
The bytefield package∗

Scott Pakin
pakin@uiuc.edu

2000/07/02

Abstract

The bytefield package helps the user create illustrations for network
protocol specifications and anything else that utilizes fields of data. These
illustrations show how the bits and bytes are laid out in a packet or in
memory.

1 Introduction

Network protocols are usually specified in terms of a sequence of bits and bytes
arranged in a field. This is portrayed graphically as a grid of boxes. Each row in
the grid represents one word (frequently, 32 bits), and each column represents a
bit within a word. The bytefield package makes it easy to typeset these sorts of
figures.

bytefield lets one draw protocol diagrams that contain:

• Words of any arbitrary number of bits

• Column headers showing bit positions

• Multiword fields—even non-word-aligned and even if the total number of
bits is not a multiple of the word length

• Word labels on either the left or right of the figure

• “Skipped words” within fields

Because bytefield draws its figures using only the LATEX picture environ-
ment, these figures are not specific to any particular backend, do not require
PostScript support, and do not need support from external programs. Further-
more, unlike an imported graphic, bytefield pictures can include arbitrary LATEX
constructs, such as mathematical equations, \refs and \cites to the surrounding
document, and macro calls.
∗This file has version number v1.00, last revised 2000/07/02.

1

2 Usage

2.1 Basic commands

This section explains how to use the bytefield package. It lists all the exported
environments, commands, and variables in decreasing order of importance.

\begin{bytefield} {〈bit-width〉}
〈fields〉
\end{bytefield}

The top-level environment is called, not surprisingly, “bytefield”. It takes
one (mandatory) argument, which is the number of bits in each word. One can
think of a bytefield as being analogous to a tabular: words are separated by \\,
and fields within a word are separated by &.

\wordbox [〈sides〉] {〈height〉} {〈text〉}
\bitbox [〈sides〉] {〈width〉} {〈text〉}

The two main commands one uses within a bytefield environment are
\wordbox and \bitbox. The former typesets a field that is one or more words tall
and an entire word wide. The latter typesets a field that is one or more bits wide
and a single word tall.

The optional argument, 〈sides〉, is a list of letters specifying which sides of
the field box to draw—[l]eft, [r]ight, [t]op, and/or [b]ottom. The default
is “lrtb” (i.e., all sides are drawn). 〈text〉 is the text to include within the
\wordbox or \bitbox. It is typeset horizontally centered within a vertically
centered \parbox. Hence, words will wrap, and \\ can be used to break lines
manually.

The following example shows how to produce a simple 16-bit-wide byte field:

\begin{bytefield}{16}

\wordbox{1}{A 16-bit field} \\

\bitbox{8}{8 bits} & \bitbox{8}{8 more bits} \\

\wordbox{2}{A 32-bit field. Note that text wraps within the box.}

\end{bytefield}

The resulting figure looks like this:

A 16-bit field

8 bits 8 more bits

A 32-bit field. Note that text
wraps within the box.

2

It is the user’s responsibility to ensure that the total number of bits in each
row adds up to the number of bits in a single word (the mandatory argument to
the bytefield environment).

Within a \wordbox or \bitbox, the bytefield package defines \height,
\depth, \totalheight, and \width to the corresponding dimensions of the box.
Section 2.2 gives an example of how these lengths may be utilized.

\bitheader [〈endianness〉] {〈bit-positions〉}

To make the figure more readable, it helps to label bit positions across the
top. The \bitheader command provides a flexible way to do that. The optional
argument, 〈endianness〉 is one of “b” or “l” and specifies whether the bits in each
word are numbered in big-endian style (right to left) or little-endian style (left to
right). The default is little-endian (l).

\bitheader’s mandatory argument, 〈bit-positions〉, is a comma-separated list
of bit positions to label. For example, “0,2,4,6,8,10,12,14” means to la-
bel those bit positions. The numbers must be listed in increasing order. (Use
〈endianness〉 to display the header in reverse order.) Hyphen-separated ranges
are also valid. For example, “0-15” means to label all bits from 0 to 15, inclusive.
While not particularly useful, ranges and single numbers can be intermixed, as in
“0-3,8,12-15”.

The following example shows how \bitheader may be used:

\begin{bytefield}{32}

\bitheader{0-31} \\

\bitbox{4}{Four} & \bitbox{8}{Eight} &

\bitbox{16}{Sixteen} & \bitbox{4}{Four}

\end{bytefield}

The resulting figure looks like this:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Four Eight Sixteen Four

\wordgroupr {〈text〉}
\endwordgroupr

\wordgroupl {〈text〉}
\endwordgroupl

When a set of words functions as a single, logical unit, it helps to group
these words together visually. All words defined between \wordgroupr and
\endwordgroupr will be labeled on the right with 〈text〉. Similarly, all words
defined between \wordgroupl and \endwordgroupl will be labeled on the left
with 〈text〉. \wordgroupx must lie at the beginning of a row (i.e., right after

3

a \\), and \endwordgroupx must lie right before the end of the row (i.e., right
before a \\).

