 265--274
           David A. van Dyk and   
                    Hosung Kang   Highly Structured Models for Spectral
                                  Analysis in High-Energy Astrophysics . . 275--293
             Domenico Marinucci   Testing for Non-Gaussianity on Cosmic
                                  Microwave Background Radiation: A Review 294--307
    Christopher R. Genovese and   
      Christopher J. Miller and   
           Robert C. Nichol and   
          Mihir Arjunwadkar and   
                Larry Wasserman   Nonparametric Inference for the Cosmic
                                  Microwave Background . . . . . . . . . . 308--321
             G. Jogesh Babu and   
           S. George Djorgovski   Some Statistical and Computational
                                  Challenges, and Opportunities in
                                  Astronomy  . . . . . . . . . . . . . . . 322--332
                D. A. S. Fraser   Ancillaries and Conditional Inference    333--369
         Thomas J. DiCiccio and   
               Mary E. Thompson   A Conversation with Donald A. S. Fraser  370--386

Statistical Science
Volume 19, Number 3, August, 2004

           Bruce G. Lindsay and   
             Jon Kettenring and   
              David O. Siegmund   A Report on the Future of Statistics . . 387--413
              Kiros Berhane and   
         W. James Gauderman and   
            Daniel O. Stram and   
               Duncan C. Thomas   Statistical Issues in Studies of the
                                  Long-Term Effects of Air Pollution: The
                                  Southern California Children's Health
                                  Study  . . . . . . . . . . . . . . . . . 414--449
          Robert L. Wolpert and   
            Kerrie L. Mengersen   Adjusted Likelihoods for Synthesizing
                                  Empirical Evidence from Studies that
                                  Differ in Quality and Design: Effects of
                                  Environmental Tobacco Smoke  . . . . . . 450--471
                  Nick Duffield   Sampling for Passive Internet
                                  Measurement: A Review  . . . . . . . . . 472--498
                 Rui Castro and   
                Mark Coates and   
                 Gang Liang and   
               Robert Nowak and   
                         Bin Yu   Network Tomography: Recent Developments  499--517
                    Jin Cao and   
       William S. Cleveland and   
                     Don X. Sun   Bandwidth Estimation for Best-Effort
                                  Internet Traffic . . . . . . . . . . . . 518--543
               Campbell B. Read   A Conversation with Norman L. Johnson    544--560

Statistical Science
Volume 19, Number 4, November, 2004

          Ronald H. Randles and   
   Thomas P. Hettmansperger and   
                 George Casella   Introduction to the Special Issue:
                                  Nonparametric Statistics . . . . . . . . 561
               Joseph W. McKean   Robust Analysis of Linear Models . . . . 562--570
             Dennis D. Boos and   
                 Cavell Brownie   Comparing Variances and Other Measures
                                  of Dispersion  . . . . . . . . . . . . . 571--578
               R. T. Elmore and   
       T. P. Hettmansperger and   
                        F. Xuan   The Sign Statistic, One-Way Layouts and
                                  Mixture Models . . . . . . . . . . . . . 579--587
              Simon J. Sheather   Density Estimation . . . . . . . . . . . 588--597
                  Hannu Oja and   
              Ronald H. Randles   Multivariate Nonparametric Tests . . . . 598--605
                 John I. Marden   Positions and QQ Plots . . . . . . . . . 606--614
             Michael G. Akritas   Nonparametric Survival Analysis  . . . . 615--623
                      Ted Chang   Spatial Statistics . . . . . . . . . . . 624--635
               Douglas A. Wolfe   Ranked Set Sampling: An Approach to More
                                  Efficient Data Collection  . . . . . . . 636--643
            Myles Hollander and   
           Edsel A. Peña   Nonparametric Methods in Reliability . . 644--651
                 Emanuel Parzen   Quantile Probability and Statistical
                                  Data Modeling  . . . . . . . . . . . . . 652--662
            William R. Schucany   Kernel Smoothers: An Overview of Curve
                                  Estimators for the First Graduate Course
                                  in Nonparametric Statistics  . . . . . . 663--675
               Michael D. Ernst   Permutation Methods: A Basis for Exact
                                  Inference  . . . . . . . . . . . . . . . 676--685
                     Jun Li and   
                  Regina Y. Liu   New Nonparametric Tests of Multivariate
                                  Locations and Scales Using Data Depth    686--696
                Marc Hallin and   
               Davy Paindaveine   Multivariate Signed-Rank Tests in Vector
                                  Autoregressive Order Identification  . . 697--711
               Mary E. Putt and   
           Vernon M. Chinchilli   Nonparametric Approaches to the Analysis
                                  of Crossover Studies . . . . . . . . . . 712--719
 Narayanaswamy Balakrishnan and   
            Haikady N. Nagaraja   A Conversation with H. A. David  . . . . 720--734


Statistical Science
Volume 20, Number 1, February, 2005

         Fred J. Hickernell and   
         Christiane Lemieux and   
                    Art B. Owen   Control Variates for Quasi-Monte Carlo   1--31
                Stephen Stigler   Fisher in 1921 . . . . . . . . . . . . . 32--49
                   A. Jasra and   
               C. C. Holmes and   
                 D. A. Stephens   Markov Chain Monte Carlo Methods and the
                                  Label Switching Problem in Bayesian
                                  Mixture Modeling . . . . . . . . . . . . 50--67
                Richard Perline   Strong, Weak and False Inverse Power
                                  Laws . . . . . . . . . . . . . . . . . . 68--88
             Nitis Mukhopadhyay   A Conversation with Shelemyahu Zacks . . 89--110

Statistical Science
Volume 20, Number 2, May, 2005

                 Paul Gustafson   On Model Expansion, Model Contraction,
                                  Identifiability and Prior Information:
                                  Two Illustrative Scenarios Involving
                                  Mismeasured Variables  . . . . . . . . . 111--140
                   Xiao-Li Meng   From Unit Root to Stein's Estimator to
                                  Fisher's $k$ Statistics: If You Have a
                                  Moment, I Can Tell You More  . . . . . . 141--162
                 S. Gomatam and   
                 A. F. Karr and   
               J. P. Reiter and   
                    A. P. Sanil   Data Dissemination and Disclosure
                                  Limitation in a World Without Microdata:
                                  A Risk--Utility Framework for Remote
                                  Access Analysis Servers  . . . . . . . . 163--177
         David R. Bellhouse and   
               Christian Genest   A Public Health Controversy in 19th
                                  Century Canada . . . . . . . . . . . . . 178--192
               Anirban DasGupta   A Conversation with Larry Brown  . . . . 193--203

Statistical Science
Volume 20, Number 3, August, 2005

              J. Michael Steele   Darrell Huff and Fifty Years of How to
                                  Lie with Statistics  . . . . . . . . . . 205--209
                      Joel Best   Lies, Calculations and Constructions:
                                  Beyond How to Lie with Statistics  . . . 210--214
                 Mark Monmonier   Lying with Maps  . . . . . . . . . . . . 215--222
         Walter Krämer and   
                Gerd Gigerenzer   How to Confuse with Statistics or: The
                                  Use and Misuse of Conditional
                                  Probabilities  . . . . . . . . . . . . . 223--230
        Richard D. De Veaux and   
                  David J. Hand   How to Lie with Bad Data . . . . . . . . 231--238
                 Charles Murray   How to Accuse the Other Guy of Lying
                                  with Statistics  . . . . . . . . . . . . 239--241
                Sally C. Morton   Ephedra  . . . . . . . . . . . . . . . . 242--248
        Stephen E. Fienberg and   
                  Paul C. Stern   In Search of the Magic Lasso: The Truth
                                  About the Polygraph  . . . . . . . . . . 249--260
             Marie Davidian and   
      Anastasios A. Tsiatis and   
                    Selene Leon   Semiparametric Estimation of Treatment
                                  Effect in a Pretest--Posttest Study with
                                  Missing Data . . . . . . . . . . . . . . 261--301
                  A. S. Hedayat   A Conversation with Walter T. Federer    302--315

Statistical Science
Volume 20, Number 4, November, 2005

                   Jianqing Fan   A Selective Overview of Nonparametric
                                  Methods in Financial Econometrics  . . . 317--337
       Peter C. B. Phillips and   
                         Jun Yu   Comment: A Selective Overview of
                                  Nonparametric Methods in Financial
                                  Econometrics . . . . . . . . . . . . . . 338--343
        Michael Sòrensen   Comment: A Selective Overview of
                                  Nonparametric Methods in Financial
                                  Econometrics . . . . . . . . . . . . . . 344--346
             Per A. Mykland and   
                      Lan Zhang   Comment: A Selective Overview of
                                  Nonparametric Methods in Financial
                                  Econometrics . . . . . . . . . . . . . . 347--350
                   Jianqing Fan   Rejoinder: A Selective Overview of
                                  Nonparametric Methods in Financial
                                  Econometrics . . . . . . . . . . . . . . 351--357
           Charles J. Geyer and   
                 Glen D. Meeden   Fuzzy and Randomized Confidence
                                  Intervals and $P$-Values . . . . . . . . 358--366
               Alan Agresti and   
                   Anna Gottard   Comment: Randomized Confidence Intervals
                                  and the Mid-$P$ Approach . . . . . . . . 367--371
            Roger L. Berger and   
                 George Casella   Comment: Fuzzy and Randomized Confidence
                                  Intervals and $P$-Values . . . . . . . . 372--374
          Lawrence D. Brown and   
                T. Tony Cai and   
               Anirban DasGupta   Comment: Fuzzy and Randomized Confidence
                                  Intervals and $P$-Values . . . . . . . . 375--379
                  Andrew Gelman   Comment: Fuzzy and Bayesian $p$-Values
                                  and $u$-Values . . . . . . . . . . . . . 380--381
          Elizabeth A. Thompson   Comment: Fuzzy and Randomized Confidence
                                  Intervals and $P$-Values . . . . . . . . 382--383
           Charles J. Geyer and   
                 Glen D. Meeden   Rejoinder: Fuzzy and Randomized
                                  Confidence Intervals and $P$-Values  . . 384--387
              Beatrix Jones and   
            Carlos Carvalho and   
               Adrian Dobra and   
                 Chris Hans and   
               Chris Carter and   
                      Mike West   Experiments in Stochastic Computation
                                  for High-Dimensional Graphical Models    388--400
                   John Aldrich   Fisher and Regression  . . . . . . . . . 401--417
                   Daniel Barry   A Conversation with John Hartigan  . . . 418--430
                      Anonymous   Index to Volume 20 . . . . . . . . . . . 431--432


Statistical Science
Volume 21, Number 1, February, 2006

                  David J. Hand   Classifier Technology and the Illusion
                                  of Progress  . . . . . . . . . . . . . . 1--14
             Jerome H. Friedman   Comment: Classifier Technology and the
                                  Illusion of Progress . . . . . . . . . . 15--18
                 Ross W. Gayler   Comment: Classifier Technology and the
                                  Illusion of Progress --- Credit Scoring  19--23
                Robert C. Holte   Elaboration on Two Points Raised in
                                  ``Classifier Technology and the Illusion
                                  of Progress''  . . . . . . . . . . . . . 24--26
                Robert A. Stine   Comment: Classifier Technology and the
                                  Illusion of Progress . . . . . . . . . . 27--29
                  David J. Hand   Rejoinder: Classifier Technology and the
                                  Illusion of Progress . . . . . . . . . . 30--34
                    Y. Zhao and   
            J. Staudenmayer and   
                B. A. Coull and   
                     M. P. Wand   General Design Bayesian Generalized
                                  Linear Mixed Models  . . . . . . . . . . 35--51
                 Ivy Jansen and   
         Caroline Beunckens and   
          Geert Molenberghs and   
              Geert Verbeke and   
             Craig Mallinckrodt   Analyzing Incomplete Discrete
                                  Longitudinal Clinical Trial Data . . . . 52--69
               Glenn Shafer and   
                  Vladimir Vovk   The Sources of Kolmogorov's
                                  Grundbegriffe  . . . . . . . . . . . . . 70--98
              Zhiliang Ying and   
                  Cun-Hui Zhang   A Conversation with Yuan Shih Chow . . . 99--112

Statistical Science
Volume 21, Number 2, May, 2006

              Wolfgang Jank and   
                  Galit Shmueli   A Special Issue on Statistical
                                  Challenges and Opportunities in
                                  Electronic Commerce Research . . . . . . 113--115
                 Ravi Bapna and   
                 Paulo Goes and   
                  Ram Gopal and   
               James R. Marsden   Moving from Data-Constrained to
                                  Data-Enabled Research: Experiences and
                                  Challenges in Collecting, Validating and
                                  Analyzing Large-Scale e-Commerce Data    116--130
              Anindya Ghose and   
              Arun Sundararajan   Evaluating Pricing Strategy Using
                                  e-Commerce Data: Evidence and Estimation
                                  Challenges . . . . . . . . . . . . . . . 131--142
            Stephen E. Fienberg   Privacy and Confidentiality in an
                                  e-Commerce World: Data Mining, Data
                                  Warehousing, Matching and Disclosure
                                  Limitation . . . . . . . . . . . . . . . 143--154
              Wolfgang Jank and   
                  Galit Shmueli   Functional Data Analysis in Electronic
                                  Commerce Research  . . . . . . . . . . . 155--166
       Katherine J. Stewart and   
             David P. Darcy and   
               Sherae L. Daniel   Opportunities and Challenges Applying
                                  Functional Data Analysis to the Study of
                                  Open Source Software Evolution . . . . . 167--178
          Srinivas K. Reddy and   
                    Mayukh Dass   Modeling On-Line Art Auction Dynamics
                                  Using Functional Data Analysis . . . . . 179--193
               Sharad Borle and   
           Peter Boatwright and   
               Joseph B. Kadane   The Timing of Bid Placement and Extent
                                  of Multiple Bidding: An Empirical
                                  Investigation Using eBay Online Auctions 194--205
            Donald B. Rubin and   
            Richard P. Waterman   Estimating the Causal Effects of
                                  Marketing Interventions Using Propensity
                                  Score Methodology  . . . . . . . . . . . 206--222
               Sunil Mithas and   
            Daniel Almirall and   
                 M. S. Krishnan   Do CRM Systems Cause One-to-One
                                  Marketing Effectiveness? . . . . . . . . 223--233
             David L. Banks and   
                 Yasmin H. Said   Data Mining in Electronic Commerce . . . 234--246
               Avi Goldfarb and   
                       Qiang Lu   Household-Specific Regressions Using
                                  Clickstream Data . . . . . . . . . . . . 247--255
              Shawndra Hill and   
             Foster Provost and   
                 Chris Volinsky   Network-Based Marketing: Identifying
                                  Likely Adopters via Consumer Networks    256--276
     Chrysanthos Dellarocas and   
                   Ritu Narayan   A Statistical Measure of a Population's
                                  Propensity to Engage in Post-Purchase
                                  Online Word-of-Mouth . . . . . . . . . . 277--285
            Paul Glasserman and   
                     Steven Kou   A Conversation with Chris Heyde  . . . . 286--298

Statistical Science
Volume 21, Number 3, August, 2006

                Donald B. Rubin   Causal Inference Through Potential
                                  Outcomes and Principal Stratification:
                                  Application to Studies with
                                  ``Censoring'' Due to Death . . . . . . . 299--309
                 Edward L. Korn   Comment: Causal Inference in the Medical
                                  Area . . . . . . . . . . . . . . . . . . 310--312
              Paul R. Rosenbaum   Comment: The Place of Death in the
                                  Quality of Life  . . . . . . . . . . . . 313--316
            Stephen E. Fienberg   Comment: Complex Causal Questions
                                  Require Careful Model Formulation:
                                  Discussion of Rubin on Experiments with
                                  ``Censoring'' Due to Death . . . . . . . 317--318
                Donald B. Rubin   Rejoinder  . . . . . . . . . . . . . . . 319--321
         Javier M. Moguerza and   
           Alberto Muñoz   Support Vector Machines with
                                  Applications . . . . . . . . . . . . . . 322--336
           Olivier Bousquet and   
        Bernhard Schölkopf   Comment  . . . . . . . . . . . . . . . . 337--340
          Peter L. Bartlett and   
          Michael I. Jordan and   
               Jon D. McAuliffe   Comment  . . . . . . . . . . . . . . . . 341--346
                    Grace Wahba   Comment  . . . . . . . . . . . . . . . . 347--351
              Trevor Hastie and   
                         Ji Zhu   Comment  . . . . . . . . . . . . . . . . 352--357
         Javier M. Moguerza and   
           Alberto Muñoz   Rejoinder  . . . . . . . . . . . . . . . 358--362
             Dylan S. Small and   
        Joseph L. Gastwirth and   
            Abba M. Krieger and   
              Paul R. Rosenbaum   R-Estimates vs. GMM: A Theoretical Case
                                  Study of Validity and Efficiency . . . . 363--375
      André I. Khuri and   
          Bhramar Mukherjee and   
             Bikas K. Sinha and   
                    Malay Ghosh   Design Issues for Generalized Linear
                                  Models: A Review . . . . . . . . . . . . 376--399
             Stephen M. Stigler   Isaac Newton as a Probabilist  . . . . . 400--403
             Nitis Mukhopadhyay   A Conversation with Ulf Grenander  . . . 404--426

Statistical Science
Volume 21, Number 4, November, 2006

      Sallie Keller-McNulty and   
              Alyson Wilson and   
        Christine Anderson-Cook   Reliability  . . . . . . . . . . . . . . 427
                Tim Bedford and   
               John Quigley and   
                   Lesley Walls   Expert Elicitation for Reliable System
                                  Design . . . . . . . . . . . . . . . . . 428--450
              Norman Fenton and   
                    Martin Neil   Comment: Expert Elicitation for Reliable
                                  System Design  . . . . . . . . . . . . . 451--453
                 Andrew Koehler   Comment: Expert Elicitation for Reliable
                                  System Design  . . . . . . . . . . . . . 454--455
                    Wenbin Wang   Comment: Expert Elicitation for Reliable
                                  System Design  . . . . . . . . . . . . . 456--459
                Tim Bedford and   
               John Quigley and   
                   Lesley Walls   Rejoinder: Expert Elicitation for
                                  Reliable System Design . . . . . . . . . 460--462
           John M. Chambers and   
             David A. James and   
              Diane Lambert and   
              Scott Vander Wiel   Monitoring Networked Applications With
                                  Incremental Quantile Estimation  . . . . 463--475
             Lorraine Denby and   
          James M. Landwehr and   
                   Jean Meloche   Comment: Monitoring Networked
                                  Applications With Incremental Quantile
                                  Estimation . . . . . . . . . . . . . . . 476--478
              Earl Lawrence and   
         George Michailidis and   
                Vijayan N. Nair   Comment: Monitoring Networked
                                  Applications With Incremental Quantile
                                  Estimation . . . . . . . . . . . . . . . 479--482
                         Bin Yu   Comment: Monitoring Networked
                                  Applications With Incremental Quantile
                                  Estimation . . . . . . . . . . . . . . . 483--484
           John M. Chambers and   
             David A. James and   
              Diane Lambert and   
              Scott Vander Wiel   Rejoinder: Monitoring Networked
                                  Applications With Incremental Quantile
                                  Estimation . . . . . . . . . . . . . . . 485--486
           Edsel A. Peña   Dynamic Modeling and Statistical
                                  Analysis of Event Times  . . . . . . . . 487--500
          Mei-Ling Ting Lee and   
                 G. A. Whitmore   Threshold Regression for Survival
                                  Analysis: Modeling Event Times by a
                                  Stochastic Process Reaching a Boundary   501--513
           Alyson G. Wilson and   
             Todd L. Graves and   
          Michael S. Hamada and   
                 C. Shane Reese   Advances in Data Combination, Analysis
                                  and Collection for System Reliability
                                  Assessment . . . . . . . . . . . . . . . 514--531
             Bo Henry Lindqvist   On the Statistical Modeling and Analysis
                                  of Repairable Systems  . . . . . . . . . 532--551
            Luis A. Escobar and   
              William Q. Meeker   A Review of Accelerated Test Models  . . 552--577
                      Paul Kvam   A Conversation With Harry Martz  . . . . 578--585
                      Anonymous   Contents of Volume 21 (2006) . . . . . . 586--588


