
ON THE SOLUTION OF MIXED BOUNDARY VALUE

PROBLEMS IN ELASTICITY

by

Michael Hohn

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

The University of Utah

December 2001

Copyright c
 Michael Hohn 2001

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

Michael Hohn

This dissertation has been read by each member of the following supervisory committee
and by majority vote has been found to be satisfactory.

Chair: E.S. Folias

Peter Alfeld

Nelson H.F. Beebe

Reaz Chaudhuri

Frank Stenger

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of Michael Hohn in its final form
and have found that (1) its format, citations, and bibliographic style are consistent and
acceptable; (2) its illustrative materials including figures, tables, and charts are in place;
and (3) the final manuscript is satisfactory to the Supervisory Committee and is ready
for submission to The Graduate School.

Date E.S. Folias
Chair, Supervisory Committee

Approved for the Major Department

James A. Carlson
Chair/Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School

ABSTRACT

A method and algorithm for the solution of linear two-dimensional first-

order systems of elliptic partial-differential equations (PDEs) and associated

boundary conditions over a finite union of rectangles using sinc-collocation

methods, collectively called sinc-ellpde, are presented.

An overview and short description of the stages of the method and steps of

the algorithm are given along with a trivial sample problem. These are followed

by detailed descriptions of two problems from fracture mechanics, the method,

and the numerical results obtained. The algorithm is then described in detail,

followed by a convergence proof, followed by full descriptions of the symbolic

computations required for the fracture mechanics problems.

This work is dedicated to the computers and programs that made it possible,

and pleasant, to produce: Unix systems and tools, and the Ocaml programming

language.

CONTENTS

ABSTRACT . iv

LIST OF TABLES . ix

ACKNOWLEDGEMENTS . x

CHAPTERS

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Sinc methods . 3
1.3 Programming considerations . 4
1.4 Summary . 9

2. A COMPLETE EXAMPLE . 11

2.1 Problem formulation . 11
2.2 Method of solution . 12

2.2.1 Block conversion . 13
2.2.2 Discretization . 14
2.2.3 Solution . 15
2.2.4 Reconstruction and evaluation . 15

2.3 Numerical results . 16
2.3.1 Convergence in norm . 17
2.3.2 Pointwise convergence . 20

3. FORMULATION OF PROBLEMS . 28

3.1 Single-material crack . 29
3.2 Bimaterial crack . 31
3.3 General elasticity equations . 33

3.3.1 Coordinate system transformation . 34
3.3.2 Metric tensors . 35
3.3.3 Christoffel symbols . 35
3.3.4 Covariant derivatives . 35
3.3.5 Navier equations . 35
3.3.6 Displacement boundary conditions . 35
3.3.7 Traction boundary conditions . 36

3.4 Expanded elasticity equations . 37
3.4.1 Metric tensors . 37
3.4.2 Christoffel symbols . 37

3.4.3 The full Navier equations . 38
3.4.4 The full stress tensor . 38
3.4.5 Two-dimensional Navier equations . 39
3.4.6 Two-dimensional stress tensor . 39

3.5 Mathematical view . 39

4. METHOD OF SOLUTION . 41

4.1 Basic definitions . 42
4.2 Known one-dimensional properties of sinc series 45
4.3 Per-unknown errors in collocation . 46
4.4 Components and notation for general problems 47
4.5 Method for general problems . 50

4.5.1 PDE system . 52
4.5.2 Block system . 55
4.5.3 Discrete block system . 56
4.5.4 Discrete approximation . 61
4.5.5 Smooth approximation . 61

5. NUMERICAL RESULTS . 62

5.1 Single-material crack . 62
5.1.1 Convergence in norm . 64
5.1.2 Pointwise convergence . 67

5.2 Bimaterial crack . 92
5.3 Conclusions . 95

6. ALGORITHM IMPLEMENTATION . 105

6.1 Block conversion . 107
6.1.1 Module eqn input.map . 109
6.1.2 Module pre collocation . 109
6.1.3 Modules code.ml and data.ml . 109
6.1.4 Modules dom data.ml and global data.ml 114

6.2 Discretization . 114
6.2.1 Module geometry . 117
6.2.2 Modules collocate.ml and collocate-rhs.ml 117

6.2.2.1 Function dom loop start . 121
6.2.2.2 Function dom loop . 123
6.2.2.3 Function region loop . 123
6.2.2.4 Function equation loop . 124
6.2.2.5 Function unknown term iter . 124
6.2.2.6 Function row offset . 125
6.2.2.7 Function columns offset . 125
6.2.2.8 Function point iter start . 125
6.2.2.9 Function point iter . 126
6.2.2.10 Function series term iter start . 126
6.2.2.11 Function series term iter . 126
6.2.2.12 Function apply lu . 127

vii

6.2.2.13 Function row insert value . 127
6.2.2.14 Function insert new row . 127
6.2.2.15 Function insert new block list . 127

6.2.3 Module bin-col-o�set . 128
6.2.4 Module post-collocate . 128
6.2.5 Modules ascii-c-inp-csr, bin-full-data and ascii-coord 129

6.3 Solution . 129
6.4 Reconstruction and evaluation . 129

6.4.1 Modules domain-geometry and function-names 132
6.4.2 Module calc value funcs.cmo . 132
6.4.3 Module eval writeData . 132
6.4.4 Module data-grids . 133

7. EXAMINATION OF THE QUESTION OF CONVERGENCE 135

8. FUTURE WORK . 162

8.1 Method, algorithm and implementation . 162
8.1.1 Input language improvements . 162
8.1.2 Use of the input language in other solvers 162
8.1.3 Method efficiency and error estimation 162
8.1.4 Programming language issues . 163

8.2 Other problems . 164
8.2.1 Boundary layers . 164
8.2.2 Anisotropic materials . 164
8.2.3 General geometries and non-Cartesian coordinate systems . . 165

APPENDICES

A. PROGRAM FOR DERIVATION OF EQUATIONS 166

B. OUTPUT FROM PROGRAM FOR DERIVATION OF EQUATIONS . 199

C. ORIGINAL APPROACH TO MIXED BVPS . 210

REFERENCES . 219

viii

LIST OF TABLES

1.1 Programming language features. 8

4.1 Points corresponding to regions, by index. 49

5.1 Single-material problem parameters. 63

5.2 Bi-material problem parameters. 94

6.1 The connections between the mathematical infix notation, its
program-readable infix and prefix versions, and the internal rep-
resentation. 111

ACKNOWLEDGEMENTS

I would like to begin by thanking the faculty members who supported

and mentored me throughout this research. The original fracture mechanics

problems, which are the driving force behind this work, were suggested by

E. S. Folias, who also provided funding for several years. The use of sinc-based

methods for solution of these problems was suggested by Frank Stenger, and the

method presented here builds on and extends results from his and other people’s

work over the last many years. The largest part of the work was programming

related. Through countless discussions with Nelson H. F. Beebe, I gained much

insight into broad areas of computer science, especially those of practical utility.

Reaz Chaudhuri was of great help in obtaining a proper understanding of the

solid mechanics equations. He always pointed me to proper references, and we

had many interesting discussions. My master’s thesis, done with Peter Alfeld,

gave much preparation in the area of numerical linear algebra, especially the

solution of large sparse linear systems. I also wish to extend my gratitude to

Graeme Milton for several discussions, and providing funding during the period

in which the contents of Appendices A and B were written.

On the personal side, thanks go to all my friends who provided support and

encouragement, and helped me stay sane. Marzenka, Alex, Brent, Ross, Pieter,

Andrew, Pete, I thank you all. Many thanks to Frank for having great parties

with great food.

CHAPTER 1

INTRODUCTION

1.1 Motivation
In design, anticipation of material failure is vital. Over the last decades, a

theory first proposed by Griffith ((Griffith 1924)) has become one of the most-

used tools in prediction of fracture of simple materials. In the Griffith theory, a

material is assumed to have microscopic cracks with high stresses found at their

tips; these cracks cause the material to fail at a much lower level of force than

molecular binding forces predict. More recently introduced composite materials

also have cracks, and the governing equations are more involved because of

material interactions.

To accurately predict failure of these materials requires knowledge of the

stress field near the crack tips as well as the rest of the material. For all but the

simplest geometries, closed-form solutions are almost impossible to obtain, so

numerical methods have become very popular. For engineering mechanics, by

far the most popular methods are the finite element (FE) and boundary element

methods (BEM). Some of their desirable properties are relative conceptual sim-

plicity, straightforward (but tedious) implementation, straightforward handling

of complex geometries, a large available code base for solving problems, and

a tendency to require only modest computing resources. For crack problems

and other problems with corner or edge singularities it is common to use special

elements to handle these singularities, since plain FE cannot. Thus, a closed-form

solution revealing the nature of the singularities must be available before a

complete solution is obtained with FE or BE methods.

For two-dimensional crack problems, e.g., (Erdogan 1963) and (England

1965), the stresses at a distance r from the crack tips are shown to be proportional

2

to 1/
p

r, and the constant of proportionality, KI , depends only on the geometry

of the material. For some special three-dimensional crack problems, e.g., the

penny-shaped crack described in (Sneddon 1946) and (Sneddon 1995, p. 427),

stress fields are also found to be proportional to 1/
p

r. This is enough informa-

tion to complement the (polynomial based) FE methods with singular elements

(which behave like 1/
p

r in the appropriate regions), thus reducing the problem

to one for which FE are well suited, and resulting in good numerical answers.

For other two- and three-dimensional problems, however, asymptotic expan-

sions have found stress fields at a distance ρ from the crack tip to be proportional

to ρ�α, α depending on the geometry and parameters of the material. In (Folias

1975), the stresses near a corner of a cracked plate of finite height are shown to be

proportional to ρ�1/2�2ν, where ν is Poisson’s ratio. This allows a wide range of

α; other results withα 6= 1/2 are found in (Hein and Erdogan 1971; Bogy 1968).

Thus, one does not in general know the behavior of the singularity a priori,

and the problem cannot be reduced to one readily handled by finite elements.

Further, the closed-form solutions, e.g., (Folias 1975) and (Folias 1965), are not

easily obtained; some recent solutions for more difficult problems ((Zhong and

Folias 1992; Penado and Folias 1989)) are even more difficult to derive and are

seminumerical, not truly closed-form. And for most three-dimensional prob-

lems, closed-form or seminumerical solutions are not yet available and may

never be found.

It is natural, then, to change the emphasis from “patching” of existing

numerical methods or development of seminumerical methods to developing

new numerical methods with the ability to handle singularities without explicit

knowledge of their behavior.

3

1.2 Sinc methods
The group of sinc-function based methods, introduced, e.g., in (Lund and

Bowers 1992), are very promising here; they handle singular functions1 and

enjoy an exponential convergence rate (2N + 1-term error proportional top
Ne�

p
πdαN) enabling one to get many digits of accuracy with reasonable work.

For crack and other singular problems, this means only the location, but not the

type, of the singularity is needed, and the solution can be accurately computed.

There has been significant theoretical development of the sinc methods

for one-dimensional problems in the areas of differential equations, integral

equations, Hilbert transforms, definite and indefinite integration, and convo-

lutions. In particular, the theoretical foundations justifying sinc interpolation

and collocation on one domain are found in (Stenger 1993a), while several

one-dimensional and some simpler two-dimensional examples are shown in

mathematical detail in (Lund and Bowers 1992). Work on one-dimensional

multiple domain problems using sinc methods has been done in (Morlet et al.

1997; Morlet, Lybeck, and Bowers 1999; Lybeck and Bowers 1996; Lybeck and

Bowers 1994). On the practical side, (Stenger 1993b) provides a collection of FOR-

TRAN routines for some of these one-dimensional calculus operations including

quadrature, indefinite integration, differentiation, indefinite convolutions and

Laplace transforms; descriptions for these are provided in (Stenger 1993c).

Unfortunately, implementation of two- or higher-dimensional sinc algo-

rithms is much more difficult than their one-dimensional counterparts, and to

date, only relatively simple higher-dimensional problems have been solved,

those reducible to one dimension and those with trivial boundary conditions.

For reasons of implementation (see Section 1.3), the class of problems con-

sidered here are two-dimensional, multiple-unknown linear elliptic first-order

system of partial differential equations and their boundary conditions, with or

without corner and/or edge singularities, defined on a finite, connected union

1 Given a finite function f on an interval [a, b], near a only j f (x) � f (a)j < Cjx � ajα is
required,α > 0. A similar bound must hold near b.

4

of rectangles. Therefore, the method presented can be used for the solution of

a whole class of problems, including the two-dimensional fracture problems

mentioned in the beginning of this chapter.

The notation in the mentioned literature is well suited for mathematical

proofs, but not at all suited for preparing a (computer) algorithm for a general

class of problems, especially when working in two or more dimensions. There-

fore, Chapter 4 concisely summarizes previous results and directly extends them

to two dimensions, without proof; Chapter 6 provides detailed descriptions of

the resulting structures and algorithm, and finally Chapter 7 details the two-

dimensional definitions and proofs for the algorithm.

1.3 Programming considerations
The implementation of one-dimensional, single-unknown, single-domain

sinc algorithms is relatively easy and can be done equally well (or poorly) in C,

FORTRAN, Maple, Matlab, Octave, etc., in less than one week. This includes all

core functionality, input/output, and visualization. The design and implementa-

tion of the present algorithm, in a high-level functional language, has taken just

under 18 months, also including all core functionality, input/output routines,

and visualization. Although the method is seemingly easy to extend from one to

multiple dimensions, the algorithmic implementation of this extended version is

thus vastly more complex.

There are several sources of this complexity. The first and most obvious is

the generality of the method — why not just write a specialized program for

the problem at hand? Simply put, this will not work. Even the shortest possible

program for a real problem is substantial; there will be errors in the implemen-

tation of the method, independent of the programming language2 used; finding

these errors requires simple test runs with known intermediate results. Thus, the

2 The first program written failed to produce useful results, and the errors were never found;
this was due to an imperative coding style coming from FORTRAN, although programming was
done in C.

5

algorithm must be able to handle many different problems.3

Handling of input/output data is a second source of complexity. When a

program is partitioned into separate parts, there is suddenly a need to pass data

between these pieces; the more partitioned the program, the more complex these

data will be. The common impulse to add more features to an existing program

(as opposed to adding more modules) can be attributed to the difficulty usually

encountered in the exportation and importation of complex data. Therefore,

data serialization is considered by the author to be one of the critical facilities

a modern programming language must provide. Also critical is the reading of

user-provided data. A complex problem will have user input data at least as

complex. For the present algorithm, at a minimum the equations, boundary

conditions, geometry information and problem parameters have to be provided.

However, this is not the only use of these data, which are also used to provide a

user-verifiable presentation of the problem it represents (in the form of graphics,

equations, etc.). It is therefore critical to read and write the data correctly; this

amounts to no less work than a typical compiler front end: lexer, parser and tree

walker are all required.

A third problem is the method-specific visualization of computed data. There

are many “general purpose” data-visualization environments available. Unfor-

tunately, the ones found by the author are not suited to handle the peculiarities

of the sinc method, and are severely limited in their programmability. So the

only choice is to use low-level graphical and user-interface libraries, and create

a custom environment.

These complications taken together really make the distinction between a

simple self-contained implementation of an algorithm with no connection to

the world and a full environment for solving a particular type of problem.

3 A second program, written in object-oriented C++, worked on many test problems but as
implemented, it required an excessive amount of user input making it impractical.

Lastly, the method implemented also had one defect: the solution had to have bounded
derivatives, which excludes crack problems.

Thus, this implementation was hard to use and unsuitable for the original problem, and had
to be rewritten.

6

In handling these complex programming problems, the most important factors

influencing productivity are the choice of programming language(s), choice of pro-

gramming style, and availability of libraries with a clean interface.4 Consider

this 22-year-old quote from (Backus 1978):

. . . Discussions about programming languages often resemble

medieval debates about the number of angels that can dance on the

head of a pin instead of exciting contests between fundamentally

differing concepts.

The same could be said today about arguments for or against the use of FOR-

TRAN vs. C vs. JAVA vs. C++. While the latter three have significant advantages

over FORTRAN, these languages are all fundamentally based on state modifica-

tion, two of them with a nice object-oriented veneer.

Even though there is no single all-encompassing solution to programming

problems, for the present work, good integration, in Ocaml, of the following

language facilities and properties was indispensable:

� functional programming support (used almost exclusively)

� imperative programming support (used very rarely)

� expression-based language

� interactive toplevel

� garbage collection

� polymorphism

� complex data structure support – including pattern matching

� exceptions

� strong static typing

4 There are many libraries with interfaces so poorly designed as to make the library unusable.

7

� type inference

� module support

� data serialization

� C language interface

� excellent debugging facilities

� efficient generated code

The necessity of these facilities could be argued, but there is no doubt that they

lead to faster program creation, easier maintenance, fewer bugs and clearer

structure. Programming in a language missing any one of these facilities is

little better than programming in assembly language. The support for these

facilities in some common languages is summarized in Table 1.1. In the table,

the execution speeds are relative to C, as measured by some simple benchmarks

pertinent to the present problem. A feature directly available is marked with a

solid bar; the length indicates the ease of use or quality of the feature. A feature

that is available through some additional tool is marked with a circle; using

such a feature is usually not as straightforward as using a built-in equivalent.

It should be noted that usually absence of a facility is fatal; there is no practical

way to add it. Also, the presence of a feature, e.g., a C interface in JAVA, does not

imply that its use is simple.

5 C toplevels are slow, importing compiled code is tedious, and they have limited
functionality.

6 C polymorphism via typecasts is unsafe and the source of many errors

7 C++ template polymorphism is slow to compile, produces large amounts of code, and any
errors propagate after macro expansion making debugging a nightmare. Templates are a very
weak macro mechanism, and are often (ab)used as full code generators; anything done via
templates could be done more cleanly via use of, e.g., the m4 macro processor. Further, more
powerful uses of macros are very difficult in statement-based languages, while in expression-
based languages, very impressive extensions of the language are possible; see (Graham 1994).

8 Exceptions are problematic in languages without garbage collection. In C++, only proper
deallocation of the stack contents are guaranteed.

8

Table 1.1. Programming language features.

language FORTRAN C/C++ Java Common Ocaml
77 Lisp

Programming Styles
imperative
Object Oriented — Æ/
Functional — — —

Language Features
interactive toplevel — Æ5 Æ
garbage collection — Æ
polymorphism — Æ6/ Æ7 Æ
pattern matching — — — Æ
exceptions — Æ/ 8

weak static/ strong
typing weak static dynamic dynamic static
static type
checking
type inference — — — N/A
anonymous data
structures — — —
complex static
data structures —
complex dynamic
data structures —
modular programming — Æ/
data serialization — —

Other
language style statement statement statement expression expression
standard library — poor/good excellent excellent excellent
debugging facilities good good vary vary good
C interface Æ
execution speed 1.0 1.0 2.0 - 50.0 1.0 - 10.0 1.0 / 17.0

The choice of programming language must be appropriate for the problem

at hand; as can be seen from the table, FORTRAN, C and C++ are not suitable

languages for the present project. Default choices are usually bad, but seem to

recur without end. In scientific computing, the use of FORTRAN is pervasive; it

is the de facto standard. This is ironic, as FORTRAN’s inventor heavily criticizes

the imperative (or von Neumann) style of programming supported by the FOR-

TRAN 77 dialect (Backus 1978). Unfortunately, the author’s first attempt of an

algorithm implementation was done in this style — and failed.

The new features introduced in FORTRAN 90, etc., do not replace the existing

9

computational model; they merely add some features already found in other lan-

guages, e.g., C++: structured programming support, data structures, free-form

input, etc. Recently, more numerical code has been written in object-oriented

C++, under the premises of better readability and reusability. For the present

algorithm, a second implementation was written this way. Although it worked

for many test problems, there were severe shortcomings, all due to a poor choice

of language, C++9.

1.4 Summary
One purpose of the present work is the extension of sinc methods to solve

a certain class of two-dimensional elliptic boundary value problems, including

several encountered in fracture mechanics. Development of method and algo-

rithm has been guided by two representative problems. The first, a single mate-

rial with a crack along one axis, has been solved by (Sneddon 1946) and others

for the case of an infinite plate, under plane-strain or plane-stress assumptions.

The second, a bimaterial plate with a crack along the interface, was solved by

(England 1965) and (Rice and Sih 1965). These problems are described in Sections

3.1 and 3.2, respectively.

A second purpose of this work is the presentation of a general method for

solving a whole class of two-dimensional, multiple-unknown, linear elliptic first-

order systems of partial differential equations and their boundary conditions,

with or without corner and/or edge singularities, over a union of rectangles. In

fact, to the algorithm the only difference between the mentioned problems is the

number of rectangles. The sinc method of solution is described in Chapter 4, and

numerical results are presented and compared to known closed-form solutions

in Sections 5.1 and 5.2.

9 The program was nearly unreadable, due to unnecessary clutter typical of C++ and other
statically typed, rigid object-oriented languages: type and class declarations, explicit memory
handling, poor exception handling support, excessive data hiding resulting in many (superflu-
ous) accessor functions, and the underlying idea of state-based programming.

Some of these problems would not occur in dynamically-typed object-oriented programming
languages; unfortunately, dynamic typing introduces another source of problems.

10

As may be expected, this algorithm is complex; it should be no surprise that

its implementation as a computer program is even more complex. Therefore,

the third purpose of this work is to illustrate and make a strong case for the use

of modern tools from computer science in the design and practical algorithmic

implementation of a complex numerical algorithm. The importance of this

third aspect cannot be overstated. After an initial failure to produce a working

monolithic implementation of the predecessor of the present algorithm, followed

by a working but unreadable, nonextensible, nonmaintainable implementation

of the algorithm summarized in Appendix C, the importance of using proper

programming languages and techniques became painfully apparent.

CHAPTER 2

A COMPLETE EXAMPLE

The elasticity problems, mathematics, and algorithms to be described are

each complex enough to fill several chapters. It would be unreasonable to expect

a reader to understand all those details and from them reconstruct an overall

picture of this work. Therefore, this chapter presents a simpler problem, a very

short overview of the SINC-ELLPDE algorithm, and a complete walk-through

of the steps needed to obtain a set of solutions. Using these solutions and the

exact answer, the accuracy of approximated function and derivative values are

measured, and the convergence rates are compared to their theoretical bounds.