\wordgroupr. . .\endwordgroupr and \wordgroupl. . .\endwordgroupl can
overlap each other. However, they cannot overlap themselves. In other words,
\wordgroupr. . .\wordgroupl. . .\endwordgroupr. . .\endwordgroupl is a valid se-
quence, but \wordgroupr. . .\wordgroupr. . .\endwordgroupr. . .\endwordgroupr
is not.

The following example shows how to use \wordgroupr and \endwordgroupr:

\begin{bytefield}{16}

\bitheader{0,7,8,15} \\

\wordgroupr{Header}

\bitbox{4}{Tag} & \bitbox{12}{Mask} \\

\bitbox{8}{Source} & \bitbox{8}{Destination}

\endwordgroupr \\

\wordbox{3}{Data}

\end{bytefield}

Note the justaposition of \\ to \wordgroupr and \endwordgroupr in the above.
The resulting figure looks like this:

0 7 8 15

Tag Mask

Source Destination

}
Header

Data

As a more complex example, the following nests left and right labels:

\begin{bytefield}{16}

\bitheader{0,7,8,15} \\

\wordgroupr{Header}

\bitbox{4}{Tag} & \bitbox{12}{Mask} \\

\wordgroupl{Node IDs}

\bitbox{8}{Source} & \bitbox{8}{Destination}

\endwordgroupl

\endwordgroupr \\

\wordbox{3}{Data}

\end{bytefield}

4

0 7 8 15

Tag Mask

Source DestinationNode IDs
{ }

Header

Data

Again, note the justaposition of \\ to the various word-grouping commands in the
above.

\skippedwords

Draw a graphic representing a number of words that are not shown.
\skippedwords is intended to work with the 〈sides〉 argument to \wordbox. For
example:

\begin{bytefield}{16}

\wordbox{1}{Some data} \\

\wordbox[lrt]{1}{Lots of data} \\

\skippedwords \\

\wordbox[lrb]{1}{} \\

\wordbox{2}{More data}

\end{bytefield}

Some data

Lots of data
hhhhhhhhhhhhhhh

hhh
hhhh

hhh
hhhh

h

More data

\bitwidth
\byteheight

The above variables represent the width of each bit and height of each byte in
the figure. Change them with \setlength to adjust the size of the figure. The
default value of \byteheight is 2ex, and the default value of \bitwidth is the
width of “{\tiny 99i}”, i.e., the width of a two-digit number plus a small amount
of extra space. This enables \bitheader to show two-digit numbers without
overlap.

5

\curlyspace
\labelspace

\curlyspace is the space to insert between the figure and the curly brace
preceding a word group (default: 1ex). \labelspace is the space to insert between
the curly brace and the label (default: 0.5ex). Change these with \setlength to
adjust the spacing.

\curlyshrinkage

In TEX/LATEX, the height of a curly brace does not include the tips. Hence, in
a word group label, the tips of the curly brace will extend beyond the height of
the word group. \curlyshrinkage is an amount by which to reduce the height of
curly braces in labels. It is set to 5pt, and it is extremely unlikely that one would
ever need to change it. Nevertheless, it is documented here in case the document
is typeset with a math font containing radically different curly braces from the
ones that come with TEX/LATEX.

2.2 Common tricks

This section shows some clever ways to use bytefield’s commands to produce
some useful effects.

Odd-sized fields To produce a field that is, say, 1 1
2 words long, use a \bitbox

for the fractional part and specify appropriate values for the various 〈sides〉 pa-
rameters. For instance:

\begin{bytefield}{16}

\bitheader{0,7,8,15} \\

\bitbox{8}{8-bit field} & \bitbox[lrt]{8}{} \\

\wordbox[lrb]{1}{24-bit field}

\end{bytefield}

0 7 8 15

8-bit field

24-bit field

Ellipses To skip words from the middle of enumerated data, put some \vdots
in a \wordbox with empty 〈sides〉:

\begin{bytefield}{16}

\bitbox{8}{Type} & \bitbox{8}{\# of nodes} \\

\wordbox{1}{Node~1} \\

\wordbox{1}{Node~2} \\

\wordbox[]{1}{\vdots \\[1ex]} \\

\wordbox{1}{Node~N} \\

6

\end{bytefield}

Type # of nodes

Node 1

Node 2
...

Node N

The extra 1ex of vertical space helps center the \vdots a bit better.

Unused bits Because \width and \height are defined within \bitboxes (also
\wordboxes), we can represent unused bits by filling a \bitbox with a rule of size
\width×\height.

\begin{bytefield}{32}

\bitheader{0,4,8,12,16,20,24,28} \\

\bitbox{8}{Tag} & \bitbox{8}{Value} &

\bitbox{4}{\rule{\width}{\height}} & \bitbox{12}{Mask} \\

\wordbox{1}{Key}

\end{bytefield}

0 4 8 12 16 20 24 28

Tag Value Mask

Key

The effect is much better when the color package is used to draw the unused bits
in color. (Gray looks nice.)

