Title word cross-reference

-1/2, 1/2, 3/2, 5/2 [942]. 0 – 1 [498]. 1 [1127]. 2
[1059, 1265, 1228, 1406, 1226, 1161]. 2² – 1 [925]. 3 [792, 1406, 1403]. A – B
AX² + BX + C = 0 [415]. AXB + CXD = E [1071, 753, 752]. C¹
[1114, 660, 683]. C² [683, 682, 286]. E_n(x) [437]. ℓ₁ [283, 316, 315]. F
[803, 802, 617, 12]. f(x) [403]. H_p [453, 452]. hp [1433, 1432]. h → ∞ [445]. i
[105]. I₀ [150]. I₁(x)/I₀(x) [336, 332]. I₁(x)/I₀(x) [336, 332]. I_n(x)
[126, 125, 207]. ith [30]. Jₙ(x) [126, 125, 207]. k [789]. K_n(x) [438, 437]. L₁
[1180, 105, 30, 1455, 213]. O(log₂k) [789]. O(n(1 + log(N/n))) [841]. O(n^1/2τ)
[616]. ω [1362]. ±2² ± 2² [925]. Q [1048, 1420]. QR [1460, 953, 952, 1412].
rc [804, 19, 79]. r × c [542]. s [1347]. T [1036, 14, 15, 338, 339, 228]. U(a, x)
[1165, 1164]. v [566, 619]. V(a, x) [1165, 1164]. φ [1285, 1364]. W(a, x) [1348].
x_n+1 = f(x_n) [149]. x ≥ 0, ν ≥ 0 [126, 125, 207].
- D [1059, 1127]. -Dimensional [792, 213]. -Distribution [802, 14, 338, 228].
-Function [1420]. -Functions [1364, 1285]. -Hermite [682]. -Interpolation

3D [896].

498 [67]. 499 [75].

Efficient

Efficiently

Eigenfunction

Eigenmodes

eigenpairs

Eigenproblem

eigenpairs

Eigenproblem

Eigenproblems

eigensolver

eigensolvers

Eigenvalue

Eigenvalues

Eigenvectors

Edition

Element

Elemental

Elementary

Elementary-Function

Elements

Elimination

Ellipsoids

Elliptic

Elliptic-Parabolic

ELLPACK

elrint3d

Embedded

Empirical

enabled

Enabling

Enciphering

Enclosing

Enclosure

End

Energy

Enhance

Enhanced

Enhancements

Enumerative

Envelope

Environment

EPDCOL

Equality

Equation

Equations

Equilibrium

Errata

Erratum

Error

Errors

ESOLVE

Essential

Estimate

Estimates

Estimating

Estimation
Expansions

678, 677, 1323, 946, 537, 1364, 1341, 642, 679, 1198, 1307, 886

Experiments

213, 1028, 1308

Expression

577

Feasibility

564, 392, 391, 577, 1364, 1341, 642, 679, 1198, 1307, 886

FIAT

FEXACT

FEXACT

Faddeyeva

exploits

964, 1321, 736, 596, 723, 254, 248, 541, 768, 463, 254

Extensions

1135, 1235

Extensions

1056, 1192

Expected

312, 142, Expected-Time [312]

Experience

48, 918, 636

Experimental

213, 1028, 1308

Experiments

916, 224, Expert [776], EXPINT [1198]

Explicit

964, 1321, 736, 596, 723, 943, 284, 279, Exploiting

1344, 890, 244, 690, 718, exploits [1347]

Exploration

358

Exploratory

375

Expokit [948]

Exponential

299, 294, 441, 437, 678, 677, 1323, 946, 537, 1364, 1341, 642, 679, 1198, 1307, 886

Exponentials

948

Expression

1426, 1421, 1246, 1281

expressions

1297

Extended

592, 628, 591, 328, 324, 96, 1062

Extended-Range

328, 324

Extension

1056, 1192

Extensions

713

Exterior

1375

External

1295

Extra

1272, 1178

Extra-Precise

1272, 1178

Extrapolation

386, 442, 443

Extremal

430

F

[900]

F1

[128, 371, 112, 397, 184, 350, 113, 238, 258, 382]

F2

[139, 381, 206, 396, 486, 303, 57, 118, 217, 101, 335, 192]

F4

F5

[364, 398, 285]

facilitating [1308]

Facilities

704

Factored

1441

Factoring

930, 1266, 1256, 717, 1381, 849, 532, 1338, 550, 657, 705, 819, 40, 1255, 718, 1424, 1042, 1160, 1350, 1076, 1133, 1202, 1284, 1313, 1183, 1352, 1104

Factorizations

364, 398, 929, 850, 953, 952

FACTORIZE

[1400]

Factors

[539]

Faddeyeva [1357]

Failure [1256]

Faithfully

[1455]

Families

[1323, 1247, 1374]

Fans

[984]

