
B

Expanded Plain TEX
May 1994

For version 2.6.

Karl Berry
Steven Smith

Copyright c© 1989, 90, 91, 92, 93, 94 Karl Berry. Steven Smith wrote the documentation
for the commutative diagram macros. (He also wrote the macros.)
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the section entitled “GNU General
Public License” is included exactly in the original, and provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the section entitled
“GNU General Public License” may be included in a translation approved by the author
instead of in the original English.

Chapter 1: Introduction 1

1 Introduction

The Eplain macro package expands on and extends the definitions in plain TEX. This
manual describes the definitions that you, as either an author or a macro writer, might
like to use. It doesn’t discuss the implementation; see comments in the source code
(‘xeplain.tex’) for that.

Eplain is not intended to provide “generic typesetting capabilities, as do LaTEX (writ-
ten by Leslie Lamport) or Texinfo (written by Richard Stallman and others). Instead, it
provides definitions that are intended to be useful regardless of the high-level commands
that you use when you actually prepare your manuscript.

For example, Eplain does not have a command “section, which would format section
headings in an “appropriate” way, such as LaTEX’s “section. The philosophy of Eplain
is that some people will always need or want to go beyond the macro designer’s idea of
“appropriate”. Such canned macros are fine—as long as you are willing to accept the
resulting output. If you don’t like the results, or if you are trying to match a different
format, you are out of luck.

On the other hand, almost everyone would like capabilities such as cross-referencing by
labels, so that you don’t have to put actual page numbers in the manuscript. The author
of Eplain is not aware of any generally available macro packages that (1) do not force their
typographic style on an author, and yet (2) provide such capabilities.

Besides such generic macros as cross-referencing, Eplain contains another set of defini-
tions: ones that change the conventions of plain TEX’s output. For example, math displays
in TEX are, by default, centered. If you want your displays to come out left-justified, you
have to plow through The TEXbook to find some way to do it, and then adapt the code
to your own needs. Eplain tries to take care of the messy details of such things, while still
leaving the detailed appearance of the output up to you.

Finally, numerous definitions turned out to be useful as Eplain was developed. They are
also documented in this manual, on the chance that people writing other macros will be
able to use them.

You can send bug reports or suggestions to tex-eplain@cs.umb.edu. The current ver-
sion number of Eplain is defined as the macro “fmtversion at the end of the source file
‘eplain.tex’. When corresponding, please refer to it.

To get on this mailing list yourself, email ‘tex-eplain-request@cs.umb.edu’ with a
message whose body contains a line

subscribe you@your.preferred.address

2 Expanded Plain TEX

2 Installation

The procedure for Kpathsea (and Web2c, etc.) configuration and installation follows. If
trouble, see 〈undefined〉 [Common problems], page 〈undefined〉, a copy of which is in the
file ‘kpathsea/BUGS’.

2.1 Simple installation

Installing TEX and friends for the first time can be a daunting experience. Thus, you
may prefer to skip this whole thing and just get precompiled executables: see 〈undefined〉
[unixtex.ftp], page 〈undefined〉.

This section explains what to do if you wish to take the defaults for everything (installing
under ‘/usr/local’), and generally to install in the simplest possible way. Most steps here
refer to corresponding subsection in the next section which explains how to override defaults
and generally gives more details.
1. Be sure you have enough disk space: approximately 8 megabytes for the compressed

archives, 15MB for sources, 45MB for compilation, 40MB for the (initial) installed
system (including library files). See Section 2.2.1 [Disk space], page 3.

2. Retrieve these two distribution archives:

‘ftp://ftp.tug.org/tex/texk.tar.gz’
These are the sources, which you will be compiling.

‘ftp://ftp.tug.org/tex/texmflib.tar.gz’
This is a basic set of input files. You should unpack it in the directory
‘/usr/local/share’; doing so will create a ‘texmf’ subdirectory there.

See Section 2.2.2 [Kpathsea application distributions], page 4.
3. When using the default search paths, there is no need to edit any distribution files. See

Section 2.2.3 [Changing search paths], page 4.
4. At the top level of the distribution, run ‘sh configure’. (If you have the GNU Bash

shell installed, run ‘bash configure’.) See Section 2.2.4 [Running configure], page 6.
5. ‘make’. See Section 2.2.5 [Running make], page 9.
6. ‘make install’. See Section 2.2.6 [Installing files], page 9.
7. ‘make distclean’. See Section 2.2.7 [Cleaning up], page 10.
8. Set up a cron job to rebuild the filename database that makes searching faster. This

line will rebuild it every midnight:
0 0 * * * cd /usr/local/share/texmf && /bindir/MakeTeXls-R

See Section 2.2.8 [Filename database generation], page 10, and 〈undefined〉 [Filename
database], page 〈undefined〉.

9. If you’re installing Dvips, you also need to set up configuration files for your printers
and make any additional PostScript fonts available. See section “Installation” in Dvips.
If you have any color printers, see section “Color device configuration” in Dvips.

Chapter 2: Installation 3

10. The first time you run a DVI driver, a bunch of PK fonts will be built by Metafont
via MakeTeXPK (and added to the filename database). This will take some time. Don’t
be alarmed; they will created only this first time (unless something is wrong with your
path definitions).
By default, MakeTeXPK assumes ‘/usr/local/share/texmf/fonts’ is globally writable.
If you need a different arrangement, see Section 2.2.9.1 [MakeTeX configuration],
page 11.
See Section 2.2.9 [MakeTeX scripts], page 11.

11. For some simple tests, try ‘tex story ““bye’ and ‘latex simple’. Then run ‘xdvi
story’ or ‘dvips simple’ on the resulting DVI files to preview/print the documents.
See Section 2.2.10 [Installation testing], page 13.

2.2 Custom installation

Most sites need to modify the default installation procedure in some way, perhaps merely
changing the prefix from ‘/usr/local’, perhaps adding extra compiler or loader options to
work around configure bugs. This section explains how to override default choices. For
additional distribution-specific information:
• ‘dviljk/INSTALL’.
• See section “Installation” in Dvips.
• See section “Installation” in Web2c.
• ‘xdvik/INSTALL’.

These instructions are for Unix systems. Other operating-system specific distributions
have their own instructions. The code base itself supports Amiga, DOS, OS/2, and VMS.

Following are the same steps as in the previous section (which describes the simplest
installation), but with much more detail.

2.2.1 Disk space

Here is a table showing the disk space needed for each distribution (described in the
next section). The ‘(totals)’ line reflects the ‘texk’ source distribution and ‘texmflib’;
the individual distributions don’t enter into it. Sizes are in megabytes. All numbers are
approximate.

dviljk .9 3.8
dvipsk .9 3.2
xdvik .7 2.5
web2c 1.3 5.0
web 1.9 6.5 - -
texk 3.8 14.1 43.1 23.5
texmflib 3.8 15.0 - 15.0
(totals) 7.6 29.1 43.1 38.5

4 Expanded Plain TEX

2.2.2 Kpathsea application distributions

The archive ‘ftp://ftp.tug.org/tex/texk.tar.gz’ contains all of the Kpathsea ap-
plications I maintain, and the library itself. For example, since NeXT does not generally
support X11, you’d probably want to skip ‘xdvik’ (or simply remove it after unpacking
‘texk.tar.gz’. If you are not interested in all of them, you can also retrieve them sepa-
rately:

‘dviljk.tar.gz’
DVI to PCL, for LaserJet printers.

‘dvipsk.tar.gz’
DVI to PostScript, for previewers, printers, or PDF generation.

‘web2c.tar.gz’
The software needed to compile TEX and friends.

‘web.tar.gz’
The original WEB source files, also used in compilation.

‘xdvik.tar.gz’
DVI previewing under the X window system.

If you want to use the Babel LaTEX package for support of non-English typesetting, you
may need to retrieve additional files. See the file ‘install.txt’ in the Babel distribution.

2.2.3 Changing search paths

If the search paths for your installation differ from the standard TEX directory struc-
ture (see section “Introduction” in A Directory Structure for TEX files), edit the file
‘kpathsea/texmf.cnf.in’ as desired, before running configure. For example, if you have
all your fonts or macros in one big directory.

You may also wish to edit the file ‘MakeTeXnames.cnf’, either before or after installa-
tion, to control various aspects of MakeTeXPK and friends. See Section 2.2.9.1 [MakeTeX
configuration], page 11.

You do not need to edit ‘texmf.cnf.in’ to change the default top-level or other instal-
lation directories (only the paths). You can and should do that when you run configure
(next step).

You also do not need to edit ‘texmf.cnf.in’ if you are willing to rely on ‘texmf.cnf’ at
runtime to define the paths, and let the compile-time default paths be incorrect. Usually
there is no harm in doing this.

The section below explains default generation in more detail.

2.2.3.1 Default path features

The purpose of having all the different files described in the section above is to avoid
having the same information in more than one place. If you change the installation di-
rectories or top-level prefix at configure-time, those changes will propagate through the

Chapter 2: Installation 5

whole sequence. And if you change the default paths in ‘texmf.cnf.in’, those changes are
propagated to the compile-time defaults.

The Make definitions are all repeated in several Makefile’s; but changing the top-level
‘Makefile’ should suffice, as it passes down all the variable definitions, thus overriding the
submakes. (The definitions are repeated so you can run Make in the subdirectories, if you
should have occasion to.)

By default, the bitmap font paths end with ‘/$MAKETEX˙MODE’, thus including the device
name (usually a Metafont mode name such as ‘ljfour’). This distinguishes two different
devices with the same resolution—a write/white from a write/black 300 dpi printer, for
example.

However, since most sites don’t have this complication, Kpathsea (specifically, the kpse˙
init˙prog function in ‘kpathsea/proginit.c’) has a special case: if the mode has not been
explicitly set by the user (or in a configuration file), it sets MAKETEX˙MODE to /. This makes
the default PK path, for example, expand into . . ./pk//, so fonts will be found even if there
is no subdirectory for the mode (if you arranged things that way because your site has only
one printer, for example) or if the program is mode-independent (e.g., pktype).

To make the paths independent of the mode, simply edit ‘texmf.cnf.in’ before instal-
lation, or the installed ‘texmf.cnf’, and remove the ‘$MAKETEX˙MODE’.

See Section 2.2.9.3 [MakeTeX script arguments], page 13, for how this interacts with
MakeTeXPK.

See 〈undefined〉 [TEX directory structure], page 〈undefined〉, for a description of the de-
fault arrangement of the input files that comprise the TEX system. The file ‘kpathsea/HIER’
is a copy of that section.

2.2.3.2 Default path generation

This section describes how the default paths are constructed.

You may wish to ignore the whole mess and simply edit ‘texmf.cnf’ after it is installed,
perhaps even copying it into place beforehand so you can complete the installation, if it
seems necessary.

To summarize the chain of events that go into defining the default paths:

1. ‘configure’ creates a ‘Makefile’ from each ‘Makefile.in’.

2. When Make runs in the ‘kpathsea’ directory, it creates a file ‘texmf.sed’ that substi-
tutes the Make value of $(var) for a string @var@. The variables in question are the
one that define the installation directories.

3. ‘texmf.sed’ (together with a little extra magic—see ‘kpathsea/Makefile’) is applied
to ‘texmf.cnf.in’ to generate ‘texmf.cnf’. This is the file that will eventually be
installed and used.

4. The definitions in ‘texmf.cnf’ are recast as C #define’s in ‘paths.h’. These values
will be the compile-time defaults; they are not used at runtime unless no ‘texmf.cnf’
file can be found.

6 Expanded Plain TEX

(That’s a lie: the compile-time defaults are what any extra :’s in ‘texmf.cnf’ expand
into; but the paths as distributed have no extra :’s, and there’s no particular reason
for them to.)

2.2.4 Running configure

Run sh configure options (in the top-level directory, the one containing ‘kpathsea/’),
possibly using a shell other than sh (see Section 2.2.4.1 [configure shells], page 6).

configure adapts the source distribution to the present system via #define’s in
‘*/c-auto.h’, which are created from the corresponding ‘c-auto.h.in’. It also creates
a ‘Makefile’ from the corresponding ‘Makefile.in’, doing ‘@var@’ and ‘ac˙include’ sub-
stitutions).

configure is the best place to control the configuration, compilation, and installed lo-
cation of the software, either via command-line options, or by setting environment variables
before invoking it. For example, you can disable MakeTeXPK by default with the option
‘--disable-maketexpk’. See Section 2.2.4.2 [configure options], page 6.

2.2.4.1 configure shells

If you have Bash, the GNU shell, use it if sh runs into trouble (see section “Top” in
Bash Features).

Most Bourne shell variants other than Bash cannot handle configure scripts as gener-
ated by GNU Autoconf (see section “Top” in Autoconf). Specifically:

ksh The Korn shell may be installed as ‘/bin/sh’ on AIX. ‘/bin/bsh’ may serve
instead.

ash Ash is sometimes installed as ‘/bin/sh’ on NetBSD, FreeBSD, and Linux sys-
tems. ‘/bin/bash’ should be available.

Ultrix /bin/sh
‘/bin/sh’ under Ultrix is a DEC-grown shell that is notably deficient in many
ways. ‘/bin/sh5’ may be necessary.

2.2.4.2 configure options

For a complete list of all configure options, run ‘configure --help’ or see section
“Running configure scripts” in Autoconf (a copy is in the file ‘kpathsea/CONFIGURE’).
The generic options are listed first in the ‘--help’ output, and the package-specific options
come last. The environment variables configure pays attention to are listed below.

Options particularly likely to be useful are ‘--prefix’, ‘--datadir’, and the like; see
Section 2.2.4.4 [configure scenarios], page 7.

This section gives pointers to descriptions of the ‘--with’ and ‘--enable’ options to
configure that Kpathsea-using programs accept.

Chapter 2: Installation 7

‘--without-maketexmf-default’
‘--without-maketexpk-default’
‘--without-maketextfm-default’
‘--with-maketextex-default’

Enable or disable the dynamic generation programs. See Section 2.2.9.1 [Make-
TeX configuration], page 11.

‘--enable-shared’
Build Kpathsea as a shared library, and link against it. Also build the usual
static library. See Section 2.2.4.5 [Shared library], page 8.

‘--disable-static’
Build only the shared library.

2.2.4.3 configure environment

configure uses the value of the following environment variables in determining your
system’s characteristics, and substitutes for them in Makefile’s:

‘CC’ The compiler to use: default is gcc if it’s installed, otherwise cc.

‘CFLAGS’ Options to give the compiler: default is ‘-g -O2’ for gcc, ‘-g’ otherwise. CFLAGS
comes after any other options. You may need to include -w here if your compi-
lations commonly have useless warnings (e.g., NULL redefined), or configure
may fail to detect the presence of header files (it takes the messages on standard
error to mean the header file doesn’t exist).

‘CPPFLAGS’
Options to pass to the compiler preprocessor; this matters most for configu-
ration, not the actual source compilation. The configure script often does
only preprocessing (e.g., to check for the existence of #include files), and
CFLAGS is not used for this. You may need to set this to something like
‘-I/usr/local/include/wwwhatever’ if you have the libwww library installed
for hyper-xdvik (see ‘xdvik/INSTALL’).

‘DEFS’ Additional preprocessor options, but not used by configure. Provided for
enabling or disabling program features, as documented in the various program-
specific installation instructions. DEFS comes before any compiler options in-
cluded by the distribution ‘Makefile’s or by configure.

‘LDFLAGS’ Additional options to give to the loader. LDFLAGS comes before any other linker
options.

‘LIBS’ Additional libraries to link with.

