A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

04 September 2023
Version 2.149

Title word cross-reference

\[1\]

\[2\] [SRW02], + [Han81a], \(T^M\) [Bla03], [AW82].
\(\parallel\) [DDDCG02], A [DES12], \(\mathcal{R}\) [JMSY92],
\(\mathcal{R}_{\text{Lin}}\) [VR95], \(\ell\) [ADG+94]. \(O(n \log n)\)
[Pet82], \(\phi\) [CF95, DR05]. \(\pi\) [ABL03].
-calculus [ABL03]. -Exclusion [ADG+94].
-function [DR05]. -Nodes [CF95]. -Tree [Han81a]. -valued [SRW02].

11 [ND16]. 16 [TGT20].

40 [TGT20].

568 [Han81b].

8 [Ano18].

90 [DP99]. 95 [WJS+00].

Abstract
[BGL93, BK11, CMB+95, CFG+97, DGG97, DC22, DLR16, ELS+14, EO80, GS98, HL82, JPP91, KRR18, Lan80, LO94, LV94, LM18, LR13, Loe87, MSJ94, MXZ+22, Pet82, SH99, TB98, Wis79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05].

Abstraction
[BNN22, CGL94, CL94, Der85, GMH81, GKM20, SM81, BMR05, BBTS07, GMZ00, LN02, LH08, MOSS96, PR07, ELL82].

abstractions [BCF04]. Access
[ABL93, BCC04, KS83, Mis86, NBG13, SR21, HR02, HO07, KSK07, PHP02, PSS05].

Access-Right [KS83]. accessed [RR05].

Accessing [CB80]. Account [ABC+21].

Accumulation [Bir85, Bir85].

Accumulators [Cam89]. Accuracy
[LVRG21, CEG07, HDH02]. accurate [CG04, VBG04, VALG05].

ACE [Le 88].

ACM [Ano18, TGT20, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92]. Across [NSTD+15].

Action [BKS88], Actions [Lam94, LS83].

Active [SR21]. Activity [Bar81, MTG80].

Actor [TCP+17]. Acyclic [BE94, JF81].

Ad [MDCB91, PS08]. Ada

[Bak82, Dil90, Hil88, LP80, WJS+00].

Adaptation [Dha91]. Adaptive [ABH06, HOYY18, PXL95, TCVB14, UJ92, RD03].

adaptors [YS97]. Addendum [Bir85].

Adding [ACW90, BN94]. Addition
[CBMO19]. Addressing [Hol87, ZP10].

Adequacy [KKS94, Wey83]. adjusting
[ABB+09]. advice [WKP04].εMinimun [SNS+14]. Affine
[BAC16, BCEM15, CFNH18, DG19, ELS+14, VJB12]. Affix
[GF85]. agents [BCC04]. aggregate
[LSLR05]. Ahead [BLH12, DP82]. al
[Ano18, TGT20]. Alarms
[LLK+17].

Algebra
[Koz97, Wl82a, KBC+99].

Algebraic
[BP82, BWP87, CIJGP18, CGG+19, Jen97, Lin93, SV20, JB06, SP07].

Algorithm
[AB81, Bak82, BB79, BAC16, BP82, Dan23, DSW82, Dha91, DP93, GHS83, HL22, Hua90, Hud91, JRC019, LV94, LY98, Lei90, LT79, LH91, MM82, MC82a, Pet82, SH99, TB98, Wis79, BKRW98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKRW05].

Algorithmic
[BP82, CFNH18, GM12, Loes87].

Algorithms
[Apt86, BA84, CIJGP18, CGG+19, CS95, CN83, GLO88, KRS84, KMM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TM93, WW95, Apt00, DAS98, GC01, ZGZ05].

Alias
[Her97, HBC+99, RRSY08]. Aliasing
[Boe85, Ram94, RLS+01]. All-Purpose
[Spo86]. Allocating [ZP07].

Allocation
[BBT79, Bre89, BCT94, CH90, CS95, FLBB89, GS049, LCBS19, RQ79, SH99, CGS+03, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04].

Alma
[ABPS98]. Almo-O
[APBS98]. almost
[Du08, Ram99].

Alternative
[Gho93, GH80, Zav85]. Alway
[Gri79]. ambients
[BCC04, LS03, MH06].

Ambiguity
[Tho94]. amortized
[HAH12].

Amulet
[VHM+01]. Analyses
[AC94, CC95, CFM94, TN19, KSV96, SJ03].
Analysis
AKNP17, ABE+05, AD98, Bac84, BNN18, BC85b, Blo94, BE13, Bur90a, CFNH18,
CFG19, CDK+18, CMN91, DKKL18, DL93, Deh95, DP97, DC22, DAW88, FPS19,
FJK+17, GNS+15, GKM20, GDF23, GJ93, HP96, HL22, HOYY18, Hii88, Hor97, ISY88,
Jen97, JKCM09, KJ94, LK+17, LTMS20, LR13, LHR19, MC92, MG92, MRGP20,
MWB94, MOS07b, OLH+16, Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91,
RDK+83, RPP17, RP98, SR95, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07,
Bla03, Bh99, BCG+07, CSW06, Cha02, CGS+03, CKT86, DDV99, DGS97, FF99,
GHB+96, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBCC99, HVDH07, HA12, IK05,
JLRS10, KBC+99, KK07, KSK07, LP00, LH08, MPM03, NS13, PHP02, Pal98,
PKH07, Ram00, Rep00, RSL10, RD97.
analyse [DMM01, VBLG04].
analyze [DMM01, VBLG04].
analyze [DMM01, VBLG04].
analyzer [SMP10]. Analyzing
[AW85, BEF+16, CFP+04, GMM99].
And/Or [Har80]. Annotations
[Bur84]. AOP [DES12]. APL [Bud84, GD82, Hob84].
Applicability [DAA88, How80, LS98].
aplicable [Gou92]. Application
[CD79, DF80, DF81, LBN17, LR13].
Applications [BLRS12, Bou88, MRGP20,
SR21, BALP06, CMLC06, NR06].
Applicative [AC94, KS86]. apprentice
[MCP02]. Approach
[AKNP17, ABR81, AR80, BAC16, BPS82,
Bur90a, CH90, CD97, DS90, ELL2, ES97,
FT94, GGL15, Har80, Hes88, KKW14,
Lam79, Lam80, Lee89, LTMS20, MW80,
MDCB91, ND16, OA88, Sam80, Spo86,
SM81, SNS+14, Bou05, CRN+08, DHM+12,
FGM+07a, JLRS10, KV00, LP80, MBT09,
PSS05, PCJD08, RC03, SP07, WS97].
approximations [BGP99]. Apt
[Mo83].
architectured [ZP07]. Architecture
[Wal92].
Architectures
[Han94, KPF95, NSTD+15, PAS+15].
Arising [Bac84]. Arithmetic
[Fes80, GNS+15, Hen83, LdR81, MOS07b].
ARM [FKW98, ADG+21]. Armada
[LCK+22]. Armed [ADG+21]. Array
[CGST95, CG95, LS79, Per79, PW98, JB06,
LSLR05, NW05, PHP02, RMH06, RR05,
ZCG+07]. array-valued [RMH06]. Arrays
[BBC16]. Article [Ano18, TGT20]. ASF
[VHK00]. aspect [DWVW08, WKD04].
aspect-oriented [DWVW08, WKD04].
AspectML [DWVW08]. Aspects
[Bor81, Set83]. assembly
[AA+10, MWCG99]. Assertions [BKB80].
Assessing [BDH+16, Wey83]. Assets
[COE+20]. Assignment
[BM94, CFR+91, GL80, GFP08, LDK+96].
Assisted [HCP92]. Assisting [Fen82].
Associated [PPS79]. associativity [Cha02].
Associations [Rem81]. assume [HQR02].
assume-guarantee [HQR02].
Assumptions [ES97]. AST
[GVC15].
Asynchronous
[Bag89, GLO88, Mis86, GM12, HR02]. ATL
[WSH15]. Atomic [WL85, WE90, AE01].
Atomicity [JLP+14, Wei89, FFLQ08].
Attacks [SBE+19]. Attribute
[CP95, Hud91, JP81, Jou90, Kat84, KR79,
MK94, RD87, WW95, Boy96, CP96, Wu94].
Attributes [HT86]. Author
[Ano86a, Ano88a, Ano89a, Ano91a,
Ano92a, Ano94, Ano95, Ano98, Bur91].
authorization [FGM07b]. Authors
[Ano82, Ano83, Ano84, Ano85, Ano86b, Ano87,
Ano88b, Ano89b, Ano91b, Ano92b].
auto [ZP10]. auto-addressing
[ZP10].
Automata
[BMW91, CMBO19, ES97, Pro95, KV00].
Automata-Theoretic [ES97, KV00].
Automated
[GRSK+11, KZC15, KF00, LCK+22, SSFZ+23, Sok87, JNMG10].
Automatic
[AKNP17, AK87, Ano02a, BBC16, Cat80, CES86, DS90, KK98, Le 88, LK02, LS04, MS83, PZJ05, RH87, SSS81, SLC03, She91, VS22, Wat91, Wha94, ABH11, ATD08, BdlBH99, CRN+08, ZCG+07].

Automatically [Slo95]. Automatically [GKL94, MTSS09]. Avoidance [FLG94]. Avoidance [FGL94]. Aware [BPRB23, MQ05]. Axiomatic [AR80, App94a, Boe85, Sou84, YB87, YB88, LP80]. Axioms [Mis86]. B [Han81a]. Backpropagator [PS08]. Backtracking [Lin79, VR95, FM87a]. Backward [DL18, Mye18]. Balanced [AS80, PB80, vHK00]. Barrier [CHMY19]. Base [NcS20, LS98]. Based [BPP16, BGL93, Bur90a, vHK00, CI84, CP95, CH90, CPS93, DVL15, DLR16, EGP14, GG85, HT86, JTM98, Kai89, KH92, KR79, LFF14, PW98, RPD83, SR95, SGL98, Ste18, SNS+14, TY18, Wat94, WGS92, vPS81, BFG08, BMRO1, BHM+07, BCG+07, CTT07, DDV99, Eug07, FF99, HJB98, JKT23, KBC+99, KK07, KC01, LP00, LH08, LGAT00, MTSS09, ML21, MTK21, MH06, Pal98, PPT08, PCJD08, SP97, SP07, SMP10, SYN06, BDP14, WGS93, WM12].

Building [Jag94]. BURS [Pro95]. Bus [Pur94]. Bytecode [SA99, BDL+08, CSM00, FM09, GPF08, KR01, Qio00, SMP10, WR08]. Byzantine [LSP82].
Complementation [CFG+97]. Complete [BDFH97, WM95]. Completeness [LB17, TB95, WGS92, dBH21, Wu04, WGS93].

Complexity [BG22, BDFH97, WM95]. Complete [BDFH97, WM95]. Completeness [LB17, TB95, WGS92, dBH21, Wu04, WGS93].

Complete [BDFH97, WM95]. Completeness [LB17, TB95, WGS92, dBH21, Wu04, WGS93].

Completion [KR01]. Complexity [BG22, BDFH97, WM95]. Complete [BDFH97, WM95]. Completeness [LB17, TB95, WGS92, dBH21, Wu04, WGS93].