2.1 Problem formulation
This problem considered here is a single-rectangle version of sample problem

5 from the TTGU manual (Kaufman 1990): Laplace’s equation

∂2u
∂x2 +

∂2u
∂y2 = 0

on the rectangle (0, 1)� (0, 1), with Dirichlet conditions on left, top, and right

boundaries, and Neumann conditions on the bottom boundary.

For the present problem, the exact solution is taken to be the real part of

z ln(z) or

f (x, y) =
1
2

x ln(x2 + y2) � y arctan(y, x),

providing a weakly singular solution and an excellent test for the SINC-ELLPDE

method. For this solution, the partials in x and y are

fx(x, y) =
1
2

ln(x2 + y2) + 1

12

and

fy(x, y) = �arctan(y, x),

respectively.

2.2 Method of solution
The method of solution used here is based on collocation of the partial

differential equation (PDE) and the boundary conditions (BCs) on a finite union

of rectangles. The current algorithm is specialized for two-dimensional linear

elliptic systems and proceeds as follows.

Block conversion: For every rectangle, both the PDE and the BCs are written

as a collection of first-order systems; in this collection, every unknown is

replaced by a sinc series of the form

N1

∑
i =�N1

N2

∑
j =�N2

ci jωi(x)ω j(y); (2.1)

and the corresponding differential operator is applied to this new form.

Discretization: For every rectangle, the resulting collection of systems is then

discretized via evaluation of these series at the sinc collocation points

zi j = (ψ(ih1),ψ(jh2)). (2.2)

The discretizations from all rectangles are then combined into one linear

system

[L][u] = [b] (2.3)

Solution: This linear system is large and sparse, and is solved using the SU-

PERLU package presented in (Demmel, Eisenstat, Gilbert, Li, and Liu

1999).

Reconstruction: The sets of coefficients ci j, for all unknowns on all rectangles,

are then extracted from the resulting solution vector [u] and every original

unknown is approximated using a series of the form of Equation 2.1.

13

Given an unknown f and its sinc series approximation f from Equation 2.1,

the bound for the absolute error is given by

εN = c
p

N exp(�g
p

N) (2.4)

for the function, and by

∂εN = cN exp(�g
p

N) (2.5)

for first derivatives.

Most of the details of the method of solution are handled automatically by the

algorithm implementation. Usually, only the input equations, sinc and geometry

data, and an evaluation point grid need to be provided. For the present problem,

the exact solution is also needed to provide the boundary conditions’ values, and

for convergence checks.

2.2.1 Block conversion

The first-order system form is easily obtained. For consistency, define u1 � u.

By defining the additional unknowns u11 and u12 as

u11 = ∂u1/∂x (2.6)

u12 = ∂u1/∂y, (2.7)

the second-order equation becomes

∂u11/∂x + ∂u12/∂y = 0 (2.8)

The two definitions and this equation form the set of interior equations for

domain 1, the only domain (rectangle) for this problem. The top, left, and right

boundaries use the simple Dirichlet condition u1 = f (x, y); using this condition

along with Equations 2.6 and 2.7 gives the set of equations for the top, left, and

right boundaries of domain 1.

The input equations must be provided in a very specific format; for this

problem, they take the form

14

equation_specs=[

unknowns=[u1, u11, u12],

domains=[

1=[

regions=[

Interior=[

u11\ 1+~ u12\ 2=~0, u11-~ u1\ 1=~0,

u12-~ u1\ 2=~0],

Top=[

u1=~f(x, y), u11-~ u1\ 1=~0, u12-~ u1\ 2=~0],

Left=[

u1=~f(x, y), u11-~ u1\ 1=~0, u12-~ u1\ 2=~0],

Right=[

u1=~f(x, y), u11-~ u1\ 1=~0, u12-~ u1\ 2=~0],

Bottom=[

u1\ 2=~0, u11-~ u1\ 1=~0, u12-~ u1\ 2=~0]]]]]

The program also needs the exact solution f for the boundary condition. This

is provided as

let exact__ x y =

let ln = log in

let arctan = atan2 in

(((1.0/. 2.0)*. x)*. (ln (x** 2.0+. y** 2.0))-.

y*. (arctan y x));;

2.2.2 Discretization

To convert the systems of equations to discrete systems, the geometry and

sinc parameters are also needed by the program. An example for N = 12

follows.

(* Input data. *)

let pi = 3.1415926535897932385;;

let po2 = pi/.2.0;;

let dom_num_grid = [|(* Domain numbers, starting from 1. *)

[| 1 |] ;

|]

and dom_x_bounds = (* Positions of the boundaries.*)

[| 0.0 ; 1.0 |]

and dom_y_bounds = [|

1.0 ;

0.0 ;

|]

and dom_x_sinc_alpha = (* Sinc approximation parameters. *)

15

[| 1.0 |] (* Horizontal stacking in x. *)

and dom_y_sinc_alpha = [|

1.0 ; (* Vertical stacking in y. *)

|]

and dom_x_sinc_d =

[| po2 *. 0.99 |]

and dom_y_sinc_d = [|

po2 *. 0.99;

|]

and dom_x_terms = (* Series summation limits. *)

[| (12, 12); |]

and dom_y_terms = [|

(12, 12) ;

|]

and gTrue_unknowns = ["u1"] and

g1st_order_sys_unknowns = ["u11"; "u12"]

;;

2.2.3 Solution

Solution of the resulting linear system is automatic, so no input is needed

here.

2.2.4 Reconstruction and evaluation

The reconstruction of the coefficients ci j is automatic, but to be able to com-

pare a sequence of solutions, the unknowns to be evaluated must all be evaluated

at the same points. The choice of unknowns is made via the nested list

functions_to_plot=

[[domain, name, operator]=[1, u1, I],

[domain, name, operator]=[1, u11, I],

[domain, name, operator]=[1, u12, I],

[domain, name, operator]=[1, u1, D2],

[domain, name, operator]=[1, u1, D1]]

A nonuniform regular grid placing emphasis near the boundaries is the natural

choice for singular problems as well as sinc methods; the grid is specified in the

following form, shortened here for display:

full_info=[

1=[

x1=[

num_pts=57,

16

pts=[

1.5998974884153694e-03, ...

9.9840010251154132e-01],

sinc_bounds=[3.9907906932903902e-05,

9.9996009209306713e-01],

geometry_bounds=[0.0000000000000000e+00,

1.0000000000000000e+00]],

x2=[

num_pts=57,

pts=[

1.5998974884153694e-03, ...

9.9840010251154132e-01],

sinc_bounds=[3.9907906932903902e-05,

9.9996009209306713e-01],

geometry_bounds=[0.0000000000000000e+00,

1.0000000000000000e+00]]]]

This point grid is shown graphically in Figure 2.1.

2.3 Numerical results
To obtain the data for illustration of the sinc convergence rate and general

convergence behavior, the discretization, solution, and reconstruction steps are

run several times, each time varying only N.

In the display of these data, the following are needed:

� a simple global view of convergence or lack thereof;

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.1. Grid for function evaluations. This grid is 57� 57, with most points
focused near the boundaries.

17

� a good qualitative idea of the global behavior of the function approxima-

tion;

� a precise local view of the function approximation and its quality.

To meet these requirements when examining singular problems or problems

with boundary layers,1 the solution and convergence are shown in two ways.

The first shows the L1 norm of the absolute error vs. N — a standard approach.

In the second, the pointwise convergence behavior is shown using a collection

of slices in the x and y direction, i.e., graphs of f (x, yj) vs. x for several fixed

yj and graphs of f (xi, y) vs. y for several fixed xi. For identification of these

slices and understanding the function as a whole, these are accompanied by a

three-dimensional graph of the surface f (x, y)

2.3.1 Convergence in norm

The error bounds of Equations 2.4 and 2.5 are sharper for large N. As the

convergence is exponential, the vertical scale on a regular xy-graph would be

dominated by the large errors occurring for smaller N; to avoid these difficulties,

the logarithms of the error bound, e f (N), is fitted to the logarithm of the absolute

error, ln j f � f j. Using a logarithmic scale for Equation 2.4, the error bound for

function approximation becomes

e f (N) = (log(c) + log(N)/2 � g
p

N)/ log(10) (2.9)

while the derivative error, from Equation 2.5, is bounded by

e∂ f (N) = (log(c) + log(N) � g
p

N)/ log(10). (2.10)

Similar problems arise in the display of the computed and theoretical error.

On a graph, a logarithmic vertical scale gives a much more practical picture, as

1 For singular problems, or problems with boundary layers, the maximum norm would show
very large absolute errors when in fact only small regions have large errors. The p-norms of the
absolute error, 1 � p < 1, all weigh the error by area, avoiding this problem. But normwise
convergence checks give only a global indication of convergence and say nothing about the local
quality of approximation — unless the maximum norm is used.

18

the line remains almost straight and equal vertical space is used at all error mea-

surements. Additionally, a graph of log10(j f � f j) vs. N, in which the vertical

axis shows the number of accurate digits as linearly incrementing integers, is

easier to view than a graph with logarithmic vertical axis which shows the error

as floating-point number increasing by decades.

Figures 2.2, 2.3, and 2.4 show the convergence of u, ux and uy, respectively,

using the log10(j f � f j) vs. N approach. To avoid the mentioned low-N in-

accuracies, the points N < 15 were purposely ignored in the curve fits of the

theoretical error bounds.

The figures show excellent agreement between the theoretical- and computed

errors for N � 15, confirming the exponential convergence rate. Further, the

theoretical value for g is given by g =
p
πdα; with the default choices d = π/2

and α = 1, g � 2.22, which is close to the computed values of 1.89105, 2.2833,

and 2.19852, respectively.

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 0 5 10 15 20 25 30

lo
g1

0(
ab

s.
 e

rr
or

)

N

Figure 2.2. Absolute error as function of N for u. The error is in the L1 sense.
The curve is given by c

p
N exp(�g

p
N), with c = 0.168476 and g = 1.89105.

19

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0 5 10 15 20 25 30

lo
g1

0(
ab

s.
 e

rr
or

)

N

Figure 2.3. Absolute error as function of N for ux. The error is in the L1 sense.
The curve is given by cN exp(�g

p
N) , with c = 0.965548 and g = 2.2833.

-4

-3.5

-3

-2.5

-2

-1.5

-1

 0 5 10 15 20 25 30

lo
g1

0(
ab

s.
 e

rr
or

)

N

Figure 2.4. Absolute error as function of N for uy. The error is in the L1 sense.
The curve is given by cN exp(�g

p
N) , with c = 0.639411 and g = 2.19852.

20

2.3.2 Pointwise convergence

To provide some insight into the pointwise convergence behavior of the sinc

method over different areas of a given rectangle, the graphs in Figures 2.5 –

2.10 show a combination of three-dimensional surface- and two-dimensional

xy-plots. The surfaces provide both a qualitative overview and a reference

frame, and the xy-plots provide quantitative data along slices.

The graphs for every unknown are partitioned into several sets of figures.

The first set of figures consist of (1) the “Area location” graph, displaying the

current data’s location via a solid rectangle and the computational rectangle via

solid lines, the (2) “slice legend” table displaying the legends for the xy-slices,

and (3) the “Area-surface view” graph, displaying a surface view of the data.

The surface view shows the surface formed by the data; lines on the surface

and their projections onto the base show the location of the xy-slices. The base

projections are numbered for cross-reference with the xy-slices’ graphs.

The second set of figures (and others, if present) shows the detail slices’ xy-

graphs. Each slice is numbered according to its position on the area-surface-view

graph.

Some observations can be made here. Comparing Figures 2.6 and 2.8, the

approximation for u converges more quickly than those for ux, as expected from

the error bound. More interesting is the behavior of the derivative approxima-

tions near the boundaries of the rectangle. As can be seen in Figure 2.8, the

approximation is very good in the interior of the rectangle, but noticeably worse

near the boundaries. For m = 7, this near-boundary error is quite severe; for

m = 19, it seems small on the range used here (all of the rectangle). To better

illustrate this characteristic, Figure 2.9 provides a closer look at a small area

near (0, 0), using larger values of N. In Figure 2.10, it is seen that for m = 19,

good accuracy is obtained to about x = 0.03, y = 0.03, but the accuracy quickly

diminishes when moving closer to the boundary. Increasing the number of terms

from m = 19 to m = 38 again restores accuracy, showing the same drastic change

of accuracy near the boundary observed on the full rectangle (Figure 2.7) for

21

Area location Slice legend

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

exact

19 terms

7 terms

Area surface view

1–571–57
1–40

1–40
1–20

1–1

1–20

1–1

00.20.40.60.811.2
x-axis

0
0.2

0.4
0.6

0.8
1

y-axis

–1.8
–1.6
–1.4
–1.2

–1
–0.8
–0.6
–0.4
–0.2

0
0.2

z-axis

Figure 2.5. Graph displaying u as surface, the locations of slices, and the legends
of the detailed pointwise error graphs shown in Figure 2.6.

22

–0.3

–0.2

–0.1

0

0 0.5 1

1–1, y = .001600

–1.6
–1.4
–1.2

–1
–0.8
–0.6
–0.4
–0.2

0

0 0.5 1

1–1, x = .001600

–0.4

–0.2

0 0.5 1

1–20, y = .278895

–1.2

–1

–0.8

–0.6

–0.4

0 0.5 1

1–20, x = .278895

–1.2

–1

–0.8

–0.6

–0.4

0 0.5 1

1–40, y = .77024

–0.6

–0.4

–0.2

0 0.5 1

1–40, x = .77024

–1.6

–1.4

–1.2

–1

–0.8

–0.6

–0.4

0 0.5 1

1–57, y = .9984

–0.4

–0.2

0

0 0.5 1

1–57, x = .9984

Figure 2.6. Graphs of slices detailing the pointwise error in the approximation
of u. The locations of these slices are shown, by index, in Figure 2.5.

23

Area location Slice legend

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

exact

19 terms

7 terms

Area surface view

1–1

1–20

1–40

1–57
1–57

1–40

1–20
1–1

0 0.2 0.4 0.6 0.8 1 1.2
x-axis 0

0.2
0.4

0.6
0.8

1

y-axis

–4

–2

0

z-axis

Figure 2.7. Graph displaying ux as surface, the locations of slices, and the
legends of the detailed pointwise error graphs shown in Figure 2.8.

24

–12
–10

–8
–6
–4
–2

0
2
4

0 0.5 1

1–1, y = .001600

–12
–10

–8
–6
–4
–2

0
2

0 0.5 1

1–1, x = .001600

–2

0

2

4

0 0.5 1

1–20, y = .278895

–0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

1–20, x = .278895

–2

0

2

4

6

8

0 0.5 1

1–40, y = .77024

0.8

1

1.2

0 0.5 1

1–40, x = .77024

–4

–2
0
2
4
6
8

10

0 0.5 1

1–57, y = .9984

0

2

4

6

8

10

0 0.5 1

1–57, x = .9984

Figure 2.8. Graphs of slices detailing the pointwise error in the approximation
of ux. The locations of these slices are shown, by index, in Figure 2.7.

25

Area location Slice legend

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

exact

N=9, 19 terms

N=18, 37 terms

Area surface view

1–1

1–12

1–15

1–22
1–12

1–11
1–91–1

0
0.02

0.04
0.06

0.08
x-axis 0

0.1

0.2

0.3

y-axis
–5

–4

–3

–2

–1

0

z-axis

Figure 2.9. Graph displaying ux as surface, the locations of slices, and the
legends of the detailed pointwise error graphs shown in Figure 2.8.

26

–1.8

–1.6

–1.4

0.02 0.04 0.06

1–12, y = .073300

–1.2

–1

–0.8

0.02 0.04 0.06

1–15, y = .156059

–12

–10

–8

–6

–4

–2

0.02 0.04 0.06

1–1, y = .001600

–0.3

–0.2

–0.1

0.02 0.04 0.06

1–22, y = .328029

–2

–1

0 0.1 0.2 0.3

1–11, x = .039675

–1.6
–1.4
–1.2

–1
–0.8
–0.6
–0.4
–0.2

0 0.1 0.2 0.3

1–12, x = .073300

–12

–10

–8

–6

–4

–2

0

0 0.1 0.2 0.3

1–1, x = .001600

–3

–2

–1

0 0.1 0.2 0.3

1–9, x = .012329

Figure 2.10. Graphs of slices detailing the pointwise error in the approximation
of ux. The locations of these slices are shown, by index, in Figure 2.9.

27

m = 7 and m = 19. This behavior is due to the sinc basis functions, and only

occurs for derivative approximations; function approximations are uniformly

accurate.

Results for uy are similar and thus omitted.

CHAPTER 3

FORMULATION OF PROBLEMS

One basic idea in fracture mechanics is that the presence of microscopic

cracks in materials weakens the material so that material failure occurs at much

lower tensile loads than would be expected from other measured material prop-

erties. The theory put forth by (Griffith 1924) suggests that the bounding surfaces

of solids have surface tension analogous to liquids, and when the strain energy

of the material near the crack tip exceeds the potential energy of the surface

tension, the crack expands.

The simplest two-dimensional model problems for this type of failure are

rectangular plates containing a single crack parallel to one axis. In a proper

physical problem, the material plate would be loaded at either the top or bottom

boundary and held at the other. In linear fracture mechanics, such problems

are usually split into two parts. The particular solution is the solution to the

problem of a plate without any crack, loaded and held at the boundaries. The

complementary solution is the solution of a plate containing a crack under

hydrostatic pressure from the inside, with no loads on the outer boundaries.

Once the complimentary solution is obtained, many problems can be solved

through the use of different particular solutions.

Two prototypical fracture mechanics problems are re-visited here, a crack in

a single-material plate, and a crack between two bonded plates of dissimilar

materials. Both are formulated as complimentary problems to allow better

comparison to known exact solutions.

29

3.1 Single-material crack
The geometry of the first model problem is shown in Figure 3.1: a finite,

rectangular single-materical plate containing a crack along the horizontal axis.

Because of the symmetry of this problem, only the two grey rectangles, labeled

1 and 2, need to be considered numerically. Corresponding to this geometry we

have the boundary conditions shown in Figure 3.2, using Einstein summation

notation throughout to simplify notation. On the rectangles, the Navier equa-

tions have to be satisfied; these are not shown explicitly in the picture, but are

derived later.

Referring to Figure 3.2, the boundaries with physically meaningful condi-

tions are the top and right boundaries, as well as the bottom boundary of

rectangle 1. On the top and right boundaries, the displacement (v1, v2) is zero,

while on the bottom boundary of rectangle 1 there is a uniform upward pressure

of magnitude σ . This is expressed in standard tensor form: a surface normal

vector n is given by ni, i = 1 . . . 3, and the traction vector T is expressed in terms

of the unit normal vector n and the stress tensor τ .

The remaining boundary conditions have nonphysical meanings. The left

boundary of rectangle 1 has a symmetry condition: no horizontal displacement

(v1 = 0) and vertical displacement symmetric about the vertical axis (
∂v2

∂θ1 =

0). The bottom boundary of rectangle 2 has another symmetry condition: no

vertical displacement (v2 = 0) and horizontal displacement symmetric about

the horizontal axis (
∂v1

∂θ2 = 0). The shared center boundary has a mathematical

continuity requirement and the equations in Figure 3.2 have to be interpreted as

sums. Thus, these conditions are to be read as

1v1 � 2v1 = 0 (3.1)

1v2 � 2v2 = 0 (3.2)
∂1v1

∂θ1 �
∂2v1

∂θ1 = 0 (3.3)

∂1v2

∂θ1 �
∂2v2

∂θ1 = 0 (3.4)

(3.5)

30

wc

h

1 2

Figure 3.1. Geometry of the single-material crack problem. By symmetry, only
the rectangles outlined in grey are needed for numerics; the two computational
domains are needed to handle the change in boundary condition from crack sur-
face to the top/bottom material interface. See Figure 3.2 for detailed boundary
conditions.

v1 = 0
v2 = 0

∂v2

∂θ1 = 0
v1 = 0

n1 = 0
n2 = �1
n3 = 0
(τ i jni) = (0, : σ)

∂v1

∂θ1 = 0
∂v2

∂θ1 = 0

v1 = 0
v2 = 0

v1 = 0
v2 = 0

v1 = 0
v2 = 0

(�v1) = 0
(�v2) = 0

(� ∂v1

∂θ1) = 0
(� ∂v2

∂θ1) = 0

∂v1

∂θ2 = 0
v2 = 0

Figure 3.2. The boundary conditions of the top-right part of the single-material
crack problem. By horizontal and vertical symmetry, only these two rectangles
are needed. These boundary conditions describe a plate fixed along its outside
boundary, with uniform pressure applied to the crack surface. See Figure 3.1 for
the full geometry. This picture is automatically generated along with input to
the numerical solver. Variables of the form :v are global.

31

where leading superscripts indicate the rectangle.

3.2 Bimaterial crack
The geometry of the second model problem is shown in Figure 3.3: two

bonded, finite, rectangular plates with a crack running along their interface.

Because of the symmetry of this problem, only the four numbered rectangles,

labeled 1 through 4, need to be considered numerically. Corresponding to

this geometry we have the boundary conditions shown in Figure 3.4; on the

rectangles, the Navier equations have to be satisfied, and these are derived in

Section 3.3.

The boundaries with physically-meaningful conditions are the top, right,

and bottom boundaries, as well as the bottom boundary of rectangle 1 and the

top boundary of rectangle 4. On the top, right, and bottom boundaries, the

displacement (v1, v2) is zero, while on the bottom boundary of rectangle 1 there is

a uniform normal (upward) pressure of magnitude σ , and on the top boundary

of rectangle 4 there is a uniform normal (downward) pressure of magnitude σ .

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����
����
����
����
����
����

����
����
����
����
����
����

h

h

wc

1 2

34

Figure 3.3. Geometry of the bimaterial problem. By symmetry, only the labeled
domains are needed for numerics; the 4 computational domains are needed
to handle the change in boundary conditions and material parameters. See
Figure 3.4 for the boundary conditions.

