A Complete Bibliography of *ACM Transactions on Reconfigurable Technology and Systems*

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

19 August 2023
Version 1.47

Title word cross-reference

+ [GL08]. 2 [BPCC09, LP15, RNTW22]. 3 [IAG23, JB15, SPS12, TZWZ15].
k [TK16]. N [MPK22]. QR [ZCL16].

-body [MPK22]. -D [SPS12]. -Means [TK16].

[Che11, WBAM10]. 2011 [Hüb12]. 2013 [CDM15]. 2014
[MST22, Sha22]. 2021 [KZ23]. 256 [MAK+12].

5 [AKA09]. 5.0 [LKJ+11].
7.0 [LGW+14]. 7th [VG14].
8 [MPZ+20]. 80 [YSC+23].

A-Port [PVA+09]. Abstraction [IBH+15]. Abstractions [IPC14].
Academic [MWL+15]. Accelerated
[MHS+19, MCC10, SKJ22, BE19, GKLLA23]. Accelerating
[JLB+08, PFL22, SDGL+22, TZWZ15, VL11, ZG16, ZVS20]. Acceleration
[ABB+23, BMC+22, CAPA+09, CSS+23, CBR+14, CZ09, DFB+22, HNM+22,
KL11, KZB3, LUX+21, MCD+18, PFC15, PBPLA17, RRLW22, TK16,
TYL+23, WTS19, WMG+10, WWC+22, XCG+09, YOY17, YBS16, ZBR12].
Accelerator
[CNZ+18, CZZ23, DCL+22, HLW+21, LML+23, LDJ+17, QNF+23, SKR22,
SKW+21, TWL+23, YHK+21, YEC+09, YGH+18, ZZJB13, YXC+11].
Accelerators
[BSW+23, GZY+18, HBXA23, JRHK15, SLL+20, SKJ22, UNBR14]. Access
[LYZ+18]. Accesses [PFC15]. Accumulation [LLL+23]. Accumulator
[WS16]. Accuracy [DHL+18, KY18, LP15, UNBR14]. Accurate
[AVCP20, CSK17, DLBM18, JM14]. ACE [HLW+21]. ACE-GCN
Adaption [BHI15]. Adaptive
[CNE+15, GRNW22, INF+14, JCG+12, LSP+23, NNY12, OVI+12, PMC+14,
SGW20, Tak17, ZCL15, ZMH+23, Tak12, DGP+15]. ADAS [CZZ23]. Adder
[PBBP18]. Adders [HU10]. Adding [PSM+14]. Addition
[CAPA+09, OBD13]. Addition-Related [OBD13]. Adjustable [ZWM19].
Adjustment [NW11]. Advantage [MPK22]. Advantages [WSDH23].
Advantage-Related [OBD13]. Aerial [CZ09]. Aerospace [WGGR16]. AES
[DP10, HF14]. Against [SRR23, LOM10]. Agent [GMBC17].
Aggregation [GS23]. Aging [CAG+22]. Agreement [ADSH18]. Algeman
[TDH+22]. Ain’t [RNTW22]. Algorithm
[CBR+14, EWL15, RLY+15, Ste10, SMN+23, TL11, TK16, ZCK22].
Algorithm/Architecture [EWL15]. Algorithmic [ZVS20]. Algorithms
[CW09, LRA13, NNS+11]. Alignment [JLB+08, MCC10, OBD13]. Altera
[SMOP15, TK16]. Amenability [HNG09]. Analyses [DRHM22]. Analysis
[BPFD11, CCF+18, CFBS15, CKG+10, JCGW20, LLL+23, MMT09, PRV21,
PP+10, RGWG10, RGCL16, RMSK16, SB08, TMLS21, GP13, Tak12].
Analytical [KSCC10, LAL13, YCV+21, DW13, HGLS11]. Analytics
[SKZR22]. Analyzing [GSJC13]. Anomaly [LBL23]. Application
[ABCC09, BBND10, CM14, DDB+10, GdJG+14, JSC14, KGS15, LJS11,
MLPK22, MKW+12, PMKM11, RUC11, SSK+23, SLL+20, VTN09, WYZ16,
WMG+10, YFW+17, SSF+13]. Application-Optimized [YFW+17].
Application-Specific [PMKM11, LJS11, SLL+20]. Applications
[AZM+19, AI22, CFBS15, CKG+10, DFB+22, GKM+12, IAG23, KBM09,
KCC+14, LZF+10, LBRS16, NJLW14, PSM+14, PVB13, RRW+22, SGC21,
Applying [NSS+11]. Approach [CM14, GJKS23, KMINO, LYZ+18, MS23, MWK+12, NBS13, RK23, SBC15, WSDH23]. Approaches [CHG22, MVGB15, SAD10]. Approximate [FAB22]. ARC [BAG15, DB15, GSCB15, SB15, WB14]. ARC08 [CWBD09].