Constraint [Bor81, DGMP97, DDV99, HLH19]. NSTD+15, Pal93, PW98, Ste18, Atp00, BMR01, DPPR00, FH04, GHB+96, HPMS00, SS08, SS09, SP07, SSD09, dHB+96]. Constraint-Based [PW98, Ste18, DDV99, SP07]. Constraint-Oriented [Bor81]. Constraint-Solving [NSTD+15].

D. [Bur91]. Data
[AMT14, ANP89, AM85, Bac84, BNNN22, BC85b, BL87, Bur90a, Cha93, CS87, Kde89, DP93, DD85, Ell82, EO80, FL81, GMH81, GEGP17, HL82, Her93, Hes88, Hol87, Jen97, JCO19, KH92, Kz81, Kz98, Kd94, LaL89, LO94, LN02, LVRG21, Loe87, Mal82, MMR95, MCT96, PP91, QG95, RCRH95, RP88, SSS81, Sku95, SGL98, SM81, TWW82, WL85, We89, We90, Wet82, Wey83, CFP+04, DHM+12, DGS97, HBJ98, KBC+99, KE00, KE02, Rep00, SP07, VALG05, YUW02, ZGZ05, Pur91].
data-centric [DHM+12]. Data-Driven [BL87, CS87, JCO19]. Data-Flow
[BC85b, Bur90a, WET82, RFR88, KB+99].
data-independence [Rep00].
data-member [KF00]. Data-Parallel
[Cha93, HBJ98]. Database [Bar85, CB80].
Databases [SR21]. Dataflow
[De95, DFR15, MGB94, SS13, SS96, Van96a, Van96b, VH+01].
datalog [LS09, ZZ020]. datatypes [MBC04].
Deadlock
[CHMY19, Hua90, Kha98].
Deadlock-Free [Kob98].
Deadlocks [FJK+17].

Decision
[CMN91, CM93, Cop94, Hen82, WST85, ZS020].
Decidable [LB22].
Deciding [GGL15].

Declarative
[ABPS98, TCBV14, Bout05, MME+10].
Decomposition [BB94].
Decomposing
[BDL+08]. decomposition [LK02].
decrease [LDT+96].
Deducing [TB95].
deduction [LMD98].

Deep
[YY22].
Default
[SNS+14, LMM21].
Deferring [MTSS09].

Defined
[Wal92, Wal80, Wal81].

Definition
[Ode93].
definite [KR04].

[AR80, AD98, ASF17, Bac84, BC85b, Bur80a, DP97, DP93, FJKA96, Hor97, KD94, MMR95, NGB13, PO95, PP91, PBR+15, Pur91, RSPS23, Set83, SGL98, SS13, Wet82, DGS97, HR02, HY07, KBC+99, Pal98, PS03, RSSY08, RP88, SCP23, TZ07, WJ98].

Flow-Insensitive [Hor97, FJKA06].

Flowback [CMN91]. Flowgraph [LT79].

[ADG+21, BS66, BDP14, CB80, CD79, Fid93, Gie83, HIT97, Kna90, Lee86, Mal82, MH66, SFSZ+23, Sha82, WP10].

Formalism [Pea21]. Formalisms [PCC85].

Formalization [BPP16]. Formally [SP97].

Format [Wat83]. Forms [DS83]. formulas [RSL10]. formulations [RS97]. Fortran

[AK87, DP99]. Foundation

[KRR18, Ban11, RAB+07, Rhi03].

foundational [AM01]. Foundations

[GTWA14, LW93, AAR+10]. Fractal

[MPM03]. fractional [Boy10]. Frames

[MPLM23, SJP12]. Framework

[BGL93, Gie83, JW17, KRR18, NSZS13, NSTD+15, OHL+14, SGL08, TN19, AT08, DGS97, GMM99, GZ04, GC01, Leu04, PS08, RKRR04, TP04, VLBG04, AX07, ZCG+07, ZP10, vHK00]. Frameworks

[MNR95, KK07]. Framing

[BNN18, BNNN22]. Francez

[Fra81, Moh81, Mii83]. Free

[AP94, GEGP17, GH80, Her91, Kar84, Kob98, Pad19, JJD98, KPB2, KSV96].

freedom [KS10]. Fresh [GMN+21].

frontiers [Ago02b]. full [GB99]. Fully

[JPP91, TY21]. function [DR05, FF08].

Functional [AVF98, Ban87, Blo94, Bou05, Bur84, DW89, FL91, ISY88, JPP91, WM95, Web95, Wil82a, ABH06, Bon06, DWW08, DF98, PS08, San96, SP97].

Functions

[AKP94, AK82, Bok92, PB80, SM99, TY21, Lee99, MBC04, MB99, MT08, PPT08].

Further [CM93]. Fusion [JB20, LGAT00].

Fusion-based [LGAT00].

G. [Tie88]. Garbage [BA84, CN83, DSW82, ISY88, JCM19, TM93, URJ18, WBBF16, Wis79, YW22, BSYG+05, BALP06, HDH02, LP06, Piq96, TSB08]. Garnet [VHM+01].

General [BGL93, CHMY19, HSS+14].

General-Purpose [HSS+14].

Generalization [Nel89, LMD98].

Generalized

[An78, BS83, GKM20, KD94, Lin79].

Generalizing [DB85]. Generals [LSP82].

Generate [Sou87]. Generated

[Sl05, dJKVS12]. Generating

[HB+06, HT86, Jef03, LR13, JNZ06].

Generation

[AGT89, AS80, BOV85, BM94, DS83, DS90, GF85, GVC15, HKR92, HKR94, Pro95, Rei83, Rob79, She91, ST00b, UJ92, DAS98, MSRR00, PHEK99]. Generative

[Ge85]. Generator [JKT23, PPS79].

Generators

[Cat80, GH81]. Generic

[LV94, DMD1]. generics [IV06].

Geometry

[CR87]. Geoffrey [NN86]. BJ

[IP01].

Glanville [MSR0]. Global

[Bac84, Dha91, GHB+96, OHL+14, PK80, PS92, Sch85, Sor89, DHB+96, CS04, KBC+99, DS88]. GLR [SJ06].

Goal

[Dar90, Gu92, SYY07]. Goal-Directed

[Gu92, SYY07]. Goal-Oriented [Dar90].

Goto [CF94]. GPU [BCD+15]. Gradual

[TGT18, TGT20]. Gradualizing

[LMBT22]. Graham [MSR0].

Graham-Glanville [MSR0]. Grained

[HL22, PBR+15, DSFG21, DNS+06].

Grammar

[CI84, CP95, GF85, JP81, KR79, Web95].

Grammar-Based [CI84].

Grammars

[BS88, JKT23, Jon90, Kat84, LaL81, RD87, RH87, Tai79, WW95, Boy96, CP96, Wu04].
Graph [Ass00, Bee94, BCT94, CFR*91, FOW87, KKSD94, KLS92, LZR22, MC82a, Son87, CTT07, GC01].
graph-based [CTT07]. Graphic [Ma82]. graphical [VHM*01].
Graphs [GKM20, HRB90, KPS92, Kna90, SGL98, DR05, JC97, KSK07, SGL96, UM02]. grid [VWJB10].
Guarantee [GEGP17, LFF14, SZLY21, HQRT02]. guarantees [LS09]. guard [MP07].
guarded [SP07]. Guardians [LS83]. Guards [Ber80].
Guide [App94a, BDH*16]. Guided [OLH*16]. guiding [VALG05].
Hard [Hor97]. Hardware [BKL*97, Mis86]. Hare [Dan23].
harmful [Gor04]. Hashing [PB80, Duc08].
Haskell [Gri98]. [HPS91, PGL96, DP97, PP94].
heap-manipulating [YS10]. Heavily [BG89a]. Hennessy [CM93, WST85].
Herdin [AMT14]. Heuristic [SL92]. hiding [LNO2, OYR09].
hierarchic [AG04]. Hierarchical
[BAA9, CP95, CD79, Ay01, CP96]. hierarchically [MBC04].
hierarchies [ST00a, Van96a, Van96b]. hierarchy [KF00].
High [Cam89, Fat82, MSM+16, UJR18, CMS03, VWJB10]. High-Level
[Cam89, Fat82, CMS03, VWJB10].
High-Performance [URJ18]. Higher [AC94, AD98, CJK95, DJP+16, FPS19, SV19, BBTS07, DF11, SKS11, SP97].
Higher-Order

I-Structures [ANP89]. I/O [Car95]. Icon [GHK81, Gri82]. id [Bee94]. idempotency [KOE*06]. Identical [FLBB89].
Identification [BGH*13, SBE*19]. Identifiers [SSFZ*23]. identify [MAM*07]. Identifying [Ram99, SGL96].
[BHM*19, OLH*16, CKT86]. Imperative
[AB20, ABPS98, DFR15, Gro06]. Implementation [AKBL89, AOC*88, BCD*15, Bou88, Bre89, BS83, CM86b, GMH81, Gaz83, Lin93, MDCB91, PXL95, RL98, ML85, CMLC06, FM87a, GB99, LDM07, LPS004, Tra98, Zho96].
implementations [BBF*11, BFGT08, DF98]. Implemented [DB85]. Implementing [BR97, Her93, HW82, Sku95]. Implications
[Fat82]. Implicit [BH05b, SJP12]. Implicit-signal [BH05b]. improve [KF00]. Improved [GHR80, Mnr91, KK07].
Improvement [MS83, San96].
Improvements [BCT94]. Improving
[CK94, CMB+95, MCT96, SFFZ+23, TCP+17, WS97]. impure [Pip97].
Incomplete [MRGP20, GLMM05].
Incremental [Bur90a, CP95, DMM88, GM79, HKR92, HKR94, HPMS00, Hud91, Kai89, Lar95, LST98, LHR19, PS92, RTD83, RP88, SGL97, W98, YS91, BBYG+05, CP96, Van96a, Van96b]. Incrementally
[QL91]. Independence

labels [Sto04]. Laboratory [Bor81].

Language [ACP91, AOCl+88, Ano18, ABPS98, BS86, BPP16, BO94, Bor81, BC91, DVL15, Fat82, Fea87, FFF+18, Gud92, Hal85, HSG17, JMS92, JPP91, Kaa89, LVRG21, Mc82, Per79, PPS79, RTD83, RCS93, Spo86, SNS+14, SDD21, Tur84, Wet82, Win87, YS91, YB87, dJKVS12, van88, Bou05, BSGF03, CFPP+04, DWWW08, DF98, FM99, Gro06, HBJ98, KN06, LP99, MF09, MWCG99, PPS79, PHEK99, Tra88, VHHO02, HCW82, YB88]. Language-Based [Kai89, RTD83].

Large [Kai89, RTD83].

Large-scale [ZSS20]. Lattice [AKBLN89, MMR95, FH04]. Lauer [GM81].

Layout [KK98, LTV+83, GPWZ08, KF00]. Lazy [ABM93, FKW00, HKR94, Hud91, ITF+22, TCVB14, Chi05]. LCF [Sok87].

lead [SS05a]. Leader [Hua93, KKM90]. leak [HDH02]. learned [VHM+01].