2.3 Not-so-common tricks

While certainly not the intended purpose of the bytefield package, one can
utilize \wordboxes with empty 〈sides〉 and word labels to produce memory-map
diagrams:

\setlength{\byteheight}{4\baselineskip}

\newcommand{\descbox}[2]{\parbox[c][3.8\baselineskip]{0.95\width}{%

\raggedright #1\vfill #2}}

\begin{bytefield}{32}

\wordgroupr{Partition 4}

\bitbox[]{8}{\texttt{0xFFFFFFFF} \\[2\baselineskip]

\texttt{0xC0000000}} &

\bitbox{24}{\descbox{1\,GB area for VxDs, memory manager,

file system code; shared by all processes.}{Read/writable.}}

\endwordgroupr \\

7

\wordgroupr{Partition 3}

\bitbox[]{8}{\texttt{0xBFFFFFFF} \\[2\baselineskip]

\texttt{0x80000000}} &

\bitbox{24}{\descbox{1\,GB area for memory-mapped files,

shared system DLLs, file system code; shared by all

processes.}{Read/writable.}}

\endwordgroupr \\

\wordgroupr{Partition 2}

\bitbox[]{8}{\texttt{0x7FFFFFFF} \\[2\baselineskip]

\texttt{0x00400000}} &

\bitbox{24}{\descbox{\sim2\,GB area private to process, process

code, and data.}{Read/writable.}}

\endwordgroupr \\

\wordgroupr{Partition 1}

\bitbox[]{8}{\texttt{0x003FFFFF} \\[2\baselineskip]

\texttt{0x00001000}} &

\bitbox{24}{\descbox{4\,MB area for MS-DOS and Windows~3.1

compatibility.}{Read/writable.}} \\

\bitbox[]{8}{\texttt{0x00000FFF} \\[2\baselineskip]

\texttt{0x00000000}} &

\bitbox{24}{\descbox{4096~byte area for MS-DOS and Windows~3.1

compatibility.}{Protected---catches {\small NULL} pointers.}}

\endwordgroupr \\

0xFFFFFFFF

0xC0000000

1 GB area for VxDs, memory manager, file
system code; shared by all processes.

Read/writable.

 Partition 4

0xBFFFFFFF

0x80000000

1 GB area for memory-mapped files, shared
system DLLs, file system code; shared by all
processes.
Read/writable.

 Partition 3

0x7FFFFFFF

0x00400000

∼2 GB area private to process, process code,
and data.

Read/writable.

 Partition 2

0x003FFFFF

0x00001000

4 MB area for MS-DOS and Windows 3.1
compatibility.

Read/writable.
0x00000FFF

0x00000000

4096 byte area for MS-DOS and Windows 3.1
compatibility.

Protected—catches NULL pointers.


Partition 1

8

2.4 Putting it all together

The following code showcases most of bytefield’s features in a single figure.

\setlength{\byteheight}{2.5\baselineskip}

\begin{bytefield}{32}

\bitheader{0,7,8,15,16,23,24,31} \\

\wordgroupr{\parbox{6em}{\raggedright These words were taken

verbatim from the TCP header definition (RFC~793).}}

\bitbox{4}{Data offset} & \bitbox{6}{Reserved} &

\bitbox{1}{\tiny U\\R\\G} & \bitbox{1}{\tiny A\\C\\K} &

\bitbox{1}{\tiny P\\S\\H} & \bitbox{1}{\tiny R\\S\\T} &

\bitbox{1}{\tiny S\\Y\\N} & \bitbox{1}{\tiny F\\I\\N} &

\bitbox{16}{Window} \\

\bitbox{16}{Checksum} & \bitbox{16}{Urgent pointer}

\endwordgroupr \\

\wordbox[lrt]{1}{Data octets} \\

\skippedwords \\

\wordbox[lrb]{1}{} \\

\wordgroupl{\parbox{6em}{\raggedright Note that we can display,

for example, a misaligned 64-bit value with clever use of the

optional argument to \texttt{\textbackslash wordbox} and

\texttt{\textbackslash bitbox}.}}

\bitbox{8}{Source} & \bitbox{8}{Destination} & \bitbox[lrt]{16}{} \\

\wordbox[lr]{1}{Timestamp} \\

\wordgroupr{\parbox{6em}{\raggedright Why two Length fields?

No particular reason.}}

\bitbox[lrb]{16}{} & \bitbox{16}{Length}

\endwordgroupl \\

\bitbox{6}{Key} & \bitbox{6}{Value} & \bitbox{4}{Unused} &

\bitbox{16}{Length}

\endwordgroupr \\

\wordbox{1}{Total number of 16-bit data words that follow this

header word, excluding the subsequent checksum-type value} \\

\bitbox{16}{Data~1} & \bitbox{16}{Data~2} \\

\bitbox{16}{Data~3} & \bitbox{16}{Data~4} \\

\bitbox[]{16}{\vdots \\[1ex]} & \bitbox[]{16}{\vdots \\[1ex]} \\

\bitbox{16}{Data~$N-1$} & \bitbox{16}{Data~N} \\

\bitbox{20}{\[\mbox{A5A5}_{\mbox{\scriptsize H}} \oplus

\left(\sum_{i=1}^N \mbox{Data}_i \right) \bmod 2^{20} \]} &

\bitbox{12}{Command} \\

\wordbox{2}{64-bit random number}

\end{bytefield}

Figure 1 shows the resulting protocol diagram.

9

0 7 8 15 16 23 24 31

Data
offset Reserved

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Checksum Urgent pointer



These words
were taken
verbatim
from the
TCP header
definition
(RFC 793).