Architecture [BYB23, AD18, ATJZ16, BCE+10, CXG+12, DS15, EWL15, FT17, GMBC17, IZO+10, IGM+20, IF23, IBH+15, KLD16, KSCC10, KAL14, KD21, LK14, MPZ+20, OWM11, PFC15, PB18, RR22, RNT22, SBC10, SB15, SZZ23, SKB+22, Tak17, VLI11, WS16, XJ+16, ZCL16, DL13, LK+11, Ol12]. Architectures [BBN10, BDX+19, CBC+12, DSB09, EBYB20, GC13, IAG23, JL10, KY18, LK11, LF+18, SF+23, WCK21, YB18, H10]. Area [DD15, KY18, TH15, W10]. Area-Efficient [DD15, TH15]. ARISE [VTN09]. Arithmetic [S10, TML21, WW+22]. ARM [GHWS22]. Array [BC21, SLH+10, ZCL16]. Array-System [BCW21]. Arrays [DP19, H10, S10, ZC22, ZH12]. Artifact [Lee23]. Artificial [KAL14]. ASIC [BYB18, DE22]. ASIP [EW15]. Assembly [BSL17]. Assignment [SB08]. Associative [DD15]. Assurance [CHG22, KMK+10]. Asymmetric [SD12]. Atmospheric [GFL15]. Attack [SGM09]. Attacks [GER19, GTS23, KG19, ML+23, ZQ19]. Authenticated [AD18]. Automata [BD+19, KB23, KD21, MH09]. Automated [DD18, R16, SC10]. Automatic [AZ+19, AR+22, SF+23, TY+23, YB18, YB16]. Automatically [LP15]. Automating [NC15, YF+17]. Automation [SV09]. Autonomous [BM16, DV15]. AutoScaleDSE [JY\textsuperscript{JC23}]. Avionics [LZ10]. avoidance [RD11]. Aware [BAG15, BK14, H+10, LC14, NJ14, SB08, EA11, KS11, VZ20]. Awareness [AH+14, Be14, G23, DG15]. AWS [ES22].

Bandwidth [AI22, BBN10, H10, S10, USY17, BC11, SF+23, ZB+20]. Bandwidth-Bound [AI22]. Bandwidth-Reduction [SLH+10]. Based [AL16, BAG15, CB14, C09, DG+15, DCL+22, DL09, EWL15, GWPK20, GDH11, GHO17, HL+10, JCG+12, JL20, Kap16, KBT09, KD10, KG+12, LB16, LZ19, LT09, LL12, MVGB15, MW21, MZ20, NNY12, O12, PR21, PR+10, RK23, RC10, SL+10, SB15, SP20, SC+23, TY18, US17, WGG16, Y17, ZCL16, Z+10, Z+18, Z+20, AB23, C+22, D20, EA11, FZ23, G23, GW21, GZ+18, HB23, H08, KZ23, L+10, L+23, ML16, MLS22, MK22, MB11, SK+21, SL+20, St10, TW+23, TY+23, WTS19, WW+22, Y+11, Y+21, Z12, ZQ19, Z+20, K14, UN14, Z13]. Behavior [PVA+09]. Benchmarks [MK23, MW+15, PB18]. Benefits [PSM+14]. Bent [SZZ23]. between [LW08, MW+15, TOS17]. Big [RM16]. Binary [AD18, FAB22, HB23, PFC15]. Binary-Unary [FAB22]. Biomedical

[VL11, WCK21, XJD+16]. **Coarse-Grained** [VL11, XJD+16, WCK21].

Code [DVH+15, DC16, ES22, GRG08, ZG16]. **codesign** [SC11]. **Coding** [BAG15]. **Coefficient** [FAB22]. **CoEx** [EWL15]. **COFFE** [YB18].

Coherency [SDG12]. **Coherent** [PRV21, KD19]. **Collaborative** [MzLS20]. **Column** [VL11]. **Column-Oriented** [VL11]. **Combination** [DRHM22].

Combinational [SFNP23]. **Combinatorial** [WSC09]. **Combined** [PP10]. **Commercial** [FL16, MWL+15, ZML+22, PANBI11].

Communication [HNS+10, KD16, SKJ22, USY17, VG14, HZW+13]. **Communication-Aware** [HNS+10]. **Communication-centric** [VG14].

Communications [BNW+10]. **Compact** [HBXA23]. **Comparison** [BNW+10, LA17]. **Compatible** [LT09]. **Compensation** [DNL19].

Compilation [BPFD11, ES22, MWK+12, SFNP23, UAS16]. **Compile** [PP10]. **Compile-Time** [PP10]. **Compiler** [HLC+15, ZG16].

Complex [YB18]. **Complexity** [FRS+15]. **Compliant** [BCW21].

Component [SCC10]. **Components** [ATJZ16, DC16, RDC+21]. **Composable** [LBL23]. **Composing** [BSW+23, LLO+14].

Comprehensive [JCG+12, MZLS20, GP13]. **Compressed** [DCL+22, GS23]. Compression [GRG08, PP10, PBBP18, SKJ22, USY17, IYY+11].

Computation [IF23, dMdLC23]. **Computational** [CZZ23, HNM+22, RGCL16, SFT+23]. **Computations** [RDC+21].

Compute [ABB+23, MHS09]. **Compute-in-Memory** [ABB+23]. **Computer** [LYS+08, NSS+11]. **Computers** [SPM+10, THK12].

Computing [AJYH18, Bec14, CH10, CkG+10, EAGEG09, FAB22, HNS+10, IAG23, JCG+12, MH5, MWBL21, RGGW10, RDB+18, SKJ22, USY17, UAS16, UCR+19, WGG16, dDELVP13, KSG11]. Conference [AC14, LAA+17]. **Configurable** [MCL+23, PABI09, PRV21, WS16].

