A Complete Bibliography of Publications in *ACM Transactions on Programming Languages and Systems (TOPLAS)*

Preston Briggs
Tera Computer Company
2815 Eastlake East
Seattle, WA 98102
USA
Tel: +1 206 325-0800
E-mail: preston@tera.com

and

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

17 October 2015
Version 2.121

Title word cross-reference

<table>
<thead>
<tr>
<th>Term</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SRW02], + [Han81a], T^M [Bla03], ex</td>
<td></td>
</tr>
<tr>
<td>[AW82],</td>
<td></td>
</tr>
<tr>
<td>[JMSY92], R_{Lin} [VR95], ℓ [ADG+94],</td>
<td></td>
</tr>
<tr>
<td>$O(nn)$ [Pet82], ϕ [CF95, DR05], π [ABL03],</td>
<td></td>
</tr>
</tbody>
</table>

(k) [ADGM91, BL94b, KM81]. 2 [Dam03]. 3
-calculus [ABL03]. -Exclusion [ADG+94].
-function [DR05]. -Nodes [CF95]. -Tree [Han81a]. -valued [SRW02].

256 [App15].

568 [Han81b].

90 [DP99]. 95 [WJS+00].

Abstract [BGL93, BK11, CMB+95, CFG+97, DGG97, ELS+14, EO80, GS98, HL82, JPP91, Lan80, LO94, LV94, LR13, Loe87, MSJ94, MP88, SS98, She91, Wei89, van88, ABS09, BDL99, BdlBH99, Leu04, RM07, SYYH07, SJ03].

Access [ABLP93, BCC04, KS83, Mis86, NBG13, HR02, HO07, KSK07, PHP02, PSS05].

Algebra [Koz97, Wil82a, KBC+99]. Algebraic [BP82, BWP87, Jen97, Lin93, JBP06, SP07].

Algorithm [AB81, Bak82, BB79, BP82, DSW82, Dha91, DP93, GHS83, Hua90, Hud91, LV94, LY98, Lei90, LT79, LH91, MM82, MC82a, Pet82, SH89, TB98, Wis79, BKR98, BH99, DR05, DVD07, JNZ06, Van96a, Van96b, Han81b, BKR95].

Algorithmic [BP82, GM12, Loe87].

Algorithms [Apt86, BA84, CS95, CN83, GLO88, KRS84, KKM90, Kro82, Kro83, Kro84, Kro85, Kro86, Kro87, Kro88, Kro89, Kro90, Kro91, Kro92, MM89, RD87, RH87, RP88, TM93, WW95, Atp00, DAS98, GC01, ZG05].

Aliasing [Hor97, HBCC99, RSSY08].

All-Purpose [Boe85, Ram94, RLS+01].

Allocating [ZP07].

Allocation [BB79, Bred89, CH90, CS95, FLBB89, GS90, Sah99, CH90, CH91, HCS10, LGAT00, PS99, PF96, RDG08, SRM10, TP04].

Alma [ABPS98].

Almost [Duc08, Ram99].

Alternative [Gho93, GH80, Zav85].

Alway [Gri79].

Ambient [BCC04, LS03, MH06].

Ambiguity [Tho94].

Amortized [AH12].

Amulet [ZHM+01].

Analyses [AC94, CC95, CFM94, KSV96, SJ03].

Analysis [AB90+05, AD98, Bae84, BC85b, Blo94, BE13, Bur90a, CMN91, DL93, Deh95, DP97, DAW88, GNS+15, GJ93, HP96, Hil88, Hor97, ISY88, Jen97, KD94, LR13, McG82, MWB94, MOS90b, OHL+14, Pal95, PO95, PCC85, PP91, PW94, PW98, Pur91, RTD83, RP88, SR95, SSS83, SGL98, SS13, ABB+09, BDFZ09, BAL07, Bla03, Blu99, BCG+07, CSW06, Cha02, CGS+03, CKT86, DD99, DGS97, FF99, GHB+06, GJ05, GZ04, GCRN11, HAM+05, HPMS00, HBCC99, HVDH07, HA12, IK05, JLR10, KBC+99, KK07, KSK07, LP00, LH08, MP03, NS13, PHP02, Pal98, PSH07, Ram00, Rep00, RSL10, RD97, RR03, RR05, RLS+01, SRW98, SRW02, STS03, SdSCP13, SV10, TP04].
Constraints [AKP94, DFR15, HG83, Mye90, BA08, RM10, TFK+11, Van96b, ZHM+01, Van96a].
Construct [Ans87, BS93, Kat93].
Construction [ADGM91, HIT97, LaL81, MB83, RH87, SL92, CMS03, GC01].
Constructive [Ans87, BS93, Kat93].
Context [GHR80, Ode93, PK80, Ram00, RTD83, Rep00].
Context-Dependent [Ode93, RTD83].
Context-Free [GHR80].
Context-sensitive [Ram00, Rep00].
Contexts [Ode93].
Continuation [BDM15, Wan82].
Continuation-Passing [BDM15].
Continuations [BDM15, HF87].
Continuous [KF03].
Contracts [SDTF13, CGP09].
Contravariance [Cas95].
Control [ABLP93, Bur84, CL94, CFR+91, DP97, FM87b, Kat93, Lam88, Lin79, NBG13, PB97, PBR+15, Set83, SS13, Tur84, Wat83, Wei89, BCM99, BCC04, HO07, PSS05, RAB+07, Zho96].
Controlled [Min84, Tho94, JC97].
Controlling [BALP06, LaL81, LMD98].
Convention [AF84].
Conversion [CS87, SW97b, SA00, YK97].
Cooperating [GLR83, NO79].
Cooperation [BS83, Fid93, Hua90, LS84, Zic94].
CSP-Like [Hua90].
Cryptographic [App15].
Cross-Interferences [FTJ95].
Data [AMT14, ANP89, AM85, Bac84, BC85b, BL87, Bur90a, Cha93, CS87, Deb89, DP93, DD85, El82, EO80, FL81, GMH81, HL82, Her93, Hos88, Hol87, Jen97, KH92, Kam83, KZC15, KK98, LaL99, LO94, LN02, Lo87, Mal82, MRR95, MCT96, PP91, QG95, RCR95, RP88, SSS81, Sku95, SGL98, SM81, TWW82, WL85, Wei89, Wei90, Wet82, Wey83, CFP+04, DHM+12, DGS97, HBJ98, KBC+99, KF00, LK02, Rep00, SP07, VALG05, YUW02, ZGZ05, Pur91].
Data-Driven [DHM+12].
Data-Flow [BC85b, Bur90a, Wet82, RP88, KBC+99].
Data-Independence [Rep00].
Data-Parallel [Cha93, HBJ98].
Database [Bar85, CB80].
Datalog [LS09].
Deadlock [Hua90, Kobl98].
Debugging [CMN91, CM93, Cop94, Hen82, WST85].
Decision [GGL15].
Declarative [MTG80, NO79].
Decompilation [BB94].
Decrease [LDK+96].
Deducing [TB95].
fractions

Frameworks [MMR95, KK07]. Francez [Fra81, Moh81, Moi83]. Free [AP94, GHR80, Her91, Kar84, Kob98, JJD98, KSV96]

freedom [KS10]. frontiers [Ano02b]. fully [GB99]. Fully [JPP91]. function [DR05, FF08]. Functional [AFV98, Ban87, Blo94, Bou05, Bur84, DW89, FL91, ISY88, JPP01, WM95, Web95, Wil82a, ABH06, Bon06, DWWW88, DF98, PS08, San96, SP97]. Functions [AKP94, AK82, Bou92, PB80, SM89, Lee09, MBC04, MB99, MT08, PPT08]. Further [CM93]. Fusion [LGAT00]. Fusion-based [LGAT00].

Generation [AGT89, AS80, BOV85, BM94, DS83, DS90, GF85, GVC15, HKR92, HKR94, Pro95, Rei83, Rob79, She91, ST00b, UJ92, DAS98, MSRR00, PHEK99]. Generative [Gel85]. Generator [PS97]. Generators [Cat80, GHK81]. Generic [LV94, DDM11]. generics [IV06].

Hackers [App94a]. Hancock [CFP’04]. handle [VJB12]. Handling [Hau96, LiR81, Piq96, SSS83, UM02, YB85, YB87, YB88, CRN’08, LS98, LP80, SSD09, Hen83]. Hard [Hor97]. Hardware [BKL’97, Mis86]. harmful [Gor04]. Hashing [PB80, Duc08].

Haskell [GRS’11, HHPW96]. Heap [KSK07, BALP06, KF00, YS10]. heap-manipulating [YS10]. Heavily [BG89a]. Hennessy [CM93, WST85].