Learning [CGJ+97a, HOYY18, JICO19, SR21]. Least [AB81, Bae84]. Least-Cost [AB81, Bae84]. Left [FKW98]. Left-Linear [FKW98].
CSS99, DDV99, DPPR00, GHB⁺96, GW99, HVB⁺99, HPMS00, KWŁ09, LMD98, Lth04, PM06, RKRR04, SRW02, Yin11, dHB⁺96.

Logical
[BNN18, GGL15, GS98, TY18, RSL10, Tar07].

Look
[DP82, GMN⁺21]. Look-Ahead
[DP82]. Lookahead
[KM81, MF88].

Loop
[BAC16, CS87, MCT96, Sit79, RKSR12].

Loops
[BAGM12, Boo82, CK94, DB85, FTJ95, Har97, Wat91, Aml02b, LS04, LSLR05, Ram99, RDG08, SGL96, UM02].

low
[CSCM00].

low-end
[CSCM00].

Lower
[FNBG20, PW94].

LR
[LaL84, ADGM91, BL94b, BF87, CPRT02, DMM88, Jef03, JS04, LSLR05, Ram99, RDG08, SGL96, UM02].

LR-based
[KC01].

Machine
[CGJ⁺97a, Cat80, GNS⁺15, Gie83, Han94, JJCO19, LR13, ML80, RF97, SS88, SDB20, Wat92, Zav85, Aml02a, CEG07, CF04, HK07, KN06, OH07, RR01].

Machine-checked
[KN06]. Machine-Code
[LR13]. Machine-Independent
[ML80].

Machine-Learning
[JJC019].

Machine-Specific
[Gie83].

machinery
[FKW00].

Machines
[ACW90, Bee94, CGST95, Gie83, Han94, JJC019, LR13, ML80, RF97, SS88, SDB20, Wat92, Zav85, An002a, CEG07, CF04, HK07, KN06, OH07, RR01].

MECALIB
[FL15].

Measures
[NcS20].

Measuring
[FL15]. Mechanically
[DSW11]. Mechanism
[KN06].

Memory
[AMT14, CK94, Cha93, CBMO19, FSH23, KZC15, KK98, KRS88, LL22, LMS⁺16, Mis86, RCRH95, SS88, ABHI11, BP12, GMM99, GW99, JNGG10, KF00, KLR02, Loc13, QR00, RR05, TS00, TP04, VBIL04, WCMO, MMM⁺07].

memory-efficient
[TP04].

memory-hierarchy
[KF00]. Merge
[Ber94]. Merlin
[HB⁺06]. Message
[CSW06, SS84, VMLY22, Gor04]. Messages
[BB79, Jef03]. meta
[Tra08].

meta-programming
[Tra08]. Metalevel
[Jag94]. Metaprogramming
[CI84].

Method
[BNN18, BCD90, BF87, HL82, Jon83, Loe87, JJD98]. Methodology
[Ban87, Her93, Sku95].

Methods
[DAW88, KM81].

Mezzo
[BPP16]. Microanalysis
[HCHP92].

Microcode
[MBV⁺21]. Microprocessors
[BPP16]. Middle-End
[BP14]. Might
[Bee94]. migration
[Piq96]. Minification
[HLH19]. Minimal
[FKW98, IPW01]. Minimization
[RS84a]. minutizing
[RMO06]. Minimum
[GHS83]. Minimum-Weight
[GHS83]. Mining
[AMT14]. Misled
[CP04]. misses
[GMM99]. Mixin
[HL05, RD13]. mixins
[ALZ03].

ML
[Bee94, CBMO19, HM93, HT04, PS03, RD13, SP06].

Mobile
[LS03, VHH⁺97, BCO04, KS10, SUV10].

mod
[Bou92]. Modalities
[SV20]. mode
[PS08, ZP10]. Model
[AY01, Ang89, BK11, BL87, BGP99, CGL94, DLR16, ES97, GS98,
Model-Checking [ES97, BGP99].

Modelling [AF84, Modelling
[AMT14, ADG +21]. Models
[FSH23, GJ93, KZC15]. Modern
[BCF04, LMM21, YW22, RAB +07]. Modes
[Deb89]. modest [LSO8]. Modification
[Lei90, RLS +01]. Modula [EO80].

Modular [AG04, BMPT94, CDK +18,
EMH20, GL94, JBK18, Jag94, KKM90,
LN15, MBC04, Wei89, YB85, dJKVS12,
KV00, MFRW09, MOS07b]. modularity
[BAA9]. Module [PAS +15, RD13].

Modules [CL95, HW82, Lam83, HL05].

Modulo [FSH23]. Monadic [DG19, MH04].

Monitors [BLH12, BH05b]. Monolingual
[HK85]. Monte [FL15]. Morel
[Sor89, Dha91, DS88]. Morphing [HS11].

Morris [Wis79]. Mostly [YF09, BBYG +05].

Motion [KRS94, Hai98]. MPI
[FKJ +17, TSY00]. Multi
[Ano18, GSS +18, ITF +22, YGRBA23, MF09].

Multi-Cores [YGRBA23]. Multi-Language
[Ano18, GSS +18, MF09].

Multi-threaded [ITF +22]. Multialgebraic
[WM95], multidimensional [RDG08].

MultiJava [MLM06]. Multilisp [Hel85].
multimethod [DAS98]. Multimethods
[CL95]. Multiparty [JS94]. Multiple
[ASF17, NSTD +15]. Multiply [FTJ95].

Multiprocess [Lam79, Lam80].

Multiprocessing [ABR81].

Multiprocessor [GP81]. Multiprocessors
[Cha93, KRS88]. Multisource [MMR95].

Multithreaded
[EGP14, JBK18, JSB +12, KKW14, NR06].

Mutivariate [HAH12]. Multimain
[Cha87, Van96a, Van96b]. munch [Rep98].

Mutandis [SHB +07]. Mutatis [SHB +07].

Mutual [LH91, ABHI11].

Mutual-Exclusion [LH91]. Myths [Gor04].

n [CTK86]. Naming [BDP93]. Natural
[GZ04, dJKVS12, ACE96]. Neighborhood
[BG89a]. Neighborhood-Constrained
[BG89a]. Nested

[Cha93, DDMP22, NB99, ACM11]. Nesting
[Hav97, Boy10]. Nests [BAC16]. Net
[JTM98]. Network [WGS92, WGS93].

Networks [CGJ97b, GC86, KRS84, dBB85].

Newtonian [RTP17]. Nicholson [FA93].

No [Ano18, TGT20]. node [JC97, UM02].

Nodes [CF95, Han81a]. Nomadic [SWU10].

Nominal [CU08]. Non

[CFG19, DL18, LLK +17, Mye18, BS88].

non- [BS88]. Non-Deterministic
[Mye18, DL18]. Non-polynomial [CFG19].

Non-Statistical [LLK +17]. Noncanonical
[Tai79]. Noncorrecting [Ric85].

Nondeterminate [TK94].

Nondeterminism
[Ber80, CCS83, Hes88, WM95].

Nondeterministic [QG95, MT08].

Noninterfering [HPR89]. nonnumerical
[MP97]. Nonprocedural [PS79].

nonrectangular [JLF02]. nonscalars
[CRN +08]. Nonsequentiality [Bar81].

Nonstrict [BLo94]. Nonterminating
[ML21]. Nontermination [PM06]. normal
[LMD98]. Normalize [CRN +08], norms
[BCC +07]. Notation [Rem81, Wi82b].

Note [Com80, CM93, MS88, WST86, Coh85,
Pal11b, YK97]. Notes [Sku95]. Nothing
[BDH +16]. Notion [WJ94]. NP [Hor97].

NP-Hard [Hor97]. NQLALR [BS88].

null [SJ06]. Number [ST62]. Numbers
[GLR84]. numeric [Hau96].