Configuration [CAG+22, DVK15, HBA+15, KD10, SCY+23].

Configuration-based [CAG+22]. **Configurations** [MHK+08]. **CoNFV** [ZSP+21]. **Congestion** [AHAM+19, CTH16]. **Congestion-estimation** [AHAM+19]. **Conjugate** [RC10]. **Connected** [ATJZ16]. **Connection** [ZVS20]. Connection-aware [ZVS20].

Consolidation [DCL+22]. **Constant** [FAB22, HCOB13]. **Constant-Coefficient** [FAB22]. constrained [MHS+19, SMN+23]. **Constraint** [MWK+12]. **Constraints** [BAMR10, INF+14, LP15]. **Construction** [YFW+17]. Context [AB20, BMR16, KA21, NW11, SKW+21]. **Context-Switch** [BMR16, KA21].

Continuous [GGR+18]. **Control** [NW11, ZG16]. **Control-Intensive** [ZG16]. **Controller** [GdLJG+14]. **Converter** [DNL19]. **Convolution** [WTS19].

Convolutional [BYB18, DWN+22, LDJ+17, LFN+18, MHS+19, PBBP18, TWL+23, VDdSN23]. **Coordination** [ASGY12, PMC+14].

Coprocessor [GS10]. **CORDIC** [RKV23, ZCL15, ZCL16].

CORDIC-Based [RKV23, ZCL16]. **Core** [IZO+10, WPSI18, WMG+10, BYB23, QNF+23, SGNB08].

Correlation
[GSJC13, LML+23]. COSMIC [GGR+18]. Cost
[DPHT19, TL11, PDH11, ZH12]. Countermeasure [MMMT09]. Counters
[LT09]. Counting [FK08, PBPLA17]. Covert [GER19, GTS23]. Covert-
[GER19, GTS23]. CPU [CCF+18, MCD+18]. CPUs [TOS17]. Creating
[DE22]. Creation [SFT+23]. Creative [MCL+13]. Cross
[BDX+19, YGH+18, GTS23]. Cross-layer [YGH+18]. Cross-Platform
[TZWZ15]. Cryptographic [BDGH15, SKW+21, SGM09]. Cryptography
[GFBF12, HBXA23, KBM09, SG15]. Crystals [ZHL+21, MCL+23].
Crystals-Dilithium [ZHL+21, MCL+23]. Curve
[ADSH18, GPP08, KBM09, SG15]. Curve25519 [SG15]. Custom
[GRG08, LCS14, PBBP18, TOS17]. Customizable [MPZ+20]. Customized
[CSK17]. Cycle-Accurate [CSK17]. Cyclostationary
[LLL+23]. D [BPCC09, IAG23, JB15, LP15, RNTW22, SPS12, TZWZ15]. D-LSTM
[RNTW22]. D-stacked [IAG23]. Data [ENPR22a, ENPR22b, GKLAA23,
GKM+12, HLW+21, IABV15, KA21, KW22, LYZ+18, PVB13, RMSK16,
SZKR22, SWT+22, SKH+22, USY17, WAT15, dMdLC23, CA11, ZZB+20].
Data-driven [HLW+21]. Data-Flow [GKM+12]. Data-Level
Dataflow [JSG+22, YCV+21, ZG16]. Datapath
[JSG+22, YCV+21, ZG16]. Datapath-Oriented [WHQ+08]. DBSCAN [SB15]. DCT
[CA11]. Debug
[JCGW20, WHQ+08]. Debugging [AB23, IPC14, JCGW20, KS20].
Decision [CSS+23, OKA19]. Decoders [DLCJ20, CA11]. Decomposition
[ZCL16]. Decompression [KBT09, PP10]. Deconvolutional [LFN+18].
Dedicated [NZI22]. Deep
[AHSS+21, ABB+23, BPF+18, BATM22, CPW18, DWN+22, EBYB20,
GKLAA23, LDJ+17, MHT+21, RKV23, RHLK18, ZDS+22, AGM+22].
[KG17]. Defragmentation [FKS+12]. Delay
[LOM10, MHK+08, SC08, WYZ16]. Delays [GNM+15, WSC09]. Demands [RUC11]. Demystifying [LFS22]. Dense
[RC10, RMSK16]. Density [LML+23]. DEntability
[KGS+12, WGGR17]. Dependable [Ste10]. Dependency
[GWXW21, JCGW20]. Deploying [ABB+23, MKSB22, TDH+22].
Deployment [BDX+19]. Depth [CCF+18]. Derivatives
[MWBL21]. Design
[BKT14, BMR16, CHG22, DLCJ20, DL09, EWL15, GWPK20, GHO17,
IPC14, JSC14, JB15, JJC23, KMK+10, LP22, MKP09, MLFS22, MHS+19,
MZLS20, NBS13, PRV21, PCFM23, SJT09, SBC15, SCY+23, SKB+22, Tak12,
UNBR14, VddSN23, ZMH+23, ZHL+21, HLL08, HH13, MCL+23, MAK+12].
design-space [HLL08]. Designing [AHL+14, FK08]. Designs

Execution [DSK15]. Exotic [FT17]. Experiment [QRDC+15].

Extraction [GNM+15].

Floating [FL16, HU10, OBD13, RC10, USY17, WL10, WS16, WWC+22, dDELVP13].