FARB [638]

FARB-E-2D [638]

Fast

564, 392, 391, 577, 1099, 756, 852, 292, 189, 690, 1426, 254, 248, 541, 768, 463, 646, 869, 122, 886, 724, 1194, 1312, 1177, 1402, 1292, 909, 1154

Fast-Direct

[577]

Feasibility

[420, 1197]

Features

[209, 1017]

Feedback

866, 1053, 1169

FEM [1059]

FEM/FVM [1059]

FEM/FVM-based

[1059]

FEMLAB [1139]

FEMSTER [1152]

Fermi [863, 942]. few [1094]

FEXACT

[804, 942]

FFLAS [1263]

FFPACK [1263]

FFT [256]

FFT9 [254]

FIAT [1130, 1173]

FIDISOL [585]

Fields [1263, 109]

FILIB [1177]

Filippov [1135, 1235]

Fill [638]

filling [950, 1136]

Filter

[649, 1197, 1306, 1126]

filter-trust-region [1197]

filters [1077]

FILTRANE [1197]

Find [802, 166, 553]

Finder [235]

Finding

[105, 63, 223, 30, 142, 703, 1450, 406, 639, 497, 536, 110, 684]

Finite
Fundamental [368, 143]. FUNPACK [38]. fused [1078].

GAMS [519]. Gauss [1351, 1213, 1214, 813, 962, 987, 1320, 1317, 614].

Gauss-related [1213, 1214]. Gauss-Type [813, 962]. Gaussian [1138, 750, 749, 1432, 385, 384, 204, 200]. GCD [857].

GEMM [956, 955]. GEMM-based [956, 955].

Generated [448, 1118]. Generating [293, 817, 816, 531, 368, 72, 936, 935, 789, 813, 464, 1018, 615, 572, 601, 640, 822, 907, 146, 1214, 950, 1176, 962, 960].

Generation [376, 321, 137, 143, 1454, 147, 1436, 1449, 569, 641, 943, 1301, 951, 1228, 1102, 1136, 1023, 1032, 1303, 1398, 1209]. Generator [73, 599, 495, 587, 317, 314, 805, 807, 1462, 769, 768, 264, 219, 1442, 754, 1464, 1008, 1079, 1251, 1036].

Generators [1466, 409, 560, 500, 995, 221, 1216, 1161, 886, 925]. Generic [1268, 1454, 1356, 1059, 1275]. Genome [1427]. Genome-Wide [1427].

Geometric [165, 1226]. GERK [92]. GF [1304]. GFUN [822]. gHull [1403].

Global [625, 624, 1383, 853, 46, 569, 862, 92, 89, 451, 1453, 247, 1102, 1290, 1085].

GPOPS-II [1432]. GPU [1456, 1403]. GPUs [1382]. GQRAT [987].

Gradient [401, 168, 1166, 1250, 1249, 1037, 454]. Gradients [280, 390].

Gram [255, 251]. Graph [368, 143, 647, 406, 1373, 423, 1401, 993].

Grids [602]. Group [671]. Guaranteed [63, 830, 1166].

H [300, 271, 301, 305, 152]. H2PEC [627]. Hager [1072]. Halley [490].

Hamiltonian [1003, 1179, 406]. Hammarling [1223]. Hand [680, 1118].

hand-coding [118]. Handling [611, 825, 928, 897]. Hankel [392, 391, 988].

Hardware [420]. Harmonic [1267]. Harmonics [1435]. Harrison [1438].

[1283]. Kutta [634, 1320, 197, 1383, 1176, 632, 680, 964, 546, 1195, 287, 1103, 736, 843, 516, 545, 722, 121, 232, 528, 723, 943].

Lagrange [1265]. Lanczos [1322, 1383, 1176, 632, 680, 964, 546, 1195, 287, 1103, 736, 843, 516, 545, 722, 121, 232, 528, 723, 943].

Languages [409]. LAPACK [881, 1394, 884, 1295].
LAPACK-based [881]. LAPACK-style [884].
Laplace [1429, 494, 967, 991, 990, 1431, 793, 608, 607, 695, 117, 676, 471, 472, 868, 28, 129].