Herding [AMT14]. Heuristic [SL92]. hiding [LN02, OYR09]. hierarchic [AG04].

Hierarchical [BA99, CP95, CD79, AV01, CP96]. hierarchically [MBC04]. hierarchies [ST00a, Van69a, Van69b]. hierarchy [KF00]. High [Cam80, Fat82, CMS03, VWJB10].

High-Level [Cam89, Fat82, CMS03, VWJB10]. Higher
Higher-Order

Hoare

Hoc

Homomorphisms

HOP

Hybrid

I-Structures

I/O

Idioms

IDL

IEEE

Ignorance

Illustrative

Impact

Imperative

Implementation

impl

implemented

Implementing

Implemented

Implement

Improvements

Improving

Improvement

Incremental

Incrementally

Indefinite

Independence

Index

ind extrem

indices

Indirect

[AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97].

Higher

Highly

Hoare

Hoc

Homomorphisms

HOP

Hybrid

I-Structures

I/O

Idioms

IDL

IEEE

Ignorance

Illustrative

Impact

Imperative

Implementation

impl

implemented

Implementing

Implemented

Implement

Improvements

Improving

Improvement

Incremental

Incrementally

Indefinite

Independence

Index

ind extrem

indices

Indirect

[AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97].

Higher

Highly

Hoare

Hoc

Homomorphisms

HOP

Hybrid

I-Structures

I/O

Idioms

IDL

IEEE

Ignorance

Illustrative

Impact

Imperative

Implementation

impl

implemented

Implementing

Implemented

Implement

Improvements

Improving

Improvement

Incremental

Incrementally

Indefinite

Independence

Index

ind extrem

indices

Indirect

[AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97].

Higher

Highly

Hoare

Hoc

Homomorphisms

HOP

Hybrid

I-Structures

I/O

Idioms

IDL

IEEE

Ignorance

Illustrative

Impact

Imperative

Implementation

impl

implemented

Implementing

Implemented

Implement

Improvements

Improving

Improvement

Incremental

Incrementally

Indefinite

Independence

Index

ind extrem

indices

Indirect

[AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97]. Higher-Order [AC94, AD98, CJK95, BBTS07, DF11, SKS11, SP97].

Higher

Highly

Hoare

Hoc

Homomorphisms

HOP

Hybrid

I-Structures

I/O

Idioms

IDL

IEEE

Ignorance

Illustrative

Impact

Imperative

Implementation

impl

implemented

Implementing

Implemented

Implement

Improvements

Improving

Improvement

Incremental

Incrementally

Indefinite

Independence

Index

ind extrem

indices

Indirect
Interval-Based [Bur90a]. Introduction [DeM83, HCW82, Per90, Rep86, Sag07, Wol92]. Invariant [BKJ80]. Invariants [Cla80]. Irreducible [Hav97, UM02]. Irregular [YF98]. Irrelevant [GP81]. Isolation [Wha94]. Isomorph [JJD98]. Isomorph-free [JJD98]. Issue [Sag07]. Issues [BO94]. Iterated [GA96]. Iteration [Cam89, MOSS96, GS11, JLF02, Qia00]. Iterative [Ans87, Par90, DR05, JNGG10, LS04]. Jade [RL98]. Jam [ALZ03]. Java [AFF06, ALZ03, AAD+07, BH05a, Bla03, BALP06, CGS+03, CMS03, CSCM00, FFLQ08, FM99, GPF08, IPW01, KKN06, KGM00, KN06, KPN01, LST02, LP06, LS08, Loc13, MMG00, NR06, OKN06, Qio00, SLCO03, SMP10, SA09, SYK+05, TSL+02, WR08]. Java-like [KN06]. JavaCOP [MME+10]. JavaGI [WT11]. JR [KGM004]. Jump [LS80, RS84a]. just [SYK+05]. just-in-time [SYK+05]. JVM [HO07].

[BF87]. Load [KPF95]. Loaded [BG98a].

Local [BDFZ90, CBGDF95, PT00, TSBR08, Weis99, Dam03, San96]. Locality
[MCT96, VALG05, ZSD90]. Locally
[AB81, Bac84, Min84]. locating [JNGG10].

Logic [AS89, AVF98, APL01, BGL93, BL87, BCD90, BDJ13, BMPT94, CS04, CES86, CFM94, DW89, Deh89, DL93, Deh95, JPP91, Kar84, LS84, Lam94, MW84, MJ94, MM92, SS98, Sok87, TK94, TB95, BBT97, BMR91, BCG97, BDLB99, CU08, CG86, CS99, DDV99, DPP90, GB98, GW99].

Logical [GGL15, GS98, RSL10, Tar07].

Look [DP82]. Look-Ahead [DP82].

Lookahead [KM81, MFF88]. Loop [CS87, MCT96, Sit79, RSK12]. Loops
[BAGM12, Boo82, CK94, DB85, FJ95, Hay97, Wat91, Aro02b, LS04, LSR95, Ram99, RDG08, SGL96, UM92].

Low [CSCM00]. low-end [CSCM00].

LR [ADGM91, BL94b, BF87, CPR92, DMM98, Jef03, KC01, LRL01, LS04, SSM98, ST00b]. LR-based [KC01].

M [Bur91, Mul92]. M-LISP [Mul92].

Machine
[CGJ97a, Cat80, GNS95, Gie83, Han94, LR13, ML80, RF97, SS98, Wal92, Zav98, Aro02b, CEG07, CF04, HK07, KN06, Oho07].

machine-checked [KN06]. Machine-Code [LR13].

Machine-Independent [ML80].

Machine-Specific [Gie83]. machinery [FKW00]. Machines
[ACW90, BC04, CGST95, GC86, KK98, PS93, P991, Rob79, RCR95, AY01, AG04, ABE90, AB90, TS90, Pur91].

Madsen
[El02, SM82]. Magma2 [Tur84].

Maintenance [GKL94]. Making
[JC97, Loc13].

malware [PCJD08].

Management
[JP81, Mur91, van88, BP12, WCM00, Zho96].

Managing [Bob80]. manipulating [YS10].

Manipulation [DVL95]. many [AE98].

massive [BHK07].

Matching [AC96, AGT89, CP95, KPS92, ADR96, Van06].

Matching-Based [CP95].

materializations [RMH06]. Mathematical
[Ban11, Hes88, LW93].

MATLAB [DP99].

MATLAB(R) [JB09]. Matrix [FTJ95].

Matrix-Vector [FTJ95]. Maximal
[BS99, Rep98]. Maximal-munch [Rep98].

Maximization [GLO88]. Maximum
[Kna90].

May [Hr97]. May-Alias [Hor97].

MCALIB [FL15]. Measuring [FL15].

Mechanically [DSW11]. Mechanism
[CO90, YBS95, DNS06].

Mechanisms
[Rei83, HSM06].

Mechanizing [Pau04].

Median
[Com80].

Medians
[KRS84].

megaflops [MM97]. member [KF90].

Memory
[AMT14, CK94, Cha93, KZ15, KK98, KRS88, Mis86, RCR95, SS88, ABHI11, BP12, GMM99, GW99, JNGG10, KF00, LK02, Loc13, QR00, RR05, TS00, TP04, VBLG04, WCM00, MMM07].

memory-efficient [TP04].

memory-hierarchy [KF00]. Merge
[Ber94].

Merlin
[HBM+06]. Message
[CSW06, SS84, Gor04].

Messages
[BBS97, Jef03]. meta
[Tra08].

meta-programming
[Tra08].

Metalevel
[Jag94].

Metaprogramming
[Tra08].

Method
[BCD90, BF97, HS82, Jon83, Loe87, JJD98].

Methodology
[Ban87, Her93, Sku95].

Methods
[DAW88, KM81].

METRIC
[MMM07].

Microanalysis
[HCP92].

Microcode
[MV87]. Middle
[BDP14].

Middle-End
[BDP14]. Might
[Be94].

migration
[Piq96].

Minimal
[FKW98, IP96]. Minimization
[RS84a].

minimizing
[RMH06]. Minimum
[GH98].

Minimum-Weight
[GH98]. Mining
[AMT14].

Misled
[Cop94].

miss
[GH99].
Mixin [HL05, RD13], mixins [ALZ03]. ML [Blu99, HM93, HT04, PS03, RD13, Spo86].