Floating-Point
[FL16, HU10, OBD13, USY17, WL10, WS16, dDELVP13, WWC+22].

Floorplan [KSCC10]. Floorplanning [MSSM10]. Flow [BNW+10, BMR16, BHB14, GKM+12, HNM+22, KA17, RLY+15, SCC10, ZG16, ZMH+23].

FPGA [BYB23, AZM+19, AHSS+21, AVC20, APR+22, ABC09, AGM+22, AB20, BCO+10, BAG15, BS+23, BPFPD11, BFBN+20, BDGH15, BE19, BMC+22, BYB18, BF23, CHG22, CA11, Che+11, CW9, CCF+18, CSG+23, CSK17, CZ9, CLL+22, DAF+22, DW13, DVM15, DNL19, DE22, DL09, ES22, EBYB20, EAAA+19, FLR+15, FLM+17, GP13, GWP20, GF12, GBMC17, GJSC13, GER19, GZG+18, HBX+23, HF14, HGLS11, HCOB13, HLW+21, IF23, IPC14, JCG+12, JZHK15, JCCM09, J14, KLD16, KCL11, KZB23, KM10, K16, KBM10, KVR+11, KMK+10, KY18, KAL14, KA17, KG+15, KBT09, KD10, KS20, LA17, LUX+21, LCS14, LW08, LZF+10, LGS+14, Le+22, LAL13, LLM+23, LMD+17, LFN+18, LT09, LBL23, LKJ+11, MLP22, MLFS22, MCD+18, MP23, MA+12, MCN12, MZL20, MPZ+20, MHS09, NNY12, NZI22].

FPGA-accelerated [BE19]. FPGA-Array [SLH+10]. FPGA-Aware [LCS14]. FPGA-Based
[UNBR14, ZZJ13, CZ9, GHO17, JCG+12, K16, KBT09, LT09, NNY12, RC10, SB15, USY17, WGN16, YOY+17, ZA+18, ZB+16, GZG+18, KZB23, LBL23, MLFS22, TWL+23, WTS19, WWC+22, XCS+11, ZBR12, ZZJ13, ZQ9, ZCV+22, ZN+18, ZM+23, ZVS+20, ZV+16].

FPGA-optimized [ZCK22]. FPGA-SoCs [GHW22]. FPGADefender [LMG+20].

FPGAs [AB14, AKA09, AHAM+19, AH+18, ABB+23, A122, AB23, BKT14, BAMR10, BNW+10, BPC09, BH14, CAPA+09, CBP14, CPW18, CCT+22, CXG+12, CFM21, CPN+09, CFBS15, DH08, DCL+20, DDH+11, DD15, DGP+15, DGP10, DB15, ENR22, ENR22b, FL16, FAB22, GRW22, GTS23, H10, HBA+15, IAG23, K17, KA21, KW22, KGT19, KD21, LMG+20, LLO+14, LSP+23, LOM10, LFS22, LGW+14, MHS+19, MKS22, MM10, MP22, MVGB15, ML+23, MSSM10, MH+19, OKA19, PFL22, PANB11, PVA+09, PVB13, RVP16, RLM+17, RDB+18, RHLK18, SGM9, SWT+22, SKH+22, SSF+13, SPS12, SB08, Ste+18, SSC16, SKB+22, SMO15, TML21, TWG+20, TYB18, TYL+23, VMV15, WSC09, WAT15, ZBB+20, ZML+22].

FPL
[BGSL17, YFW+17, CDM15, CS17, LAA+17, MST22]. **FPT** [KZ23, Lee23]. **FPT**'12 [AC14]. **FPT**'20 [SLD23]. **FPT**'21 [Che22]. **Framework** [ASGY12, AHSS+21, BSW+23, BPFP+18, CCT+22, CKG+10, DBF+22, JCG+12, JRHK15, KD21, LZ19, RGW20, SGC21, TDI+22, TYL+23, UAS16, VTN09, WPSI18, WGG16, ZDS+22, HLL08, SSF+13, SPS12]. **Free** [AB20, GWPK20]. **Frequency** [WSDH23]. **Frequent** [PBPLA17, ZZJB13]. **FroC** [AZM+19]. **Fruit** [YSC+23]. **Fruit-80** [YSC+23]. **fSEAD** [LBL23]. **FSM** [GDHG11]. **FT** [WTS19]. **Full** [CPN+09, DFB+22]. **Full-stack** [DFB+22]. **Full-System** [CPN+09]. **Fully** [KAL14]. **Function** [LGD+14, LML+23, MWBL21, SFNP23, ZSP+21]. **Functional** [RUC11]. **Functions** [NCJ+15, SAD10]. **Future** [BMC+22, LUX+21].

Galois [SCY+23]. **Game** [MCL+13]. **Gap** [MWL+15, TOS17]. **Gaps** [BYB18]. **Gate** [BCW21, DPHT19, HNM+22, SCC10]. **Gaussian** [SBC10, TL08, Tho15]. **GCN** [HLW+21, TWL+23]. **General** [AJYH18, GFBF12, ZDS+22]. **General-Purpose** [AJYH18, ZDS+22]. **Generalized** [ZWM19]. **Generated** [HLC+15, LP15, GRNW22]. **Generating** [BMR16, GN+15]. **Generation** [BS15, LSP+23, LGW+14, MKW+12, PRV21, SP20, SCC10, TL08, GL08]. **Generator** [GHO17, SBC10, SCC10, TL08, GL08]. **Generator** [GROK-LAB] [GN+15]. **GROK** [GN+15]. **GROK-LAB** [GN+15]. **Guest** [AN09, CDM15, DH08, GSCB15, WBAM10, SJT09].