Data octets
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhh
hhhh

hhh
hhhh

hhhh
hhhh

hhhh
hhh

Source Destination

Timestamp

Length

Note that we
can display,
for example,
a misaligned
64-bit value
with clever
use of the
optional
argument to
\wordbox
and \bitbox.


Key Value Unused Length


Why two
Length
fields? No
particular
reason.

Total number of 16-bit data words that follow this header word,
excluding the subsequent checksum-type value

Data 1 Data 2

Data 3 Data 4

...
...

Data N − 1 Data N

A5A5H ⊕

(
N∑
i=1

Datai

)
mod 220 Command

64-bit random number

Figure 1: Complex protocol diagram drawn with the bytefield package

10

3 Implementation

This section contains the complete source code for bytefield. Most users will
not get much out of it, but it should be of use to those who need more pre-
cise documentation and those who want to extend (or debug hq q̂) the bytefield
package.

In this section, macros marked in the margin with a “?” are intended to be
called by the user (and were described in the previous section). All other macros
are used only internally by bytefield.

1 〈∗package〉

3.1 Utility macros

\remove@dim Remove “pt” from the end of a dimen (e.g., 12.34pt 7→ “12.34”). I stole this
from Hideki Isozaki’s ecltree package.
2 {\catcode‘\p=12 \catcode‘\t=12 \gdef\remove@dim#1pt{#1}}

\no@pt Make \remove@dim a little more user-friendly.
3 \def\no@pt#1{\expandafter\remove@dim\the#1}

The following macros in this section are used by the box-drawing macros and
the “skipped words”-drawing macros.

\bytefield@height

\ifcounting@words

When \ifcounting@words is True, add the height of the next picture envi-
ronment to \bytefield@height. We set \counting@wordstrue at the begin-
ning of each word, and \counting@wordsfalse after each \bitbox, \wordbox, or
\skippedwords picture.
4 \newlength{\bytefield@height}

5 \newif\ifcounting@words

\inc@bytefield@height We have to define a special macro to increment \bytefield@height because the
calc package’s \addtolength macro doesn’t seem to see the global value. So
we \setlength a temporary (to get calc’s nice infix features) and \advance
\bytefield@height by that amount.
6 \newlength{\bytefield@height@increment}

7 \DeclareRobustCommand{\inc@bytefield@height}[1]{%

8 \setlength{\bytefield@height@increment}{#1}%

9 \global\advance\bytefield@height by \bytefield@height@increment}

3.2 Top-level environment

bits@wide The number of bits in each word (i.e., the argument to the \bytefield environ-
ment).
10 \newcounter{bits@wide}

11

\entire@bytefield@picture A box containing the entire bytefield. By storing everything in a box and then
typesetting it later (at the \end{bytefield}), we can center the bytefield, put a
box around it, and do other operations on the entire figure.
11 \newsavebox{\entire@bytefield@picture}

? bytefield Environment containing the layout of bits in a sequence of bytes. This is the main
environment defined by the bytefield pacakge. The argument is the number of
bits wide the bytefield should be. We turn & into a space character so the user can
think of a bytefield as being analogous to a tabular environment, even though
we’re really setting the bulk of the picture in a single column. (Row labels go in
separate columns, however.)
12 \newenvironment{bytefield}[1]{%

13 \setcounter{bits@wide}{#1}%

14 \let\old@nl=\\%

15 \let\amp=&%

16 \catcode‘\&=10

17 \openup -1pt

18 \setlength{\bytefield@height}{0pt}%

19 \setlength{\unitlength}{1pt}%

20 \counting@wordstrue

21 \begin{lrbox}{\entire@bytefield@picture}%

22 \renewcommand{\\}{%

23 \amp\show@wordlabelr\cr\ignorespaces\counting@wordstrue\make@lspace\amp}%

24 \vbox\bgroup\ialign\bgroup##\amp##\amp##\cr\amp%

25 }{%

26 \amp\show@wordlabelr\cr\egroup\egroup%

27 \end{lrbox}%

28 \usebox{\entire@bytefield@picture}}

3.3 Box-drawing macros

3.3.1 Drawing (proper)

? \bitwidth The width of a single bit. Note that this is wide enough to display a two-digit
number without it running into adjacent numbers. For larger words, be sure to
\setlength this larger.
29 \newlength{\bitwidth}

30 \AtBeginDocument{\settowidth{\bitwidth}{\tiny 99i}}

? \byteheight The height of a single byte.
31 \newlength{\byteheight}

32 \AtBeginDocument{\setlength{\byteheight}{4ex}}

\units@wide

\units@tall

Scratch variables for storing the width and height (in points) of the box we’re
about to draw.
33 \newlength{\units@wide}

34 \newlength{\units@tall}

12

? \bitbox Put some text (#3) in a box that’s a given number of bits (#2) wide and one byte
tall. An optional argument (#1) specifies which lines to draw—[l]eft, [r]ight,
[t]op, and/or [b]ottom (default: lrtb).
35 \DeclareRobustCommand{\bitbox}[3][lrtb]{%