O [ABPS98, Car95]. Object
[DF84, HU96, KH92, Ruy16, Ste22, WC90,
WC91, BSvGF03, DMM01, DDDCG02,
FM99, GPWZ08, HBM +06, JPS +08,
LPS004, L096, WJS +00]. Object-Based
[HC92]. Object-Oriented
[HU96, Ryu16, Ste22, BSvGF03, DMM01, JPS+08, WJS+00]. Objects
[AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wal80, Wal81, Win84, GPV07, HB98, KF00, Sto04, WJS+00, Sku95].
obligations [DSW11]. Observability [Gaz83]. Observation [LWR21].
Observations [Sha82]. Obidian [COE+20]. Occur [AP94]. Octagons
[GMN+21]. O [SBB+19]. Old [AL94]. Old-Fashioned [AL94]. Omnisemantics [CCEG23].
On-Line [Bal94]. On-The-Fly
[CF95, BA84, URJ18, LP06, PBK+07]. One
[Bak82, BG89b, VHM+01]. One-Pass
[Bak82]. one-way [VHM+01]. online
[CG04, HVDH07]. only [PZJ05]. OO
[RSPS23]. Opacity [QG95]. OpenJDK
[YW22]. Operating
[HLH+23, HM84, BCP08]. Operational
[BLRS12, Han94, MF09]. Operations
[AKBLN89, CK94, Lee86, LS79]. Operator
[CSV01, Hen83, LiR81]. Operators
[Ive79, She91]. Optimal [BOV85, CGST95, FK85, JCMM91, KR94, Lar95, PB97, Hat98, JNZ96, KSV96, MSRR00].
optimality [CP96]. Optimally [BL94a].
Optimistic [PM04]. Optimization
[BPRB23, Bee94, BBC16, Blo94, BAC16, BT93, DF84, DP97, DDDH84, Dha91, DSS88, FOW87, HG83, HOYY81, Pem83, PP94, RRB91, SSS2, Sor89, Ts82, Web95, Ass00, BHK07, KBC+99, KF03, PE08, TVA07, ZP10, CG95, LA84, OKN06]. Optimizer-Aware [BPRB23].
Optimizations [CC95, JSB+12, CGS+03, CTK86, GMP+00, SYK+05]. optimize
[DDM01, VBLG04]. Optimized
[CM93, Cop94, Hen82, WST85, DS98, UM02]. Optimizer
[DF80, FSS83, DF81]. Optimizers
[Gie83]. Optimizing
[CEG07, KMM+98, LSLR05, ML80, NSZS13, QR00, BGKR09]. Or-Parallel [GJ93]. orchestration [PE08]. Order
[AC94, AD98, Bur84, CJK95, DP97, DJP+16, JPP91, JS94, SS98, BBT07, DF11, FPS19, MPLM23, SKS11, SV19, SP97].
Ordering [FSH23, GS99]. Organization
[Han81a]. Oriented
[Bo81, Dar90, Ell82, FFF+18, GTWA14, GKL94, GP81, HU96, Ryu16, SM81, Ste22, Tur84, YB87, YB88, BSvGF03, DWWW08, DMM01, JPS+08, WKD04, WP10, WJS+00].
origins [San09]. OSI [CDF89]. Output
[Ber80, BS83]. overflow [KOE+06].
overhead [BP12, SS96]. overlays [SWU10].
Overload [Bak82]. overloading [SS05].
Overview [AOC+88]. ownership
[DDM11, SS96]. Oz [VHB+97].
Package [Hil88]. Paper [GM81]. Parallel
[ANP89, BG22, BOV5, BO94, BE13, Cha93, CGST95, CMN91, CL94, DSS83, Fos96, GLO88, GJ93, GPA+01, HCHP92, H1T97, JF81, Kna90, LHR91, Mis94, NSZS13, OA88, R94, SS88, VMLY22, YGRBA23, BYG+05, CG86, GB99, HBJ98, KSV96, LK02, MV+01, RR03, YF98].
Parallelism [Bur84, GP95, KSV96, NB99, PW94, TCVB14, YBL16]. Parallelization
[BAC16, BJD13, PP94, BllBH99, HAM+05].
Parallelizing [HP96, ME97, RD97]. Parameter
[Gaz83, Zho96].
Parameterization [TWW82].
Parameterized
[CGJ97b, CK93, Gaz83, RKS12].
Parametric
[HFC09, MMG92, SRW02, IV06].
Parametricities [DP22]. Parenthesis
[AS80]. Parlog [CG86]. Parsed
[Wad90]. Parser
[DDH84, JKT23, JP17, LA84, SS82].
Parsers [BN99, LA81, MYD95, PK80, CPRT02, SJ06, ST00b]. Parsing
[CH87, DMM88, Fis80, GM79, Lar95, RH87, Sam80, WG98, KC01]. Part
[LA81, PA85, PA86a, PA86b, A81].
Partial [AFV98, CP17, CK93, DS88, Gom92, KCL +99, SCP23, Sor89, ADR06, BP12, CG04, GJ05, LMD98, Lew04, ST00b]. Partially \[BLH12, Kob98, RRRSY08\]. partially-sensitive \[RRSY08\]. partitioning \[RM07, YF09\]. Parts \[Son87\]. Pascal \[LS79\]. Pass \[Bak82, BM94\]. Passing \[BDM15, Gaz83, SS84, VMLY22, CSW06, Gor04, Zho96\]. Passive \[AKP94\]. Passport \[SSFZ +23\]. past \[PM09\]. Path \[Blo94, CIJGP18, SMP10\]. path-length \[SMP10\]. Patient \[FFF +18\]. Patient-Oriented \[FFF +18\]. Pattern \[EGP14, ADR06, Jay04, MTSS09, Van06\]. Pattern-Based \[EGP14\]. Patterns \[GH80\]. PDS \[Han81b\]. PEAK \[PE08\]. Peephole \[DF80, DF81, Pem83, TvS82\]. PegaSys \[MH86\]. Pennello \[Sag86\]. Perfect \[Duc08\]. Performance \[HU96, MSM +16, PB80, UR18, KF00, PE08\]. Performed \[Coh91, Wir91\]. Permission \[BPP16, SNS +14\]. Permission-Based \[BPP16, SNS +14\]. permissions \[Boy10\]. Persistent \[AM85\]. Petri \[JT98\]. Petri-Net-Based \[JT98\]. Phases \[Bar81\]. Philosopher \[CM84\]. Philosophers \[MS88\]. Pi \[BG22, HR02, KPT99\]. Pi-calculus \[BG22, HR02, KPT99\]. pict \[SWU10\]. Pictures \[MH86\]. Pipeline \[HG83\]. Pipelined \[BG89b, LPP01, RDG08\]. pipelining \[ME97\]. pitfalls \[Mon08\]. PL \[CD79, CZ84, FFF +18\]. PL/CS \[CD79\]. PL/CV3 \[CZ84\]. place \[GW99\]. Placement \[DP93, GS99\]. vHK00]. Platform \[TCP +17\]. pluggable \[MME +10\]. Plurals \[Stc22\]. Pluto \[BAC16\]. Point \[CK94, Fat82, SBB +19, GJ05, Han96, Mon08\]. Pointer \[LTMS20, LHR19, LS79, RR03, SDB20, HBCC99, HVHD07, PKH07, RLS +01\]. Pointers \[SS13, RR05\]. Points \[GKM20, WKD04\]. Points-to \[GKM20\]. Pointwise \[VSS94\]. Policies \[NBG13, BDFZ09, FGM07b\]. Policy \[Kro82, Kro83, Kro84, Kro95, Kro97, Kro88, Kro90, Kro91, Kro92, UJ92, BFG08\]. policy-based \[BFG08\]. Polyhedra \[GVC15\]. Polyhedral \[GVC15, QR00\]. POLYLITH \[Pur94\]. PolyMage \[JB20\]. Polymorphic \[BMR05, Dug99, Gor21, HT04, Hen93, KTFU93, LO94, LY98, Oh095, SIG17, SV96, TY21, WJ98, BSVG03, DWWW08\]. Polymorphism \[BMR05, MDCB01, HFC09\]. polynomial \[BAL07, CFC19\]. PolyTOIL \[BSVGF03\]. polyvariance \[LMD98\]. Polyvariant \[AC94, WJ98\]. POP \[FFF +18\]. POP-PL \[FFF +18\]. Portable \[DDH84, Han81b, HK07\]. Porting \[HLH +23\]. Possibly \[JP17, ML21\]. Postfix \[DS83\]. Postpass \[HG83\]. Power \[TWW82, SSD09\]. Powerlist \[Mis94\]. PPExe \[DKV07\]. PQ \[GZ05\]. PQ-encoding \[GZ05\]. Practical \[AD98, BAC16, BF87, CP17, Dha91, LR19, ND16, PBR +15, SS13, TSL +02, WC97, Bout05, DR05, DVO07, DGS97, JNZ06, PHP11\]. Practice \[KR94, Ryu16, Bia03, DRSS96\]. Pragmatic \[BDH +16\]. Pragmatics \[Gom92\]. Pre \[OLH +16\]. Pre-Analysis \[OLH +16\]. Precedence \[Hen83, LdR81\]. Precise \[CDK +18, FJK +17, GKM20\]. Hor97, TN19, PHP02\]. Precise-Yet-Efficient \[TN19\]. precision \[ZG05\]. Precondition \[Boo82\]. Predicate \[Lam90, BMR05, Bou05, Bent06, MFRW09, MM96, PR07\]. Predicates \[CBDGF95, Lam88\]. predictable \[SHB +07, HK07\]. Prediction \[CGJ +97a, CEG07, YS99\]. Predictive \[FJK +17\]. Prepaging \[FK85\]. Prescription \[FFF +18\]. Presence \[AWW95, CF94, KTFU93\]. preserving \[DHS09, LST02\]. pretenuring \[BHM +07\]. Pretty \[Chi05\]. Prettyprinter \[Wat83\]. Prettyprinting \[Opp80\]. Primitive \[App15\]. principals \[T207\]. Principled \[LTMS20\]. Principles \[Bou88, DRSS96\].
printing [Chi05]. Priority [CH90, Fid93]. Priority-Based [CH90]. Privacy [BKOZB13, LVRG21, TDA+23]. Privileges [Min84]. Probabilistic [AB20, BKOZB13, CFNH18, DG19, HPS83, MMS96, OGI+18, Rao94, SV19, BH99, PPT08]. Problem [ADG+94, CM84, DS88, Gho93, LSP82, MSS88, Pet82, Pet83b, PB97, Sor89, FGM+07a, Wu04]. Problems [Bac84, CFNH18, DP93, MMR95, SRW98]. Problem-Modular [CDK+18]. Procedures [AM85, Kat84, NO79]. Process [Kob98, vPS81, WP10]. process-oriented [WP10]. Processes [AFdR80, Bag89, FDY12, HM84, KS79, MW84, MC82b, Oss83, RY88, Sou84, TY18, dBB85, AE98, KS10, Ber80, Moe83]. Processing [GH80, HSG17, Rei83]. Processor [BG89b, Bud84]. Processors [GLR83, Per79, LPP01, ZP10]. Product [EMH20, RTP17]. Production [Wad90]. Productivity [Sij89]. Profile [BHM+07, YUW02]. Profile-based [BHM+07]. Profiling [ASAVF19, BL94a, BPRB23, SP97]. Program [Bal94, BNNN22, Bar85, BAL07, BKB80, Col84, DKKL18, Der85, FPS19, Foa82, FOW87, FT94, FL91, HPS83, HKR94, HSD22, HLH+23, Jen97, JCCIO1, KK14, KWL09, Lam83, Lam88, LFF14, LWR21, MSS83, MW80, Mis81, Nie85, PP94, PPS79, Rem81, RTP17, SBS22, SY00, Wat94, Wey83, ZSD09, Ass00, DDD05, GZ04, KF03, LH08, NS13, Pau01, RAB+07, SLC03, WZ07, WN08, YF09, DKV07]. Programming [AGT99, Ano18, AR84, ABPS98, BS86, BPP16, BHM+19, BL87, Bir84, Bor81, BMPT94, BWP87, BCEM15, CHY12, COE+20, CL94, Dar90, DFR15, DGL+79, Dug99, FFF+18, Fos96, FL15, GTWA14, Har80, HK85, HO82, Kai89, KH92, Lee86, LVV+83, LMM21, LVRG21, MK94, Mye90, OGI+18, Pet83b, RCS93, SS84, Ste22, SNS+14, SZBH86, TK94, TGT20, YGRBA23, ZSO21, ABH06, BMRO1, Bon06, BdlBH99, CU08, CG86, CKT86, DW2W08, DPRR00, GW99, HB9J8, JPS+08, KGM04, MVV+01, MTSS09, MQ05, Tra08, VWJB10, WKD04, WJS+00, Bir85, SWU10]. Programming-in-the-Large [MK94]. Programs [AW95, AK87, AFV98, AB20, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD00, BE94, BE13, BEF+16, CR87, CS80, CM86a, Cha93, CFNH18, CEF19, CEW14, CMN91, Cla80, CFM94, CS87, DSGF21, DL18, DGMP97, DW89, De89, DL93, De95, DP97, Di90, EMH20, EGP14, FJK+17, FNBG20, GG85, GM81, Har80, HCHP92, HPR89, How80, HIT97, ISY88, ITF+22, JBJ18, JW17, Jon83, JF81, Kna90, Lam79, LS83, MSJ94, ML21, MT2K, MRZP20, MH86, Mye18, NSZ13, OA88, OL82, PS92, QL91, Rao94, SS98, Sch82, SSS81, SS88, TOUH21, TN19, VMZ+22, Ven95, Wad90, Web95, Wil82a, AE01, AAE04, BCG+07, CSW06, CSS99, DP99, DDM01, DSW11, EGR96, GM12, GH86, GHP97, GPA+01, Hau96, HPMS00, JPS+08, KS96]. programs [LMD98, Leu04, LS09, MO99, PM06, RKRR04, RO93, San96, VJB12, WM12, YS10, Yin11, dHB+96, Bur84, Lam80]. PROLOG [LV94, AP94, AB94, BC91, CH97, FA93, GPA+01, MW94, NF89, Zho96]. Promotion [Bir84, Bir85]. Proof [AFdR80, BDJ13, FRW90, GL80, Moe83, Sag86, SS84, SOK87, WGS92, WGS93, AM01, DSW11, Oho07]. proof-carrying [AM01]. Proof-Directed [BDJ13]. Proofs [Apt86, BC85a, CM86b, JW17, LY98, Oss83, GRK+11]. Propagation [SR95, WZ91, APT00, CP96, SS05a, SS08, SS09]. Properties [ACW90, AAS9, CIJGP18, Kar84, LM18, OL82, RY88, TB95, Wei89, YS10].
Prophecy [LM22]. Proposed [Fat82].
prossima [MP10b]. Protected [PAS+15, WJS+00]. Protocol [SL92, YS97].
Protocols [MB83, BFG08, SS96].
Prototype [WCW90, WCW91].
Prototypes [HW82]. Provably [SDB20, GB99]. Provenance [ZSS20].
Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].
publish/subscribe [Eug07]. Pure [BNN18, HU96, Pip97, Tar07]. Purpose [App94b, HSS+14, Spo86].
Pushdown [WCW90, WCW91]. PYE [TN19].
Qualifiers [FJKA06]. Qualitative [CFNH18]. Quality [BHM+19].
Quantification [Vo91, Bur91]. Quantified [Gro06, STS03]. Quantitative [CFNH18].
Quantum [FDY12, BH96, Yin11]. Queries [Bal94, CGG+19]. Queuing [BW97].
Quiescence [CM86a].
R [CKT86, KMM+98, AW82]. R. [Tic88].
race [AFF06, PFH11]. Races [KZC15].
read/write [AE01]. Readable [Spo86]. Reading [Pet83a]. Real [AL94, MMG92, RS84b, GH97, HK07, LS98, YM97].
reclassification [DDDCG02]. recognition [ATD08]. Recognizer [GHR80].
Recognizing [BL94b]. Recombination [Kan84]. Recombination-Delaying [Kan84]. Recomposition [BT93, SK88, Tic86, Tic88]. Reconciling [HU96]. Reconstruction [YR94]. Record [LS79, Oho95]. Recovery [AB81, ACS84, Bac84, BF87, GH97+19, PK80, Ric85, dJKVS12]. recurrences [VJB12]. Recursion [AK82, Col84, Hen93, KTU93, Mis94, YK97]. Recursive [AC93, AK82, Ban87, CF91, Coh83, Coh85, LBN17, Sij89, ZZ022, AM01, AM01, CF04, Dug02, Pal98].
Recurrsively [BE13]. Reduce [BN99, MYD95, BALP06, KOE+06, SS96]. reduced [SG04]. Reducible [Hav97, JC97].
Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mu92, NN86, CSV01].
Redundancies [Sor89, DSS88]. redundancy [KCL+99]. Redundant [Coh83, Coh85].
Reference [Bob80, Pea21, Wis79, KSK07, KOE+06, LP06, MDJ05].
reference-counting [LP06]. References [Han92, TGT18, TGT20, SV96].
Referencing [LS81]. Referential [QG95].
region-based [SYN06]. regions [RR05].
Register [BCT94, CH90, GSO94, JLF92, LCBS19, RDG08, SH99, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04].
registers [ZP07]. Regular [CC97, HVP05, KBP22, LaL81]. relating [ABC+21]. Relation [LBN17, MTG80].
Relational [BNNN22, BKOZB13, CB80, GS98, TLH11, JJD98, JLRS10]. Relations [ELS+14, HT86, LH08]. Relationship...
Reliability [LM18, WN08].
Reliably [TCP+17]. Rely [GEGP17, LFF14, SZLY21].
Rely-Guarantee [GEGP17, SZLY21]. Rely-Guarantee-Based [LFF14].
Remembrances [PM09]. Remote [BCP08, SG90]. Removal [AK82].
Rendezvous [Cha87]. Renvoise [Sor89, Dha91, DS88]. Reoptimization [PS92].
reordering [YUW02]. Repair [BN99, MF88, MYD95, KC01]. Repairing [CPRT02].
Replacement [MM89]. Replicate [RB94]. replication [RD03].
Reply [Bur91, Fra81, LaL83, Tan83, Wir91, SM82].
Representation [DGL+79, Mul92, SM89, Wad90, Wan82, Mil85].
Representation-Independent [Mul92]. Representations [Lam87, RF97, Wa80, Wa81, BGP99].
Resolution [ABR81, Bak82]. Resolved [SIG17].
Response [Tic88]. Responsibily [DC22]. Responsivness [HU96]. Restores [Wis79].
Result [TB95]. Results [Ven95, BGP99, SYYH07]. Retargetable [DF80, DF81, MV87]. Retention [LS81].
Rethinking [LHR19]. retrofitting [NCH+05]. Return [SDB20]. reuse [DNS+06, GW99, ZSD09].
Revisiting [DI09, ZZO22]. Rewrite [FKW98, Ass00]. Rewriting [KKSD94, BCM99, DDD05, FKW00, GRSK+11, MMM+07]. Right [KS83, LaL81, SJ06].
Rigorous [SBB+19]. Rings [BP89, Hua93]. RISC [PS93].
Rivieres [Hen83]. RMI [MVF+01].
Robust [LS83]. Robustly [PG21]. Roever [Moi83]. role [Apt00]. Roman [PB97].
Round [SBB+19]. Round-Off [SBB+19].
Rounding [FL15]. Row [MM89]. RSMs [CGG+19]. rule [HQRT02]. Rules [GL80, JTM98, SS84, LS09, SSD09]. Run [ISY88, TZ07, GMP+00]. Run-Time [ISY88, TZ07, GMP+00]. Runtime [Ano18, BLH12, BEF+16, FNBG20, GSS+18, ISIRS22, TCVB14, BH05a, TSV00]. Rust [MTK21, Pea21]. RustHorn [MTK21].
Scalability [TCP+17]. Scalable [FT94, GKM20, ZSS20, XA07].
ScalaExtrap [WM12]. scale [ZSS20].
BCEM15, PAS⁺¹⁵, PG21, BBF⁺¹¹, HY07]. Securely [RB94]. Securing [BNV⁺²¹].

