A Complete Bibliography of *ACM Transactions on Reconfigurable Technology and Systems*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

05 October 2015
Version 1.24

Title word cross-reference

+ [GL08]. 2 [BPCC09, LP15]. 3 [JB15, SPS12, TZWZ15].
-D [SPS12].
11th [AC14]. 15th [DH08]. 19th [GC13].
5 [AKA09]. 5.0 [LKJ+11].
7.0 [LGW+14]. 7th [VG14].
A-Port [PVA+09]. Abstraction [IBH+15]. Abstractions [IPC14].
Academic [MWL+15]. Accelerated [MCC10]. Accelerating [JLB+08, TZWZ15, VL11]. Acceleration
[CAPA+09, CBR+14, CZ09, KLC11, PFC15, WMG+10, XCG+09, ZBR12]. Accelerator [YEC+09, ZZJB13, YXC+11]. Accelerators
[JRHK15, UNBR14]. Accesses [PFC15]. Accuracy [LP15, UNBR14].

Accurate [JM14]. Adaption [BHI15]. Adaptive
[CNE+15, INF+14, JCG+12, NNY12, OVI+12, PMC+14, Tak12, DGP+15].

Adders [HU10]. Adding [PSM+14]. Addition

Aerial [CZ09]. AES [DGP10, HF14]. against [LOM10]. Algorithm
[CBR+14, EWL15, RLY+15, Ste10, TL11]. Algorithm/Architecture
[EWL15]. Algorithms
[CW09, LRA13, NSS+11]. Alignment
[JLB+08, MCC10, OBD13]. Altera [SMOP15]. Amenability [HNG09].

Analysis
[BPFD11, CFBS15, CKG+10, MMMT09, PPR+10, RGGW10, SB08, GP13, Tak12].

Analytical
[KSCC10, LAL13, DW13, HGLS11]. Analyzing
[GSJC13]. Application
[ABCC09, BBND10, CM14, DDB+10, GDIG+14, JSC14, KGS15, LJS11, MWK+12, PMKM11, RUC11, VTN09, WMG+10, SSF+13].

Application-Specific
[PMKM11, LJS11]. Applications
[CFBS15, CKG+10, GKM+12, KBM09, KCC+14, LZF+10, NJLW14, PSM+14, PVB13, WHQ+08, KSG11].

Approach
[CMI14, KM10, MWK+12, NBS13, SBC15]. Approaches
[MVGB15, SAD10].

ARC
[WBA10]. ARC’08 [CWBD09]. Architecture
[BCE+10, CXG+12, DS15, IZO+10, IBH+15, KSCC10, KAL14, LGW+14, OWMZ11, FFC15, SBC10, VL11, DW13, LKJ+11, Oli12].

Architecture
[BBND10, CBC+12, DSB09, GC13, JTLC09, LAL13, HLL08]. Area
[DD15, Tho15]. Area-Efficient
[DD15, Tho15]. ARISE
[VTN09].

Arithmetic
[SCC10]. Array
[SLH+10]. Arrays
[SCC10, ZH12]. Artificial
[KAL14]. ASIP
[EWL15]. Assignment
[SB08]. Associative
[DD15].

Assurance
[KMK+10]. Asymmetric
[SDG12]. Atmospheric
[GFL+15].

Attack
[SGM09]. Automata
[MHS09]. Automated
[SCC10].

Automatically
[LP15]. Automating
[NCJ+15]. Automation
[SV09]. Autonomous
[DVK15]. Avionics
[LZF+10]. avoidance
[RD11]. Aware
[BKT14, HNS+10, LCS14, NJLW14, SB08, EA11, KSG11]. Awareness
[AHL+14, Buc14, DGP+15].

Bandwidth
[BBND10, SLH+10, BC11]. Bandwidth-Reduction
[SLH+10]. Based
[CBFM14, CZ09, DGP+15, DL09, EWL15, GDHG11, HLN+10, JCG+12, JTLC09, KBT09, KD10, KGS+12, LT09, LL12, MVGB15, NNY12, OVI+12, PPR+10, RC10, SLH+10, ZBC+09, EA11, HLL08, LZF+10, MBJJ11, Ste10, YXC+11, ZBR12, KP14, UNBR14, ZZJB13]. Behavior
[PVA+09]. Benchmarks
[MWL+15]. Benefits
[PSM+14]. between
[LW08, MWL+15]. Binary
[PFC15]. Biomedical
[KCC+14]. Bits
[DVK15]. Bitstream
[BPF11, SMOP15]. BLASTP
[JLB+08, MH15]. Block

Cluster [GNM+15]. Clustering [LRA13, EA11]. Clusters [FK08].

Cryo-Electron [TZWZ15]. Cryptographic [BDGH15, SGM09].