2.2.4.4 configure scenarios

Here are some common installation scenarios:

8 Expanded Plain TEX

• Including X support in Metafont. This is disabled by default, since many sites have no
use for it, and it’s a leading cause of configuration problems.

configure --with-x-toolkit

• Putting the binaries, TEX files, GNU info files, etc. into a single TEX hierarchy, say
texmf, requires overriding defaults in both configure and make:

configure --prefix=texmf --datadir=texmf
make texmf=texmf

• You can compile on multiple architectures simultaneously either by building symbolic
link trees with the lndir script from the X11 distribution, or with the ‘--srcdir’
option:

configure --srcdir=srcdir

• If you are installing binaries for multiple architectures into a single hierarchy, you will
probably want to override the default ‘bin’ and ‘lib’ directories, something like this:

configure --prefix=texmf --datadir=texmf “
--bindir=texmf /arch/bin --libdir=texmf /arch/lib

make texmf=texmf

(Unless you make provisions for architecture-specific files in other ways, e.g., with Depot
or an automounter.)

• To compile with optimization (to compile without debugging, remove the ‘-g’):
env CFLAGS=”-g -O” sh configure . . .

For a potential problem if you optimize, see 〈undefined〉 [TEX or Metafont failing],
page 〈undefined〉.

2.2.4.5 Shared library

You can compile Kpathsea as a shared library on a few systems, by specifying the option
‘--enable-shared’ when you run ‘configure’.

The main advantage in doing this is that the executables can then share the code, thus
decreasing memory and disk space requirements.

On some systems, you can record the location of shared libraries in a binary, usually by
giving certain options to the linker. Then individual users do not need to set their system’s
environment variable (e.g., LD˙LIBRARY˙PATH) to find shared libraries. If you want to do
this, you will need to add the necessary options to LDFLAGS yourself; for example, on Solaris,
include something like ‘-R$–prefix˝/lib’. (Unfortunately, making this happen by default
is very difficult, because of interactions with an existing installed shared library.)

Currently, shared library support is implemented only on SunOS 4 (Solaris 1) and SunOS
5 (Solaris 2). If you’re interested and willing in adding support for other systems, please see
the ‘configure’ mode in the ‘klibtool’ script, especially the host-specific case statement
around line 250.

2.2.5 Running make

Chapter 2: Installation 9

make (still in the top-level directory). This also creates the ‘texmf.cnf’ and ‘paths.h’
files that define the default search paths, and (by default) the ‘plain’ and ‘latex’ TEX
formats.

You can override directory names and other values at make-time. ‘make/paths.make’ lists
the variables most commonly reset. For example, ‘make default˙texsizes=600’ changes
the list of fallback resolutions.

You can also override each of configure’s environment variables (see Section 2.2.4.3
[configure environment], page 7). The Make variables have the same names.

Finally, you can supply additional options via the following variables. (configure does
not use these.)

‘XCPPFLAGS’
‘XDEFS’ Preprocessor options.

‘XCFLAGS’ Compiler options.

‘XLDFLAGS’
Loader options (included at beginning of link commands).

‘XLOADLIBES’
More loader options (included at end of link commands).

‘XMAKEARGS’
Additional Make arguments passed to all sub-make’s. You may need to include
assignments to the other variables here via XMAKEARGS; for example: ‘make
XMAKEARGS=”CFLAGS=-O XDEFS=-DA4”’.

It’s generally a bad idea to use a different compiler (‘CC’) or libraries (LIBS) for compi-
lation than you did for configuration, since the values configure determined may then be
incorrect.

Adding compiler options to change the “universe” you are using (typically BSD vs. sys-
tem V) is generally a cause of trouble. It’s best to use the native environment, whatever that
is; configure and the software usually adapt best to that. In particular, under Solaris 2.x,
you should not use the BSD-compatibility library (‘libucb’) or include files (‘ucbinclude’).

If you want to use the Babel LaTEX package for support of non-English typesetting, you
need to modify some files before making the LaTEX format. See the file ‘install.txt’ in
the Babel distribution.

2.2.6 Installing files

The basic command is the usual make install. For security issues, see Section 2.3
[Security], page 14.

The first time you install any manual in the GNU Info system, you should add a line (you
choose where) to the file ‘dir’ in your ‘$(infodir)’ directory. Sample text for this is given
near the top of the Texinfo source files (‘kpathsea/kpathsea.texi’, ‘dvipsk/dvips.texi’,
and ‘web2c/doc/web2c.texi’). If you have a recent version of the GNU Texinfo distribution

10 Expanded Plain TEX

installed (‘ftp://prep.ai.mit.edu/pub/gnu/texinfo-3.9.tar.gz’ or later), this should
happen automatically.

On the offchance that this is your first Info installation, the ‘dir’ file I use is included
in the distribution as ‘etc/dir-example’.

You may wish to use one of the following targets, especially if you are installing on
multiple architectures:

• make install-exec to install in architecture-dependent directories, i.e., ones that de-
pend on the $(exec˙prefix) Make variable. This includes links to binaries, libraries,
etc., not just “executables”.

• make install-data to install in architecture-independent directories, such as docu-
mentation, configuration files, pool files, etc.

If you use the Andrew File System, the normal path (e.g., prefix/bin) only gets you to a
read-only copy of the files, and you must specify a different path for installation. The best
way to do this is by setting the ‘prefix’ variable on the make command line. The sequence
becomes something like this:

configure --prefix=/whatever
make
make install prefix=/afs/.system.name/system/1.3/@sys/whatever

With AFS, you will definitely want to use relative filenames in ‘ls-R’ (see 〈undefined〉
[Filename database], page 〈undefined〉), not absolute filenames. This is done by default,
but check anyway.

2.2.7 Cleaning up

The basic command is make distclean. This removes all files created by the build.

Alternatively,

• make mostlyclean if you intend to compile on another architecture. For Web2c, since
the generated C files are portable, they are not removed. If the lex vs. flex situation
is going to be different on the next machine, rm web2c/lex.yy.c.

• make clean to remove files created by compiling, but leave configuration files and
Makefiles.

• make maintainer-clean to remove everything that the Makefiles can rebuild. This
is more than ‘distclean’ removes, and you should only use it if you are thoroughly
conversant with (and have the necessary versions of) Autoconf.

• make extraclean to remove other junk, e.g., core files, log files, patch rejects. This is
independent of the other ‘clean’ targets.

2.2.8 Filename database generation

You will probably want to set up a cron entry on the appropriate machine(s) to rebuild
the filename database nightly or so, as in:

Chapter 2: Installation 11

0 0 * * * cd texmf && /bindir/MakeTeXls-R

See 〈undefined〉 [Filename database], page 〈undefined〉.
Although the MakeTeX. . . scripts make every effort to add newly-created files on the fly,

it can’t hurt to make sure you get a fresh version every so often.

2.2.9 ‘MakeTeX’ scripts

If Kpathsea cannot otherwise find a file, for some file types it is configured by default
to invoke an external program to create it dynamically (see Section 2.2.9.1 [MakeTeX
configuration], page 11). This is most useful for fonts (bitmaps, TFM’s, and arbitrarily-
sizable Metafont sources such as the Sauter and DC fonts), since any given document can use
fonts never before referenced. Trying to build all fonts in advance is therefore impractical,
if not impossible.

The script is passed the name of the file to create and possibly other arguments, as
explained below. It must echo the full pathname of the file it created (and nothing else) to
standard output; it can write diagnostics to standard error.

2.2.9.1 ‘MakeTeX’ configuration

The following file types can run an external program to create missing files: ‘pk’,
‘tfm’, ‘mf’, ‘tex’; the scripts are named ‘MakeTeXPK’, ‘MakeTeXTFM’, ‘MakeTeXMF’, and
‘MakeTeXTeX’.

In the absence of configure options specifying otherwise, everything but ‘MakeTeXTeX’
will be enabled by default. The configure options to change the defaults are:

--without-maketexmf-default
--without-maketexpk-default
--without-maketextfm-default
--with-maketextex-default

The configure setting is overridden if the environment variable or configuration file
value named for the script is set; e.g., ‘MAKETEXPK’ (see Section 2.2.9.3 [MakeTeX script
arguments], page 13).

As distributed, all the scripts source a file ‘texmf/web2c/MakeTeX.site’ if it exists,
so you can override various defaults. See ‘MakeTeXcommon’, for instance, which defines
the default mode, resolution, directory permissions, some special directory names, etc. If
you prefer not to change the distributed scripts, you can simply create ‘MakeTeX.site’
with the appropriate definitions (you do not need to create it if you have nothing to put
in it). ‘MakeTeX.site’ has no special syntax; it’s an arbitrary Bourne shell script. The
distribution contains a sample ‘MakeTeX.site’ for you to copy and modify as you please (it
is not installed anywhere).

In addition, you can configure a number of features with the MT˙FEATURES variable,
which you can define:

• in ‘MakeTeX.site’, as just mentioned;

12 Expanded Plain TEX

• by editing the file ‘MakeTeXnames.cnf’, either before ‘make install’ (in the source
hierarchy) or after (in the installed hierarchy);

• or in the environment.

By default, MakeTeXPK installs fonts into the standard TEX directory structure (see 〈un-
defined〉 [TEX directory structure], page 〈undefined〉). It uses aliases and directory names
from the Fontname distribution (see section “Introduction” in Fontname). Most of the
options here change that.

‘appendonlydir’
Tell MakeTeXmkdir to create directories append-only, i.e., set their sticky bit
(see section “Mode Structure” in GNU File Utilities).

‘dosnames’
Use 8.3 names; e.g., ‘dpi600/cmr10.pk’ instead of ‘cmr10.600pk’.

‘nomode’ Omit the directory level for the mode name; this is fine as long as you generate
fonts for only one mode.

‘strip’ Omit the font supplier and typeface name directory levels.

‘varfonts’
Put MakeTeXPK-generated fonts under the directory named by VARTEXFONTS;
the default value in ‘kpathsea/texmf.cnf.in’ is ‘/var/tex/fonts’, as recom-
mended by the Linux File System Standard (but unless ‘varfonts’ is enabled,
nothing cares about that value).
The ‘varfonts’ setting in MT˙FEATURES is overridden by the USE˙VARTEXFONTS
environment variable: if set to ‘1’, the feature is enabled, and if set to ‘0’, the
feature is disabled.

2.2.9.2 ‘MakeTeX’ script names

The following table shows the default name of the script for each possible file types.
(The source is the variable kpse˙make˙specs in ‘kpathsea/tex-make.c’.)

‘MakeTeXPK’
Glyph fonts.

‘MakeTeXTeX’
TEX input files.

‘MakeTeXMF’
Metafont input files.

‘MakeTeXTFM’
TFM files.

These names are overridden by an environment variable specific to the program—for exam-
ple, DVIPSMAKEPK for Dvipsk.

If a MakeTeX. . . script fails, the invocation is appended to a file ‘missfont.log’ (by
default) in the current directory. You can then execute the log file to create the missing
files after fixing the problem.

Chapter 2: Installation 13

If the current directory is not writable and the environment variable or configuration
file value TEXMFOUTPUT is set, its value is used. Otherwise, nothing is written. The name
‘missfont.log’ is overridden by the MISSFONT˙LOG environment variable or configuration
file value.

2.2.9.3 ‘MakeTeX’ script arguments

The first argument to a ‘MakeTeX’ script is always the name of the file to be created.

In the default ‘MakeTeXPK’ implementation, from three to five additional arguments may
also passed, via environment variables:

1. The resolution to make the font at (KPATHSEA˙DPI).

2. The “base dpi” the program is operating at (MAKETEX˙BASE˙DPI), i.e., the assumed
resolution of the output device.

3. A “magstep” string suitable for the Metafont mag variable (MAKETEX˙MAG).

4. Optionally, a Metafont mode name to assign to the Metafont mode variable (MAKETEX˙
MODE). Otherwise, (the default) MakeTeXPK guesses the mode from the resolution. See
〈undefined〉 [TEX directory structure], page 〈undefined〉.

5. Optionally, a directory name. If the directory is absolute, it is used as-is. Otherwise,
it is appended to the root destination directory set in the script (from environment
variables DESTDIR or MTP˙DESTDIR or a compile-time default). If this argument is not
supplied, the mode name is appended to the root destination directory.

Kpathsea sets KPATHSEA˙DPI appropriately for each attempt at building a font. It’s up
to the program using Kpathsea to set the others. (See 〈undefined〉 [Calling sequence],
page 〈undefined〉.)

You can change the specification for the arguments passed to the external script by
setting the environment variable named as the script name, but all capitals—MAKETEXPK,
for example. If you’ve changed the script name by setting (say) DVIPSMAKEPK to ‘foo’, then
the spec is taken from the environment variable FOO.

The spec can contain any variable references, to the above variables or any others. As
an example, the default spec for MakeTeXPK is:

$KPATHSEA˙DPI $MAKETEX˙BASE˙DPI $MAKETEX˙MAG $MAKETEX˙MODE

The convention of passing the name of the file to be created as the first argument cannot
be changed.

2.2.10 Installation testing

Besides the tests listed in Section 2.1 [Simple installation], page 2, you can try running
‘make check’. This includes the torture tests (trip, trap, and mptrap) that come with
Web2c (see section “Torture tests” in Web2c).

14 Expanded Plain TEX

2.3 Security

None of the programs in the TEX system require any special system privileges, so there’s
no first-level security concern of people gaining illegitimate root access.

A TEX document, however, can write to arbitrary files, e.g., ‘˜/.rhosts’, and thus an
unwitting user who runs TEX on a random document is vulnerable to a trojan horse attack.
This loophole is closed by default, but you can be permissive if you so desire in ‘texmf.cnf’.
See section “tex invocation” in Web2c. MetaPost has the same issue.

Dvips, Xdvi, and TEX can also execute shell commands under some circumstances. To
disable this, see the ‘-R’ option in section “Option details” in Dvips, the xdvi man page,
and section “tex invocation” in Web2c, respectively.

Another security issue arises because it’s very useful—almost necessary—to make arbi-
trary fonts on user demand with MakeTeXPK and friends. Where do these files get installed?
By default, the MakeTeXPK distributed with Kpathsea assumes a globally writable ‘texmf’
tree; this is the simplest and most convenient approach, but it may not suit your situation.

The first restriction you can apply is to make newly-created directories under ‘texmf’
be append-only with an option in ‘MakeTeXnames.cnf’. See Section 2.2.9.1 [MakeTeX
configuration], page 11.

Another approach is to establish a group (or user) for TEX files, make the ‘texmf’ tree
writable only to that group (or user), and make MakeTeXPK et al. setgid to that group (or
setuid to that user). Then users must invoke the scripts to install things. (If you’re worried
about the inevitable security holes in scripts, then you could write a C wrapper to exec the
script.)

Finally, using a central writable ‘texmf’ tree may be completely impossible, because it’s
on an NFS filesystem that you cannot export read/write, or AFS is in use, or simply because
“it’s policy”. Then you must resort to each user’s machine having its own local directory of
dynamically-created fonts; again, ‘MakeTeXnames.cnf’ has an option to do this, and again,
see Section 2.2.9.1 [MakeTeX configuration], page 11.

Chapter 3: Invoking Eplain 15

3 Invoking Eplain

The simplest way to use Eplain is simply to put:
“input eplain

at the beginning of your input file. The macro file is small enough that reading it does not
take an unbearably long time—at least on contemporary machines.

In addition, if a format (‘.fmt’) file has been created for Eplain (see the previous section),
you can eliminate the time spent reading the macro source file. You do this by responding
&eplain or &etex to TEX’s ‘**’ prompt. For example:

initex
This is TeX, ...
**&eplain myfile

Depending on the implementation of TEX which you are using, you might also be able
to invoke TEX as ‘etex’ and have the format file automatically read.

If you write something which you will be distributing to others, you won’t know if the
Eplain format will be loaded already. If it is, then doing “input eplain will waste time; if
it isn’t, then you must load it. To solve this, Eplain defines the control sequence “eplain
to be the letter t (a convention borrowed from Lisp; it doesn’t actually matter what the
definition is, only that the definition exists). Therefore, you can do the following:

“ifx“eplain“undefined “input eplain “fi

where “undefined must never acquire a definition.