32

v1 = 0
v2 = 0

∂v2

∂θ1 = 0
v1 = 0

n1 = 0
n2 = �1
n3 = 0
(τ i jni) = (0, : σ)

∂v1

∂θ1 = 0
∂v2

∂θ1 = 0

v1 = 0
v2 = 0

v1 = 0
v2 = 0

v1 = 0
v2 = 0

(�v1) = 0
(�v2) = 0

(� ∂v1

∂θ1) = 0

(� ∂v2

∂θ1) = 0

n1 = 0
n2 = �1
n3 = 0
(τ i jni) = (0, 0)

v1 = 0
v2 = 0

n1 = 0
n2 = 1
n3 = 0
(τ i jni) = (0, 0)

(�v1) = 0
(�v2) = 0

v1 = 0
v2 = 0

(�v1) = 0
(�v2) = 0

(� ∂v1

∂θ1) = 0

(� ∂v2

∂θ1) = 0

v1 = 0
v2 = 0

n1 = 0
n2 = 1
n3 = 0
(τ i jni) = (0, (� : σ))

∂v2

∂θ1 = 0
v1 = 0

v1 = 0
v2 = 0

∂v1

∂θ1 = 0
∂v2

∂θ1 = 0

v1 = 0
v2 = 0

Figure 3.4. Boundary conditions for the bimaterial crack problem. By horizontal
symmetry, only these four rectangles are needed. These boundary conditions
describe a plate fixed along its outside boundary, with uniform pressure applied
to the crack surface. See Figure 3.3 for the full geometry. This picture is automat-
ically generated from input to the numerical solver. Variables of the form :v are
global.

33

Again, these pressures are expressed in standard tensor form: a surface normal

vector n is given by ni, i = 1 . . . 3, and the traction vector T is expressed in terms

of the unit normal vector n and the stress tensor τ .

The remaining boundary conditions have other meanings, analogous to the

single-crack problem. The left boundary (rectangles 1 and 4) again has a sym-

metry condition, and the vertical boundaries in the center again have a math-

ematical continuity requirement where the equations in Figure 3.4 have to be

interpreted as sums. The bottom boundary of rectangle 2 and the top boundary

of rectangle 4 fulfill the mechanical continuity requirements. Continuity of the

displacement field is ensured through the condition 1vi � 2vi = 0, i = 1 . . . 2,

while continuity of the stress field is ensured through the condition 1Ti � 2Ti =

0, i = 1 . . . 2 on the traction vector T.

3.3 General elasticity equations
The isotropic elasticity equations for a general coordinate system are shown

next. Full derivations of these equations, as well as those for more general

formulations, are found in (Green and Zerna 1992).

To provide a fully-specified problem for the numerical solver, complete

expressions for stresses and the Navier equations are needed in terms of the

displacements. These expressions are given in many books for a rectangular

Cartesian coordinate system (RCC), and this is in fact the system used here for

the two crack problems.

For at least three reasons, however, the general coordinate equations are used

here. First, problems may be defined on nonrectangular domains. The SINC-

ELLPDE numerical method works on rectangles. Therefore, problems defined

on domains bounded by analytical curves must be mapped to a rectangle, and

this in turn requires fully general equations. Second, alternative formulations

of crack problems may yield better numerical results. The usual modern for-

mulations of crack problems use simple coordinate systems, either to keep the

equations simple when obtaining closed-form solutions, or to satisfy restrictions

34

of the numerical method. This is a mistake for the sinc numerical methods which

do not distinguish between simple and complex input equations and work on

any region mapped to a rectangle, but which are sensitive to the reentrant

corners created through the use of rectangles to describe a crack. Third, it is

important to emphasize that any valid first-order system can be solved. We

therefore provide the equations in a form easily processed by machine, but not

usually encountered in the literature.

The original problem solved by (Inglis 1913) involves two concentric ellipses,

and the crack as used by (Griffith 1924) is the limiting case using an inner ellipse

of zero eccentricity. The SINC-ELLPDE handles boundary layers very well; an

elliptical hole formulation with an extremely flat ellipse should yield excellent

numerical results. A (short) future project will be to verify this hypothesis.

All input equations for the numerical core are derived from their isotropic

tensor forms; basic equations required for expansion are shown in the following,

extracted and simplified from the symbolic manipulation program which uses

them. This full programmatic implementation is shown in Appendix A.

In general coordinate systems, a distinction is made between two ways of

writing one quantity. The covariant base vectors are tangent to the coordinate

curves, while the contravariant base vectors are orthogonal to the covariant

vectors. Every tensor can be written using covariant components, indicated

by the use of subscripts, or using contravariant components, indicated by the

use of superscripts. To simplify notation, Einstein summation notation is used

throughout. Thus, indices repeated in terms of a product are implicitly summed

over unless otherwise indicated.

3.3.1 Coordinate system transformation

In the following, the xi coordinate system is assumed to be rectangular Carte-

sian, so xi = xi. The elasticity equations are written for the θi system, which can

be an arbitrary coordinate system for which the transformation to the xi system

is given by

xi = xi(θ1,θ2,θ3)

35

3.3.2 Metric tensors

Once the coordinate transformation is defined, certain quantities are needed

repeatedly in transformation. The first of these is the metric tensor, given by

gi j =
∂xm

∂θi

∂xm

∂θ j .

3.3.3 Christoffel symbols

The simple partial derivatives in rectangular Cartesian coordinates become

covariant derivatives in general systems. In the computation of covariant deriva-

tives, Christoffel symbols are needed. They are given by"
i, j k

#
=

1
2

�
∂gi j

∂θk +
∂gik

∂θ j �
∂gjk

∂θi

�

and �
i

j k

�
= gil

"
l, j k

#

3.3.4 Covariant derivatives

For the Navier equations, only the derivatives for the vi and Ti
k components

are needed. These are given by

vr
i =

∂vr

∂θi +
n r

s i

o
vs

and

vi
kl =

∂vi
k

∂θl +

�
i

m l

�
vm

k �
n m

k l

o
vi

m

3.3.5 Navier equations

Using the previously defined quantities, the Navier equations without body-

force terms can be written as

(1 � 2ν)gs jvi
s j + gisv j

js = 0 for i = 1 . . . 3 (3.6)

3.3.6 Displacement boundary conditions

The specification of displacement boundary conditions is slightly more in-

volved in general coordinates than in a rectangular Cartesian system. The

36

physical displacement components are usually the known ones (D
i
), and these

must first be converted to their tensor equivalents, Di, via the formula

Di =
Di

p
gii

Once the displacement tensor components Di are known, they can be directly

used in boundary conditions via the equation

Di = vi

where v is the unknown displacement, D the specified. After a displacement

solution in tensor form is obtained (Di), the physical displacement components

are typically needed again for viewing. The (trivial) inverse is therefore also

useful:

Di =
p

giiDi

3.3.7 Traction boundary conditions

The specification of traction boundary conditions is slightly more involved

in general coordinates than in a rectangular Cartesian system. First, the unit

normal vector to the boundary is needed. It should be straightforward to find a

normal vector, and using the equation

ni =
nip

gk jnknj

the unit vector’s components are calculated from the n vector’s components.

Secondly, the physical (applied) traction will typically be known, and this is

converted to the proper traction vector via

Ti =
Ti

p
gii

Using these quantities, traction boundary conditions can now be specified via

T j = τ i jni

37

where Ti are the proper tensor components of the specified boundary conditions,

n is the normal vector to the boundary, here expressed via covariant components

given by

ni = gi jn j

and the connection to the final unknowns vi is given by the stress-displacement

conditions

τ i j = µ(gjsvi
s + gisv j

s +
2ν

(1 � 2ν)
gi jvs

s)

3.4 Expanded elasticity equations
For the present problems, only a rectangular Cartesian system is needed; the

mapping is the simplest possible,

xi = θi

The final expanded forms of the equations shown in Section 3.3 follow. These

are extracted and simplified versions of the full program’s output shown in

Appendix B.

3.4.1 Metric tensors

gi j = δi j =

�
1 if i = j
0 if i 6= j

(3.7)

(3.8)gi j = δi j

3.4.2 Christoffel symbols

(3.9)

"
i, j k

#
= 0

(3.10)
�

i
j k

�
= 0

38

3.4.3 The full Navier equations

(2 � 2ν)
∂2u1

(∂θ1)2 + (1 � 2ν)
∂2u1

(∂θ2)2 + (1 � 2ν)
∂2u1

(∂θ3)2 +
∂2u3

∂θ1∂θ3 +
∂2u2

∂θ1∂θ2 = 0

(1 � 2ν)
∂2u2

(∂θ1)2 + (2 � 2ν)
∂2u2

(∂θ2)2 + (1 � 2ν)
∂2u2

(∂θ3)2+

∂2u3

∂θ2∂θ3 +
∂2u1

∂θ1∂θ2 = 0 (3.11)

(1 � 2ν)
∂2u3

(∂θ1)2 + (1 � 2ν)
∂2u3

(∂θ2)2 + (2 � 2ν)
∂2u3

(∂θ3)2 +
∂2u2

∂θ2∂θ3 +
∂2u1

∂θ1∂θ3 = 0

3.4.4 The full stress tensor

The components of τ i j are

[1, 2] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

[2, 2] =
2µ (�1 + ν)

�1 + 2ν
∂u2

∂θ2 �
2µν

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u3

∂θ3

[1, 3] = µ
∂u1

∂θ3 + µ
∂u3

∂θ1

[1, 1] =
2µ (�1 + ν)

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u2

∂θ2 �
2µν

�1 + 2ν
∂u3

∂θ3

[3, 2] = µ
∂u2

∂θ3 + µ
∂u3

∂θ2

[2, 3] = µ
∂u2

∂θ3 + µ
∂u3

∂θ2

[2, 1] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

[3, 3] =
2µ (�1 + ν)

�1 + 2ν
∂u3

∂θ3 �
2µν

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u2

∂θ2

[3, 1] = µ
∂u1

∂θ3 + µ
∂u3

∂θ1

(3.12)

39

3.4.5 Two-dimensional Navier equations

The full three-dimensional equations were used in the preceding sections for

simplicity and generality, but the two-dimensional equations are needed for the

numerical algorithm. For planar elasticity problems, the two standard choices

are plane-stress and plane-strain; here, plane-strain assumptions are used for

simplicity. Using these assumptions and removing all z direction components

(θ3), the following are the interior equations in all domains.

(�2ν + 2)
∂2u1

(∂θ1)2 + (1 � 2ν)
∂2u1

(∂θ2)2 +
∂2u2

∂θ1∂θ2 = 0

(1 � 2ν)
∂2u2

(∂θ1)2 + (�2ν + 2)
∂2u2

(∂θ2)2 +
∂2u1

∂θ1∂θ2 = 0
(3.13)

3.4.6 Two-dimensional stress tensor

Again using plane-strain assumptions, the components of the two-

dimensional τ i j are given by

[1, 2] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

[2, 2] =
�2µ (1 � ν)
�1 + 2ν

∂u2

∂θ2 �
2µν

�1 + 2ν
∂u1

∂θ1

[1, 1] =
2µ (�1 + ν)

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u2

∂θ2

[2, 1] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

(3.14)

3.5 Mathematical view
From a mathematical point of view, both crack problems are linear second-

order elliptic systems in two unknowns defined on a union of rectangles, with

analytical (constant, in fact) coefficients on each rectangle. As such, both can

be easily converted to first-order systems and handled by the SINC-ELLPDE

algorithm. Specifically, the traction and displacement boundary conditions are

already in proper form, while the Navier equations are rewritten as1

1 For historical reasons, the second-order displacement formulation of the Navier equations is
used here. This is converted to a first-order system through the introduction of new unknowns.

40

(�2ν + 2)
∂u1,1

∂θ1 + (1 � 2ν)
∂u1,2

∂θ2 +
∂u2,1

∂θ2 = 0,

(1 � 2ν)
∂u2,1

∂θ1 + (�2ν + 2)
∂u2,2

∂θ2 +
∂u1,1

∂θ2 = 0

∂u1

∂θ1 � u1,1 = 0

∂u1

∂θ2 � u1,2 = 0

∂u2

∂θ1 � u2,1 = 0

∂u2

∂θ2 � u2,2 = 0

(3.15)

It is important to note that anisotropic materials and nonrectangular coordi-

nate systems can be used by the SINC-ELLPDE algorithm without problems, but

the input equations would be substantially more complex. Problems of this type,

as solved in (Clements 1971; Li and Nemat-Nasser 1990) may be addressed in the

future.

CHAPTER 4

METHOD OF SOLUTION

The class of problems considered here are two-dimensional linear elliptic

first-order systems of partial differential equations and their boundary condi-

tions, with or without corner and/or edge singularities, defined on a finite

connected union of rectangles.

On each rectangle, the unknowns’ coefficients and the solution are assumed

to be smooth; using multiple rectangles, piecewise smooth systems can be

solved.

The method of solution is based on the collocation of a sinc-series representa-

tion of the first-order systems, and is henceforth referred to as the SINC-ELLPDE

method. This method is based on one-dimensional results proven in (Stenger

1993a; Morlet et al. 1997), extended for the present class of problems; this

extension involves significant modifications and simplifications of the notation

to allow concise expression of the method.

The approaches in (Morlet et al. 1997) and in Section 7.2.6 of (Stenger 1993a)

for handling nonhomogeneous derivative boundary conditions involve manual

selection of appropriate basis functions and splines, and lead to a very compli-

cated two-dimensional algorithm, described in Appendix C. An implementation

of that algorithm was written and found to be too complex for practical use: it

required manually selecting the appropriate basis functions for two directions of

every unknown in every rectangle. The algorithm also had two defects: the

solutions of the equations had to have bounded derivatives, which excludes

crack problems, and the algorithm produced a large, dense matrix.

Here, a simplified approach is used. Mathematical background information

is provided in three sections. Section 4.1 presents definitions relevant to the

42

current algorithm; needed theorems are in Section 4.2. These mostly follow

the concise summary of basic one-dimensional sinc properties found in (Stenger

1993c). The practical use of these results for sinc collocation is derived for a single

elliptic operator and a single unknown in one dimension in Section 4.3. The

notational extensions needed for multiple unknowns/operators are shown in

Section 4.4, followed by the main topic of this chapter, the general SINC-ELLPDE

method, in Section 4.5.

The steps of the method are detailed in Sections 4.5.1 through 4.5.5, accompa-

nied by a complete, relatively simple abstract problem. This problem is similar to

that of Chapter 2, but is presented to illustrate the method, not its use in practice.

4.1 Basic definitions
Definition 4.1 (Dd,D,φ,ψ) Pick d > 0 and define the strip Dd by

Dd = fw 2 C :j=wj < dg (4.1)

Given a region D containing a contour � in C with endpoints a and b on the boundary

of D, φ is a one-to-one conformal map with the properties φ : � ! R, φ(x) ! �1 as

x ! a,φ(x)!1 as x ! b andφ : D ! Dd

Defineψ � φ�1; then the region D is the image

D = ψ(Dd) (4.2)

Figure 4.1 shows a typical example for the functions φ(x) = ln(x� a)/(b � x)

andψ(z) = (exp(z)b + a)/(exp(z)+ 1) using values d = π/3, a = 1, and b = 3.

These functions are also the ones used in the remainder of this work. Many other

maps are available; see (Stenger 1993a), Section 1.7.

Definition 4.2 (ρ, Lα) For the region Sd = fz 2 C : j arg zj < dg , the map ρ : D !
Sd is defined as

ρ(z) = eφ(z) (4.3)

43

-1.5

-1

-0.5

0

0.5

1

1.5

-15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 1.5 2 2.5 3

d

φ

DdD

ψ

d

Figure 4.1. A part of the strip-shaped infinite region Dd and its image D, for
φ(x) = ln(x� a)/(b� x), ψ(z) = (exp(z)b + a)/(exp(z) + 1), d = π/3, a = 1,
b = 3. The points kh : k 2 Z are mapped to [a, b].

44

Notice that for z 2 R, ρ : � ! [0,1). Givenα > 0, d > 0 and a region D, denote by

Lα the family of all functions F(z) analytic and uniformly bounded inD so that 8z 2 D,

jF(z)j � Cjρ(z)jα
j1 + ρ(z)j2α (4.4)

for some C > 0.

On R usingφ(z) = z, this criterion is

jF(z)j � Cjezjα
j1 + ezj2α (4.5)

so as z ! 1, jF(z)j � C1je�αzj and as z ! �1, jF(z)j � C2jeαzj and Lα is the

class of exponentially decaying functions.

On [a, b] usingφ(z) = ln(z� a)/(b� z),

jF(z)j � C
���� z � a
b � z

����
α����b � z

b � a

����
2α

(4.6)

so as z ! a+, jF(z)j � C1jz� ajα and as z ! b�, jF(z)j � C2jb� zjα , so algebraic

decay near the endpoints is required of Lα functions in this case.

Definition 4.3 (Mα) Letα 2 (0, 1] and d 2 (0, π). Define f as

f = g �
�
(b � z)g(a) + (z � a)g(b)

b � a

�
(4.7)

Then Mα(D) denotes the family of functions g analytic and uniformly bounded in D
such that f 2 Lα(D)

Functions in the Mα(D) class may have nonzero values at the endpoints, and

this class is used in the remainder of this work.

Next are the basic elements used for approximation on R.

Definition 4.4 (Approximation on R) The sinc function is defined by

sinc(x) =
sin(π x)
π x

(4.8)

For a given N > 0, the jth sinc point is given by

zj = φ�1(jh) = ψ(jh) (4.9)

45

where the sinc spacing parameter is

h =

r
πd
αN

(4.10)

Given N > 0 the kth sinc series term on R is defined by

ηk(x) =

8>>>>>><
>>>>>>:

tL(x) �
N

∑
j=�N+1

tL(jh)S(j, x) k = �N

S(k, x) k 2 �N + 1..N � 1

tR(x) �
N�1

∑
j=�N

tR(jh)S(j, x) k = N

(4.11)

with

tL(x) =
1

1 + ex (4.12)

S(j, x) = sinc
�

x � jh
h

�
(4.13)

tR(x) =
ex

1 + ex (4.14)

These definitions are used on a contour � via the appropriate conformal map φ

and the new functionsωk(z), defined as follows.

Definition 4.5 (Approximation on �) The kth sinc series term on � is defined by

ωk(z) = ηk(φ(z)).

4.2 Known one-dimensional properties of sinc series
As mentioned in the introduction, sinc series can be used for numerical

approximation of many calculus operations. Here, those theorems relevant for

collocation of partial differential equations are repeated. Full proofs can be found

in (Stenger 1993a). In the following, the norm k � k is the maximum norm on �,

i.e., for f (z) 2 �,

k f (z)k = max
z2�

j f (z)j (4.15)

and the (2N + 1)-term approximation error is given by

εN =
p

Ne�
p
πdαN (4.16)

46

Theorem 4.6 (Interpolation) If f 2 Mα(D), then there exists a constant C > 0,

independent of N, s.t.

k f �
N

∑
j =�N

f (z j)ω jk � CεN (4.17)

Theorem 4.7 (Differentiation) Let f 2 Mα(D0), let µ be any nonnegative integer

and if µ > 1, let (1/φ0)0 be uniformly bounded in D0. Then there exists a constant Cµ

independent of N such that

�

h
φ0

�(k)
"

f �
N

∑
j=�N

f (z j)ω j

#(k)

 � CµεN (4.18)

for k = 0,1, . . . , µ.

Theorem 4.8 (Collocation) Let f 2 Mα(D). Let c = (c�N , . . . , cN)T be a complex

vector such that
N

∑
j=�N

j f (z j) � c jj2
!1/2

< δ (4.19)

where δ > 0. Then

k f �
N

∑
j =�N

cjω jk < CεN + δ, (4.20)

with C as in Equation 4.17.

4.3 Per-unknown errors in collocation
This section combines the previously shown results and presents a short

overview of the general steps used in sinc-collocation.

Given an invertible linear elliptic differential operator L and the linear system

Lu = f , (4.21)

define the vector operator [u] as [u] = (u(z�N), . . . , u(zN))T and the matrix [L] as

[L]i j = (Lω j)(zi) (4.22)

Any stable solution method then obtains a vector c satisfying

[L]c = [f] + [εu] (4.23)

47

with εu proportional to the unit-roundoff error. Define u = [u]. From Theo-

rem 4.7, obtain

[Lu] = [L]u + [εN] (4.24)

Now,

[L](u � c) = [L]u � ([f] + [εu]) (4.25)

and therefore

ku � ck �

[L]�1

8><
>:

[L]u � [Lu]

 +

[Lu] � [f]

 +

[εu]

9>=
>; (4.26)

=

[L]�1

8><
>:

[εN]

 +

[0]

 +

[εu]

9>=
>;. (4.27)

As long as [L] is invertible, u 2 Mα, and k[L]�1k is sufficiently small, the

computed vector c satisfies Theorem 4.8 and the solution u can be uniformly

computed via

u �
N

∑
j=�N

cjω j, (4.28)

with error bound given by Equation 4.20.

In Lemma 7.2.5, Section 7.2 of (Stenger 1993a), the bound k[L]�1k = O(N2)

is derived for a second-order linear boundary-value problem under suitable

conditions on the coefficients.

4.4 Components and notation for general problems
By considering more general L, u and f , the derivation of Section 4.3 directly

extends to higher dimensions. It also extends to multiple-operator/unknown

systems, at the cost of introducing one εN-size error per unknown.

Given a linear elliptic system with at least one unknown and one domain,

e.g., the boundary conditions of Figure 3.2 together with the main equations

(3.13), one can obtain the equivalent matrix formulation as follows.

48

To uniquely label unknowns (and their series terms), domains, equations

and regions (and their associated collocation points), introduce the following

notation.

Definition 4.9 (Index Notation) Assuming unknowns and directions are indexed,

the notation

ij j, k (4.29)

denotes unknown i in domain j and direction k. Usually, i or k will be absent. Similarly,

the notation

i ^ R (4.30)

denotes equation i in region R

Using this notation, the two-dimensional collocation points, basis functions,

operators and right-hand sides are fully described by the following definitions.

Since a given problem consists of main equations and boundary conditions,

it is natural to partition its discrete version, specified by the collocation points,

into analogous regions. This gives rise to the following definition.