Statistical Science
Volume 22, Number 1, February, 2007

                 R. Dennis Cook   Fisher Lecture: Dimension Reduction in
                                  Regression . . . . . . . . . . . . . . . 1--26
             Ronald Christensen   Comment: Fisher Lecture: Dimension
                                  Reduction in Regression  . . . . . . . . 27--31
                        Bing Li   Comment: Fisher Lecture: Dimension
                                  Reduction in Regression  . . . . . . . . 32--35
                   Lexin Li and   
      Christopher J. Nachtsheim   Comment: Fisher Lecture: Dimension
                                  Reduction in Regression  . . . . . . . . 36--39
                 R. Dennis Cook   Rejoinder: Fisher Lecture: Dimension
                                  Reduction in Regression  . . . . . . . . 40--43
        Stephen T. Buckland and   
              Ken B. Newman and   
    Carmen Fernández and   
                 Len Thomas and   
                   John Harwood   Embedding Population Dynamics Models in
                                  Inference  . . . . . . . . . . . . . . . 44--58
    Omiros Papaspiliopoulos and   
          Gareth O. Roberts and   
              Martin Sköld   A General Framework for the
                                  Parametrization of Hierarchical Models   59--73
          Marshall M. Joffe and   
                Dylan Small and   
                   Chi-Yuan Hsu   Defining and Estimating Intervention
                                  Effects for Groups that will Develop an
                                  Auxiliary Outcome  . . . . . . . . . . . 74--97
                  Mark R. Segal   Chess, Chance and Conspiracy . . . . . . 98--108
         David R. Bellhouse and   
               Christian Genest   Maty's Biography of Abraham De Moivre,
                                  Translated, Annotated and Augmented  . . 109--136
          Ronald Herman Randles   A Conversation with Robert V. Hogg . . . 137--152

Statistical Science
Volume 22, Number 2, May, 2007

                  Andrew Gelman   Struggles with Survey Weighting and
                                  Regression Modeling  . . . . . . . . . . 153--164
             Robert M. Bell and   
               Michael L. Cohen   Comment: Struggles with Survey Weighting
                                  and Regression Modeling  . . . . . . . . 165--167
              F. Jay Breidt and   
                Jean D. Opsomer   Comment: Struggles with Survey Weighting
                                  and Regression Modeling  . . . . . . . . 168--170
             Roderick J. Little   Comment: Struggles with Survey Weighting
                                  and Regression Modeling  . . . . . . . . 171--174
                 Sharon L. Lohr   Comment: Struggles with Survey Weighting
                                  and Regression Modeling  . . . . . . . . 175--178
              Danny Pfeffermann   Comment: Struggles with Survey Weighting
                                  and Regression Modeling  . . . . . . . . 179--183
                  Andrew Gelman   Rejoinder: Struggles with Survey
                                  Weighting and Regression Modeling  . . . 184--188
                 Feng Liang and   
            Sayan Mukherjee and   
                      Mike West   The Use of Unlabeled Data in Predictive
                                  Modeling . . . . . . . . . . . . . . . . 189--205
     Sharon-Lise T. Normand and   
               David M. Shahian   Statistical and Clinical Aspects of
                                  Hospital Outcomes Profiling  . . . . . . 206--226
               K. Mengersen and   
             S. A. Moynihan and   
                  R. L. Tweedie   Causality and Association: The
                                  Statistical and Legal Approaches . . . . 227--254
        Stephen E. Fienberg and   
         Stephen M. Stigler and   
                Judith M. Tanur   The William Kruskal Legacy: 1919--2005   255--261
             Norman M. Bradburn   A Tribute to Bill Kruskal  . . . . . . . 262--263
                Morris L. Eaton   William H. Kruskal and the Development
                                  of Coordinate-Free Methods . . . . . . . 264--265
            Stephen E. Fienberg   William Kruskal: My Scholarly and
                                  Scientific Model . . . . . . . . . . . . 266--268
                 Leo A. Goodman   Working with Bill Kruskal: From 1950
                                  Onward . . . . . . . . . . . . . . . . . 269--272
             Margaret E. Martin   Bill Kruskal and the Committee on
                                  National Statistics  . . . . . . . . . . 273--274
             Stephen M. Stigler   William Kruskal Remembered . . . . . . . 275--276
                Judith M. Tanur   William H. Kruskal, Mentor and Friend    277--278
         Tathagata Banerjee and   
                 Rahul Mukerjee   A Conversation with Shoutir Kishore
                                  Chatterjee . . . . . . . . . . . . . . . 279--290
           Edward J. Wegman and   
              Wendy L. Martinez   A Conversation with Dorothy Gilford  . . 291--300

Statistical Science
Volume 22, Number 3, August, 2007

           M. Bédard and   
            D. A. S. Fraser and   
                        A. Wong   Higher Accuracy for Bayesian and
                                  Frequentist Inference: Large Sample
                                  Theory for Small Sample Likelihood . . . 301--321
              M. J. Bayarri and   
              M. E. Castellanos   Bayesian Checking of the Second Levels
                                  of Hierarchical Models . . . . . . . . . 322--343
                       M. Evans   Comment: Bayesian Checking of the Second
                                  Levels of Hierarchical Models  . . . . . 344--348
                  Andrew Gelman   Comment: Bayesian Checking of the Second
                                  Levels of Hierarchical Models  . . . . . 349--352
               Valen E. Johnson   Comment: Bayesian Checking of the Second
                                  Levels of Hierarchical Models  . . . . . 353--358
          Michael D. Larsen and   
                          Lu Lu   Comment: Bayesian Checking of the Second
                                  Level of Hierarchical Models:
                                  Cross-Validated Posterior Predictive
                                  Checks Using Discrepancy Measures  . . . 359--362
              M. J. Bayarri and   
              M. E. Castellanos   Rejoinder: Bayesian Checking of the
                                  Second Levels of Hierarchical Models . . 363--367
               Michael Friendly   A.-M. Guerry's Moral Statistics of
                                  France: Challenges for Multivariable
                                  Spatial Analysis . . . . . . . . . . . . 368--399
               Edward I. George   A Tribute to Ingram Olkin  . . . . . . . 400
              Betsy Jane Becker   Multivariate Meta-Analysis:
                                  Contributions of Ingram Olkin  . . . . . 401--406
                Barry C. Arnold   Majorization: Here, There and Everywhere 407--413
          Betsy Jane Becker and   
                    Meng-Jia Wu   The Synthesis of Regression Slopes in
                                  Meta-Analysis  . . . . . . . . . . . . . 414--429
              Mathias Drton and   
             Michael D. Perlman   Multiple Testing and Error Control in
                                  Gaussian Graphical Model Selection . . . 430--449
               Allan R. Sampson   A Conversation with Ingram Olkin . . . . 450--475

Statistical Science
Volume 22, Number 4, November, 2007

        Peter Bühlmann and   
                Torsten Hothorn   Boosting Algorithms: Regularization,
                                  Prediction and Model Fitting . . . . . . 477--505
               Andreas Buja and   
                David Mease and   
               Abraham J. Wyner   Comment: Boosting Algorithms:
                                  Regularization, Prediction and Model
                                  Fitting  . . . . . . . . . . . . . . . . 506--512
                  Trevor Hastie   Comment: Boosting Algorithms:
                                  Regularization, Prediction and Model
                                  Fitting  . . . . . . . . . . . . . . . . 513--515
        Peter Bühlmann and   
                Torsten Hothorn   Rejoinder: Boosting Algorithms:
                                  Regularization, Prediction and Model
                                  Fitting  . . . . . . . . . . . . . . . . 516--522
          Joseph D. Y. Kang and   
              Joseph L. Schafer   Demystifying Double Robustness: A
                                  Comparison of Alternative Strategies for
                                  Estimating a Population Mean from
                                  Incomplete Data  . . . . . . . . . . . . 523--539
              Greg Ridgeway and   
            Daniel F. McCaffrey   Comment: Demystifying Double Robustness:
                                  A Comparison of Alternative Strategies
                                  for Estimating a Population Mean from
                                  Incomplete Data  . . . . . . . . . . . . 540--543
               James Robins and   
               Mariela Sued and   
         Quanhong Lei-Gomez and   
               Andrea Rotnitzky   Comment: Performance of Double-Robust
                                  Estimators When ``Inverse Probability''
                                  Weights Are Highly Variable  . . . . . . 544--559
                   Zhiqiang Tan   Comment: Understanding OR, PS and DR . . 560--568
      Anastasios A. Tsiatis and   
                 Marie Davidian   Comment: Demystifying Double Robustness:
                                  A Comparison of Alternative Strategies
                                  for Estimating a Population Mean from
                                  Incomplete Data  . . . . . . . . . . . . 569--573
          Joseph D. Y. Kang and   
              Joseph L. Schafer   Rejoinder: Demystifying Double
                                  Robustness: A Comparison of Alternative
                                  Strategies for Estimating a Population
                                  Mean from Incomplete Data  . . . . . . . 574--580
            Peter J. Bickel and   
                  Chao Chen and   
             Jaimyoung Kwon and   
                  John Rice and   
              Erik van Zwet and   
                 Pravin Varaiya   Measuring Traffic  . . . . . . . . . . . 581--597
             Stephen M. Stigler   The Epic Story of Maximum Likelihood . . 598--620
         Ronald Christensen and   
                 Wesley Johnson   A Conversation with Seymour Geisser  . . 621--636
          Barry I. Graubard and   
               Paul S. Levy and   
               Gordon B. Willis   A Conversation with Monroe Sirken  . . . 637--650
                      Anonymous   Contents of Volume 22 (2007) . . . . . . 651--652


Statistical Science
Volume 23, Number 1, February, 2008

                  Bradley Efron   Microarrays, Empirical Bayes and the
                                  Two-Groups Model . . . . . . . . . . . . 1--22
                 Yoav Benjamini   Comment: Microarrays, Empirical Bayes
                                  and the Two-Groups Model . . . . . . . . 23--28
                    T. Tony Cai   Comment: Microarrays, Empirical Bayes
                                  and the Two-Group Model  . . . . . . . . 29--33
                 Carl N. Morris   Comment: Microarrays, Empirical Bayes
                                  and the Two-Groups Model . . . . . . . . 34--40
               Kenneth Rice and   
            David Spiegelhalter   Comment: Microarrays, Empirical Bayes
                                  and the Two-Groups Model . . . . . . . . 41--44
                  Bradley Efron   Rejoinder: Microarrays, Empirical Bayes
                                  and the Two-Groups Model . . . . . . . . 45--47
            David R. Brillinger   The 2005 Neyman Lecture: Dynamic
                                  Indeterminism in Science . . . . . . . . 48--64
            Hans R. Künsch   Comment: The 2005 Neyman Lecture:
                                  Dynamic Indeterminism in Science . . . . 65--68
                  Grace L. Yang   Comment: The 2005 Neyman Lecture:
                                  Dynamic Indeterminism in Science . . . . 69--75
            David R. Brillinger   Rejoinder: The 2005 Neyman Lecture:
                                  Dynamic Indeterminism in Science . . . . 76--77
                  Gary King and   
                        Ying Lu   Verbal Autopsy Methods with Multiple
                                  Causes of Death  . . . . . . . . . . . . 78--91
                 Mia Hubert and   
         Peter J. Rousseeuw and   
               Stefan Van Aelst   High-Breakdown Robust Multivariate
                                  Methods  . . . . . . . . . . . . . . . . 92--119
               Andreas Buja and   
            Hans R. Künsch   A Conversation with Peter Huber  . . . . 120--135
            Stephen E. Fienberg   The Early Statistical Years: 1947--1967.
                                  A Conversation with Howard Raiffa  . . . 136--149

Statistical Science
Volume 23, Number 2, May, 2008

             Persi Diaconis and   
              Kshitij Khare and   
           Laurent Saloff-Coste   Gibbs Sampling, Exponential Families and
                                  Orthogonal Polynomials . . . . . . . . . 151--178
             Patrizia Berti and   
             Guido Consonni and   
              Luca Pratelli and   
                    Pietro Rigo   Comment: Gibbs Sampling, Exponential
                                  Families and Orthogonal Polynomials  . . 179--182
             Galin L. Jones and   
              Alicia A. Johnson   Comment: Gibbs Sampling, Exponential
                                  Families, and Orthogonal Polynomials . . 183--186
            Gérard Letac   Comment: Lancaster Probabilities and
                                  Gibbs Sampling . . . . . . . . . . . . . 187--191
          Richard A. Levine and   
                 George Casella   Comment: On Random Scan Gibbs Samplers   192--195
             Persi Diaconis and   
              Kshitij Khare and   
           Laurent Saloff-Coste   Rejoinder: Gibbs Sampling, Exponential
                                  Families and Orthogonal Polynomials  . . 196--200
              Geert Verbeke and   
          Geert Molenberghs and   
             Caroline Beunckens   Formal and Informal Model Selection with
                                  Incomplete Data  . . . . . . . . . . . . 201--218
              Ben B. Hansen and   
                    Jake Bowers   Covariate Balance in Simple, Stratified
                                  and Clustered Comparative Studies  . . . 219--236
              David A. Freedman   Randomization Does Not Justify Logistic
                                  Regression . . . . . . . . . . . . . . . 237--249
            James M. Flegal and   
               Murali Haran and   
                 Galin L. Jones   Markov Chain Monte Carlo: Can We Trust
                                  the Third Significant Figure?  . . . . . 250--260
             Stephen M. Stigler   Karl Pearson's Theoretical Errors and
                                  the Advances They Inspired . . . . . . . 261--271
                Myles Hollander   A Conversation with Jayaram Sethuraman   272--285

Statistical Science
Volume 23, Number 3, August, 2008

             Dan L. Nicolae and   
               Xiao-Li Meng and   
                 Augustine Kong   Quantifying the Fraction of Missing
                                  Information for Hypothesis Testing in
                                  Statistical and Genetic Studies  . . . . 287--312
                      Hani Doss   Comment: Quantifying Information Loss in
                                  Survival Studies . . . . . . . . . . . . 313--317
               I-Shou Chang and   
           Chung-Hsing Chen and   
               Li-Chu Chien and   
                 Chao A. Hsiung   Comment: Quantifying the Fraction of
                                  Missing Information for Hypothesis
                                  Testing in Statistical and Genetic
                                  Studies  . . . . . . . . . . . . . . . . 318--320
                 Tian Zheng and   
                    Shaw-Hwa Lo   Comment: Quantifying the Fraction of
                                  Missing Information for Hypothesis
                                  Testing in Statistical and Genetic
                                  Studies  . . . . . . . . . . . . . . . . 321--324
             Dan L. Nicolae and   
               Xiao-Li Meng and   
                 Augustine Kong   Rejoinder: Quantifying the Fraction of
                                  Missing Information for Hypothesis
                                  Testing in Statistical and Genetic
                                  Studies  . . . . . . . . . . . . . . . . 325--331
             Guido Consonni and   
                 Piero Veronese   Compatibility of Prior Specifications
                                  Across Linear Models . . . . . . . . . . 332--353
              A. C. Davison and   
                     N. Sartori   The Banff Challenge: Statistical
                                  Detection of a Noisy Signal  . . . . . . 354--364
                Ryan Martin and   
               Jayanta K. Ghosh   Stochastic Approximation and Newton's
                                  Estimate of a Mixing Distribution  . . . 365--382
               Zhihua Zhang and   
              Michael I. Jordan   Multiway Spectral Clustering: A
                                  Margin-Based Perspective . . . . . . . . 383--403
     William F. Rosenberger and   
             Oleksandr Sverdlov   Handling Covariates in the Design of
                                  Clinical Trials  . . . . . . . . . . . . 404--419
         Francisco J. Samaniego   A Conversation with Myles Hollander  . . 420--438

Statistical Science
Volume 23, Number 4, November, 2008

            Martin A. Lindquist   The Statistical Analysis of fMRI Data    439--464
     Alessandra R. Brazzale and   
             Anthony C. Davison   Accurate Parametric Inference for Small
                                  Samples  . . . . . . . . . . . . . . . . 465--484
             R. Dennis Cook and   
                Liliana Forzani   Principal Fitted Components for
                                  Dimension Reduction in Regression  . . . 485--501
               Michael Friendly   The Golden Age of Statistical Graphics   502--535
         Nicholas I. Fisher and   
             Willem R. van Zwet   Remembering Wassily Hoeffding  . . . . . 536--547
                Malay Ghosh and   
              Michael J. Schell   A Conversation with Pranab Kumar Sen . . 548--564
                      Anonymous   Contents of Volume 23 (2008) . . . . . . 565--566


Statistical Science
Volume 24, Number 1, February, 2009

               Robert Adler and   
                 John Ewing and   
                   Peter Taylor   Citation Statistics: A Report from the
                                  International Mathematical Union (IMU)
                                  in Cooperation with the International
                                  Council of Industrial and Applied
                                  Mathematics (ICIAM) and the Institute of
                                  Mathematical Statistics (IMS)  . . . . . 1--14
           Bernard W. Silverman   Comment: Bibliometrics in the Context of
                                  the UK Research Assessment Exercise  . . 15--16
               Sune Lehmann and   
           Benny E. Lautrup and   
              Andrew D. Jackson   Comment: Citation Statistics . . . . . . 17--20
        David Spiegelhalter and   
               Harvey Goldstein   Comment: Citation Statistics . . . . . . 21--24
               Peter Gavin Hall   Comment: Citation Statistics . . . . . . 25--26
               Robert Adler and   
                 John Ewing and   
                   Peter Taylor   Rejoinder: Citation Statistics . . . . . 27--28
                Kosuke Imai and   
                  Gary King and   
                   Clayton Nall   The Essential Role of Pair Matching in
                                  Cluster-Randomized Experiments, with
                                  Application to the Mexican Universal
                                  Health Insurance Evaluation  . . . . . . 29--53
              Jennifer Hill and   
                     Marc Scott   Comment: The Essential Role of Pair
                                  Matching . . . . . . . . . . . . . . . . 54--58
                  Kai Zhang and   
                 Dylan S. Small   Comment: The Essential Role of Pair
                                  Matching in Cluster-Randomized
                                  Experiments, with Application to the
                                  Mexican Universal Health Insurance
                                  Evaluation . . . . . . . . . . . . . . . 59--64
                Kosuke Imai and   
                  Gary King and   
                   Clayton Nall   Rejoinder: Matched Pairs and the Future
                                  of Cluster-Randomized Experiments  . . . 65--72
                  Vladimir Vovk   Superefficiency from the Vantage Point
                                  of Computability . . . . . . . . . . . . 73--86
                R. J. Beran and   
                   N. I. Fisher   An Evening Spent with Bill van Zwet  . . 87--115
        David R. Brillinger and   
               Richard A. Davis   A Conversation with Murray Rosenblatt    116--140

Statistical Science
Volume 24, Number 2, May, 2009

        Christian P. Robert and   
             Nicolas Chopin and   
                Judith Rousseau   Harold Jeffreys's Theory of Probability
                                  Revisited  . . . . . . . . . . . . . . . 141--172
        José M. Bernardo   Comment  . . . . . . . . . . . . . . . . 173--175
                  Andrew Gelman   Bayes, Jeffreys, Prior Distributions and
                                  the Philosophy of Statistics . . . . . . 176--178
                    Robert Kass   Comment: The Importance of Jeffreys's
                                  Legacy . . . . . . . . . . . . . . . . . 179--182
                 Dennis Lindley   Comment  . . . . . . . . . . . . . . . . 183--184
                   Stephen Senn   Comment  . . . . . . . . . . . . . . . . 185--186
                 Arnold Zellner   Comment  . . . . . . . . . . . . . . . . 187--190
        Christian P. Robert and   
             Nicolas Chopin and   
                Judith Rousseau   Rejoinder: Harold Jeffreys's Theory of
                                  Probability Revisited  . . . . . . . . . 191--194
               Sander Greenland   Relaxation Penalties and Priors for
                                  Plausible Modeling of Nonidentified Bias
                                  Sources  . . . . . . . . . . . . . . . . 195--210
          Brenda F. Kurland and   
           Laura L. Johnson and   
          Brian L. Egleston and   
                 Paula H. Diehr   Longitudinal Data with Follow-up
                                  Truncated by Death: Match the Analysis
                                  Method to Research Aims  . . . . . . . . 211--222
             James G. Booth and   
          Walter T. Federer and   
            Martin T. Wells and   
           Russell D. Wolfinger   A Multivariate Variance Components Model
                                  for Analysis of Covariance in Designed
                                  Experiments  . . . . . . . . . . . . . . 223--237
               Joseph B. Kadane   Bayesian Thought in Early Modern
                                  Detective Stories: Monsieur Lecoq, C.
                                  Auguste Dupin and Sherlock Holmes  . . . 238--243
                Martin T. Wells   A Conversation with Shayle R. Searle . . 244--254

Statistical Science
Volume 24, Number 3, August, 2009

                Youngjo Lee and   
                 John A. Nelder   Likelihood Inference for Models with
                                  Unobservables: Another View  . . . . . . 255--269
                Thomas A. Louis   Discussion of Likelihood Inference for
                                  Models with Unobservables: Another View  270--272
          Geert Molenberghs and   
         Michael G. Kenward and   
                  Geert Verbeke   Discussion of Likelihood Inference for
                                  Models with Unobservables: Another View  273--279
                   Xiao-Li Meng   Decoding the H-likelihood  . . . . . . . 280--293
                Youngjo Lee and   
                 John A. Nelder   Rejoinder: Likelihood Inference for
                                  Models with Unobservables Another View   294--302
              Bruce Lindsay and   
                     Jiawei Liu   Model Assessment Tools for a Model False
                                  World  . . . . . . . . . . . . . . . . . 303--318
               Guenther Walther   Inference and Modeling with Log-concave
                                  Distributions  . . . . . . . . . . . . . 319--327
             Paul Gustafson and   
               Sander Greenland   Interval Estimation for Messy
                                  Observational Data . . . . . . . . . . . 328--342
        Joseph L. Gastwirth and   
               Yulia R. Gel and   
                    Weiwen Miao   The Impact of Levene's Test of Equality
                                  of Variances on Statistical Theory and
                                  Practice . . . . . . . . . . . . . . . . 343--360
                 Mark P. Becker   A Conversation with Leo Goodman  . . . . 361--385