Eplain consists of several source files:

‘xeplain.tex’
most of the macros;

‘arrow.tex’
commutative diagram macros, see Chapter 5 [Arrow theoretic diagrams],
page 41 (written by Steven Smith);

‘btxmac.tex’
bibliography-related macros, see Section 4.3 [Citations], page 18;

‘texnames.sty’
abbreviations for various TEX-related names, see Section 4.19 [Logos], page 39
(edited by Nelson Beebe).

The file ‘eplain.tex’ is all of these files merged together, with comments removed.

All of these files except ‘xeplain.tex’ can be input individually, if all you want are the
definitions in that file.

Also, since the bibliography macros are fairly extensive, you might not want to load
them, to conserve TEX’s memory. Therefore, if the control sequence “nobibtex is defined,
then the bibliography definitions are skipped. You must set “nobibtex before ‘eplain.tex’
is read, naturally. For example, you could start your input file like this:

16 Expanded Plain TEX

“let“nobibtex = t
“input eplain

By default, “nobibtex is undefined, and so the bibliography definitions are made.
Likewise, define “noarrow if you don’t want to include the commutative diagram macros

from ‘arrow.tex’, perhaps because you already have conflicting ones.
If you don’t want to read or write an ‘aux’ file at all, for any kind of cross-referencing,

define “noauxfile before reading ‘eplain.tex’. This also turns off all warnings about
undefined labels.

Eplain conflicts with AMSTEX (more precisely, with ‘amsppt.sty’) The macros “cite
and “ref are defined by both.

If you want to use AMSTEX’s “cite, the solution is to define “nobibtex before reading
Eplain, as described above.

If you have ‘amsppt.sty’ loaded and use “ref, Eplain writes a warning on your terminal.
If you want to use the AMSTEX “ref, do “let“ref = “amsref after reading Eplain. To
avoid the warning, do “let“ref = “eplainref after reading Eplain and before using “ref.

Chapter 4: User definitions 17

4 User definitions

This chapter describes definitions that are meant to be used directly in a document.
When appropriate, ways to change the default formatting are described in subsections.

4.1 Diagnostics

Plain TEX provides the “tracingall command, to turn on the maximum amount of
tracing possible in TEX. The (usually voluminous) output from “tracingall goes both on
the terminal and into the transcript file. It is sometimes easier to have the output go only
to the transcript file, so you can peruse it at your leisure and not obscure other output
to the terminal. So, Eplain provides the command “loggingall. (For some reason, this
command is available in Metafont, but not in TEX.)

It is also sometimes useful to see the complete contents of boxes. “tracingboxes does
this. (It doesn’t affect whether or not the contents are shown on the terminal.)

You can turn off all tracing with “tracingoff.

You can also turn logging on and off globally, so you don’t have to worry about whether or
not you’re inside a group at the time of command. These variants are named “gloggingall
and “gtracingall.

Finally, if you write your own help messages (see “newhelp in The TEXbook), you want
a convenient way to break lines in them. This is what TEX’s “newlinechar parameter is
for; however, plain TEX doesn’t set “newlinechar. Therefore, Eplain defines it to be the
character ˆˆJ.

For example, one of Eplain’s own error messages is defined as follows:

“newhelp“envhelp–Perhaps you forgot to end the previousˆˆJ%
environment? I’m finishing off the current group,ˆˆJ%
hoping that will fix it.˝%

4.2 Rules

The default dimensions of rules are defined in chapter 21 of the The TEXbook. To sum
up what is given there, the “thickness” of rules is 0.4pt by default. Eplain defines three pa-
rameters that let you change this dimension: “hruledefaultheight, “hruledefaultdepth,
and “vruledefaultwidth. By default, they are defined as The TEXbook describes.

But it would be wrong to redefine “hrule and “vrule. For one thing, some macros in
plain TEX depend on the default dimensions being used; for another, rules are used quite
heavily, and the performance impact of making it a macro can be noticeable. Therefore, to
take advantage of the default rule parameters, you must use “ehrule and “evrule.

18 Expanded Plain TEX

4.3 Citations

Bibliographies are part of almost every technical document. To handle them easily, you
need two things: a program to do the tedious formatting, and a way to cite references by
labels, rather than by numbers. The BibTEX program, written by Oren Patashnik, takes
care of the first item; the citation commands in LaTEX, written to be used with BibTEX,
take care of the second. Therefore, Eplain adopts the use of BibTEX, and virtually the same
interface as LaTEX.

The general idea is that you put citation commands in the text of your document, and
commands saying where the bibliography data is. When you run TEX, these commands
produce output on the file with the same root name as your document (by default) and the
extension ‘.aux’. BibTEX reads this file. You should put the bibliography data in a file or
files with the extension ‘.bib’. BibTEX writes out a file with the same root name as your
document and extension ‘.bbl’. Eplain reads this file the next time you run your document
through TEX. (It takes multiple passes to get everything straight, because usually after
seeing your bibliography typeset, you want to make changes in the ‘.bib’ file, which means
you have to run BibTEX again, which means you have to run TEX again. . .) An annotated
example of the whole process is given below.

If your document has more than one bibliography—for example, if it is a collection of
papers—you can tell Eplain to use a different root name for the ‘.bbl’ file by defining the
control sequence “bblfilebasename. The default definition is simply “jobname.

See the document BibTEXing (whose text is in the file ‘btxdoc.tex’, which should be
in the Eplain distribution you got) for information on how to write your .bib files. Both
the BibTEX and the Eplain distributions contain several examples, also.

The “cite command produces a citation in the text of your document. The exact printed
form the citation will take is under your control; see Section 4.3.1 [Formatting citations],
page 19. “cite takes one required argument, a comma-separated list of cross-reference
labels (see Section 4.9 [Cross-references], page 25, for exactly what characters are allowed
in such labels). Warning: spaces in this list are taken as part of the following label name,
which is probably not what you expect. The “cite command also produces a command in
the .aux file that tells BibTEX to retrieve the given reference(s) from the .bib file. “cite
also takes one optional argument, which you specify within square brackets, as in LaTEX.
This text is simply typeset after the citations. (See the example below.)

Another command, “nocite, puts the given reference(s) into the bibliography, but pro-
duces nothing in the text.

The “bibliography command is next. It serves two purposes: producing the typeset
bibliography, and telling BibTEX the root names of the .bib files. Therefore, the argument
to “bibliography is a comma separated list of the .bib files (without the ‘.bib’). Again,
spaces in this list are significant.

You tell BibTEX the particular style in which you want your bibliography typeset with
one more command: “bibliographystyle. The argument to this is a single filename style,
which tells BibTEX to look for a file style.bst. See the document Designing BibTEX styles
(whose text is in the ‘btxhak.tex’) for information on how to write your own styles.

Eplain automatically reads the citations from the .aux file when your job starts.

Chapter 4: User definitions 19

If you don’t want to see the messages about undefined citations, you can say “xrefwarningfalse
before making any citations. Eplain automatically does this if the .aux file does not exist.
You can restore the default by saying “xrefwarningtrue.

Here is a TEX input file that illustrates the various commands.
“input eplain % Reads the .aux file.
Two citations to Knuthian works:
“cite[note]–surreal,concrete-math˝.

“beginsection–References.˝“par % Title for the bibliography.
“bibliography–knuth˝ % Use knuth.bib for the labels.
“bibliographystyle–plain˝ % Number the references.
“end % End of the document.

If we suppose that this file was named ‘citex.tex’ and that the bibliography data is
in ‘knuth.bib’ (as the “bibliography command says), the following commands do what’s
required. (‘$ ’ represents the shell prompt.)

$ tex citex (produces undefined citation messages)
$ bibtex citex (read knuth.bib and citex.aux, write citex.bbl)
$ tex citex (read citex.bbl, still have undefined citations)
$ tex citex (one more time, to resolve the references)

The output looks something like (because we used the plain bibliography style):
Two citations to Knuthian works: [2,1 note].
References

[1] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, Reading, Massachusetts, 1989.
[2] Donald E. Knuth. Surreal Numbers. Addison-Wesley, Reading, Mas-
sachusetts, 1974.

See the BibTEX documentation for information on how to write the bibliography
databases, and the bibliography styles that are available. (If you want your references
printed with names, as in [Knu74], instead of numbered, the bibliography style is alpha.)

4.3.1 Formatting citations

You may wish to change Eplain’s formatting of citations; i.e., the result of your “cite
commands. By default, the citation labels are printed one after another, separated by
commas and enclosed in brackets, using the main text font. Some formats require other
styles, such as superscripted labels. You can accomodate such formats by redefining the
following macros.

“printcitestart

“printcitefinish
Eplain expands these macros at the begining and end of the list of citations for
each “cite command. By default, they produce a ‘[’ and ‘]’, respectively.

“printbetweencitations
If a “cite command has multiple citations, as in “cite–acp,texbook˝, Eplain
expands this macro in between each pair of citations. By default, it produces a
comma followed by a space.

20 Expanded Plain TEX

“printcitenote
This macro takes one argument, which is the optional note to the “cite com-
mand. If the “cite command had no note, this macro isn’t used. Otherwise,
it should print the note. By default, the note is preceded with a comma and a
space.

Here is an example, showing you could produce citations as superscripted labels, with
the optional notes in parentheses.

“def“printcitestart–“unskip $ˆ“bgroup˝
“def“printbetweencitations–,˝
“def“printcitefinish–“egroup$˝
“def“printcitenote#1–“hbox–“sevenrm“space (#1)˝˝

4.3.2 Formatting bibliographies

You may wish to change Eplain’s formatting of the bibliography, especially with respect
to the fonts that are used. Therefore, Eplain provides the following control sequences:

“biblabelwidth
This control sequence represents a “dimen register, and its value is the width of
the widest label in the bibliography. Although it is unlikely you will ever want
to redefine it, you might want to use it if you redefine “biblabelprint, below.

“biblabelprint
This macro takes one argument, the label to print. By default, the label is
put in a box of width “biblabelwidth, and is followed by an enspace. When
you want to change the spacing around the labels, this is the right macro to
redefine.

“biblabelcontents
This macro also takes one argument, the label to print. By default, the label
is printed using the font “bblrm (below), and enclosed in brackets. When you
want to change the appearance of the label, but not the spacing around it, this
is the right macro to redefine.

“bblrm The default font used for printing the bibliography.

“bblem The font used for printing the titles and other “emphasized” material.

“bblsc In some styles, authors’ names are printed in a caps-and-small-caps font. In
those cases, this font is used.

“bblnewblock
This is invoked between each of the parts of a bibliography entry. The default
is to leave some extra space between the parts; you could redefine it to start
each part on a new line (for example). A part is simply a main element of the
entry; for example, the author is a part. (It was LaTEX that introduced the
(misleading, as far as I am concerned) term ‘block’ for this.)

Chapter 4: User definitions 21

“biblabelextraspace
Bibliography entries are typeset with a hanging indentation of “biblabelwidth
plus this. The default is .5em, where the em width is taken from the “bblrm
font. If you want to change this, you should do it inside “bblhook.

“bblhook This is expanded before reading the .bbl file. By default, it does nothing.
You could, for example, define it to set the bibliography fonts, or produce
the heading for the references. Two spacing parameters must be changed in-
side “bblhook: “parskip, which produces extra space between the items; and
“biblabelextraspace, which is described above. (By the way, “hookappend
won’t work with “bblhook, despite the names. Just use “def.)

If you are really desperate, you can also hand-edit the .bbl file that BibTEX produces
to do anything you wish.

4.4 Displays

By default, TEX centers displayed material. (Displayed material is just whatever you
put between $$’s—it’s not necessarily mathematics.) Many layouts would be better served
if the displayed material was left-justified. Therefore, Eplain provides the command
“leftdisplays, which indents displayed material by “parindent plus “leftskip, plus
“leftdisplayindent.

You can go back to centering displays with “centereddisplays. (It is usually poor
typography to have both centered and left-justified displays in a single publication, though.)

“leftdisplays also changes the plain TEX commands that deal with alignments inside
math displays, “displaylines, “eqalignno, and “leqalignno, to produce left-justified
text. You can still override this formatting by inserting “hfill glue, as explained in The
TEXbook.

4.4.1 Formatting displays

If you want some other kind of formatting, you can write a definition of your own,
analogous to “leftdisplays. You need only make sure that “leftdisplaysetup is called
at the beginning of every display (presumably by invoking it in TEX’s “everydisplay
parameter), and to define “generaldisplay.

“leftdisplays expands the old value of “everydisplay before calling “leftdisplaysetup,
so that any changes you have made to it won’t be lost. That old token list as available as
the value of the token register “previouseverydisplay.

4.5 Time of day

TEX provides the day, month, and year as numeric quantities (unless your TEX imple-
mentation is woefully deficient). Eplain provides some control sequences to make them a
little more friendly to humans.

22 Expanded Plain TEX

“monthname produces the name of the current month, abbreviated to three letters.

“fullmonthname produces the name of the current month, unabbreviated (in English).

“timestring produces the current time, as in ‘1:14 p.m.’

“timestamp produces the current date and time, as in ‘23 Apr 64 1:14 p.m.’. (Except
the spacing is slightly different.)

“today produces the current date, as in ‘23 April 1964’.

4.6 Lists

Many documents require lists of items, either numbered or simply enumerated. Plain
TEX defines one macro to help with creating lists, “item, but that is insufficient in many
cases. Therefore, Eplain provides two pairs of commands:

“numberedlist . . . “endnumberedlist

“orderedlist . . . “endorderedlist
These commands (they are synonyms) produce a list with the items numbered
sequentially, starting from one. A nested “numberedlist labels the items with
lowercase letters, starting with ‘a’. Another nested “numberedlist labels the
items with roman numerals. Yet more deeply nested numbered lists label items
with ‘*’.

“unorderedlist . . . “endunorderedlist
This produces a list with the items labelled with small black boxes (“square
bullets”). A nested “unorderedlist labels items with em-dashes. Doubly (and
deeper) nested unordered lists label items with ‘*’s.

The two kinds of lists can be nested within each other, as well.

In both kinds of lists, you begin an item with “li. An item may continue for several
paragraphs. Each item starts a paragraph.

You can give “li an optional argument, a cross-reference label. It’s defined to be the
“marker” for the current item. This is useful if the list items are numbered. You can
produce the value of the label with “xrefn. See Section 4.9 [Cross-references], page 25.

You can also say “listcompact right after “numberedlist or “unorderedlist. The
items in the list will then not have any extra space between them (see Section 4.6.1
[Formatting lists], page 23). You might want to do this if the items in this particular list
are short.

Here is an example:

“numberedlist“listcompact
“li The first item.
“li The second item.

The second paragraph of the second item.
“endnumberedlist

Chapter 4: User definitions 23

4.6.1 Formatting lists

Several registers define the spacing associated with lists. It is likely that their default
values won’t suit your particular layout.

“abovelistskipamount, “belowlistskipamount
The vertical glue inserted before and after every list, respectively.

“interitemskipamount
The vertical glue inserted before each item except the first. “listcompact
resets this to zero, as mentioned above.

“listleftindent, “listrightindent
“listrightindent is the amount of space by which the list is indented on
the right; i.e., it is added to “rightskip. “listleftindent is the amount of
space, relative to “parindent, by which the list is indented on the left. Why
treat the two parameters differently? Because (a) it is more useful to make
the list indentation depend on the paragraph indentation; (b) footnotes aren’t
formatted right if “parindent is reset to zero.

The three vertical glues are inserted by macros, and preceded by penalties: “abovelistskip
does “vpenalty“abovelistpenalty and then “vskip“abovelistskip. “belowlistskip
and “interitemskip are analogous.

In addition, the macro “listmarkerspace is called to separate the item label from the
item text. This is set to “enspace by default.

If you want to change the labels on the items, you can redefine these macros: “numberedmarker
or “unorderedmarker. The following registers might be useful if you do:

“numberedlistdepth, “unorderedlistdepth
These keep track of the depth of nesting of the two kinds of lists.