Large [915, 873, 495, 361, 1428, 613, 387, 761, 569, 603, 744, 740, 741, 614, 758, 488, 1286, 1205, 1108, 1251, 1289, 1144, 1349, 1233, 1413, 1311, 1098, 1306, 940].
Large-Scale [873, 495, 1428, 569, 744, 740, 741, 758, 488, 1286, 1205, 1096, 1251, 1289, 1349, 1233, 1413, 940].
Larger [8, 141].
Larkin [497, 536].
Last [724].
Lattice [808, 826, 1330].
Leading [311].
Least-Squares [509, 508, 348, 407, 742, 920, 347, 1416, 1200, 1197].
Least-Squares [509, 508, 348, 407, 742, 920, 347, 1416, 1200, 1197].
Legendre [137, 1209].
Libraries [1295, 1154].
LIFO [358].
Like [797, 1346].
Likelihood [780, 900, 1250, 1249].
Lilliefors [123].
Limited [1424].
Limited-Memory [1424].
Line [612, 830].
linear [1406, 1119, 1204, 1312, 1083, 1274, 1199, 1281, 1161, 1098, 1189, 1307, 1007].
Linear-quadratic [845].
Linearly [316, 315, 650, 388, 908, 954].
Linking [86].
Liouville [185, 733, 732, 1040, 904, 947, 937, 1156, 731, 794, 974, 973].
Lisp [852, 909].
List [93, 87].
Lists [293].
LLDRLF [900].
LLRANDOM [1462].
LMEF [1307].
Local [18, 23, 95, 230, 668, 265, 136, 912, 46, 1102, 1398].
Localization [1369].
Locally [413, 412].
Locating [622].
Location [301, 296, 138, 463, 697].
log [900, 1008, 900].
log-concave [1008].
log-F [900].
log-likelihood [900].
Logarithm [1323, 1264, 679, 692].
Logarithmic [142, 1213, 1214].
long [1161].
long-period [1161].
Longest [358].
Loops [558].
LOPSI [335].
Low [564, 842, 926, 476].
Low-discrepancy [842, 926].
Low-Space [564].
Lower [53].
LSA [1289].
LSNNO [758].
LSQR [379, 369].
LSTRS [1233].
LU
Lyapunov [1074, 1223]. Lyness [567]. LZ [57, 118].

Multithreaded [1367, 1350].
Multivariate
[564, 490, 771, 809, 130, 1034, 840, 603, 76, 318, 1329, 502, 1402, 1035].
MultRoot [1116]. MUMPS [1295].
NAG [730, 245, 814]. Narrow [515]. National [431]. Natural
NEOS [1000]. Nested [323, 919]. Network
[401, 262, 41, 1369, 845, 758, 488, 152, 673, 1155]. network-based [1155].
Networks [586, 637, 5, 155]. Neumann [194, 2]. Neutral [1324]. Newton
[72, 743, 675, 648, 744, 740, 741, 982]. Newton-Coates [72]. Newton/
Bisection [675]. NFFT [1292]. Niederreiter [842]. NITPACK [433, 432].
Node-Addition [532]. Nodes [640, 641]. Noisy [1253, 1361]. NOMAD
[1339]. Nonadaptive [1330]. Noncommuting [1452]. nondifferentiable
[1041]. Nonempty [904]. Nonequispaced [1292]. Nonic [683, 682].
Noninteger [796, 795]. Noniterative [812]. Nonlinear [586, 467, 466, 401,
1379, 709, 920, 832, 780, 490, 348, 347, 748, 475, 407, 742, 319, 366, 156, 375,
853, 1019, 78, 168, 513, 655, 1339, 648, 326, 325, 212, 285, 1457, 1432, 636, 54,
476, 758, 622, 621, 442, 443, 1043, 1096, 1197, 1405, 1150, 961, 1206, 1101].
nonmatching [1406]. Nonnegative [551, 694, 871, 856, 1244].
Nonorthogonal [1163]. Nonprocedural [865]. Nonrectangular [404].
Nonstandard [225]. Nonstiff [586, 632, 725, 121, 777]. Nonsymmetric
[786, 938, 797]. nonuniform [1175, 1210]. Nonzero [621]. Norm
[50, 981, 243, 290, 1028, 548, 893, 511, 555, 1354]. Notes 1010. novel
[1117]. NSDSTST [563]. NSPIV [204]. Null [833, 1407]. Null-Space [833].
Number [73, 1466, 1376, 587, 805, 704, 1462, 769, 768, 219, 109, 1464, 1216,
1023, 1032, 925]. Numbers [786, 293, 139, 52, 159, 1184]. Numeric [581].
Numerical [696, 1429, 790, 1368, 918, 43, 1387, 275, 991, 990, 793, 999, 1269,
1, 1054, 178, 85, 176, 300, 323, 608, 695, 1294, 100, 985, 808, 826, 303, 298,
776, 117, 1448, 731, 674, 212, 285, 761, 1457, 747, 503, 1447, 471, 472, 210,
482, 636, 723, 453, 865, 169, 28, 129, 421, 988, 1372, 1286, 1084, 1407, 1091,
1119, 1204, 996, 1156, 1274, 1220, 1044, 1307]. Nyström [634].