Mobile
[LS03, VHB+97, BCC04, KS10, SWU10],

mod [Bon92], mode [PS08, ZP10]. Model
[AY01, Ang89, BL87, BGP99, CGL94, ES97, GS98, GG85, GL94, Han81a, HW82, Hol87, KH92, MMG92, VSS94, ACM11, AM01, AE01, JJD98, JPS+08, KN06, QQ00, SG04, VWJB10, VALG05, YMW97]. Model-Checking [ES97, BGP99].

Modeling [AF84].

Modelling [AMT14].

Models [GJ93, KZC15].

Modern [BCF04, RAB+07].

Modes [Deb89].

modest [LS08].

Modiﬁcation [Lei90, RLS+01].

Modification [EO80].

Modular
[AG04, BMPT94, LN15, MBC04, Wei89, dJKVS12, KV00, MFRW09, MOS07b]. modularity [BA09].

Module [PAS+15, RD13].

Modules [CL95, HW82, Lam83, HL05].

Monadic [MH04].

Monitors [BLH12, BH05b]. Monolingual [HK85].

Monte [FL15]. Morel [Dha91, DS88, Sor89].

Morphing [HS11].

Morris [Wis79]. Mostly [YF09, BBYG+05].

Motion [KRS94, Hai98].

MPI [TSY00].

multi-language [MF09].

Multiaenglish [WM95].

multidimensional [RDG08].

MultiJava [CMLC06].

Multilisp [Hal85].

multimethod [DAS98].

Multimethods [CL95].

Multiparty [JS94].

Multiple [NSTD+15].

Multiply [FTJ95].

Multithread [Lam79, Lam80].

Multiprocessing [ABR81].

Multiprocessor [GP81].

Multiprocessors [Cha93, KR988].

Multisource [MMR95].

Multithreaded
[EGP14, JSB+12, KKKW14, NR06].

Multivariate [HAH12].

Multiway [Van96a, Van96b].

munch [Rep98].

Mutandis [SHB+07].

Mutatis [SHB+07].

Mutual [LH91, ABHI11].

Mutual-Exclusion [LH91].

Myths [Gor04].

n [CTK86].

Naming [BDP93].

Natural [GZ04, dJKVS12, ACE96].

Neighborhood [BG89a, BG94].

Network [WGS92, WGS93].

Networks [CGJ97b, GC96, KR98, dBB85].

Nicholson [FA93].

node [JC97, UM02].

Nodes [CF95, Han81a]. Nomadic [SWU10].

Nominal [CU08].

Nominal [BS88].

Noncanonical [Tai79].

Noncorrecting [Ric85].

Nondeterminate [TK94].

Nondeterminism [Ber80, Res88, WM95].

Nondeterministic [QG95, MT08].

Noninterfering [HPR89].

nonnumerical [ME97].

Nonprocedural [PS97].

nonrectangular [JLF02].

nonscalars [CRN+08].

Nonsequentiality [Bar81].

Nonstrict [Blo94].

Nontermination [PM06].

normal [LMD98].

Normalize [CRN+08], norms [BCG+07].

Notation [Ren81, Wi82].

Note [Co80, CM93, MS88, WST85, Cohn88, Pa11b, YK90].

Notes [SK95].

Notion [LW94].

NP [Hor97].

NP-Hard [Hor97].

NQALR [BS88].

nulled [SJ06].

Numbers [GLR83].

numeric [Hal86].

O
[ABPS98, Car95].

Object [DF84, HU96, KH92, WC90, WC91, BSvGF03, DMM01, DDDCG02, FM99, GPW08, HBM+06, JPS+08, LPS004, Pi96, WJS99].

Object-Based [KH92].

Object-Oriented [HU96, BSvGF03, DMM01, JPS+08, WJS99].

Objects [AM85, CJK95, HF87, HW90, Her93, SM89, VHB+97, Wal80, Wal81, Win84, GPV07, HBJ98, KF00, Sto04, WJS+00, Sk95].

Obligations [DSW11].

Observability [Gaz83].

Observations [Sha82].

Occur [AP94].

Occur-Check-Free [AP94].

Offline [CG04, GJ05].

Old [AL94].
Old-Fashioned [AL94]. On-Line [Bal94].
On-The-Fly [CF95, BA84, LP06, PBK+07].
One [Bak82, BG89b, ZHM+01]. One-Pass [Bak82].
one-way [ZHM+01]. online [CG04, HVDH07]. only [PZJ05].
Opacity [QG95]. Operating [HM84, BCP08].
Operational [BLRS12, Han94, MF09].
Operations [AKBLN89, CK94, Lee86, LS79].
Operator [CSV01, Hen83, LdR81]. Operators [Ive79, She91].
Optimal [Bak82]. one-way [ZHM+01]. online [CG04, HVDH07].
obly [PZJ05].
Optimality [CP96]. Optimally [BL94a].
Optimistic [PM04]. Optimization [Bee94, Blo94, BT93, DF84, DP97, DDDH84, Dha91, DS88, FOW87, HG83, Pes83, PP94, SS82, Sor89, Tv89, Web95, Ass00, BHK07, KBC+99, KF03, PE08, TVA07, ZP10, CG95, LaL84, OKN06].
Optimizations [CC95, JSB+12, CGS+03, CKT86, GMP+00, SYK+05]. optimize [DMM01, VBLG04].
Optimized [CM93, Cop94, Hen82, WST85, DS98, UM02].
Optimizer [DF80, FSS83, DF81].
Optimizers [Gie83].
Optimizing [CEG07, KMM+98, ML80, NSZS13, QR00, BGKR09]. Or-Parallel [GJ93].
orchestration [PE08]. Order [AC94, AD98, Bur84, CJK95, DP07, JPP91, JS94, SS98, BBTS07, DF11, SKS11, SP97].
ordering [GS99]. Organization [Han81a].
Oriented [Bor81, Dar90, Ell82, GTWA14, GKL94, GP81, HU96, SM81, Tur84, YB87, YB88, BSvGF03, DWWW08, DMM01, JPS+08, WKD04, WP10, WJS+08]. origins [San09]. OSI [CFDP89]. Output [Ber80, BS83]. overflow [KOE+06].
overhead [BP12, SS96]. overlays [SWU10].
Overload [Bak82]. overloading [SS05b].
Overview [AOC+88]. ownership [DDM11, SS96]. Oz [VHB+97].
Package [Hi88]. Paper [GM81]. Parallel

[ANP89, BOV85, BO94, BE13, Cha93, CGST95, CMN91, CL94, DS83, Fos96, GLO88, GJ93, GPA+01, HCHP92, HIT97, JF81, Kna90, Mis94, NSZS13, OA88, Rao94, SS88, BBYG+05, CG86, GB09, HBJ98, KSV96, LK02, MVV+08, RR03, YF98].
Parallelizing [PP96, ME97, RD97]. Parameter [Gaz83, Zho96].
Parameterization [TW82].
Partially [BLH12, Kob98, RRSY08]. partially-flow-sensitive [RRSY08].
Partitioning [RM07, YF09]. Parts [Son87].
Pascal [LS79]. Parse [Bak82, BM94].

[EPG14, ADR06, Jay04, MTSS09, Van06]. Pattern-Based [EGP14]. Patterns [GH80].
PDS [Han81b]. PEAK [PE08]. Peephole
[DF80, DF81, Pes83, Tv89]. PegaSys

[MH86]. CS [CD79]. CV3 [CZ84]. fold
[RKRR04]. Semantic [HCW82]. subscribe

[Eug07]. time-efficient [YF98]. write

[AEO1]. Pennello [Sag86]. Perfect [Duc08]. Performance
[HU96, PB80, FF00, PE08].
Mye90, Pet83b, RCS93, SS84, SNS+14, SZBH86, TK94, ABH06, BMR01, Bou06, BdlBH99, CU08, CG86, CKT86, DWWW08, DPPR00, GW99, HBJ98, JPS+08, KGM004, MVV+01, MTSS09, MQ05, Tra08, VVJB10, WKD04, WJS+00, Bir85, SWU10].

Programming-in-the-Large [MK94].

Programs [AWW95, AK87, AFV98, AR80, AP94, AC94, BL94a, Ban87, BGL93, BC85a, BC85b, Ber94, BCD90, BE94, BE13, CR87, CB80, CM86a, Cha93, CEW14, CMN91, Cla80, CM86b, Cha93, CEW14, CMN91, Cla80, CFM94, CS87, DGMP97, DW89, Deb89, DL93, Deb95, DP97, Di90, EGP14, GG85, GM81, Har80, HCHP02, HPR89, How80, HIT97, IS88, Jor83, JF81, Kna90, Lam79, LS83, MSJ94, MH86, NSZS13, OA88, OL82, PS92, QL01, Rao94, SS98, Sch82, SSS91, SS88, Ven95, Wad90, Web95, Wil82a, AE01, AAE04, BCG07, CSW06, CSS99, DP99, DSV99, DS08, DMMO1, EGM01, GM12, GBH+96, GH97, GPA+01, Han96, HPSM00, JPS+08, KS96, LMD98, Leu04, LS09, MF09, NR06, PM06, RKRR04, RR03, San96, VJB12, WM12, YS10, Yin11, dBH+96, Bur84, Lam80].