“itemnumber, “itemletter
These keep track of the number of items that have been seen in the current num-
bered list. They are both integer registers. The difference is that “itemnumber
starts at one, and “itemletter starts at 97, i.e., lowercase ‘a’.

You can also redefine the control sequences that are used internally, if you want to
do something radically different: “beginlist is invoked to begin both kinds of lists;
“printitem is invoked to print the label (and space following the label) for each item;
and “endlist is invoked to end both kinds of lists.

4.7 Verbatim listing

It is sometimes useful to include a file verbatim in your document; for example, part
of a computer program. The “listing command is given one argument, a filename, and
produces the contents of that file in your document. “listing expands “listingfont to
set the current font. The default value of “listingfont is “tt.

24 Expanded Plain TEX

You can take arbitrary actions before reading the file by defining the macro “setuplistinghook.
This is expanded just before the file is input.

If you want to have line numbers on the output, you can say “let“setuplistinghook =
“linenumberedlisting. The line numbers are stored in the count register “lineno while
the file is being read. You can redefine the macro “printlistinglineno to change how
they are printed.

You can produce in-line verbatim text in your document with “verbatim. End the text
with —endverbatim. If you need a ‘—’ in the text, double it. If the first character of the
verbatim text is a space, use — . (— will work elsewhere in the argument, too, but isn’t
necessary.)

For example:
“verbatim— ——“#%&!—endverbatim

produces —“#%&!.
Line breaks and spaces in the verbatim text are preserved.
You can change the verbatim escape character from the default ‘—’ with “verbatimescapechar

char; for example, this changes it to ‘@’.
“verbatimescapechar “@

The backslash is not necessary in some cases, but is in others, depending on the catcode of
the character. The argument to “verbatimescapechar is used as “catcode ‘char, so the
exact rules follow that for “catcode.

Because “verbatim must change the category code of special characters, calling inside
a macro definition of your own does not work properly. For example:

“def“mymacro–“verbatim &#%—endverbatim˝% Doesn’t work!

To accomplish this, you must change the category codes yourself before making the
macro definition. Perhaps “uncatcodespecials will help you (see Section 6.1 [Category
codes], page 48).

4.8 Contents

Producing a table of contents that is both useful and aesthetic is one of the most diffi-
cult design problems in any work. Naturally, Eplain does not pretend to solve the design
problem. Collecting the raw data for a table of contents, however, is much the same across
documents. Eplain uses an auxiliary file with extension ‘.toc’ (and the same root name as
your document) to save the information.

To write an entry for the table of contents, you say “writetocentry–part˝–text˝,
where part is the type of part this entry is, e.g., ‘chapter’, and text is the text of the title.
“writetocentry puts an entry into the .toc file that looks like “tocpartentry–text˝–page
number˝. The text is written unexpanded.

A related command, “writenumberedtocentry, takes one additional argument, the first
token of which is expanded at the point of the “writenumberedtocentry, but the rest
of the argument is not expanded. The usual application is when the parts of the docu-
ment are numbered. On the other hand, the one-level expansion allows you to use the

Chapter 4: User definitions 25

argument for other things as well (author’s names in a proceedings, say), and not have
accents or other control sequences expanded. The downside is that if you want full expan-
sion of the third argument, you don’t get it—you must expand it yourself, before you call
“writenumberedtocentry.

For example:
“writenumberedtocentry–chapter˝–A $“sin$ wave˝–“the“chapno˝
“writetocentry–section˝–A section title˝

Supposing “the“chapno expanded to ‘3’ and that the “write’s occurred on pages eight and
nine, respectively, the above writes the following to the .toc file:

“tocchapterentry–A $“sin$ wave˝–3˝–8˝
“tocsectionentry–A section title˝–9˝

You read the .toc file with the command “readtocfile. Naturally, whatever “toc. . .
entry commands that were written to the file must be defined when “readtocfile is
invoked. Eplain has minimal definitions for “tocchapterentry, “tocsectionentry, and
“tocsubsectionentry, just to prevent undefined control sequence errors in common cases.
They aren’t suitable for anything but preliminary proofs.

After reading the .toc file, “readtocfile opens the file for writing, thereby deleting
the information from the previous run. You should therefore arrange that “readtocfile
be called before the first call to a “writetoc. . . macro. On the other hand, if you don’t
want to rewrite the .toc file, perhaps because you are only running TEX on part of your
manuscript, you can set “rewritetocfilefalse.

By default, the ‘.toc’ file has the root “jobname. If your document has more than
one contents—for example, if it is a collection of papers, some of which have their own
contents—you can tell Eplain to use a different root name by defining the control sequence
“tocfilebasename.

In addition to the usual table of contents, you may want to have a list of figures, list of ta-
bles, or other such contents-like list. You can do this with “definecontentsfile–abbrev˝.
All of the above commands are actually a special case that Eplain predefines with

“definecontentsfile–toc˝

The abbrev is used both for the file extension and in the control sequence names.

4.9 Cross-references

It is often useful to refer the reader to other parts of your document; but putting literal
page, section, equation, or whatever numbers in the text is certainly a bad thing.

Eplain therefore provides commands for symbolic cross-references. It uses an auxiliary
file with extension .aux (and the same root name as your document) to keep track of the
information. Therefore, it takes two passes to get the cross-references right—one to write
them out, and one to read them in. Eplain automatically reads the .aux file at the first
reference; after reading it, Eplain reopens it for writing.

You can control whether or not Eplain warns you about undefined labels. See Section 4.3
[Citations], page 18.

26 Expanded Plain “TeX

Labels in Eplain’s cross-reference commands can use characters of category code eleven
(letter), twelve (other), ten (space), three (math shift), four (alignment tab), seven (super-
script), or eight (subscript). For example, ‘(a1 $&ˆ˙’ is a valid label (assuming the category
codes of plain TEX), but ‘%#“–’ has no valid characters.

You can also do symbolic cross-references for bibliographic citations and list items. See
Section 4.3 [Citations], page 18, and Section 4.6 [Lists], page 22.

4.9.1 Defining generic references

Eplain provides the command “definexref for general cross-references. It takes three
arguments: the name of the label (see section above for valid label names), the value of the
label (which can be anything), and the “class” of the reference—whether it’s a section, or
theorem, or what. For example:

“definexref–sec-intro˝–3.1˝–section˝

Of course, the label value is usually generated by another macro using TEX count registers
or some such.

“definexref doesn’t actually define label; instead, it writes out the definition to the
.aux file, where Eplain will read it on the next TEX run.

The class argument is used by the “ref and “refs commands. See the next section.

4.9.2 Using generic references

To retrieve the value of the label defined via “definexref (see the previous section),
Eplain provides the following macros:

“refn–label˝

“xrefn–label˝
“refn and “xrefn (they are synonyms) produce the bare definition of label. If
label isn’t defined, issue a warning, and produce label itself instead, in type-
writer. (The warning isn’t given if “xrefwarningfalse.)

“ref–label˝
Given the class c for label (see the description of “definexref in the previous
section), expand the control sequence “c word (if it’s defined) followed by a tie.
Then call “refn on label. (Example below.)

“refs–label˝
Like “ref, but append the letter ‘s’ to the “. . .word.

The purpose of the “. . .word macro is to produce the word ‘Section’ or ‘Figure’ or
whatever that usually precedes the actual reference number.

Here is an example:
“def“sectionword–Section˝
“definexref–sec-intro˝–3.1˝–section˝
“definexref–sec-next˝–3.2˝–section˝
See “refs–sec-intro˝ and “refn–sec-next˝ . . .

This produces ‘See Sections 3.1 and 3.2 . . .’

Chapter 4: User definitions 27

4.10 Page references

Eplain provides two commands for handling references to page numbers, one for defini-
tion and one for use.

“xrdef–label˝
Define label to be the current page number. This produces no printed output,
and ignores following spaces.

“xref–label˝
Produce the text ‘p. page-number’, which is the usual form for cross-references.
The page-number is actually label’s definition; if label isn’t defined, the text of
the label itself is printed.

4.10.1 Equation references

Instead of referring to pages, it’s most useful if equation labels refer to equation numbers.
Therefore, Eplain reserves a “count register, “eqnumber, for the current equation number,
and increments it at each numbered equation.

Here are the commands to define equation labels and then refer to them:

“eqdef–label˝
This defines label to be the current value of “eqnumber, and, if the current
context is not inner, then produces a “eqno command. (The condition makes
it possible to use “eqdef in an “eqalignno construction, for example.) The
text of the equation number is produced using “eqprint. See Section 4.10.1.1
[Formatting equation references], page 28.
If label is empty, you still get an equation number (although naturally you can’t
reliably refer to it). This is useful if you want to put numbers on all equations
in your document, and you don’t want to think up unique labels.

“eqdefn–label˝
This is like “eqdef, except it always omits the “eqno command. It can therefore
be used in places where “eqdef can’t; for example, in a non-displayed equation.
The text of the equation number is not produced, so you can also use it in the
(admittedly unusual) circumstance when you want to define an equation label
but not print that label.

“eqref–label˝
This produces a formatted reference to label. If label is undefined (perhaps
because it is a forward reference), it just produces the text of the label itself.
Otherwise, it calls “eqprint.

“eqrefn–label˝
This produces the cross-reference text for label. That is, it is like “eqref,
except it doesn’t call “eqprint.

Equation labels can contain the same characters that are valid in general cross-references.

28 Expanded Plain TEX

4.10.1.1 Formatting equation references

Both defining an equation label and referring to it should usually produce output. This
output is produced with the “eqprint macro, which takes one argument, the equation
number being defined or referred to. By default, this just produces ‘(number)’, where
number is the equation number. To produce the equation number in a different font, or
with different surrounding symbols, or whatever, you can redefine “eqprint. For example,
the following definition would print all equation numbers in italics. (The extra braces define
a group, to keep the font change from affecting surrounding text.)

“def“eqprint#1––“it (#1)˝˝

In addition to changing the formatting of equation numbers, you might to add more
structure to the equation number; for example, you might want to include the chapter
number, to get equation numbers like ‘(1.2)’. To achieve this, you redefine “eqconstruct.
For example:

“def“eqconstruct#1–“the“chapternumber.#1˝

(If you are keeping the chapter number in a count register named “chapternumber, natu-
rally.)

The reason for having both “eqconstruct and “eqprint may not be immediately ap-
parent. The difference is that “eqconstruct affects the text that cross-reference label is
defined to be, while “eqprint affects only what is typeset on the page. The example just
below might help.

Usually, you want equation labels to refer to equation numbers. But sometimes you
might want a more complicated text. For example, you might have an equation ‘(1)’, and
then have a variation several pages later which you want to refer to as ‘(1*)’.

Therefore, Eplain allows you to give an optional argument (i.e., arbitrary text in square
brackets) before the cross-reference label to “eqdef. Then, when you refer to the equation,
that text is produced. Here’s how to get the example just mentioned:

$$. . .“eqdef–a-eq˝$$
. . .
$$. . .“eqdef[“eqrefn–a-eq˝*]–a-eq-var˝$$
In “eqref–a-eq-var˝, we expand on “eqref–a-eq˝, . . .

We use “eqrefn in the cross-reference text, not “eqref, so that “eqprint is called only
once.

4.10.1.2 Subequation references

Eplain also provides for one level of substructure for equations. That is, you might want
to define a related group of equations with numbers like ‘2.1’ and ‘2.2’, and then be able to
refer to the group as a whole: “. . . in the system of equations (2). . .”.

The commands to do this are “eqsubdef and “eqsubdefn. They take one label argument
like their counterparts above, and generally behave in the same way. The difference is in
how they construct the equation number: instead of using just “eqnumber, they also use

Chapter 4: User definitions 29

another counter, “subeqnumber. This counter is advanced by one at every “eqsubdef or
“eqsubdefn, and reset to zero at every “eqdef or “eqdefn.

You use “eqref to refer to subequations as well as main equations.

To put the two together to construct the text that the label will produce, they use a
macro “eqsubreftext. This macros takes two arguments, the “main” equation number
(which, because the equation label can be defined as arbitrary text, as described in the
previous section, might be anything at all) and the “sub” equation number (which is always
just a number). Eplain’s default definition just puts a period between them:

“def“eqsubreftext#1#2–#1.#2˝%

You can redefine “eqsubreftext to print however you like. For example, this definition
makes the labels print as ‘2a’, ‘2b’, and so on.

“newcount“subref
“def“eqsubreftext#1#2–%
“subref = #2 % The space stops a ¡number¿.
“advance“subref by 96 % ‘a’ is character code 97.
#1“char“subref

˝

Sadly, we must define a new count register, “subref, instead of using the scratch count
register “count255, because ‘#1’ might include other macro calls which use “count255.

4.11 Indexing

Eplain provides support for generating raw material for an index, and for typesetting
a sorted index. A separate program must do the actual collection and sorting of terms,
because TEX itself has no support for sorting.

Eplain’s indexing commands were designed to work with the program MakeIndex, avail-
able from ‘ftp.math.utah.edu’ in the directory ‘pub/tex/makeindex’, and from CTAN
hosts in ‘tex-archive/indexing/makeindex’; MakeIndex is also commonly included in
prepackaged TEX distributions. It is beyond the scope of this manual to explain how to run
MakeIndex, and all of its many options. See section “MAKEINDEX” in MakeIndex.

The basic strategy for indexing works like this:

1. For a document ‘foo.tex’, Eplain’s indexing commands (e.g., “idx; see the section
‘Indexing terms’ below) write the raw index material to ‘foo.idx’.

2. MakeIndex reads ‘foo.idx’, collects and sorts the index, and writes the result to
‘foo.ind’.

3. Eplain reads and typesets ‘foo.ind’ on a subsequent run of TEX. See the section
‘Typesetting an index’ below.

If your document needs more than one index, each must have its own file. Therefore,
Eplain provides the command “defineindex, which takes an argument that is a single
letter, which replaces ‘i’ in the filenames and in the indexing command names described
below. For example,

30 Expanded Plain TEX

“defineindex–m˝

defines the command “mdx to write to the file ‘foo.mdx’. Eplain simply does “defineindex–i˝
to define the default commands.

4.11.1 Indexing terms

Indexing commands in Eplain come in pairs: one command that only writes the index
entry to the ‘.idx’ file (see above section), and one that also typesets the term being
indexed. The former always starts with ‘s’ (for “silent”). In either case, the name always
includes ‘Idx’, where I is the index letter, also described above. Eplain defines the index
‘i’ itself, so that’s what we’ll use in the names below.

The silent form of the commands take a subterm as a trailing optional argument. For
example, “sidx–truth˝[definition of] on page 75 makes an index entry that will even-
tually be typeset (by default) as

truth
definition of, 75

Also, the silent commands ignore trailing spaces. The non-silent ones do not.

4.11.1.1 Indexing commands

Here are the commands.
• “sidx–term˝[subterm] makes an index entry for term, optionally with subterm sub-

term. “idx–term˝ also produces term as output. Example:
“sidx–truth˝[beauty of]
The beauty of truth is “idx–death˝.

• “sidxname–First M.˝–von Last˝[subterm] makes an index entry for ‘von Last, First
M.’. You can change the ‘, ’ by redefining “idxnameseparator. “idxname–First
M.˝–von Last˝ also produces First M. von Last as output. (These commands are
useful special cases of “idx and “sidx.) Example:

“sidxname–Richard˝–Stark˝
“idxname–Donald˝–Westlake˝ has written many kinds of novels, under
almost as many names.

• “sidxmarked“cs–term˝[subterm] makes an index entry for term[subterm], but term
will be put in the index as “cs–term˝, but still sorted as just term. “idxmarked“cs–term˝
also typesets “cs–term˝. This provides for the usual ways of changing the typesetting
of index entries. Example:

“def“article#1–‘‘#1’’˝
“sidxmarked“article–Miss Elsa and Aunt Sophie˝
Peter Drucker’s “idxmarked“article–The Polanyis˝ is a remarkable essay
about a remarkable family.