Definition 4.10 (Collocation Points and Regions) The collocation points are given

by zj j, the array of points for the jth domain with entries

zj jkl = ψj j,x(khj j,x),ψj j,y(lhj j,y) (4.31)

These collocation points are partitioned into regions analogous to the equations and

boundary conditions of the problem class. On every rectangular domain, we thus have

the regions top (T), right (R), left (L), bottom (B), and interior (I).

To handle multiple domains, we additionally introduce the regions top-, right-,

bottom- and left-overlap (To, Ro, Bo and Lo, respectively). Their locations are identical

to the regions T, R, B and L, respectively, but their meaning and use are different.

The precise indices of the point regions are shown in Table 4.1, and a graphical

illustration in Figure 4.2.

The basis functions are derived as a simple tensor product.

49

Table 4.1. Points corresponding to regions, by index. There are nine logical
point regions of interest for two-dimensional sinc collocation, corresponding to
five geometric regions of a rectangle: the top, right, bottom and left boundaries,
and the interior. For a pictorial view, see Figure 4.2.

Region Points zj jkl

T,To k = �N j j,x + 1, . . . , N j j,x � 1 l = Nj j,y

R,Ro k = Nj j,x l = �N j j,y + 1, . . . , N j j,y � 1
B,Bo k = �N j j,x + 1, . . . , N j j,x � 1 l = �N j j,y

L, Lo k = �N j j,x l = �N j j,y + 1, . . . , N j j,y � 1
I All remaining points

�Nj j,x Nj j,x

Nj j,y

�Nj j,y

R,Ro

B,Bo

L, Lo

T,To

Figure 4.2. A picture illustrating the correspondence of points and logical col-
location regions of any rectangle j. The enclosed points belong to each of the
indicated regions; all other points, including the four corner points, belong to
the interior region I. For the precise range of indices, see Table 4.1.

50

Definition 4.11 (Basis Functions) The ith unknown in the jth domain is given by

uij j(x, y) =
Nj j,x

∑
k=�Nj j,x

Nj j,y

∑
l=�Nj j,y

cij j
klω

j j,x
k (x)ωj j,y

l (y) (4.32)

whereωj j,x
k is the kth ω in the x direction in domain j.

The given equations and boundary conditions are viewed as a collection of

operators acting on the unknowns, with given right-hand sides.

Definition 4.12 (Operators) The operator for the ith unknown in the jth equation for

point-region R of rectangle k is written as

Lijk
j^R (4.33)

Definition 4.13 (Right-hand functions) The right-hand function for the jth equation

of region R in domain k is written as

f jkj^R (4.34)

4.5 Method for general problems
Using these definitions, all equations and boundary conditions of a given

problem are combined to form a single large linear system which is then dis-

cretized; the resulting matrix is solved in one step. The solution of the linear

system is obtained via a standard linear system solver, and the individual un-

knowns’ coefficients extracted. Approximations to the individual unknowns

(and their derivatives) can then be computed. This can be shown simply as a

diagram:
PDE/BC ui

Lu = f [u]

[L][u] = [f]

block conversion

discretization solution

reconstruction

(4.35)

51

The transformation algorithms are the topic of Chapter 6 and are not mentioned

further here. In the remainder, the original PDE/BC will be referred to as the

PDE system, the equation Lu = f as the block system, the equation [L][u] = [f]

as the discrete block system, [u] as the discrete approximation and the ui as the

smooth approximations. The focus of this chapter is on these stages of the SINC-

ELLPDE method:

PDE system The complete, original set of equations to be solved is referred to

as the PDE system. This includes the main equations and all boundary

conditions, written in a very precise format. By choosing appropriate

notation for individual operators and unknowns, this format enforces

proper structure and allows straightforward identification of the blocks

constituting the block system. This form shows all differential operators

and unknowns, but has no block structure.

block system The entire PDE system is rewritten in the continuous linear oper-

ator form Lu = f . In this form, only matrix blocks remain; all differential

operators are contained in the blocks, and all sums are implied by the

blocks’ positions in the operator L.

discrete block system Using Theorem 4.7, the block system can be discretized

to yield the discrete block system [L][u] = [f]. This incurs an error of O(εN)

for every block.

discrete approximation Solution of the discrete block system yields the vector

[u]; from Section 4.3, this vector provides good approximate values of u at

the sinc points. The error introduced here is determined by the accuracy of

the linear system solution, which is determined by the interaction between

the individual blocks of [L]. No rigorous derivation of the errors intro-

duced in this step exists yet; for single-unknown, two-domain problems

coupled in the same manner as the present problems, an O(n4εN) error is

derived in (Morlet, Lybeck, and Bowers 1994); this is overly pessimistic,

52

and in practice an O(n1/2εN) error is observed. Generally, accuracy of the

linear system solution is limited by the conditioning of the matrix [L], and

this conditioning is easily checked by experiment.1

smooth approximation Via Theorem 4.8, the discrete approximation provides

the smooth approximation u at any point inside the rectangle, introducing

another O(εN) error per unknown.

The precise errors accumulated in the solution of a problem are specific to

that problem, but the per-unknown interpolation- and collocation errors are

always of the same order, as is the error of the solution of the linear system.

Because of this, and given the special structure of the systems dealt with, a

simple example illustrating the combined errors is sufficient to illustrate how

error bounds can be derived for any other system. The following sections use a

generic Poisson’s equation to illustrate the steps of the method.

4.5.1 PDE system

Borrowing the concept of BNF grammars2 from computer science allows a

very precise specification of allowable equation formats. This format provides

a common syntactic framework for all problems solvable by the SINC-ELLPDE

algorithm. It also clearly identifies all parts of a system of equations, and leads

directly to the operator-unknown format used in the following discussions.

It should be noted that this format restriction is purely syntactic; it is quite

possible to specify a hyperbolic system using it, which will typically result in

a singular matrix [L]; attempts to solve an incompletely-specified problem will

usually fail in the same way.

1 The reciprocal condition number was found to be in the range 10�8 – 10�12 for the problems
considered here; this is well above the unit-roundoff error for IEEE double precision, � 2.22e�
16.

2 The full concepts and theory of parsing are discussed at length in (Aho, Sethi, and Ullman
1986), while the practical use of lexing and parsing tools is described in (Levine, Mason, and
Brown 1992). Complete examples are also found in (Kernighan and Pike 1984).

53

The BNF grammar for the problems solvable by the current method (and

problems not solvable by it) is shown in Figure 4.3. These rules are derived as

follows.

As the systems considered here are linear, every operator has the<expr> syn-

tax shown in Figure 4.3: one algebraic expression multiplying one unknown or

derivative thereof. Of course, every equation can have multiple operators acting

on one or more unknowns; hence a sum or difference of coefficient-operator-

nonterminals: <bar>

terminals: bar

Literals: bar

5 Lists: [list <of> items]

one or more: +

zero or one: ?

zero or more: *

groups: f g
10 alternation: |

<struct> ::= equation_specs = [<specs> <specs>]

<specs> ::= unknowns = [SYMBOL+] | domains = [<domain>+]

15

<domain> ::= INT = [regions = [<region>+]]

<region> ::= f Interior

| Top | TopOL

20 | Left | LeftOL

| Bottom | BottomOL

| Right | RightOL g = [<equation>+]

<equation> ::= <expr>
.
= <plain-expr>

25

<expr> ::= f<plain-expr>
g? SYMBOL fn INTg? ff�|	g <expr>g*

<plain-expr> ::= f-|+g? <prod-expr> ff+|-g <plain-expr>g*

30 <prod-expr> ::= <pow-expr> ff*|/g <prod-expr>g*

<pow-expr> ::= <elem-expr> ff**|^g <pow-expr>g*

<elem-expr> ::= FLOAT | INT | SYMBOL | <function-call> | <indexed-access>

Figure 4.3. A BNF grammar for the equation input format. The key to
automatic input equation conversions are the <domain>, <region>, <equation>
and <expr> rules. The rules for <plain-expr> are standard expression syntax.

54

unknown products (arguments to � or) is allowed. After this identification

of operators, only identification of equation, region and domain remains. This is

accomplished via the rules <equation>, <region> and <domain>, respectively.

The key to obtaining an exactly-specified structure is to make distinctions

(1) between regular multiplication (*) and the multiplication of a coefficient

and an unknown-operator term (
), and (2) between regular addition (+) and

addition of operator-unknown terms via �. Also, the operators
 and n are not

commutative, further clarifying structure.

As an illustration, consider the Laplace equation of Chapter 2, with boundary

conditions, written in the typeset version of this format:

equation specs = [

unknowns = [u1, u11, u12],

domains = [

1 = [

regions = [

Interior= [u11n1 � u12n2
�= 0,

u11 	 u1n1
�= 0, u12 	 u1n2

�= 0],

Top = [u1
�= f(x, y),

u11 	 u1n1
�= 0, u12 	 u1n2

�= 0],

Left = [u1
�= f(x, y),

u11 	 u1n1
�= 0, u12 	 u1n2

�= 0],

Right = [u1
�= f(x, y),

u11 	 u1n1
�= 0, u12 	 u1n2

�= 0],

Bottom= [u1n2
�= 0,

u11 	 u1n1
�= 0, u12 	 u1n2

�= 0]]]]]

The three equations forming the content of the Interior = [. . .] expression are

derived from the second-order equation

55

∂2u1

∂x2 +
∂2u1

∂y2 = 0 (4.36)

by defining the unknowns u11 and u12 as

u11 = ∂u1/∂x (4.37)

u12 = ∂u1/∂y. (4.38)

and using these two equations along with the form

∂u11/∂x + ∂u12/∂y = 0 (4.39)

of the Laplace equation. The Equations 4.37 and 4.38 are also used in all other

region specifications, along with the conditions for that region.

4.5.2 Block system

The individual blocks and the block system structure are directly derived

from the BNF grammar in Figure 4.3. The matrix [L] is block diagonal, ex-

cept for blocks corresponding to overlapping regions. The number of diagonal

blocks corresponds to the number of rectangles; every diagonal block’s entries

are column-aligned by unknown and row-aligned by the region and equation.

The only special case is presented by the overlapping blocks; they are column-

aligned with their own unknown and domain (just as regular blocks), and

row-aligned with the matching boundary conditions’ domain (as determined by

its domains’ layout relative to other domains) and region (as determined by the

domains’ layout and the region matching the block’s region).

As an illustration, a single-unknown, single-rectangle, second-order elliptic

PDE problem can be written in the form Lu = f as

0
BBBBBBBBBB@

L1j1
1^I

L1j1
1^T

L1j1
1^L

L1j1
1^B

L1j1
1^R

1
CCCCCCCCCCA

u1j1 =

0
BBBBBBBBBB@

gj11^I

gj11^T

gj11^L

gj11^B

gj11^R

1
CCCCCCCCCCA

(4.40)

56

By introducing the new unknowns u11j1 and u12j1 and the equations

u11j1 = ∂u1j1/∂x (4.41)

u12j1 = ∂u1j1/∂y (4.42)

all occurrences of second-order partials can be replaced with first-order expres-

sions; omitting blocks of zeroes, the equivalent first-order system then has the

form

0
BB@

L
1j1
1^I L

11j1
1^I L

12j1
1^I

L
1j1
2^I L

11j1
2^I

L
1j1
3^I L

12j1
3^I

L
1j1
1^T L

11j1
1^T L

12j1
1^T

L
1j1
2^T L

11j1
2^T

L
1j1
3^T L

12j1
3^T

L
1j1
1^L L

11j1
1^L L

12j1
1^L

L
1j1
2^L L

11j1
2^L

L
1j1
3^L L

12j1
3^L

L
1j1
1^B L

11j1
1^B L

12j1
1^B

L
1j1
2^B L

11j1
2^B

L
1j1
3^B L

12j1
3^B

L
1j1
1^R L

11j1
1^R L

12j1
1^R

L
1j1
2^R L

11j1
2^R

L
1j1
3^R L

12j1
3^R

1
CCA

0
BBB@

u1j1

u11j1

u12j1

1
CCCA =

0
BB@

gj11^I

gj11^T

gj11^L

gj11^B

gj11^R

1
CCA

(4.43)

or

Lu = f (4.44)

4.5.3 Discrete block system

The discrete block system structure is visually identical to that of the block

system; the differences in the blocks come from the discretization, which intro-

duces the unknowns’ coefficients and the regions’ collocation points. Full details

57

on the ordering of these new parts are not relevant here, and we can proceed in

a general manner as follows. Let k 2 [�N, N], l 2 [�N, N]. Define m � 2N + 1,

and let j 2 [0, m2 � 1]. Define a discrete one-to-one mapping

τ : (k, l)! j.

In the following, let i be an enumeration of all collocation points of the current

appropriate region, and j an enumeration of all unknown terms of the current

appropriate unknown. Define

k j, l j = τ�1(j)

and form the following discrete matrix blocks:h
L1j1

1^I
i

i j
=

�
L1j1

1^I
�
(ωj1,x

kj
ω

j1,y
l j

)(xi, yi), (4.45)

(xi, yi) 2 I

h
L1j1

1^T
i

i j
=

�
L1j1

1^T
�
(ωj1,x

kj
ω

j1,y
l j

)(xi, yi), (4.46)

(xi, yi) 2 T

h
L1j1

1^L
i

i j
=

�
L1j1

1^L
�
(ωj1,x

kj
ω

j1,y
l j

)(xi, yi), (4.47)

(xi, yi) 2 L

h
L1j1

1^B
i

i j
=

�
L1j1

1^B
�
(ωj1,x

kj
ω

j1,y
l j

)(xi, yi), (4.48)

(xi, yi) 2 B

h
L1j1

1^R
i

i j
=

�
L1j1

1^R
�
(ωj1,x

kj
ω

j1,y
l j

)(xi, yi), (4.49)

(xi, yi) 2 R

[u1j1] j = c1j1
k j l j

(4.50)

[gj11^m]i = gj11^m(xi, yi) (4.51)

m 2 [I,T, L,B, R]

Then the operator form in Equation 4.40 has the discrete block analogue

58

0
BBBBBBBBBB@

h
L1j1

1^I
i

h
L1j1

1^T
i

h
L1j1

1^L
i

h
L1j1

1^B
i

h
L1j1

1^R
i

1
CCCCCCCCCCA

[u1j1] =

0
BBBBBBBBBB@

[gj11^I]

[gj11^T]

[gj11^L]

[gj11^B]

[gj11^R]

1
CCCCCCCCCCA

(4.52)

or

[L][u] = [f] (4.53)

Note that while none of the constituent matrix blocks is square, the matrix [L] is.

By forming discrete matrix blocks for the system of Equation 4.43 in the same

manner, the operator form of Equation 4.43 has the discrete block analogue

0
BB@

[L
1j1
1^I] [L

11j1
1^I] [L

12j1
1^I]

[L
1j1
2^I] [L

11j1
2^I]

[L
1j1
3^I] [L

12j1
3^I]

[L
1j1
1^T] [L

11j1
1^T] [L

12j1
1^T]

[L
1j1
2^T] [L

11j1
2^T]

[L
1j1
3^T] [L

12j1
3^T]

[L
1j1
1^L] [L

11j1
1^L] [L

12j1
1^L]

[L
1j1
2^L] [L

11j1
2^L]

[L
1j1
3^L] [L

12j1
3^L]

[L
1j1
1^B] [L

11j1
1^B] [L

12j1
1^B]

[L
1j1
2^B] [L

11j1
2^B]

[L
1j1
3^B] [L

12j1
3^B]

[L
1j1
1^R] [L

11j1
1^R] [L

12j1
1^R]

[L
1j1
2^R] [L

11j1
2^R]

[L
1j1
3^R] [L

12j1
3^R]

1
CCA

0
BBB@

[u1j1]

[u11j1]

[u12j1]

1
CCCA =

0
BB@

[gj11^I]

[gj11^T]

[gj11^L]

[gj11^B]

[gj11^R]

1
CCA

(4.54)

or

[L][u] = [f] (4.55)

59

To show the overall error bound for the discretization [L][u] is O(εN), we start

with the error bounds on individual matrix blocks obtained from Theorem 4.7,

expand the matrix-vector products, and arrive at the difference [Lu]� [L][u].

For every block, an O(εN) error is incurred in the discretized version of the

block system. This follows directly from the observation that for all (x, y) in a

given rectangle, Theorem 4.7 allow us to write

[L
ijl
j^kuij j] = [L

ijl
j^k][u

ij j] + [ε
ij j
N] (4.56)

for every i, j, k and l; all [εij j
N] are O(Ne�d

p
N) for derivatives, or O(

p
Ne�d

p
N) for

function values, e.g., for the upper-left block of Equation 4.43,

[L
1j1
1^Iu

1j1] = [L
1j1
1^I][u

1j1] + [ε1j1
N]. (4.57)

Continuing the abstract sample problem and using Equation 4.43, we can

write

[Lu] =

0
BB@

[L
1j1
1^Iu

1j1 + L
11j1
1^I u11j1 + L

12j1
1^I u12j1]

[L
1j1
2^Iu

1j1 + L
11j1
2^I u11j1]

[L
1j1
3^Iu

1j1 + L
12j1
3^I u12j1]

[L
1j1
1^Tu1j1 + L

11j1
1^Tu11j1 + L

12j1
1^Tu12j1]

[L
1j1
2^Tu1j1 + L

11j1
2^Tu11j1]

[L
1j1
3^Tu1j1 + L

12j1
3^Tu12j1]

[L
1j1
1^Lu1j1 + L

11j1
1^Lu11j1 + L

12j1
1^Lu12j1]

[L
1j1
2^Lu1j1 + L

11j1
2^Lu11j1]

[L
1j1
3^Lu1j1 + L

12j1
3^Lu12j1]

[L
1j1
1^Bu1j1 + L

11j1
1^Bu11j1 + L

12j1
1^Bu12j1]

[L
1j1
2^Bu1j1 + L

11j1
2^Bu11j1]

[L
1j1
3^Bu1j1 + L

12j1
3^Bu12j1]

[L
1j1
1^Ru1j1 + L

11j1
1^Ru11j1 + L

12j1
1^Ru12j1]

[L
1j1
2^Ru1j1 + L

11j1
2^Ru11j1]

[L
1j1
3^Ru1j1 + L

12j1
3^Ru12j1]

1
CCA

= [L][u] + [εN] (4.58)

60

where

[L][u] =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[L
1j1
1^I][u1j1] + [L

11j1
1^I][u11j1] + [L

12j1
1^I][u12j1]

[L
1j1
2^I][u1j1] + [L

11j1
2^I][u11j1]

[L
1j1
3^I][u1j1] + [L

12j1
3^I][u12j1]

[L
1j1
1^T][u1j1] + [L

11j1
1^T][u11j1] + [L

12j1
1^T][u12j1]

[L
1j1
2^T][u1j1] + [L

11j1
2^T][u11j1]

[L
1j1
3^T][u1j1] + [L

12j1
3^T][u12j1]

[L
1j1
1^L][u1j1] + [L

11j1
1^L][u11j1] + [L

12j1
1^L][u12j1]

[L
1j1
2^L][u1j1] + [L

11j1
2^L][u11j1]

[L
1j1
3^L][u1j1] + [L

12j1
3^L][u12j1]

[L
1j1
1^B][u1j1] + [L

11j1
1^B][u11j1] + [L

12j1
1^B][u12j1]

[L
1j1
2^B][u1j1] + [L

11j1
2^B][u11j1]

[L
1j1
3^B][u1j1] + [L

12j1
3^B][u12j1]

[L
1j1
1^R][u1j1] + [L

11j1
1^R][u11j1] + [L

12j1
1^R][u12j1]

[L
1j1
2^R][u1j1] + [L

11j1
2^R][u11j1]

[L
1j1
3^R][u1j1] + [L

12j1
3^R][u12j1]

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (4.59)

and

[εN] =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

[ε
1j1
1^I] + [ε

11j1
1^I] + [ε

12j1
1^I]

[ε
1j1
2^I] + [ε

11j1
2^I]

[ε
1j1
3^I] + [ε

12j1
3^I]

[ε
1j1
1^T] + [ε

11j1
1^T] + [ε

12j1
1^T]

[ε
1j1
2^T] + [ε

11j1
2^T]

[ε
1j1
3^T] + [ε

12j1
3^T]

[ε
1j1
1^L] + [ε

11j1
1^L] + [ε

12j1
1^L]

[ε
1j1
2^L] + [ε

11j1
2^L]

[ε
1j1
3^L] + [ε

12j1
3^L]

[ε
1j1
1^B] + [ε

11j1
1^B] + [ε

12j1
1^B]

[ε
1j1
2^B] + [ε

11j1
2^B]

[ε
1j1
3^B] + [ε

12j1
3^B]

[ε
1j1
1^R] + [ε

11j1
1^R] + [ε

12j1
1^R]

[ε
1j1
2^R] + [ε

11j1
2^R]

[ε
1j1
3^R] + [ε

12j1
3^R]

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (4.60)

so the overall discretization error [εN] remains O(Ne�d
p

N).

61

4.5.4 Discrete approximation

In the following, it is assumed that the PDE system is well-posed, so the re-

sulting discrete block system is uniquely invertible and numerically nonsingular.

Under these assumptions, any stable solution method then obtains a vector [c]

satisfying

[L][c] = [f] + [εu] (4.61)

with [εu] proportional to the unit roundoff error.

4.5.5 Smooth approximation

Following the steps of Section 4.3, we see that

k[u] � [c]k �

[L]�1

8><
>:

[εN]

+

[εu]

9>=
>; (4.62)

and Theorem 4.8 therefore applies. The coefficients [uij j]k can thus be extracted

from [c] and used to obtain uij j(x, y) for any (x, y) 2
 j via Equation 4.32; by

Theorem 4.8, this introduces the same O(εN) error as the discretization steps.

CHAPTER 5

NUMERICAL RESULTS

In this chapter, we explore the suitability of the SINC-ELLPDE method for

singular problems via the numerical solution of the problems of Sections 3.1 and

3.2. This will illustrate the numerical convergence behavior of the method in the

presence of multiple domains and unknowns, as well as providing insight into

the pointwise behavior of derivatives under these conditions.