PROLOG [LV94, AP94, AB94, BC91, CH87, FA93, GPA+01, MWB94, NL89, Zho96].

Promotion [Bir84, Bir85].

Proof [AFdR80, BDJ13, FRW90, GB99, GPA+01, MWB94, KP99, NB99, Oho07].

Proof-Directed [BDJ13].

Proofs [Apt86, BC85a, CM86b, LY98, Oss83, GRK+11].

Propagation [SR95, WA91, APT00, CP96, SS05a, SS08, SO90].

Properties [ACW90, AS89, Kar84, OL82, RY88, TB95, Wei98, YS10].

Proposed [Fat82].

proxima [MP10b].

Protected [PAS+15, WJS+00].

Protocol [SL92, YS97].

Protocols [MB93, BFTG08, SS96].

Prototype [WCW90, WCW91].

Prototypes [HW82].

provably [GB99].

provenly [AAD+07].

Proving [DGMP97, GC86, Hen86, Kar84, Lam79, Lam80, OL82].

Pruning [BN99].

PSG [BS86].

publish [Eug07].

subscribe [Eug07].

Pure [HU96, Pip97, Tar07].

Purpose [App94b, HSS+14, Spo86].

qualifiers [FJK06].

Quantification [Vol91, Bur91].

Quantified [Gro06, STS03].

Quantum [FDY12, BH99, YS01].

Queries [Bal94].

Queuing [BB79].

Quiescence [CM86a].

R [AW82, CKT86, KMM+98].

race [AFF06, PFH11].

Races [KZC15].

Random [AS80].

Rank [Dam03].

Ranking [Lee09].

Ratio [CK94].

rational [GS11].

rationale [CMC06].

Reach [FKW98].

Reachability [NS13].

Reactive [DFR15, AG04, DGG97].

read [AE01, PZ05].

read-only [PZ05].

read/write [AE01].

Readable [Spo86].

Reading [Pet83a].

Real [AL94, MMG92, RS84b, GH97, HK07, LS98, YMW97].

Real-Time [MMG92, RS84b, GH97, HK07, LS98, YMW97].

realities [Gor04].

Reasoning [BKOZB13, BLRS12, BD93, BP82, BH99, CB80, Lam88, LN15, Rao94, TSBR08].

receive [Gor04].

receptive [ABL03].

Recipe [AL94].

reclassification [DZD02].

recognition [ATD08].

Recognizer [GHR80].

Recognizing [BL94b].

Recombination [Kau84].

Recombination-Delaying [Kau84].

Recompilation [BT93, SK86, Tie88].

Reconciling [HU96].

Reconstruction [YR94].

Record [LS97, Oho95].

Recovery [AB81, ACS84, Buc84, BF87, PK80, Ric85, dJKVS12].

recurrences [VJB12].

Recursion [AK82, Col84, Hen93, KRU93, Mis94, YK97].

Recursive [AC93, AK82, Ban87, Coh83, Coh85, Sij89, ABE+05, AM01, CF04, Dug02, Pal98].

Recursively [BE13].

Reduce [BB99, MYD95, BALP06, KOE+06, SS96].
reduced [SG04]. Reducible [Hav97, JC97].
Reduction [Bee94, Bur84, FRW90, Geo84, KLS92, Mul92, NN86, CSV01].
Redundancies [DS88, Sor89]. redundancy [KCL+99]. Redundant [Coh83, Coh85].
Reentrant [Bob80]. Reexamination [CG95]. Refactoring [TFK+11]. Reference [Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
Redundancies [DS88, Sor89]. redundancy [KCL+99]. Redundant [Coh83, Coh85].
Referring [HS11]. reconnection [SW97a]. Region [TB98, SYN06]. region-based [SYN06]. regions [RR05].
Register [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].
Registers [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].
Register [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].
S [HCW82]. S/SL [HCW82]. Safe [AWW95, Dug02, AFF06, BSvGF03, LS03, Loc13, NCH+05, SA00, ZCG+07, MH06, SHB+07]. safe-for-space [SA00]. safety [FF08, YS10]. same [SS05a]. sampling [PPT08]. Santa [WP10]. Sather [MOSS96]. Satin [VWJB10]. satisfaction [DF11].
Schemes [Mur91, YR94, IV06, WC97].
Schemes [Son87, TM93]. Schorr [BP82].