• “sidxsubmarked–term˝“cs–subterm˝ makes an index entry for term, subterm as usual,
but also puts subterm in the index as “cs–term˝. “idxsubmarked–term˝“cs–subterm˝
also typesets term “cs–subterm˝, in the unlikely event that your syntax is convoluted
enough to make this useful. Example:

Chapter 4: User definitions 31

“def“title#1––“sl #1˝˝
“sidxsubmarked–Anderson, Laurie˝“title–Strange Angels˝
The “idxsubmarked–Anderson˝“title–Carmen˝ is a strange twist.

The commands above rely on MakeIndex’s feature for separating sorting of an index
entry’s from its typesetting. You can use this directly by specifying an index entry as
sort@typeset. For example:

“sidx–Ap-weight@$A˙“pi$-weight˝

will sort as Ap-weight, but print with the proper math. The @ here is MakeIndex’s default
character for this purpose. See section “Style File-MakeIndex” in MakeIndex. To make
an index entry with an @ in it, you have to escape it with a backslash; Eplain provides no
macros for doing this.

After any index command, Eplain runs “hookaction–afterindexterm˝. Because the
index commands always add a whatsit item to the current list, you may wish to preserve a
penalty or space past the new item. For example, given a conditional “if@aftersctnhead
set true when you’re at a section heading, you could do:

“hookaction–afterindexterm˝–“if@aftersctnhead “nobreak “fi˝

4.11.1.2 Modifying index entries

All the index commands described in the previous section take an initial optional argu-
ment before the index term, which modify the index entry’s meaning in various ways. You
can specify only one of the following in any given command.

These work via MakeIndex’s “encapsulation” feature. See Section 4.11.3 [Customizing
indexing], page 33, if you’re not using the default characters for the MakeIndex operators.
The other optional argument (specifying a subterm) is independent of these.

Here are the possibilities:

begin
end These mark an index entry as the beginning or end of a range. The index

entries must match exactly for MakeIndex to recognize them. Example:
“sidx[begin]–future˝[Cohen, Leonard]
. . .
“sidx[end]–future˝[Cohen, Leonard]

will typeset as something like
future,

Cohen, Leonard, 65–94

see This marks an index entry as pointing to another; the real index term is an
additional (non-optional) argument to the command. Thus you can anticipate
a term readers may wish to look up, yet which you have decided not to index.
Example:

“sidx[see]–analysis˝[archetypal]–archetypal criticism˝

becomes
analysis,

archetypal, See archetypal criticism

32 Expanded Plain “TeX

seealso Similar to see (the previous item), but also allows for normal index entries of
the referencing term. Example:

“sidx[seealso]–archetypal criticism˝[elements of]–dichotomies˝

becomes
archetypal criticism,

elements of, 75, 97, 114, See also dichotomies

(Aside for the academically curious: The archetypally critical book I took these
dichotomous examples from is Laurence Berman’s The Musical Image, which I
happened to co-design and typeset.)

pagemarkup=cs
This puts “cs before the page number in the typeset index, thus allowing you
to underline definitive entries, italicize examples, and the like. You do not
precede the control sequence cs with a backslash. (That just leads to expansive
difficulties.) Naturally it is up to you to define the control sequences you want
to use. Example:

“def“defn#1––“sl #1˝˝
“sidx[pagemarkeup=defn]–indexing˝

becomes something like
indexing, “defn–75˝

4.11.1.3 Proofing index terms

As you are reading through a manuscript, it is helpful to see what terms have been
indexed, so you can add others, catch miscellaneous errors, etc. (Speaking from bitter
experience, I can say it is extremely error-prone to leave all indexing to the end of the
writing, since it involves adding many TEX commands to the source files.)

So Eplain puts index terms in the margin of each page, if you set “indexproofingtrue.
It is false by default. The terms are typeset by the macro “indexproofterm, which takes a
single argument, the term to be typeset. Eplain’s definition of “indexproofterm just puts it
into an “hbox, first doing “indexprooffont, which Eplain defines to select the font cmtt8.
With this definition long terms run off the page, but since this is just for proofreading
anyway, it seems acceptable.

On the other hand, we certainly don’t want the index term to run into the text of the
page, so Eplain uses the right-hand side of the page rather than the left-hand page (assuming
a language read left to right here). So “ifodd“pageno, Eplain kerns by “outsidemargin,
otherwise by “insidemargin. If those macros are undefined, “indexsetmargins defines
them to be one inch plus “hoffset.

To get the proofing index entries on the proper page, Eplain defines a new insertion class
“@indexproof. To unbox any index proofing material, Eplain redefines “makeheadline
to call “indexproofunbox before the original “makeheadline. Thus, if you have your
own output routine, that redefines or doesn’t use “makeheadline, it’s up to you to call
“indexproofunbox at the appropriate time.

Chapter 4: User definitions 33

4.11.2 Typesetting an index

The command “readindexfile–i˝ reads and typesets the ‘.ind’ file that MakeIndex
outputs (from the ‘.idx’ file which the indexing commands in the previous sections write).
Eplain defines a number of commands that support the default MakeIndex output.

More precisely, “readindexfile reads “indexfilebasename.index-letternd, where the
index-letter is the argument. “indexfilebasename is “jobname by default, but if you
have different indexes in different parts of a book, you may wish to change it, just as with
bibliographies (see Section 4.3 [Citations], page 18).

MakeIndex was designed to work with LaTEX; therefore, by default the ‘.ind’ file starts
with “begin–theindex˝ and ends with “end–theindex˝. If no “begin has been defined,
Eplain defines one to ignore its argument and set up for typesetting the index (see below),
and also defines a “end to ignore its argument. (In a group, naturally, since there is a
primitive “end).

Eplain calls “indexfonts, sets “parindent = 0pt, and does “doublecolumns (see Sec-
tion 4.15 [Multiple columns], page 37) at the “begin–theindex˝. “indexfonts does noth-
ing by default; it’s just there for you to override. (Indexes are usually typeset in smaller
type than the main text.)

It ends the setup with “hookrun–beginindex˝, so you can override anything you like in
that hook (see Section 6.6.3 [Hooks], page 52). For example:

“hookaction–beginindex˝–“triplecolumns˝

MakeIndex turns each main index entry into an “item, subentries into “subitem, and
subsubentries into “subsubitem. By default, the first line of main entries are not indented,
and subentries are indented 1em per level. Main entries are preceded by a “vskip of
“aboveitemskipamount, 0pt plus2pt by default. Page breaks are encouraged before main
entries (“penalty -100), but prohibited afterwards—Eplain has no provision for “contin-
ued” index entries.

All levels do the following:

“hangindent = 1em
“raggedright
“hyphenpenalty = 10000

Each entry ends with “hookrun–indexitem˝, so you can change any of this. For example,
to increase the allowable rag:

“hookaction–indexitem˝–“advance“rightskip by 2em˝

Finally, MakeIndex outputs “indexspace between each group of entries in the ‘.ind’
file. Eplain makes this equivalent to “bigbreak.

4.11.3 Customizing indexing

By default, MakeIndex outputs ‘, ’ after each term in the index. To change this, you
can add the following to your MakeIndex style (‘.ist’) file:

34 Expanded Plain TEX

delim˙0 ”““afterindexterm ”
delim˙1 ”““afterindexterm ”
delim˙2 ”““afterindexterm ”

Eplain makes “afterindexterm equivalent to “quad.
You can also change the keywords Eplain recognizes (see Section 4.11.1.2 [Modifying

index entries], page 31):

“idxbeginrangeword
‘begin’

“idxendrangeword
‘end

“idxseeword
‘see

“idxseealsoword
‘seealso’

You can also change the magic characters Eplain puts into the ‘.idx’ file, in case you’ve
changed them in the .ist file:

“idxsubentryseparator
‘!’

“idxencapoperator
‘—’

“idxbeginrangemark
‘(’

“idxendrangemark
‘)’

There is no macro for the actual (‘@’ by default) character, because it’s impossible to
make it expand properly.

Finally, you can change the (imaginary) page number that “see also” entries sort as by
redefining “idxmaxpagenum. This is 99999 by default, which is one digit too many for old
versions of MakeIndex.

4.12 Justification

Eplain defines three commands to conveniently justify multiple lines of text: “flushright,
“flushleft, and “center.

They all work in the same way; let’s take “center as the example. To start centering
lines, you say “center inside a group; to stop, you end the group. Between the two
commands, each end-of-line in the input file also starts a new line in the output file.

The entire block of text is broken into paragraphs at blank lines, so all the TEX
paragraph-shaping parameters apply in the usual way. This is convenient, but it implies
something else that isn’t so convenient: changes to any linespacing parameters, such as

Chapter 4: User definitions 35

“baselineskip, will have no effect on the paragraph in which they are changed. TEX does
not handle linespacing changes within a paragraph (because it doesn’t know where the line
breaks are until the end of the paragraph).

The space between paragraphs is by default one blank line’s worth. You can adjust
this space by assigning to “blanklineskipamount; this (vertical) glue is inserted after each
blank line.

Here is an example:
–“center First line.

Second line, with a blank line before.
˝

This produces:
First line.

Second line, with a blank line before.
You may wish to use the justification macros inside of your own macros. Just be sure

to put them in a group. For example, here is how a title macro might be defined:
“def“title–“begingroup“titlefont“center˝
“def“endtitle–“endgroup˝

4.13 Tables

Eplain provides a single command, “makecolumns, to make generating one particu-
lar kind of table easier. More ambitious macro packages might be helpful to you for
more difficult applications. The files ‘ruled.tex’ and ‘TXSruled.tex’, available from
‘lifshitz.ph.utexas.edu’ in ‘texis/tables’, is the only one I know of.

Many tables are homogenous, i.e., all the entries are semantically the same. The ar-
rangement into columns is to save space on the page, not to encode different meanings. In
this kind of the table, it is useful to have the column breaks chosen automatically, so that
you can add or delete entries without worrying about the column breaks.

“makecolumns takes two arguments: the number of entries in the table, and the number
of columns to break them into. As you can see from the example below, the first argument is
delimited by a slash, and the second by a colon and a space (or end-of-line). The entries for
the table then follow, one per line (not including the line with the “makecolumns command
itself).

“parindent defines the space to the left of the table. “hsize defines the width of the
table. So you can adjust the position of the table on the page by assignments to these
parameters, probably inside a group.

You can also control the penalty at a page break before the “makecolumns by setting
the parameter “abovecolumnspenalty. Usually, the table is preceded by some explanatory
text. You wouldn’t want a page break to occur after the text and before the table, so
Eplain sets it to 10000. But if the table produced by “makecolumns is standing on its own,
“abovecolumnspenalty should be decreased.

36 Expanded Plain TEX

If you happen to give “makecolumns a smaller number of entries than you really have,
some text beyond the (intended) end of the table will be incorporated into the table, prob-
ably producing an error message, or at least some strange looking entries. And if you give
“makecolumns a larger number of entries than you really have, some of the entries will be
typeset as straight text, probably also looking somewhat out of place.

Here is an example:
% Arrange 6 entries into 2 columns:
“makecolumns 6/2: % This line doesn’t have an entry.
one
two
three
four
five
six
Text after the table.

This produces ‘one’, ‘two’, and ‘three’ in the first column, and ‘four’, ‘five’, and ‘six’ in
the second.

4.14 Margins

TEX’s primitives describe the type area in terms of an offset from the upper left corner,
and the width and height of the type. Some people prefer to think in terms of the margins
at the top, bottom, left, and right of the page, and most composition systems other than
TEX conceive of the page laid out in this way. Therefore, Eplain provides commands to
directly assign and increment the margins.

“topmargin = dimen
“bottommargin = dimen
“leftmargin = dimen

“rightmargin = dimen
These commands set the specified margin to the dimen given. The = and the
spaces around it are optional. The control sequences here are not TEX registers,
despite appearances; therefore, commands like “showthe“topmargin will not
do what you expect.

“advancetopmargin by dimen
“advancebottommargin by dimen
“advanceleftmargin by dimen

“advancerightmargin by dimen
These commands change the specified margin by the dimen given.

Regardless of whether you use the assignment or the advance commands, Eplain always
changes the type area in response, not the other margins. For example, when TEX starts,
the left and right margins are both one inch. If you then say “leftmargin = 2in, the right
margin will remain at one inch, and the width of the lines (i.e., “hsize) will decrease by
one inch.

Chapter 4: User definitions 37

When you use any of these commands, Eplain computes the old value of the particular
margin, by how much you want to change it, and then resets the values of TEX’s primitive
parameters to correspond. Unfortunately, Eplain cannot compute the right or bottom
margin without help: you must tell it the full width and height of the final output page. It
defines two new parameters for this:

“paperheight
The height of the output page; default is 11in.

“paperwidth
The width of the output page; default is 8.5in.

If your output page has different dimensions than this, you must reassign to these pa-
rameters, as in

“paperheight = 11in
“paperwidth = 17in

4.15 Multiple columns

Eplain provides for double, triple, and quadruple column output: say “doublecolumns,
“triplecolumns, or “quadcolumns, and from that point on, the manuscript will be set in
columns. To go back to one column, say “singlecolumn.

You may need to invoke “singlecolumn to balance the columns on the last page of
output.

To do a “column eject”, i.e., move to the top of the next column, do “columnfill. This
does not actually force an eject, however: it merely inserts a kern of size “@normalvsize
minus “pagetotal (“@normalvsize being the usual height of the page; to implement multi-
columns, Eplain multiplies “vsize itself by the number of columns). In most circumstances,
a column break will be forced after this kern (during the column splitting operation when
the whole page is output), as desired.

The columns are separated by the value of the dimen parameter “gutter. Default value
is two picas.

All the “. . .columns macros insert the value of the glue parameter “abovedoublecolumnskip
before the multicolumn text, and the value of the glue parameter “belowdoublecolumnskip
after it. The default value for both of these parameters is “bigskipamount, i.e., one lines-
pace in plain TEX.

The macros take into account only the insertion classes defined by plain TEX; namely,
footnotes and “topinserts. If you have additional insertion classes, you will need to change
the implementation.

Also, Eplain makes insertions the full page width. There is no provision for column-width
insertions.

38 Expanded Plain TEX

4.16 Footnotes

The most common reference mark for footnotes is a raised number, incremented on
each footnote. The “numberedfootnote macro provides this. It takes one argument, the
footnote text.

If your document uses only numbered footnotes, you could make typing “numberedfootnote
more convenient with a command such as:

“let“footnote = “numberedfootnote

After doing this, you can type your footnotes as “footnote–footnote text˝, instead of
as “numberedfootnote–footnote text˝.

Eplain keeps the current footnote number in the count register “footnotenumber. So, to
reset the footnote number to zero, as you might want to do at, for example, the beginning
of a chapter, you could say “footnotenumber=0.

Plain TEX separates the footnote marker from the footnote text by an en space (it uses
the “textindent macro). In Eplain, you can change this space by setting the dimension
register “footnotemarkseparation. The default is still an en.

You can produce a space between footenotes by setting the glue register “interfootnoteskip.
The default is zero.

“parskip is also set to zero by default before the beginning of each footnote (but not
for the text of the footnote).

You can also control footnote formatting in a more general way: Eplain expands the
token register “everyfootnote before a footnote is typeset, but after the default values for
all the parameters have been established. For example, if you want your footnotes to be
printed in seven-point type, indented by one inch, you could say:

“everyfootnote = –“sevenrm “leftskip = 1in˝

By default, an “hrule is typeset above each group of footnotes on a page. You can con-
trol the dimensions of this rule by setting the dimension registers “footnoterulewidth and
“footnoteruleheight. The space between the rule and the first footnote on the page is de-
termined by the dimension register “belowfootnoterulespace. If you don’t want any rule
at all, set “footenoteruleheight=0pt, and, most likely, “belowfootnoterulespace=0pt.
The defaults for these parameters typeset the rule in the same way as plain TEX: the rule
is 0.4 points high, 2 true inches wide, with 2.6 points below it.