Security

Semantic [AAR⁺¹⁰, AW90⁺⁵, GGL15, LCK⁺₁², ML21, MH06, HCW82].

Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPS93, CD79, FA93, GM98, Gud92, Han94, JPP91, Kai92, Muh92, NF89, Set83, Sou84, WM95, Wan82, dBB85, ACE96, BMR01, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WK04].

Semantics-Based [BGL93, CPS93, PCJD08].

Semaphores [CR87]. Semiring [BMR01].

Semiring-based [BMR01]. Send [Gor04]. Send-receive [Gor04]. Sensitive [OLH⁺¹⁶, HBS22, PKH07, Ram00, Rep00, RRSY08].

Sensitivity [FL15, KRR18, LTMS20].

Separators [DDM11, Ste22]. Separation [BDJ13, DJP⁺¹⁶, OYR09, BBT07, PZ22].

Separators [GS094]. Sequences [GSW95, IWR21]. Sequent [ABS09, Miq19].

Sequential [AFdR80, Ber80, Gor91, GLR83, HMS4, KST9, MC82b, Moi83, Sou84].

servers [BBYG⁺⁰⁵]. service [CMS03].

Services [CHY12, RB91, BFG08, CGP09].

Session [DDMP22, KBB22, Pad19, TY18].

Session-Based [TY18]. Sessions [TY21].

Set [Sha82, FF99]. set-based [FF99].

Share [SS88]. Shared [Cha93, FLBB89, KH92, KRS88, LB22, Pet83b, Dug02, HBJ98, TSY00, BC91].

Shared-Memory [Cha93, TSY00]. Sharing [CS99, Lam87]. SHErrLoc [ZMVP17].

Shift [BN99, MYD95]. Shift-Reduce [BN99, MYD95]. Short [Gor86]. Should [LP99].

Side [Boe85, SCP23, KWL09, RLS⁺¹⁰, TA08].

Side-channel [SCP23]. side-effect [RLS⁺¹⁰]. sign [KKN06]. signal [BH05].

Signatures [BR97]. Signedness [GNS⁺¹⁵].

similar [AE98]. Simple [Boe85, GLO88, JP17, LM22, SH89].

simpler [BKR98, BKRW05].

Simplification [LZ22, NO79]. Simula [Lam80]. Simulating [KKSD04].

Simulation [AMT14, Bar81, Bor81, LFF14, HQRT02].

sin [Lam90]. Single [BM94, CFR⁺⁹¹, JBK18, GPF08].

Situ [AKNP17]. situations [WN08]. Size [BA08, BEF⁺¹⁶, JB09, Lee09, DK⁺⁹⁶].

Size-change [BA08, Lee09]. Sized [DG19].

Sketches [HSD22]. Slicing [AB20, AHJR14, CF94, DL18, GH97, HBB90, ML21, Mye18, Ven95, WZ07, BK07, GZ07, NR06, RAB⁺¹⁷, WR08, ZG05]. SLR [BS88, Tai79].

Small [BNV⁺²¹, FLBB89, LH91, Pet83b]. Smart [Tie86]. Smarter [SK88, Tie88].

Smooth [CCEG23, JF81]. Soft [WC97].

Software [ACM11, AW85, Ber94, DAW88, HSS⁺¹⁴, How80, JW17, PXL95, PPS79, Pur94].

Wal92, YBL16. CTT07, HN05, LS98, ME97, NCH⁺⁰⁵, RDG08, SHB⁺¹⁰, SRM10].

Software-Defined [Wal92]. Soinenen [LaL84]. Soisalon [LaL84].