Register [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].
Reference [Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
Register [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].
Reference [Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
Register [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].
Reference [Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
Reference [Bob80, Wis79, KSK07, KOE+06, LP06, MDJ05]. reference-counting [LP06].
Register [BCT94, CH90, GSO94, JLF02, RDG08, SH89, GA96, HCS10, LGAT00, PM04, PS99, PF96, TP04]. registers [ZP07].
Schwanke [Tic88]. Scientific [How80].
Scope [App94b]. Scratchpad [SRM10].
Screen [MM89]. SDF [VHK02]. Search [Dar90, BH99, SS05a]. Searching [CC97].
Section [Wol92]. Secure [BCEM15, PAS + 15, BBF + 11, HY07].
Securely [RB94]. security [BFGT08, BFG08]. see [BR10].
Selecting [DF84, SSS81]. Selective [Min84, ME97].
Self [BP89, DHS09, Gom92, ABB + 09]. self-adjusting [ABB + 09]. Self-applicable [Gom92].
Self-Stabilization [Gho93, DHS09]. Self-Stabilizing [BP89].
Semantic [AAR + 10, AW95, GGL15, MH06].
Semantics [ABHI11, Ans87, AB94, AW82, BGL93, Ber94, BLRS12, Bou88, Boy10, CPS93, CD79, FA93, GM81, Gud92, Han94, JPP91, Kai89, Mul92, NF99, Set83, Sou84, WM95, Wan82, dBB85, ACE96, BM90, Bou06, GZ04, MF09, PCJD08, SWU10, SJ03, Tar07, WKD04].
Semantics-Based [BGL93, CPS93, PCJD08].
Semantics-Directed [Han94, Set83].
Semaphore [CR87]. Semiring [BMR01].
Semiring-based [BMR01]. Send [Gor04].
Send-receive [Gor04]. sensitive [PKH07, Ram00, Rep00, RRSY08].
Separation [BDJ13, OYR09, BBTS07].
Separators [GSO94]. Sequences [GSW95].
Sequent [AB509]. Sequential [AFdR80, Ber80, GLR83, HM84, KNS97, MS82, Moi83, Sou84]. Series [Wat91].
Share [SS88]. Shared [Cha93, FLBB89, KH92, KRS88, Pet83b, Dug92, HBJ98, TSY00, BC91].
Shared-Memory [Cha93, TSY00]. Sharing [CSS99, Lam87]. Shift [BN99, MYD95].
Shift-Reduce [BN99, MYD95]. Short [Sag86]. Should [LP99]. Side [Boe85, KWL09, RLS + 01, TA08b].
sin} [Lam90]. Single [BM94, CFR + 91, GPF08].
Smarter [SK88, Tic88]. Smooth [JF81].
Soisalon-Soininen [LaL84]. Solution [ADG + 94, DS88, Gho93, Pet83b, Sor89, WP10]. Solving [GS11, NSTD + 15, SRW98].
Some [AB94, AK82, Sha82, Sor89].
Sometimes [Gri79]. Soundness [Sok87].
time-efficient [YF98]. spaces [JLF02].
Syntax-Directed [DMM88].
Syntax-Error-Handling [SSS83]. Syntax/Semantic [HCW82].
System [AFdR80, AW85, BS86, BOu88, CB80, Fea82, GD82, GP81, Han81b, HM84, JMSY92, LR13, ML80, Moi83, MH86, PO95, RD13, SA99, WC97, BH05a, FH04, FM99, HO07, JB06, KS10, MTSS09, NP08, PE08, STSP05, MWC99]. systematic [DF89, PSS05].
Systems [ABLP93, AR84, ACS84, BKS88, BG89a, BDP93, CI84, CDFP89, CBDGF95, CES86, Lam84, LW93, Mis86, WGS92, WGS93, WC90, van88, AE89, AE98, BCP08, BCM99, BGP99, CSCM00, DGG97, GS11, TP04, TZ07, YMW97, WC91].
Systolic [Hen86].
T [Zic94]. Table [BMW91, PK80, DAS98].
Table-Drive [PK80]. Tabled [SS98]. Tables [ADGM91, DDH84].
Tail [DP97, CF04]. Tail-Call [DP97].
tail-recursive [CF04]. Tailored [Kau84].
Task-Level [GP95], Task-Parallel [NSZS13]. Tasking [Dil90]. Tasks [GP81].
tcc [PHEK99]. Technical [BS88, Bur90b, Bur91, Coh91, CM93, DS88, Ell82, FA93, Fra81, Hen83, La83, La84, Moh81, Moi83, MS88, NN86, Par90, Pem83, Sor89, SM82, Tan83, Tiet88, Vol91, WST85, Wir91, YB88, MM90]. Technique [AW95, BN99, BCD+15, JSB+12, KKM90, SSS81, SSS83, JNGG10, KBC+99, RD97, SYN06]. Techniques [AK82, CMM91, DP99, GLR83, How80, TWW82, WC90, WC91, BHK07, DDD05, DEMD00, LS98, MRR00, SS96, TSL+02]. technology [LS98].
Temporal [AS89, CBDGF95, CES86, Kar84, Lam94, MW84, GS99, KWL09].
Tenuring [UJ92]. Term [KKSD94, MBT09, GRSK+11].
Termination [AF84, Apt86, BAGM12, BCG+07, Fra80b, GJ05, HSP83, MC82b, TM93, BAL07, BA08, DAV99, GRSK+11, Lee09, PR07, SMP10, Fra80a, Moh81].
Test [Wey83, WW95, Duc08]. Testing [AMT14, GMH81, TK94].
Tests [Coh91, Koz97, Wir91, GZ05]. Text [CC97].
Their [Kan83, La84, SS82, PS96].
Theoretic [ES97, Shag82, KV00]. Theories [NSTD+15, Bout06]. Theory [CZ84, KD94, KRS94, MBG94, MG94, SSM94, SM94, TM93, BAL07, BALP06, BHRW98, BHRW05, DDD05, GH97, GMP+00, GB99, GW99, HK07, LS98, LPP01, LS09, Min99, Rep98, SYK+05, Tra08, TZ07, Wu94, YMW97, WC91].
Time-Constrained [Zic94, LPP01].
Time-Critical [PS93]. time-efficient [GB99].
Timed [Zic94]. Timeout [Lam84].
Timing [LJ99].
Tolerance [LJ99].
Tolerant [CS95, Lam84, AA04].
Tool [CPS93].
Toolkit [BDHF07].
Tools [van88].
TOPLAS [MPl0a, MP10b].
topology [DDM11].
Total [San96].
Trace [FGL94, WGS92, Ban11, RM07, SJ03, WGS93, WM12]. Trace-Based [WGS92, WGS93, WM12].
traces [HBM+06, WR08].
Tracing [BL94a, MMM+07].
tradeoffs [ZGZ05].
Trailing [VR95]. Traits [DNS+06].
transactional [ABHI11, CFP+04].
Transactions [HKMN94]. Transducer [DVLM15]. Transducer-Based [DVLM15].
Transformation [BKB80, Fed82, FL91, NSZS13, Wat91, RKRR04, San96, TSY00, WZ07].
Transformational [BDFH97, Bir84, Bir85, DSW82, OA88, RC03]. Transformations [BKB80, EGM01, Geo84, LdR81, LF14, MS83, MCT96, Nie85, FGM+07a, KWL09, MOS07a, VALG05, WS97, Hen83, NN86].
Transformers [Lam90, MMS96, MBT09].
TransformGen [GKL94]. Transforming [AWW95, BE94].
Transition [PR07].
Translation [AK87, BK11, Kat84, Son87, AAD+07, BGKR09, DP99, RC03].
Transmission [HL82]. Transparently [JSB+12]. Transport [Min84]. transpose [CRN+08].
Traversal [LPSO04].
Treating [YB87, YB88]. Tree [AGT89, BOV85, BMW91, DVLM15, DS83, Han81a, Hen83, LdR81, FGM+07a]. Trees [Com80, GHS83, MTG80, Sip82, Wad90, ACM11, SGL97]. trick [DMF96].
TS model [LR13].
Tuning [GMM99, PE08]. Tuples [Rem81]. Tutorial [GM81].
Two [BO94, CDFP98, GPWZ08, FMoPS11].
Two-dimensional [GPWZ08].
two-variable [FMoPS11].
Type [Bur90b, Car95, CEW14, Coh91, CZ84, Dug02, Eug07, HHPW96, HM93, Hen93, KPS92, KTU93, KR01, Lam80, LO94, LST02, LY98, LP00, MP88, NBG13, PO95, SA99, SM89, TWW82, Van06, Wal80, WT11, Wir88, WC07, BsvGF03, BCG+07, FJKA06, FGM07b, FM99, FF08, G207, GMZ00, HO07, HDOH02, HY07, KF10, KS10, NP08, NCH+05, PT00, STSP05, TFK+11, TZ07, Wal81, Wir91] Type-based [Eug07, LP00, BCG+07].
Type-Extension [Coh91, Wir91].
Type-Graphs [KPS92].
Type-preserving [LST02].
Type-Safe [Dug02, BSvGF03, NCH+05].
Typechecking [CL95, MBC04].
Typed [ACP91, Geo84, Koh89, NN86, WCM00, AAR+10, LP99, MWCG99].
Types [AFF06, AC93, BB94, Bcem15, DD85, EO80, FFLQ08, HL82, Hes88, Jen97, Kam83, LaL89, LO94, Loes87, Mal82, MP88, WL85, Wei89, Wei90, AM01, BBE+11, Dym03, DDM11, DMM01, Gro06, GPV07, HV05, IV06, MME+10, PS96, Pa98, STS03, SP07].
Tyepstate [GTWA14].
Tyepstate-Oriented [GTWA14].
Typing [ACP91, Dug99, RM10, SV96].
ultimate [PS08].
Ultracomputers [Sch80].
Unassigned [Win84].
unbounded [BGP99].
uncaught [LP00].
Undecidability [Ram94, Rep00, Cha02].
undecidable [Ram00].
Understanding [ST00a].
undo [Lee86].
unfold [RKRR04].
unfold/fold [RKRR04].
Unidirectional [Pet82].
Unification [MM82, DRSS96].
Unified [VSS94].
Uniform [AS80, BP89, Hua93, AH10, HY07].
Uniformly [DB85].
unifying [TVW07].
unique [Van06].
UNITY [Pan01, TB95].
universe [DDM11].
Unnecessary [BT93].
Update [Hud91, FGM+07a, GW99].
Updating [HSS+14, HN05, SRW98, SHB+07].
Upper [PW94].
Usage [MS83, BDFZ90, IK05, QR00].
Use [FOW87, GH80, HS94, LaL84, PPS79, She91, SS82, CC97].
usefulness [HDH02].
User [ACS84, DS90, Mye90, Wal80, Wal81, Wat83, van88].
User-Defined [Wal80, Wal81].
Using [AGT89, Bob80, CGJ+07a, CES86, CH87, DP93, Di90, DMM01, FLBB89, GSW95, GSO94, HR90, JTM08, Kar84, LaL89, Lam84, Mye90, Ode93, Pet83b, PP94, PBR+15, SS84, SS96, Sok87, SGL98, TV882, ACM11, BH99, CSW06, CGS+03, DR05, GS99, GCRN11, KWL09, KSK07, MTSS09, RD03, ST00a, SGL96, TFK+11, VJB12, XA07, YUW02, ZSD09, Pem83].
Utilizing
REFERENCES

[ES97].

W [Tic88]. Wait [Her91]. Wait-Free [Her91]. Waite [BP82]. Warp [LW93]. way [ZHM+01]. Weak [AMT14, KZC15]. weakening [SYYH07]. Weaker [Boo82]. web [BF08, BLRS12, CHY12, CGP09, CMS03]. Weight [GHS83]. While [Pet83a, BC85b, GMS81]. while-Programs [BC85b]. Widening [KKW14, VJB12]. winning [Lam90]. Within [FKW98]. Without [Cop94, Ode93, AS89, Cas95, Sto04, VR95].

XARK [ATD08]. XML [HVP05, HFC09]. XSL [MOS07a].

Years [Apt81].