Statistical Science
Volume 24, Number 4, November, 2009

                 Gang Zheng and   
          Jonathan Marchini and   
                Nancy L. Geller   Introduction to the Special Issue:
                                  Genome-Wide Association Studies  . . . . 387
               Nan M. Laird and   
                Christoph Lange   The Role of Family-Based Designs in
                                  Genome-Wide Association Studies  . . . . 388--397
             Kathryn Roeder and   
                Larry Wasserman   Genome-Wide Significance Levels and
                                  Weighted Hypothesis Testing  . . . . . . 398--413
           Duncan C. Thomas and   
               Graham Casey and   
             David V. Conti and   
            Robert W. Haile and   
        Juan Pablo Lewinger and   
                Daniel O. Stram   Methodological Issues in Multistage
                                  Genome-Wide Association Studies  . . . . 414--429
                    Zhan Su and   
               Niall Cardin and   
the Wellcome Trust Case Control Consortium and   
             Peter Donnelly and   
              Jonathan Marchini   A Bayesian Method for Detecting and
                                  Characterizing Allelic Heterogeneity and
                                  Boosting Signals in Genome-Wide
                                  Association Studies  . . . . . . . . . . 430--450
              William Astle and   
               David J. Balding   Population Structure and Cryptic
                                  Relatedness in Genetic Association
                                  Studies  . . . . . . . . . . . . . . . . 451--471
         Charles Kooperberg and   
            Michael LeBlanc and   
               James Y. Dai and   
               Indika Rajapakse   Structures and Assumptions: Strategies
                                  to Harness Gene--Gene and
                                  Gene--Environment Interactions in GWAS   472--488
        Nilanjan Chatterjee and   
                Yi-Hau Chen and   
                  Sheng Luo and   
             Raymond J. Carroll   Analysis of Case-Control Association
                                  Studies: SNPs, Imputation and Haplotypes 489--502
                 Gang Zheng and   
                Jungnam Joo and   
              Dmitri Zaykin and   
                   Colin Wu and   
                   Nancy Geller   Robust Tests in Genome-Wide Scans under
                                  Incomplete Linkage Disequilibrium  . . . 503--516
         Michael E. Goddard and   
              Naomi R. Wray and   
              Klara Verbyla and   
              Peter M. Visscher   Estimating Effects and Making
                                  Predictions from Genome-Wide Marker Data 517--529
     Sebastian Zöllner and   
             Tanya M. Teslovich   Using GWAS Data to Identify Copy Number
                                  Variants Contributing to Common Complex
                                  Diseases . . . . . . . . . . . . . . . . 530--546
           Ruth M. Pfeiffer and   
           Mitchell H. Gail and   
                      David Pee   On Combining Data From Genome-Wide
                                  Association Studies to Discover
                                  Disease-Associated SNPs  . . . . . . . . 547--560
                Peter Kraft and   
         Eleftheria Zeggini and   
           John P. A. Ioannidis   Replication in Genome-Wide Association
                                  Studies  . . . . . . . . . . . . . . . . 561--573
                      Anonymous   Contents of Volume 24 (2009) . . . . . . 574--576


Statistical Science
Volume 25, Number 1, February, 2010

            Elizabeth A. Stuart   Matching Methods for Causal Inference: A
                                  Review and a Look Forward  . . . . . . . 1--21
            Vanessa Didelez and   
                   Sha Meng and   
               Nuala A. Sheehan   Assumptions of IV Methods for
                                  Observational Epidemiology . . . . . . . 22--40
              Nell Sedransk and   
            Lawrence H. Cox and   
              Deborah Nolan and   
                Keith Soper and   
           Cliff Spiegelman and   
             Linda J. Young and   
          Katrina L. Kelner and   
          Robert A. Moffitt and   
                 Ani Thakar and   
             Jordan Raddick and   
        Edward J. Ungvarsky and   
         Richard W. Carlson and   
                  Rolf Apweiler   Make Research Data Public? --- Not
                                  Always so Simple: A Dialogue for
                                  Statisticians and Science Editors  . . . 41--50
                Kosuke Imai and   
                 Luke Keele and   
                Teppei Yamamoto   Identification, Inference and
                                  Sensitivity Analysis for Causal
                                  Mediation Effects  . . . . . . . . . . . 51--71
                Ryan Martin and   
             Jianchun Zhang and   
                   Chuanhai Liu   Dempster--Shafer Theory and Statistical
                                  Inference with Weak Beliefs  . . . . . . 72--87
         Carlos M. Carvalho and   
        Michael S. Johannes and   
          Hedibert F. Lopes and   
             Nicholas G. Polson   Particle Learning and Smoothing  . . . . 88--106
        Christopher J. Paciorek   The Importance of Scale for
                                  Spatial-Confounding Bias and Precision
                                  of Spatial Regression Estimators . . . . 107--125
           Dennis Gilliland and   
              R. V. Ramamoorthi   A Conversation with James Hannan . . . . 126--144

Statistical Science
Volume 25, Number 2, May, 2010

                  Bradley Efron   The Future of Indirect Evidence  . . . . 145--157
               Sander Greenland   Comment: The Need for Syncretism in
                                  Applied Statistics . . . . . . . . . . . 158--161
                  Andrew Gelman   Bayesian Statistics Then and Now . . . . 162--165
                 Robert E. Kass   Comment: How Should Indirect Evidence Be
                                  Used?  . . . . . . . . . . . . . . . . . 166--169
                  Bradley Efron   Rejoinder: The Future of Indirect
                                  Evidence . . . . . . . . . . . . . . . . 170--171
             Chris Sherlock and   
             Paul Fearnhead and   
              Gareth O. Roberts   The Random Walk Metropolis: Linking
                                  Theory and Practice Through a Case Study 172--190
               Ying Kuen Cheung   Stochastic Approximation and Modern
                                  Model-Based Designs for Dose-Finding
                                  Clinical Trials  . . . . . . . . . . . . 191--201
             John O'Quigley and   
                   Mark Conaway   Continual Reassessment and Related
                                  Dose-Finding Designs . . . . . . . . . . 202--216
          Mourad Tighiouart and   
           André Rogatko   Dose Finding with Escalation with
                                  Overdose Control (EWOC) in Cancer
                                  Clinical Trials  . . . . . . . . . . . . 217--226
                 Peter F. Thall   Bayesian Models and Decision Algorithms
                                  for Complex Early Phase Clinical Trials  227--244
               Jay Bartroff and   
                  Tze Leung Lai   Approximate Dynamic Programming and Its
                                  Applications to the Design of Phase I
                                  Cancer Trials  . . . . . . . . . . . . . 245--257
           Christian Genest and   
              Gordon Brackstone   A Conversation with Martin Bradbury Wilk 258--273

Statistical Science
Volume 25, Number 3, August, 2010

            David J. Aldous and   
                    Julian Shun   Connected Spatial Networks over Random
                                  Points and a Route-Length Statistic  . . 275--288
                  Galit Shmueli   To Explain or to Predict?  . . . . . . . 289--310
                   Hua Zhou and   
              Kenneth Lange and   
                Marc A. Suchard   Graphics Processing Units and
                                  High-Dimensional Optimization  . . . . . 311--324
          Geert Molenberghs and   
              Geert Verbeke and   
Clarice G. B. Demétrio and   
     Afrânio M. C. Vieira   A Family of Generalized Linear Models
                                  for Repeated Measures with Normal and
                                  Conjugate Random Effects . . . . . . . . 325--347
             Nader Ebrahimi and   
             Ehsan S. Soofi and   
                    Refik Soyer   On the Sample Information About
                                  Parameter and Prediction . . . . . . . . 348--367
            Vanessa Didelez and   
              Svend Kreiner and   
                  Niels Keiding   Graphical Models for Inference Under
                                  Outcome-Dependent Sampling . . . . . . . 368--387
                   Haim Bar and   
                James Booth and   
         Elizabeth Schifano and   
                Martin T. Wells   Laplace Approximated EM Microarray
                                  Analysis: An Empirical Bayes Approach
                                  for Comparative Microarray Experiments   388--407
         Daniel Peña and   
                   Ruey S. Tsay   A Conversation with George C. Tiao . . . 408--428

Statistical Science
Volume 25, Number 4, November, 2010

           David A. van Dyk and   
                   Xiao-Li Meng   Cross-Fertilizing Strategies for Better
                                  EM Mountain Climbing and DA Field
                                  Exploration: A Graphical Guide Book  . . 429--449
                   Nan M. Laird   The EM Algorithm in Genetics, Genomics
                                  and Public Health  . . . . . . . . . . . 450--457
              Zhangzhang Si and   
               Haifeng Gong and   
              Song-Chun Zhu and   
                   Ying Nian Wu   Learning Active Basis Models by EM-Type
                                  Algorithms . . . . . . . . . . . . . . . 458--475
                Xiaodan Fan and   
                  Yuan Yuan and   
                     Jun S. Liu   The EM Algorithm and the Rise of
                                  Computational Biology  . . . . . . . . . 476--491
               Tong Tong Wu and   
                  Kenneth Lange   The MM Alternative to EM . . . . . . . . 492--505
           Martin A. Tanner and   
                   Wing H. Wong   From EM to Data Augmentation: The
                                  Emergence of MCMC Bayesian Computation
                                  in the 1980s . . . . . . . . . . . . . . 506--516
                   Yan Zhou and   
      Roderick J. A. Little and   
            John D. Kalbfleisch   Block-Conditional Missing at Random
                                  Models for Missing Data  . . . . . . . . 517--532
         Andrew Lewandowski and   
               Chuanhai Liu and   
              Scott Vander Wiel   Parameter Expansion and Efficient
                                  Inference  . . . . . . . . . . . . . . . 533--544
               Ana M. Pires and   
          João A. Branco   A Statistical Model to Explain the
                                  Mendel--Fisher Controversy . . . . . . . 545--565
       Debasis Bhattacharya and   
         Francisco J. Samaniego   A Conversation with George G. Roussas    566--587
                      Anonymous   Index of Volume 25 . . . . . . . . . . . 588--589


Statistical Science
Volume 26, Number 1, February, 2011

                 Robert E. Kass   Statistical Inference: The Big Picture   1--9
                  Andrew Gelman   Bayesian Statistical Pragmatism  . . . . 10--11
              Steven N. Goodman   Discussion of ``Statistical Inference:
                                  The Big Picture'' by R. E. Kass  . . . . 12--14
               Robert McCulloch   Discussion of ``Statistical Inference:
                                  The Big Picture'' by R. E. Kass  . . . . 15--16
                      Hal Stern   Discussion of ``Statistical Inference:
                                  The Big Picture'' by R. E. Kass  . . . . 17--18
                 Robert E. Kass   Rejoinder  . . . . . . . . . . . . . . . 19--20
                Yingcun Xia and   
                    Howell Tong   Feature Matching in Time Series Modeling 21--46
                Bruce E. Hansen   Discussion of ``Feature Matching in Time
                                  Series Modeling'' by Y. Xia and H. Tong  47--48
              Edward L. Ionides   Discussion of ``Feature Matching in Time
                                  Series Modeling'' by Y. Xia and H. Tong  49--52
              Kung-Sik Chan and   
                   Ruey S. Tsay   Discussion of ``Feature Matching in Time
                                  Series Modeling'' by Y. Xia and H. Tong  53--56
                      Qiwei Yao   Discussion of ``Feature Matching in Time
                                  Series Modeling'' by Y. Xia and H. Tong  57--58
                Yingcun Xia and   
                    Howell Tong   Rejoinder  . . . . . . . . . . . . . . . 59--61
              Julia Salzman and   
                  Hui Jiang and   
                 Wing Hung Wong   Statistical Modeling of RNA-Seq Data . . 62--83
               Glenn Shafer and   
             Alexander Shen and   
       Nikolai Vereshchagin and   
                  Vladimir Vovk   Test Martingales, Bayes Factors and
                                  $p$-Values . . . . . . . . . . . . . . . 84--101
           Christian Robert and   
                 George Casella   A Short History of Markov Chain Monte
                                  Carlo: Subjective Recollections from
                                  Incomplete Data  . . . . . . . . . . . . 102--115
                   Heping Zhang   Statistical Analysis in Genetic Studies
                                  of Mental Illnesses  . . . . . . . . . . 116--129
          Terrance Savitsky and   
            Marina Vannucci and   
                     Naijun Sha   Variable Selection for Nonparametric
                                  Gaussian Process Priors: Models and
                                  Computational Strategies . . . . . . . . 130--149
                  Ya'acov Ritov   A Random Walk with Drift: Interview with
                                  Peter J. Bickel  . . . . . . . . . . . . 150--159

Statistical Science
Volume 26, Number 2, May, 2011

                  P. Lahiri and   
                      Eric Slud   Introduction . . . . . . . . . . . . . . 161
                Roderick Little   Calibrated Bayes, for Statistics in
                                  General, and Missing Data in Particular  162--174
              Michael D. Larsen   Discussion of ``Calibrated Bayes, for
                                  Statistics in General, and Missing Data
                                  in Particular'' by R. J. A. Little . . . 175--178
             Nathaniel Schenker   Discussion of ``Calibrated Bayes, for
                                  Statistics in General, and Missing Data
                                  in Particular'' by R. J. A. Little . . . 179--184
                Roderick Little   Rejoinder  . . . . . . . . . . . . . . . 185--186
                    Malay Ghosh   Objective Priors: An Introduction for
                                  Frequentists . . . . . . . . . . . . . . 187--202
        José M. Bernardo   Discussion of ``Objective Priors: An
                                  Introduction for Frequentists'' by M.
                                  Ghosh  . . . . . . . . . . . . . . . . . 203--205
                Trevor Sweeting   Discussion of ``Objective Priors: An
                                  Introduction for Frequentists'' by M.
                                  Ghosh  . . . . . . . . . . . . . . . . . 206--209
                    Malay Ghosh   Rejoinder  . . . . . . . . . . . . . . . 210--211
            Stephen E. Fienberg   Bayesian Models and Methods in Public
                                  Policy and Government Settings . . . . . 212--226
                  David J. Hand   Discussion of ``Bayesian Models and
                                  Methods in Public Policy and Government
                                  Settings'' by S. E. Fienberg . . . . . . 227--230
                  Graham Kalton   Discussion of ``Bayesian Models and
                                  Methods in Public Policy and Government
                                  Settings'' by S. E. Fienberg . . . . . . 231--234
              Alan M. Zaslavsky   Sampling from a Bayesian Menu  . . . . . 235--237
            Stephen E. Fienberg   Rejoinder  . . . . . . . . . . . . . . . 238--239
                   J. N. K. Rao   Impact of Frequentist and Bayesian
                                  Methods on Survey Sampling Practice: A
                                  Selective Appraisal  . . . . . . . . . . 240--256
                    Glen Meeden   Discussion of ``Impact of Frequentist
                                  and Bayesian Methods on Survey Sampling
                                  Practice: A Selective Appraisal'' by J.
                                  N. K. Rao  . . . . . . . . . . . . . . . 257--259
                    J. Sedransk   Discussion of ``Impact of Frequentist
                                  and Bayesian Methods on Survey Sampling
                                  Practice: A Selective Appraisal'' by J.
                                  N. K. Rao  . . . . . . . . . . . . . . . 260--261
                      Eric Slud   Discussion of ``Impact of Frequentist
                                  and Bayesian Methods on Survey Sampling
                                  Practice: A Selective Appraisal'' by J.
                                  N. K. Rao  . . . . . . . . . . . . . . . 262--265
                   J. N. K. Rao   Rejoinder  . . . . . . . . . . . . . . . 266--270
                Carl Morris and   
                     Ruoxi Tang   Estimating Random Effects via Adjustment
                                  for Density Maximization . . . . . . . . 271--287
            Claudio Fuentes and   
                 George Casella   Discussion of ``Estimating Random
                                  Effects via Adjustment for Density
                                  Maximization'' by C. Morris and R. Tang  288--290
                  P. Lahiri and   
               Santanu Pramanik   Discussion of ``Estimating Random
                                  Effects via Adjustment for Density
                                  Maximization'' by C. Morris and R. Tang  291--295
                    Carl Morris   Rejoinder  . . . . . . . . . . . . . . . 296--298

Statistical Science
Volume 26, Number 3, August, 2011

                D. A. S. Fraser   Is Bayes Posterior just Quick and Dirty
                                  Confidence?  . . . . . . . . . . . . . . 299--316
            Christian P. Robert   Discussion of ``Is Bayes Posterior just
                                  Quick and Dirty Confidence?'' by D. A.
                                  S. Fraser  . . . . . . . . . . . . . . . 317--318
                Kesar Singh and   
                      Minge Xie   Discussion of ``Is Bayes Posterior just
                                  Quick and Dirty Confidence?'' by D. A.
                                  S. Fraser  . . . . . . . . . . . . . . . 319--321
                Larry Wasserman   Frasian Inference  . . . . . . . . . . . 322--325
                     Tong Zhang   Discussion of ``Is Bayes Posterior just
                                  Quick and Dirty Confidence?'' by D. A.
                                  S. Fraser  . . . . . . . . . . . . . . . 326--328
                D. A. S. Fraser   Rejoinder  . . . . . . . . . . . . . . . 329--331
            James P. Hobert and   
            Vivekananda Roy and   
            Christian P. Robert   Improving the Convergence Properties of
                                  the Data Augmentation Algorithm with an
                                  Application to Bayesian Mixture Modeling 332--351
              Joshua Landon and   
               Frank X. Lee and   
          Nozer D. Singpurwalla   A Problem in Particle Physics and Its
                                  Bayesian Analysis  . . . . . . . . . . . 352--368
              Mohsen Pourahmadi   Covariance Estimation: The GLM and
                                  Regularization Perspectives  . . . . . . 369--387
       Charles E. McCulloch and   
                John M. Neuhaus   Misspecifying the Shape of a Random
                                  Effects Distribution: Why Getting It
                                  Wrong May Not Matter . . . . . . . . . . 388--402
         Stijn Vansteelandt and   
                Jack Bowden and   
      Manoochehr Babanezhad and   
                Els Goetghebeur   On Instrumental Variables Estimation of
                                  Causal Odds Ratios . . . . . . . . . . . 403--422
              Michael Evans and   
                    Gun Ho Jang   Weak Informativity and the Information
                                  in One Prior Relative to Another . . . . 423--439
            Victor M. Panaretos   A Conversation with David R. Brillinger  440--469

Statistical Science
Volume 26, Number 4, November, 2011

           Alicia L. Carriquiry   Election Forensics and the 2004
                                  Venezuelan Presidential Recall
                                  Referendum as a Case Study . . . . . . . 471--478
            Gustavo Delfino and   
                Guillermo Salas   Analysis of the 2004 Venezuela
                                  Referendum: The Official Results Versus
                                  the Petition Signatures  . . . . . . . . 479--501
              Luis Pericchi and   
                   David Torres   Quick anomaly detection by the
                                  Newcomb--Benford law, with applications
                                  to electoral processes data from the
                                  USA, Puerto Rico and Venezuela . . . . . 502--516
               Raquel Prado and   
             Bruno Sansó   The 2004 Venezuelan Presidential Recall
                                  Referendum: Discrepancies Between Two
                                  Exit Polls and Official Results  . . . . 517--527
          Isbelia Martín   2004 Venezuelan Presidential Recall
                                  Referendum (2004 PRR): A Statistical
                                  Analysis from the Point of View of
                                  Electronic Voting Data Transmissions . . 528--542
           Ricardo Hausmann and   
                Roberto Rigobon   In Search of the Black Swan: Analysis of
                                  the Statistical Evidence of Electoral
                                  Fraud in Venezuela . . . . . . . . . . . 543--563
     Raúl Jiménez   Forensic Analysis of the Venezuelan
                                  Recall Referendum  . . . . . . . . . . . 564--583
            Jelle J. Goeman and   
                    Aldo Solari   Multiple Testing for Exploratory
                                  Research . . . . . . . . . . . . . . . . 584--597
                    Ruth Heller   Discussion of ``Multiple Testing for
                                  Exploratory Research'' by J. J. Goeman
                                  and A. Solari  . . . . . . . . . . . . . 598--600
            Nicolai Meinshausen   Discussion of ``Multiple Testing for
                                  Exploratory Research'' by J. J. Goeman
                                  and A. Solari  . . . . . . . . . . . . . 601--603
              Peter H. Westfall   Discussion of ``Multiple Testing for
                                  Exploratory Research'' by J. J. Goeman
                                  and A. Solari  . . . . . . . . . . . . . 604--607
            Jelle J. Goeman and   
                    Aldo Solari   Rejoinder  . . . . . . . . . . . . . . . 608--612
            Adrian Baddeley and   
                  Ege Rubak and   
           Jesper Mòller   Score, Pseudo-Score and Residual
                                  Diagnostics for Spatial Point Process
                                  Models . . . . . . . . . . . . . . . . . 613--646
              Antonio Lijoi and   
             Igor Prünster   A Conversation with Eugenio Regazzini    647--672
                      Anonymous   Index of Volume 26 (2011)  . . . . . . . 673--675