Cryptography [GFBF12, KBM09]. Curve [GPP08, KBM09]. Custom [GRG08, LCS+14]. cuts [KV+11].

Fabric [BHB14, WHQ+08, SPS12]. Factor [LRA13]. Factored [KAL14].
Fast [HU10, JM14, NW11, UNBR14, SSF+13]. Fault
[BKT14, JCG+12, RLY+15]. Fault-Tolerant [BKT14, RLY+15]. Field
[AC14, CAPA+09, SCC10]. Field-Programmable [AC14, SCC10]. Filter
[BPC09]. Filtering [LP15]. Filters [CNE+15]. Financial [TB10]. Finite
[NJLW14, SLH+10, GDHG11]. Finite-Difference [NJLW14]. FIR [LP15].
Fixed [WL10, WMG+10]. Fixed- [WL10]. flexibility [LW08]. Flexible
[DS15]. Flight [QRDC+15]. Floating
[HU10, OBD13, RC10, WL10, dDELVP13]. Floating-Point
[HU10, OBD13, WL10, dDELVP13]. Floorplan [KSCC10]. Floorplanning
[MSSM10]. Flow [BNW+10, BHB14, GKM+12, RLY+15, SCC10]. Footprint
[CW09]. FPGA
[ABCC09, BCE+10, BPFD11, BDGH15, CA11, Che11, CW09, CZ09, DW13,
DVK15, DL09, FRS+15, GP13, GFBF12, GSJC13, GRG08, HF14, HGLS11,
HCOB13, IPC14, JCG+12, JRHK15, JCCM09, JM14, KLC11, KM10, KBM09,
KVK+11, KMK+10, KAL14, KGS15, KBT09, KD10, LCS14, LW08, LZF+10,
LGD+14, LAL13, LT09. LKJ+11, MAK+12, MCN12, MHS09, NNY12,
PDH11, PABI09, PMKM11, RC10, SLH+10, SC08, SV09, TL11, Tho15,
TB10, UNBR14, WHQ+08, XCG+09, YXC+11, ZBR12, ZZJB13, ZBC+09].
FPGA-Array [SLH+10]. FPGA-Aware [LCS14]. FPGA-Based
[UNBR14, ZZJB13, CZ09, JCG+12, KBT09, LT09, NNY12, RC10, YXC+11,
ZBR12]. FPGA [AB14, AKA09, BKT14, BAMR10, BNW+10, BPCC09,
BHL14, CAPA+09, CBFM14, CXG+12, CPN+09, CFBS15, DH08, DDH+11,
DD15, DGP+15, DGP10, HU10, LLO+14, LOM10, LGW+14, MHK+08,
MMMT09, MVGB15, MSSM10, PANBI11, PVA+09, PVB13, SGM09,
SSF+13, SPS12, SB08, Ste10, SMOP15, VMV15, WSC09, WAT15]. FPL
[CDM15]. FPT'12 [AC14]. Framework [ASGY12, CKG+10, JCG+12,
JRHK15, RGGW10, VTN09, HLL08, SSF+13, SPS12]. Frequent [ZZJB13].
Function [LGD+14]. Functional [RUC11]. Functions [NCJ+15, SAD10].

Game [MCL+13]. Gap [MWL+15]. Gate [SCC10]. Gaussian
[SBC10, TL08, Tho15]. General [GFBF12]. Generated [HLC+15, LP15].
Generating [GNM+15]. Generation
[BS15, LGW+14, MKW+12, SCC10, TL08, GL08]. Generator
GPUs [BNW+10, CFBS15]. Gradient [RC10]. Grain [IZO+10]. Grained
[VL11]. Graph [CM14, FRS+15, MVGB15]. Graph-Based [MVGB15].
graphics [BG08]. GRNG [Tho15]. GROK [GNM+15]. GROK-LAB
[GNM+15]. Guest [AN09, CDM15, DH08, WBAM10, SJT09].