36 \setlength{\units@wide}{\bitwidth * #2}%

37 \parse@bitbox@arg{#1}%

38 \draw@bit@picture{\no@pt{\units@wide}}{\no@pt{\byteheight}}{#3}}

? \wordbox Put some text (#3) in a box that’s a given number of bytes (#2) tall and one
word (bits@wide bits) wide. An optional argument (#1) specifies which lines to
draw—[l]eft, [r]ight, [t]op, and/or [b]ottom (default: lrtb).
39 \DeclareRobustCommand{\wordbox}[3][lrtb]{%

40 \setlength{\units@wide}{\bitwidth * \value{bits@wide}}%

41 \setlength{\units@tall}{\byteheight * #2}%

42 \parse@bitbox@arg{#1}%

43 \draw@bit@picture{\no@pt{\units@wide}}{\no@pt{\units@tall}}{#3}}

\height

\depth

\totalheight

\width

Box sizes to make available to the user within a \bitbox or \wordbox. These
should be local to the \parbox in \draw@bit@picture, but when I moved the
\newdimens into \draw@bit@picture, I kept running out of dimens for documents
containing many boxes. What’s the right way to do this sort of local variable in
TEX?
44 \newdimen\height

45 \newdimen\depth

46 \newdimen\totalheight

47 \newdimen\width

\draw@bit@picture Put some text (#3) in a box that’s a given number of units (#1) wide and a
given number of units (#2) tall. We format the text with a \parbox to enable
word-wrapping and explicit line breaks. In addition, we define \height, \depth,
\totalheight, and \width (à la \makebox and friends), so the user can utilize
those for special effects (e.g., a \rule that fills the entire box). As an added bonus,
we define \widthunits and \heightunits, which are the width and height of the
box in multiples of \unitlength (i.e., #1 and #2, respectively).
48 \DeclareRobustCommand{\draw@bit@picture}[3]{%

49 \begin{picture}(#1,#2)

First, we plot the user’s text, with all sorts of useful lengths predefined.
50 \put(0,0){\makebox(#1,#2){\parbox[c]{#1\unitlength}{%

51 \height=#2\unitlength%

52 \depth=0pt%

53 \totalheight=#2\unitlength%

54 \width=#1\unitlength%

55 \def\widthunits{#1}%

56 \def\heightunits{#2}%

57 \centering #3}}}

13

Next, we draw each line individually. I suppose we could make a special case for
“all lines” and use a \framebox above, but the following works just fine.
58 \ifbitbox@top

59 \put(0,#2){\line(1,0){#1}}

60 \fi

61 \ifbitbox@bottom

62 \put(0,0){\line(1,0){#1}}

63 \fi

64 \ifbitbox@left

65 \put(0,0){\line(0,1){#2}}

66 \fi

67 \ifbitbox@right

68 \put(#1,0){\line(0,1){#2}}

69 \fi

70 \end{picture}%

Finally, we indicate that we’re no longer at the beginning of a word. The following
code structure (albeit with different arguments to \inc@bytefield@height) is
repeated in various places throughout this package. We document it only here,
however.
71 \ifcounting@words

72 \inc@bytefield@height{\unitlength * \real{#2}}%

73 \counting@wordsfalse

74 \fi

75 \ignorespaces}

3.3.2 Parsing arguments

The macros in this section are used to parse the optional argument to \bitbox or
\wordbox, which is some subset of {l, r, t, b}.

\ifbitbox@top

\ifbitbox@bottom

\ifbitbox@left

\ifbitbox@right

These macros are set to True if we’re to draw the corresponding edge on the
subsequent \bitbox or \wordbox.
76 \newif\ifbitbox@top

77 \newif\ifbitbox@bottom

78 \newif\ifbitbox@left

79 \newif\ifbitbox@right

\parse@bitbox@arg This main parsing macro merely resets the above conditionals and calls a helper
function, \parse@bitbox@sides.
80 \def\parse@bitbox@arg#1{%

81 \bitbox@topfalse

82 \bitbox@bottomfalse

83 \bitbox@leftfalse

84 \bitbox@rightfalse

85 \parse@bitbox@sides#1X}

\parse@bitbox@sides The helper function for \parse@bitbox@arg parses a single letter, sets the appro-
priate conditional to True, and calls itself tail-recursively until it sees an “X”.

14

86 \def\parse@bitbox@sides#1{%

87 \ifx#1X%

88 \else

89 \ifx#1t%

90 \bitbox@toptrue

91 \else

92 \ifx#1b%

93 \bitbox@bottomtrue

94 \else

95 \ifx#1l%

96 \bitbox@lefttrue

97 \else

98 \ifx#1r%

99 \bitbox@righttrue

100 \fi

101 \fi

102 \fi

103 \fi

104 \expandafter\parse@bitbox@sides

105 \fi}

3.4 Skipped words

\units@high The height of each diagonal line in the \skippedwords graphic. Note that
\units@high = \units@tall − optional argument to \skippedwords.

106 \newlength{\units@high}

? \skippedwords Output a fancy graphic representing skipped words. The optional argument is the
vertical space between the two diagonal lines (default: 2ex).