Statistical Science
Volume 27, Number 1, February, 2012

           Edward I. George and   
         William E. Strawderman   A Tribute to Charles Stein . . . . . . . 1--2
               James Berger and   
        William H. Jefferys and   
              Peter Müller   Bayesian Nonparametric Shrinkage Applied
                                  to Cepheid Star Oscillations . . . . . . 3--10
        Ann Cohen Brandwein and   
         William E. Strawderman   Stein Estimation for Spherically
                                  Symmetric Distributions: Recent
                                  Developments . . . . . . . . . . . . . . 11--23
          Lawrence D. Brown and   
                  Linda H. Zhao   A Geometrical Explanation of Stein
                                  Shrinkage  . . . . . . . . . . . . . . . 24--30
                    T. Tony Cai   Minimax and Adaptive Inference in
                                  Nonparametric Function Estimation  . . . 31--50
             George Casella and   
               J. T. Gene Hwang   Shrinkage Confidence Procedures  . . . . 51--60
      Dominique Fourdrinier and   
                Martin T. Wells   On Improved Loss Estimation for
                                  Shrinkage Estimators . . . . . . . . . . 61--81
           Edward I. George and   
                 Feng Liang and   
                       Xinyi Xu   From Minimax Shrinkage Estimation to
                                  Minimax Shrinkage Prediction . . . . . . 82--94
                   G. Datta and   
                       M. Ghosh   Small Area Shrinkage Estimation  . . . . 95--114
             Carl N. Morris and   
                    Martin Lysy   Shrinkage Estimation in Multilevel
                                  Normal Models  . . . . . . . . . . . . . 115--134
         Michael D. Perlman and   
               Sanjay Chaudhuri   Reversing the Stein Effect . . . . . . . 135--143
              Dalene Stangl and   
         Lurdes Y. T. Inoue and   
                 Telba Z. Irony   Celebrating 70: An Interview with Don
                                  Berry  . . . . . . . . . . . . . . . . . 144--159

Statistical Science
Volume 27, Number 2, May, 2012

              A. C. Davison and   
               S. A. Padoan and   
                     M. Ribatet   Statistical Modeling of Spatial Extremes 161--186
                  D. Cooley and   
                     S. R. Sain   Discussion of ``Statistical Modeling of
                                  Spatial Extremes'' by A. C. Davison, S.
                                  A. Padoan and M. Ribatet . . . . . . . . 187--188
             Darmesah Gabda and   
                  Ross Towe and   
         Jennifer Wadsworth and   
                  Jonathan Tawn   Discussion of ``Statistical Modeling of
                                  Spatial Extremes'' by A. C. Davison, S.
                                  A. Padoan and M. Ribatet . . . . . . . . 189--192
                   Johan Segers   Nonparametric Inference for Max-Stable
                                  Dependence . . . . . . . . . . . . . . . 193--196
             Benjamin Shaby and   
                 Brian J. Reich   Discussion of ``Statistical Modeling of
                                  Spatial Extremes'' by A. C. Davison, S.
                                  A. Padoan and M. Ribatet . . . . . . . . 197--198
              A. C. Davison and   
               S. A. Padoan and   
                     M. Ribatet   Rejoinder  . . . . . . . . . . . . . . . 199--201
         Andrey Feuerverger and   
                      Yu He and   
                  Shashi Khatri   Statistical Significance of the Netflix
                                  Challenge  . . . . . . . . . . . . . . . 202--231
         Petros Dellaportas and   
        Jonathan J. Forster and   
              Ioannis Ntzoufras   Joint Specification of Model Space and
                                  Parameter Space Prior Distributions  . . 232--246
           Tilmann Gneiting and   
Hana \vSev\vcíková and   
             Donald B. Percival   Estimators of Fractal Dimension:
                                  Assessing the Roughness of Time Series
                                  and Spatial Data . . . . . . . . . . . . 247--277
          Christine Choirat and   
                 Raffaello Seri   Estimation in Discrete Parameter Models  278--293
               Arthur Cohen and   
              Harold Sackrowitz   The Interval Property in Multiple
                                  Testing of Pairwise Differences  . . . . 294--307
               Jerome Sacks and   
               Donald Ylvisaker   After 50+ Years in Statistics, An
                                  Exchange . . . . . . . . . . . . . . . . 308--318

Statistical Science
Volume 27, Number 3, August, 2012

              William DuMouchel   Multivariate Bayesian Logistic
                                  Regression for Analysis of Clinical
                                  Study Safety Issues  . . . . . . . . . . 319--339
          Bradley W. McEvoy and   
                  Ram C. Tiwari   Discussion of ``Multivariate Bayesian
                                  Logistic Regression for Analysis of
                                  Clinical Trial Safety Issues'' by W.
                                  DuMouchel  . . . . . . . . . . . . . . . 340--343
                      Don Berry   Discussion of ``Multivariate Bayesian
                                  Logistic Regression for Analysis of
                                  Clinical Trial Safety Issues'' by W.
                                  DuMouchel  . . . . . . . . . . . . . . . 344--345
                  Stephen Evans   An Answer to Multiple Problems with
                                  Analysis of Data on Harms? . . . . . . . 346--347
              William DuMouchel   Rejoinder  . . . . . . . . . . . . . . . 348--349
              Yoonkyung Lee and   
       Steven N. MacEachern and   
                   Yoonsuh Jung   Regularization of Case-Specific
                                  Parameters for Robustness and Efficiency 350--372
                    Yazhen Wang   Quantum Computation and Quantum
                                  Information  . . . . . . . . . . . . . . 373--394
       Arvid Sjölander and   
       Anna L. V. Johansson and   
           Cecilia Lundholm and   
              Daniel Altman and   
          Catarina Almqvist and   
                   Yudi Pawitan   Analysis of $ 1 \colon 1 $ Matched
                                  Cohort Studies and Twin Studies, with
                                  Binary Exposures and Binary Outcomes . . 395--411
               Manuela Cattelan   Models for Paired Comparison Data: A
                                  Review with Emphasis on Dependent Data   412--433
                 Dayue Chen and   
                   Ingram Olkin   Pao-Lu Hsu (Xu, Bao-lu): The Grandparent
                                  of Probability and Statistics in China   434--445

Statistical Science
Volume 27, Number 4, November, 2012

                Jon Wellner and   
                     Tong Zhang   Introduction to the Special Issue on
                                  Sparsity and Regularization Methods  . . 447--449
               Francis Bach and   
          Rodolphe Jenatton and   
              Julien Mairal and   
            Guillaume Obozinski   Structured Sparsity through Convex
                                  Optimization . . . . . . . . . . . . . . 450--468
           Sara van de Geer and   
             Patric Müller   Quasi-Likelihood and/or Robust
                                  Estimation in High Dimensions  . . . . . 469--480
                 Jian Huang and   
            Patrick Breheny and   
                    Shuangge Ma   A Selective Review of Group Selection in
                                  High-Dimensional Models  . . . . . . . . 481--499
          Christophe Giraud and   
                Sylvie Huet and   
               Nicolas Verzelen   High-Dimensional Regression with Unknown
                                  Variance . . . . . . . . . . . . . . . . 500--518
              John Lafferty and   
                    Han Liu and   
                Larry Wasserman   Sparse Nonparametric Graphical Models    519--537
         Sahand N. Negahban and   
          Pradeep Ravikumar and   
       Martin J. Wainwright and   
                         Bin Yu   A Unified Framework for High-Dimensional
                                  Analysis of $M$-Estimators with
                                  Decomposable Regularizers  . . . . . . . 538--557
          Philippe Rigollet and   
          Alexandre B. Tsybakov   Sparse Estimation by Exponential
                                  Weighting  . . . . . . . . . . . . . . . 558--575
              Cun-Hui Zhang and   
                     Tong Zhang   A General Theory of Concave
                                  Regularization for High-Dimensional
                                  Sparse Estimation Problems . . . . . . . 576--593
          Tucker S. McElroy and   
                 Scott H. Holan   A Conversation with David Findley  . . . 594--606


Statistical Science
Volume 28, Number 1, February, 2013

           Michael Friendly and   
            Georges Monette and   
                       John Fox   Elliptical Insights: Understanding
                                  Statistical Methods through Elliptical
                                  Geometry . . . . . . . . . . . . . . . . 1--39
              Danny Pfeffermann   New Important Developments in Small Area
                                  Estimation . . . . . . . . . . . . . . . 40--68
                   Ming Lin and   
                  Rong Chen and   
                     Jun S. Liu   Lookahead Strategies for Sequential
                                  Monte Carlo  . . . . . . . . . . . . . . 69--94
            Ritabrata Dutta and   
               Jayanta K. Ghosh   Bayes Model Selection with Path
                                  Sampling: Factor Models and Other
                                  Examples . . . . . . . . . . . . . . . . 95--115
           Matthew Reimherr and   
                 Dan L. Nicolae   On Quantifying Dependence: A Framework
                                  for Developing Interpretable Measures    116--130
                 Murad S. Taqqu   Beno\^\it Mandelbrot and Fractional
                                  Brownian Motion  . . . . . . . . . . . . 131--134

Statistical Science
Volume 28, Number 2, May, 2013

         Samuel Müller and   
               J. L. Scealy and   
                    A. H. Welsh   Model Selection in Linear Mixed Models   135--167
            Linda S. L. Tan and   
                  David J. Nott   Variational Inference for Generalized
                                  Linear Mixed Models Using Partially
                                  Noncentered Parametrizations . . . . . . 168--188
              M. G. B. Blum and   
                M. A. Nunes and   
                 D. Prangle and   
                   S. A. Sisson   A Comparative Review of Dimension
                                  Reduction Methods in Approximate
                                  Bayesian Computation . . . . . . . . . . 189--208
                Jaeyong Lee and   
       Fernando A. Quintana and   
          Peter Müller and   
                 Lorenzo Trippa   Defining Predictive Probability
                                  Functions for Species Sampling Models    209--222
            David Johnstone and   
                 Dennis Lindley   Mean--Variance and Expected Utility: The
                                  Borch Paradox  . . . . . . . . . . . . . 223--237
                Yiting Deng and   
       D. Sunshine Hillygus and   
           Jerome P. Reiter and   
                  Yajuan Si and   
                     Siyu Zheng   Handling Attrition in Longitudinal
                                  Studies: The Case for Refreshment
                                  Samples  . . . . . . . . . . . . . . . . 238--256
               Shaun Seaman and   
                John Galati and   
                Dan Jackson and   
                    John Carlin   What Is Meant by ``Missing at Random''?  257--268
                   David Aldous   Another Conversation with Persi Diaconis 269--281

Statistical Science
Volume 28, Number 3, August, 2013

             Stephen M. Stigler   The True Title of Bayes's Essay  . . . . 283--288
           Tamara Broderick and   
          Michael I. Jordan and   
                     Jim Pitman   Cluster and Feature Modeling from
                                  Combinatorial Stochastic Processes . . . 289--312
            Ernesto Barrios and   
              Antonio Lijoi and   
      Luis E. Nieto-Barajas and   
             Igor Prünster   Modeling with Normalized Random Measure
                                  Mixture Models . . . . . . . . . . . . . 313--334
             Stefano Favaro and   
                   Yee Whye Teh   MCMC for Normalized Random Measure
                                  Mixture Models . . . . . . . . . . . . . 335--359
          Alicia A. Johnson and   
             Galin L. Jones and   
                Ronald C. Neath   Component-Wise Markov Chain Monte Carlo:
                                  Uniform and Geometric Ergodicity under
                                  Mixing and Composition . . . . . . . . . 360--375
           Anne M. Presanis and   
              David Ohlssen and   
     David J. Spiegelhalter and   
             Daniela De Angelis   Conflict Diagnostics in Directed Acyclic
                                  Graphs, with Applications in Bayesian
                                  Evidence Synthesis . . . . . . . . . . . 376--397
             Guido Consonni and   
        Jonathan J. Forster and   
                  Luca La Rocca   The Whetstone and the Alum Block:
                                  Balanced Objective Bayesian Comparison
                                  of Nested Models for Discrete Data . . . 398--423
               S. L. Cotter and   
              G. O. Roberts and   
               A. M. Stuart and   
                       D. White   MCMC Methods for Functions: Modifying
                                  Old Algorithms to Make Them Faster . . . 424--446
             Miron L. Straf and   
                Judith M. Tanur   A Conversation with Stephen E. Fienberg  447--463
            Jelle J. Goeman and   
                    Aldo Solari   Correction Note  . . . . . . . . . . . . 464

Statistical Science
Volume 28, Number 4, November, 2013

            Michael Dekking and   
               Michel Stein and   
                    Jon Wellner   Editorial  . . . . . . . . . . . . . . . 465
       Christopher K. Wikle and   
           Ralph F. Milliff and   
                Radu Herbei and   
               William B. Leeds   Modern Statistical Methods in
                                  Oceanography: A Hierarchical Perspective 466--486
           Jorge M. Ramirez and   
         Enrique A. Thomann and   
              Edward C. Waymire   Advection--Dispersion Across Interfaces  487--509
                Andrew Bray and   
       Frederic Paik Schoenberg   Assessment of Point Process Models for
                                  Earthquake Forecasting . . . . . . . . . 510--520
                 Yosihiko Ogata   A Prospect of Earthquake Prediction
                                  Research . . . . . . . . . . . . . . . . 521--541
            Peter J. Diggle and   
               Paula Moraga and   
           Barry Rowlingson and   
             Benjamin M. Taylor   Spatial and Spatio-Temporal Log-Gaussian
                                  Cox Processes: Extending the
                                  Geostatistical Paradigm  . . . . . . . . 542--563
                  Pierre Pinson   Wind Energy: Forecasting Challenges for
                                  Its Operational Management . . . . . . . 564--585
               S. W. Taylor and   
        Douglas G. Woolford and   
                 C. B. Dean and   
               David L. Martell   Wildfire Prediction to Inform Fire
                                  Management: Statistical Science
                                  Challenges . . . . . . . . . . . . . . . 586--615
             Roman Schefzik and   
 Thordis L. Thorarinsdottir and   
               Tilmann Gneiting   Uncertainty Quantification in Complex
                                  Simulation Models Using Ensemble Copula
                                  Coupling . . . . . . . . . . . . . . . . 616--640
            Alan E. Gelfand and   
             Souparno Ghosh and   
                 James S. Clark   Scaling Integral Projection Models for
                                  Analyzing Size Demography  . . . . . . . 641--658
                      Anonymous   Contents of Volume 28  . . . . . . . . . 659--660


Statistical Science
Volume 29, Number 1, February, 2014

        Kerrie L. Mengersen and   
            Christian P. Robert   Big Bayes Stories --- Foreword . . . . . 1
             Raymond J. Carroll   Estimating the Distribution of Dietary
                                  Consumption Patterns . . . . . . . . . . 2--8
         Daniela De Angelis and   
           Anne M. Presanis and   
              Stefano Conti and   
                     A. E. Ades   Estimation of HIV Burden through
                                  Bayesian Evidence Synthesis  . . . . . . 9--17
         Mariel M. Finucane and   
    Christopher J. Paciorek and   
             Goodarz Danaei and   
                   Majid Ezzati   Bayesian Estimation of Population-Level
                                  Trends in Measures of Health Status  . . 18--25
                  Andrew Gelman   How Bayesian Analysis Cracked the
                                  Red-State, Blue-State Problem  . . . . . 26--35
             Sandra Johnson and   
                   Eva Abal and   
             Kathleen Ahern and   
                 Grant Hamilton   From Science to Management: Using
                                  Bayesian Networks to Learn about Lyngbya 36--41
              Sakari Kuikka and   
            Jarno Vanhatalo and   
            Henni Pulkkinen and   
       Samu Mäntyniemi and   
                 Jukka Corander   Experiences in Bayesian Inference in
                                  Baltic Salmon Management . . . . . . . . 42--49
                Daniel Mortlock   Finding the Most Distant Quasars Using
                                  Bayesian Selection Methods . . . . . . . 50--57
          Adrian E. Raftery and   
            Leontine Alkema and   
                Patrick Gerland   Bayesian Population Projections for the
                                  United Nations . . . . . . . . . . . . . 58--68
          Lawrence D. Stone and   
          Colleen M. Keller and   
          Thomas M. Kratzke and   
             Johan P. Strumpfer   Search for the Wreckage of Air France
                                  Flight AF 447  . . . . . . . . . . . . . 69--80
                 Ian Vernon and   
          Michael Goldstein and   
                  Richard Bower   Galaxy Formation: Bayesian History
                                  Matching for the Observable Universe . . 81--90
            Peter Bühlmann   Discussion of Big Bayes Stories and
                                  BayesBag . . . . . . . . . . . . . . . . 91--94
        Stephen E. Fienberg and   
             Rebecca C. Steorts   Discussion of ``Estimating the
                                  Distribution of Dietary Consumption
                                  Patterns'' . . . . . . . . . . . . . . . 95--96
               Mark A. Girolami   Contribution by M. A. Girolami . . . . . 97
                  David J. Hand   Wonderful Examples, but Let's not Close
                                  Our Eyes . . . . . . . . . . . . . . . . 98--100
                    A. H. Welsh   Discussion . . . . . . . . . . . . . . . 101--102
             Raymond J. Carroll   Reply to the Discussion of ``Estimating
                                  the Distribution of Dietary Consumption
                                  Patterns'' . . . . . . . . . . . . . . . 103
              Lawrence D. Stone   Response to Discussion by A. H. Welsh on
                                  the AF 447 Paper . . . . . . . . . . . . 104--105
              Kenneth F. Wallis   The Two-Piece Normal, Binormal, or
                                  Double Gaussian Distribution: Its Origin
                                  and Rediscoveries  . . . . . . . . . . . 106--112
                 Liang Peng and   
               Yongcheng Qi and   
                      Fang Wang   Test for a Mean Vector with Fixed or
                                  Divergent Dimension  . . . . . . . . . . 113--127
                Marco Riani and   
        Anthony C. Atkinson and   
              Domenico Perrotta   A Parametric Framework for the
                                  Comparison of Methods of Very Robust
                                  Regression . . . . . . . . . . . . . . . 128--143
            Anthony C. Atkinson   Selecting a Biased-Coin Design . . . . . 144--163

Statistical Science
Volume 29, Number 2, May, 2014

              Vincent Carey and   
                    Dianne Cook   Four Papers on Contemporary Software
                                  Design Strategies for Statistical
                                  Methodologists . . . . . . . . . . . . . 165--166
               John M. Chambers   Object-Oriented Programming, Functional
                                  Programming and R  . . . . . . . . . . . 167--180
             Duncan Temple Lang   Enhancing R with Advanced Compilation
                                  Tools and Methods  . . . . . . . . . . . 181--200
                  Yihui Xie and   
              Heike Hofmann and   
                  Xiaoyue Cheng   Reactive Programming for Interactive
                                  Graphics . . . . . . . . . . . . . . . . 201--213
           Michael Lawrence and   
                  Martin Morgan   Scalable Genomics with R and
                                  Bioconductor . . . . . . . . . . . . . . 214--226
                Deborah G. Mayo   On the Birnbaum Argument for the Strong
                                  Likelihood Principle . . . . . . . . . . 227--239
                    A. P. Dawid   Discussion of ``On the Birnbaum Argument
                                  for the Strong Likelihood Principle''    240--241
                  Michael Evans   Discussion of ``On the Birnbaum Argument
                                  for the Strong Likelihood Principle''    242--246
                Ryan Martin and   
                   Chuanhai Liu   Discussion: Foundations of Statistical
                                  Inference, Revisited . . . . . . . . . . 247--251
                D. A. S. Fraser   Discussion: On Arguments Concerning
                                  Statistical Principles . . . . . . . . . 252--253
                     Jan Hannig   Discussion of ``On the Birnbaum Argument
                                  for the Strong Likelihood Principle''    254--258
        Jan F. Bjòrnstad   Discussion of ``On the Birnbaum Argument
                                  for the Strong Likelihood Principle''    259--260
                Deborah G. Mayo   Rejoinder: ``On the Birnbaum Argument
                                  for the Strong Likelihood Principle''    261--266
             Arman Sabbaghi and   
                Donald B. Rubin   Comments on the Neyman--Fisher
                                  Controversy and Its Consequences . . . . 267--284
                  Bradley Efron   Two Modeling Strategies for Empirical
                                  Bayes Estimation . . . . . . . . . . . . 285--301
             Andriy Derkach and   
           Jerry F. Lawless and   
                        Lei Sun   Pooled Association Tests for Rare
                                  Genetic Variants: A Review and Some New
                                  Results  . . . . . . . . . . . . . . . . 302--321