O1 [229]. Object [914, 1365, 1080, 1033, 913, 1293, 1291, 1218, 1059, 1152,
130, 117, 1206, 1181, 1044]. Object-Oriented [914, 1365, 1033, 913,
1293, 1291, 1080, 1218, 1059, 1152, 949, 1400, 1117, 1206, 1181, 1044].
Observation [1025]. Obtaining [345, 138]. ODE [333, 290, 776, 354].
ODEs [334, 1084, 554, 697, 514, 289, 311]. ODESSA [596]. odeToJava
ODEXPERT [776]. ODRPACK [659]. ODRPACK95 [1221]. Off [1013]. Off-mesh [1013]. One
One-Dimensional [824, 340, 322, 669, 644]. One-Norm [626, 644].
Open [1240]. Open-Source [1240]. OpenAD [1240]. OpenAD/F [1240].
OpenGL [1115]. Operations [178, 1394, 1038]. operators
Optimality [1439].
Optimizations [1254, 1303, 1344]. Optimized [256, 1398]. Optimizing
[1456, 1173]. option [1302]. Orbits [1360, 671]. Order
Ordered [685]. Ordering [381, 5, 600, 101, 155, 1123, 1122, 1121, 1112].
Orders [1020, 723, 1021, 1184, 1110]. Ordinary
[696, 932, 43, 633, 746, 374, 178, 446, 444, 725, 596, 595, 92, 89, 1310, 1307]. Oriented [914, 1365, 1033, 913, 1293, 1291, 1218, 1059, 1152, 949, 1400, 1080, 1117, 1206, 1181, 1044]. Orthogonal
[598, 508, 659, 813, 1076, 962, 1300, 1221]. ORTHPOL [813, 962].
Oscillating [529, 1066]. Oscillatory [446, 1294]. Osculatory [346, 349].
Other [696, 434]. Out-of-Core [550, 1367, 1133, 1183, 1282, 1104, 1314].
Overdetermined [282, 281, 56, 1272]. Overhead [290]. Overlapping [815].
overloaded [1172, 1389]. overview [1146, 1064, 1151, 1147].
P2MESH [1059]. packable [1201]. Package
[429, 428, 610, 874, 1263, 562, 654, 1096, 1119]. packed [1042, 1313, 1412].
PANG [1406]. Papers [37]. Parabolic
[709, 344, 186, 476, 284, 279, 1165, 1164, 1127, 1348]. paradigm [1130]. Paradigms [865]. Parallel [1429, 1230, 584, 190, 1325, 520, 823, 1026, 1328, 1327, 1460, 1133, 945, 1359, 1434, 1436, 455, 506, 767, 739, 845, 801, 70, 1098, 1453, 61, 330, 1378, 208, 420, 1219, 1356, 1205, 880, 1394, 1108, 1093, 1185, 1290, 1393, 1413, 1181, 1189, 1203, 1228, 1326]. parallelism [1344, 1287].
[111]. Partitioned [840, 1333, 1007]. Partitioning
[300, 295, 244, 323, 647, 421]. Partitions [656]. Pascal [454]. Pascal-SC
[709, 970, 895, 896, 1155, 1012, 1127, 1237]. PDETWO [326]. PDETWO/ PSETM/GEARB [326]. PDFIND [553]. PDS [1463]. PELLPACK
[1161]. Permutations [184, 350, 1436]. Permutted [189]. PERT
[1404, 1338, 573, 578, 1255, 204, 200, 1314]. Place [22, 1359, 258]. Planar
962, 1085, 1300, 1044. Poole [378, 377]. Poor [73]. PORT [177].
Positive [584, 127, 1247, 553, 448, 997, 1111, 1110]. positive-definite [997].
pre-ordering [1112]. Preassigned [640, 641]. Precise [772, 1272, 421, 1178].
preconditioned [914, 280, 1316]. Preconditioners [1325, 1366, 1274, 1181].
Preconditioning [1441, 949, 1037]. Preface [1060]. preordering [1230].
PRS [188]. PSBLAS [1026]. PSE [1045, 1448]. pseudoinverse [1407].
Pseudoperipheral [235]. Pseudorandom [946, 1023, 1032, 886].
Purpose [847, 848, 34, 1218, 989]. Pursuing [1148]. Pursuit [1439, 1069].
PyDEc [1375]. pymD0 [1293]. Pythagorean [1459].

Quadratic-Tensor [742]. Quadrature [712, 72, 340, 322, 813, 987, 229, 17, 1321, 213, 729, 74, 46, 640, 641, 1432, 70, 451, 1213, 1214, 1137, 1215, 962, 1303]. Quadratures [589, 452].

Random-Access [614]. random-number [925]. Randomization [1380].

Rearrangement [143]. Reasonably [211]. Recipes [969].