The space above the rule and below the text on the page is controlled by the glue register
“skip“footins. The default is a plain TEX “bigskip.

4.17 Fractions

Exercise 11.6 of The TEXbook describes a macro “frac for setting fractions, but “frac
never made it into plain TEX. So Eplain includes it.

“frac typesets the numerator and denominator in “scriptfont0, slightly raised and
lowered. The numerator and denominator are separated by a slash. The denominator must
be enclosed in braces if it’s more than one token long, but the numerator need not be. (This

Chapter 4: User definitions 39

is a consequence of “frac taking delimited arguments; see page 203 of The TEXbook for an
explanation of delimited macro arguments.)

For example, “frac 23/–64˝ turns ‘23/64’ into 23/64.

4.18 Paths

When you typeset long pathnames, electronic mail addresses, or other such “computer”
names, you would like TEX to break lines at punctuation characters within the name, rather
than trying to find hyphenation points within the words. For example, it would be better
to break the email address letters@alpha.gnu.ai.mit.edu at the ‘@’ or a ‘.’, rather than
at the hyphenation points in ‘letters’ and ‘alpha’.

If you use the “path macro to typeset the names, TEX will find these good breakpoints.
The argument to “path is delimited by any other other than ‘“’ which does not appear in
the name itself. ‘—’ is often a good choice, as in:

“path—letters@alpha.gnu.ai.mit.edu—

You can control the exact set of characters at which breakpoints will be allowed by
calling “discretionaries. This takes the same sort of delimited argument; any character
in the argument will henceforth be a valid breakpoint within “path. The default set is
essentially all the punctuation characters:

“discretionaries —˜!@$%ˆ&*()˙+‘-=#–˝[]:”;’¡¿,.?“/—

If for some reason you absolutely must use “ as the delimiter character for “path, you
can set “specialpathdelimiterstrue. (Other delimiter characters can still be used.) TEX
then processes the “path argument about four times more slowly.

4.19 Logos

Eplain redefines the “TeX macro of plain TEX to end with “null, so that the proper
spacing is produced when “TeX is used at the end of a sentence. The other . . .TEX macros
listed here do this, also.

Eplain defines “AMSTeX, “BibTeX “AMSLaTeX, “LAMSTeX, “LaTeX “MF, and “SLiTeX to
produce their respective logos. (Sorry, the logos are not shown here.) Some spelling variants
of these are also supported.

4.20 Boxes

The solid rectangle that Eplain uses as a marker in unordered lists (see Section 4.6
[Lists], page 22) is available by itself: just say “blackbox.

You can create black boxes of arbitrary size with “hrule or “vrule.
You can also get unfilled rectangles with “makeblankbox. This takes two explicit argu-

ments: the height and depth of the rules that define the top and bottom of the rectangle.
(The two arguments are added to get the width of the left and right borders, so that the

40 Expanded Plain TEX

thickness of the border is the same on all four sides.) It also uses, as implicit arguments, the
dimensions of “box0 to define the dimensions of the rectangle it produces. (The contents
of “box0 are ignored.)

Here is an example. This small raised open box is suitable for putting next to numbers
in, e.g., a table of contents.

“def“openbox–%
“ht0 = 1.75pt “dp0 = 1.75pt “wd0 = 3.5pt
“raise 2.75pt “makeblankbox–.2pt˝–.2pt˝

˝

Finally, you can put a box around arbitrary text with “boxit. This takes one argu-
ment, which must itself be a (TEX) box, and puts a printed box around it, separated by
“boxitspace white space (3 points by default) on all four sides. For example:

“boxit–“hbox–This text is boxed.˝˝

The reason that the argument must be a box is that when the text is more than one line
long, TEX cannot figure out the line length for itself. Eplain does set “parindent to zero
inside “boxit, since it is very unlikely you would want indentation there. (If you do, you
can always reset it yourself.)

“boxit uses “ehrule and “evrule so that you can easily adjust the thicknesses of the
box rules. See Section 4.2 [Rules], page 17.

Chapter 5: Arrow theoretic diagrams 41

5 Arrow theoretic diagrams

This chapter describes definitions for producing commutative diagrams.

Steven Smith wrote this documentation (and the macros).

5.1 Slanted lines and vectors

The macros “drawline and “drawvector provide the capability found in LaTEX’s
picture mode to draw slanted lines and vectors of certain directions. Both of these macros
take three arguments: two integer arguments to specify the direction of the line or vector,
and one argument to specify its length. For example, ‘“drawvector(-4,1)–60pt˝’ produces
the vector

XXXXXX

y

←−−−−−−−−→
60 pt

which lies in the 2d quadrant, has a slope of minus 1/4, and a width of 60 pt.

Note that if an “hbox is placed around “drawline or “drawvector, then the width of
the “hbox will be the positive dimension specified in the third argument, except when a
vertical line or vector is specified, e.g., “drawline(0,1)–1in˝, which has zero width. If the
specified direction lies in the 1st or 2d quadrant (e.g., (1,1) or (-2,3)), then the “hbox
will have positive height and zero depth. Conversely, if the specified direction lies in the
3d or 4th quadrant (e.g., (-1,-1) or (2,-3)), then the “hbox will have positive depth and
zero height.

There are a finite number of directions that can be specified. For “drawline, the absolute
value of each integer defining the direction must be less than or equal to six, i.e., (7,-1)
is incorrect, but (6,-1) is acceptable. For “drawvector, the absolute value of each integer
must be less than or equal to four. Furthermore, the two integers cannot have common
divisors; therefore, if a line with slope 2 is desired, say (2,1) instead of (4,2). Also,
specify (1,0) instead of, say, (3,0) for horizontal lines and likewise for vertical lines.

Finally, these macros depend upon the LaTEX font line10. If your site doesn’t have this
font, ask your system administrator to get it. Future enhancements will include macros to
draw dotted lines and dotted vectors of various directions.

5.2 Commutative diagrams

The primitive commands “drawline and “drawvector can be used to typeset arrow
theoretic diagrams. This section describes (1) macros to facilitate typesetting arrows and
morphisms, and (2) macros to facilitate the construction of commutative diagrams. All
macros described in this section must be used in math mode.

42 Expanded Plain TEX

5.2.1 Arrows and morphisms

The macros “mapright and “mapleft produce right and left pointing arrows, respec-
tively. Use superscript (ˆ) to place a morphism above the arrow, e.g., ‘“maprightˆ“alpha’;
use subscript (˙) to place a morphism below the arrow, e.g., ‘“mapright˙–“tilde l˝’.
Superscripts and subscripts may be used simulataneously, e.g., ‘“maprightˆ“pi˙–“rm
epimor.˝’.

Similarly, the macros “mapup and “mapdown produce up and down pointing arrows,
respectively. Use “rt to place a morphism to the right of the arrow, e.g., ‘“mapup“rt–“rm
id˝’; use “lft to place a morphism to the left of the arrow, e.g., ‘“mapup“lft“omega’. “lft
and “rt may be used simultaneously, e.g., ‘“mapdown“lft“pi“rt–“rm monomor.˝’.

Slanted arrows are produced by the macro “arrow, which takes a direction argument
(e.g., ‘“arrow(3,-4)’). Use “rt and “lft to place morphisms to the right and left, respec-
tively, of the arrow. A slanted line (no arrowhead) is produced with the macro “sline,
whose syntax is identical to that of “arrow.

The length of these macros is predefined by the default TEX dimensions “harrowlength,
for horizontal arrows (or lines), “varrowlength, for vertical arrows (or lines), and “sarrowlength,
for slanted arrows (or lines). To change any of these dimensions, say, e.g., ‘“harrowlength=40pt’.
As with all other TEX dimensions, the change may be as global or as local as you like.
Furthermore, the placement of morphisms on the arrows is controlled by the dimen-
sions “hmorphposn, “vmorphposn, and “morphdist. The first two dimensions control
the horizontal and vertical position of the morphism from its default position; the lat-
ter dimension controls the distance of the morphism from the arrow. If you have more
than one morphism per arrow (i.e., a ˆ/˙ or “lft/“rt construction), use the parame-
ters “hmorphposnup, “hmorphposndn, “vmorphposnup, “vmorphposndn, “hmorphposnrt,
“hmorphposnlft, “vmorphposnrt, and “vmorphposnlft. The default values of all these
dimensions are provided in the section on parameters that follows below.

There is a family of macros to produce horizontal lines, arrows, and adjoint arrows. The
following macros produce horizontal maps and have the same syntax as “mapright:

“mapright
$X“mapright Y$ ≡ X - Y .

“mapleft $X“mapleft Y$ ≡ X � Y .

“hline $X“hline Y$ ≡ X Y .

“bimapright
$X“bimapright Y$ ≡ X -- Y .

“bimapleft
$X“bimapleft Y$ ≡ X �� Y .

“adjmapright
$X“adjmapright Y$ ≡ X �- Y .

“adjmapleft
$X“adjmapleft Y$ ≡ X -� Y .

Chapter 5: Arrow theoretic diagrams 43

“bihline $X“bihline Y$ ≡ X Y .

There is also a family of macros to produce vertical lines, arrows, and adjoint arrows.
The following macros produce vertical maps and have the same syntax as “mapdown:

“mapdown (a down arrow)

“mapup (an up arrow)

“vline (vertical line)

“bimapdown
(two down arrows)

“bimapup (two up arrows)

“adjmapdown
(two adjoint arrows; down then up)

“adjmapup
(two adjoint arrows; up then down)

“bivline (two vertical lines)

Finally, there is a family of macros to produce slanted lines, arrows, and adjoint arrows.
The following macros produce slanted maps and have the same syntax as “arrow:

“arrow (a slanted arrow)

“sline (a slanted line)

“biarrow (two straight arrows)

“adjarrow
(two adjoint arrows)

“bisline (two straight lines)

The width between double arrows is controlled by the parameter “channelwidth. The
parameters “hchannel and “vchannel, if nonzero, override “channelwidth by controlling
the horizontal and vertical shifting from the first arrow to the second.

There are no adornments on these arrows to distinguish inclusions from epimorphisms
from monomorphisms. Many texts, such as Lang’s book Algebra, use as a tasteful alterna-
tive the symbol ‘inc’ (in roman) next to an arrow to denote inclusion.

Future enhancements will include a mechanism to draw curved arrows found in, e.g., the
Snake Lemma, by employing a version of the “path macros of Appendix D of The TEXbook.

5.2.2 Construction of commutative diagrams

There are two approaches to the construction of commutative diagrams described here.
The first approach, and the simplest, treats commutative diagrams like fancy matrices,
as Knuth does in Exercise 18.46 of The TEXbook. This case is covered by the macro
“commdiag, which is an altered version of the Plain TEX macro “matrix. An example

44 Expanded Plain TEX

suffices to demonstrate this macro. The following commutative diagram (illustrating the
covering homotopy property; Bott and Tu, Differential Forms in Algebraic Topology)

Y f - E

? �
�
�
�
�
�3

ft

?
Y × I f̄t -X

is produced with the code
$$“commdiag–Y&“maprightˆf&E“cr “mapdown&“arrow(3,2)“lft–f˙t˝&“mapdown“cr
Y“times I&“maprightˆ–“bar f˙t˝&X˝$$

Of course, the parameters may be changed to produce a different effect. The following
commutative diagram (illustrating the universal mapping property; Warner, Foundations
of Differentiable Manifolds and Lie Groups)

V ⊗W
φ6

PPPPPPq
l̃

V ×W l - U

is produced with the code
$$“varrowlength=20pt
“commdiag–V“otimes W“cr “mapup“lft“phi&“arrow(3,-1)“rt–“tilde l˝“cr
V“times W&“maprightˆl&U“cr˝$$

A diagram containing isosceles triangles is achieved by placing the apex of the triangle in
the center column, as shown in the example (illustrating all constant minimal realizations
of a linear system; Brockett, Finite Dimensional Linear Systems)

Rm

�
�
�

	

B @
@
@R

G

Rn P - Rn

eAt

? ?

eFt

Rn P - Rn

@
@
@R

C
�
�
�

	
H

Rq

which is produced with the code
$$“sarrowlength=.42“harrowlength
“commdiag–&Rˆm“cr &“arrow(-1,-1)“lft–“bf B˝“quad “arrow(1,-1)“rt–“bf G˝“cr
Rˆn&“maprightˆ–“bf P˝&Rˆn“cr
“mapdown“lft–eˆ––“bf A˝t˝˝&&“mapdown“rt–eˆ––“bf F˝t˝˝“cr
Rˆn&“maprightˆ–“bf P˝&Rˆn“cr
&“arrow(1,-1)“lft–“bf C˝“quad “arrow(-1,-1)“rt–“bf H˝“cr

Chapter 5: Arrow theoretic diagrams 45

&Rˆq“cr˝$$

Other commutative diagram examples appear in the file commdiags.tex, which is dis-
tributed with this package.

In these examples the arrow lengths and line slopes were carefully chosen to blend with
each other. In the first example, the default settings for the arrow lengths are used, but a
direction for the arrow must be chosen. The ratio of the default horizontal and vertical arrow
lengths is approximately the golden mean γ = 1.618 . . .; the arrow direction closest to this
mean is (3,2). In the second example, a slope of −1/3 is desired and the default horizontal
arrow length is 60 pt; therefore, choose a vertical arrow length of 20 pt. You may affect
the interline glue settings of “commdiag by redefining the macro “commdiagbaselines. (cf.
Exercise 18.46 of The TEXbook and the section on parameters below.)

The width, height, and depth of all morphisms are hidden so that the morphisms’ size
do not affect arrow positions. This can cause a large morphism at the top or bottom of
a diagram to impinge upon the text surrounding the diagram. To overcome this problem,
use TEX’s “noalign primitive to insert a “vskip immediately above or below the offending
line, e.g., ‘$$“commdiag–“noalign–“vskip6pt˝X&“maprightˆ“int&Y“cr ...˝’.

The macro “commdiag is too simple to be used for more complicated diagrams, which
may have intersecting or overlapping arrows. A second approach, borrowed from Francis
Borceux’s Diagram macros for LaTEX, treats the commutative diagram like a grid of iden-
tically shaped boxes. To compose the commutative diagram, first draw an equally spaced
grid, e.g.,

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

on a piece of scratch paper. Then draw each element (vertices and arrows) of the commuta-
tive diagram on this grid, centered at each grid point. Finally, use the macro “gridcommdiag
to implement your design as a TEX alignment. For example, the cubic diagram

B b -D

�
��a

�
��d

A
f

?

c-C

?

h

e

?

F

?

g

-
j

H

�
��i

�
��
l

E -
k

G

that appears in Francis Borceux’s documentation can be implemented on a 7 by 7 grid, and
is achieved with the code

$$“harrowlength=48pt “varrowlength=48pt “sarrowlength=20pt
“def“cross#1#2–“setbox0=“hbox–$#1$˝%
“hbox to“wd0–“hss“hbox–$#2$˝“hss˝“llap–“unhbox0˝˝

“gridcommdiag–&&B&&“maprightˆb&&D“cr
&“arrow(1,1)“lft a&&&&“arrow(1,1)“lft d“cr

46 Expanded Plain TEX

A&&“cross–“hmorphposn=12pt“maprightˆc˝–“vmorphposn=-12pt“mapdown“lft f˝
&&C&&“mapdown“rt h“cr“cr
“mapdown“lft e&&F&&“cross–“hmorphposn=-12pt“mapright˙j˝
–“vmorphposn=12pt“mapdown“rt g˝&&H“cr
&“arrow(1,1)“lft i&&&&“arrow(1,1)“rt l“cr
E&&“mapright˙k&&G“cr˝$$

The dimensions “hgrid and “vgrid control the horizontal and vertical spacing of the
grid used by “gridcommdiag. The default setting for both of these dimensions is 15 pt.
Note that in the example of the cube the arrow lengths must be adjusted so that the arrows
overlap into neighboring boxes by the desired amount. Hence, the “gridcommdiag method,
albeit more powerful, is less automatic than the simpler “commdiag method. Furthermore,
the ad hoc macro “cross is introduced to allow the effect of overlapping arrows. Finally,
note that the positions of four of the morphisms are adjusted by setting “hmorphposn and
“vmorphposn.