Statistical Science
Volume 29, Number 3, August, 2014

                Guido W. Imbens   Instrumental Variables: An
                                  Econometrician's Perspective . . . . . . 323--358
                  Toru Kitagawa   Instrumental Variables Before and LATEr  359--362
       Thomas S. Richardson and   
                James M. Robins   ACE Bounds; SEMs with Equilibrium
                                  Conditions . . . . . . . . . . . . . . . 363--366
                  Ilya Shpitser   Causal Graphs: Addressing the
                                  Confounding Problem Without Instruments
                                  or Ignorability  . . . . . . . . . . . . 367--370
           Sonja A. Swanson and   
        Miguel A. Hernán   Think Globally, Act Globally: An
                                  Epidemiologist's Perspective on
                                  Instrumental Variable Estimation . . . . 371--374
                   Guido Imbens   Rejoinder  . . . . . . . . . . . . . . . 375--379
       Kwun Chuen Gary Chan and   
         Sheung Chi Phillip Yam   Oracle, Multiple Robust and Multipurpose
                                  Calibration in a Missing Response
                                  Problem  . . . . . . . . . . . . . . . . 380--396
               Ewan Cameron and   
                Anthony Pettitt   Recursive Pathways to Marginal
                                  Likelihood Estimation with
                                  Prior-Sensitivity Analysis . . . . . . . 397--419
              Kenneth F. Wallis   Revisiting Francis Galton's Forecasting
                                  Competition  . . . . . . . . . . . . . . 420--424
              Kung-Sik Chan and   
                      Qiwei Yao   A Conversation with Howell Tong  . . . . 425--438
                     Fan Li and   
                Fabrizia Mealli   A Conversation with Donald B. Rubin  . . 439--457

Statistical Science
Volume 29, Number 4, November, 2014

       Thomas S. Richardson and   
               Andrea Rotnitzky   Causal Etiology of the Research of James
                                  M. Robins  . . . . . . . . . . . . . . . 459--484
      Miroslav Dudík and   
              Dumitru Erhan and   
              John Langford and   
                      Lihong Li   Doubly Robust Policy Evaluation and
                                  Optimization . . . . . . . . . . . . . . 485--511
                Richard D. Gill   Statistics, Causality and Bell's Theorem 512--528
              Niels Keiding and   
                  David Clayton   Standardization and Control for
                                  Confounding in Observational Studies: A
                                  Historical Perspective . . . . . . . . . 529--558
        Elizabeth L. Ogburn and   
           Tyler J. VanderWeele   Causal Diagrams for Interference . . . . 559--578
                Judea Pearl and   
               Elias Bareinboim   External Validity: From Do-Calculus to
                                  Transportability Across Populations  . . 579--595
             Amy Richardson and   
         Michael G. Hudgens and   
           Peter B. Gilbert and   
                  Jason P. Fine   Nonparametric Bounds and Sensitivity
                                  Analysis of Treatment Effects  . . . . . 596--618
                   Y. Ritov and   
               P. J. Bickel and   
                A. C. Gamst and   
                B. J. K. Kleijn   The Bayesian Analysis of Complex,
                                  High-Dimensional Models: Can It Be CODA? 619--639
         Phillip J. Schulte and   
      Anastasios A. Tsiatis and   
              Eric B. Laber and   
                 Marie Davidian   $ \mathbf {Q} $- and $ \mathbf {A}
                                  $-Learning Methods for Estimating
                                  Optimal Dynamic Treatment Regimes  . . . 640--661
              Peter Spirtes and   
                     Jiji Zhang   A Uniformly Consistent Estimator of
                                  Causal Effects under the
                                  $k$-Triangle-Faithfulness Assumption . . 662--678
              Aad van der Vaart   Higher Order Tangent Spaces and
                                  Influence Functions  . . . . . . . . . . 679--686
       Tyler J. VanderWeele and   
  Eric J. Tchetgen Tchetgen and   
          M. Elizabeth Halloran   Interference and Sensitivity Analysis    687--706
         Stijn Vansteelandt and   
                 Marshall Joffe   Structural Nested Models and
                                  $G$-estimation: The Partially Realized
                                  Promise  . . . . . . . . . . . . . . . . 707--731


Statistical Science
Volume 30, Number 1, February, 2015

               David Donoho and   
                    Jiashun Jin   Higher Criticism for Large-Scale
                                  Inference, Especially for Rare and Weak
                                  Effects  . . . . . . . . . . . . . . . . 1--25
         David R. Bellhouse and   
                Nicolas Fillion   Le Her and Other Problems in Probability
                                  Discussed by Bernoulli, Montmort and
                                  Waldegrave . . . . . . . . . . . . . . . 26--39
                  Frank Lad and   
        Giuseppe Sanfilippo and   
                  Gianna Agr\`o   Extropy: Complementary Dual of Entropy   40--58
           Egil Ferkingstad and   
                Lars Holden and   
             Geir Kjetil Sandve   Monte Carlo Null Models for Genomic Data 59--71
    Christopher C. Drovandi and   
         Anthony N. Pettitt and   
                    Anthony Lee   Bayesian Indirect Inference Using a
                                  Parametric Auxiliary Model . . . . . . . 72--95
             Paul S. Clarke and   
              Tom M. Palmer and   
               Frank Windmeijer   Estimating Structural Mean Models with
                                  Multiple Instrumental Variables Using
                                  the Generalised Method of Moments  . . . 96--117
                   John A. Rice   A Conversation with Richard A. Olshen    118--132
         William F. Rosenberger   A Conversation with Nancy Flournoy . . . 133--146

Statistical Science
Volume 30, Number 2, May, 2015

             Marc G. Genton and   
                William Kleiber   Cross-Covariance Functions for
                                  Multivariate Geostatistics . . . . . . . 147--163
             Daniel Simpson and   
              Finn Lindgren and   
               Håvard Rue   Beyond the Valley of the Covariance
                                  Function . . . . . . . . . . . . . . . . 164--166
          Moreno Bevilacqua and   
           Amanda S. Hering and   
                   Emilio Porcu   On the Flexibility of Multivariate
                                  Covariance Models: Comment on the Paper
                                  by Genton and Kleiber  . . . . . . . . . 167--169
               Noel Cressie and   
               Sandy Burden and   
               Walter Davis and   
         Pavel N. Krivitsky and   
           Payam Mokhtarian and   
              Thomas Suesse and   
          Andrew Zammit-Mangion   Capturing Multivariate Spatial
                                  Dependence: Model, Estimate and then
                                  Predict  . . . . . . . . . . . . . . . . 170--175
                  Hao Zhang and   
                   Wenxiang Cai   When Doesn't Cokriging Outperform
                                  Kriging? . . . . . . . . . . . . . . . . 176--180
             Marc G. Genton and   
                William Kleiber   Rejoinder  . . . . . . . . . . . . . . . 181--183
         Pavel N. Krivitsky and   
               Eric D. Kolaczyk   On the Question of Effective Sample Size
                                  in Network Modeling: An Asymptotic
                                  Inquiry  . . . . . . . . . . . . . . . . 184--198
     Sofía S. Villar and   
                Jack Bowden and   
                    James Wason   Multi-armed Bandit Models for the
                                  Optimal Design of Clinical Trials:
                                  Benefits and Challenges  . . . . . . . . 199--215
                Hannes Leeb and   
  Benedikt M. Pötscher and   
                     Karl Ewald   On Various Confidence Intervals
                                  Post-Model-Selection . . . . . . . . . . 216--227
        Elías Moreno and   
        Javier Girón and   
                 George Casella   Posterior Model Consistency in Variable
                                  Selection as the Model Dimension Grows   228--241
              Leonhard Held and   
Daniel Sabanés Bové and   
               Isaac Gravestock   Approximate Bayesian Model Selection
                                  with the Deviance Statistic  . . . . . . 242--257
                 Gang Zheng and   
                 Zhaohai Li and   
                Nancy L. Geller   A Conversation with Robert C. Elston . . 258--267
                   N. I. Fisher   A Conversation with Jerry Friedman . . . 268--295

Statistical Science
Volume 30, Number 3, August, 2015

                Alice Xiang and   
                Donald B. Rubin   Assessing the Potential Impact of a
                                  Nationwide Class-Based Affirmative
                                  Action System  . . . . . . . . . . . . . 297--327
             Nikolas Kantas and   
              Arnaud Doucet and   
         Sumeetpal S. Singh and   
            Jan Maciejowski and   
                 Nicolas Chopin   On Particle Methods for Parameter
                                  Estimation in State-Space Models . . . . 328--351
                 Joseph B. Lang   A Closer Look at Testing the
                                  ``No-Treatment-Effect'' Hypothesis in a
                                  Comparative Experiment . . . . . . . . . 352--371
             Jari Miettinen and   
              Sara Taskinen and   
           Klaus Nordhausen and   
                      Hannu Oja   Fourth Moments and Independent Component
                                  Analysis . . . . . . . . . . . . . . . . 372--390
                Laurent Mazliak   The Ghosts of the École Normale . . . . . 391--412
          Bradley P. Carlin and   
                 Amy H. Herring   A Conversation with Alan Gelfand . . . . 413--422
        Anthony C. Atkinson and   
                Barbara Bogacka   A Conversation with Professor Tadeusz
                                  Cali\'nski . . . . . . . . . . . . . . . 423--442

Statistical Science
Volume 30, Number 4, November, 2015

            Anne-Marie Lyne and   
              Mark Girolami and   
        Yves Atchadé and   
           Heiko Strathmann and   
                 Daniel Simpson   On Russian Roulette Estimates for
                                  Bayesian Inference with
                                  Doubly-Intractable Likelihoods . . . . . 443--467
               J. S. Marron and   
            James O. Ramsay and   
          Laura M. Sangalli and   
                Anuj Srivastava   Functional Data Analysis of Amplitude
                                  and Phase Variation  . . . . . . . . . . 468--484
          Giovanni Puccetti and   
                     Ruodu Wang   Extremal Dependence Concepts . . . . . . 485--517
   José E. Chacón   A Population Background for
                                  Nonparametric Density-Based Clustering   518--532
         Nicholas G. Polson and   
             James G. Scott and   
             Brandon T. Willard   Proximal Algorithms in Statistics and
                                  Machine Learning . . . . . . . . . . . . 559--581
                    Louise Ryan   A Conversation with Nan Laird  . . . . . 582--596


Statistical Science
Volume 31, Number 1, February, 2016

                    Harry Crane   The Ubiquitous Ewens Sampling Formula    1--19
                      Shui Feng   Diffusion Processes and the Ewens
                                  Sampling Formula . . . . . . . . . . . . 20--22
                Peter McCullagh   Two Early Contributions to the Ewens
                                  Saga . . . . . . . . . . . . . . . . . . 23--26
            Richard Arratia and   
              A. D. Barbour and   
            Simon Tavaré   Exploiting the Feller Coupling for the
                                  Ewens Sampling Formula . . . . . . . . . 27--29
             Stefano Favaro and   
              Lancelot F. James   Relatives of the Ewens Sampling Formula
                                  in Bayesian Nonparametrics . . . . . . . 30--33
                   Yee Whye Teh   Bayesian Nonparametric Modeling and the
                                  Ubiquitous Ewens Sampling Formula  . . . 34--36
                    Harry Crane   Rejoinder: The Ubiquitous Ewens Sampling
                                  Formula  . . . . . . . . . . . . . . . . 37--39
                   Hao Chen and   
           Jason L. Loeppky and   
               Jerome Sacks and   
               William J. Welch   Analysis Methods for Computer
                                  Experiments: How to Assess and What
                                  Counts?  . . . . . . . . . . . . . . . . 40--60
         Alicia Nieto-Reyes and   
                 Heather Battey   A Topologically Valid Definition of
                                  Depth for Functional Data  . . . . . . . 61--79
           Joseph Antonelli and   
             Lorenzo Trippa and   
              Sebastien Haneuse   Mitigating Bias in Generalized Linear
                                  Mixed Models: The Case for Bayesian
                                  Nonparametrics . . . . . . . . . . . . . 80--95
             Matteo Fasiolo and   
                Natalya Pya and   
                  Simon N. Wood   A Comparison of Inferential Methods for
                                  Highly Nonlinear State Space Models in
                                  Ecology and Epidemiology . . . . . . . . 96--118
                Art B. Owen and   
                   Jingshu Wang   Bi-Cross-Validation for Factor Analysis  119--139

Statistical Science
Volume 31, Number 2, May, 2016

        Stephen T. Buckland and   
             Byron J. T. Morgan   $ 50$-Year Anniversary of Papers by
                                  Cormack, Jolly and Seber . . . . . . . . 141--141
            Stephen T. Buckland   A Conversation with Richard M. Cormack   142--150
                 Richard Barker   A Conversation with G. A. F. Seber . . . 151--160
          Matthew Schofield and   
                 Richard Barker   $ 50$-Year-Old Curiosities: Ancillarity
                                  and Inference in Capture--Recapture
                                  Models . . . . . . . . . . . . . . . . . 161--174
               James D. Nichols   And the First One Now Will Later Be
                                  Last: Time-Reversal in
                                  Cormack--Jolly--Seber Models . . . . . . 175--190
                 Gordon Hay and   
               Clive Richardson   Estimating the Prevalence of Drug Use
                                  Using Mark--Recapture Methods  . . . . . 191--204
           Dankmar Böhning   Ratio Plot and Ratio Regression with
                                  Applications to Social and Medical
                                  Sciences . . . . . . . . . . . . . . . . 205--218
             David Borchers and   
                 Rachel Fewster   Spatial Capture--Recapture Models  . . . 219--232
           Devin S. Johnson and   
              Jeff L. Laake and   
            Sharon R. Melin and   
               Robert L. DeLong   Multivariate State Hidden Markov Models
                                  for Mark--Recapture Data . . . . . . . . 233--244
              R. M. Fewster and   
            B. C. Stevenson and   
                 D. L. Borchers   Trace-Contrast Models for
                                  Capture--Recapture Without Capture
                                  Histories  . . . . . . . . . . . . . . . 245--258
         Mark V. Bravington and   
              Hans J. Skaug and   
               Eric C. Anderson   Close-Kin Mark--Recapture  . . . . . . . 259--274
            Aurore Delaigle and   
                   Matt P. Wand   A Conversation with Peter Hall . . . . . 275--304

Statistical Science
Volume 31, Number 3, August, 2016

          Zachary D. Weller and   
            Jennifer A. Hoeting   A Review of Nonparametric Hypothesis
                                  Tests of Isotropy Properties in Spatial
                                  Data . . . . . . . . . . . . . . . . . . 305--324
            Debashis Mondal and   
                  Nina Hinrichs   Rank Tests from Partially Ordered Data
                                  Using Importance and MCMC Sampling
                                  Methods  . . . . . . . . . . . . . . . . 325--347
                Tamar Sofer and   
        David B. Richardson and   
             Elena Colicino and   
              Joel Schwartz and   
      Eric J. Tchetgen Tchetgen   On Negative Outcome Control of
                                  Unobserved Confounding as a
                                  Generalization of
                                  Difference-in-Differences  . . . . . . . 348--361
                Yazhen Wang and   
                   Shang Wu and   
                       Jian Zou   Quantum Annealing with Markov Chain
                                  Monte Carlo Simulations and $D$-Wave
                                  Quantum Computers  . . . . . . . . . . . 362--398
                  Eugene Seneta   Markov Chains as Models in Statistical
                                  Mechanics  . . . . . . . . . . . . . . . 399--414
                   Shu Yang and   
                  Jae Kwang Kim   Fractional Imputation in Survey
                                  Sampling: A Comparative Review . . . . . 415--432
         Moulinath Banerjee and   
                Bodhisattva Sen   A Conversation with Michael Woodroofe    433--441
                    Joseph Naus   A Conversation with Arthur Cohen . . . . 442--452
               Hira L. Koul and   
                  Roger Koenker   A Conversation with Estate V. Khmaladze  453--464

Statistical Science
Volume 31, Number 4, November, 2016

               James Watson and   
                   Chris Holmes   Approximate Models and Robust Decisions  465--489
                Ingrid Glad and   
                 Nils Lid Hjort   Model Uncertainty First, Not Afterwards  490--494
            Peter Grünwald   Contextuality of Misspecification and
                                  Data-Dependent Losses  . . . . . . . . . 495--498
            Natalia A. Bochkina   Selection of KL Neighbourhood in Robust
                                  Bayesian Inference . . . . . . . . . . . 499--502
              Michael Goldstein   Issues in Robustness Analysis  . . . . . 503--505
        Christian P. Robert and   
                Judith Rousseau   Nonparametric Bayesian Clay for Robust
                                  Decision Bricks  . . . . . . . . . . . . 506--510
          Lars Peter Hansen and   
              Massimo Marinacci   Ambiguity Aversion and Model
                                  Misspecification: An Economic
                                  Perspective  . . . . . . . . . . . . . . 511--515
               James Watson and   
                   Chris Holmes   Rejoinder: Approximate Models and Robust
                                  Decisions  . . . . . . . . . . . . . . . 516--520
          Nozer D. Singpurwalla   Filtering and Tracking Survival
                                  Propensity (Reconsidering the
                                  Foundations of Reliability)  . . . . . . 521--540
             Frank P. A. Coolen   On Software and System Reliability
                                  Growth and Testing . . . . . . . . . . . 541--544
                     Elja Arjas   How About Wearing Two Hats, First
                                  Popper's and then de Finetti's?  . . . . 545--548
                    Jane Hutton   What Does ``Propensity'' Add?  . . . . . 549--551
                   Glenn Shafer   Reconciling the Subjective and Objective
                                  Aspects of Probability . . . . . . . . . 552--554
          Nozer D. Singpurwalla   Rejoinder: Concert Unlikely,
                                  ``Jugalbandi'' Perhaps . . . . . . . . . 555--557
            Anthony J. Lawrance   Chaos Communication: A Case of
                                  Statistical Engineering  . . . . . . . . 558--577
            D. A. S. Fraser and   
           M. Bédard and   
                    A. Wong and   
                    Wei Lin and   
                   A. M. Fraser   Bayes, Reproducibility and the Quest for
                                  Truth  . . . . . . . . . . . . . . . . . 578--590
           Theresa R. Smith and   
                  Jon Wakefield   A Review and Comparison of
                                  Age-Period-Cohort Models for Cancer
                                  Incidence  . . . . . . . . . . . . . . . 591--610
                 Yue S. Niu and   
                   Ning Hao and   
                   Heping Zhang   Multiple Change-Point Detection: A
                                  Selective Overview . . . . . . . . . . . 611--623
            Hugh A. Chipman and   
               V. Roshan Joseph   A Conversation with Jeff Wu  . . . . . . 624--636
                Ryan Martin and   
               John Stufken and   
                       Min Yang   A Conversation with Samad Hedayat  . . . 637--647
                      Anonymous   Editorial Board  . . . . . . . . . . . . ??
                      Anonymous   Table of Contents  . . . . . . . . . . . ??