Hadamard [Tho15]. Hard [AB14]. Hardware
[AV13, BPFD11, BS15, CBC+12, CBR+14, CZ09, DS15, GPP08, HHSC10,
HLC+15, HLN+10, IBH+15, KBT09, MOG+13, MCC10, PSM+14, SBC10,
TL08, WL10, BG08, HH13, SC11]. Hardware-Accelerated [MCC10].
Hardware-Based [HLN+10]. Hardware/Software [HHSC10, HH13, SC11].
Heterogeneous [ASGY12, AHL+14, BPCC09, CNE+15, GFL+15, KSCC10, KP14, OVI+12, TZZW15, PMKM11, SPS12].
Hiding [MMMT09, THK12].
High [BS15, CH10, CKG+10, EAGEG09, HNS+10, HLC+15, IPC14, MH15, NBS13, RC10, SPM+10, SGM09, TB10, ZBC+09, MAK+12, PANBI11].
High-Level [CKG+10, HLC+15, IPC14, NBS13].
High-Performance [CH10, EAGEG09, HNS+10, MH15, SPM+10, TB10, PANBI11].
High-Speed [BS15, ZBC+09]. high-throughput [MAK+12]. HMAC [MAK+12].
Homogeneous [LAL13]. Hybrid [DS15]. HyperTransport [SGNB08].
I/O [MHS09]. ICFPT [AN09]. iDEA [CFBM14]. Identification [DVH+15].
International [AC14, DH08, VG14]. Intra [GNM+15, HF14]. Intra-cluster [GNM+15].
Intra-Masking [HF14]. Intrinsic [MHK+08]. Introduction [AC14, Bec14, BL08, Che11, CWBD09, GC13, Hübl2, SJT09, VG14, AN09].
IP [IZO+10]. Isolated [MMMT09]. Issue [AC14, CWBD09, Hübl2, VG14].
Itemset [ZZJB13]. iterative [BC11].
JIT [BPFD11]. JITPR [SSF+13].
Kernels [JB15]. Key [GFBF12]. Knowledge [GNM+15].
Lab [MCN12, GNM+15]. LambdaRank [YXC+11]. Language [CKG+10].
Loop [DSB09]. Loops [PMC+14, PFC15]. Low

LUT [FK08, HF14, JCCM09].

Quasi [TB10]. Quasi-Monte [TB10]. Quipu [MOG+13].

Recognition [DDH+11]. reconfigurability [SC11]. Reconfigurable [ASGY12, AV13, BBND10, Bec14, BHI15, BHB14, CCE+12, CNE+15, CH10, CBR+14, CKG+10, DGP+15, DSB+9, DDB+10, EAGEG09, FKS+12, GFL+15, GKM+12, GdjLi+14, HC+OB13, HHSC10, HNS+10, HL+10, IZO+10, IBH+15, JTG+12, JLTC09, KMK+10, KCC+14, LYS+08, MH+15, MKP09, MWK+12, MSM010, NNY12, NBS13, NjLW14, Oli12, PP+10, PFC+15, RGGW10, RUC+11, SPM+10, SJT+09, SAD+10, TL1+1, THK+12, TL08, UHU+09, VLT+09, VG+14, WIL+0, Wfg+10, dDELVP13, AGY+11, BG10, GDH+11, HLI+08, HHI+13, IYY+11, KSG+11, ZH12]. Reconfiguration [DS15, EAGEG09, GFBF12, HNS+10, JSC+14, KD+10, LCS+14, LZF+10, NW+11, NCJ+15, PPR+10, RLY+15, VMV+15, ZBC+09, NSS+11, PDH11].

Reconstruction [TZWZ15]. ReCoSoC [Hiib12]. ReCoSoC’12 [VG14].

Reduce [PSM+14]. Reducing [BM+R10]. Reduction [CW09, SLH+10].

RTR [ZBC+09]. Runtime [EAGEG09, FRS+15, LCS+14, NCJ+15, PPR+10, ZBC+09].

SCF [ASGY12]. Scheduling [BAMR10, CBR+14, HHSC10, HNS+10].

Yield [SC08].
References

REFERENCES

Amano:2009:GEI

Aggarwal:2012:SFT

Ananthan:2013:RPH

Ben-Asher:2010:RMC

Ben-Asher:2013:OWS

Banerjee:2010:BMA

REFERENCES

[Boland:2011:OMB]

[Badrignans:2010:SSA]

[Bhasin:2015:EFB]

[Becker:2014:ITS]

[Beeckler:2008:PGR]

[Brugger:2014:RRF]
Christian Brugger, Dominic Hillenbrand, and Matthias Balzer. RIVER: Reconfigurable flow and fabric for real-time signal pro-

REFERENCES

Bergeron:2011:LT

Butler:2015:HSH

Chen:2011:EDL

Cevrero:2009:FPC

Cancare:2012:EHC

Cheah:2014:IDB

[CBFM14] Hui Yan Cheah, Fredrik Brosser, Suhaib A. Fahmy, and Douglas L. Maskell. The iDEA DSP block-based soft processor for

[CKG+10] John Curreri, Seth Koehler, Alan D. George, Brian Holland, and Rafael Garcia. Performance analysis framework for high-level lan-
REFERENCES