One is not restricted to a square grid. For example, the proof of Zassenhaus’s Butterfly
Lemma can be illustrated by the diagram (appearing in Lang’s book Algebra)

U V
• •

u(U ∩ V) • • (U ∩ V)vHHHH��
��

= • =
u(U ∩ v) • = • (u ∩ V)v

��
��HHHH��

��HHHHu • • • vHHHH��
��HHHH��

��

• •
u ∩ V U ∩ v

This diagram may be implemented on a 9 by 12 grid with an aspect ratio of 1/2, and is set
with the code

$$“hgrid=16pt “vgrid=8pt “sarrowlength=32pt
“def“cross#1#2–“setbox0=“hbox–$#1$˝%
“hbox to“wd0–“hss“hbox–$#2$˝“hss˝“llap–“unhbox0˝˝

“def“l#1–“llap–$#1$“hskip.5em˝˝
“def“r#1–“rlap–“hskip.5em$#1$˝˝
“gridcommdiag–&&U&&&&V“cr &&“bullet&&&&“bullet“cr
&&“sarrowlength=16pt“sline(0,1)&&&&“sarrowlength=16pt“sline(0,1)“cr
&&“l–u(U“cap V)˝“bullet&&&&“bullet“r–(U“cap V)v˝“cr
&&&“sline(2,-1)&&“sline(2,1)“cr
&&“cross–=˝–“sline(0,1)˝&&“bullet&&“cross–=˝–“sline(0,1)˝“cr“cr
&&“l–ˆ–“textstyle u(U“cap v)˝˝“bullet&&“cross–=˝–“sline(0,1)˝&&
“bullet“r–ˆ–“textstyle(u“cap V)v˝˝“cr

&“sline(2,1)&&“sline(2,-1)&&“sline(2,1)&&“sline(2,-1)“cr
“l–u˝“bullet&&&&“bullet&&&&“bullet“r–v˝“cr
&“sline(2,-1)&&“sline(2,1)&&“sline(2,-1)&&“sline(2,1)“cr
&&“bullet&&&&“bullet“cr &&u“cap V&&&&U“cap v“cr˝$$

Again, the construction of this diagram requires careful choices for the arrow lengths and
is facilitated by the introduction of the ad hoc macros “cross, “r, and “l. Note also that
superscripts were used to adjust the position of the vertices u(U ∩ v) and (u∩ V)v. Many

Chapter 5: Arrow theoretic diagrams 47

diagrams may be typeset with the predefined macros that appear here; however, ingenuity
is often required to handle special cases.

5.2.3 Commutative diagram parameters

The following is a list describing the parameters used in the commutative diagram
macros. These dimensions may be changed globally or locally.

“harrowlength
(Default: 60 pt) The length of right or left arrows.

“varrowlength
(Default: 0.618“harrowlength) The length of up or down arrows.

“sarrowlength
(Default: 60 pt) The horizontal length of slanted arrows.

“hmorphposn
(Default: 0 pt) The horizontal position of the morphism with respect to its de-
fault position. There are also the dimensions “hmorphposnup, “hmorphposndn,
“hmorphposnrt, and “hmorphposnlft for ˆ/˙ or “lft/“rt constructions.

“vmorphposn
(Default: 0 pt) The vertical position of the morphism with respect to its de-
fault position. There are also the dimensions “vmorphposnup, “vmorphposndn,
“vmorphposnrt, and “vmorphposnlft for ˆ/˙ or “lft/“rt constructions.

“morphdist
(Default: 4 pt) The distance of morphisms from slanted lines or arrows.

“channelwidth
(Default: 3 pt) The distance between double lines or arrows.

“hchannel, “vchannel
(Defaults: 0 pt) Overrides “channelwidth. The horizontal and vertical shifts
between double lines or arrows.

“commdiagbaselines
(Default: “baselineskip=15pt “lineskip=3pt “lineskiplimit=3pt) The
parameters used by “commdiag for setting interline glue.

“hgrid (Default: 15 pt) The horizontal spacing of the grid used by “gridcommdiag.

“vgrid (Default: 15 pt) The vertical spacing of the grid used by “gridcommdiag.

48 Expanded Plain TEX

6 Programming definitions

The definitions in this section are only likely to be useful when you are writing nontrivial
macros, not when writing a document.

6.1 Category codes

Plain TEX defines “active (as the number 13) for use in changing category codes. Al-
though the author of The TEXbook has “intentionally kept the category codes numeric”, two
other categories are commonly used: letters (category code 11) and others (12). Therefore,
Eplain defines “letter and “other.

Sometimes it is cleaner to make a character active without actually writing a “catcode
command. The “makeactive command takes a character as an argument to make active
(and ignores following spaces). For example, here are two commands which both make “

active:
“makeactive‘““ “makeactive92

Usually, when you give a definition to an active character, you have to do so inside a
group where you temporarily make the character active, and then give it a global defini-
tion (cf. the definition of “obeyspaces in The TEXbook). This is inconvenient if you are
writing a long macro, or if the character already has a global definition you do not wish to
transcend. Eplain provides “letreturn, which defines the usual end-of-line character to be
the argument. For example:

“def“mymacro–. . . “letreturn“myreturn . . . ˝
“mymacro hello
there

The end-of-line between ‘hello’ and ‘there’ causes “myreturn to be expanded.
The TEXbook describes “uncatcodespecials, which makes all characters which are

normally “special” into “other” characters, but the definition never made it into plain TEX.
Eplain therefore defines it.

Finally, “percentchar expands into a literal ‘%’ character. This is useful when you
“write TEX output to a file, and want to avoid spurious spaces. For example, Eplain
writes a “percentchar after the definition of cross-references. The macros “lbracechar
and “rbracechar expand similarly.

6.2 Allocation macros

Plain TEX provides macros that allocate registers of each primitive type in TEX, to
prevent different sets of macros from using the same register for two different things. The
macros are all named starting with ‘new’, e.g., “newcount allocates a new “count” (integer)
register. Such allocations are usually needed only at the top level of some macro definition
file; therefore, plain TEX makes the allocation registers “outer, to help find errors. (The
error this helps to find is a missing right brace in some macro definition.)

Chapter 6: Programming definitions 49

Sometimes, however, it is useful to allocate a register as part of some macro. An outer
control sequence cannot be used as part of a macro definition (or in a few other contexts: the
parameter text of a definition, an argument to a definition, the preamble of an alignment,
or in conditional text that is being skipped). Therefore, Eplain defines “inner” versions of
all the allocation macros, named with the prefix ‘inner’: “innernewbox, “innernewcount,
“innernewdimen, “innernewfam, “innernewhelp, “innernewif, “innernewinsert,
“innernewlanguage, “innernewread,
“innernewskip, “innernewtoks, “innernewwrite.

You can also define non-outer versions of other macros in the same way that Eplain
defines the above. The basic macro is called “innerdef:

“innerdef “innername –outername˝

The first argument (“innername) to “innerdef is the control sequence that you want
to define. Any previous definition of “innername is replaced. The second argument (out-
ername) is the characters in the name of the outer control sequence. (You can’t use the
actual control sequence name, since it’s outer!)

If the outer control sequence is named “cs, and you want to define innercs as the inner
one, you can use “innerinnerdef, which is just an abbreviation for a call to “innerdef.
For example, these two calls are equivalent:

“innerdef“innerproclaim–proclaim˝
“innerinnerdef–proclaim˝

6.3 Iteration

You can iterate through a comma-separated list of items with “for. Here is an example:
“for“name:=karl,kathy“do–%

“message–“name˝%
˝%

This writes ‘karl’ and ‘kathy’ to the terminal. Spaces before or after the commas in
the list, or after the :=, are not ignored.

“for expands the iterated values fully (with “edef), so this is equivalent to the above:
“def“namelist–karl,kathy˝%
“for“name:=“namelist“do . . .

6.4 Macro arguments

It is occasionally useful to redefine a macro that takes arguments to do nothing. Eplain
defines “gobble, “gobbletwo, and “gobblethree to swallow one, two, and three arguments,
respectively.

For example, if you want to produce a “short” table of contents—one that includes only
chapters, say—the easiest thing to do is read the entire .toc file (see Section 4.8 [Contents],
page 24), and just ignore the commands that produce section or subsection entries. To be
specific:

50 Expanded Plain TEX

“let“tocchapterentry = “shorttocchapter
“let“tocsectionentry = “gobbletwo
“let“tocsubsectionentry = “gobbletwo
“readtocfile

(Of course, this assumes you only have chapters, sections, and subsections in your docu-
ment.)

In addition, Eplain defines “eattoken to swallow the single following token, using “let.
Thus, “gobble followed by ‘–. . .˝’ ignores the entire brace-enclosed text. “eattoken fol-
lowed by the same ignores only the opening left brace.

Eplain defines a macro “identity which takes one argument and expands to that ar-
gument. This may be useful if you want to provide a function for the user to redefine, but
don’t need to do anything by default. (For example, the default definition of “eqconstruct
(see Section 4.10.1.1 [Formatting equation references], page 28) is “identity.)

You may also want to read an optional argument. The established convention is that
optional arguments are put in square brackets, so that is the syntax Eplain recognizes.
Eplain ignores space tokens before an optional argument, via “futurenonspacelet.

You test for an optional argument by using “@getoptionalarg. It takes one argument, a
control sequence to expand after reading the argument, if present. If an optional argument
is present, the control sequence “@optionalarg expands to it; otherwise, “@optionalarg
is “empty. You must therefore have the category code of @ set to 11 (letter). Here is an
example:

“catcode‘@=“letter
“def“cmd–“@getoptionalarg“finishcmd˝
“def“finishcmd–%
“ifx“@optionalarg“empty
% No optional argument present.

“else
% One was present.

“fi
˝

If an optional argument contains another optional argument, the inner one will need to
be enclosed in braces, so TEX does not mistake the end of the first for the end of the second.

6.5 Converting to characters

Eplain defines “xrlabel to produce control sequence names for cross-reference labels,
et al. This macro expands to its argument with an ‘˙’ appended. (It does this because the
usual use of “xrlabel is to generate a control sequence name, and we naturally want to
avoid conflicts between control sequence names.)

Because “xrlabel is fully expandable, to make a control sequence name out of the result
you need only do

“csname “xrlabel–label˝“endcsname

Chapter 6: Programming definitions 51

The “csname primitive makes a control sequence name out of any sequence of character
tokens, regardless of category code. Labels can therefore include any characters except for
‘“’, ‘–’, ‘˝’, and ‘#’, all of which are used in macro definitions themselves.

“sanitize takes a control sequence as an argument and converts the expansion of the
control sequence into a list of character tokens. This is the behavior you want when writing
information like chapter titles to an output file. For example, here is part of the definition
of “writenumberedtocentry; #2 is the title that the user has given.

. . .
“def“temp–#2˝%
. . .
“write“tocfile–%
. . .
“sanitize“temp
. . .

˝%

6.6 Expansion

This section describes some miscellanous macros for expansion, etc.

6.6.1 “csn and “ece

“csn–name˝ simply abbreviates “csname name “encsname, thus saving some typing.
The extra level of expansion does take some time, though, so I don’t recommend it for an
inner loop.

“ece–token˝–name˝ abbreviates
“expandafter token “csname name “endcsname

For example,
“def“fontabbrevdef#1#2–“ece“def–@#1font˝–#2˝˝
“fontabbrevdef–normal˝–ptmr˝

defines a control sequence “@normalfont to expand to ptmr.

6.6.2 “edefappend

“edefappend is a way of adding on to an existing definition. It takes two arguments: the
first is the control sequence name, the second the new tokens to append to the definition.
The second argument is fully expanded (in the “edef that redefines the control sequence).

For example:
“def“foo–abc˝
“def“bar–xyz˝
“edefappend“foo–“bar karl˝

results in “foo being defined as ‘abcxyzkarl’.

52 Expanded Plain TEX

6.6.3 Hooks

A hook is simply a name for a group of actions which is executed in certain places—
presumably when it is most useful to allow customization or modification. TEX already
provides many builtin hooks; for example, the “every . . . token lists are all examples of
hooks.

Eplain provides several macros for adding actions to hooks. They all take two arguments:
the name of the hook and the new actions.

hookaction name actions
hookappend name actions

hookprepend name actions
Each of these adds actions to the hook name. (Any previously-defined actions
are retained.) name is not a control sequence, but rather the characters of the
name.

hookactiononce name “cs
“hookactiononce adds cs to name, like the macros above, but first it adds

“global“let “cs “relax

to the definition of “cs. (This implies “cs must be a true expandable macro,
not a control sequence “let to a primitive or some other such thing.) Thus,
“cs is expanded the next time the hook name is run, but it will disappear after
that.
The “global is useful because “hookactiononce is most useful when the group-
ing structure of the TEX code could be anything. Neither this nor the other
hook macros do global assignments to the hook variable itself, so TEX’s usual
grouping rules apply.

The companion macro to defining hook actions is “hookrun, for running them. This
takes a single argument, the name of the hook. If no actions for the hook are defined, no
error ensues.

Here is a skeleton of general “begin and “end macros that run hooks, and a couple of
calls to define actions. The use of “hookprepend for the begin action and “hookappend for
the end action ensures that the actions are executed in proper sequence with other actions
(as long as the other actions use “hookprepend and “hookappend also).

“def“begin#1– . . . “hookrun–begin˝ . . . ˝
“def“end#1– . . . “hookrun–end˝ . . . ˝
“hookprepend–begin˝“start˙underline
“hookappend–end˝“finish˙underline

6.6.4 Properties

A property is a name/value pair associated with another symbol, traditionally called an
atom. Both atom and property names are control sequence names.

Eplain provides two macros for dealing with property lists: “setproperty and “getproperty.

Chapter 6: Programming definitions 53

“setproperty atom propname value
“setproperty defines the property property on the atom atom to be value.
atom and propname can be anything acceptable to “csname. value can be
anything.

“getproperty atom propname
“getproperty expands to the value stored for propname on atom. If propname
is undefined, it expands to nothing (i.e., “empty).

The idea of properties originated in Lisp (I believe). There, the implementation truly
does associate properties with atoms. In TEX, where we have no builtin support for prop-
erties, the association is only conceptual.

The following example typesets ‘xyz’.
“setproperty–a˝–pr˝–xyz˝
“getproperty–a˝–pr˝

6.6.5 “expandonce

“expandonce is defined as “expandafter“noexpand. Thus, “expandonce token expands
token once, instead of to TEX primitives. This is most useful in an “edef.

For example, the following defines “temp to be “foo, not ‘abc’.
“def“foo–abc˝
“def“bar–“foo˝
“edef“temp–“expandonce“bar˝

6.6.6 “ifundefined

“ifundefined–cs˝ t “else f “fi expands the t text if the control sequence “cs is un-
defined or has been “let to “relax, and the f text otherwise.

Since “ifundefined is not a primitive conditional, it cannot be used in places where
TEX might skip tokens “at high speed”, e.g., within another conditional—TEX can’t match
up the “if’s and “fi’s.

This macro was taken directly from The TEXbook, page 308.

6.6.7 “futurenonspacelet

The “futurelet primitive allows you to look at the next token from the input. Some-
times, though, you want to look ahead ignoring any spaces. This is what “futurenonspacelet
does. It is otherwise the same as “futurelet: you give it two control sequences as argu-
ments, and it assigns the next nonspace token to the first, and then expands the second.
For example:

“futurenonspacelet“temp“finishup
“def“finishup–“ifx“temp . . .˝

54 Expanded Plain TEX

6.7 Obeying spaces

“obeywhitespace makes both end-of-lines and space characters in the input be respected
in the output. Unlike plain TEX’s “obeyspaces, even spaces at the beginnings of lines turn
into blank space.