References

Amal Ahmed, Andrew W. Apple, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. Semantic foundations for typed assem-

AAD+07]

REFERENCES

Anderson:1981:LLC

Arbab:1994:SCD

Acar:2009:EAS

Alur:2005:ARS

Acar:2006:AFP

Abadi:2011:STM

Amadio:2003:RDC

REFERENCES

[AC94] J. Michael Ashley and Charles Consel. Fixpoint computation for polyvariant static analyses of higher-order applicative programs. *ACM Trans-

Abadi:1996:SM

Attali:1996:NSE

Alur:2011:SMC

Abadi:1991:DTS

Alcher:1984:URR

Aggarwal:1990:ALP
Ashley:1998:PFF

Ager:2006:FPE

Afek:1994:BFF

Apt:1984:MDT

Krzysztof R. Apt and Nissem Francez. Modeling the distributed termination convention of CSP. *ACM Transactions on Programming Lan-
REFERENCES

Appel:1994:E

Appel:1980:PSC

Abadi:2006:TSL

Alpuente:1998:PEF

Appel:1993:Eb

Alur:2004:MRH

Aho:1989:CGU

REFERENCES

REFERENCES

Anger:1989:LIC

Anonymous:1985:IA

Anonymous:1986:AI

Anonymous:1987:IA

Anonymous:1988:AI
REFERENCES

REFERENCES

Anonymous:1995:AI

Anonymous:1998:AI

Anonymous:2002:ADC

Anonymous:2002:LDD

Arvind:1989:SDS

Anson:1987:GIC

Andrews:1988:OSL

Apt:1994:OCF
REFERENCES

Abadi:2007:E

Appel:1993:Ea

Appel:1994:ABG

Appel:1994:PS

Appel:2015:VCP

Apt:1981:TYH

Apt:1986:CPD

Apt:2000:RCC
Andrews:1980:AAI

Appelbe:1984:ECS

Arnold:1980:URG

Alpern:1989:VTP

Assmann:2000:GRS

Arenaz:2008:XEF

Ashcroft:1982:RS

REFERENCES

Avrunin:1985:DAD

[AW85]

Aiken:1995:SST

[AWW95]

Alur:2001:MCH

[AY01]

Ben-Ari:1984:AFG

Blume:1999:HM

Ben-Amram:2008:SCT

Backhouse:1984:GDF
REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

Banerjee:2011:MFT

Barnden:1981:NCA

Barstow:1985:CTD

Bengtson:2011:RTS

Biering:2007:BHH

Beyer:1979:SED

Bengtson:2011:RTS

[BBYG+05] Katherine Barabash, Ori Ben-Yitzhak, Irit Goff, Elliot K. Kolodner, Victor Leikehman, Yoav Ossia, Avi Owshank, and

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul
REFERENCES

Bugliesi:2015:ART

Benton:2004:MCA

Bruynooghe:2007:TAL

Bottoni:1999:SDC

Bhatia:2008:RSE

Briggs:1994:IGC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Blackburn:2007:PBP

Bird:1984:PAS

Bird:1985:APA

Barthe:2011:AMC

Broy:1980:DIA

Breuer:1997:RCS

Barthe:2013:PRR
Buchsbaum:1998:NSL

Buchsbaum:2005:CNS

Bic:1987:DDM

Ball:1994:OPT

Bates:1994:RSL

Blanchet:2003:EAJ

REFERENCES

REFERENCES

REFERENCES

[BOV85] Ilan Bar-On and Uzi Vishkin.

Boydland:1996:CAG

Boyland:2010:SFP

Broy:1982:CAA

Burns:1989:USS

Bendersky:2012:SOB

Baumgartner:1997:ISC

Balakrishnan:2010:WWY

Gogul Balakrishnan and Thomas Reps. WYSINWYX: What you see is not what you eXecute.
REFERENCES

[BS83] G. N. Buckley and Abraham Silberschatz. An effective implementation for the generalized input-output construct of CSP. ACM Transactions on Programming Languages and Systems, 5(2):223–235, April 1983. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They present a distributed algorithm for CSP output guards based on priority ordering of processes. Their algorithm has the property that two processes that can communicate and do not establish communication with a third process will communicate within a bounded time.

Budd:1984:ACV

Burton:1984:ACP

Burke:1990:IBA

Burton:1990:TCT

Burton:1991:TCA

Broy:1987:ADP

Cameron:1989:EHL

Carlisle:1995:TCC

Castagna:1995:CCC

Cattell:1980:ADC

Casanova:1980:FSR

Charron-Bost:1995:LTP

Click:1995:CAC

REFERENCES

Chen:2014:ETI

Choi:1994:SSP

Cytron:1995:ECN

Clements:2004:TRM

Cortesi:1997:CAI

Codish:1994:SAC

Cortes:2004:HLA

REFERENCES

S. Carr and K. Kennedy. Improving the ratio of memory op-

[Cooper, 1986]

[Cooper, 1986]

[Chandy, 1986]

REFERENCES

[CN83] Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for garbage

[CN83] Jacques Cohen and Alexandru Nicolau. Comparison of compacting algorithms for garbage

Clemm:1990:MEI

Cohen:1983:ERR

Cohen:1985:NCE

Coh91

Colussi:1984:RES

Comer:1980:NMS

Copperman:1994:DOC

Max Copperman. Debugging optimized code without being misled. *ACM Transactions on Programming Languages and Systems*, 16(3):387–427, May 1994. CODEN ATPSDT. ISSN 0164-0925
REFERENCES

Carle:1995:MBI

Carle:1996:OCP

Corchuelo:2002:RSE

Carson:1987:GSP

Cooke:2008:NTD

Cuny:1987:CDD
Janice E. Cuny and Lawrence

Richard Carlsson, Konstantinos Sagonas, and Jesper Wilhelmsson. Message analysis for concurrent programs using mes-
REFERENCES

Collberg:2007:DGB

Cheney:2008:NLP

Constable:1984:TTP

Damiani:2003:RIT

Darlington:1990:SDG

Dujardin:1998:FAC

Dillon:1988:CET

Laura K. Dillon, George S. Avrunin, and Jack C. Wiledon. Constrained expressions: Toward broad applicability of analysis methods for distributed software systems. ACM Transactions on Programming Languages and Systems, 10(3):
REFERENCES

DeSutter:2005:LTB

DeBruin:1985:DSD

Dencker:1984:OPT

Dunlop:1985:GSU

Drossopoulou:2002:MDO

Donahue:1985:DTV

Decorte:1999:CBT

Debray:2000:CTC

DeFraine:2012:EA

Dershowitz:1985:PAI

REFERENCES

[DGG97] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive systems. ACM Transactions on Programming Languages and Systems, 19
REFERENCES

[DHM00] Mari García De La Banda, Manuel Hermenegildo, and Kim

Dolby:2012:DCA

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

Dolev:2009:SSP

Dolev:2009:SSP

DeMoura:2009:RC

Dillon:1990:USE

DeMoura:2009:RC

Dillon:1990:USE

DeMoura:2009:RC

Degano:1988:EIL

Diwan:2001:UTA

Danvy:1996:EED

Ducasse:2006:TMF

DNS +06

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärl, Roel Wuyts, and Andrew P. Black. Traits: a mechanism for fine-grained reuse. *ACM Transactions on Programming Languages and Systems*, 28(2):331–388, March 2006. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

DeRemer:1982:ECL

Dhamdhere:1993:EAB

REFERENCES

Drechsler:1988:TCS

Dewan:1990:ASA

Derrick:2011:MVP

Ducournau:2008:PHA

Duggan:1999:DTD

Dominic Duggan. Dynamic typing for distributed programming in polymorphic languages. *ACM Transactions on Programming Languages and Systems*, 21
REFERENCES

REFERENCES

Ellis:1982:TCS

Elder:2014:ADA

Ernst:1980:SAD

Emerson:1997:USW

Eugster:2007:TBP

Finlay:1993:TCC

Fateman:1982:HLL

REFERENCES

Foster:2007:CBT

Fournet:2007:TDA

Fernandez:2004:ICS

Fidge:1993:FDP

Fischer:1980:PCA

Foster:2006:FIT

Fuchs:1985:OPF

REFERENCES

[Finkel:1987:DDI] Raphael Finkel and Udi Manber. DIB — a distributed im-
REFERENCES

REFERENCES

Programming Languages and Systems, 2(3):463, July 1980. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See [Fra80b, Moh81, Fra81].

[NY85] Nissim Francez and Shaula A. Yemini. Symmetric inters...