5.1 Single-material crack
Presented here are the numerical results obtained for the problem of Sec-

tion 3.1, using the exact answer given by (Sneddon 1995) for comparisons in

appropriate regions (i.e., those near the crack). The full equations solved here

are those shown graphically in Figure 3.2, which in turn use the expansions

in Equations 3.13 and 3.14 to result in the following equations, written in the

PDE system format of Section 4.5.1, with common system equations factored for

clarity.

equation specs= [
unknowns= [u1, u2, u11, u12, u21, u22],
domains= [

1 = [
regions= [

Interior= [
(((�2)ν + 2)� u11n1 � (1� 2ν)� u12n2)�

1� u21n2
�= 0 ,

((1� 2ν)� u21n1 � ((�2)ν + 2)� u22n2)�
1� u11n2

�= 0 ,
system],

Bottom= [
�µ � u1n2 ��µ � u2n1

�= 0 ,

63

(�2)µ((�1) + ν)
(�1) + 2ν � u2n2�

2µν
(�1) + 2ν � u1n1

�= σ ,

system],
Left= [1� u21

�= 0 , 1� u1
�= 0 , system],

Top= [1� u1
�= 0 , 1� u2

�= 0 , system],
Right= [1� u11

�= 0 , 1� u21
�= 0 , system],

RightOL= [1� u1
�= 0 , 1� u2

�= 0]]],
2 = [

regions= [
LeftOL= [(�1)� u11

�= 0 , (�1)� u21
�= 0],

Left= [(�1) � u1
�= 0 , (�1) � u2

�= 0 ,
system],

Top= [1� u1
�= 0 , 1� u2

�= 0 , system],
Right= [1� u1

�= 0 , 1� u2
�= 0 , system],

Interior= [
(((�2)ν + 2)� u11n1 � (1� 2ν)� u12n2)�

1� u21n2
�= 0 ,

((1� 2ν)� u21n1 � ((�2)ν + 2)� u22n2)�
1� u11n2

�= 0 ,
system],

Bottom= [1� u12
�= 0 , 1� u2

�= 0 , system]]]]]
system= [

1� u1n1 � (�1)� u11
�= 0 ,

1� u1n2 � (�1)� u12
�= 0 ,

1� u2n1 � (�1)� u21
�= 0 ,

1� u2n2 � (�1)� u22
�= 0]

The numerical parameters are shown in Table 5.1; the general geometry was

shown in Figure 3.1 and is shown drawn to scale along with the individual

graphs. As in Chapter 2, two approaches are used to illustrate convergence:

a normwise error, and a pointwise error.

Table 5.1. Single-material problem parameters. σ is the applied crack load, ν is
Poisson’s ratio, and µ is one of the Lamé constants.

Geometry Material Constants Sinc Constants
c 1.0 σ 1.0 α 1.0
w 27.0 ν 0.33 d π/2
h 27.0 µ 2.0

64

5.1.1 Convergence in norm

Since both stresses and displacements have zero exact value at several points

of the elastic body, the relative error j(e � a)/ej cannot be used effectively as

a measure of error. Further, stresses are unbounded near the crack tip. This

precludes use of the L1 norm of the absolute error je� aj as the absolute error

also diverges and is unrealistically large near the singularities. However, using

any p-norm of the absolute error, 1 � p <1, will work.

For the first convergence check, we show simple graphs of the number of

terms N vs. the scaled norm of the absolute error,

k f k =

R

j f (x)jdxR

dx
, (5.1)

over several regions
.

These graphs are split across two figures. Figure 5.1 is split into three parts.

The upper region shows the boundaries of the computational rectangles as solid

lines; the two regions of integration (
1 and
2) are shown by the dashed lines.

The crack is located at y = 0, �1 � x � 1. The lower left region displays

convergence plots for the unknowns of rectangle 1 over
1, while the lower right

region displays convergence plots for the unknowns of rectangle 2 over
2.

Figure 5.2 shows the convergence graphs for the individual stress compo-

nents. Again, the left region displays results over
1 while the right region

displays results over
2. All convergence plots show the computed error norms

as triangular data points and the curve fit of the sinc convergence rate ce�g
p

N as

a solid line.

Unlike the simple sample problem of Chapter 2, the measured error does

not fit the theoretical bounds very well; it is erratic. A fit of the theoretical

convergence rate (using values of N � 8) yields a rate constant g ranging

from 2.4 to 2.9, higher than expected. Even so, the convergence is clearly still

exponential, and good solutions are expected for larger N.

65

Integration region location

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

Domain 1 Domain 2
u1

-4

-3.5

-3

-2.5

-2

-1.5

-1

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

u1

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

u2

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

u2

-4

-3.5

-3

-2.5

-2

-1.5

-1

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

Figure 5.1. Graphs of L1 convergence, part 1: Location of integration region and
displacement error norms.

66

Domain 1 Domain 2
τ11

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

τ11

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
 0

 0.5

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

τ12

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
 0

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

τ12

-3.5
-3

-2.5
-2

-1.5
-1

-0.5
 0

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

τ22

-3

-2.5

-2

-1.5

-1

-0.5

 0

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

τ22

-3
-2.5

-2
-1.5

-1
-0.5

 0
 0.5

 4 6 8 10 12 14 16 18 20 22 24

lo
g1

0(
ab

s.
 e

rr
or

)

N

Figure 5.2. Graphs of L1 convergence, part 2: Stress error norms.

67

5.1.2 Pointwise convergence

The normwise convergence checks in Section 5.1.1 give a global indication of

convergence, but say nothing about the local quality of approximation.

To provide some insight, the following graphs illustrate the pointwise con-

vergence behavior of the sinc method, one unknown at a time, over selected

regions
i near the crack tip.

A combination of three-dimensional surface- and two-dimensional xy-plots

are shown; the surfaces provide both a qualitative overview and a reference

frame, while the xy-plots provide quantitative data along slices.

The graphs for every unknown are partitioned into two sets of figures. The

first set of figures displays the current data’s location (on the “Area location”

graph, via a solid rectangle), the legends for the xy-slices (“slice legend” table)

and a surface view of the data (“Area surface view” graph). The surface view

shows the surface formed by the data; lines on the surface and their projections

onto the base show the location of the xy-slices. The base projections are num-

bered for cross-reference with the xy-slices’ graphs. The second and third sets

of figures show the detail slices’ graphs. Each slice is numbered according to its

position on the surface view graph.

The unknowns u1, u2 and the stresses τ11,τ 12 and τ 22 are shown, each on two

areas, in Figures 5.3 through 5.26.

There are two reasons for the present selection of viewing regions.

First, this problem is similar, but not identical, to the one solved by (Sneddon

1995); in particular, the solutions are only comparable in regions near the crack

tip, and therefore the area-surface views focus on those regions.

Second, the sinc basis functions have unbounded derivatives at the rectangle

boundaries; for the simple problem of Chapter 2, accurate derivative approx-

imations were easily obtained on the range (0.001, 0.99), out of (0, 1). The

present problem has (1) a more singular solution, (2) more unknowns, (3) more

rectangles, and (4) a low number of terms m. These factors combine to yield very

poor derivative approximations near boundaries; this per-domain gap is

68

Area location Slice legend

0

5

10

15

20

25

y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0.7

0.8

0.9

1.0

1.1

1.2

x

0.0

0.1

0.2

y

-0
.5

0.
0

0.
5

1.
0

z

 1-
0 1-

1 1-
2 1-

3 2-
0 2-

1 2-
2 2-

3

 1.2-0

 1.2-1
 1.2-2

 1.2-3

Figure 5.3. Graphs of τ 11, view 1, part 1: Location, legends and surface.

69

1-0 1-1

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.05 0.10 0.15 0.20

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.05 0.10 0.15 0.20

1-2 1-3

-0.10

-0.05

-0.00

0.05

0.10

0.15

0.20

0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

0.05 0.10 0.15 0.20

2-0 2-1

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.05 0.10 0.15 0.20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.05 0.10 0.15 0.20

2-2 2-3

0.0

0.2

0.4

0.6

0.8

0.05 0.10 0.15 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.05 0.10 0.15 0.20

Figure 5.4. Graphs of τ 11, view 1, part 2: Detailed single slices.

70

1.2-0 1.2-1

-0.5

0.0

0.5

1.0

0.8 0.9 1.0 1.1 1.2

-0.2

0.0

0.2

0.4

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

-0.1

0.0

0.1

0.2

0.3

0.8 0.9 1.0 1.1 1.2

-0.20

-0.15

-0.10

-0.05

0.00

0.8 0.9 1.0 1.1 1.2

Figure 5.5. Graphs of τ 11, view 1, part 3: Detailed group slices.

71

Area location Slice legend

0

5

10

15

20

25
y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0

1

2

3

x

1

2

3

y

-1
.5

-1
.0

-0
.5

0.
0

0.
5

z

 1-
0 1-

1 1-
2 1-

3 2-
0 2-

1 2-
2 2-

3

 1.2-0

 1.2-1

 1.2-2

 1.2-3

Figure 5.6. Graphs of τ 11, view 1, part 1: Location, legends and surface.

72

1-0 1-1

-0.8

-0.6

-0.4

-0.2

0.0

0.5 1.0 1.5 2.0 2.5

-0.8

-0.6

-0.4

-0.2

0.0

0.5 1.0 1.5 2.0 2.5

1-2 1-3

-0.8

-0.6

-0.4

-0.2

0.0

0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0 2.5

2-0 2-1

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

-0.1

0.0

0.1

0.2

0.3

0.5 1.0 1.5 2.0 2.5

2-2 2-3

-0.05

0.00

0.05

0.10

0.5 1.0 1.5 2.0 2.5

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.5 1.0 1.5 2.0 2.5

Figure 5.7. Graphs of τ 11, view 1, part 2: Detailed single slices.

73

1.2-0 1.2-1

-0.5

0.0

0.5

1.0

0.5 1.0 1.5 2.0

-0.10

-0.05

-0.00

0.05

0.5 1.0 1.5 2.0

1.2-2 1.2-3

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.5 1.0 1.5 2.0

-0.02

0.00

0.02

0.04

0.5 1.0 1.5 2.0

Figure 5.8. Graphs of τ 11, view 1, part 3: Detailed group slices.

74

Area location Slice legend

0

5

10

15

20

25

y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0.7
0.8

0.9
1.0

1.1
1.2

x

0.0

0.1

0.2

y-1
.5

-1
.0

-0
.5

0.0
0.5

z

 1-
0 1-

1 1-
2 1-

3 2-
0 2-

1 2-
2 2-
3

 1.2-0

 1.2-1
 1.2-2

 1.2-3

Figure 5.9. Graphs of τ 12, view 1, part 1: Location, legends and surface.

75

1-0 1-1

-0.4

-0.3

-0.2

-0.1

0.05 0.10 0.15 0.20

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.05 0.10 0.15 0.20

1-2 1-3

-0.7

-0.6

-0.5

-0.4

-0.3

0.05 0.10 0.15 0.20

-1.4

-1.2

-1.0

-0.8

0.05 0.10 0.15 0.20

2-0 2-1

-0.4

-0.2

-0.0

0.2

0.4

0.05 0.10 0.15 0.20

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.05 0.10 0.15 0.20

2-2 2-3

0.00

0.05

0.10

0.15

0.20

0.05 0.10 0.15 0.20

0.10

0.15

0.20

0.05 0.10 0.15 0.20

Figure 5.10. Graphs of τ 12, view 1, part 2: Detailed single slices.

76

1.2-0 1.2-1

-1.5

-1.0

-0.5

0.0

0.8 0.9 1.0 1.1 1.2
-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

-0.8

-0.6

-0.4

-0.2

0.0

0.8 0.9 1.0 1.1 1.2

-0.6

-0.4

-0.2

-0.0

0.8 0.9 1.0 1.1 1.2

Figure 5.11. Graphs of τ 12, view 1, part 3: Detailed group slices.

77

Area location Slice legend

0

5

10

15

20

25

y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0

1

2

3

x

1

2

3

y

-1
.5

-1
.0

-0
.5

0.
0

0.
5

z

 1-
0 1-

1 1-
2 1-

3 2-
0 2-

1 2-
2 2-

3

 1.2-0

 1.2-1

 1.2-2

 1.2-3

Figure 5.12. Graphs of τ 12, view 1, part 1: Location, legends and surface.

78

1-0 1-1

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0.5 1.0 1.5 2.0 2.5

-0.15

-0.10

-0.05

0.5 1.0 1.5 2.0 2.5

1-2 1-3

-0.4

-0.3

-0.2

-0.1

0.5 1.0 1.5 2.0 2.5

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.5 1.0 1.5 2.0 2.5

2-0 2-1

-0.4

-0.2

-0.0

0.2

0.4

0.5 1.0 1.5 2.0 2.5

-0.10

-0.05

-0.00

0.05

0.5 1.0 1.5 2.0 2.5

2-2 2-3

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.5 1.0 1.5 2.0 2.5

-0.04

-0.02

0.00

0.02

0.5 1.0 1.5 2.0 2.5

Figure 5.13. Graphs of τ 12, view 1, part 2: Detailed single slices.

79

1.2-0 1.2-1

-1.5

-1.0

-0.5

0.0

0.5 1.0 1.5 2.0

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

-0.00

0.5 1.0 1.5 2.0

1.2-2 1.2-3

-0.15

-0.10

-0.05

0.5 1.0 1.5 2.0

-0.08

-0.06

-0.04

-0.02

0.5 1.0 1.5 2.0

Figure 5.14. Graphs of τ 12, view 1, part 3: Detailed group slices.

80

Area location Slice legend

0

5

10

15

20

25

y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0.7
0.8

0.9
1.0

1.1
1.2

x

0.0

0.1

0.2

y

-1
0

1
2

3
z

 1-
0 1-

1 1-
2 1-

3 2-
0 2-

1 2-
2 2-
3

 1.2-0

 1.2-1
 1.2-2

 1.2-3

Figure 5.15. Graphs of τ 22, view 1, part 1: Location, legends and surface.

81

1-0 1-1

-0.9

-0.8

-0.7

-0.6

0.05 0.10 0.15 0.20

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

0.05 0.10 0.15 0.20

1-2 1-3

-0.8

-0.6

-0.4

-0.2

0.0

0.05 0.10 0.15 0.20
0.5

0.6

0.7

0.8

0.9

1.0

0.05 0.10 0.15 0.20

2-0 2-1

1.0

1.5

2.0

2.5

0.05 0.10 0.15 0.20

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0.05 0.10 0.15 0.20

2-2 2-3

0.90

0.95

1.00

1.05

0.05 0.10 0.15 0.20
0.80

0.82

0.84

0.86

0.88

0.05 0.10 0.15 0.20

Figure 5.16. Graphs of τ 22, view 1, part 2: Detailed single slices.

82

1.2-0 1.2-1

0

1

2

0.8 0.9 1.0 1.1 1.2

-0.5

0.0

0.5

1.0

1.5

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

-0.5

0.0

0.5

1.0

0.8 0.9 1.0 1.1 1.2

-0.5

0.0

0.5

0.8 0.9 1.0 1.1 1.2

Figure 5.17. Graphs of τ 22, view 1, part 3: Detailed group slices.

83

Area location Slice legend

0

5

10

15

20

25

y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0

1

2

3

x

1

2

3

y

-1
0

1
2

3
z

 1-
0 1-

1 1-
2 1-

3 2-
0 2-

1 2-
2 2-

3

 1.2-0

 1.2-1

 1.2-2

 1.2-3

Figure 5.18. Graphs of τ 22, view 1, part 1: Location, legends and surface.

84

1-0 1-1

-1.0

-0.8

-0.6

-0.4

-0.2

0.5 1.0 1.5 2.0 2.5
-1.0

-0.8

-0.6

-0.4

-0.2

0.5 1.0 1.5 2.0 2.5

1-2 1-3

-1.0

-0.8

-0.6

-0.4

-0.2

0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5

2-0 2-1

0.0

0.5

1.0

1.5

2.0

2.5

0.5 1.0 1.5 2.0 2.5

0.0

0.1

0.2

0.3

0.5 1.0 1.5 2.0 2.5

2-2 2-3

0.05

0.10

0.15

0.5 1.0 1.5 2.0 2.5

0.04

0.06

0.08

0.10

0.5 1.0 1.5 2.0 2.5

Figure 5.19. Graphs of τ 22, view 1, part 2: Detailed single slices.

85

1.2-0 1.2-1

-1

0

1

2

0.5 1.0 1.5 2.0

-0.6

-0.4

-0.2

-0.0

0.5 1.0 1.5 2.0

1.2-2 1.2-3

-0.3

-0.2

-0.1

-0.0

0.5 1.0 1.5 2.0

-0.15

-0.10

-0.05

-0.00

0.5 1.0 1.5 2.0

Figure 5.20. Graphs of τ 22, view 1, part 3: Detailed group slices.

86

Area location Slice legend

0

5

10

15

20

25

y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0.8
0.9

1.0
1.1

1.2
1.3

x

0.0

0.1

0.2

y

-0
.0

5
0.

00
0.

05
z

 1-0
 1-1

 1-2
 1-3

 2-0
 2-1

 2-2
 2-3 1.2-0

 1.2-1

 1.2-2

 1.2-3

Figure 5.21. Graphs of u1, view 1, part 1: Location, legends and surface.

87

1-0 1-1

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.05 0.10 0.15 0.20

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.05 0.10 0.15 0.20

1-2 1-3

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.05 0.10 0.15 0.20

-0.04

-0.03

-0.02

-0.01

0.00

0.05 0.10 0.15 0.20

2-0 2-1

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.05 0.10 0.15 0.20

-0.05

-0.04

-0.03

-0.02

-0.01

0.05 0.10 0.15 0.20

2-2 2-3

-0.04

-0.03

-0.02

0.05 0.10 0.15 0.20
-0.045

-0.040

-0.035

-0.030

-0.025

-0.020

-0.015

0.05 0.10 0.15 0.20

Figure 5.22. Graphs of u1, view 1, part 2: Detailed single slices.

88

1.2-0 1.2-1

-0.054

-0.052

-0.050

-0.048

-0.046

-0.044

0.8 0.9 1.0 1.1 1.2

-0.035

-0.030

-0.025

-0.020

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

-0.030

-0.025

-0.020

-0.015

-0.010

0.8 0.9 1.0 1.1 1.2

-0.015

-0.010

-0.005

0.000

0.005

0.8 0.9 1.0 1.1 1.2

Figure 5.23. Graphs of u1, view 1, part 3: Detailed group slices.

89

Area location Slice legend

0

5

10

15

20

25

y

0 5 10 15 20 25
x

43-term sinc
49-term sinc
exact Sneddon

Area surface view

0.8
0.9

1.0
1.1

1.2
1.3

x

0.0

0.1

0.2

y

0.
0

0.
1

0.
2

0.
3

0.
4

z

 1-0
 1-1

 1-2
 1-3

 2-0
 2-1

 2-2
 2-3 1.2-0

 1.2-1

 1.2-2

 1.2-3

Figure 5.24. Graphs of u2, view 1, part 1: Location, legends and surface.

90

1-0 1-1

0.180

0.185

0.190

0.195

0.200

0.05 0.10 0.15 0.20

0.150

0.155

0.160

0.165

0.170

0.05 0.10 0.15 0.20

1-2 1-3

0.122

0.124

0.126

0.128

0.130

0.132

0.05 0.10 0.15 0.20

0.065

0.070

0.075

0.080

0.085

0.090

0.05 0.10 0.15 0.20

2-0 2-1

0.02

0.03

0.04

0.05

0.06

0.05 0.10 0.15 0.20

0.01

0.02

0.03

0.04

0.05 0.10 0.15 0.20

2-2 2-3

0.005

0.010

0.015

0.020

0.025

0.030

0.05 0.10 0.15 0.20

0.005

0.010

0.015

0.020

0.025

0.05 0.10 0.15 0.20

Figure 5.25. Graphs of u2, view 1, part 2: Detailed single slices.

91

1.2-0 1.2-1

0.05

0.10

0.15

0.20

0.8 0.9 1.0 1.1 1.2

0.05

0.10

0.15

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

0.05

0.10

0.15

0.8 0.9 1.0 1.1 1.2

0.05

0.10

0.15

0.8 0.9 1.0 1.1 1.2

Figure 5.26. Graphs of u2, view 1, part 3: Detailed group slices.

92

determined experimentally, and here is found to be 0.03 units from the boundary.

Thus, Figure 5.5 and other group slice graphs have a total center gap of length

0.06. This gap should cause no practical problems when viewing stresses, and

when using these stresses in further computation, e.g., sinc-based integrals, the

singularities (and hence gaps) are suppressed through the presence of a 1/φ0

term in the integration formula.

Aside from these restrictions, the pointwise convergence is excellent and

shows piecewise smooth solutions, as expected.