107 \DeclareRobustCommand{\skippedwords}[1][2ex]{%

108 \setlength{\units@wide}{\bitwidth * \value{bits@wide}}%

109 \setlength{\units@high}{1pt * \ratio{\units@wide}{6.0pt}}%

110 \setlength{\units@tall}{#1 + \units@high}%

111 \edef\num@wide{\no@pt{\units@wide}}%

112 \edef\num@tall{\no@pt{\units@tall}}%

113 \edef\num@high{\no@pt{\units@high}}%

114 \begin{picture}(\num@wide,\num@tall)

115 \put(0,\num@tall){\line(6,-1){\num@wide}}

116 \put(\num@wide,0){\line(-6,1){\num@wide}}

117 \put(0,0){\line(0,1){\num@high}}

118 \put(\num@wide,\num@tall){\line(0,-1){\num@high}}

119 \end{picture}%

120 \ifcounting@words

121 \inc@bytefield@height{\unitlength * \real{\num@tall}}%

122 \counting@wordsfalse

123 \fi}

15

3.5 Bit-position labels

? \bitheader Output a header of numbered bit positions. The optional argument (#1) is “l”
for little-endian (default) or “b” for big-endian. The required argument (#2) is
a list of bit positions to label. It is composed of comma-separated ranges of
numbers, for example, “0-31”, “0,7-8,15-16,23-24,31”, or even something odd
like “0-7,15-23”. Ranges must be specified in increasing order; use the optional
argument to \bitheader to reverse the labels’ direction.

124 \DeclareRobustCommand{\bitheader}[2][l]{%

125 \parse@bitbox@arg{lrtb}%

126 \setlength{\units@wide}{\bitwidth * \value{bits@wide}}%

127 \setlength{\units@tall}{\heightof{\tiny 9}}%

128 \setlength{\units@high}{\units@tall * -1}%

129 \def\bit@endianness{#1}%

130 \begin{picture}(\no@pt{\units@wide},\no@pt{\units@tall})(0,\no@pt{\units@high})

131 \parse@range@list#2,X,

132 \end{picture}%

133 \ifcounting@words

134 \inc@bytefield@height{\unitlength * \real{\no@pt{\units@tall}}}%

135 \counting@wordsfalse

136 \fi

137 \ignorespaces}

\parse@range@list Helper function #1 for \bitheader—parse a comma-separated list of ranges, call-
ing \parse@range on each range.

138 \def\parse@range@list#1,{%

139 \ifx#1X

140 \else

141 \parse@range#1-#1-#1\relax

142 \expandafter\parse@range@list

143 \fi}

\header@xpos

header@val

max@header@val

Miscellaneous variables used internally by \parse@range—x position of header,
current label to output, and maximum label to output (+1).

144 \newlength{\header@xpos}

145 \newcounter{header@val}

146 \newcounter{max@header@val}

\parse@range Helper function #2 for \bitheader—parse a hyphen-separated pair of numbers
(or a single number) and display the number at the correct bit position.

147 \def\parse@range#1-#2-#3\relax{%

148 \setcounter{header@val}{#1}

149 \setcounter{max@header@val}{#2 + 1}

150 \loop

151 \ifnum\value{header@val}<\value{max@header@val}%

152 \if\bit@endianness b%

153 \setlength{\header@xpos}{\bitwidth * (\value{bits@wide}-\value{header@val}-1)}

154 \else

155 \setlength{\header@xpos}{\bitwidth * \value{header@val}}

16

156 \fi

157 \put(\no@pt{\header@xpos},0){%

158 \makebox(\no@pt{\bitwidth},\no@pt{\units@tall}){\tiny \theheader@val}}

159 \addtocounter{header@val}{1}

160 \repeat}

3.6 Word labels

3.6.1 Curly-brace manipulation

? \curlyshrinkage Reduce the height of a curly brace by \curlyshrinkage so its ends don’t overlap
whatever is above or below it. The default value (5 pt.) was determined empir-
ically and shouldn’t need to be changed. However, on the off-chance the user
employs a math font with very different curly braces from Computer Modern’s,
\curlyshrinkage can be modified.

161 \newlength{\curlyshrinkage}

162 \setlength{\curlyshrinkage}{5pt}

??
\curlyspace

\labelspace

Space to insert before a curly brace and before a word label (i.e., after a curly
brace). Because the default values are specified in terms of x heights, we wait
until the \begin{document} to set them, after the default font has been selected.

163 \newlength{\curlyspace}

164 \AtBeginDocument{\setlength{\curlyspace}{1ex}}

165 \newlength{\labelspace}

166 \AtBeginDocument{\setlength{\labelspace}{0.5ex}}

\store@rcurly Store a “}” that’s #2 tall in box #1. The only unintuitive thing here is that we
have to redefine \fontdimen22—axis height—to 0 pt. before typesetting the curly
brace. Otherwise, the brace would be vertically off-center by a few points. When
we’re finished, we reset it back to its old value.