By default, the size of the space that is produced by a space character is the natural
space of the current font, i.e., what “ produces.

Ordinarily, a blank line in the input produces as much blank vertical space as a line of text
would occupy. You can adjust this by assigning to the parameter “blanklineskipamount:
if you set this negative, the space produced by a blank line will be smaller; if positive, larger.

Tabs are not affected by this routine. In particular, if tabs occur at the beginning of a
line, they will disappear. (If you are trying to make TEX do the “right thing” with tabs,
don’t. Use a utility program like expand instead.)

6.8 Writing out numbers

“numbername produces the written-out form of its argument, i.e., ‘zero’ through ‘ten’ for
the numbers 0–10, and numerals for all others.

6.9 Mode-specific penalties

TEX’s built-in “penalty command simply appends to the current list, no matter what
kind of list it is. You might intend a particular penalty to always be a “vertical” penalty,
however, i.e., appended to a vertical list. Therefore, Eplain provides “vpenalty and
“hpenalty which first leave the other mode and then do “penalty.

More precisely, “vpenalty inserts “par if the current mode is horizontal, and “hpenalty
inserts “leavevmode if the current mode is vertical. (Thus, “vpenalty cannot be used in
math mode.)

6.10 Auxiliary files

It is common to write some information out to a file to be used on a subsequent run.
But when it is time to read the file again, you only want to do so if the file actually exists.
“testfileexistence is given an argument which is appended to “jobname, and sets the
conditional “iffileexists appropriately.

For example:
“testfileexistence–toc˝%
“iffileexists

“input “jobname.toc
“fi

Appendix A: GNU GENERAL PUBLIC LICENSE 55

Appendix A GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

56 Expanded Plain TEX

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

Appendix A: GNU GENERAL PUBLIC LICENSE 57

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:
a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.
If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

6. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,

58 Expanded Plain TEX

by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a

Appendix A: GNU GENERAL PUBLIC LICENSE 59

version number of this License, you may choose any version ever published by the Free
Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

60 Expanded Plain TEX

Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit

Appendix A: GNU GENERAL PUBLIC LICENSE 61

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

62 Expanded Plain TEX

Appendix B Regain your programming freedom

Until a few years ago, programmers in the United States could write any program they
wished. This freedom has now been taken away by two developments: software patents,
which grant the patent holder an absolute monopoly on some programming technique,
and user interface copyright, which forbid compatible implementations of an existing user
interface.

In Europe, especially through the GATT treaty, things are rapidly approaching the same
pass.

B.1 Software patents

The U.S. Patent and Trademark Office has granted numerous software patents on soft-
ware techniques. Patents are an absolute monopoly—independent reinvention is precluded.
This monopoly lasts for seventeen years, i.e., forever (with respect to computer science).

One patent relevant to TEX is patent 4,956,809, issued to the Mark Williams company
on September 11, 1990, applied for in 1982, which covers (among other things)

representing in a standardized order consisting of a standard binary structure
file stored on auxiliary memory or transported on a communications means,
said standardized order being different from a different order used on at least
one of the different computers;
Converting in each of the different computers binary data read from an aux-
iliary data storage or communications means from the standardized order to
the natural order of the respective host computer after said binary data are
read from said auxiliary data storage or communications means and before said
binary data are used by the respective host computer; and
Converting in each of the different computers binary data written into auxiliary
data storage or communications means from the natural order of the respective
host computer to the standardized order prior to said writing.

. . . in other words, storing data on disk in a machine-independent order, as the DVI, TFM,
GF, and PK file formats specify. Even though TEX is “prior art” in this respect, the
patent was granted (the patent examiners not being computer scientists, even less computer
typographers). Since there is a strong presumption in the courts of a patent’s validity once
it has been granted, there is a good chance that users or implementors of TEX could be
successfully sued on the issue.

As another example, the X window system, which was intended to be able to be used
freely by everyone, is now being threatened by two patents: 4,197,590 on the use of exclusive-
or to redraw cursors, held by Cadtrak, a litigation company (this has been upheld twice
in court); and 4,555,775, held by AT&T, on the use of backing store to redraw windows
quickly.

Here is one excerpt from a recent mailing by the League for Programming Freedom (see
Section B.3 [What to do?], page 64) which I feel sums up the situation rather well. It

Appendix B: Regain your programming freedom 63

comes from an article in Think magazine, issue #5, 1990. The comments after the quote
were written by Richard Stallman.

“You get value from patents in two ways,” says Roger Smith, IBM Assistant
General Counsel, intellectual property law. “Through fees, and through licens-
ing negotiations that give IBM access to other patents.
“The IBM patent portfolio gains us the freedom to do what we need to do
through cross-licensing—it gives us access to the inventions of others that are
the key to rapid innovation. Access is far more valuable to IBM than the fees it
receives from its 9,000 active patents. There’s no direct calculation of this value,
but it’s many times larger than the fee income, perhaps an order of magnitude
larger.”

This information should dispel the belief that the patent system will “protect” a small
software developer from competition from IBM. IBM can always find patents in its collection
which the small developer is infringing, and thus obtain a cross-license.

However, the patent system does cause trouble for the smaller companies which, like
IBM, need access to patented techniques in order to do useful work in software. Unlike
IBM, the smaller companies do not have 9,000 patents and cannot usually get a cross-
license. No matter how hard they try, they cannot have enough patents to do this.

Only the elimination of patents from the software field can enable most software devel-
opers to continue with their work.

The value IBM gets from cross-licensing is a measure of the amount of harm that the
patent system would do to IBM if IBM could not avoid it. IBM’s estimate is that the
trouble could easily be ten times the good one can expect from one’s own patents—even
for a company with 9,000 of them.

B.2 User interface copyright

(This section is copied from the GCC manual, by Richard Stallman.)
This section is a political message from the League for Programming Freedom
to the users of the GNU font utilities. It is included here as an expression of
support for the League on my part.

Apple, Lotus and Xerox are trying to create a new form of legal monopoly: a copyright
on a class of user interfaces. These monopolies would cause serious problems for users and
developers of computer software and systems.

Until a few years ago, the law seemed clear: no one could restrict others from using
a user interface; programmers were free to implement any interface they chose. Imitating
interfaces, sometimes with changes, was standard practice in the computer field. The in-
terfaces we know evolved gradually in this way; for example, the Macintosh user interface
drew ideas from the Xerox interface, which in turn drew on work done at Stanford and SRI.
1-2-3 imitated VisiCalc, and dBase imitated a database program from JPL.

Most computer companies, and nearly all computer users, were happy with this state of
affairs. The companies that are suing say it does not offer “enough incentive” to develop
their products, but they must have considered it “enough” when they made their decision

64 Expanded Plain TEX

to do so. It seems they are not satisfied with the opportunity to continue to compete in the
marketplace—not even with a head start.

If Xerox, Lotus, and Apple are permitted to make law through the courts, the precedent
will hobble the software industry:
• Gratuitous incompatibilities will burden users. Imagine if each car manufacturer had

to arrange the pedals in a different order.
• Software will become and remain more expensive. Users will be “locked in” to propri-

etary interfaces, for which there is no real competition.
• Large companies have an unfair advantage wherever lawsuits become commonplace.

Since they can easily afford to sue, they can intimidate small companies with threats
even when they don’t really have a case.

• User interface improvements will come slower, since incremental evolution through
creative imitation will no longer be permitted.

• Even Apple, etc., will find it harder to make improvements if they can no longer adapt
the good ideas that others introduce, for fear of weakening their own legal positions.
Some users suggest that this stagnation may already have started.

• If you use GNU software, you might find it of some concern that user interface copyright
will make it hard for the Free Software Foundation to develop programs compatible
with the interfaces that you already know.

B.3 What to do?

(This section is copied from the GCC manual, by Richard Stallman.)
To protect our freedom from lawsuits like these, a group of programmers and users have

formed a new grass-roots political organization, the League for Programming Freedom.
The purpose of the League is to oppose new monopolistic practices such as user-interface

copyright and software patents; it calls for a return to the legal policies of the recent past,
in which these practices were not allowed. The League is not concerned with free software
as an issue, and not affiliated with the Free Software Foundation.

The League’s membership rolls include John McCarthy, inventor of Lisp, Marvin Minsky,
founder of the Artificial Intelligence lab, Guy L. Steele, Jr., author of well-known books on
Lisp and C, as well as Richard Stallman, the developer of GNU CC. Please join and add
your name to the list. Membership dues in the League are $42 per year for programmers,
managers and professionals; $10.50 for students; $21 for others.

The League needs both activist members and members who only pay their dues.
To join, or for more information, phone (617) 492-0023 or write to:

League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139

You can also send electronic mail to league@prep.ai.mit.edu.
Here are some suggestions from the League for things you can do to protect your freedom

to write programs:

Appendix B: Regain your programming freedom 65

• Don’t buy from Xerox, Lotus or Apple. Buy from their competitors or from the defen-
dants they are suing.

• Don’t develop software to work with the systems made by these companies.
• Port your existing software to competing systems, so that you encourage users to switch.
• Write letters to company presidents to let them know their conduct is unacceptable.
• Tell your friends and colleagues about this issue and how it threatens to ruin the

computer industry.
• Above all, don’t work for the look-and-feel plaintiffs, and don’t accept contracts from

them.
• Write to Congress to explain the importance of this issue.

House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give them even more.)

Express your opinion! You can make a difference.

66 Expanded Plain TEX

Macro index

(Index is nonexistent)

Concept index 67

Concept index

(Index is nonexistent)

68 Expanded Plain TEX

i

Table of Contents

1 Introduction . 1

2 Installation . 2
2.1 Simple installation . 2
2.2 Custom installation . 3

2.2.1 Disk space . 3
2.2.2 Kpathsea application distributions 4
2.2.3 Changing search paths . 4

2.2.3.1 Default path features 4
2.2.3.2 Default path generation 5

2.2.4 Running configure. 6
2.2.4.1 configure shells . 6
2.2.4.2 configure options . 6
2.2.4.3 configure environment 7
2.2.4.4 configure scenarios . 7
2.2.4.5 Shared library . 8

2.2.5 Running make . 8
2.2.6 Installing files . 9
2.2.7 Cleaning up . 10
2.2.8 Filename database generation 10
2.2.9 ‘MakeTeX’ scripts . 11

2.2.9.1 ‘MakeTeX’ configuration 11
2.2.9.2 ‘MakeTeX’ script names 12
2.2.9.3 ‘MakeTeX’ script arguments 13

2.2.10 Installation testing . 13
2.3 Security . 14

3 Invoking Eplain. 15

4 User definitions . 17
4.1 Diagnostics . 17
4.2 Rules . 17
4.3 Citations . 18

4.3.1 Formatting citations . 19
4.3.2 Formatting bibliographies . 20

4.4 Displays . 21
4.4.1 Formatting displays . 21

4.5 Time of day . 21
4.6 Lists . 22

4.6.1 Formatting lists . 23
4.7 Verbatim listing . 23

ii Expanded Plain TEX

4.8 Contents . 24
4.9 Cross-references . 25

4.9.1 Defining generic references . 26
4.9.2 Using generic references . 26

4.10 Page references . 27
4.10.1 Equation references . 27

4.10.1.1 Formatting equation references 28
4.10.1.2 Subequation references 28

4.11 Indexing . 29
4.11.1 Indexing terms . 30

4.11.1.1 Indexing commands 30
4.11.1.2 Modifying index entries 31
4.11.1.3 Proofing index terms 32

4.11.2 Typesetting an index . 33
4.11.3 Customizing indexing . 33

4.12 Justification . 34
4.13 Tables . 35
4.14 Margins . 36
4.15 Multiple columns . 37
4.16 Footnotes . 38
4.17 Fractions . 38
4.18 Paths . 39
4.19 Logos . 39
4.20 Boxes . 39

5 Arrow theoretic diagrams 41
5.1 Slanted lines and vectors . 41
5.2 Commutative diagrams . 41

5.2.1 Arrows and morphisms . 42
5.2.2 Construction of commutative diagrams 43
5.2.3 Commutative diagram parameters 47

6 Programming definitions 48
6.1 Category codes . 48
6.2 Allocation macros . 48
6.3 Iteration . 49
6.4 Macro arguments. 49
6.5 Converting to characters . 50
6.6 Expansion . 51

6.6.1 “csn and “ece . 51
6.6.2 “edefappend . 51
6.6.3 Hooks . 52
6.6.4 Properties . 52
6.6.5 “expandonce . 53
6.6.6 “ifundefined . 53
6.6.7 “futurenonspacelet . 53

6.7 Obeying spaces . 54
6.8 Writing out numbers . 54

iii

6.9 Mode-specific penalties . 54
6.10 Auxiliary files . 54

Appendix A GNU GENERAL PUBLIC
LICENSE . 55
Preamble . 55
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 56
Appendix: How to Apply These Terms to Your New Programs . . 60

Appendix B Regain your programming freedom
. 62
B.1 Software patents . 62
B.2 User interface copyright . 63
B.3 What to do? . 64

Macro index . 66

Concept index . 67

	Introduction
	Installation
	Simple installation
	Custom installation
	Disk space
	Kpathsea application distributions
	Changing search paths
	2.2.3.1 Default path features
	2.2.3.2 Default path generation

	Running configure
	2.2.4.1 configure shells
	2.2.4.2 configure options
	2.2.4.3 configure environment
	2.2.4.4 configure scenarios
	2.2.4.5 Shared library

	Running make
	Installing files
	Cleaning up
	Filename database generation
	MakeTeX scripts
	2.2.9.1 MakeTeX configuration
	2.2.9.2 MakeTeX script names
	2.2.9.3 MakeTeX script arguments

	Installation testing

	Security

	Invoking Eplain
	User definitions
	Diagnostics
	Rules
	Citations
	Formatting citations
	Formatting bibliographies

	Displays
	Formatting displays

	Time of day
	Lists
	Formatting lists

	Verbatim listing
	Contents
	Cross-references
	Defining generic references
	Using generic references

	Page references
	Equation references
	4.10.1.1 Formatting equation references
	4.10.1.2 Subequation references

	Indexing
	Indexing terms
	4.11.1.1 Indexing commands
	4.11.1.2 Modifying index entries
	4.11.1.3 Proofing index terms

	Typesetting an index
	Customizing indexing

	Justification
	Tables
	Margins
	Multiple columns
	Footnotes
	Fractions
	Paths
	Logos
	Boxes

	Arrow theoretic diagrams
	Slanted lines and vectors
	Commutative diagrams
	Arrows and morphisms
	Construction of commutative diagrams
	Commutative diagram parameters

	Programming definitions
	Category codes
	Allocation macros
	Iteration
	Macro arguments
	Converting to characters
	Expansion
	{�am 	tfam 	entt }csn and {�am 	tfam 	entt }ece
	{�am 	tfam 	entt }edefappend
	Hooks
	Properties
	{�am 	tfam 	entt }expandonce
	{�am 	tfam 	entt }ifundefined
	{�am 	tfam 	entt }futurenonspacelet

	Obeying spaces
	Writing out numbers
	Mode-specific penalties
	Auxiliary files

	char 65endcsname {GNU GENERAL PUBLIC LICENSE} pdfoutline goto name{page055}{Preamble} pdfoutline goto name{page056}{TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION} pdfoutline goto name{page060}{Appendix: How to Apply These Terms to Your New Programs} pdfoutline goto name{page062}count-chapAppendix{} char 66endcsname {Regain your programming freedom} pdfoutline goto name{page062}count-mathop {�am z@ 	enrm sec}
olimits char 66.1endcsname {Software patents} pdfoutline goto name{page063}count-mathop {�am z@ 	enrm sec}
olimits char 66.2endcsname {User interface copyright} pdfoutline goto name{page064}count-mathop {�am z@ 	enrm sec}
olimits char 66.3endcsname {What to do?} pdfoutline goto name{page066}{Macro index} pdfoutline goto name{page067}{Concept index}