Statistical Science
Volume 32, Number 1, February, 2017

             Daniel Simpson and   
           Håvard Rue and   
             Andrea Riebler and   
          Thiago G. Martins and   
       Sigrunn H. Sòrbye   Penalising Model Component Complexity: A
                                  Principled, Practical Approach to
                                  Constructing Priors  . . . . . . . . . . 1--28
                 James G. Scott   Prior Specification Is Engineering, Not
                                  Mathematics  . . . . . . . . . . . . . . 29--32
                James S. Hodges   Swinging for the Fence in a League Where
                                  Everyone Bunts . . . . . . . . . . . . . 33--35
        Christian P. Robert and   
                Judith Rousseau   How Principled and Practical Are
                                  Penalised Complexity Priors? . . . . . . 36--40
                David B. Dunson   Toward Automated Prior Choice  . . . . . 41--43
             Daniel Simpson and   
           Håvard Rue and   
             Andrea Riebler and   
          Thiago G. Martins and   
       Sigrunn H. Sòrbye   You Just Keep on Pushing My Love over
                                  the Borderline: A Rejoinder  . . . . . . 44--46
                    Jiahua Chen   Consistency of the MLE under Mixture
                                  Models . . . . . . . . . . . . . . . . . 47--63
             Nicolas Chopin and   
                  James Ridgway   Leave Pima Indians Alone: Binary
                                  Regression as a Benchmark for Bayesian
                                  Computation  . . . . . . . . . . . . . . 64--87
            Cheryl J. Flynn and   
        Clifford M. Hurvich and   
            Jeffrey S. Simonoff   On the Sensitivity of the Lasso to the
                                  Number of Predictor Variables  . . . . . 88--105
            Sebastian Lerch and   
 Thordis L. Thorarinsdottir and   
        Francesco Ravazzolo and   
               Tilmann Gneiting   Forecaster's Dilemma: Extreme Events and
                                  Forecast Evaluation  . . . . . . . . . . 106--127
          Hermann Habermann and   
           Courtney Kennedy and   
                  Partha Lahiri   A Conversation with Robert Groves  . . . 128--137
             Nitis Mukhopadhyay   A Conversation with Lynne Billard  . . . 138--164

Statistical Science
Volume 32, Number 2, May, 2017

              Chris Skinner and   
                  Jon Wakefield   Introduction to the Design and Analysis
                                  of Complex Survey Data . . . . . . . . . 165--175
          Yves Tillé and   
               Matthieu Wilhelm   Probability Sampling Designs: Principles
                                  for Choice of Design and Balancing . . . 176--189
              F. Jay Breidt and   
                Jean D. Opsomer   Model-Assisted Survey Estimation with
                                  Modern Prediction Techniques . . . . . . 190--205
               David Haziza and   
  Jean-François Beaumont   Construction of Weights in Surveys: A
                                  Review . . . . . . . . . . . . . . . . . 206--226
                Qixuan Chen and   
         Michael R. Elliott and   
               David Haziza and   
                    Ye Yang and   
                Malay Ghosh and   
      Roderick J. A. Little and   
            Joseph Sedransk and   
                  Mary Thompson   Approaches to Improving Survey-Weighted
                                  Estimates  . . . . . . . . . . . . . . . 227--248
         Michael R. Elliott and   
               Richard Valliant   Inference for Nonprobability Samples . . 249--264
              Thomas Lumley and   
                 Alastair Scott   Fitting Regression Models to Survey Data 265--278
          Matthias Schonlau and   
                 Mick P. Couper   Options for Conducting Web Surveys . . . 279--292
             Sharon L. Lohr and   
      Trivellore E. Raghunathan   Combining Survey Data with Other Data
                                  Sources  . . . . . . . . . . . . . . . . 293--312
              Alexander Etz and   
           Eric-Jan Wagenmakers   J. B. S. Haldane's Contribution to the
                                  Bayes Factor Hypothesis Test . . . . . . 313--329

Statistical Science
Volume 32, Number 3, August, 2017

                      Peng Ding   A Paradox from Randomization-Based
                                  Causal Inference . . . . . . . . . . . . 331--345
            Peter M. Aronow and   
         Molly R. Offer-Westort   Understanding Ding's Apparent Paradox    346--348
                    EunYi Chung   Randomization-Based Tests for ``No
                                  Treatment Effects''  . . . . . . . . . . 349--351
                   R. A. Bailey   Inference from Randomized (Factorial)
                                  Experiments  . . . . . . . . . . . . . . 352--355
                Wen Wei Loh and   
       Thomas S. Richardson and   
                James M. Robins   An Apparent Paradox Explained  . . . . . 356--361
                      Peng Ding   Rejoinder: A Paradox from
                                  Randomization-Based Causal Inference . . 362--366
         Dimitris Bertsimas and   
                    Angela King   Logistic Regression: From Art to Science 367--384
    Christopher C. Drovandi and   
      Christopher C. Holmes and   
            James M. McGree and   
           Kerrie Mengersen and   
          Sylvia Richardson and   
              Elizabeth G. Ryan   Principles of Experimental Design for
                                  Big Data Analysis  . . . . . . . . . . . 385--404
                 S. Agapiou and   
        O. Papaspiliopoulos and   
             D. Sanz-Alonso and   
                   A. M. Stuart   Importance Sampling: Intrinsic Dimension
                                  and Computational Cost . . . . . . . . . 405--431
           Michael J. Lopez and   
                    Roee Gutman   Estimation of Causal Effects with
                                  Multiple Treatments: A Review and New
                                  Ideas  . . . . . . . . . . . . . . . . . 432--454
                 Wenlin Dai and   
                Tiejun Tong and   
                     Lixing Zhu   On the Choice of Difference Sequence in
                                  a Unified Framework for Variance
                                  Estimation in Nonparametric Regression   455--468
P. C. Álvarez-Esteban and   
              E. del Barrio and   
      J. A. Cuesta-Albertos and   
               C. Matrán   Models for the Assessment of Treatment
                                  Improvement: The Ideal and the Feasible  469--485

Statistical Science
Volume 32, Number 4, 11, 2017

               S. Bacallado and   
               M. Battiston and   
                  S. Favaro and   
                      L. Trippa   Sufficientness Postulates for Gibbs-Type
                                  Priors and Hierarchical Generalizations  487--500
              Jaehong Jeong and   
               Mikyoung Jun and   
                 Marc G. Genton   Spherical Process Models for Global
                                  Spatial Statistics . . . . . . . . . . . 501--513
              Paul R. Rosenbaum   The General Structure of Evidence
                                  Factors in Observational Studies . . . . 514--530
                Xiaohan Yan and   
                     Jacob Bien   Hierarchical Sparse Modeling: A Choice
                                  of Two Group Lasso Formulations  . . . . 531--560
             Dylan S. Small and   
               Zhiqiang Tan and   
         Roland R. Ramsahai and   
             Scott A. Lorch and   
              M. Alan Brookhart   Instrumental Variable Estimation with a
                                  Stochastic Monotonicity Assumption . . . 561--579
       Pantelis Samartsidis and   
            Silvia Montagna and   
         Timothy D. Johnson and   
              Thomas E. Nichols   The Coordinate-Based Meta-Analysis of
                                  Neuroimaging Data  . . . . . . . . . . . 580--599
           Enrico Ripamonti and   
                Chris Lloyd and   
                   Piero Quatto   Contemporary Frequentist Views of the $
                                  2 \times 2 $ Binomial Trial  . . . . . . 600--615
                   David Aldous   Elo Ratings and the Sports Model: A
                                  Neglected Topic in Applied Probability?  616--629
            Ir\`ene Gijbels and   
                 Stanislav Nagy   On a General Definition of Depth for
                                  Functional Data  . . . . . . . . . . . . 630--639
         Alicia Nieto-Reyes and   
                 Heather Battey   Correction to A Topologically Valid
                                  Definition of Depth for Functional Data  640


Statistical Science
Volume 33, Number 1, 02, 2018

          Theodore Kypraios and   
              Vladimir N. Minin   Introduction to the Special Section on
                                  Inference for Infectious Disease
                                  Dynamics . . . . . . . . . . . . . . . . 1--3
      Trevelyan J. McKinley and   
                 Ian Vernon and   
        Ioannis Andrianakis and   
             Nicky McCreesh and   
           Jeremy E. Oakley and   
         Rebecca N. Nsubuga and   
          Michael Goldstein and   
               Richard G. White   Approximate Bayesian Computation and
                                  Simulation-Based Inference for Complex
                                  Stochastic Epidemic Models . . . . . . . 4--18
            Gavin J. Gibson and   
          George Streftaris and   
                    David Thong   Comparison and Assessment of Epidemic
                                  Models . . . . . . . . . . . . . . . . . 19--33
            Paul J. Birrell and   
         Daniela De Angelis and   
               Anne M. Presanis   Evidence Synthesis for Stochastic
                                  Epidemic Models  . . . . . . . . . . . . 34--43
          Theodore Kypraios and   
             Philip D. O. Neill   Bayesian Nonparametrics for Stochastic
                                  Epidemic Models  . . . . . . . . . . . . 44--56
            Carles Bretó   Modeling and Inference for Infectious
                                  Disease Dynamics: A Likelihood-Based
                                  Approach . . . . . . . . . . . . . . . . 57--69
           Michelle Kendall and   
           Diepreye Ayabina and   
                 Yuanwei Xu and   
              James Stimson and   
                Caroline Colijn   Estimating Transmission from Genetic and
                                  Epidemiological Data: A Metric to
                                  Compare Transmission Trees . . . . . . . 70--85
             Paul Gustafson and   
         Lawrence C. McCandless   When Is a Sensitivity Parameter Exactly
                                  That?  . . . . . . . . . . . . . . . . . 86--95
                Shuyang Bai and   
                 Murad S. Taqqu   How the Instability of Ranks Under Long
                                  Memory Affects Large-Sample Inference    96--116
             Stephen M. Stigler   Richard Price, the First Bayesian  . . . 117--125
                  Ofer Zeitouni   A Conversation with S. R. S. Varadhan    126--137

Statistical Science
Volume 33, Number 2, May, 2018

                Julie Josse and   
               Jerome P. Reiter   Introduction to the Special Section on
                                  Missing Data . . . . . . . . . . . . . . 139--141
                Jared S. Murray   Multiple Imputation: A Review of
                                  Practical and Theoretical Findings . . . 142--159
           Vincent Audigier and   
               Ian R. White and   
              Shahab Jolani and   
        Thomas P. A. Debray and   
           Matteo Quartagno and   
            James Carpenter and   
            Stef van Buuren and   
          Matthieu Resche-Rigon   Multiple Imputation for Multilevel Data
                                  with Continuous and Binary Variables . . 160--183
            Shaun R. Seaman and   
             Stijn Vansteelandt   Introduction to Double Robust Methods
                                  for Incomplete Data  . . . . . . . . . . 184--197
          Antonio R. Linero and   
             Michael J. Daniels   Bayesian Approaches for Missing Not at
                                  Random Outcome Data: The Role of
                                  Identifying Restrictions . . . . . . . . 198--213
                  Peng Ding and   
                         Fan Li   Causal Inference: A Missing Data
                                  Perspective  . . . . . . . . . . . . . . 214--237
            William Fithian and   
                 Rahul Mazumder   Flexible Low-Rank Statistical Modeling
                                  with Missing Data and Side Information   238--260
                  Yifei Sun and   
                   Jing Qin and   
                Chiung-Yu Huang   Missing Information Principle: A Unified
                                  Approach for General Truncated and
                                  Censored Survival Data Problems  . . . . 261--276
                   Glenn Shafer   Marie-France Bru and Bernard Bru on Dice
                                  Games and Contracts  . . . . . . . . . . 277--284
           Marie-France Bru and   
                    Bernard Bru   Dice Games . . . . . . . . . . . . . . . 285--297

Statistical Science
Volume 33, Number 3, August, 2018

                  Alex Reinhart   A Review of Self-Exciting
                                  Spatio-Temporal Point Processes and
                                  Their Applications . . . . . . . . . . . 299--318
                 Yosihiko Ogata   Comment on ``A Review of Self-Exciting
                                  Spatiotemporal Point Process and Their
                                  Applications'' by Alex Reinhart  . . . . 319--322
                Jiancang Zhuang   Comment on ``A Review of Self-Exciting
                                  Spatio-Temporal Point Process and Their
                                  Applications'' by Alex Reinhart  . . . . 323--324
       Frederic Paik Schoenberg   Comment on ``A Review of Self-Exciting
                                  Spatio-Temporal Point Processes and
                                  Their Applications'' by Alex Reinhart    325--326
                Sebastian Meyer   Self-Exciting Point Processes:
                                  Infections and Implementations . . . . . 327--329
                  Alex Reinhart   Rejoinder: ``A Review of Self-Exciting
                                  Spatio-Temporal Point Processes and
                                  Their Applications'' . . . . . . . . . . 330--333
            Rainer Dahlhaus and   
      István Z. Kiss and   
             Jan C. Neddermeyer   On the Relationship between the Theory
                                  of Cointegration and the Theory of Phase
                                  Synchronization  . . . . . . . . . . . . 334--357
               Yosef Rinott and   
       Christine M. O'Keefe and   
             Natalie Shlomo and   
                  Chris Skinner   Confidentiality and Differential Privacy
                                  in the Dissemination of Frequency Tables 358--385
             Paul Fearnhead and   
             Joris Bierkens and   
             Murray Pollock and   
              Gareth O. Roberts   Piecewise Deterministic Markov Processes
                                  for Continuous-Time Monte Carlo  . . . . 386--412
          G. S. Dissanayake and   
               M. S. Peiris and   
                    T. Proietti   Fractionally Differenced Gegenbauer
                                  Processes with Long Memory: A Review . . 413--426
               Matey Neykov and   
                  Yang Ning and   
                 Jun S. Liu and   
                        Han Liu   A Unified Theory of Confidence Regions
                                  and Testing for High-Dimensional
                                  Estimating Equations . . . . . . . . . . 427--443
                Lance A. Waller   A Conversation with Tom Louis  . . . . . 444--457
                   David Aldous   A Conversation with Jim Pitman . . . . . 458--467

Statistical Science
Volume 33, Number 4, November, 2018

        Richard J. Samworth and   
                Bodhisattva Sen   Editorial: Special Issue on
                                  ``Nonparametric Inference Under Shape
                                  Constraints''  . . . . . . . . . . . . . 469--472
            Piet Groeneboom and   
                Geurt Jongbloed   Some Developments in the Theory of Shape
                                  Constrained Inference  . . . . . . . . . 473--492
            Richard J. Samworth   Recent Progress in Log-Concave Density
                                  Estimation . . . . . . . . . . . . . . . 493--509
              Roger Koenker and   
                    Ivan Mizera   Shape Constrained Density Estimation Via
                                  Penalized Rényi Divergence  . . . . . . . 510--526
          Andrew L. Johnson and   
                Daniel R. Jiang   Shape Constraints in Economics and
                                  Operations Research  . . . . . . . . . . 527--546
        Cécile Durot and   
        Hendrik P. Lopuhaä   Limit Theory in Monotone Function
                                  Estimation . . . . . . . . . . . . . . . 547--567
     Adityanand Guntuboyina and   
                Bodhisattva Sen   Nonparametric Shape-Restricted
                                  Regression . . . . . . . . . . . . . . . 568--594
                  Mary C. Meyer   A Framework for Estimation and Inference
                                  in Generalized Additive Models with
                                  Shape and Order Restrictions . . . . . . 595--614
         Victor-Emmanuel Brunel   Methods for Estimation of Convex Sets    615--632
         Moulinath Banerjee and   
            Richard J. Samworth   A Conversation with Jon Wellner  . . . . 633--651


Statistical Science
Volume 34, Number 1, February, 2019

François-Xavier Briol and   
             Chris J. Oates and   
              Mark Girolami and   
         Michael A. Osborne and   
                Dino Sejdinovic   Probabilistic Integration: A Role in
                                  Statistical Computation? . . . . . . . . 1--22
         Fred J. Hickernell and   
               R. Jagadeeswaran   Comment on ``Probabilistic Integration:
                                  A Role in Statistical Computation?'' . . 23--28
                    Art B. Owen   Comment: Unreasonable Effectiveness of
                                  Monte Carlo  . . . . . . . . . . . . . . 29--33
           Michael L. Stein and   
                      Ying Hung   Comment on ``Probabilistic Integration:
                                  A Role in Statistical Computation?'' . . 34--37
François-Xavier Briol and   
             Chris J. Oates and   
              Mark Girolami and   
         Michael A. Osborne and   
                Dino Sejdinovic   Rejoinder: Probabilistic Integration: A
                                  Role in Statistical Computation? . . . . 38--42
              Vincent Dorie and   
              Jennifer Hill and   
                 Uri Shalit and   
                 Marc Scott and   
                    Dan Cervone   Automated versus Do-It-Yourself Methods
                                  for Causal Inference: Lessons Learned
                                  from a Data Analysis Competition . . . . 43--68
        Miguel A. Hernán   Comment: Spherical Cows in a Vacuum:
                                  Data Analysis Competitions for Causal
                                  Inference  . . . . . . . . . . . . . . . 69--71
              Qingyuan Zhao and   
              Luke J. Keele and   
                 Dylan S. Small   Comment: Will Competition-Winning
                                  Methods for Causal Inference Also
                                  Succeed in Practice? . . . . . . . . . . 72--76
                   David Jensen   Comment: Strengthening Empirical
                                  Evaluation of Causal Inference Methods   77--81
               Susan Gruber and   
           Mark J. van der Laan   Comment on ``Automated Versus
                                  Do-It-Yourself Methods for Causal
                                  Inference: Lessons Learned from a Data
                                  Analysis Competition'' . . . . . . . . . 82--85
              Ehud Karavani and   
                 Tal El-Hay and   
             Yishai Shimoni and   
                   Chen Yanover   Comment: Causal Inference Competitions:
                                  Where Should We Aim? . . . . . . . . . . 86--89
          Nicole Bohme Carnegie   Comment: Contributions of Model Features
                                  to BART Causal Inference Performance
                                  Using ACIC 2016 Competition Data . . . . 90--93
              Vincent Dorie and   
              Jennifer Hill and   
                 Uri Shalit and   
                 Marc Scott and   
                    Dan Cervone   Rejoinder: Response to Discussions and a
                                  Look Ahead . . . . . . . . . . . . . . . 94--99
                 Georg Lindgren   Gaussian Integrals and Rice Series in
                                  Crossing Distributions-to Compute the
                                  Distribution of Maxima and Other
                                  Features of Gaussian Processes . . . . . 100--128
       Víctor Elvira and   
               Luca Martino and   
               David Luengo and   
       Mónica F. Bugallo   Generalized Multiple Importance Sampling 129--155
                Geurt Jongbloed   A Conversation with Piet Groeneboom  . . 156--168
      Vladimir Koltchinskii and   
              Richard Nickl and   
              Philippe Rigollet   A Conversation with Dick Dudley  . . . . 169--175

Statistical Science
Volume 34, Number 2, May, 2019

                  Bradley Efron   Bayes, Oracle Bayes and Empirical Bayes  177--201
                Thomas A. Louis   Comment: Bayes, Oracle Bayes, and
                                  Empirical Bayes  . . . . . . . . . . . . 202--205
                      Nan Laird   Comment: Bayes, Oracle Bayes, and
                                  Empirical Bayes  . . . . . . . . . . . . 206--208
              Aad van der Vaart   Comment: Bayes, Oracle Bayes and
                                  Empirical Bayes  . . . . . . . . . . . . 214--218
                   Wenhua Jiang   Comment: Empirical Bayes Interval
                                  Estimation . . . . . . . . . . . . . . . 219--223
          Eitan Greenshtein and   
                  Ya'acov Ritov   Comment: Empirical Bayes, Compound
                                  Decisions and Exchangeability  . . . . . 224--228
                 Yixin Wang and   
           Andrew C. Miller and   
                  David M. Blei   Comment: Variational Autoencoders as
                                  Empirical Bayes  . . . . . . . . . . . . 229--233
                  Bradley Efron   Rejoinder: Bayes, Oracle Bayes, and
                                  Empirical Bayes  . . . . . . . . . . . . 234--235
Gregorio Quintana-Ortí and   
             Amelia Simó   A Kernel Regression Procedure in the
                                  $3$D Shape Space with an Application to
                                  Online Sales of Children's Wear  . . . . 236--252
                    Lei Liu and   
          Ya-Chen Tina Shih and   
      Robert L. Strawderman and   
               Daowen Zhang and   
         Bankole A. Johnson and   
                    Haitao Chai   Statistical Analysis of Zero-Inflated
                                  Nonnegative Continuous Data: A Review    253--279
           Laura Anderlucci and   
           Angela Montanari and   
                  Cinzia Viroli   The Importance of Being Clustered:
                                  Uncluttering the Trends of Statistics
                                  from 1970 to 2015  . . . . . . . . . . . 280--300
            Nathan B. Cruze and   
      Andreea L. Erciulescu and   
           Balgobin Nandram and   
           Wendy J. Barboza and   
                 Linda J. Young   Producing Official County-Level
                                  Agricultural Estimates in the United
                                  States: Needs and Challenges . . . . . . 301--316
              Qingyuan Zhao and   
               Jingshu Wang and   
                Wes Spiller and   
                Jack Bowden and   
                 Dylan S. Small   Two-Sample Instrumental Variable
                                  Analyses Using Heterogeneous Samples . . 317--333
                    Sam Behseta   A Conversation with Robert E. Kass . . . 334--348
       Christopher K. Wikle and   
                Jay M. Ver Hoef   A Conversation with Noel Cressie . . . . 349--359

Statistical Science
Volume 34, Number 3, August, 2019

      Jacqueline J. Meulman and   
     Anita J. van der Kooij and   
           Kevin L. W. Duisters   ROS Regression: Integrating
                                  Regularization with Optimal Scaling
                                  Regression . . . . . . . . . . . . . . . 361--390
                Sijia Xiang and   
                 Weixin Yao and   
                  Guangren Yang   An Overview of Semiparametric Extensions
                                  of Finite Mixture Models . . . . . . . . 391--404
             Anindya Bhadra and   
            Jyotishka Datta and   
         Nicholas G. Polson and   
                Brandon Willard   Lasso Meets Horseshoe: a Survey  . . . . 405--427
              Anna L. Smith and   
               Dena M. Asta and   
            Catherine A. Calder   The Geometry of Continuous Latent Space
                                  Models for Network Data  . . . . . . . . 428--453
                    Yuan Ke and   
          Stanislav Minsker and   
                   Zhao Ren and   
                  Qiang Sun and   
                   Wen-Xin Zhou   User-Friendly Covariance Estimation for
                                  Heavy-Tailed Distributions . . . . . . . 454--471
            Daniele Durante and   
                  Tommaso Rigon   Conditionally Conjugate Mean-Field
                                  Variational Bayes for Logistic Models    472--485
       Pantelis Samartsidis and   
            Shaun R. Seaman and   
           Anne M. Presanis and   
            Matthew Hickman and   
             Daniela De Angelis   Assessing the Causal Effect of Binary
                                  Interventions from Observational Panel
                                  Data with Few Treated Units  . . . . . . 486--503
          Peter M. Atkinson and   
                    Jorge Mateu   A Conversation with Peter Diggle . . . . 504--521