167 \def\store@rcurly#1#2{%

168 \newdimen\curly@height%

169 \setlength{\curly@height}{#2 - \curlyshrinkage}%

170 \newdimen\half@curly@height%

171 \setlength{\half@curly@height}{0.5\curly@height}%

172 \newdimen\curly@shift%

173 \setlength{\curly@shift}{\half@curly@height + 0.5\curlyshrinkage}%

174 \sbox{#1}{\raisebox{\curly@shift}{%

175 $\xdef\old@axis{\the\fontdimen22\textfont2}$%

176 $\fontdimen22\textfont2=0pt%

177 \left.\vrule height\half@curly@height width0pt depth\half@curly@height\right\}$%

178 $\fontdimen22\textfont2=\old@axis$}}%

179 }

\store@lcurly Same as \store@rcurly, but using a “{” instead of a “}”.
180 \def\store@lcurly#1#2{%

181 \newdimen\curly@height%

182 \setlength{\curly@height}{#2 - \curlyshrinkage}%

17

183 \newdimen\half@curly@height%

184 \setlength{\half@curly@height}{0.5\curly@height}%

185 \newdimen\curly@shift%

186 \setlength{\curly@shift}{\half@curly@height + 0.5\curlyshrinkage}%

187 \sbox{#1}{\raisebox{\curly@shift}{%

188 $\xdef\old@axis{\the\fontdimen22\textfont2}$%

189 $\fontdimen22\textfont2=0pt%

190 \left\{\vrule height\half@curly@height width0pt depth\half@curly@height\right.$%

191 $\fontdimen22\textfont2=\old@axis$}}%

192 }

3.6.2 Right-side labels

\show@wordlabelr This macro is output in the third column of every row of the \ialigned bytefield
table. It’s normally a no-op, but \endwordgroupr defines it to output the word
label and then reset itself to a no-op.

193 \def\show@wordlabelr{}

\wordlabelr@start

\wordlabelr@end

The starting and ending height (in points) of the set of rows to be labelled on the
right.

194 \newlength{\wordlabelr@start}

195 \newlength{\wordlabelr@end}

??
\wordgroupr

\endwordgroupr

Label the words defined between \wordgroupr and \endwordgroupr on the right
side of the figure. The argument is the text of the label. The label is typeset to
the right of a large curly brace, which groups the words together.

196 \newenvironment{wordgroupr}[1]{%

\wordgroupr merely stores the starting height in \wordlabelr@start and the
user-supplied text in \wordlabelr@text. \endwordgroupr does most of the work.

197 \global\wordlabelr@start=\bytefield@height

198 \gdef\wordlabelr@text{#1}%

199 \ignorespaces%

200 }{%

201 \global\wordlabelr@end=\bytefield@height

Redefine \show@wordlabelr to output \curlyspace space, followed by a large
curly brace (in \curlybox), followed by \labelspace space, followed by the user’s
text (previously recorded in \wordlabelr@text). We typeset \wordlabelr@text
within a tabular environment, so LATEX will calculate its width automatically.

202 \gdef\show@wordlabelr{%

203 \sbox{\word@label@box}{\begin{tabular}[b]{@{}l@{}}\wordlabelr@text\end{tabular}}%

204 \settowidth{\label@box@width}{\usebox{\word@label@box}}%

205 \setlength{\label@box@height}{\wordlabelr@end-\wordlabelr@start}%

206 \newbox{\curly@box}%

207 \store@rcurly{\curly@box}{\label@box@height}%

208 \newdimen\total@box@width%

209 \setlength{\total@box@width}{%

210 \curlyspace +

18

211 \widthof{\usebox{\curly@box}} +

212 \labelspace +

213 \label@box@width}%

214 \begin{picture}(\no@pt{\total@box@width},0)

215 \put(0,0){%

216 \hspace*{\curlyspace}%

217 \usebox{\curly@box}%

218 \hspace*{\labelspace}%

219 \makebox(\no@pt{\label@box@width},\no@pt{\label@box@height}){%

220 \usebox{\word@label@box}}}

221 \end{picture}%

The last thing \show@wordlabelr does is redefine itself back to a no-op.
222 \gdef\show@wordlabelr{}}%

223 \ignorespaces}

3.6.3 Left-side labels

\wordlabell@start

\wordlabell@end

The starting and ending height (in points) of the set of rows to be labelled on the
left.

224 \newlength{\wordlabell@start}

225 \newlength{\wordlabell@end}

\total@box@width The total width of the next label to typeset on the left of the figure, that is, the
aggregate width of the text box, curly brace, and spaces on either side of the curly
brace.

226 \newlength{\total@lbox@width}

\make@lspace This macro is output in the first column of every row of the \ialigned bytefield
table. It’s normally a no-op, but \wordgroupl defines it to output enough space
for the next word label and then reset itself to a no-op.

227 \gdef\make@lspace{}

??
\wordgroupl

\endwordgroupl

Same as \wordgroupr and \endwordgroupr, but put the label on the left.
However, the following code is not symmetric to that of \wordgroupr and
\endwordgroupr. The problem is that we encounter \wordgroupl after enter-
ing the second (i.e., figure) column, which doesn’t give us a chance to reserve
space in the first (i.e., left label) column. When we reach the \endwordgroupl,
we know the height of the group of words we wish to label. However, if we try to
label the words in the subsequent first column, we won’t know the vertical offset
from the “cursor” at which to start drawing the label, because we can’t know the
height of the subsequent row until we reach the second column.1

Our solution is to allocate space for the box the next time we enter a first
column. As long as space is eventually allocated, the column will expand to
fit that space. \endwordgroupl outputs the label immediately. Even though
\endwordgroupl is called at the end of the second column, it \puts the label at

1Question: Is there a way to push the label up to the top of the subsequent row, perhaps
with \vfill?