Hadamard [Tho15]. **Handling** [SKW+21]. **Hard** [AB14, ZCK22]. **Harden** [LFS22]. **Hardware** [ABD18, AV13, BCW21, BPPD11, BS15, CBC+12, CZZ23, CBR+14, CJO9, DD18, DBF+22, DFCJ20, DS15, GLLA23, GPP08, HBX23, HNM+22, HHS10, HLC+15, HLN+10, IBH+15, KBT09, MOG+13, MCC10, PD15, PSM+14, RNTW22, SBC10, SKW+21, SP20, TL08, TOS17, WL10, YSC+23, YBS16, ZG16, ZHL+21, BG08, HH13, SC11, SMN+23]. **Hardware-Accelerated** [MCC10, GLLA23]. **Hardware-Based** [HNM+10]. **Hardware/Software** [HHHC10, HH13, SC11]. **Hash** [IABV15]. **HBM** [SKH+22, TYL+23]. **HBM-based** [TYL+23]. **HBM2** [BY23]. **HBM2-enabled** [BY23]. **HDL** [RDC+21]. **Healing** [BHI15]. **Healthier** [ZH12]. **Heap** [BAG15]. **Heap-Based** [BAG15]. **heterogeneity** [LKJ+11]. **Heterogeneous** [ASGY12, AHL+14, BPCC09, CNE+15, CCF+18, GFL+15, GDHG11, SCY+23].

GIB [SZZW23]. **Global** [GFL+15, JSC14]. **GPU** [RNTW22, TB10]. **GPUs** [AJYH18, BNW+10, CFBS15]. **Gradient** [RC10]. **Grain** [IZO+10, YSC+23]. **Grained** [NZS+23, RBR16, VL11, XJD+16, ZNA+18, KD19, WCK21, YHK+21]. **Graph** [CM14, CCF+15, GWXW21, MVGB15, TWL+23, ZG16]. **Graph-Based** [MVGB15, GWXW21]. **Graphic** [BCW21]. **graphics** [BG08]. **Graphs** [SLL+20]. **Grid** [SLL+20]. **Grid-format** [SLL+20]. **GRNG** [Tho15]. **GROK** [GN+15]. **GROK-LAB** [GN+15]. **Guest** [AN09, CDM15, DH08, GSCB15, WBAM10, SJT09].
KSCC10, KP14, OVI+12, TZWZ15, TDH+22, UAS16, WSDH23, YB18, ZSP+21, PKM11, SPS12. **Hiding** [MMMT09, THK12]. **Hierarchies** [YFW+17].

High

[BGS17, BS15, CZZ23, CH10, CSS+23, CKG+10, DHL+18, EAGEG09, GWXW21, HNM+22, HNS+10, HLC+15, IPC14, JSG+22, JYJC23, MH15, MCL+23, MPZ+20, NBS13, OROS+19, PMGL22, PBBP18, RC10, SPM+10, SGM09, SSK+23, SFNP23, SFT+23, SSC16, TB10, USY17, WBC16, WBR18, WWC+22, ZBC+09, MAK+12, PANBI11]. **High-Accuracy** [DHL+18]. **High-Bandwidth** [HNM+22, SFT+23, ZZB+20]. **High-Efficiency** [PBBP18]. **High-Level** [CKG+10, HLC+15, IPC14, JSG+22, JYJC23, MH15, MCL+23, MPZ+20, NBS13, OROS+19, WBC16, CSS+23, GWXW21, SFNP23]. **High-Speed** [BS15, ZBC+09]. **High-Throughput** [SSK+23, SFT+23, ZZB+20]. **Highly** [DLBM18, ES22, IGM+20, RDC+21]. **Hipernetch** [PMGL22]. **Hoplite** [KG17]. **HopliteBuf** [GWPK20]. **HopliteML** [MLPK22]. **HPC** [MPK22, MKP23, US23]. **HW** [MCL+23]. **Hybrid** [DS15, FAB22, GHWS22, MFOM23, RGCL16, SGW20, TYL+23]. **Hybrid-TPM** [GHWS22]. **HyperTransport** [SGNB08].