Soisalon-Soinenen [LaL84]. Solution [ADG⁺⁹⁺, DS88, Gho93, Pet83b, Sor89].
Subtyping-Relation [LBN17]. SUIF [HAM+05]. Supercompiler [Tur86].
Superimposition [Kat93].
Symbol [ABR81, Rei83]. Symbolic [Dil90, HP96, Hal85, Hen82, NcS20, RR05, SBB+19, YMW97, BGP99, MPM03, CM93, WST85].
Symmetric [FY85]. Symmetry [ES97, SG04].
Synchro system [Apt86, BAGM12, BCG+07, CFNH18, CDK+18, DSFG21, DG19, Fra80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07, BA08, DDEV99, GRSUB+11, Lee09, PR07, SMP10, Fra80a, Moh81]. Temporal [AS89, CBDFG95, CES86, Kar84, Lam94, MW84, GS99, KWL09].
Self-synchronisation [CHMY19].
Synchronizable [And81]. Synchronous [CS87, TLHL11, YGRBA23]. synchrony [CS04].
Synchronization [Bag89, DJP+16, Her91, KRS88, RS84b, Sch82, CGS+03, DHM+12, Ram00, RD03].
synchronization-sensitive [Ram00].
Synthesizing [And81]. Synchronization [CS87, TLHL11, YGRBA23], synchrony [CS04].
Syntax-Directed [DMM88]. Syntax-Error-Handling [SSS83].
Syntax/Semantic [HCW82]. Synthesis [AE98, AE01, AAE04, Ban78, BDJ13, BKL+97, Cla08, DKKL18, HLH+23, MW80, MW84, MV87, SBS22]. System [AFDR80, AW85, BS86, Bon88, CB80, FEA82, GD82, GP81, Han81b, HM84, JMSY92, LR13, ML80, Moe83, MH86, P095, RD13, SA99, WC97, BH05a, FH04, FM99, HO07, JB06, KS10, MTSS09, NP08, PE08, STS05, MWCG99]. Systematic [DC22, DF98, PSS05]. Systems [ABLBP93, ANO18, AR84, ACS84, BKS88, BG89a, BDP93, CI84, CDFP89, CBDFG95, CJJP18, CES86, CPS93, CBMO19, DL18, DAW88, FEA87, FKWK89, Gor21, Hen86, HLH+23, Jag94, Jon94, JTM98, Kar84, Kat93, Kau84, Lam84, LW93, Mis86, Myc18, SZLY21, TGT20, WGS92, WGS93, WC90, van88, Ass00, AE98, BCP08, BCM99, BGP99, CSCM00, DGG97, GS11, TP04, TZ07, YMW97, WCW91]. Systolic [Hen86].
T [Zic94]. Table [BMW91, PK80, DAS98].
Table-Drive [PK80]. Tabled [SS98].
Task-Parallel [NSZS13]. Tasking [Dil90].
Tasks [GP81]. Taylor [SBB+19]. tcc [PHEK99]. Technical [BS88, Bur90b, Bur91, Coh89, CM93, DS88, Ell82, FA93, Fra81, Hen83, LA83, LA84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tic88, Vol91, WST85, Wir91, YB88, MMM00]. Technique [AWW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNGG10, KBC+99, RD97, SYN06]. Techniques [AK82, CMN91, DP99, GLR83, How80, TWW82, WCW90, WCW91, BHK07, DDD05, DEM00, LS98, MSRS00, SS96, TSL+02], technology [LS98].
Temporal [AS89, CBDFG95, CES86, Kar84, Lam94, MW84, GS99, KWL09].
Tenuring [JJ92]. Term [KKSD94, MBTO9, GRKS+11].
Termination [AF84, AOE01, BAGM12, BCG+07, CFNH18, CDK+18, DSFG21, DG19, FRA80b, GJ05, HSP83, JBK18, MC82b, TM93, BAL07, BA08, DDEV99, GRKS+11, Lee09, PR07, SMP10, Fra80a, Moh81]. Test [Wey83, WW95, Duc08]. Testing [AMT14, GMH81, TK94]. Tests [Coh91, Koz97, Wir91, GZ05]. Text [CC97].
Theoretic \cite{TF,TF-Coder}. Their \cite{Theoretic,TF,Coder}. Theorems \cite{TF-Coder}. Theory \cite{TF,TF-Coder}. Theoretical \cite{TF-Coder}. Theories \cite{TF-Coder}. Tradeoffs \cite{TF,Coder}. Things \cite{TF-Coder}. Third \cite{ThingLab}. Thinking \cite{TF-Coder}. Third \cite{TF-Coder}. Thread \cite{TF-Coder}. Thread-Level \cite{TF-Coder}. Threaded \cite{TF-Coder}. Tichy \cite{TF-Coder}. Tile \cite{TF-Coder}. Tiling \cite{TF-Coder}. Time-Constrained \cite{TF-Coder}. Time-Critical \cite{TF-Coder}. Time-efficient \cite{TF-Coder}. Timed \cite{TF-Coder}. Tokenization \cite{TF-Coder}. Tolerance \cite{TF-Coder}. Toolkit \cite{TF-Coder}. Top-down \cite{TF-Coder}. TOLAS \cite{TF-Coder}. Tortoise \cite{TF-Coder}. Total \cite{TF-Coder}. Trace \cite{TF-Coder}. Trace-Based \cite{TF-Coder}. Trace-relating \cite{TF-Coder}. Traces \cite{TF-Coder}. Tracing \cite{TF-Coder}. Tradeoffs \cite{TF-Coder}. Trailing \cite{TF-Coder}. Traits \cite{TF-Coder}. Transactional \cite{TF-Coder}. Transactions \cite{TF-Coder}. Transaction \cite{TF-Coder}. Transactional \cite{TF-Coder}. Transaction \cite{TF-Coder}. Transactions \cite{TF-Coder}. Transaction \cite{TF-Coder}. Transactions \cite{TF-Coder}. Transformational \cite{TF-Coder}. Transformations \cite{TF-Coder}. Treatment \cite{TF-Coder}. Treediens \cite{TF-Coder}. Trees \cite{TF-Coder}. Two-dimensional \cite{TF-Coder}. Two-variable \cite{TF-Coder}. Type \cite{TF-Coder}. Type-based \cite{TF-Coder}. Type-driven \cite{TF-Coder}. Type-Safe \cite{TF-Coder}. Type-preserving \cite{TF-Coder}. Type-safe \cite{TF-Coder}. Type-checking \cite{TF-Coder}. Typified
Typed Untyped [GDF23]. Types [AFF06, AC93, BG22, BB94, BCEM15, DDM22, DPP22, DD85, EO80, FFLQ08, GEGP17, HL82, Hes88, Jen97, Kam83, KBP22, LaL89, LO94, LBN17, Loe87, Mal82, Miq19, MP88, TDA+23, WL85, Wei89, Wei90, AM01, BBF+11, Dam03, DDM11, DMM01, Gro06, GPV07, HVP05, IV06, MME+10, PS06, Pal98, STS03, SP07].

Typed - Untyped [GDF23].

Types [AFF06, AC93, BG22, BB94, BCEM15, DDM22, DPP22, DD85, EO80, FFLQ08, GEGP17, HL82, Hes88, Jen97, Kam83, KBP22, LaL89, LO94, LBN17, Loe87, Mal82, Miq19, MP88, TDA+23, WL85, Wei89, Wei90, AM01, BBF+11, Dam03, DDM11, DMM01, Gro06, GPV07, HVP05, IV06, MME+10, PS06, Pal98, STS03, SP07].

Typestate [COE+20, GTWA14].

Typestate-Oriented [GTWA14].

Typing [ACPP91, DG19, Dug99, GGSV22, RM10, SV96].

Ultimate [PS08]. Ultrascalers [Sch80].

Unassigned [Win84]. Unbound [LWR21, BGP99]. uncaught [LP00].

Undecidability [Ram94, Rep00, Cha02].

Unecessary [BT93]. Untrusted [JW17].

Untyped [GDF23]. Update [Hud91, FGM+07a, GW99]. Updating [HSS+14, HN05, SRW98, SHB+07]. Upper [PW94].

Usage [MS83, BDFZ09, IK05, QR00]. Use [FOW87, GH80, HS94, LAL84, PPS79, She91, SS82, CC97]. usefulness [HD02].

User Defined [Wal80, Wal81].

Using [AGT89, Bob80, CGJ+97a, CES86, CH87, DP93, DiH90, DMM01, DJP+16, FLBB89, GSW95, GSO94, HRB90, ISIRS22, JTM98, Kar84, LaL89, Lam84, LM18, LWR21, Mye90, Ode93, Pet83b, PP94, PBR+15, SSFZ+23, SS84, S96, Sok87, SGL98, Tvs82, ACM11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, SZLY21, ST00a, SGL96, TFK+11, VJB12, SA07, YUW02, ZSD09, Fem83].

Utilizing [ES97].

VAL [McG82, Wet82]. Validation [How80, KC01, MOS07a]. Value [HL82, dBH21, HL05, SW97a]. valued [RMH06, SRW02]. Values [DD85, Han92, HSD22, Wet82]. Variable [MS83, MTG80, FMoPS11, GGMM05].

Variables [GSW95, JPP91, Lam88, LH91, Pet83b, Rem81, Sch85, BG99, HVB+99, NS13, SV96].

Variable [IV06]. variants [FG03]. Variational [CEW14]. Variety [Ns20]. Vector [AK87, Bud84, CBMO19, Fis80, FTJ95, KD94, Per79, KK07].

Verifiable [YB85]. Verification [App15, BDP14, BCD+15, CDGP89, CES86, CPS93, CHMY19, DiH90, EGP14, GL94, ITF+22, JBM8, JN94, JTM98, KKW14, LFF14, L99, LCK+22, LS97, MTK21, NBB13, RY88, SZLY21, SDFZ+23, DLD+08, CEI+07, GF08, GM12, Qia00].

Verifying [AS89, BFG08, CGJ97b, DJP+16, GEGP17, LM18, YS10, Mon08]. Version [YR94]. Versions [HPR89]. Versus [DPP22, PaH98, Pip97, UM02]. Vertices [BGH+13]. Very [GLR83]. VHDL [BKL+97]. via [CEI+07, FKW98, GF08, GSO94, HLH19, HOYY88, ITF+22, MMM+07, PEO8, RTP17, SRW02, SW20, SCP23, Sra08, WCM00].

View [KBP22, SZBH86, FGM+07a].

VLSI [LTV+83]. Volpano [Bur91].
References

Ancona:2007:PCT

Attie:2004:SFT

Ahmed:2010:SFT

Anderson:1981:LLC

Arbab:1994:SCD

REFERENCES

[ABL03] Roberto M. Amadio, Gérard Boudol, and Cédric Lhoussaine. The receptive distributed

\[\text{Abadi:1993:CAC}\]

\[\text{Afek:1993:LC}\]

\[\text{Apt:1998:AIL}\]

\[\text{Ashley:1994:FCP}\]

\[\text{Ariola:2009:SCA}\]

\[\text{Amadio:1993:SRT}\]

\[\text{Ashley:1994:FCP}\]

J. Michael Ashley and Charles Consel. Fixpoint computa-

Ashley:1998:PFF

Afek:1994:BFF

Ager:2006:FPE

Attie:1998:SCS
Attie:2001:SCP

Apt:1984:MDT

Appel:1994:E

Abadi:2006:TSL

Alpuente:1998:PEF

Appel:1993:Eb

Alur:2004:MRH

Aho:1989:CGU

Alur:1998:FF

Apel:2010:CUF

Aung:2014:SS

Ahmed:2020:ISI

Arsac:1982:STR

Allen:1987:ATF

Ait-Kaci:1989:EIL

[AKBLN89] Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, and Roger Nasr. Efficient implementation of lat-
REFERENCES

Alglave:2017:DSF

Ait-Kaci:1994:FPC

Abadi:1994:OFR

Abadi:1995:CS

Ancona:2003:JDJ

Atkinson:1985:PPD

Transactions on Programming Languages and Systems, 7(4): 539–559, October 1985. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Anonymous:1986:AI

Anonymous:1986:IA

Anonymous:1987:AI

Anonymous:1988:AI

Anonymous:1988:IA

Anonymous:1989:AI

Anonymous:1989:IA

Anonymous:1990:AI

Anonymous:1990:IA

Anonymous:1991:AI

REFERENCES

REFERENCES

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

Apt:1994:OCF

Abadi:2007:E

Appel:1993:Ea

Appel:1994:ABG
References

Arnold:1980:URG

Alp:1989:VTP

Andersen:2019:FSP

Austin:2017:MFD

Thomas H. Austin, Tommy Schmitz, and Cormac Flanagan. Multiple facets for dynamic information flow with exceptions.