Refinements [278]. Region
Regions [233, 337, 404, 957]. Regression
Regular [1363, 998, 884]. Regularity [912].
regularization [1233]. Regularly [884].
Regression [104, 21, 559, 373]. Rotations [59, 27, 1063].
Relaxed [656]. Reliability [1321]. Reliable [1407, 1449, 1195, 1215].
reliably [1063]. ReLIADiff [1431]. remainder [1038].
Reveal [52]. Revealing [1256, 953, 952, 1350]. Reverse [1426, 1001].
robot-packable [1201]. Robust [784, 1195, 1262, 1424, 1312, 785].
Rounded [1455, 510, 724, 1297, 1299]. Rounding [806, 1207, 1397].
Row [429, 428, 610, 539].
Salesman [873, 872]. Sample [266, 789, 138]. Sampled [1268]. Samples [531, 29, 82]. Sampling
REFERENCES

References

Ellenberger:1960:NSP

Herndon:1961:SNF

Merner:1962:CEI

Ludwig:1963:IBR

Kase:1963:TOP

Gautschi:1964:AAB

Boothroyd:1964:G

Gautschi:1965:LFA

Fletcher:1966:ITB

Hill:1967:CSI

Bell:1968:NRD

Morris:1969:TP

TadeudeMedeiros:1969:APF

Hill:1970:SD

REFERENCES

REFERENCES

REFERENCES

Fosdick:1975:AP

Anonymous:1975:PMS

Cody:1975:FPS

Jenkins:1975:PTP

Parlett:1975:ICC

Glover:1975:RWA

Ng:1975:CCM

[42] Edward W. Ng. A comparison of computational methods and algorithms for the complex gamma function. *ACM Transactions on Mathematical
REFERENCES

REFERENCES

[84] John R. Rice. TOMS policy statement: The rights of program authors in the evaluation of programs. ACM Transactions on Mathematical Soft-
REFERENCES

[91] Kendall Atkinson. Algorithm 503: An automatic program for Fredholm integral equations of the second kind [D5]. *ACM Transactions on Math-
REFERENCES

Shampine:1976:AGG

Janko:1976:ALI

Pike:1976:RIB

Anderson:1976:RIS

Wyatt:1976:PEP

Gentleman:1976:AAC

REFERENCES

REFERENCES

[118] Linda Kaufman. Remark on “Algorithm 496: The LZ algorithm to solve the generalized eigenvalue problem for complex matrices [F2]”. *ACM
REFERENCES

D. E. Amos, S. L. Daniel, and M. K. Weston. CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$.
REFERENCES

Amos:1977:ACS

[126] D. E. Amos, S. L. Daniel, and M. K. Weston. Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I_\nu(x)$ and $J_\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]. ACM Transactions on Mathematical Software, 3(1):93–95, March 1977. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See erratum [207].

Benson:1977:ANA

Cate:1977:AAS

Veillon:1977:RNI

Dunham:1977:RMU

Aird:1977:PMS

Stoutemyer:1977:ASI

REFERENCES

[139] S. P. Chan, R. Feldman, and B. N. Parlett. Algorithm 517: a program for computing the condition numbers of matrix eigenvalues without com-

Mackay:1977:RPT

Jansen:1977:RLF

Friedman:1977:AFB

Ito:1977:MRP

Cody:1977:CRF

Gautschi:1977:ERI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Futrell:1978:RTA

Skovgaard:1978:RCE

Krogh:1978:AP

Ford:1978:PET

Fox:1978:PMS

Enright:1978:IEM

Duff:1978:ITA

REFERENCES

[186] S. J. Polak, J. Schrooten, and C. Barneveld Binkhuysen. TEDDY2, a program package for parabolic composite region problems. *ACM Trans-
REFERENCES

REFERENCES

REFERENCES

[207] Donald E. Amos. Erratum: “Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions $I\nu(x)$ and $J\nu(x)$, $x \geq 0, \nu \geq 0$ [S18]”. *ACM Transactions on Mathematical Software*, 4(4):411, December 1978. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See [126].
REFERENCES

REFERENCES

REFERENCES

DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See corrigenda [261].

[230] M. R. Anderson. Remark on “Algorithm 474: Bivariate interpolation and
smooth surface fitting based on local procedures”. *ACM Transactions on
Mathematical Software*, 5(2):241, June 1979. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic). See [23].

[231] Hiroshi Akima. Remark on “Algorithm 526: Bivariate interpolation and
smooth surface fitting for irregularly distributed data points [E1]”. *ACM
DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic). See
[181, 505].

actions on Mathematical Software*, 5(3):245–250, September 1979. CO-
DEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

ACM Transactions on Mathematical Software, 5(3):251–258, September
1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic).

[234] Philip E. Gill, Walter Murray, Susan M. Picken, and Margaret H. Wright.
The design and structure of a Fortran program library for optimization.
ACM Transactions on Mathematical Software, 5(3):259–283, September
1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic).