I/O [MHS09, RGCL16]. **ICFPT** [AN09]. **iDEA** [CBFM14]. **Identification** [DVH+15, GHO17]. **Idle** [NCJ+15]. **II** [ENPR22b, SMOP15]. **Image** [BAG15, CZ09, SDM+18]. **Images** [TZWZ15]. **Impact** [HBA+15, KLD16, KW22]. **Implementation** [AV13, BAG15, BCW21, DNL19, GRG08, HBX23, HF14, LGD+14, LLL+23, LML+23, MKP09, OBD13, RC10, SSK+23, SV09, SAD10, CA11, SSF+13]. **Implementations** [BDGH15, FLM+17, MDP+23]. **Implemented** [PVB13]. **Implementing** [BKT14, BNW+10, SG15]. **Imprecise** [SBC15]. **Improve** [BYB18, LZF+10, SDG12]. **Improved** [GHO17, JCCM09]. **Improving** [DRHM22, LZ19, NZS+23, YKBS10]. **In-Circuit** [KS20]. **In-Depth** [CCF+18]. **In-the-Cloud** [BDX+19]. **Increasing** [SRR23]. **Incremental** [GGR+18, GL08]. **Independent** [PMC+14]. **Index** [BAG15]. **Index-Aware** [BAG15]. **Inducing** [CAG+22]. **Inference** [APR+22, BYB18, DWN+22, EBYS20, GZY+18, MCD+18, OKA19, RHLK18, SFNP23]. **Infinite** [SWT+22]. **Information** [GSJC13]. **Infrastructure** [HBA+15, MKSB22, ZSZ+20, HH13]. **Input** [CAPA+09, FK08]. **Insertion** [LOM10]. **Instance** [RLM+17]. **Instance-Specific** [RLM+17]. **Instruction** [GB11, GWXW21, WBR18, YGH+18]. **Instruction-Set** [GB11]. **Instructions** [LCS14]. **Integer** [MLFS22]. **Integration** [GS10, JRHK15, LRA13, YBS16]. **Intensive** [ZG16]. **Inter** [MKP23]. **Inter-FPGA** [MKP23]. **Interactions** [KD19]. **Interconnect**
Low-precision [WWC$^+$22]. Low-Speed [HBA$^+$15]. LSTM [IF23, RNTW22]. LUT

[WBR18]. **Support** [GdLlG+14, MSF16, PSM+14, PBPLA17]. **Supporting** [DNL19, SSF+13]. **Suppression** [MHK+08]. **Survey** [CA23, GB11, GZY+18, PCFM23, PDH11]. **SW** [MCL+23]. **SW/HW** [MCL+23]. **Switch** [BMR16, KA21, PMGL22, SKW+21]. **Switch-based** [SKW+21]. **Switched** [AL16, LL12, MKP23]. **Switching** [AB20, US23]. **Symbol** [BDX+19]. **Symbol-Only** [BDX+19]. **Symmetric** [GFBF12]. **Symmetries** [ZWM19]. **Symposium** [DH08]. **Synchronous** [GKM+12, PVA+09]. **SyncNN** [PFL22]. **Synergies** [MCD+18]. **Synthesis** [BAMR10, BAMR13, BPCC09, CSS+23, DD18, GWXW21, GdLlG+14, HLC+15, JYJC23, LUX+21, OROS+19, RBR16, SFNP23, WBC16, PANBI11]. **Synthesis-Generated** [HLC+15]. **Synthesizable** [KA17, WHQ+08]. **System** [AVCP20, BCW21, CPN+09, ES22, GSJC13, GS10, IBH+15, JM14, JB15, LGW+14, MSF16, TZWZ15, VPPK20, WBR16, ZHB+20, ZBR12]. **System-Level** [GSJC13]. **System-on-Chip** [GS10]. **SystemC** [HLL08]. **SystemC-based** [HLL08]. **Systems** [ASGY12, AI22, Bec14, BKT14, BHI15, CNE+15, CH10, CA23, GMBC17, GdLlG+14, HHSC10, HLN+10, IG1+14, Kap16, KMK+10, KBT09, LP22, MH15, MCN12, NBS13, NJLW14, PMC+14, PVA+09, RGGW10, SGW20, SJT09, VG14, ZQ19, ZNA+18, HGLS11, HH13, PDH11, ZH12]. **Systems-on-Chip** [GdLlG+14, VG14]. **Systolic** [LML+23, ZCL16, ZCK22]. **Table** [IABV15, Tho15]. **Table-Hadamard** [Tho15]. **Targetable** [KA17]. **Targeting** [DDH+11, SFNP23, TL08]. **TAS** [ZBC+09]. **TAS-MRAM-Based** [ZBC+09]. **Task** [ASGY12, AB20, CTH16, HNS+10, PVB13]. **Task-** [PVB13]. **Task-Level** [ASGY12]. **Tasks** [HHSC10]. **TCAMs** [dMdLC23]. **TDF** [DGP+15]. **TDM** [LL12]. **TDM-Based** [LL12]. **Techniques** [AKA09, KBT09, MKP09, OVI+12]. **Technology** [AC14, BCW21, JCCM09, LZ19, PWP+16, KVK+11]. **Telescope** [PEM+09]. **Temperature** [DGP+15, DB15]. **Temperature-Based** [DGP+15]. **Temporal** [TYP+23]. **Tenant** [KGT19, MKSB22]. **Tensor** [AGM+22]. **Ternary** [PPB18, TKH+19]. **TERO** [SRR23]. **TERO-TRNGs** [SRR23]. **Terrestrial** [KW22]. **Test** [HNG09, IYY+11]. **Testing** [AZM+19]. **Thermal** [KP14]. **Thousands** [AVCP20]. **threaded** [QNF+23]. **Throughput** [LDJ+17, RC10, SSK+23, MAK12]. **Throughput-Optimized** [LDJ+17]. **ThunderGP** [CCT+22]. **TILT** [TOS17]. **Time** [ABCC09, BPFD11, BATM22, BHB14, DNL19, HHSC10, INF+14, IBH+15, KZ123, PPR+10, RDB+18, RMSK16, RHLK18, GKLLA23, LLL+23, RD11]. **Time-to-Digital** [DNL19]. **Timed** [PVB13]. **Timing** [CXG+12, GGR+18, GNM+15, LRA13, MWL+15, Ste10, WYZ16, ZML+22]. **Timing-** [LRA13]. **Timing-Driven** [MWL+15, ZML+22]. **Titan** [MWL+15, PP10]. **Titan-R** [PP10]. **TMR** [ZNA+18]. **Today** [CLL+22]. **Tolerance** [DVK15, JCG+12]. **Tolerant** [BKT14, RLY+15]. **Tool** [BF23]. **Tools** [BKT14, LKJ+11]. **Toolset** [KMK+10]. **Topology** [RLY+15]. **Torus**