George:1996:IRC

Gazinger:1983:PSP

Greiner:1999:PTE

Gulavani:2011:BSA

Gergeron:1982:SAS

REFERENCES

REFERENCES

GarciaDeLaBanda:1996:GAC

Giegerich:1983:FFD

Gupta:1993:APE

Graham:1980:ICF

Griswold:1981:GI

Ralph E. Griswold, David R. Hanson, and John T. Korb. Generators in Icon. *ACM Transactions on Programming Languages and Systems*, 3(2):144–161, April 1981. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Gupta:1993:APE

REFERENCES

[GLR83] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. Basic techniques for the efficient coordination of very large numbers of cooperating sequential processors. *ACM Trans-

Ghezzi:1979:IP

Greif:1981:SSW

Ganty:2012:AVA

Gannon:1981:DAI

Ghosh:1999:CME

Grant:2000:BCD

Dan Grossman, Greg Morrisett,

Gal:2008:JBV

Grothoff:2007:EOC

Gil:2008:TDB

Gries:1979:SEB

Griswold:1982:EEI

Grossman:2006:QTI

Giesl:2011:ATP

Giacobazzi:1998:LMR

REFERENCES

REFERENCES

REFERENCES

0925 (print), 1558-4593 (electronic).

REFERENCES

[Hall:1996:TCH][HHPW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones,

Heering:1994:LIP

Hirshowitz:2005:MMC

Hull:1984:CSP

Herlihy:1982:VTM

Hamlen:2006:CCE

Hicks:2005:DSU

Harper:1993:TSS

REFERENCES

Hoffman:1982:PE

Higuchi:2007:STS

Hobson:1984:DEE

Holt:1987:DDC

Horwitz:1997:PFI

Howden:1980:ASV

Haghighat:1996:SAP

Hermenegildo:2000:IAC

[HPMS00] Manuel Hermenegildo, German Puebla, Kim Marriott, and Peter J. Stuckey. Incremental analysis of constraint logic programs.

Horwitz:1989:INV

Henzinger:2002:AGR

Hennessy:2002:IFV

Horwitz:1990:ISU

Harrold:1994:ECI

Huang:2011:MSS
REFERENCES

Hudson:1991:IAE

Haridi:1999:ELV

Hirzel:2007:FOP

Hosoya:2005:RET

Holt:1982:MIE

Herlihy:1990:LCC

Hudak:1991:CIE

REFERENCES

(Honda:2007:UTS)

(Igarashi:2005:RUA)

(Igarashi:2001:FJM)
Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, May 2001. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

(Inoue:1988:AFP)

(Igarashi:2006:VPT)

(Iverson:1979:O)

(Jagannathan:1994:MBB)

(Jay:2004:PC)
REFERENCES

Joisha:2006:AAS

Janssen:1997:MGR

Jefferson:1985:VT

Jeffery:2003:GLS

Jensen:1997:DPA

Juelich:1981:CAS

Jackson:1998:IFM

REFERENCES

Jimenez:2002:RTN

Jagannathan:2014:ARV

Jeannet:2010:RAI

Jaffar:1992:CLS

Jeffrey:2010:ESA

Joshi:2006:DPA

Jones:1983:TST

REFERENCES

Juan:1998:CVC

Kaiser:1989:IDS

Kamin:1983:FDT

Karp:1984:PFF

Katayama:1984:TAG

Katz:1993:SCC

Kaufman:1984:TLR

Arie Kaufman. Tailored-list and recombination-delaying buddy
systems. ACM Transactions on Programming Languages and Systems, 6(1):118–125, January 1984. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Kandemir:1999:GCO

Kim:2001:ERV

Kennedy:1999:PRE

Khedker:1994:GTB

Kistler:2000:ADM

Kistler:2003:CPO

Thomas Kistler and Michael Franz. Continuous program...

Kennedy:1998:ADL

Karkare:2007:IBC

Korach:1990:MTD

REFERENCES

Kawahito:2006:ESE

[102x681] REFERENCES
[0x0] 106

Kennaway:1994:AGR

Kopman:1992:CBC

Kristensen:1981:MCL

Kelly:1998:OCC

Klein:2006:MCM

REFERENCES

Knapp:1990:EFD

Kobayashi:1999:LPC

Kobayashi:1998:PDF

Kurlander:1995:EIS

Katzenelson:1992:TMT

Kim:2006:ERI

Kozen:1997:KAT

Kobayashi:1999:LPC
Naoki Kobayashi, Benjamin C.

Kennedy:1979:DAG

Knoblock:2001:TES

Krogh:1982:AAP

Krogh:1983:AAP

Krogh:1984:AAP

Krogh:1985:AAP

Krogh:1986:AAP

Krogh:1987:AAP

F. T. Krogh. ACM algorithms policy. ACM Transactions on Programming Lan-
REFERENCES

Krogh:1987:AAP

Krogh:1988:AAP

Krogh:1989:AAP

Krogh:1990:AAP

Krogh:1991:AAP

Krogh:1992:AAP

Korach:1984:DAF

Kruskal:1988:ESM

Knoop:1994:OCM
REFERENCES

Kieburtz:1979:CCS

Kieburtz:1983:ARE

Keller:1986:AC

Kennaway:1989:CDS

Kobayashi:2010:HTS

Khedker:2007:HRA
REFERENCES

REFERENCES

LaLonde:1984:TCC

LaLonde:1989:DFD

Lamport:1979:NAP
Lam79 Leslie Lamport. A new approach to proving the correctness of multiprocess programs. ACM Transactions on Programming Languages and Systems, 1(1):84–97, July 1979. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). See also corrigendum [Lam80].

Lamport:1980:CNA

Lamport:1983:SCP

Lamport:1984:UTI

Lamb:1987:ISI

Lamport:1988:CPB
Lam88 Leslie Lamport. Control predicates are better than dummy variables for reasoning about program control. ACM Transactions on Programming Languages and Systems, 10(2):267–281, April 1988. CODEN
REFERENCES

Lamport:1990:WSP

Lamport:1994:TLA

Liao:1996:SAD

Lee:2007:DIE

LaLonde:1981:HOP
Wilf R. LaLonde and Jim des Rivieres. Handling operator precedence in arithmetic expressions with tree transformations. ACM Transactions on Programming Languages and Systems, 3 (1):83–103, January 1981. CODEN ATPSDT. ISSN 0164-0925...
REFERENCES

LeMetyer:1988:AAC

Leeman:1986:FAU

Lee:2009:RFS

Leiss:1990:KME

Leuschel:2004:FIP

Liang:2014:RGB

Lueh:2000:FBR
REFERENCES

Lycklama:1991:FCF

Lhotak:2008:RAB

Lindstrom:1979:BGC

Lin:1993:PIA

Liu:1999:SVF

Lee:2002:ADC

Leuschel:1998:CGP
Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalization and polymvariance in partial deduction of normal logic programs. *ACM Transactions on Programming Languages and Systems*, 20(1):
REFERENCES

REFERENCES

117

Leroy:2000:TBA

Levanoni:2006:FRC

Lieberherr:2004:TOS

Leung:2001:STC

Lim:2013:TSG

Luckham:1979:VAR

Leverett:1980:CSD

Lindstrom:1981:RRB

Liskov:1983:GAL

Lamport:1984:HLC

Lang:1998:SAE

Levi:2003:MSA

Li:2004:ATI

Liquori:2008:FME

Liu:2009:DRE

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Liu:2005:OAA]

[Lamport:1982:BGP]
Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. *ACM Transactions on Programming Languages and Systems*, 4(3):382–401, July 1982. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic). They proved that Byzantine agreement (the subject of Section 7?) cannot be reached unless fewer than one-third of the processes are faulty. This result assumes that authentication, i.e., the encrypting of messages to make them unforgeable, is not used. With unforgeable messages, they show that the problem is solvable for any \(n \geq t > 0 \), where \(n \) is the total number of processes and \(t \) is the number of faulty processes.