[235] Alan George and Joseph W. H. Liu. An implementation of a pseudope-
ripheral node finder. *ACM Transactions on Mathematical Software*, 5(3):
284–295, September 1979. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

[236] James Michael Bennett and Robert Neff Bryan. A single-point exchange
algorithm for approximating functions of two variables. *ACM Transac-
ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).
Lawson:1979:BLA

Lawson:1979:ABL

Madsen:1979:APG

Swartztrauber:1979:AEP

Steuerwalt:1979:CEF

Larson:1979:ECE

REFERENCES

December 1979. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Leathers:1979:RAS

vanSwieten:1979:RAV

Fox:1979:RFP

deBoor:1979:CCM

Cheung:1980:CCE

Ho:1980:CST

Michaels:1980:MPG

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Machura:1980:SSP

Kurator:1980:PIS

Brown:1980:EPB

Luk:1980:CSV

Sacks-Davis:1980:FLC

Bentley:1980:OET

Campbell:1980:TAM

REFERENCES

REFERENCES

Lozier:1981:AER

Golub:1981:BLM

Wang:1981:PMT

Stewart:1981:SIA

[332] Geoffrey W. Hill. Evaluation and inversion of the ratios of modified Bessel functions, $I_1(x)/I_0(x)$ and $I_{1.5}(x)/I_{0.5}(x)$. *ACM Transactions on Mathematical Software*, 7(2):199–208, June 1981. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Hill:1981:EIR

Ascher:1981:CSB

Ascher:1981:ACC
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Ahrens:1982:CGP

Lewis:1982:IGP

Lewis:1982:AGP

Paige:1982:ALS

Laurie:1982:ACA

Flamm:1982:RHE

Lewis:1982:RMB

REFERENCES

Ellison:1982:UUI

Schreiber:1982:NIS

Sasaki:1982:EGE

Brezinski:1982:ASG

Kincaid:1982:AIF

Hanson:1982:ATA

REFERENCES

[402] P. M. Hanson and W. H. Enright. Controlling the defect in existing variable-order Adams codes for initial-value problems. *ACM Transac-
REFERENCES

REFERENCES

REFERENCES

Herriott:1983:ATA

Pape:1983:RSP

Krogh:1983:AAP

Zave:1983:QEF

Watkins:1983:NSS

Duff:1983:MSI

Tarjan:1983:SEI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

December 1984. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

110

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Haas:1987:MPR

Schneider:1987:EEA

Elhay:1987:AIF

Morgan:1987:CBS

Dongarra:1988:ESF

REFERENCES

[609] Margreet Louter-Nool. Algorithm 663: Translation of Algorithm 539: Basic Linear Algebra Subprograms for FORTRAN usage in FOR-
REFERENCES

Diaz:1988:RCA

Hull:1988:EHS

Freeman:1988:DSM

Grimes:1988:SLD

Schrauf:1988:AGA

REFERENCES

[621] Michael N. Vrahatis. Solving systems of nonlinear equations using the nonzero value of the topological degree. *ACM Transactions on Math-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

Morgan:1989:FAI

Patterson:1989:AGIa

Patterson:1989:AGIb

Tang:1989:TDI

Vitter:1989:ADH
REFERENCES

131

Dadurkevicius:1989:RA

Buckley:1989:RA

Domich:1989:RHN

Corana:1989:CMF

Enright:1989:CFP

Le:1989:CED

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

September 1990. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Tang:1990:TDI

Hopkins:1990:RRK

Amos:1990:RPP

Garbow:1990:RFS

Addison:1991:ADT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Bailey:1991:AFS

Alfeld:1991:EAS

Alfeld:1991:AGE

Gustafsson:1991:CTT

Boubez:1992:PED

Lucks:1992:ASM

[Olszewski:1992:FTA]

[Schlick:1992:TETa]

[Schlick:1992:TETb]

[Hanson:1992:QTM]

REFERENCES

REFERENCES

Hansen:1992:FSG

Demmel:1992:SBA

Ammar:1992:IDC

Toint:1992:LFS

Berntsen:1992:ADA

REFERENCES

REFERENCES

REFERENCES

References

Demmel:1993:GSDa

Demmel:1993:GSDb

Bai:1993:CCN

Miminis:1993:AFS

Greenberg:1993:EAC
REFERENCES

REFERENCES

Shirts:1993:CES

Shirts:1993:AMM

Haag:1993:QLA

Chang:1993:ICR

Cody:1993:AFS

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Taswell:1994:AWT

Dunkl:1994:CHI

Dunkl:1994:AHI

Frucht:1994:NAE

Kearfott:1994:AIP

Peters:1994:EAE

REFERENCES

REFERENCES

REFERENCES

[858] I. Bongartz, A. R. Conn, Nick Gould, and Ph.L. Toint. CUTE: Constrained and unconstrained testing environment. ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

LAPACK-based library for the computer manipulation of tensor prod-
1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-

[882] I. S. Duff and J. A. Scott. The design of a new frontal code for solv-
ing sparse, unsymmetric systems. *ACM Transactions on Mathematical
Software*, 22(1):30–45, March 1996. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1996-22-1/p30-duff/.