5.2 Bimaterial crack
These are the numerical results obtained for the problem of Section 3.2, using

the exact answer given by (Rice and Sih 1965) for comparisons in appropriate

regions (i.e., those near the crack). The full equations solved here are those

shown graphically in Figure 3.4, which in turn use the expansions in Equations

3.13 and 3.14 to result in the following equations, written in the PDE system

format of Section 4.5.1, with common system equations factored for clarity.

equation specs= [
unknowns= [u1, u2, u11, u12, u21, u22],
domains= [

1 = [
regions= [

Interior= [
(((�2)ν + 2)� u11n1 � (1� 2ν)� u12n2)�

1� u21n2
�= 0 ,

((1� 2ν)� u21n1 � ((�2)ν + 2)� u22n2)�
1� u11n2

�= 0 ,
system],

Bottom= [
�µ � u1n2 ��µ � u2n1

�= 0 ,
2µ(1� ν)
(�1) + 2ν � u2n2�

2µν
(�1) + 2ν � u1n1

�= σ ,

system],
Left= [1� u21

�= 0 , 1� u1
�= 0 , system],

Top= [1� u1
�= 0 , 1� u2

�= 0 , system],

93

Right= [1� u11
�= 0 , 1� u21

�= 0 , system],
RightOL= [1� u1

�= 0 , 1� u2
�= 0]]],

2 = [
regions= [

LeftOL= [(�1)� u11
�= 0 , (�1)� u21

�= 0],
Left= [(�1) � u1

�= 0 , (�1) � u2
�= 0 ,

system],
Top= [1� u1

�= 0 , 1� u2
�= 0 , system],

Right= [1� u1
�= 0 , 1� u2

�= 0 , system],
Interior= [

(((�2)ν + 2)� u11n1 � (1� 2ν)� u12n2)�
1� u21n2

�= 0 ,
((1� 2ν)� u21n1 � ((�2)ν + 2)� u22n2)�

1� u11n2
�= 0 ,

system],
Bottom= [

�µ � u1n2 ��µ � u2n1
�= 0 ,

2µ(1� ν)
(�1) + 2ν � u2n2�

2µν
(�1) + 2ν � u1n1

�= 0 ,

system],
BottomOL= [1� u1

�= 0 , 1� u2
�= 0]]],

3 = [
regions= [

TopOL= [
µ � u1n2 � µ � u2n1

�= 0 ,
(�2)µ(1� ν)
(�1) + 2ν � u2n2�
(�2)µν

(�1) + 2ν � u1n1
�= 0],

Top= [(�1) � u1
�= 0 , (�1) � u2

�= 0 ,
system],

Right= [1� u1
�= 0 , 1� u2

�= 0 , system],
Bottom= [1� u1

�= 0 , 1� u2
�= 0 , system],

Interior= [
(((�2)ν + 2)� u11n1 � (1� 2ν)� u12n2)�

1� u21n2
�= 0 ,

((1� 2ν)� u21n1 � ((�2)ν + 2)� u22n2)�
1� u11n2

�= 0 ,
system],

Left= [(�1) � u1
�= 0 , (�1) � u2

�= 0 ,
system],

LeftOL= [(�1)� u11
�= 0 , (�1)� u21

�= 0]]],
4 = [

94

regions= [
RightOL= [1� u1

�= 0 , 1� u2
�= 0],

Right= [1� u11
�= 0 , 1� u21

�= 0 , system],
Bottom= [1� u1

�= 0 , 1� u2
�= 0 , system],

Left= [1� u21
�= 0 , 1� u1

�= 0 , system],
Top= [

µ � u1n2 � µ � u2n1
�= 0 ,

(�2)µ(1� ν)
(�1) + 2ν � u2n2�
(�2)µν

(�1) + 2ν � u1n1
�= �σ ,

system],
Interior= [

(((�2)ν + 2)� u11n1 � (1� 2ν)� u12n2)�
1� u21n2

�= 0 ,
((1� 2ν)� u21n1 � ((�2)ν + 2)� u22n2)�

1� u11n2
�= 0 ,

system]]]]]
system= [

1� u1n1 � (�1)� u11
�= 0 ,

1� u1n2 � (�1)� u12
�= 0 ,

1� u2n1 � (�1)� u21
�= 0 ,

1� u2n2 � (�1)� u22
�= 0]

The numerical parameters are shown in Table 5.2; the general geometry was

shown in Figure 3.3 and is shown drawn to scale along with the individual

graphs. This bimaterial problem results in much larger memory requirements

than the single material problem; because the largest N is only 18, and N � 12

produces worthless results, a norm-based convergence check is impractical. For

this problem, therefore, only a combination of three-dimensional surface and

two-dimensional xy-plots are shown. Their structure is the same as in Sec-

Table 5.2. Bi-material problem parameters.
Geometry Problem Parameters Sinc Constants

Domain 1 Domain 2
c 1.0 σ 1.0 σ 1.0 α 1.0
w 27.0 ν 0.33 ν 0.33 d π/2
h 27.0 µ 1.0 µ 3.21

95

tion 5.1.2. As only the stresses are readily computed from the solutions provided

in (Rice and Sih 1965), the graphs are further restricted to the stresses τ11,τ 12 and

τ22. Each is shown on two areas in Figures 5.27 through 5.35.

These computed solutions are of no practical use; a larger N is required, but

this is not feasible without improving the space requirements of the algorithm.

Nevertheless, they illustrate the generality of the method and algorithm, and

they do demonstrate convergence in a limited fashion.

The interdomain gap is 0.06, as for the single-material problem.

5.3 Conclusions
The sinc method’s convergence rate is O(

p
Ne�g

p
N), so for large N, excellent

accuracy is expected. In practice, the accuracy for small N, where the meaning

of “small” is problem dependent, is very poor; so poor there may not be much

resemblance between the correct solution and the computed one.

This is in sharp contrast to polynomial-based methods, in which even a

low-order approximation resembles the correct solution, and accuracy gradually

increases (typically linearly) with an increase in the number of terms used in

computation.

The approximations of functions and derivatives are uniformly accurate and

smooth. This is a tremendous advantage for problems in which both approx-

imations are needed, as other methods usually produce only one nonsmooth

solution, and the other must be calculated by inaccurate interpolation.

96

Area location Slice legend

-25

-20

-15

-10

-5

0

5

10

15

20

25

y

0 5 10 15 20 25
x

31-term sinc
37-term sinc
exact Rice

Area surface view

0.7

0.8

0.9

1.0

1.1

1.2

x

-0.
2

0.0

0.2

y

0
2

4
6

z

 4.3-0
 4.3-1 4.3-2

 4.3-3 1.2-0
 1.2-1 1.2-2

 1.2-3

 4.
1-0

 4.
1-1

 4.
1-2

 4.
1-3

 3.
2-0

 3.
2-1

 3.
2-2

 3.
2-3

Figure 5.27. Graphs of τ 22, view 1, part 1: Location, legends and surface.

97

1.2-0 1.2-1

-1

0

1

2

3

4

0.8 0.9 1.0 1.1 1.2

-0.5

0.0

0.5

1.0

1.5

2.0

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

-0.5

0.0

0.5

1.0

1.5

0.8 0.9 1.0 1.1 1.2

-0.5

0.0

0.5

1.0

0.8 0.9 1.0 1.1 1.2

3.2-0 3.2-1

1

2

3

4

5

-0.2 -0.1 -0.0 0.1 0.2

1.0

1.2

1.4

1.6

1.8

2.0

2.2

-0.2 -0.1 -0.0 0.1 0.2

3.2-2 3.2-3

0.9

1.0

1.1

1.2

1.3

-0.2 -0.1 -0.0 0.1 0.2

0.80

0.85

0.90

0.95

1.00

1.05

-0.2 -0.1 -0.0 0.1 0.2

Figure 5.28. Graphs of τ 22, view 1, part 2: Detailed group slices.

98

4.1-0 4.1-1

-1.0

-0.9

-0.8

-0.7

-0.6

-0.2 -0.1 -0.0 0.1 0.2

-1.0

-0.8

-0.6

-0.4

-0.2 -0.1 -0.0 0.1 0.2

4.1-2 4.1-3

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

-0.2 -0.1 -0.0 0.1 0.2

-1.5

-1.0

-0.5

0.0

0.5

-0.2 -0.1 -0.0 0.1 0.2

4.3-0 4.3-1

-0.5

0.0

0.5

1.0

0.8 0.9 1.0 1.1 1.2
-1.0

-0.5

0.0

0.5

1.0

1.5

0.8 0.9 1.0 1.1 1.2

4.3-2 4.3-3

-1

0

1

2

0.8 0.9 1.0 1.1 1.2

-1

0

1

2

3

4

5

0.8 0.9 1.0 1.1 1.2

Figure 5.29. Graphs of τ 22, view 1, part 3: Detailed group slices, continued.

99

Area location Slice legend

-25

-20

-15

-10

-5

0

5

10

15

20

25

y

0 5 10 15 20 25
x

31-term sinc
37-term sinc
exact Rice

Area surface view

0.7

0.8

0.9

1.0

1.1

1.2

x

-0.
2

0.0

0.2

y

-1
0

1
z

 4.3-0
 4.3-1 4.3-2

 4.3-3 1.2-0
 1.2-1 1.2-2

 1.2-3

 4.
1-0

 4.
1-1

 4.
1-2

 4.
1-3

 3.
2-0

 3.
2-1

 3.
2-2

 3.
2-3

Figure 5.30. Graphs of τ 12, view 1, part 1: Location, legends and surface.

100

1.2-0 1.2-1

-1.0

-0.5

0.0

0.5

0.8 0.9 1.0 1.1 1.2

-1.0

-0.8

-0.6

-0.4

-0.2

-0.0

0.2

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

-0.8

-0.6

-0.4

-0.2

0.0

0.8 0.9 1.0 1.1 1.2

-0.6

-0.4

-0.2

-0.0

0.8 0.9 1.0 1.1 1.2

3.2-0 3.2-1

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-0.2 -0.1 -0.0 0.1 0.2

-0.8

-0.6

-0.4

-0.2

0.0

0.2

-0.2 -0.1 -0.0 0.1 0.2

3.2-2 3.2-3

-0.6

-0.4

-0.2

-0.0

0.2

-0.2 -0.1 -0.0 0.1 0.2

-0.4

-0.3

-0.2

-0.1

0.0

0.1

-0.2 -0.1 -0.0 0.1 0.2

Figure 5.31. Graphs of τ 12, view 1, part 2: Detailed group slices.

101

4.1-0 4.1-1

-0.4

-0.2

-0.0

0.2

0.4

-0.2 -0.1 -0.0 0.1 0.2

-0.6

-0.4

-0.2

-0.0

0.2

0.4

-0.2 -0.1 -0.0 0.1 0.2

4.1-2 4.1-3

-0.5

0.0

0.5

-0.2 -0.1 -0.0 0.1 0.2

-1.0

-0.5

0.0

0.5

1.0

-0.2 -0.1 -0.0 0.1 0.2

4.3-0 4.3-1

-0.2

0.0

0.2

0.4

0.6

0.8 0.9 1.0 1.1 1.2

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8

0.8 0.9 1.0 1.1 1.2

4.3-2 4.3-3

-0.5

0.0

0.5

0.8 0.9 1.0 1.1 1.2

-2.0

-1.5

-1.0

-0.5

0.0

0.5

0.8 0.9 1.0 1.1 1.2

Figure 5.32. Graphs of τ 12, view 1, part 3: Detailed group slices, continued.

102

Area location Slice legend

-25

-20

-15

-10

-5

0

5

10

15

20

25

y

0 5 10 15 20 25
x

31-term sinc
37-term sinc
exact Rice

Area surface view

0.7
0.8

0.9
1.0

1.1
1.2

x

-0.2

0.0

0.2

y

-1
0

1
2

z

 4.
3-0

 4.
3-1

 4.
3-2

 4.
3-3

 1.
2-0

 1.
2-1

 1.
2-2

 1.
2-3

 4.1-0

 4.1-1

 4.1-2

 4.1-3

 3.2-0

 3.2-1

 3.2-2

 3.2-3

Figure 5.33. Graphs of τ 11, view 1, part 1: Location, legends and surface.

103

1.2-0 1.2-1

-0.5

0.0

0.5

1.0

1.5

2.0

0.8 0.9 1.0 1.1 1.2

-0.2

0.0

0.2

0.4

0.6

0.8 0.9 1.0 1.1 1.2

1.2-2 1.2-3

-0.1

0.0

0.1

0.2

0.3

0.8 0.9 1.0 1.1 1.2
-0.20

-0.15

-0.10

-0.05

0.00

0.8 0.9 1.0 1.1 1.2

3.2-0 3.2-1

0.0

0.5

1.0

1.5

2.0

2.5

-0.2 -0.1 -0.0 0.1 0.2

0.0

0.5

1.0

1.5

2.0

2.5

-0.2 -0.1 -0.0 0.1 0.2

3.2-2 3.2-3

0.0

0.5

1.0

1.5

-0.2 -0.1 -0.0 0.1 0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-0.2 -0.1 -0.0 0.1 0.2

Figure 5.34. Graphs of τ 11, view 1, part 2: Detailed group slices.

104

4.1-0 4.1-1

-1.5

-1.0

-0.5

0.0

-0.2 -0.1 -0.0 0.1 0.2

-1.5

-1.0

-0.5

0.0

-0.2 -0.1 -0.0 0.1 0.2

4.1-2 4.1-3

-2.0

-1.5

-1.0

-0.5

0.0

-0.2 -0.1 -0.0 0.1 0.2

-1.0

-0.5

0.0

0.5

1.0

-0.2 -0.1 -0.0 0.1 0.2

4.3-0 4.3-1

-0.3

-0.2

-0.1

-0.0

0.8 0.9 1.0 1.1 1.2

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6

0.8 0.9 1.0 1.1 1.2

4.3-2 4.3-3

-1.0

-0.5

0.0

0.5

1.0

0.8 0.9 1.0 1.1 1.2
-2

-1

0

1

2

3

0.8 0.9 1.0 1.1 1.2

Figure 5.35. Graphs of τ 11, view 1, part 3: Detailed group slices, continued.

CHAPTER 6

ALGORITHM IMPLEMENTATION

A simple overview of the whole SINC-ELLPDE environment was given in

Chapter 2. Now, consider again diagram 4.35. From an algorithmic point of

view, the nodes correspond to data structures, while the edges correspond to

algorithms.

For the mathematics, the equations and their properties are of paramount

importance, while the transition from one stage to another (e.g., from the PDE

system to the block system) is implicit, hence ignored. Thus, Chapter 4 provided

this theoretical background, a mathematical notation for multiple-unknown

multiple-rectangle systems, and mathematical illustrations of the PDE system,

block system, discrete block system, discrete approximation and smooth approx-

imation stages via several examples. Further, notation in Chapter 4 is intended

for humans and is therefore ambiguous and highly context-dependent. Of

course, such context is also implicit, usually requiring a thorough understanding

of the ideas involved.

This chapter is concerned with the concrete, mechanical implementation of

those mathematical ideas. In this chapter, as in the program it describes, the

mathematical meaning of equations and their properties are now assumed in the

programs, hence ignored, while the transitions from one stage to another (e.g.,

from the PDE system to the block system via the block conversion algorithm) are

paramount. Thus, the focus now is on the algorithms effecting the transitions

between data stages:

Block Conversion: This step takes systems of equations, written in the format

specified by Figure 4.3 and produces the collection of block operators as

106

illustrated in Equation 4.40.

Discretization: Given the block operators in program-accessible form, this step

produces the discretized matrix blocks of Equation 4.53 (the constituents

of [L] and [f]) from the block operators, arranges them appropriately, and

provides the full matrix [L] and right-hand-side vector [f].

Solution: Currently this is the most time-consuming of all steps, consisting of

a simple brute-force program solving the linear system [L][u] = [f] using

the SUPERLU package described in (Demmel, Eisenstat, Gilbert, Li, and

Liu 1999).

Reconstruction: The simple function of extracting the components [uij j] from

[u] and constructing the unknown functions uij j(x, y) via Equation 4.32 is

handled here.

As these algorithms have very strict input and output format requirements, a

secondary focus is on the files read and written by them. Additionally, notation

now is meant to be machine-readable; it will therefore be exact, and the full

context is always provided. As much as possible with these constraints, the

notation has been kept human-readable.1

The related tasks of

� using computed unknowns for visualization and generation of human-

readable graphs,

� automatic convergence checks,

� selection of proper data point positions,

� describing the programs used to verify the programs and algorithms pre-

sented here, and

1 In fact, the mathematical notation of Chapter 4 was derived from the notation of this chapter,
not vice versa. The implementation of an algorithm is everything — literally.

107

� developing a more efficient method of solving the linear system

[L][u] = [f]

are left for future work.

While items here are dealt with in detail, conciseness of their representation

varies significantly between programming languages. For the reasons detailed

in the introduction, standard languages are severe hindrances in the implemen-

tation of complex algorithms. All novel parts of the present system are therefore

implemented in the OCAML language.2

Various pieces of documentation are available for OCAML. An OCAML

precursor, caml special light, is described (in French) in (Leroy 1995); a full

programming book using OCAML was recently published, also in French: (Chail-

loux, Manoury, and Pagano 2000). The documentation provided with the (freely

available) OCAML distribution (Leroy 1997) provides an overview and short

tutorials for the major aspects of the OCAML system, as well as full library

documentation.

The full algorithmic version of diagram 4.35 is shown in Figure 6.1. In the

graph, files ending in .cmo and .cma are OCAML bytecode files produced from .ml

source files, and files ending in .map use MAPLE-compatible nested list format.

Other files’ formats are mentioned with the explanations.

The correspondence between the diagram and the graph is described in detail

in the following sections.

6.1 Block conversion
The PDE system is provided by the user in eqn input.map and the block

conversion is performed by pre collocation, which generates the template data

files T:dom data and T:global data, and the program files code.ml and data.ml.

2 The SUPERLU library is used as is; it is written in Standard C.

108

eqn_input
.map

pre_collocation

geometry
.cmo

ocamlcocamlc

ocamlc

dom_data
.cmo

global_data
.cmo

T:eqn_input
.map

T:geometry
.cmo

T:dom_data
.cmo

T:global_data
.cmo

sp-solve

solution-ascii

eval_writeData

ascii-c-inp-csr rhs-ascii-c-inp

post-collocate-rhs

rhs-ascii-coord

rhs-bin-1

post-collocate

ascii-coord

bin-full-data

collocate-rhs

code
.cmo

data
.cmo

collocate_rhs
.cmo

ocamlc

maple_parser
.cma

collocate

bin-col-offset

collocate
.cmo

function-names domain-geometry

T:function-names T:domain-geometry

data-grids

calc_value_funcs
.cmo

Figure 6.1. Data flow for input equation translation, matrix assembly/solution,
and answer vector decomposition/solution evaluation. Elliptical data is
user-provided, possibly by filling in a program-generated template. Shaded
rectangles represent functions, plain rectangles data. Dark edges show data
flowing to a program; light edges show programs creating programs.

109

6.1.1 Module eqn input.map

The input file eqn input.map resembles the typeset equations, e.g., pages 62–

63; an example is shown in Figure 6.2, and the special operators are shown in

Table 6.1.

6.1.2 Module pre collocation

Further, the eqn input.map file must conform to the BNF grammar of Fig-

ure 4.3. In pre collocation, this is enforced partly by the lexer and parser, and

completed by pattern matching. The LEX-compatible lexeme definitions are

shown in Figure 6.3, the mappings for the special lexeme classes INFIXOP1

through INFIXOP5 are in Table 6.1, and the YACC-style parser in Figure 6.4. These

are mostly standard definitions; the idea of keeping the lexer and parser small

and flexible by using a multicharacter operator class is taken from OCAML. Also

note that these grammatical definitions form a superset of MAPLE and MUPAD’s

expressions, facilitating production of equations by these systems.

Output for code.ml and data.ml is generated in two steps. Using the same tree

traversal routine used to traverse the input expression, a simplified abstract tree

representing the OCAML code is generated; this new tree is then converted to the

pretty-printed text.

The template data file T:dom data is created similarly: The input expression

(in eqn input.map) is scanned for variable names (e.g., nu), these are made part

of the current rectangle’s parameter list (e.g., Dom 1.nu), an intermediate tree is

generated, and the intermediate tree is pretty-printed.

The template data file T:global data is empty by default, and can be used to

introduce arbitrary user-defined functions.

6.1.3 Modules code.ml and data.ml

code.ml contains the coefficient functions needed later by collocate; references

to these are stored in a usable form in data.ml as a table3 mapping (domain *

3 Actual internal type is
(domain * region * equation * side, code_linop_triple list) Hashtbl.t Also there is

110

equation_specs=[

unknowns=[u1, u2, u11, u12, u21, u22],

domains=[

1=[

regions=[

Interior=[

((-2*`\nu`+2)*~ u11\ 1+~ (1-2*`\nu`)*~ u12\ 2)+~ 1*~ u21\ 2=~0,

((1-2*`\nu`)*~ u21\ 1+~ (-2*`\nu`+2)*~ u22\ 2)+~ 1*~ u11\ 2=~0,

1*~ u1\ 1+~ -1*~ u11=~0, 1*~ u1\ 2+~ -1*~ u12=~0,

1*~ u2\ 1+~ -1*~ u21=~0, 1*~ u2\ 2+~ -1*~ u22=~0],

Bottom=[

-`\mu`*~ u1\ 2+~ -`\mu`*~ u2\ 1=~0,

(((-2*`\mu`)*(-1+`\nu`))/(-1+2*`\nu`))*~ u2\ 2+~

(((2*`\mu`)*`\nu`)/(-1+2*`\nu`))*~ u1\ 1=~`\sigma`,

1*~ u1\ 1+~ -1*~ u11=~0, 1*~ u1\ 2+~ -1*~ u12=~0,

1*~ u2\ 1+~ -1*~ u21=~0, 1*~ u2\ 2+~ -1*~ u22=~0],

Left=[

1*~ u21=~0, 1*~ u1=~0, 1*~ u1\ 1+~ -1*~ u11=~0,

1*~ u1\ 2+~ -1*~ u12=~0, 1*~ u2\ 1+~ -1*~ u21=~0,

1*~ u2\ 2+~ -1*~ u22=~0],

Top=[

1*~ u1=~0, 1*~ u2=~0, 1*~ u1\ 1+~ -1*~ u11=~0,

1*~ u1\ 2+~ -1*~ u12=~0, 1*~ u2\ 1+~ -1*~ u21=~0,

1*~ u2\ 2+~ -1*~ u22=~0],

Right=[

1*~ u11=~0, 1*~ u21=~0, 1*~ u1\ 1+~ -1*~ u11=~0,

1*~ u1\ 2+~ -1*~ u12=~0, 1*~ u2\ 1+~ -1*~ u21=~0,

1*~ u2\ 2+~ -1*~ u22=~0], RightOL=[1*~ u1=~0, 1*~ u2=~0]]],

2=[

regions=[

LeftOL=[-1*~ u11=~0, -1*~ u21=~0],

...]]]]

Figure 6.2. Parts of the machine-readable form of the single-material equations
on pages 62–63. This input file corresponds to Figure 6.1, node eqn input.map.
The special operator’s (+~, etc.) analogues are shown in Table 6.1.

111

Table 6.1. The connections between the mathematical infix notation, its pro-
gram-readable infix and prefix versions, and the internal representation. To-
gether with the lexer in Figure 6.3, the parser of Figure 6.4 and a pattern
matcher, this forms the input reading and verification portion for Figure 6.1,
node pre collocation.