[League:2002:TPC]
Christopher League, Zhong Shao, and Valery Trifonov. Type-preserving compilation of Featherweight Java. *ACM Transactions on Programming Languages and Systems*, 24(2):112–152, March 2002. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

[Lengauer:1979:FAF]

[LeCharlier:1994:EEG]
REFERENCES

Lipton:1983:VLP

Leivent:1993:MFT

Liskov:1994:BNS

Lee:1998:PAF

Mallgren:1982:FSG

Merlin:1983:CSS

Morris:1999:SF
REFERENCES

Millstein:2004:MTH

Morris:2009:TTN

Misra:1982:TDD

McGraw:1982:VLD

McKinley:1996:IDL

Morrison:1991:AHA
R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach to the implementation of polymorphism. ACM Transactions on Programming Languages and Systems,
REFERENCES

Moreau:2005:BDR

Moon:1997:PNC

Mauney:1988:DEL

Matthews:2009:OSM

Millstein:2009:EMP

Moriconi:1986:PSP
Mark Moriconi and Dwight Hare. The PegaSys system: Pictures as formal documentation of large programs. ACM Transactions on Programming Languages and Systems, 8(4):524–546, October 1986. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Mirani:2004:FCM
Rajiv Mirani and Paul Hudak. First-class monadic schedules.
REFERENCES

Merro:2006:BBS

Milne:1985:CRC

Minsky:1984:SLC

Misra:1981:EPE

Misra:1994:PSP

Micallef:1994:EAG

Ma:1980:DMI

Martelli:1982:EUA

Myers:1989:RRA

Markstrum:2010:JDP

Masticola:1995:LFM

Morgan:1996:PPT

Mohan:1981:TCF

Molmitra:1983:TCA

Monniaux:2008:PVF

Morgan:1988:SS

Moller:2007:SVX

REFERENCES

Muller-Olm:2007:AMA

Murer:1996:IAS

Mitchell:1988:ATE

Moore:2002:AC

McKinley:2007:ECG

McKinley:2010:DVT

McKinley:2010:PVT

Menon:2003:FSA

REFERENCES

813, November 2003. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Moreau:2005:RAP

Morgan:1988:RC

Maher:1983:API

Murphy:1988:NDP

Marriott:1994:DAI

Madhavan:2000:EGG

Morris:2008:DNF
REFERENCES

ISSN 0164-0925 (print), 1558-4593 (electronic).

Moret:1980:AVR

MacDonald:2009:DDP

[Steve MacDonald, Kai Tan, Jonathan Schaeffer, and Duane Szafron. Deferring design pattern decisions and automating structural pattern changes using a design-pattern-based programming system. *ACM Transactions on Programming Languages and Systems*, 31(3):9:1–9:49, April 2009. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).]

Muller:1992:MLR

Murtagh:1991:ISM

Mueller:1987:RMS

Maassen:2001:EJR

Manna:1980:DAP

[Zohar Manna and Richard Waldinger. A deductive ap-
REFERENCES

Manna:1984:SCP

Mulkers:1994:LSD

Morrisett:1999:SFT

McKenzie:1995:ERS

Myers:1990:CUI

Narlikar:1999:SES

REFERENCES

REFERENCES

Nielson:1986:TCC

Nanda:2006:ISM

Nikolic:2013:RAP

Nowatzki:2015:SFS

Naik:2008:TSE

Nandivada:2013:TFO

REFERENCES

REFERENCES

REFERENCES

Paulson:2001:MTP

Papadimitriou:1980:PBH

Pingali:1997:OCD

Paz:2007:EFC

Porter:2015:PFG

Park:1985:NAL

Preda:2008:SBA

REFERENCES

[PF96] Todd A. Proebsting and Charles N. Fischer. Demand-driven reg-
References

Pratikakis:2011:LPS

Poletto:1999:CTL

Piquer:1996:IDG

Pai:1980:GCR

Pippenger:1997:PVI

Paek:2002:EPA

REFERENCES

[PP94] Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization using idioms. ACM Transactions on Programming Languages and Systems,
REFERENCES

REFERENCES

Poletto:1999:LSR

Pottier:2003:IFI

Pearlmutter:2008:RMA

Pottier:2005:SAS

Pierce:2000:LTI

Purushothaman:1991:CDF

Purtilo:1994:PSB

Pugh:1994:SAU

Pugh:1998:CBA

Palsberg:1995:EIA

Palsberg:2005:ADC

Qian:1995:CR

Qian:2000:SFI

|------------------------|---------------------------------|

|-----------------------|--------------------------------|

|-----------------------|--------------------------------|

<table>
<thead>
<tr>
<th>Rao:1994:RAP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Josyula R. Rao. Reasoning about probabilistic parallel programs. ACM Transactions on Programming Languages and Systems, 16(3):798–</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Rinard:2003:ESB

Rossberg:2013:MMM

Rong:2008:RAS

Rem:1981:APN

Reiss:1983:GCS

Reps:1986:GEI

Reps:1998:MMT

Reps:2000:UCS

REFERENCES

Ramsey:1997:SRM

Rosenkrantz:1987:EAA

Rhiger:2003:FEL

Richter:1985:NSE

Roychoudhury:2004:UFT

Renganarayanan:2012:PLT

Rinard:1998:DIE
Martin C. Rinard and Monica S. Lam. The design, implementation, and evaluation of Jade. *ACM Transactions on Programming Languages and Systems*, 20(3):483–545, May 1998. CODEN ATPS DT. ISSN 0164-

REFERENCES

REFERENCES

REFERENCES

Sangiorgi:2009:OBC

Schwartz:1980:U

Schneider:1982:SDP

Schmidt:1985:DGV

Sampaio:2013:DA

Strickland:2013:CFC

Sethi:1983:CFA

Stamos:1990:RE

REFERENCES

150

Sistla:2004:SRS [SG04]

Sreedhar:1996:ILU [SGL96]

Sreedhar:1997:ICD [SGL97]

Sreedhar:1998:NFE [SGL98]

Steenkiste:1989:SIR [SH89]

Sharir:1982:SOC [Sha82]
Stoyle:2007:MMS

Sheard:1991:AGU

Sijtsma:1989:PRL

Sipala:1982:CSB

Sites:1979:CLI

Spoto:2003:CAA

Scott:2006:RNG

Smans:2012:IDF

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Schwanke:1988:SR

Sangiorgi:2011:EBH

Skudlarek:1995:NMI

Shankar:1992:SRH

Schultz:2003:APS

Sloane:1995:EAG

Steensgaard-Madsen:1981:SOA

REFERENCES

REFERENCES

REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

REFERENCES

ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Terauchi:2008:CCC

Terauchi:2008:WSE

Tai:1979:NSG

Tanenbaum:1983:TCT

Tardieu:2007:DLS

Tsay:1995:DFP

Tofte:1998:RIA

Tzannes:2014:LSR

REFERENCES

Gerard Tel and Friedmann Mattern. The derivation of dis-
REFERENCES

[TSL+02] Thammanur:2004:FME

[TSR08] Torp-Smith:2008:LRA

[TSL+02] Tip:2002:PET

[TSL+02] Thammanur:2004:FME

Thies:2007:STU

Tanenbaum:1982:UPO

Thatcher:1982:DTS

Tse:2007:RTP

Ungar:1992:ATP

Unger:2002:HIL

Vera:2005:ACM

Xavier Vera, Jaume Abella, Josep Llosa, and Antonio González. An accurate cost model for guiding data locality transformations. ACM Transactions on Programming Languages and Systems, 27(5):946–987, September 2005. CO-
REFERENCES

DEN ATPSDT. ISSN 0164-0925 (print), 1558-4593 (electronic).

Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Scheidhauer. Mobile objects in Distributed Oz. *ACM Transactions on Programming Languages and Systems*, 19(5):804–851, September

REFERENCES

REFERENCES

Waters:1983:UFC

Waters:1991:ATS

Waters:1994:CBP

Wright:1997:PST

Walker:2000:TMM

Wileden:1990:CEO

Wileden:1991:CCE
REFERENCES

Webber:1995:OFP

Weihl:1989:LAP

Weihl:1990:LSA

Wagner:1998:EFI

Widom:1992:TBN

Wetherell:1982:EDV

Weyuker:1983:ATD
REFERENCES

Widom:1993:CTB

Walley:1994:AIC

Williams:1982:FNS

Winner:1984:UO

Wing:1987:WLI

Wirth:1988:TE

REFERENCES

46167.html. See remarks [Coh91, Wir91].

Wirth:1991:TCR

Wise:1979:MGC

Wright:1998:PSE

Wand:2004:SAD

Weihl:1985:IRA

Wellings:2000:IOO

Wright:1998:PSE

[WS97] Deborah L. Whitfield and Mary Lou Soffa. An approach

REFERENCES

Ying:2011:FHL

Yu:1997:NCI

Yang:1997:SMC

Yu:1994:LTS

Yellin:1991:ILI

Yellin:1997:PSC

Young:1999:SCB

Cliff Young and Michael D. Smith. Static correlated branch prediction. *ACM Transactions on Programming Languages and Systems*, 21(5):1028–1075, September 1999. CODEN ATPSDT. ISSN 0164-0925 (print), 1558-4593
REFERENCES

174

Yaha:2010:VSP

Yang:2002:EEB

Zave:1985:DAF

Zhao:2007:FFS

Zhang:2005:CPT

Zanden:2001:LLA

Zhou:1996:PPC

Neng-Fa Zhou. Parameter passing and control stack manage-