References

REFERENCES

REFERENCES

Ahmed:2009:PTV

Abdelhadi:2016:MSM

Amano:2009:GEI

Alonso:2022:EDS

Aggarwal:2012:SFT

Alachiotis:2022:SPR

Nikolaos Alachiotis, Panagiotis Skrimponis, Manolis Pissadakis, and Dionisios Pnevmatikatos. Scalable phylogeny reconstruction with disaggregated near-memory processing. *ACM Transactions on Reconfigurable Technology and Systems (TRETS)*, 15
REFERENCES

REFERENCES

Bakos:2018:ISS
Jason D. Bakos. Introduction to the special section on FCCM’16.

Ben-Asher:2010:RMC
Yosi Ben-Asher, Danny Meisler, and Nadav Rotem. Reducing memory constraints in modulo scheduling synthesis for FPGAs.

Ben-Asher:2013:OWS
Yosi Ben-Asher, Ron Meldiner, and Nadav Rotem. Optimizing wait states in the synthesis of memory references with unpredictable latencies.

Brennsteiner:2022:RTD
Stefan Brennsteiner, Tughrul Arslan, John Thompson, and Andrew McCormick. A real-time deep learning OFDM receiver.

Banerjee:2010:BMA

Boland:2011:OMB
David Boland and George A. Constantinides. Optimizing memory bandwidth use and performance for matrix-vector multiplication in iterative methods.
REFERENCES

Badrignans:2010:SSA

Beasley:2021:OCH

Bhasin:2015:EFB

Bo:2019:APR

Bobda:2019:ISS

REFERENCES

[BHB14] Christian Brugger, Dominic Hillenbrand, and Matthias Balzer. RIVER: Reconfigurable flow and fabric for real-time signal pro-

REFERENCES

[BSW+23] Suhail Basalama, Atefeh Sohrabizadeh, Jie Wang, Licheng Guo, and Jason Cong. FlexCNN: an end-to-end framework for com-

Boutros:2018:YCI

Abdelhamid:2023:SMC

Chen:2011:EDL

Corts:2023:SPS

Cook:2022:INU

REFERENCES

Liang Chen and Tulika Mitra. Graph minor approach for application mapping on CGRAs. *ACM Transactions on Reconfigurable
REFERENCES

Chau:2015:MAP

Cao:2018:FRA

Cho:2021:PMC

Chung:2009:PTS

Chen:2018:ISS

REFERENCES

Dhawan:2015:AEN

Daigneault:2018:ASS

Dubois:2010:SMV

deDinechin:2013:FPE

Demertzí:2011:DSO

Dogan:2022:CBB

REFERENCES

Van Luan Dinh, Xuan Truong Nguyen, and Hyuk-Jae Lee. A novel FPGA implementation of a time-to-digital converter sup-

REFERENCES

Davidson:2015:IDC

Das:2015:ASE

Das:2013:TDA

DAAlberto:2022:XID

Easwaran:2011:NLB

Elrabaa:2019:PPP

[EAAAA19] Muhammad E. S. Elrabaa, Mohamed A. Al-Asli, and Marwan H. Abu-Amara. A protection and pay-per-use licensing scheme for on-cloud FPGA circuit IPs. ACM Transactions on Reconfigurable
El-Araby:2009:EPR

Eldafrawy:2020:FLB

Eguro:2022:ISIa

Eguro:2022:ISIb

Ebcioglu:2022:HPM

[GC13] Diana Goehringer and René Cumplido. Introduction to the special section on 19th Reconfigurable Architectures Workshop (RAW

Glaser:2011:TFT

Guillet:2014:EUM

Giechaskiel:2019:LWE

Gaspar:2012:SEF

Gan:2015:SGA

REFERENCES

[Gantel:2012:ERP] Laurent Gantel, Amel Khiar, Benoit Miramond, Mohamed El Amine Benkhelifa, Lounis Kessal, Fabrice Lemonnier, and

REFERENCES

REFERENCES

Giechaskiel:2023:CVC

Garg:2020:HNC

Gu:2021:DGB

Guo:2018:DSF

Heyse:2015:IRL

He:2023:FIC

Pengzhou He, Tianyou Bao, Jiafeng Xie, and Moeness Amin. FPGA implementation of compact hardware accelerators for ring-
REFERENCES

Huang:2015:ECO

Hsiung:2008:PSB

Humire:2010:SPR

Hung:2021:AGF

Holland:2009:RRA

References

Iskandar:2023:NMC

Iiturbe:2015:MAH

Ioannou:2023:SOA

Ioannou:2020:UNA

Itturiet:2014:APE
Fábio Itturiet, Gabriel Nazar, Ronaldo Ferreira, Álvaro Moreira, and Luigi Carro. Adaptive parallelism exploitation under physical and real-time constraints for resilient systems. *ACM Transactions