Ashcroft:1982:RS

Avrunin:1985:DAD

George S. Avrunin and Jack C. Wileden. Describing and analyzing distributed software sys-

References

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF

Ben-Ari:1984:AFG

Bondhugula:2016:PAP

Uday Bondhugula, Aravind Acharya, and Albert Cohen. The Pluto+ algorithm: a practical approach for parallelization and locality optimization of affine

Bagrodia:1989:SAP

Ben-Amram:2012:TIL

Baker:1982:OPA

Ball:1994:ECP

Ben-Amram:2007:PTA

Brecht:2006:CGC

Banerjee:1987:MSR

Banerjee:2011:MFT

Barnden:1981:NCA

Barsto:1985:CTD

Bhaskaracharya:2016:ASO

Bengtson:2011:RTS

REFERENCES

Nicholas Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions for C#.

Sapan Bhatia, Charles Consel, and Calton Pu. Remote specialization for efficient embed-
REFERENCES

Briggs:1994:IGC

Bergstra:1997:TCT

Bartoletti:2009:LPR

Blackburn:2016:TWT

Botincan:2013:PDP

Bernardeschi:2008:DBV

[BDL+08] C. Bernardeschi, N. De Francesco, G. Lettieri, L. Martini, and P. Masci. Decomposing byte-

Bueno:1999:EAI

Barthe:2014:FVS

Bossi:1994:TAP

Bouajjani:2013:ARP

REFERENCES

Beemster:1994:SOG

Brockschmidt:2016:ARS

Bernstein:1980:OGN

Bernzins:1994:SMS

Burke:1987:PML

Bhargavan:2008:VPB

Bhargavan:2008:VII

REFERENCES

REFERENCES

(BKRW98) Adam L. Buchsbaum, Haim Kaplan, Anne Rogers, and Jeffrey R. Westbrook. A new, simpler linear-time dominators algorithm. *ACM Transactions on Programming Lan-
REFERENCES

Buchsbaum:2005:CNS

Back:1988:DCA

Bic:1987:DDM

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ

Bodden:2012:PEF

[BLH12] Eric Bodden, Patrick Lam, and Laurie Hendren. Partially eval-

REFERENCES

[102x681]0164-0925 (print), 1558-4593 (electronic).

[54] Ball:2005:PPA

[BMR05] Borstler:1991:TCT

[BN94] Bertsch:1999:FPT

REFERENCES

Bohm:1994:TIP

Bobrow:1980:MRS

Boute:1988:SSP

Boute:1992:EDF

REFERENCES

REFERENCES

They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

REFERENCES

[Cas95] Giuseppe Castagna. Covariance and contravariance: Conflict without a cause. *ACM
REFERENCES

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Cotton-Barratt:2019:MVP

Click:1995:CA

Clarke:1997:URE

Charguéraud:2023:OSH

Constable:1979:HAF

Chen:2018:BPP

Casey:2007:OIB

Chander:2007:ERB

Clarke:1986:AVF

REFERENCES

Chen:2014:ETI

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

Chatterjee:2019:NPW

REFERENCES

Codish:1994:SAC

Chatterjee:2018:AAQ

Cortes:2004:HLA

Cytron:1991:ECS

Clark:1986:PPP

Chin:1995:ROA

REFERENCES

Christensen:2004:OPE

Chatterjee:2019:FAD

Calder:1997:EBS

Clarke:1997:VPN

Clarke:1994:MCA

Castagna:2009:TCW

Choi:2003:SAS

[CGS+03] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and Samuel P. Midkiff. Stack allocation and syn-

REFERENCES

[CK93] S. Carr and K. Kennedy. Imp-

Cooper:1986:IIA

Crowl:1994:PPC

Chambers:1995:TMM

Clarke:1980:SRI

Chandy:1984:DPP

Chandy:1986:ESR

Chirica:1986:TCI

Copperman:1993:TCF

Codish:1995:IAI

Clifton:2006:MDR

Choi:1991:TDP

Christensen:2003:EJH

Cohen:1983:CCA

Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for garbage...
REFERENCES

Clemm:1990:MEI

Coblenz:2020:OTA

Cohen:1985:NCE

Cohen:1991:TCT

Colussi:1984:RES

Comer:1980:NMS

[Com80] Douglas Comer. A note on median split trees. ACM Trans-

Copperman:1994:DOC

Carle:1995:MBI

Carle:1996:OCP

Cohen:2017:LPC

Corchuelo:2002:RSE

Cleaveland:1993:CWS

Carson:1987:GSP

Scott D. Carson and Paul F. Reynolds, Jr. The geometry

References

Cooper:2001:OSR

Carlsson:2006:MAC

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Danvy:2023:THA

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Dunlop:1985:GSU

deBruin:1985:DSD

DeBoer:2021:CCR

Deng:2022:SDR

[DC22] Chaoqiang Deng and Patrick...

Donahue:1985:DTV

DeSutter:2005:LTB

Drossopoulou:2002:MDO

Dencker:1984:OPT

Dietl:2011:SOT

Das:2022:NST

Decorte:1999:CBT

Stefaan Decorte, Danny De Schreye, and Henk Vandecontenteele. Constraint-based termination analysis of logic pro-
Debray:1995:CDA

DeMillo:1983:GEI

DeM83

DeFraine:2012:EAC

DeFraine:2012:EAC

See also corrigendum [DF81].

Dewar:1979:PRE

DeBoer:1997:PCC

Duesterwald:1997:PFD

Dhandhere:1991:PAG

DelaBanda:1996:GAC

DeLaBanda:2000:ICL
Marí García De La Banda, Manuel Hermenegildo, and Kim Marriott. Independence in

Eva Darulova and Viktor Kunčak. Towards a compiler for reals. *ACM Transactions on Pro-
REFERENCES

David:2018:PSP

Drinic:2007:PPC

Debray:1993:CAL

Danicic:2018:SBS

Dissegna:2016:AIB

Degano:1988:EIL

Diwan:2001:UTA

REFERENCES

DAN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DUC06] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärtl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[DPP22] Dominique Devriese, Marco Patrignani, and Frank Piessens.

Dovier:2000:SCL

Das:2005:PFI

Dawson:1996:PPU

Dekel:1983:PGP

Drechsler:1988:TCS
REFERENCES

Duggan:2002:TSL

DeSutter:2007:PID

Dantoni:2015:FTB

Debray:1989:FCL

Dantas:2008:APA

Etalle:2001:TCP

Esparza:2014:PBV

Ellis:1982:TCS

John R. Ellis. Technical correspondence: On Steensgaard-Madsen’s “A Statement-Oriented

Elder:2014:ADA

Eilers:2020:MPP

Finlay:1993:TCC

Fateman:1982:HLL

Richard J. Fateman. High-level language implications of

Feng:2012:BQP

Feather:1982:SAP

Feather:1987:LSS

Flanagan:1999:CSB

Furr:2008:CTS

Florence:2018:PPP

Flanagan:2008:TAS

[FFLQ08] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and...

Fournet:2003:SIT

Fournet:2007:TDA

Fernandez:2004:ICS

Fidge:1993:FDP

Fisher:1980:PCA

Charles N. Fischer. On parsing and compiling arithmetic expressions on vector computers.
REFERENCES

Forejt:2017:PPA

Foster:2006:FIT

Fuchs:1985:OPF

Fokkink:1998:WAR

Fokkink:2000:LRE

Fradet:1991:CFL
Pascal Fradet and Daniel Le Metayer. Compilation of functional languages by program

Frohn:2020:ILR

Foster:1996:CPP

Ferrante:1987:PDG

Fisher:2002:GE

Facchinetti:2019:HOD

Francez:1980:CDT

Francez:1980:DT

REFERENCES

Francez:1981:TCR

Farmer:1990:CPC

Fan:2023:SMO

Freudenberger:1983:ESO

Foster:1994:CAS

Fricker:1995:ICI

Francez:1985:SIC

REFERENCES

Greenman:2023:TUI

Gordon:2017:VIL

Gelernter:1985:GCL

Georgeff:1984:TRS

Ganapathi:1985:AGD

Gini:1985:DWM

Gesbert:2015:LAD

REFERENCES

Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient coordination of very large numbers of cooperating sequential processors. ACM Transactions on Programming Languages and Systems, 5(2):164–189, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Irene Greif and Albert R. Meyer. Specifying the semantics of while programs: a tutorial and critique of a paper by Hoare and Lauer.
REFERENCES

REFERENCES

REFERENCES

Gal:2008:JBV

Gri:1979:SEB

Gri:2008:EEI
Griswold:1982:EEI

Gro:2006:QTI

Gri:2011:ATP

Gil:2008:TDB

Gri:1982
Grossman:2006:QTI

GS98
Giacobazzi:1998:LMR
Roberto Giacobazzi and Francesca Scozzari. A logical model for relational abstract domains. ACM Transactions on Programming Languages and Systems, 20
REFERENCES

REFERENCES

[102x681]0925 (print), 1558-4593 (electronic).

REFERENCES

REFERENCES

REFERENCES

Hecker:2022:TSC

[Hen82] John L. Hennessy. Symbolic debugging of optimized code. ACM Transactions on Programming Languages and Systems, 4
REFERENCES

[Hen91]

[Her93]

[Hes88]

[HF87]
Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in procedural objects. *ACM Trans-
REFERENCES

[HK07] Thomas A. Henzinger and Christoph M. Kirsch. The em-

[Henzinger:2007:EMP] Thomas A. Henzinger and Christoph M. Kirsch. The em-

[Henzinger:2007:EMP] Thomas A. Henzinger and Christoph M. Kirsch. The em-

[Henzinger:2007:EMP] Thomas A. Henzinger and Christoph M. Kirsch. The em-

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Hermenegildo:2000:IA

Heo:2018:ASA

Haghighat:1996:SAP

Howden:1980:ASV

W. E. Howden. Applicability of software validation techniques to scientific programs.

[HSD22] Qinheping Hu, Rishabh Singh, and Loris D’Antoni. Solving program sketches with large

REFERENCES

Huang:1993:LEU

Hudson:1991:IAE

Hirzel:2007:FOP

Hosoya:2005:RET

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expression types for XML. *ACM Transactions on Programming Languages and Systems*, 27(1):46–90, January 2005. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Holt:1982:MIE

REFERENCES

Herlihy:1990:LCC

Hudak:1991:CIE

Honda:2007:UTS

Igarashi:2001:FJM

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Igarashi:2005:RUA

[ISIRS22] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. *ACM Transactions on Programming Languages and Systems*, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Inoue:1988:AFP

REFERENCES

REFERENCES

Janssen:1997:MGR

Jacek:2019:OCW

Jeery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jeon:2019:MLA

Jackson:1998:IFM

Jacobson:1998:IFM

Jia:2023:DBP

Jimenez:2002:RTN

Jagannathan:2014:ARV

Jeannet:2010:RAI

Jaffar:1992:CLS

REFERENCES

Jerey:2010:ESA

Joshi:2006:DPA

Jones:1983:TST

Jones:1990:EEC

Jonsson:1994:CSV

Jazayeri:1981:SES

REFERENCES

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

Kistler:2000:ADM

Kistler:2003:CPO

Knowles:2010:HTC

Keen:2004:JFD

Aaron W. Keen, Tingjian Ge, Justin T. Maris, and Ronald A. Olsson. JR: Flexible distributed programming in an extended
REFERENCES

REFERENCES

REFERENCES

Kim:2006:ERI

Kozen:1997:KAT

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kobayashi:1999:LPC

Kennedy:1979:DAG
REFERENCES

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Krupkal:1988:ESM

Knooop:1994:OCM

Kim:2018:TFS

Korach:1984:DAF

Kieburtz:1979:CCS

REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1988:DSC

Kobayashi:2010:HTS

Khedker:2007:HRA

Knoop:1996:PFE

<table>
<thead>
<tr>
<th>Citation</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>DOI</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasikci:2015:ACD</td>
<td>Automated classification of data races under both strong and weak memory models</td>
<td>Baris Kasikci, Cristian Zamfir, and George Candea</td>
<td>2015</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>37</td>
<td>3</td>
<td>8:1–8:??</td>
<td>10.1145/2736261</td>
<td></td>
</tr>
</tbody>
</table>

LaLonde:1989:DFD

Lamp:1979:NAP

Lamp:1980:CNA

Lamp:1983:SCP

Lamp:1984:UTI

Lamb:1987:ISI

Lamp:1988:CPB

Lamp:1990:WSP

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[LB22] Ori Lahav and Udi Boker. What’s decidable about causally consistent shared memory?