Statistical Science
Volume 34, Number 4, November, 2019

               Andreas Buja and   
             Lawrence Brown and   
               Richard Berk and   
              Edward George and   
                Emil Pitkin and   
            Mikhail Traskin and   
                  Kai Zhang and   
                     Linda Zhao   Models as Approximations I: Consequences
                                  Illustrated with Linear Regression . . . 523--544
               Andreas Buja and   
             Lawrence Brown and   
     Arun Kumar Kuchibhotla and   
               Richard Berk and   
              Edward George and   
                     Linda Zhao   Models as Approximations II: a
                                  Model-Free Theory of Parametric
                                  Regression . . . . . . . . . . . . . . . 545--565
               Sara van de Geer   Discussion of Models as Approximations I
                                  & II  . . . . . . . . . . . . . . . . . . 566--568
              Jerald F. Lawless   Comment on Models as Approximations,
                                  Parts I and II, by Buja et al. . . . . . 569--571
        Nikki L. B. Freeman and   
             Xiaotong Jiang and   
              Owen E. Leete and   
          Daniel J. Luckett and   
       Teeranan Pokaprakarn and   
             Michael R. Kosorok   Comment: Models as Approximations  . . . 572--574
           Dag Tjòstheim   Discussion of Models as Approximations I
                                  & II  . . . . . . . . . . . . . . . . . . 575--579
             Roderick J. Little   Comment: ``Models as Approximations I:
                                  Consequences Illustrated with Linear
                                  Regression'' by A. Buja, R. Berk, L.
                                  Brown, E. George, E. Pitkin, L. Zhan and
                                  K. Zhang . . . . . . . . . . . . . . . . 580--583
         Anthony C. Davison and   
                 Erwan Koch and   
                   Jonathan Koh   Comment: Models Are Approximations!  . . 584--590
              David Whitney and   
                Ali Shojaie and   
                   Marco Carone   Comment: Models as (Deliberate)
                                  Approximations . . . . . . . . . . . . . 591--598
         Alessandro Rinaldo and   
         Ryan J. Tibshirani and   
                Larry Wasserman   Comment: Statistical Inference from a
                                  Predictive Perspective . . . . . . . . . 599--603
               Dalia Ghanem and   
                Todd A. Kuffner   Discussion: Models as Approximations . . 604--605
               Andreas Buja and   
     Arun Kumar Kuchibhotla and   
               Richard Berk and   
              Edward George and   
     Eric Tchetgen Tchetgen and   
                     Linda Zhao   Models as Approximations --- Rejoinder   606--620
            James O. Berger and   
               Anirban DasGupta   Larry Brown's Contributions to
                                  Parametric Inference, Decision Theory
                                  and Foundations: a Survey  . . . . . . . 621--634
                    T. Tony Cai   Gaussianization Machines for
                                  Non-Gaussian Function Estimation Models  635--656
              Iain M. Johnstone   Larry Brown's Work on Admissibility  . . 657--668
                 Junhui Cai and   
         Avishai Mandelbaum and   
        Chaitra H. Nagaraja and   
               Haipeng Shen and   
                     Linda Zhao   Statistical Theory Powering Data Science 669--691


Statistical Science
Volume 35, Number 1, February, 2020

                      Anonymous   Introduction to the Special Issue  . . . 1
               Zhixiang Lin and   
          Mahdi Zamanighomi and   
              Timothy Daley and   
                 Shining Ma and   
                 Wing Hung Wong   Model-Based Approach to the Joint
                                  Analysis of Single-Cell Data on
                                  Chromatin Accessibility and Gene
                                  Expression . . . . . . . . . . . . . . . 2--13
          Adam R. Brentnall and   
                    Jack Cuzick   Risk Models for Breast Cancer and Their
                                  Validation . . . . . . . . . . . . . . . 14--30
               Michael L. Stein   Some Statistical Issues in Climate
                                  Science  . . . . . . . . . . . . . . . . 31--41
            Peter J. Diggle and   
            Emanuele Giorgi and   
            Julienne Atsame and   
         Sylvie Ntsame Ella and   
            Kisito Ogoussan and   
                 Katherine Gass   A Tale of Two Parasites: Statistical
                                  Modelling to Support Disease Control
                                  Programmes in Africa . . . . . . . . . . 42--50
                Yazhen Wang and   
                     Xinyu Song   Quantum Science and Quantum Technology   51--74
                    Chao Du and   
                      S. C. Kou   Statistical Methodology in
                                  Single-Molecule Experiments  . . . . . . 75--91
              Thomas Staudt and   
            Timo Aspelmeier and   
         Oskar Laitenberger and   
            Claudia Geisler and   
            Alexander Egner and   
                      Axel Munk   Statistical Molecule Counting in
                                  Super-Resolution Fluorescence
                                  Microscopy: Towards Quantitative
                                  Nanoscopy  . . . . . . . . . . . . . . . 92--111
           Divyansh Agarwal and   
               Jingshu Wang and   
                 Nancy R. Zhang   Data Denoising and Post-Denoising
                                  Corrections in Single Cell RNA
                                  Sequencing . . . . . . . . . . . . . . . 112--128
              Khanh N. Dinh and   
               Roman Jaksik and   
               Marek Kimmel and   
             Amaury Lambert and   
            Simon Tavaré   Statistical Inference for the
                                  Evolutionary History of Cancer Genomes   129--144
                  Ruosi Guo and   
             Chunming Zhang and   
                 Zhengjun Zhang   Maximum Independent Component Analysis
                                  with Application to EEG Data . . . . . . 145--157

Statistical Science
Volume 35, Number 2, May, 2020

           Joshua B. Miller and   
                  Andrew Gelman   Laplace's Theories of Cognitive
                                  Illusions, Heuristics and Biases . . . . 159--170
            Daniel Kahneman and   
                Maya Bar-Hillel   Comment: Laplace and Cognitive Illusions 171--172
                   Glenn Shafer   Comment: Illusions, Then and Now . . . . 173--174
           Joshua B. Miller and   
                  Andrew Gelman   Rejoinder: Laplace's theories of
                                  cognitive illusions, heuristics and
                                  biases . . . . . . . . . . . . . . . . . 175--177
Sébastien Gerchinovitz and   
       Pierre Ménard and   
                  Gilles Stoltz   Fano's Inequality for Random Variables   178--201
            Yakir A. Reshef and   
            David N. Reshef and   
           Pardis C. Sabeti and   
           Michael Mitzenmacher   Equitability, Interval Estimation, and
                                  Statistical Power  . . . . . . . . . . . 202--217
Óli Páll Geirsson and   
        Birgir Hrafnkelsson and   
             Daniel Simpson and   
              Helgi Sigurdarson   LGM Split Sampler: An Efficient MCMC
                                  Sampling Scheme for Latent Gaussian
                                  Models . . . . . . . . . . . . . . . . . 218--233
              David J. Nott and   
                 Xueou Wang and   
              Michael Evans and   
         Berthold-Georg Englert   Checking for Prior-Data Conflict Using
                                  Prior-to-Posterior Divergences . . . . . 234--253
                    Kirk Bansak   A Generalized Approach to Power Analysis
                                  for Local Average Treatment Effects  . . 254--271
                   Jing Lei and   
               Joseph B. Kadane   On the Probability That Two Random
                                  Integers Are Coprime . . . . . . . . . . 272--279
         Claire McKay Bowen and   
                       Fang Liu   Comparative Study of Differentially
                                  Private Data Synthesis Methods . . . . . 280--307
             Douglas Nychka and   
                    Ping Ma and   
                  Douglas Bates   A Conversation with Grace Wahba  . . . . 308--320
          George G. Roussas and   
           Debasis Bhattacharya   A Conversation with Francisco J.
                                  Samaniego  . . . . . . . . . . . . . . . 321--333

Statistical Science
Volume 35, Number 3, August, 2020

                   Ruoqi Yu and   
          Jeffrey H. Silber and   
              Paul R. Rosenbaum   Matching Methods for Observational
                                  Studies Derived from Large
                                  Administrative Databases . . . . . . . . 338--355
              Tianchen Qian and   
            Predrag Klasnja and   
                Susan A. Murphy   Linear Mixed Models with Endogenous
                                  Covariates: Modeling Sequential
                                  Treatment Effects with Application to a
                                  Mobile Health Study  . . . . . . . . . . 375--390
                Kristin A. Linn   Moving Toward Rigorous Evaluation of
                                  Mobile Health Interventions  . . . . . . 394--395
                Hunyong Cho and   
         Joshua P. Zitovsky and   
                   Xinyi Li and   
                  Minxin Lu and   
                Kushal Shah and   
               John Sperger and   
  Matthew C. B. Tsilimigras and   
             Michael R. Kosorok   Comment: Diagnostics and Kernel-based
                                  Extensions for Linear Mixed Effects
                                  Models with Endogenous Covariates  . . . 396--399
            Peter Bühlmann   Invariance, Causality and Robustness . . 404--426
            Peter Bühlmann   Rejoinder: Invariance, Causality and
                                  Robustness . . . . . . . . . . . . . . . 434--436
       Tyler J. VanderWeele and   
             Maya B. Mathur and   
                      Ying Chen   Outcome-Wide Longitudinal Designs for
                                  Causal Inference: A New Template for
                                  Empirical Studies  . . . . . . . . . . . 437--466
             David Benkeser and   
                 Weixin Cai and   
           Mark J. van der Laan   A Nonparametric Super-Efficient
                                  Estimator of the Average Treatment
                                  Effect . . . . . . . . . . . . . . . . . 484--495
                         Fan Li   Comment: Stabilizing the Doubly-Robust
                                  Estimators of the Average Treatment
                                  Effect under Positivity Violations . . . 503--510
                    Lin Liu and   
         Rajarshi Mukherjee and   
                James M. Robins   On Nearly Assumption-Free Tests of
                                  Nominal Confidence Interval Coverage for
                                  Causal Parameters Estimated by Machine
                                  Learning . . . . . . . . . . . . . . . . 518--539
                    Lin Liu and   
         Rajarshi Mukherjee and   
                James M. Robins   Rejoinder: On nearly assumption-free
                                  tests of nominal confidence interval
                                  coverage for causal parameters estimated
                                  by machine learning  . . . . . . . . . . 545--554

Statistical Science
Volume 35, Number 4, November, 2020

         Dimitris Bertsimas and   
             Jean Pauphilet and   
                 Bart Van Parys   Sparse Regression: Scalable Algorithms
                                  and Empirical Performance  . . . . . . . 555--578
              Trevor Hastie and   
          Robert Tibshirani and   
                Ryan Tibshirani   Best Subset, Forward Stepwise or Lasso?
                                  Analysis and Recommendations Based on
                                  Extensive Comparisons  . . . . . . . . . 579--592
               Owais Sarwar and   
              Benjamin Sauk and   
          Nikolaos V. Sahinidis   A Discussion on Practical Considerations
                                  with Sparse Regression Methodologies . . 593--601
                Yuansi Chen and   
                Armeen Taeb and   
            Peter Bühlmann   A Look at Robustness and Stability of $
                                  \ell_1$-versus $ \ell_0$-Regularization:
                                  Discussion of Papers by Bertsimas et al.
                                  and Hastie et al.  . . . . . . . . . . . 614--622
      Michael Schweinberger and   
         Pavel N. Krivitsky and   
            Carter T. Butts and   
            Jonathan R. Stewart   Exponential-Family Models of Random
                                  Graphs: Inference in Finite, Super and
                                  Infinite Population Scenarios  . . . . . 627--662
            Richard D. De Veaux   A Conversation with J. Stuart (Stu)
                                  Hunter . . . . . . . . . . . . . . . . . 663--671


Statistical Science
Volume 36, Number 1, February, 2021

                Xiaodong Li and   
                Yudong Chen and   
                     Jiaming Xu   Convex Relaxation Methods for Community
                                  Detection  . . . . . . . . . . . . . . . 2--15
                   Chao Gao and   
                    Zongming Ma   Minimax Rates in Network Analysis:
                                  Graphon Estimation, Community Detection
                                  and Hypothesis Testing . . . . . . . . . 16--33
                     Peter Hoff   Additive and Multiplicative Effects
                                  Network Models . . . . . . . . . . . . . 34--50
                Harry Crane and   
                 Walter Dempsey   A Statistical Framework for Modern
                                  Network Science  . . . . . . . . . . . . 51--67
             Avanti Athreya and   
                  Minh Tang and   
              Youngser Park and   
                Carey E. Priebe   On Estimation and Inference in Latent
                                  Structure Random Graphs  . . . . . . . . 68--88
          Y. X. Rachel Wang and   
                   Lexin Li and   
          Jingyi Jessica Li and   
                   Haiyan Huang   Network Modeling in Biology: Statistical
                                  Methods for Gene and Brain Networks  . . 89--108
           Corwin M. Zigler and   
          Georgia Papadogeorgou   Bipartite Causal Inference with
                                  Interference . . . . . . . . . . . . . . 109--123
          Matthias Katzfuss and   
                Joseph Guinness   A General Framework for Vecchia
                                  Approximations of Gaussian Processes . . 124--141
                      Yijun Zuo   On General Notions of Depth for
                                  Regression . . . . . . . . . . . . . . . 142--157
                    Ying Lu and   
             Dylan S. Small and   
                  Zhiliang Ying   A Conversation with Tze Leung Lai  . . . 158--167

Statistical Science
Volume 36, Number 2, May, 2021

                Ruobin Gong and   
                   Xiao-Li Meng   Judicious Judgment Meets Unsettling
                                  Updating: Dilation, Sure Loss and
                                  Simpson's Paradox  . . . . . . . . . . . 169--190
                   Glenn Shafer   Comment: On the History and Limitations
                                  of Probability Updating  . . . . . . . . 191--195
               Chuanhai Liu and   
                    Ryan Martin   Comment: Settle the Unsettling: An
                                  Inferential Models Perspective . . . . . 196--200
                Gregory Wheeler   Comment: Moving Beyond Sets of
                                  Probabilities  . . . . . . . . . . . . . 201--204
            Thomas Augustin and   
              Georg Schollmeyer   Comment: On Focusing, Soft and Strong
                                  Revision of Choquet Capacities and Their
                                  Role in Statistics . . . . . . . . . . . 205--209
                 Jian Huang and   
                Yuling Jiao and   
                 Bangti Jin and   
                    Jin Liu and   
                 Xiliang Lu and   
                       Can Yang   A Unified Primal Dual Active Set
                                  Algorithm for Nonconvex Sparse Recovery  215--238
        Anthony C. Atkinson and   
                Marco Riani and   
                Aldo Corbellini   The Box--Cox Transformation: Review and
                                  Extensions . . . . . . . . . . . . . . . 239--255
                Ian W. McKeague   Noncommutative Probability and
                                  Multiplicative Cascades  . . . . . . . . 256--263
               Jianqing Fan and   
                    Cong Ma and   
                   Yiqiao Zhong   A Selective Overview of Deep Learning    264--290
              Tze Leung Lai and   
                  Hongsong Yuan   Stochastic Approximation: From
                                  Statistical Origin to Big-Data,
                                  Multidisciplinary Applications . . . . . 291--302
               Jianqing Fan and   
              Kaizheng Wang and   
               Yiqiao Zhong and   
                      Ziwei Zhu   Robust High-Dimensional Factor Models
                                  with Applications to Statistical Machine
                                  Learning . . . . . . . . . . . . . . . . 303--327
             Efstathia Bura and   
                    Bing Li and   
                   Lexin Li and   
     Christopher Nachtsheim and   
                Daniel Pena and   
             Claude Setodji and   
                Robert E. Weiss   A Conversation with Dennis Cook  . . . . 328--337

Statistical Science
Volume 36, Number 3, August, 2021

              Lukas M. Verburgt   Khinchin's 1929 Paper on von Mises'
                                  Frequency Theory of Probability  . . . . 339--343
            Danica M. Ommen and   
        Christopher P. Saunders   A Problem in Forensic Science
                                  Highlighting the Differences between the
                                  Bayes Factor and Likelihood Ratio  . . . 344--359
           Axel Bücher and   
                      Chen Zhou   A Horse Race between the Block Maxima
                                  Method and the Peak-over-Threshold
                                  Approach . . . . . . . . . . . . . . . . 360--378
             Grant Backlund and   
            James P. Hobert and   
               Yeun Ji Jung and   
                  Kshitij Khare   A Hybrid Scan Gibbs Sampler for Bayesian
                                  Models with Latent Variables . . . . . . 379--399
         Paul T. von Hippel and   
           Jonathan W. Bartlett   Maximum Likelihood Multiple Imputation:
                                  Faster Imputations and Consistent
                                  Standard Errors Without Posterior Draws  400--420
            Alan Julian Izenman   Random Matrix Theory and Its
                                  Applications . . . . . . . . . . . . . . 421--442
     Eric Tchetgen Tchetgen and   
                 BaoLuo Sun and   
                  Stefan Walter   The GENIUS Approach to Robust Mendelian
                                  Randomization Inference  . . . . . . . . 443--464
               Ian C. Marschner   A General Framework for the Analysis of
                                  Adaptive Experiments . . . . . . . . . . 465--492

Statistical Science
Volume 36, Number 4, November, 2021

              Zhichao Jiang and   
                      Peng Ding   Identification of Causal Effects Within
                                  Principal Strata Using Auxiliary
                                  Variables  . . . . . . . . . . . . . . . 493--508
               Yudi Pawitan and   
                    Youngjo Lee   Confidence as Likelihood . . . . . . . . 509--517
               Dootika Vats and   
              Christina Knudson   Revisiting the Gelman--Rubin Diagnostic  518--529
                   Jie Zhou and   
              Xiao-Hua Zhou and   
                    Liuquan Sun   Comparison of Two Frameworks for
                                  Analyzing Longitudinal Data  . . . . . . 530--541
           Rosaria Lombardo and   
                Eric J. Beh and   
          Pieter M. Kroonenberg   Symmetrical and Non-symmetrical Variants
                                  of Three-Way Correspondence Analysis for
                                  Ordered Variables  . . . . . . . . . . . 542--561
                   Sen Zhao and   
             Daniela Witten and   
                    Ali Shojaie   In Defense of the Indefensible: a Very
                                  Na\"\ive Approach to High-Dimensional
                                  Inference  . . . . . . . . . . . . . . . 562--577
          Kris De Brabanter and   
               Jos De Brabanter   Robustness by Reweighting for Kernel
                                  Estimators: an Overview  . . . . . . . . 578--594
                  Vladimir Vovk   Testing Randomness Online  . . . . . . . 595--611
           Bouchra R. Nasri and   
  Bruno N. Rémillard and   
        Barbara Szyszkowicz and   
              Jean Vaillancourt   A Conversation with Don Dawson . . . . . 612--622


Statistical Science
Volume 37, Number 1, February, 2022

                  Xinran Li and   
                Dingdong Yi and   
                     Jun S. Liu   Bayesian Analysis of Rank Data with
                                  Covariates and Heterogeneous Rankers . . 1--23
       Fernando A. Quintana and   
          Peter Müller and   
             Alejandro Jara and   
           Steven N. MacEachern   The Dependent Dirichlet Process and
                                  Related Models . . . . . . . . . . . . . 24--41
              Marco Oesting and   
               Kirstin Strokorb   A Comparative Tour through the
                                  Simulation Algorithms for Max-Stable
                                  Processes  . . . . . . . . . . . . . . . 42--63
                 Evan Baker and   
           Pierre Barbillon and   
            Arindam Fadikar and   
          Robert B. Gramacy and   
                Radu Herbei and   
               David Higdon and   
             Jiangeng Huang and   
            Leah R. Johnson and   
                  Pulong Ma and   
             Anirban Mondal and   
              Bianica Pires and   
               Jerome Sacks and   
                  Vadim Sokolov   Analyzing Stochastic Computer Models: a
                                  Review with Opportunities  . . . . . . . 64--89
       Dag Tjòstheim and   
         Håkon Otneim and   
        Bård Stòve   Statistical Dependence: Beyond Pearson's
                                  $ \rho $ . . . . . . . . . . . . . . . . 90--109
               H. S. Battey and   
                      D. R. Cox   Some Perspectives on Inference in High
                                  Dimensions . . . . . . . . . . . . . . . 110--122
            Adrian Baddeley and   
           Tilman M. Davies and   
              Suman Rakshit and   
               Gopalan Nair and   
                 Greg McSwiggan   Diffusion Smoothing for Spatial Point
                                  Patterns . . . . . . . . . . . . . . . . 123--142
                     Li Hsu and   
             Charles Kooperberg   A Conversation with Ross Prentice  . . . 143--158