REFERENCES

Jacobs:2012:RFT

Jamal:2020:FTH

Jacob:2008:MBA

Jin:2014:FAS

Jacobsen:2015:RRI

J:2014:MAN

REFERENCES

Josipovic:2022:BPS

Jin:2009:ERA

Jun:2023:ASD

Kim:2017:SSC

Kara:2021:PGC

Kim:2014:FPF

REFERENCES

Kapre:2016:OSV

Karakchi:2023:NND

Keller:2009:ECC

Koch:2009:HDT

Kim:2014:USU

Koh:2010:CMP

[KD10] Shannon Koh and Oliver Diessel. Configuration merging in point-to-point networks for module-based FPGA reconfiguration. ACM Transactions on Reconfigurable Technology and Systems...
REFERENCES

[KP14] George Kornaros and Dionisios Pnevmatikatos. Dynamic power and thermal management of NoC-Based heterogeneous MPSoCs. *ACM Transactions on Reconfigurable Technology and Systems*
REFERENCES

REFERENCES

REFERENCES

Leong:2022:ISS

Liu:2018:OCB

Lu:2022:DSH

Lei:2014:FIS

Luu:2014:VNG

June 2014. CODEN ????? ISSN 1936-7406 (print), 1936-7414 (electronic).

REFERENCES

La:2020:FMS

Li:2023:SSA

Langhammer:2022:SNA

Lu:2010:ERD

Llamoca:2015:DEP

Lienen:2022:DDR

[LP22] Christian Lienen and Marco Platzner. Design of distributed reconfigurable robotics systems with ReconROS. *ACM Transac-
REFERENCES

Liu:2013:INL

Li:2023:JBA

Lo:2009:SOC

Lai:2021:PSS

Lamoureux:2008:TBP

REFERENCES

Moscola:2010:HAR

Meloni:2018:NEC

Mehta:2013:UGE

Mao:2023:HPC

Morgan:2012:RFL

Moini:2023:VSI

Machado:2023:NNH

Mahram:2015:NBH

Matsumoto:2008:SID

Murtaza:2009:CBB

REFERENCES

REFERENCES

REFERENCES

[NW11] Mao Nakajima and Minoru Watanabe. Fast optical reconfiguration of a nine-context DORGA using a speed adjustment con-
REFERENCES

REFERENCES

Patterson:2009:STP

Paulino:2015:RAB

Panchapakesan:2022:SEA

Panerati:2014:CIL

Papaphilippou:2022:HHP

Parvez:2011:ASF

Papadopoulos:2010:TRM

Purnaprajna:2010:RRM

Peetermans:2021:DAC

Peng:2014:BAH

Pellauer:2009:PNP

REFERENCES

Roldao:2010:HTF

Rubin:2011:CYO

Rossi:2018:PPR

Reggiani:2021:ESM

Richardson:2016:AFR

Reardon:2010:SFR

REFERENCES

[Sghaier:2010:IA] Ahmad Sghaier, Shawki Areibi, and Robert Dony. Implementation approaches trade-offs for WiMax OFDM functions on recon...
Sivaswamy:2008:SAP

Scicluna:2015:AMF

Saiprasert:2010:OHA

Shi:2015:IDD

Sedcole:2008:PYM

Shannon:2011:LRH

Lesley Shannon and Paul Chow. Leveraging reconﬁgurability in the hardware/software codesign process. *ACM Transactions
REFERENCES

Smith:2010:AFA

Shi:2023:DSE

Singh:2022:AWP

REFERENCES

2023. CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

Shahsavani:2023:ECM

Soldavini:2023:ACH

Sasdrich:2015:ICS

Sabogal:2021:RFR

Sauvage:2009:ERF

REFERENCES

March 2009. CODEN ???? ISSN 1936-7406 (print), 1936-7414 (electronic).

[SKH+22] Runbin Shi, Kaan Kara, Christoph Hagleitner, Dionysios Diamantopoulos, Dimitris Syrivelis, and Gustavo Alonso. Exploiting

Sun:2022:BEC

Sasongko:2021:HCS

Sinnen:2023:ISS

Sano:2010:FAB

Shao:2020:PGF

[ZSH+20] Zhiyuan Shao, Chenhao Liu, Ruoshi Li, Xiaofei Liao, and Hai Jin. Processing grid-format real-world graphs on DRAM-based FPGA accelerators with application-speciﬁc caching mechanisms.
REFERENCES

Skubich:2023:IRT

Stitt:2016:PSW

Sidiropoulos:2013:JFS

Schelten:2023:HTR

Sterpone:2010:NTD

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[Woods:2015:PDP]

[Woods:2010:GEA]

[Winterstein:2016:SLH]

[Wong:2016:MCM]

[Wong:2018:HPI]

REFERENCES

Wilson:2016:UAA

Wong:2009:SMC

Wolf:2023:ASE

Wang:2019:FBA

Wu:2022:LPF
REFERENCES

REFERENCES

REFERENCES

Yoshimi:2017:PPJ

Yang:2023:HOF

Yan:2011:FBA

Ziener:2016:FBD

Zhao:2009:TMB

REFERENCES

[Zick:2012:LCS]

[Zhou:2021:SHC]

[Zhao:2023:ASC]

[Zhou:2022:ROS]

[ZHAO18]

Zhang:2013:FBA