[Lozano:2019:CRA]

[Lozano:2019:CRA]

Lorch:2022:AAV

Liao:1996:SAD

LeMetayer:1988:AA

Lee:2007:DIE

LaLonde:1981:HOP

Lee:2009:RFS

Chin Soon Lee. Ranking functions for size-change termina-
REFERENCES

REFERENCES

REFERENCES

Jacques Loeckx. Algorithmic specifications: a constructive
REFERENCES

REFERENCES

Lim:2013:TSG

Lepigre:2019:PSC

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Liskov:1983:GAL

Lamport:1984:HLC

Lang:1998:SAE

[LS98] Jun Lang and David B. Stewart. A study of the applicability of existing exception-handling techniques to component-base real-time software technology. *ACM Transactions on Programming Languages and Systems, 20*(2):274–301, March 1998. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (elec-
REFERENCES

They proved that Byzantine agreement (the subject of Section ??) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the crypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. ACM Transactions on Programming Languages and Systems, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

[Leivent:1993:MFT]

[Liskov:1994:BNS]

[Liu:2021:ICU]

[Li:2022:FGS]

[Mallgren:1982:FSG]

[Merlin:1983:CSS]
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Morrison:1991:AHA

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP

Mark Moriconi and Dwight Hare. The PegaSys system: Pictures as formal documentation of large programs. *ACM Transactions on Programming Languages and Systems*, 8(4):
Mirani:2004:FCM

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Miquel:2019:CSC

Misra:1981:EPE

Misra:1986:AMA

REFERENCES

Morzen:1992:MPR

Moreira:2000:FMJ

Marathe:2007:MMT

Masticola:1995:LFM

Morgan:1996:PPT

Mohan:1981:TCF

Moitra:1983:TCA

REFERENCES

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

REFERENCES

0164-0925 (print), 1558-4593 (electronic).

McKinley:2007:ECG

Menon:2003:FSA

Moreau:2005:RAP

Morgan:1988:RC

Melo:2020:TIC
REFERENCES

REFERENCES

Moret:1980:AVR

Matsushita:2021:RCB

MacDonald:2009:DDP

Muller:1992:MLR

Muller:2021:ISS

Murtagh:1991:ISM

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1980:DAP

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

Melicher:2022:BAE

McKenzie:1995:ERS

Bruce J. McKenzie, Corey Yeat-

Narayanan:2020:SDV

Norris:2016:PAM

Nelson:1989:GDC

Nicolson:1989:DSP

Nguyen:2005:EEA

Nielson:1985:PTD

Nix:1985:EE

REFERENCES

150

REFERENCES

Olderog:1988:FPP

Odersky:1993:DCD

Olmedo:2018:CPP

Oh:2014:GSA

Ohori:1995:PRC

Ohori:2007:PTM

Ogasawara:2006:EED

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Ow:2016:SXS

Odersky:2004:GE

Odersky:2004:GE

Keshav Pingali and Arvind. Clarification of “Feeding inputs on demand” in Efficient demand-driven evaluation. part 1. ACM Transactions on Programming Languages and Systems, 8(1):
REFERENCES

REFERENCES

Palsbøerg:2015:E

Parnas:1990:TCI

Patrignani:2015:SCP

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

REFERENCES

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

Pan:2008:PFE

Pearce:2021:LFR

Pemberton:1983:TCT

Perrott:1979:LAV

Perry:1990:GEI

Peterson:1982:UAC

Gary L. Peterson. An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. *ACM Transactions on Programming Languages and Systems*, 4(4):758–762, October 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). Peterson presents a deterministic distributed algorithm for finding the largest of a set of n uniquely numbered processes in a ring. The algorithm requires $O(n \log n)$ messages in the worst case, and is unidirectional. The number of processes is not initially known.

Proebsting:1996:DDR

Pratikakis:2011:LPS

Patrignani:2021:RSC

REFERENCES

157

Pietto:1999:CTL

Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and
M. Frans Kaashoek. 'C and tcc: a language and compiler
for dynamic code generation. ACM Transactions on Program-
ing Languages and Systems, 21 (2):324–369, March 1999. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Paek:2002:EPA

Yunheung Paek, Jay Hoeflinger, and David Padua. Efficient
and precise array access analysis. ACM Transactions on Program-
ing Languages and Systems, 24 (1):65–109, January 2002. CO-
DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Pippenger:1997:PVI

Nicholas Pippenger. Pure ver-
sus impure Lisp. ACM Trans-
actions on Programming Lan-
guages and Systems, 19(2):223–
238, March 1997. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Piquer:1996:IDG

José M. Piquer. Indirect
distributed garbage collection:
Handling object migration. ACM Transactions on Program-
CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Pai:1980:GCR

Ajit B. Pai and Richard B.
Kieburtz. Global context re-
cover: a new strategy for syn-
tactic error recovery by table-
drive parsers. ACM Trans-
actions on Programming Lan-
guages and Systems, 2(1):18–
41, January 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Paige:1982:FDC

Robert Paige and Shaye Koenig.
Finite differencing of com-
putable expressions. ACM Trans-
actions on Programming Lan-

Pearce:2007:EFS

David J. Pearce, Paul H. J.
Kelly, and Chris Hankin. Effi-
cient field-sensitive pointer anal-
ysis of C. ACM Transactions on Pro-
gramming Languages and Sys-
tems, 30(1):4:1–4:42, Novem-
REFERENCES

ber 2007. CODEN ATPSDT.
ISSN 0164-0925 (print), 1558-4593 (electronic).

Park:2004:ORC

Payet:2006:NIL

Pingali:2009:RTP

Palsberg:1995:TSE

Peng:1991:DFA

Pinter:1994:POP

Prywes:1979:UNS

REdENCES

REFERENCES

Pottier:2003:IFI

Pearlmutter:2008:RMA

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Rossberg:2013:MMM

Rong:2008:RAS

Reiss:1983:GCS

Rem:1981:APN

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

Ramsey:1997:SRM

REFERENCES

[RSL01] Barbara G. Ryder, William A.

Rival:2007:TPA

Ruggieri:2010:TLC

Rosenkrantz:2006:MMA

Robertson:1979:CGS

Ryder:1988:IDF

Rugina:2003:PAS

Rugina:2005:SBA

[RR05] Radu Rugina and Martin C. Rinald. Symbolic bounds analysis of pointers, array indices, and accessed memory regions. *ACM Transactions on Programming Languages and Systems*, 27

REFERENCES

Runge:2023:IES

Ryu:2016:TOO

Reps:1983:ICD

Reps:2017:NPA

Stata:1999:TSJ

Shao:2000:ESS

Reed:1988:SVL

Sager:1986:SPC

Sagiv:2007:ISE

Samet:1980:CAP

Sands:1996:TCL

Sangiorgi:2009:OBC

Solovyev:2019:REF

Spoto:2019:SII

<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Year</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sch82]</td>
<td>Fred B. Schneider</td>
<td>Synchronization in distributed programs.</td>
<td>ACM Transactions on Programming Languages and Systems</td>
<td>4(2)</td>
<td>125–148</td>
<td>April 1982</td>
<td>CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

[Sampaio:2013:DA]

[Strickland:2013:CFC]

[Sethi:1983:CFA]

[Sreedhar:1996:ILU]

[Sreedhar:1997:ICD]
Sreedhar:1998:NFE

Stoyle:2007:MMS

Sheard:1991:AGU

Sekiyama:2017:PMC

Sijtsma:1989:PRL

REFERENCES

649, October 1989. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Sku95] Joseph P. Skudlarek. Notes on “A Methodology for Implementing Highly Concurrent

Patrick M. Sansom and Simon L. Peyton Jones. Formally based

Stuckey:2005:TO

Schulte:2008:ECP

Schulte:2009:EEC

Staiger-Stohr:2013:PIA

Sneyers:2009:CPC

Sanchez-Stern:2023:PIA

Schonberg:1981:ATS

REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Suganuma:2005:DED

Suganuma:2006:RBC

Seo:2007:GDW

Swinehart:1986:SVC

Sanan:2021:CCT

Terauchi:2008:CCC

Terauchi:2008:WSE

REFERENCES

[TVCB14] Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua. Lazy schedul-

Thammanur:2004:FME

Tratt:2008:DSL

Torp-Smith:2008:LRA

Tip:2002:PET

Tang:2000:PTR

Turini:1984:MLO

Turchin:1986:CS

Thies:2007:STU

[TVA07] William Thies, Frédéric Vivien, and Saman Amarasinghe. A

[Thatcher:1982:DTS]

[TZ07]

REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Venkatesh:1995:ERD

VanRoy:1997:MOD

vonHanxleden:2000:BCP

VanDenBrand:2002:CLD

VanderZanden:2001:LLA

Verdoolaege:2012:ECS

REFERENCES

Vasconcelos:2022:TDM

Volpano:1991:TCS

Vakar:2022:CCH

VonBank:1994:UMP

REFERENCES

REFERENCES

Waters:1994:CBP

Wright:1997:PST

Walker:2000:TMM

Wileden:1990:CEO

Wileden:1991:CCE

Webber:1995:OFP
REFERENCES

REFERENCES

193

Wright:1998:PSE

Wellings:2000:IOO

Wand:2004:SAD

Weihl:1985:IRA

Wagner:2016:TIB

Walicki:1995:CCM

Michal Walicki and Sigurd Meidal. A complete calculus for the multialgebraic and functional semantics of nondeterminism.
REFERENCES

Wu:2012:STB

Welch:2010:SCF

Wang:2008:DSJ

Whitfield:1997:AEC

REFERENCES

REFERENCES

Xie:2007:SSF

Xie:2020:CSA

Yemini:1987:ATE

Yemini:1988:TCA

Yiapanis:2016:CDS

[YF98] Tao Yang and Cong Fu. Space/time-efficient scheduling and

REFERENCES

Yu:1994:LTS

Yellin:1991:ILI

Yellin:1997:PSC

Young:1999:SCB

Yahav:2010:VSP

Yang:2002:EEB

Yang:2022:DDZ

Zhangu:2010:OFE

Zhong:2009:PLA

Zhao:2020:DLS

Zhou:2022:RIR

Zhang:2021:CP