Statistical Science
Volume 37, Number 2, May, 2022

           Lorenzo Cappello and   
                 Jaehee Kim and   
                  Sifan Liu and   
              Julia A. Palacios   Statistical Challenges in Tracking the
                                  Evolution of SARS-CoV-2  . . . . . . . . 162--182
           George Nicholson and   
           Marta Blangiardo and   
                Mark Briers and   
            Peter J. Diggle and   
          Tor Erlend Fjelde and   
                    Hong Ge and   
        Robert J. B. Goudie and   
            Radka Jersakova and   
           Ruairidh E. King and   
       Brieuc C. L. Lehmann and   
           Ann-Marie Mallon and   
           Tullia Padellini and   
               Yee Whye Teh and   
               Chris Holmes and   
              Sylvia Richardson   Interoperability of Statistical Models
                                  in Pandemic Preparedness: Principles and
                                  Reality  . . . . . . . . . . . . . . . . 183--206
                Maria Jahja and   
                Andrew Chin and   
             Ryan J. Tibshirani   Real-Time Estimation of COVID-19
                                  Infections: Deconvolution and Sensor
                                  Fusion . . . . . . . . . . . . . . . . . 207--228
              Saskia Comess and   
                Hannah Wang and   
               Susan Holmes and   
                  Claire Donnat   Statistical Modeling for Practical
                                  Pooled Testing During the COVID-19
                                  Pandemic . . . . . . . . . . . . . . . . 229--250
                Zitong Wang and   
         Mary Grace Bowring and   
               Antony Rosen and   
            Brian Garibaldi and   
                Scott Zeger and   
              Akihiko Nishimura   Learning and Predicting from Dynamic
                                  Models for COVID-19 Patient Monitoring   251--265
                     Bin Yu and   
                  Chandan Singh   Seven Principles for Rapid-Response Data
                                  Science: Lessons Learned from COVID-19
                                  Forecasting  . . . . . . . . . . . . . . 266--269
              Bhramar Mukherjee   Being a Public Health Statistician
                                  During a Global Pandemic . . . . . . . . 270--277
                     Xihong Lin   Lessons Learned from the COVID-19
                                  Pandemic: a Statistician's Reflection    278--283
               John M. Chambers   Data, Science, and Global Disasters  . . 284--288

Statistical Science
Volume 37, Number 3, August, 2022

             Persi Diaconis and   
              Stewart N. Ethier   Gambler's Ruin and the ICM . . . . . . . 289--305
         Thomas J. DiCiccio and   
        David M. Ritzwoller and   
           Joseph P. Romano and   
                Azeem M. Shaikh   Confidence Intervals for Seroprevalence  306--321
               Yosef Rinott and   
               Tomer Shoham and   
                      Gil Kalai   Statistical Aspects of the Quantum
                                  Supremacy Demonstration  . . . . . . . . 322--347
                Karl Mosler and   
             Pavlo Mozharovskyi   Choosing Among Notions of Multivariate
                                  Depth Statistics . . . . . . . . . . . . 348--368
        Charlotte Micheloud and   
                  Leonhard Held   Power Calculations for Replication
                                  Studies  . . . . . . . . . . . . . . . . 369--379
           Ross L. Prentice and   
               Aaron K. Aragaki   Intention-to-Treat Comparisons in
                                  Randomized Trials  . . . . . . . . . . . 380--393
              Roel Verbelen and   
            Katrien Antonio and   
            Gerda Claeskens and   
               Jonas Crevecoeur   Modeling the Occurrence of Events
                                  Subject to a Reporting Delay via an EM
                                  Algorithm  . . . . . . . . . . . . . . . 394--410
               Shanshan Cao and   
               Xiaoming Huo and   
                  Jong-Shi Pang   A Unifying Framework of High-Dimensional
                                  Sparse Estimation with
                                  Difference-of-Convex (DC)
                                  Regularizations  . . . . . . . . . . . . 411--424
        Theodore Papamarkou and   
               Jacob Hinkle and   
              M. Todd Young and   
                   David Womble   Challenges in Markov Chain Monte Carlo
                                  for Bayesian Neural Networks . . . . . . 425--442
                  Xuming He and   
                  Xiaofeng Shao   A Conversation with Stephen Portnoy  . . 443--454

Statistical Science
Volume 37, Number 4, November, 2022

             Michael P. Fay and   
        Michael A. Proschan and   
          Erica H. Brittain and   
                     Ram Tiwari   Interpreting $p$-Values and Confidence
                                  Intervals Using Well-Calibrated Null
                                  Preference Priors  . . . . . . . . . . . 455--472
                  Zhirui Hu and   
             Zheng Tracy Ke and   
                     Jun S. Liu   Measurement Error Models: From
                                  Nonparametric Methods to Deep Neural
                                  Networks . . . . . . . . . . . . . . . . 473--493
                  Seyoon Ko and   
                   Hua Zhou and   
                Jin J. Zhou and   
                   Joong-Ho Won   High-Performance Statistical Computing
                                  in the Computing Environments of the
                                  2020s  . . . . . . . . . . . . . . . . . 494--518
         Daniel Sanz-Alonso and   
                     Ruiyi Yang   The SPDE Approach to Matérn Fields: Graph
                                  Representations  . . . . . . . . . . . . 519--540
        Vanda Inácio and   
María Xosé Rodríguez-Álvarez   The Covariate-Adjusted ROC Curve: The
                                  Concept and Its Importance, Review of
                                  Inferential Methods, and a New Bayesian
                                  Estimator  . . . . . . . . . . . . . . . 541--561
           Dominic Edelmann and   
                   Jelle Goeman   A Regression Perspective on Generalized
                                  Distance Covariance and the
                                  Hilbert--Schmidt Independence Criterion  562--579
              Qinglong Tian and   
          Daniel J. Nordman and   
              William Q. Meeker   Methods to Compute Prediction Intervals:
                                  a Review and New Results . . . . . . . . 580--597
       Per Gösta Andersson   Approximate Confidence Intervals for a
                                  Binomial $p$ --- Once Again  . . . . . . 598--606
                Shankar Bhamidi   A Conversation with David J. Aldous  . . 607--624
             Michael Lavine and   
        Jan F. Bjòrnstad   Comments on Confidence as Likelihood by
                                  Pawitan and Lee in \booktitleStatistical
                                  Science, November 2021 . . . . . . . . . 625--627
               Yudi Pawitan and   
                    Youngjo Lee   Rejoinder: Confidence as Likelihood  . . 628--629


Statistical Science
Volume 38, Number 1, February, 2023

           Niloofar Moosavi and   
  Jenny Häggström and   
                 Xavier de Luna   The Costs and Benefits of Uniformly
                                  Valid Causal Inference with
                                  High-Dimensional Nuisance Parameters . . 1--12
              David Rossell and   
         Francisco Javier Rubio   Additive Bayesian Variable Selection
                                  under Censoring and Misspecification . . 13--29
          Davide La Vecchia and   
          Elvezio Ronchetti and   
                Andrej Ilievski   On Some Connections Between Esscher's
                                  Tilting, Saddlepoint Approximations, and
                                  Optimal Transportation: a Statistical
                                  Perspective  . . . . . . . . . . . . . . 30--51
      Alessandra Giovagnoli and   
            Isabella Verdinelli   Bayesian Adaptive Randomization with
                                  Compound Utility Functions . . . . . . . 52--67
              Rajen D. Shah and   
            Peter Bühlmann   Double-Estimation-Friendly Inference for
                                  High-Dimensional Misspecified Models . . 68--91
                  Xinran Li and   
                 Dylan S. Small   Randomization-Based Test for Censored
                                  Outcomes: a New Look at the Logrank Test 92--107
                Wenpin Tang and   
                   Fengmin Tang   The Poisson Binomial Distribution ---
                                  Old & New . . . . . . . . . . . . . . . . 108--119
         Andreas Anastasiou and   
            Alessandro Barp and   
François-Xavier Briol and   
                Bruno Ebner and   
            Robert E. Gaunt and   
      Fatemeh Ghaderinezhad and   
             Jackson Gorham and   
             Arthur Gretton and   
             Christophe Ley and   
                  Qiang Liu and   
              Lester Mackey and   
             Chris J. Oates and   
             Gesine Reinert and   
                      Yvik Swan   Stein's Method Meets Computational
                                  Statistics: a Review of Some Recent
                                  Developments . . . . . . . . . . . . . . 120--139
                David Bolin and   
                   Jonas Wallin   Local scale invariance and robustness of
                                  proper scoring rules . . . . . . . . . . 140--159
             Persi Diaconis and   
                   Sandy Zabell   In Praise (and Search) of J. V. Uspensky 160--183

Statistical Science
Volume 38, Number 2, May, 2023

                      Anonymous   Editorial Board  . . . . . . . . . . . . ??
                      Anonymous   Table of Contents  . . . . . . . . . . . ??
         David S. Robertson and   
                Kim May Lee and   
Boryana C. López-Kolkovska and   
         Sofía S. Villar   Response-Adaptive Randomization in
                                  Clinical Trials: From Myths to Practical
                                  Considerations . . . . . . . . . . . . . 185--208
          Anastasia Ivanova and   
         William F. Rosenberger   Comment: A Quarter Century of
                                  Methodological Research in
                                  Response-Adaptive Randomization  . . . . 209--211
               Yunshan Duan and   
          Peter Müller and   
                        Yuan Ji   Comment: Response-Adaptive Randomization
                                  in Clinical Trials: From Myths to
                                  Practical Considerations . . . . . . . . 212--215
             Lorenzo Trippa and   
                      Yanxun Xu   Comment: Advancing Clinical Trials with
                                  Novel Designs and Implementations  . . . 216--218
           Christopher Jennison   Comment: Group Sequential Designs with
                                  Response-Adaptive Randomisation  . . . . 219--223
          Alessandra Giovagnoli   Comment: Is Response-Adaptive
                                  Randomization a ``Good Thing'' or Not in
                                  Clinical Trials? Why We Cannot Take
                                  Sides  . . . . . . . . . . . . . . . . . 224--228
             Scott M. Berry and   
                     Kert Viele   Comment: Response Adaptive Randomization
                                  in Practice  . . . . . . . . . . . . . . 229--232
         David S. Robertson and   
                Kim May Lee and   
Boryana C. López-Kolkovska and   
         Sofía S. Villar   Rejoinder: Response-Adaptive
                                  Randomization in Clinical Trials . . . . 233--239
                Linda S. L. Tan   Efficient Data Augmentation Techniques
                                  for Some Classes of State Space Models   240--261
        Rajarshi Guhaniyogi and   
                   Cheng Li and   
          Terrance Savitsky and   
             Sanvesh Srivastava   Distributed Bayesian Inference in
                                  Massive Spatial Data . . . . . . . . . . 262--284
                   Sandy Zabell   The Secret Life of I. J. Good  . . . . . 285--302
            Lorenzo Masoero and   
                Emma Thomas and   
        Giovanni Parmigiani and   
        Svitlana Tyekucheva and   
                 Lorenzo Trippa   Cross-Study Replicability in Cluster
                                  Analysis . . . . . . . . . . . . . . . . 303--316
                Kosuke Imai and   
                  Zhichao Jiang   Principal Fairness for Human and
                                  Algorithmic Decision-Making  . . . . . . 317--328
              Vladimir Vovk and   
                     Ruodu Wang   Confidence and Discoveries with
                                  $E$-values . . . . . . . . . . . . . . . 329--354
               Yulia R. Gel and   
       Edsel A. Peña and   
               Huixia Judy Wang   Conversations with Gábor J. Székely  . . . 355--367

Statistical Science
Volume 38, Number 3, August, 2023

                      Anonymous   Editorial Board  . . . . . . . . . . . . ??
                      Anonymous   Table of Contents  . . . . . . . . . . . ??
               Olli Saarela and   
          David A. Stephens and   
             Erica E. M. Moodie   The Role of Exchangeability in Causal
                                  Inference  . . . . . . . . . . . . . . . 369--385
          Michael Greenacre and   
               Eric Grunsky and   
           John Bacon-Shone and   
                  Ionas Erb and   
                   Thomas Quinn   Aitchison's Compositional Data Analysis
                                  40 Years on: a Reappraisal . . . . . . . 386--410
       Dag Tjòstheim and   
              Martin Jullum and   
           Anders Lòland   Statistical Embedding: Beyond Principal
                                  Components . . . . . . . . . . . . . . . 411--439
              Paul R. Rosenbaum   Can We Reliably Detect Biases that
                                  Matter in Observational Studies? . . . . 440--457
             Patrick Bajari and   
              Brian Burdick and   
            Guido W. Imbens and   
            Lorenzo Masoero and   
              James McQueen and   
       Thomas S. Richardson and   
                   Ido M. Rosen   Experimental Design in Marketplaces  . . 458--476
                 Paul Gustafson   Parameter Restrictions for the Sake of
                                  Identification: Is There Utility in
                                  Asserting That Perhaps a Restriction
                                  Holds? . . . . . . . . . . . . . . . . . 477--489
                  Xuejun Yu and   
              David J. Nott and   
          Michael Stanley Smith   Variational Inference for Cutting
                                  Feedback in Misspecified Models  . . . . 490--509
                   Jukka Nyblom   Note on Legendre's Method of Least
                                  Squares  . . . . . . . . . . . . . . . . 510--513
             Rhonda J. Rosychuk   A Conversation with Mary E. Thompson . . 514--524

Statistical Science
Volume 38, Number 4, November, 2023

                      Anonymous   Editorial Board  . . . . . . . . . . . . ??
                      Anonymous   Table of Contents  . . . . . . . . . . . ??
       Alicia L. Carriquiry and   
         Michael J. Daniels and   
                     Nancy Reid   Editorial: Special Issue on
                                  Reproducibility and Replicability  . . . 525--526
 Dominik Rothenhäusler and   
            Peter Bühlmann   Distributionally Robust and
                                  Generalizable Inference  . . . . . . . . 527--542
            Giovanni Parmigiani   Defining Replicability of Prediction
                                  Rules  . . . . . . . . . . . . . . . . . 543--556
         David S. Robertson and   
          James M. S. Wason and   
                 Aaditya Ramdas   Online Multiple Hypothesis Testing . . . 557--575
             Aaditya Ramdas and   
        Peter Grünwald and   
              Vladimir Vovk and   
                   Glenn Shafer   Game-Theoretic Statistics and Safe
                                  Anytime-Valid Inference  . . . . . . . . 576--601
           Marina Bogomolov and   
                    Ruth Heller   Replicability Across Multiple Studies    602--620
           Francesca Freuli and   
              Leonhard Held and   
                  Rachel Heyard   Replication Success Under Questionable
                                  Research Practices-a Simulation Study    621--639
      Carly Lupton Brantner and   
           Ting-Hsuan Chang and   
         Trang Quynh Nguyen and   
               Hwanhee Hong and   
            Leon Di Stefano and   
            Elizabeth A. Stuart   Methods for Integrating Trials and
                                  Non-experimental Data to Examine
                                  Treatment Effect Heterogeneity . . . . . 640--654
                Antonio Possolo   Tracking Truth Through Measurement and
                                  the Spyglass of Statistics . . . . . . . 655--671


Statistical Science
Volume 39, Number 1, February, 2024

                      Anonymous   Editorial Board  . . . . . . . . . . . . ??
                      Anonymous   Table of Contents  . . . . . . . . . . . ??
        Christian P. Robert and   
                 Dennis Prangle   Editorial: Bayesian Computations in the
                                  21st Century . . . . . . . . . . . . . . 1--2
             Gael M. Martin and   
           David T. Frazier and   
            Christian P. Robert   Computing Bayes: From Then `Til Now  . . 3--19
             Gael M. Martin and   
           David T. Frazier and   
            Christian P. Robert   Approximating Bayes in the 21st Century  20--45
             Erik Strumbelj and   
Alexandre Bouchard-Côté and   
             Jukka Corander and   
              Andrew Gelman and   
           Håvard Rue and   
            Lawrence Murray and   
              Henri Pesonen and   
             Martyn Plummer and   
                    Aki Vehtari   Past, Present and Future of Software for
                                  Bayesian Inference . . . . . . . . . . . 46--61
              Steven Winter and   
            Trevor Campbell and   
                 Lizhen Lin and   
         Sanvesh Srivastava and   
                David B. Dunson   Emerging Directions in Bayesian
                                  Computation  . . . . . . . . . . . . . . 62--89
                Jeremy Heng and   
        Valentin De Bortoli and   
                  Arnaud Doucet   Diffusion Schrödinger Bridges for
                                  Bayesian Computation . . . . . . . . . . 90--99
              Tom Rainforth and   
                Adam Foster and   
            Desi R. Ivanova and   
         Freddie Bickford Smith   Modern Bayesian Experimental Design  . . 100--114
            Roberto Casarin and   
              Radu V. Craiu and   
         Lorenzo Frattarolo and   
            Christian P. Robert   Living on the Edge: an Unified Approach
                                  to Antithetic Sampling . . . . . . . . . 115--136
        Michael F. Faulkner and   
             Samuel Livingstone   Sampling Algorithms in Statistical
                                  Physics: a Guide for Statistics and
                                  Machine Learning . . . . . . . . . . . . 137--164
Bénédicte Colnet and   
                 Imke Mayer and   
               Guanhua Chen and   
                  Awa Dieng and   
                 Ruohong Li and   
        Gaël Varoquaux and   
         Jean-Philippe Vert and   
                Julie Josse and   
                       Shu Yang   Causal Inference Methods for Combining
                                  Randomized Trials and Observational
                                  Studies: a Review  . . . . . . . . . . . 165--191
                Sam Behseta and   
                 Robert E. Kass   A Conversation with Stephen M. Stigler   192--208
              Bhramar Mukherjee   In Conversation with Sir David
                                  Spiegelhalter and Professor Sylvia
                                  Richardson . . . . . . . . . . . . . . . 209--220

Statistical Science
Volume 39, Number 2, May, 2024

                      Anonymous   Editorial Board  . . . . . . . . . . . . ??
                      Anonymous   Table of Contents  . . . . . . . . . . . ??
        Jörg Drechsler and   
          Anna-Carolina Haensch   30 Years of Synthetic Data . . . . . . . 221--242
              Tianjian Zhou and   
                        Yuan Ji   Statistical Frameworks for Oncology
                                  Dose-Finding Designs with Late-Onset
                                  Toxicities: a Review . . . . . . . . . . 243--261
          Raoul Müller and   
        Dominic Schuhmacher and   
                    Jorge Mateu   ANOVA for Metric Spaces, with
                                  Applications to Spatial Data . . . . . . 262--285
                  Chuji Luo and   
             Michael J. Daniels   Variable Selection Using Bayesian
                                  Additive Regression Trees  . . . . . . . 286--304
       Federico Castelletti and   
                 Guido Consonni   Bayesian Sample Size Determination for
                                  Causal Discovery . . . . . . . . . . . . 305--321
     Alessandra R. Brazzale and   
               Valentina Mameli   Likelihood Asymptotics in Nonregular
                                  Settings: a Review with Emphasis on the
                                  Likelihood Ratio . . . . . . . . . . . . 322--345
       Eric-Jan Wagenmakers and   
               Sandy Zabell and   
              Quentin F. Gronau   J. B. S. Haldane's Rule of Succession    346--354
                 Frank Tuyl and   
            Richard Gerlach and   
               Kerrie Mengersen   On the Certainty of an Inductive
                                  Inference: The Binomial Case . . . . . . 355--356
            Fabrizia Mealli and   
         Julie Holland Mortimer   A Conversation with Guido W. Imbens  . . 357--373

Statistical Science
Volume 39, Number 3, August, 2024

                      Anonymous   Editorial Board  . . . . . . . . . . . . ??
                      Anonymous   Table of Contents  . . . . . . . . . . . ??
  Eric J. Tchetgen Tchetgen and   
                Andrew Ying and   
                  Yifan Cui and   
                     Xu Shi and   
                      Wang Miao   An Introduction to Proximal Causal
                                  Inference  . . . . . . . . . . . . . . . 375--390
    Jean-François Quessy   A General Construction of Multivariate
                                  Dependence Structures with Nonmonotone
                                  Mappings and Its Applications  . . . . . 391--408
            Dimitris N. Politis   Studentization Versus Variance
                                  Stabilization: a Simple Way Out of an
                                  Old Dilemma  . . . . . . . . . . . . . . 409--427
                Soudeep Deb and   
                   Kaushik Jana   Nonparametric Quantile Regression for
                                  Time Series with Replicated Observations
                                  and Its Application to Climate Data  . . 428--448
      Víctor Gallego and   
                Roi Naveiro and   
            Alberto Redondo and   
    David Ríos Insua and   
               Fabrizio Ruggeri   Protecting Classifiers from Attacks  . . 449--468
               Emilio Porcu and   
          Moreno Bevilacqua and   
            Robert Schaback and   
                 Chris J. Oates   The Matérn Model: a Journey Through
                                  Statistics, Numerical Analysis and
                                  Machine Learning . . . . . . . . . . . . 469--492
         David R. Bellhouse and   
               Christian Genest   Antoine Gombaud, Chevalier de Méré . . . . 493--507
                 Xihong Lin and   
            Nilanjan Chatterjee   A Conversation with Raymond J. Carroll   508--517