[883] Roland W. Freund and Noël M. Nachtigal. QMRPACK: a package of
QMR algorithms. *ACM Transactions on Mathematical Software*, 22
(1):46–77, March 1996. CODEN ACMSCU. ISSN 0098-3500 (print),
journals/toms/1996-22-1/p46-freund/.

[884] Bo Kågström and Peter Poromaa. LAPACK-style algorithms and soft-
ware for solving the generalized Sylvester equation and estimating the
separation between regular matrix pairs. *ACM Transactions on Mathe-
matical Software*, 22(1):78–103, March 1996. CODEN ACMSCU. ISSN
0098-3500 (print), 1557-7295 (electronic). URL http://www.acm.org/
pubs/citations/journals/toms/1996-22-1/p78-kagstrom/.

[885] Mauricio G. C. Resende, Panos M. Pardalos, and Yong Li. Algorithm
754: Fortran subroutines for approximate solution of dense quadratic
assignment problems using GRASP. *ACM Transactions on Mathematical
Software*, 22(1):104–118, March 1996. CODEN ACMSCU. ISSN 0098-
citations/journals/toms/1996-22-1/p104-resende/.

March 1996. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
REFERENCES

172

REFERENCES

REFERENCES

Eastham:1996:USP

Weerawarana:1996:PKB

Barber:1996:QAC

Sarkar:1996:CAM

Koenker:1996:RBC

REFERENCES

REFERENCES

[925] Pei-Chi Wu. Multiplicative, congruential random-number generators with multiplier $\pm 2^{k_1} \pm 2^{k_2}$ and modulus $2^p - 1$. ACM Transactions on
REFERENCES

REFERENCES

REFERENCES

Breinholt:1998:AGH

Bik:1998:AGS

Bischof:1998:CRQ

Bischof:1998:ACR

Peters:1998:APF

Kaagstrom:1998:GLB

[955] Bo Kågström, Per Ling, and Charles Van Loan. GEMM-based level 3 BLAS: high-performance model implementations and performance eval-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Gay:1999:SAF

Flores:1999:CFR

Heinkenschloss:1999:IBO

Gockenbach:1999:CCL

Gautschi:1999:AGG

REFERENCES

Wieder:1999:ANH

Verschelde:1999:APG

DAmore:1999:IFS

DAmore:1999:AFS

Dayde:1999:RBB

Ribeiro:1999:AFS

REFERENCES

REFERENCES

REFERENCES

Anonymous:2000:JRR

Houstis:2000:PIK

Ramakrishnan:2000:MVR

Enright:2000:AAS

Grosz:2000:HVA

Ward:2000:ASM

Enright:2000:SIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1043] J. R. Cash, G. Moore, and R. W. Wright. An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary...

REFERENCES

REFERENCES

REFERENCES

Gaviano:2003:ASG

Gonzalez–Pinto:2004:TSE

Rotkin:2004:DIN

Vaz:2004:SSI

Bartlett:2004:VRT

Hanson:2004:AAV
REFERENCES

REFERENCES

Falgout:2005:PSH

Hernandez:2005:SSF

Hindmarsh:2005:SSN

Heroux:2005:OTP

Castillo:2005:FOO

Naumann:2005:DEF

REFERENCES

REFERENCES

Sala:2006:OOF

Kirby:2006:CVF

Meshar:2006:CSS

Alhargan:2006:ASC

Gray:2006:AAA

LEcuyer:2006:ISB

Kressner:2006:BAR

REFERENCES

521–532, December 2006. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

REFERENCES

Utke:2008:OFM

Goldani-Moghaddam:2008:ECU

Gao:2008:IEA

Atkinson:2008:ASF

Kodama:2008:ASP

Bartlett:2009:HDS

Naumann:2009:OVE

Huyer:2009:SSN

Kirby:2009:BDS

Quintana-Orti:2009:ULF

Drmac:2009:FRR

Fraysse:2009:ASF

VanDeun:2009:ANB

Waki:2009:ASS

Dominguez:2009:ASM

Jansson:2009:ADS

Gordon:2009:CRR

Dumas:2009:DLA

Linhart:2009:ACL

Caliari:2009:APL

REFERENCES

[1285] Souji Koikari. Algorithm 894: On a block Schur–Parlett algorithm for \(\varphi \)-functions based on the sep-inverse estimate. *ACM Transactions on

REFERENCES

references

Kornerup:2010:CCR

[1299] Peter Kornerup, Christoph Lauter, Vincent Lefèvre, Nicolas Louvet,
and Jean-Michel Muller. Computing correctly rounded integer powers
in floating-point arithmetic. *ACM Transactions on Mathematical Soft-
(print), 1557-7295 (electronic).