19

a sufficiently negative x location for it to overlap the first column. Because there
will eventually be enough space to accomodate the label, we know that the label
won’t overlap the figure or extend beyond the figure boundaries.

228 \newenvironment{wordgroupl}[1]{%

First, we store the starting height and label text, which are needed by
\endwordgroupl.

229 \global\wordlabell@start=\bytefield@height

230 \gdef\wordlabell@text{#1}%

Next, we typeset a draft version of the label into \word@label@box, which we
measure (into \total@lbox@width) and then discard. We can’t typeset the final
version of the label until we reach the \endwordgroupl, because that’s when we
learn the height of the word group. Without knowing the height of the word
group, we don’t how how big to make the curly brace. In the scratch version, we
make the curly brace 5 cm. tall. This should be more than large enough to reach
the maximum curly-brace width, which is all we really care about at this point.

231 \sbox{\word@label@box}{\begin{tabular}[b]{@{}l@{}}\wordlabell@text\end{tabular}}%

232 \settowidth{\label@box@width}{\usebox{\word@label@box}}%

233 \newbox{\curly@box}%

234 \store@lcurly{\curly@box}{5cm}%

235 \setlength{\total@lbox@width}{%

236 \curlyspace +

237 \widthof{\usebox{\curly@box}} +

238 \labelspace +

239 \label@box@width}%

240 \global\total@lbox@width=\total@lbox@width

Now we know how wide the box is going to be (unless, of course, the user is using
some weird math font that scales the width of a curly brace proportionally to its
height). So we redefine \make@lspace to output \total@lbox@width’s worth of
space and then redefine itself back to a no-op.

241 \gdef\make@lspace{%

242 \hspace*{\total@lbox@width}%

243 \gdef\make@lspace{}}%

244 \ignorespaces%

245 }{%

\endwordgroupl is comparatively straightforward. We calculate the final height
of the word group, and then output the label text, followed by \labelspace space,
followed by a curly brace (now that we know how tall it’s supposed to be), followed
by \curlyspace space. The trick, as described earlier, is that we typeset the entire
label in the second column, but in a 0×0 picture environment and with a negative
horizontal offset (\starting@point), thereby making it overlap the first column.

246 \global\wordlabell@end=\bytefield@height

247 \newdimen\starting@point

248 \setlength{\starting@point}{%

249 -\total@lbox@width - \bitwidth*\value{bits@wide}}%

250 \sbox{\word@label@box}{\begin{tabular}[b]{@{}l@{}}\wordlabell@text\end{tabular}}%

251 \settowidth{\label@box@width}{\usebox{\word@label@box}}%

20

252 \setlength{\label@box@height}{\wordlabell@end-\wordlabell@start}%

253 \newbox{\curly@box}%

254 \store@lcurly{\curly@box}{\label@box@height}%

255 \begin{picture}(0,0)

256 \put(\no@pt{\starting@point},0){%

257 \makebox(\no@pt{\label@box@width},\no@pt{\label@box@height}){%

258 \usebox{\word@label@box}}%

259 \hspace*{\labelspace}%

260 \usebox{\curly@box}%

261 \hspace*{\curlyspace}}

262 \end{picture}%

263 \ignorespaces}

3.6.4 Scratch space

\label@box@width

\label@box@height

\word@label@box

Scratch storage for the width, height, and contents of the word label we’re about
to output.

264 \newlength{\label@box@width}

265 \newlength{\label@box@height}

266 \newsavebox{\word@label@box}

267 〈/package〉

4 Future work

bytefield is my first LATEX package, and, as such, there are a number of macros
that could probably have been implemented a lot better. The package should
really get a major rewrite. If I were to do it all over again, I would probably
not use an \ialign for the main bytefield environment. The problem—as I
discovered too late—is that \begin. . .\end blocks are unable to cross cells of an
\ialign (or tabular environment, for that matter).

That said, I’d like the next major release of bytefield to let the
user use \begin{wordgroup}[r]. . .\end{wordgroup} instead of \wordgroupr. . .
\endwordgroupr and \begin{wordgroup}[l]. . .\end{wordgroup} instead of
\wordgroupl. . .\endwordgroupl. That would make the word-grouping commands
a little more LATEX-ish.

Finally, a minor improvement I’d like to make in the package is to move left,
small curly braces closer to the figure. In the following figure, notice how distant
the small curly appears from the figure body:

SomethingToo distant
{

Something elseLooks okay


21

The problem is that the curly braces are left-aligned relative to each other, while
they should be right-aligned.

22

	Introduction
	Usage
	Basic commands
	Common tricks
	Not-so-common tricks
	Putting it all together

	Implementation
	Utility macros
	Top-level environment
	Box-drawing macros
	Drawing (proper)
	Parsing arguments

	Skipped words
	Bit-position labels
	Word labels
	Curly-brace manipulation
	Right-side labels
	Left-side labels
	Scratch space

	Future work

		2000-07-03T12:14:38-0600
	Champaign, IL
	Scott Pakin
	I am the author of this document