Infix Math Form Infix Program Form Prefix Name Internal Form
� <= LEQ LEQ
< < Less Less
� >= GEQ GEQ
> > Greater Greater
= = Equal Equal
6= <> NEQ NEQ
+ + Plus Plus
� - Minus Minus
� * Times Times
/ / Divide Divide

** Power Power
^ Power Power

�= =~ OpEqn OpEqn
� +~ OpSum OpSum
	 -~ OpMinus OpMinus
� *~ OpProd OpProd
n \ OpDiff OpDiff

112

rule token = parse

| " "

| "\t"

| "\n" (* skip blanks *)

| ["=" "<" ">"]+ ["~" "^" "#"]* { INFIXOP1 }

| ["+" "-"]["~" "^" "#"]* { INFIXOP2 }

| "\\" ["~" "^" "#"]* { INFIXOP5 }

| "**" ["~" "^" "#"]* { INFIXOP4 }

| "^" ["~" "^" "#"]* { INFIXOP4 }

| ["*" "/"]["~" "^" "#"]* { INFIXOP3 }

| ["0"-"9"]* ("." ["0"-"9"]*)

(["e" "E"] ["+" "-"]? ["0"-"9"]+)? { FLOAT }

| ["0"-"9"]+ { INT }

| "`" { SYMBOL }

| "\"" { STRING }

| "(" { LPAREN }

| ")" { RPAREN }

| "[" { LBRACKET }

| "]" { RBRACKET }

| "{" { LBRACE }

| "}" { RBRACE }

| "," { COMMA }

| ["a"-"z" "A"-"Z" "_"]

["a"-"z" "A"-"Z" "_" "0"-"9"]* { SYMBOL }

| "!"

["a"-"z" "A"-"Z" "_" "0"-"9"]+ { MATCH_SYM }

| eof { EOF }

| _ { Illegal character }

and string = parse

| "``" { constituent }

| "`" { finish }

| "\\" ("\010" | "\013" | "\013\010")

[" " "\009"] * { constituent }

| "\\" ["\\" """ "n" "t" "b" "r"] { constituent }

| eof { error }

| "\n" { constituent }

| _ { constituent }

and real_string = parse

| "\"\"" { constituent }

| """ { finish }

| "\\" ("\010" | "\013" | "\013\010")

[" " "\009"] * { constituent }

| "\\" ["\\" """ "n" "t" "b" "r"] { constituent }

| eof { error }

| "\n" { constituent }

| _ { constituent }

Figure 6.3. The ocamllex lexer portion of the program implementing the BNF
grammar of Figure 4.3. There are three types of lexeme, token, string and
real string; the analyzer for each starts with the parse keyword. The attached
actions are simplified here for illustration. Together with the special lexemes
of Table 6.1 (for recognized INFIXOPs and functions), the parser of Figure 6.4
and a pattern matcher, this forms the input reading and verification portion for
Figure 6.1, node pre collocation. The full program is 219 lines.

113

(* Precedences and associativities. Lower precedences come first. *)

%left COMMA (* sequences *)

%left INFIXOP1 (* = < > etc *)

%left INFIXOP2 (* + - *)

%left INFIXOP3 (* * / *)

%nonassoc UMINUS (* unary - *)

%right INFIXOP4 (* **, ^ *)

%left INFIXOP5 (* \ *)

%nonassoc LPAREN LBRACKET LBRACE

%nonassoc CALL (* function call, structure index *)

%%

main:

expr_list EOF { (rev $1) }

;

expr:

INT { Int($1) }

| FLOAT { Float($1) }

| STRING { String($1) }

| SYMBOL { Symbol($1) }

| MATCH_SYM { Match_sym($1) }

| LBRACKET expr_list RBRACKET { List (rev $2) }

| LBRACE expr_list RBRACE { Set (rev $2) }

| LPAREN expr RPAREN { $2 }

| expr INFIXOP1 expr { binary_oper $2 ($1 , $3) }

| expr INFIXOP2 expr { binary_oper $2 ($1 , $3) }

| expr INFIXOP3 expr { binary_oper $2 ($1 , $3) }

| expr INFIXOP4 expr { binary_oper $2 ($1 , $3) }

| expr INFIXOP5 expr { binary_oper $2 ($1 , $3) }

| INFIXOP2 expr %prec UMINUS { unary_oper $1 $2 }

| expr LPAREN expr_list RPAREN %prec CALL { handle_function }

| expr LBRACKET expr_list RBRACKET %prec CALL { Indexed }

;

expr_list: { [] }

| expr { [$1] }

| expr_list COMMA expr { $3::$1 }

;

%%

Figure 6.4. The ocamlyacc expression parser of the program implementing
the BNF grammar of Figure 4.3. Calls to binary oper map the recognized infix
symbols of Table 6.1 to their internal form; calls to handle function map the
recognized functions. Together with the lexer of Figure 6.3, the special lexemes
of Table 6.1 and a pattern matcher, this forms the input reading and verification
portion for Figure 6.1, node pre collocation. The full program is 165 lines; here,
only the simplified rules are shown.

114

region * equation * side) to ((function * unknown * operator) list).

The list corresponds to a list of linear operator expressions of the form

f (x, y)Op(u)(x, y) (6.1)

and is later used for block construction.

See Figures 6.5 and 6.6 for samples of these generated files.

6.1.4 Modules dom data.ml and global data.ml

dom data.ml contains problem-specific user-provided numerical values; after

selecting appropriate values, it has the form of Figure 6.7.

The template data file T:global data is empty by default, and can be used to

introduce arbitrary user-defined functions.

6.2 Discretization
The production of [L] and [f] proceeds in three steps. First, the geometry and

sinc parameters are provided by the user in the file geometry. These are combined

by ocamlc, with the previously generated files code.ml and data.ml, the user-filled

template files dom data.ml and global data.ml, and the main part of the matrix

discretization algorithm provided in collocate.ml and the right-hand-side vector

discretization algorithm in collocate rhs.ml, to form the collocate and collocate-rhs

programs. Second, the program collocate is run to produce the matrix blocks

constituting [L] while collocate-rhs is run to produce the vector blocks constitut-

ing [f]. The matrix blocks are stored in portable binary format in bin-full-data;

the vector blocks are stored in rhs-bin-1. The starting indices of the unknowns’

coefficients in the vector [u] (which are column offsets in [L]) are stored in

bin-col-o�set for later use in solution reconstruction. Third, multiple values for

given matrix/vector entries are resolved by post-collocate/post-collocate-rhs, and

the full matrix is made available in the compressed sparse row (CSR) format file

ascii-c-inp-csr, and a coordinate format file ascii-coord. The right-hand-side vector

no real need in OCAML to provide functions via top-level definitions; a single file would have
sufficed. This is a good example of the handicaps of FORTRAN, C, C++ and JAVA.

115

(* Header.*)

open Coll_gen_dom_data ;;

(* Generated code. *)

let _gensym_f1 x y = 1.0

...

let _gensym_f127 x y =

((2.0*. (!Dom_2._mu))*. (!Dom_2._nu))/.

(-1.0+. 2.0*. (!Dom_2._nu))

...

let _gensym_f368 x y = 0.0

Figure 6.5. Generated Functions implementing the coefficients of linear opera-
tors, corresponding to Figure 6.1, node code.cmo. Total length is 385 lines; most
deleted entries return the values 0.0, �1.0 or 1.0. The Dom 1 etc. parameter
modules are defined in domain data.cmo.

(* Header.*)

open Collocation_types;;

let code_str = empty_code_struct() ;;

let ins key value = Hashtbl.add code_str.cd_dom_table key value ;;

(* Generated code. *)

let _ = ins (1, Top, 1, Lhs) [

{ cd_f = Coll_gen_code._gensym_f1 ; cd_op = I ;

cd_u = "u1" }];;

let _ = ins (1, Top, 1, Rhs) [

{ cd_f = Coll_gen_code._gensym_f2 ; cd_op = I ;

cd_u = "" }];;

...

let _ = ins (4, RightOL, 2, Lhs) [

{ cd_f = Coll_gen_code._gensym_f367 ; cd_op = I ;

cd_u = "u2" }];;

let _ = ins (4, RightOL, 2, Rhs) [

{ cd_f = Coll_gen_code._gensym_f368 ; cd_op = I ;

cd_u = "" }];;

Figure 6.6. Generated functions/operator table providing the coefficients of
the linear operators to collocate. This listing corresponds to Figure 6.1, node
data.cmo. Total length is 639 lines. gensym * references are defined by code.ml;
the ins function adds entries to the (domain * region * equation * side) ! ((func-
tion * unknown * operator) list) table used by collocate.

116

module Dom_1 = struct

let _nu = ref 0.33

let _sigma = ref 1.00

let _mu = ref 1.0

end

module Dom_2 = struct

let _nu = ref 0.33

let _sigma = ref 1.00

let _mu = ref 1.0

end

module Dom_3 = struct

let _nu = ref 0.33

let _sigma = ref 1.00

let _mu = ref 3.21

end

module Dom_4 = struct

let _nu = ref 0.33

let _sigma = ref 1.00

let _mu = ref 3.21

end

let domainNames = [

(1, ["_nu"; "_sigma"; "_mu"]) ;

(2, ["_sigma"; "_mu"; "_nu"]) ;

(3, ["_mu"; "_nu"; "_sigma"]) ;

(4, ["_nu"; "_sigma"; "_mu"])]

Figure 6.7. Rectangle- and problem-specific numerical constants, corresponding
to Figure 6.1, node dom data.cmo.

117

is made available as simple vector in rhs-ascii-c-inp, and using coordinate format

in rhs-ascii-coord.

6.2.1 Module geometry

The geometry file contains problem geometry and sinc numerical parameters;

a sample is shown in Figure 6.8.

6.2.2 Modules collocate.ml and collocate-rhs.ml

In this section, the algorithm generating the discrete sparse matrix blocks and

their alignment is described. The calculation of the rhs vector (shown by the -rhs

nodes) is similar and simpler, and will not be described.

The calculation of any single entry is shown in Figure 6.9.

The functions using these data could be “pure”, i.e., they would have no

state, take only the indicated argument (anonymously — without requiring that

the value has the global name shown), and return only an anonymous instance

of the indicated type. Unfortunately this is only the first of two steps, and the

second step, accumulation of these entries into a data structure, was done in a

fully imperative style, as shown in Figure 6.10.4

The result of accumulating the individual entries is a table with four indices,

each entry of which is a sparse matrix block in CSR5 format and its associated

offset in the full matrix. More precisely, the result is a structure of type

val gBlocks_table :

(domain * region * equation * unknown,

column_block list)

Hashtbl.t ref

with subtypes

type region =

Top | Left | Bottom | Right | Interior |

TopOL | LeftOL | BottomOL | RightOL and

equation = int and

4 This greatly complicated existing routines and data flow, and was a poor choice; a simpler
functional version may be written in the future.

5 Compressed Sparse Row.

118

let pi = 3.1415926535897932385

let po2 = pi/.2.0

let dom_num_grid = [| (* Domain numbers, starting from 1. *)

[| 1; 2 |] ;

[| 4; 3 |]

|]

and dom_x_bounds = (* Positions of the boundaries.*)

[| 0.0 ; 1.0 ; 28.0 |]

and dom_y_bounds = [|

27.0 ;

0.0 ;

-27.0

|]

and dom_x_sinc_alpha =

[| 1.0 ; 1.0 |]

and dom_y_sinc_alpha = [|

1.0 ;

1.0

|]

and dom_x_sinc_d =

[| po2 *. 1.19 ; po2 *. 1.19 |]

and dom_y_sinc_d = [|

po2 *. 1.19;

po2 *. 1.19

|]

and dom_x_terms = (* Series summation limits. *)

[| (3, 3); (3, 3) |]

and dom_y_terms = [|

(3, 3) ;

(3, 3)

|]

and gTrue_unknowns = ["u1"; "u2"] and

g1st_order_sys_unknowns = ["u11"; "u12"; "u21"; "u22"]

Figure 6.8. Geometry and sinc numerical parameters for sinc core. These data
correspond to Figure 6.1, node geometry.cmo.

119

point_iter

gPoint_index

gRow_index

apply_lu

series_term_iter

gEntry

gColumn_index

gTerm_index

dom_loop

gDom_num gDom_data

region_loop

unknown_term_iterrow_offset

columns_offset

gPoint_set_list

gRegion

equation_loop

gEqn_num

gUnknown_name gOper

gColl_funcs

gSide

gRow_offset

gColumn_offset

Figure 6.9. Calculation of any single entry of the collocation matrix. This graph
shows the core idea of Figure 6.1, node collocate. The shaded rectangles are
functions, the plain rectangles data; solid lines indicate data creation.

120

point_iter

gPoint_index

gRow_index

apply_lu

series_term_iter

gEntry

insert_new_row

gTerm_index

gColumn_index

gColumn_data_pointer

row_insert_value

gCurrent_row

gCurrent_row_array

insert_new_block_list

gBlocks_table

gColumn_offset

gRow_offset

dom_loop_start

point_iter_start

series_term_iter_start

gPoint_set_list

row_offset

gOper

gDom_data

region_loop

unknown_term_iter

gRegion

equation_loop

gDom_num

columns_offset

gEqn_num

gUnknown_name

dom_loop

gColl_funcs

gSide

Figure 6.10. Calculation and accumulation of all collocation matrix entries; this
graph shows the full internals of Figure 6.1, node collocate. The shaded rectan-
gles are functions, the plain rectangles data; solid lines indicate data creation,
and dashed lines are modifications/additions to existing state. The module
implementing this is 682 lines; the type definitions and utility functions take
up another 293 lines.

121

domain = int and

unknown = string and

column_block = { column_offset : int ;

row_offset : int ;

csr_block : mat_entry array array}

and
type mat_entry = { column_index : int ; entry : float }

Most of these matrix blocks have correct positions; the overlap blocks’ positions

are adjusted later by collocate.

The addition of value accumulation to Figure 6.9 results in Figure 6.10.

Functions of the same name in Figure 6.10 are longer, expanded versions of

those in Figure 6.9, while data of the same name remains unchanged. The

functions in Figure 6.10 were implemented in a simple imperative style: they

read module-level variables, and write to module-level variables. The functions

themselves thus have type unit -> unit.

Having shown the data flow in Figure 6.10, a figure illustrating control

flow (function calling order) is helpful. To avoid further complexity in existing

figures6, the control flow is shown separately in Figure 6.11.

The functions in these figures are all implemented in collocate.ml; because

of their complexity, a more detailed explanation is in order. Following are

descriptions of the types of the data, together with short explanations of the

functions of Figure 6.10; this should give sufficient detail to allow independent

implementation. Purposely omitted here are dependencies on core sinc func-

tionality, data obtained from other modules previously described, and utility

functions from the other modules.

It should be noted that gSide has type type side = Lhs | Rhs and its value is

always Lhs for collocate, and Rhs for collocate-rhs.

6.2.2.1 Function dom loop start

A trivial function meant to clarify program flow, dom_loop_start initializes

the gBlocks_table and calls dom_loop.

6 The direct addition of control flow information to Figure 6.10 results in an unreadable graph.

122

dom_loop_start

dom_loop

region_loop

equation_loop

unknown_term_iter

row_offset

columns_offset

point_iter_start

point_iter

1

insert_new_block_list

2

series_term_iter_start

series_term_iter

1

insert_new_row

2

apply_lu

row_insert_value

Figure 6.11. Nested function call sequence for calculation and accumulation of
all collocation matrix entries.

123

6.2.2.2 Function dom loop

This loop iterates over all domains (rectangles) in the dom_num_grid array of

collocate_geometry.ml; for every domain it sets the values

val gDom_data : dom_data ref

and

val gDom_num : domain ref,

of types

type dom_data =

{ a_1: float;

b_1: float;

m_1: int;

n_1: int;

a_2: float;

b_2: float;

m_2: int;

n_2: int;

alpha_1: float;

d_1: float;

alpha_2: float;

d_2: float }

and

type domain = int,

respectively. It then calls region_loop to continue.

6.2.2.3 Function region loop

This loop iterates over all regions, and for those relevant to the current

domain, produces

val gRegion : region ref

and

val gPoint_set_list : point_set list ref;

the types in full are

type point_set =

{ x_min_index: int;

x_max_index: int;

y_min_index: int;

y_max_index: int }

124

and

type region =

Top

| Left

| Bottom

| Right

| Interior

| TopOL

| LeftOL

| BottomOL

| RightOL

respectively.

It then calls equation_loop.

6.2.2.4 Function equation loop

This loop iterates over all equations in the current region, setting

val gEqn_num : equation ref and calling unknown_term_iter each time. Equa-

tions are described by type equation = int.

6.2.2.5 Function unknown term iter

Using the gDom_num, gRegion, gEqn_num and Lhs as indices, unknown_term_iter

retrieves the list of (coefficient, operator, unknown) terms provided by

pre_collocation, and for every term, sets gOper, gUnknown_name and gColl_funcs,

and calls row_offset.

The list of coefficients provided by pre_collocation is accessed via the helper

function

val get_triple_list :

domain * region * equation * side -> code_linop_triple list

The first two types are trivial:

val gOper : operator ref

with

type operator = I | D1 | D2,

and

val gUnknown_name : unknown ref

125

with

type unknown = string,

while the third type is more interesting:

val gColl_funcs : coll_funcs ref

of

type coll_funcs =

{ lu: int ->

int -> float -> float -> int -> int -> float;

x_j: int -> float;

y_k: int -> float }

In type coll_funcs, lu is a closure providing

lu(i, j, x, y, k, l) = f (x, y)Op
�
γi(x)γ j(y)

�
(xk, yl) (6.2)

where Op is one of fI, ∂x, ∂yg, xk is sinc point k in the x-direction, and yl is sinc

point l in the y-direction. Also provided are the functions x_j and y_k which map

the integer indices of the sinc collocation points to the actual point positions.

6.2.2.6 Function row offset

This function’s sole purpose is to provide the appropriate row-index off-

set for the current domain, region, and equation, and continue by calling

columns_offset. It provides the offset in gRow_offset. As may be expected, the

offset is a simple integer: val gRow_offset : int ref.

6.2.2.7 Function columns offset

Another simple function, columns_offset provides the starting column ap-

propriate to the current domain and unknown in gColumn_offset; this again

has the simple type val gColumn_offset : int ref. Control then passes to

point_iter_start.

6.2.2.8 Function point iter start

This function is the first to serve two purposes, the calculation of values, and

their accumulation. To this end, the gCurrent_row_array is initialized, and filled

126

via the call to point_iter; this array is then stored in the gBlocks_table by a call

to insert_new_block_list.

The types are

val gCurrent_row_array : mat_entry array array ref

and

type mat_entry = { column_index: int; entry: float };

together, these form CSR blocks.

6.2.2.9 Function point iter

For every point in the current region’s point set, this function sets the

gPoint_index and gRow_index and calls series_term_iter_start. The values set

are simple,

val gPoint_index : point_index ref

with

type point_index = { x_ind: int; y_ind: int }

and val gRow_index : int ref. This function corresponds to the (point) τ map-

ping mentioned in the method chapter, Section 4.5.3, and provides the mapping

of two-dimensional index pairs to a one-dimensional vector (j, k) ! l.

6.2.2.10 Function series term iter start

Another dual-purpose function, series_term_iter_start sets up the

gCurrent_row, fills it via a call to series_term_iter, and stores the accumulated

values via insert_new_row.

The value

val gCurrent_row : mat_entry array ref

holds a single compressed row vector.

6.2.2.11 Function series term iter

Every unknown is represented by the series

∑
i

∑
j

ci jγi(x)γ j(y) (6.3)

127

Using gDom_data to determine limits for i and j and gPoint_index to determine

the current position (x, y), series_term_iter sets proper values for gTerm_index,

gColumn_index, and gColumn_data_pointer using the current gOper, and calls

apply_lu to calculate the current entry’s value.

The value

val gTerm_index : term_index ref

with

type term_index = { serInd_1: int; serInd_2: int }

provides the (i, j) indices for the series, while val gColumn_index : int ref

provides the single column index for the current unknown; it is used with

gColumn_offset to get the proper final index into the matrix [L].

Lastly,

val gColumn_data_pointer : int ref

provides the value’s proper index for insertion into gCurrent_row.

6.2.2.12 Function apply lu

Using gTerm_index gPoint_index and gColl_funcs, set the value of gEntry and

continue with row_insert_value.

Of course, the type is val gEntry : float ref.

6.2.2.13 Function row insert value

Using gColumn_data_pointer and gColumn_index, add the current gEntry to

gCurrent_row.

6.2.2.14 Function insert new row

Another trivial function used to clarify the program, insert_new_row inserts

the gCurrent_row into the gCurrent_row_array at the index gRow_index.

6.2.2.15 Function insert new block list

This function constructs a column_block using the now com-

pleted gCurrent_row_array, gRow_offset and gColumn_offset, and

128

inserts the column_block into the gBlocks_table, under the index

(gDom_num, gRegion, gEqn_num, gUnknown_name).

The types are

val gBlocks_table :

(domain * region * equation * unknown, column_block list)

Hashtbl.t ref

with

type column_block =

{ column_offset: int;

row_offset: int;

csr_block: mat_entry array array }

and

val gRow_index : int ref

6.2.3 Module bin-col-o�set

Every unknown is represented by a series

∑
i

∑
j

ci jγi(x)γ j(y); (6.4)

all of these ci j are contained in [u], which is eventually stored in solution-ascii.

This file contains the starting positions of ci j for every unknown in every

domain, in the form of a table mapping a given (domain, unknown) pair to the

starting index of the corresponding coefficient subvector. The datum thus has

type (domain * unknown, int) Hashtbl.t.

6.2.4 Module post-collocate

post-collocate serves two functions. First, there may be multiple values for a

given matrix entry. These arise when an unknown appears multiple times in an

(function * unknown * operator) list, and are always added. Multiple val-

ues for a rhs vector entry always arise for overlap equations; these are also added

together. The second purpose of post-collocate is to make the computed matrix

available in a form suitable for standard linear system solvers, by providing a

129

compressed sparse row (CSR) format file ascii-coord, and a coordinate format file

ascii-c-inp-csr.

The final result of all the work done by collocate and post-collocate (see Fig-

ure 6.1) is the matrix [L] in CSR format.

6.2.5 Modules ascii-c-inp-csr, bin-full-data and ascii-coord

The files ascii-c-inp-csr, bin-full-data and ascii-coord contain the double precision

matrix entries of [L] in compressed sparse row, binary, and coordinate format,

respectively. A typical block structure for a four-rectangle problem is shown in

Figure 6.12 without block labels, and the first rectangle is magnified and shown

with legible block labels in Figure 6.13.