Kirby:2010:SFE

[1300] Robert C. Kirby. Singularity-free evaluation of collapsed-coordinate or-
thogonal polynomials. *ACM Transactions on Mathematical Software*, 37
(1):5:1–5:16, January 2010. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

Alnaes:2010:ESC

[1301] Martin Sandve Alnæs and Kent-André Mardal. On the efficiency of
symbolic computations combined with code generation for finite element
January 2010. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic).

Savage:2010:COA

[1302] John E. Savage and Mohammad Zubair. Cache-optimal algorithms for
option pricing. *ACM Transactions on Mathematical Software*, 37(1):
7:1–7:30, January 2010. CODEN ACMSCU. ISSN 0098-3500 (print),
1557-7295 (electronic).

Olgaard:2010:OQR

[1303] Kristian B. Ølgaard and Garth N. Wells. Optimizations for quadrature
representations of finite element tensors through automated code gen-
eration. *ACM Transactions on Mathematical Software*, 37(1):8:1–8:23,
January 2010. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic).

Albrecht:2010:AEM

[1304] Martin Albrecht, Gregory Bard, and William Hart. Algorithm 898: Ef-
cient multiplication of dense matrices over GF(2). *ACM Transactions
SCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

Celledoni:2010:AFF

Haggard:2010:CTP

Gonzalez-Pinto:2010:CBT

Gonnet:2010:IRA

Yamazaki:2010:APS

Anand:2010:UTE

Ollivier-Gooch:2010:IDS

[1324] Carl Ollivier-Gooch, Lori Diachin, Mark S. Shephard, Timothy Tautges, Jason Kraftcheck, Vitus Leung, Xiaojuan Luo, and Mark Miller. An interoperable, data-structure-neutral component for mesh query and

[1330] Tiancheng Li and Ian Robinson. Algorithm 906: *elrint3d* — A threedimensional nonadaptive automatic cubature routine using a sequence of

REFERENCES

Rao:2011:CAG

Reid:2011:PFD

Colman:2011:VCC

Beattie:2011:NSH

Duff:2011:DIA

Bangerth:2011:ADS

REFERENCES

REFERENCES

REFERENCES

[1376] Benjamin A. Burton and Melih Ozlen. Computing the crosscap number of a knot using integer programming and normal surfaces. *ACM
REFERENCES

February 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

July 2013. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

REFERENCES

REFERENCES

[1422] Daniel Kressner and Christine Tobler. Algorithm 941: h\texttt{tucker} — a Matlab toolbox for tensors in hierarchical Tucker format. *ACM Trans-
REFERENCES

[1429] Laura Antonelli, Stefania Corsaro, Zelda Marino, and Maria Rosaria Rizzardi. Algorithm 944: Talbot suite: Parallel implementations of Talbot’s

Belson:2014:AMP

DAmore:2014:ARC

Patterson:2014:GIM

Mitchell:2014:CAS

Kim:2014:PSD

Seibold:2014:SSO

REFERENCES

January 2015. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (electronic).

Nedialko:2015:ADM

948: DAESA — a Matlab tool for structural analysis of differential-

Heroux:2015:EAT

Results Initiative. *ACM Transactions on Mathematical Software*, 41(3):
13:1–13:5, June 2015. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-
7295 (electronic).

VanZee:2015:RCR

[1445] Field G. Van Zee and Robert A. van de Geijn. Replicated computational
results certified BLIS: a framework for rapidly instantiating BLAS
functionality. *ACM Transactions on Mathematical Software*, 41(3):
14:1–14:33, June 2015. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-
7295 (electronic). See result replication [1446].

Willenbring:2015:RCR

[1446] James M. Willenbring. Replicated computational results (RCR) report
for “BLIS: a Framework for Rapidly Instantiating BLAS Function-
June 2015. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295 (elec-
tronic). See [1445].

Pandis:2015:NID

dimensions. *ACM Transactions on Mathematical Software*, 41(3):
16:1–16:7, June 2015. CODEN ACMSCU. ISSN 0098-3500 (print), 1557-7295
(electronic).

Kroshko:2015:OPN

[1448] Andrew Kroshko and Raymond J. Spiteri. odeToJava: a PSE for the
numerical solution of IVPs. *ACM Transactions on Mathematical Soft-
(print), 1557-7295 (electronic).
Nelson:2015:RGH

Kowalczyk:2015:CRF

Fu:2015:AMT

Wittek:2015:ANS

Sosonkina:2015:RAV

Jamin:2015:CGF

[1462] G. P. Learmonth and P. A. W. Lewis. Naval Postgraduate School random number generator package LLRANDOM. Report NP555LW73061A, Naval Postgraduate School, Monterey, CA, USA, 1973. The shuffling algorithm proposed in this report does not lengthen the period, and only marginally reduces the lattice structure of linear congruential generators, despite the apparently tiny difference with the [73] algorithm: see [1464] for a comparison, both mathematical, and graphical.