Chen:2014:GMA

Chau:2015:MAP

Chung:2009:PTS

Chin:2009:SDM

Compton:2009:ISI
REFERENCES

Das:2015:ETD

Davidson:2015:IDC

Das:2015:ASE

Das:2013:TDA

Easwaran:2011:NLB

El-Araby:2009:EPR
REFERENCES

REFERENCES

REFERENCES

Gharibian:2013:ASL

Hormigo:2013:SRC

Hoang:2014:IMD

Holland:2011:AMM

Huang:2013:VHS

Hsiung:2010:SPH

Huang:2015:ECO

Hsiung:2008:PSB

Humire:2010:SPR

Holland:2009:RRA

Huang:2010:RCA

Hemmert:2010:FEF

[HU10] K. Scott Hemmert and Keith D. Underwood. Fast, efficient floating-point adders and multipliers for FPGAs. *ACM Trans-
REFERENCES

REFERENCES

REFERENCES

Jacob:2008:MBA

Jin:2014:FAS

Jacobsen:2015:RRR

J:2014:MAN

Jin:2009:ERA

Kim:2014:FPF

REFERENCES

Kaganov:2011:FAM

Kanazawa:2010:ASL

Kepa:2010:DAS

Kornaros:2014:DPT

Kahoul:2010:EHA

Koehler:2011:PAB

Seth Koehler, Greg Stitt, and Alan D. George. Platform-aware bottleneck detection for reconfigurable computing applications.
REFERENCES

Kennings:2011:FTM

Leow:2013:AME

Lam:2014:EFA

Lei:2014:FIS

Luu:2014:VNG

REFERENCES

Labrecque:2011:ASS

[135x681]33

Luu:2011:VFC

Lusala:2012:STB

Laforest:2014:CMP

Lu:2010:ERD

Llamocca:2015:DEP

REFERENCES

[MAK+12] Harris E. Michail, George S. Athanasiou, Vasilis Kelefouras, George Theodoridis, and Costas E. Goutis. On the exploitation of a high-throughput SHA-256 FPGA design for HMAC.
REFERENCES

Mishchenko:2011:SDC

Moscola:2010:HAR

Mehta:2013:UGE

Morgan:2012:RFL

Mahram:2015:NBH

REFERENCES

Matsumoto:2008:SID

Murtaza:2009:CBB

Majzoobi:2009:TDI

McEvoy:2009:IWH

Meeuws:2013:QSM

Montone:2010:PFD

REFERENCES

Miller:2015:GBA

Martin:2012:CPA

Murray:2015:TDT

Neely:2013:RTH

Niu:2015:AEI

[SBC10] Chalermpol Saiprasert, Christos-S. Bouganis, and George A. Constantinides. An optimized hardware architecture of a multivariate

REFERENCES

[SPM10] Manuel Saldaña, Arun Patel, Christopher Madill, Daniel Nunes, Danyao Wang, Paul Chow, Ralph Wittig, Henry Styles, and An-
REFERENCES

REFERENCES

Underwood:2009:SSL

Ulusel:2014:FDE

Voros:2014:ISI

Vaidya:2011:NMC

Vliegen:2015:SRD

REFERENCES

REFERENCES

tems (TRETS), 3(4):19:1–19:??, November 2010. CODEN ????
ISSN 1936-7406 (print), 1936-7414 (electronic).

Self-measurement of combinatorial circuit delays in FPGAs.
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 2(2):10:1–10:??, June 2009. CODEN ???? ISSN 1936-
7406 (print), 1936-7414 (electronic).

[XCG+09] Ning-Yi Xu, Xiong-Fei Cai, Rui Gao, Lei Zhang, and Feng-Hsiung
Hsu. FPGA acceleration of RankBoost in Web search engines.
ACM Transactions on Reconfigurable Technology and Systems
1936-7406 (print), 1936-7414 (electronic).

[YEC+09] Jason Yu, Christopher Eagleston, Christopher Han-Yu Chou,
Maxime Perreault, and Guy Lemieux. Vector processing as a soft
processor accelerator. ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), 2(2):12:1–12:??, June 2009. CO-
DEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

[YKBS10] Sang-Kyung Yoo, Deniz Karakoyunlu, Berk Birand, and Berk
Sunar. Improving the robustness of ring oscillator TRNGs.
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 3(2):9:1–9:??, May 2010. CODEN ???? ISSN 1936-
7406 (print), 1936-7414 (electronic).

[YXC+11] Jing Yan, Ning-Yi Xu, Xiong-Fei Cai, Rui Gao, Yu Wang, Rong
Luo, and Feng-Hsiung Hsu. An FPGA-based accelerator for
LambdaRank in Web search engines. ACM Transactions on Re-
August 2011. CODEN ???? ISSN 1936-7406 (print), 1936-7414
(electronic).

[Zhao:2009:TMB] Weisheng Zhao, Eric Belhaire, Claude Chappert, Bernard Dieny,
and Guillaume Prenat. TAS-MRAM-based low-power high-speed

[ZBR12]*

[ZH12]*

[ZZJB13]*