These matrices have the block structure described in Section 4.5.2.

6.3 Solution
sp-solve is a simple wrapper around the SUPERLU package7 of (Demmel,

Eisenstat, Gilbert, Li, and Liu 1999); it reads the data for [L] from ascii-c-inp-csr,

the data for [f] from rhs-ascii-c-inp, and writes [u] to solution-ascii as a single vector

in double-precision format.

Although the original matrix [L] is sparse with O(m3) entries8, the direct

factorization causes severe fill, reverting to O(m4) entries. Along with this fill,

the work effort reverts to O(m6). See Section 8.1.3 for possible ways of avoiding

these problems.

6.4 Reconstruction and evaluation
Just as the nested tree form for specification of input equations was necessary

for practical use, so is the disassembly of the answer vector into its constituent

unknown coefficients, and the encapsulation of those into simple, user-callable

functions.

7 At the time of this writing, version 2.0 is most recent, available at http://www.nersc.gov/
~xiaoye/SuperLU/superlu_2.0.tar.gz.

8 In practice, m is between 25 and 80

130

Figure 6.12. Matrix structure sample without labels. This picture shows one
possibility for the contents of Figure 6.1, node ascii-coord. For a subset with
labeled blocks, see Figure 6.13. All blocks are sparse themselves. M = N = 3,
matrix size 1176 � 1176, 11884 nonzeros, 0.86% fill.

131

u2-6-Top-1

u21-5-Interior-1

u2-2-Bottom-1

u22-6-Top-1

u1-4-Top-1

u1-2-Left-1

u11-3-Top-1

u2-6-Bottom-1 u22-6-Bottom-1

u12-1-Interior-1

u22-2-Interior-1

u1-4-Bottom-1
u11-3-Bottom-1

u2-6-Interior-1

u11-1-Right-1
u21-2-Right-1

u22-6-Interior-1

u1-4-Interior-1

u11-3-Interior-1

u2-5-Top-1

u2-1-Bottom-1

u12-4-Top-1
u1-3-Top-1

u2-5-Bottom-1

u21-1-Left-1

u12-4-Bottom-1
u1-3-Bottom-1

u21-5-Left-1

u2-5-Interior-1

u12-4-Interior-1

u1-3-Interior-1

u11-2-Interior-1

u21-5-Right-1

u2-6-Left-1 u22-6-Left-1

u1-4-Left-1

u1-2-Bottom-1

u11-3-Left-1

u2-6-Right-1 u22-6-Right-1

u1-4-Right-1
u11-3-Right-1

u11-1-Interior-1

u21-2-Interior-1

u1-1-Top-1

u2-5-Left-1
u12-4-Left-1

u1-3-Left-1

u1-1-Bottom-1

u21-5-Top-1

u2-5-Right-1
u12-4-Right-1

u1-3-Right-1

u21-5-Bottom-1

u21-1-Interior-1

u2-2-Top-1

Figure 6.13. Matrix structure sample with labeled blocks for the domain 1 part
of Figure 6.1, node ascii-coord. The full structure is shown in Figure 6.12. The
label format is unknown-equation-region-domain. All blocks are sparse themselves.
M = N = 3.

132

The user-provided files function-names and domain-geometry contain the list

of functions to evaluate and the points at which to evaluate them. The

eval writeData program is first formed by ocamlc and incorporates the full ge-

ometry and sinc data from geometry.ml, other user data from global data.ml, and

the MAPLE parser from maple parser lib.cma. On execution, eval writeData reads

the full solution vector [u] (from solution-ascii), the offsets of the ci j in that vec-

tor (from bin-col-o�set, and the output specifications (from function-names and

domain-geometry); a regular grid is produced and written (in portable binary

form) to data-grids.

6.4.1 Modules domain-geometry and function-names

The files function-names and domain-geometry specify which functions to form

and where to evaluate them, respectively. Samples of these files are in Figure 6.14

and Figure 6.15. A typical grid on the rectangle (0, 1) � (0, 1) was shown in

Figure 2.1 on page 16.

6.4.2 Module calc value funcs.cmo

The purpose of this module is the production of directly-callable interpolat-

ing functions ui(x, y). It forms these using the provided domain-specific sinc

data, subvectors of the solution vector [u], and auxiliary sinc-related functions.

6.4.3 Module eval writeData

This executable reads the interpolants’ coefficients ci j from solution-ascii,

uses the information in bin-col-offset to form the interpolants

ukjl = ∑
i

∑
j

ci jγi(x)γ j(y) (6.5)

requested in function-names, and evaluates them at the points specified in

domain-geometry.

The calculated data sets are stored in a collection of files, collectively called

data-grids here.

133

6.4.4 Module data-grids

This is the collection of data files produced as the result of one run. Each file

is in portable binary form and contains a value of the structure

type gridData =

{ position_x: float array;

position_y: float array;

yx_values: float array array }

134

full_info=[

1=[

x1=[

num_pts=28,

pts=[

1.2328627002591529e-02, 2.0348051646723202e-02,

3.9674829386731218e-02, 1.0692431112128870e-01,

2.0519323334096654e-01, 3.0346215556064438e-01,

4.0173107778032219e-01, 5.0000000000000000e-01,

5.9826892221967787e-01, 6.9653784443935574e-01,

7.9480676665903371e-01, 8.2789462830000005e-01,

8.5782812710000000e-01, 8.9307568887871158e-01,

9.1586246159999996e-01, 9.2616915422900004e-01,

9.3785441989999996e-01, 9.4915422885599998e-01,

9.6032517061327216e-01, 9.7023146959999995e-01,

9.7965194835328495e-01, 9.8767137299739172e-01,

9.8836515300000005e-01, 9.9099999999999999e-01,

9.9174177687504261e-01, 9.9343283582099995e-01,

9.9600000000000000e-01, 9.9800000000000000e-01],

sinc_bounds=[1.4813528826400526e-02, 9.8518647117359948e-01],

geometry_bounds=[0.0000000000000000e+00, 1.0000000000000000e+00]],

x2=[

num_pts=38,

pts=[

8.9478693000000003e-04, 1.0000000000000000e-03,

...

1.0994605135293519e+01, 1.1829736756862346e+01],

sinc_bounds=[3.9996527831281420e-01, 2.6600034721687184e+01],

geometry_bounds=[0.0000000000000000e+00, 2.7000000000000000e+01]]],

...]

Figure 6.14. Sample plot point specification, truncated for illustration. This
input file corresponds to Figure 6.1, node domain-geometry, where it is used by
eval writeData. It is usually generated from other sources.

functions_to_plot=[

[domain, name, operator]=[3, u1, I], [domain, name, operator]=[2, u1, I],

[domain, name, operator]=[1, u1, I], [domain, name, operator]=[4, u2, D2],

[domain, name, operator]=[3, u2, D2], [domain, name, operator]=[2, u2, D2],

[domain, name, operator]=[1, u2, D2], [domain, name, operator]=[4, u2, D1],

[domain, name, operator]=[3, u2, D1], [domain, name, operator]=[2, u2, D1],

[domain, name, operator]=[1, u2, D1], [domain, name, operator]=[4, u2, I],

[domain, name, operator]=[3, u2, I], [domain, name, operator]=[2, u2, I],

[domain, name, operator]=[1, u2, I], [domain, name, operator]=[4, u1, D2],

[domain, name, operator]=[3, u1, D2], [domain, name, operator]=[2, u1, D2],

[domain, name, operator]=[1, u1, D2], [domain, name, operator]=[4, u1, D1],

[domain, name, operator]=[3, u1, D1], [domain, name, operator]=[2, u1, D1],

[domain, name, operator]=[1, u1, D1], [domain, name, operator]=[4, u1, I]]

Figure 6.15. Sample function name specification. This input file corresponds to
Figure 6.1, node function-names, where it is used by eval writeData.

CHAPTER 7

EXAMINATION OF THE QUESTION OF

CONVERGENCE

This chapter presents definitions and theorems relevant to the algorithm

and its convergence. There are three parts, preliminaries, solution results, and

evaluation results.

The preliminaries unify and generalize existing results from several sources.

Full proofs are provided for completeness.

The solution results comprise new definitions, requirements, and theorems

relevant for the setup and solution of a linear algebraic system from a given

linear elliptic system of PDEs. Definition 7.23 describes the structure of solvable

systems; Theorem 7.24 and Theorem 7.25 state the requirements of solutions and

coefficients, and give error bounds on the computed solution.

Lastly, new theorems concerning the use of computed results in the evalu-

ation of unknowns at nonsinc points are provided; in particular, evaluation of

functions of the proper class is no problem, but Theorem 7.27 also provides the

justification for approximation of unbounded derivatives of these functions on a

subset of the original domain.

The sinc interpolant is naturally defined on a region surrounding the real line;

here, it is needed on a finite interval. These regions are more precisely defined

in the following.

Definition 7.1 (Dd,D,φ,ψ) Pick d > 0 and define the strip Dd by

Dd = fw 2 C :j=wj < dg (7.1)

136

Given a region D containing a contour � in C with endpoints a and b on the boundary

of D, φ is a one-to-one conformal map with the properties φ : � ! R, φ(x) ! �1 as

x ! a,φ(x)!1 as x ! b andφ : D ! Dd

Defineψ � φ�1; then the region D is the image

D = ψ(Dd) (7.2)

Figure 7.1 shows a typical example for the functions φ(x) = ln(x� a)/(b � x)

and ψ(z) = (exp(z)b + a)/(exp(z) + 1) using values d = π/3, a = 1, and

b = 3. These functions are also the ones used in the remainder of this work;

the eye-shaped region shown in the figure will be referred to as De. Many other

maps are available; see (Stenger 1993a), Section 1.7.

The sinc interpolant naturally interpolates exponentially decaying functions

on the real line. The following definition generalizes that interpolation ability to

a class of functions, via a use of the previously defined conformal map,φ.

-1.5

-1

-0.5

0

0.5

1

1.5

-15 -10 -5 0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 1.5 2 2.5 3

d

φ

DdD

ψ

d

Figure 7.1. A part of the strip-shaped infinite region Dd and its image D, for
φ(x) = ln(x� a)/(b� x), ψ(z) = (exp(z)b + a)/(exp(z) + 1), d = π/3, a = 1,
b = 3. The points kh : k 2 Z are mapped to [a, b].

137

Definition 7.2 (ρ, Lα) For the region Sd = fz 2 C : j arg zj < dg , the map ρ : D !
Sd is defined as

ρ(z) = eφ(z) (7.3)

Notice that for z 2 R, ρ : � ! [0,1). Givenα > 0, d > 0 and a region D, denote by

Lα the family of all functions F(z) analytic and uniformly bounded inD so that 8z 2 D,

jF(z)j � Cjρ(z)jα
j1 + ρ(z)j2α (7.4)

for some C > 0.

On R usingφ(z) = z, this criterion is

jF(z)j � Cjezjα
j1 + ezj2α (7.5)

so as z ! 1, jF(z)j � C1je�αzj and as z ! �1, jF(z)j � C2jeαzj and Lα is the

class of exponentially decaying functions.

On [a, b] using

φ(z) = ln(z � a)/(b � z), (7.6)

ψ(z) is given by

ψ(z) =
ezb + a
ez + 1

(7.7)

and

jF(z)j � C
���� z � a
b � z

����
α����b � z

b � a

����
2α

= C1jz � ajαjb � zjα (7.8)

so as z ! a+, jF(z)j � C2jz � ajα and as z ! b�, jF(z)j � C3jb � zjα. Thus,

algebraic decay near the endpoints is required of Lα functions in this case.

The following space is useful in several theorems, but is not otherwise used.

Definition 7.3 (Spaces) H1(D) is the space of all functions f analytic and uniformly

bounded in D, i.e.,

sup
z 2D

j f (z)j <1. (7.9)

Define N(f ,D) as

N(f ,D) �
Z
D
j f (z)jjdzj. (7.10)

Then H1(D) is the space of all functions f such that f is analytic in D and N(f ,D) <

1.

138

As an extension of the preceding definitions, the general class of functions

dealt with by the sinc interpolant can now be defined.

Definition 7.4 (Mα) Letα 2 (0, 1] and d 2 (0, π). Define f as

f (z) = g(z) � tL(x)g(a)� tR(x)g(b) (7.11)

Then Mα(D) denotes the family of functions g 2 H1(D) such that f 2 Lα(D).

On [a, b], this definition reduces to

f = g �
�
(b � z)g(a) + (z � a)g(b)

b � a

�
(7.12)

Functions in the Mα(D) class may have nonzero values at the endpoints, and

this class is used in the remainder of this work.

The following definition presents a concise summary of one-dimensional

approximation. Omitted for now are the precise conditions on the function to

be approximated, and the expected convergence rate. Those are the subject of

the later proofs.

Definition 7.5 (Approximation in one dimension) For a given N > 0, the jth sinc

point is given by

zj = φ�1(jh) = ψ(jh) (7.13)

where the sinc spacing parameter is

h =

r
πd
αN

. (7.14)

The sinc function is defined as

sinc(x) =
sin(π x)
π x

; (7.15)

using the definitions

tL(x) =
1

1 + ex Æφ(x), (7.16)

S(j, h)(x) = sinc
�

x � jh
h

�
, (7.17)

139

Sj(x) = S(j, h) Æφ(x), (7.18)

tR(x) =
ex

1 + ex Æφ(x), (7.19)

and

ωk(x) =

8>>>>>><
>>>>>>:

tL(x) �
N

∑
j=�N+1

tL(xj)Sj(x) k = �N

Sk(x) k 2 �N + 1..N � 1

tR(x) �
N�1

∑
j=�N

tR(xj)Sj(x) k = N

, (7.20)

the sinc interpolant on � is defined by

N

∑
k =�N

f (zk)ωk(x). (7.21)

The names tL(x) and tR(x) indicate the use of these spline-like terms to

represent the interpolant’s value at the left, respectively right, endpoint of an

interval.

In the following, the norm k � k is the maximum norm on �, i.e., for f (z) 2 �,

k f (z)k = max
z2�

j f (z)j, (7.22)

and C, C1, C2, . . . denote positive constants independent of the number of terms

in the associated series (N, Nji,x and Nji,x). Constants of the same name occurring

in different theorems are, of course, distinct.

For brevity, define the operators

(T f)(x) = f (a)tL(x) + f (b)tR(x), (7.23)

(T f)(x) = f (x�N)tL(x) + f (xN)tR(x) (7.24)

and their derivatives

(T
0
f)(x) = f (a)t0L(x) + f (b)t0R(x) (7.25)

and

(T0 f)(x) = f (x�N)t0L(x) + f (xN)t0R(x). (7.26)

140

For x 2 �, let y = φ(x) 2 R and note the following bounds:

jtL(x)j =

���� 1
ey + 1

���� � 1

jtR(x)j =

���� 1
e�y + 1

���� � 1���� t0L(x)
φ0(x)

���� � 1
4���� t0R(x)

φ0(x)

���� � 1
4

(7.27)

The following lemma simply shows that the left “spline” has near-zero value

(for large N) at the rightmost sinc point, and vice versus. This is then used in the

next lemma.

Lemma 7.6 (Orthogonalization residual) For N > 1,

jtL(xN)j � e�
p
πdαN (7.28)

jtR(x�N)j � e�
p
πdαN (7.29)

Proof: For the first part,

jtL(xN)j =
1

eNh + 1
� 1

eNh � e�
p
πdαN (7.30)

asα 2 (0, 1]. A similar inequality holds for the second part. � � �
The following lemma is the connection between prior work by (Stenger

1993a), Section 6.5, and (Schwing 1976), which used function values at end-

points, and the present work. In the former, special sinc points on the boundary

of a domain were used, while in the present work, all points are regular interior

sinc points. This is also the reason for the closure-like notation Tg for boundary-

including approximations, and Tg for strictly interior approximations.

Lemma 7.7 (Projection distance) Given a function g 2 Mα(D),

j(Tg)(x) � (Tg)(x)j � Ce�
p
πdαN (7.31)

and ��� 1
φ0(x)

�
(T

0
g)(x) � (T0g)(x)

���� � Ce�
p
πdαN (7.32)

141

Proof: Notice that

j(Tg)(x)� (Tg)(x)j = j[g(a) � g(x�N)]tL(x) + [g(b) � g(xN)]tR(x)j (7.33)

and��� 1
φ0(x)

�
(T

0
g)(x) � (T0g)(x)

���� =���� 1
φ0(x)

���� ���[g(a)� g(x�N)]t0L(x) + [g(b) � g(xN)]t0R(x)
���, (7.34)

so Equations 7.31 and 7.32 will follow if jg(a)� g(x�N)j and jg(b)� g(xN)j can

be bounded, as the remaining terms are already bounded in Equation 7.27. To

show jg(a)� g(x�N)j � Ce�
p
πdαN, use g 2 Mα to obtain

jg(z�N)� tL(z�N)g(a) � tR(z�N)g(b)j � Ce�Nhα � Ce�
p
πdαN, (7.35)

observe that

jtL(z�N)� 1j = j e�Nh

1 + e�Nh j � e�Nh � e�
p
πdαN, (7.36)

and obtain the bound

jg(a)� g(z�N)j =

jg(z�N) � tL(z�N)g(a) � tR(z�N)g(b)

+ tR(z�N)g(b) + (tL(z�N) � 1)g(a)j
� e�

p
πdαN(C + g(b) + g(a))

(7.37)

using Equation 7.29. The bound for jg(b)� g(xN)j is derived analogously. � � �
In the next lemma, 	(n) is the digamma function, defined by

	(z) =
d
dz
�(z) = �

0(z)/�(z). (7.38)

For integral k and n,

	(n + 1) =
n

∑
k=1

1
k
� γ, (7.39)

but sums of the form ∑N
k=�N

1
π(k�x) , x 2 R, are needed. To this end, the recurrence

relation

	(x + 1) = 	(x) +
1
x

, (7.40)

142

valid for x 2 R, can be used to obtain the formula

k+n

∑
p =n

1
x � p

= 	(x + 1 � n) � 	(x � k � n) (7.41)

for x > p and k, n, p 2 Z with k > 0, and its twin

n

∑
p =n�k

1
p � x

= 	(1 + n � x) � 	(n � k � x). (7.42)

for x < p.

This new lemma is used repeatedly to prove convergence rates for interpola-

tion and differentiation; first, for generalized one-dimensional results, and later

for two-dimensional theorems.

Lemma 7.8 (Finite sum bound) For x 2 R,

N

∑
k =�N

jS(k, h)(x)j � 2
	(N + 3)

π
+ 2

γ

π
+ 2 � 1/π

� C1ln(N) + C2

(7.43)

and

N

∑
k =�N

jhS0(k, h)(x)j � [1 +
1

2π
]

�
2
	(N + 3)

π
+ 2

γ

π
+ 2 � 1/π

�

� C3ln(N) + C4

(7.44)

Proof: First bound the sum of values. For this, note the following piecewise

bounds for sinc(x):

jsinc(x)j �
�

1 for jxj < 1
j 1

x j for jxj � 1 (7.45)

Notice the sum in Equation 7.43 is even. This follows directly from the

observation jS(k, h)(x)j = jS(�k, h)(�x)j and some series rearrangement.

Next, consider two regions,

Ro = fx j � 1 < xh � �N � 1g (7.46)

and

Ri = fx j � N � 1 < xh � 0g (7.47)

143

Define Bo and Bi by

Bo =
	(N + 1 � x)

π
� 	(�N � x)

π
(7.48)

and

Bi =
	(x + N + 3)

π
+ 2

γ

π
+ 2 � 1/π +

	(N + 3 � x)
π

, (7.49)

respectively. By definition, 	0(x) = ψ1(x), and thus

B0
o = �ψ1(N + 1 � x)

π
+
ψ1(�N � x)

π
(7.50)

and

B0
i =

ψ1(x + N + 3)
π

� ψ1(N + 3 � x)
π

(7.51)

Then on Ro,

N

∑
k =�N

jS(k, h)(xh)j �
N

∑
k=�N

1
π (k � x)

= Bo(x) (7.52)

Now, ψ1(x) is monotone decreasing for x > 0, so B0
o > 0 and therefore Bo(x)

increases monotonically, and must have its largest value at the right boundary.

On the right boundary,

Bo(�N � 1) =
	(2 N + 2)

π
+
γ

π
(7.53)

On Ri,

N

∑
k =�N

jS(k, h)(xh)j �
N+2

∑
k=�N�2

jS(k, h)(xh)j

�
bxc�1

∑
k=�N�2

1
π(x � k)

+ 2 +
N+2

∑
k=bxc+2

1
π(k � x)

=
	(x + N + 3)

π
+ 2 +

	(N + 3 � x)
π

� 	(1 + x � bxc) + 	(2 � (x � bxc))
π

� Bi(x);

(7.54)

the last inequality follows from using the property 0 � x � bxc � 1 to find

the minimum of [(1 + x� bxc) + 	(2� (x� bxc))] to be 1� 2γ. By the same

144

monotonicity argument as used above, Bi has its maximum value on the right

boundary, and

Bi(0) = 2
	(N + 3)

π
+ 2

γ

π
+ 2 � 1/π (7.55)

Because 	(x) � ln(x) for large x, Bi(0) > Bo(�N � 1), giving the bound in

Equation 7.43.

Now, bound the derivative sum. For jxj � 2, sinc0(x) can be bounded as

follows.

jsinc0(x)j =

����cos(π x)
x

� sin(π x)
π x2

����
=

����1x
����
����cos(πx)� sin(πx)

πx

����
�
����1x
����
����1 +

1
2π

����
(7.56)

For 0 < jxj < 2, the same bound is easily verified empirically. As

hS0(k, h) = sinc0(x/h � k), (7.57)

Equation 7.44 now follows from the preceding argument using
�
1 + 1

2π

�
as the

scale in Equation 7.45. � � �
The following two theorems show the sinc interpolant to have exponential

convergence when interpolating functions in the right class. Both theorems are

stated in (Kowalski, Sikorski, and Stenger 1995), but only a partial proof is given

there. As they are a critical part of the present work, full proofs are provided

here.

Theorem 7.9 (Interpolation) If f 2 Mα(D), then

k f �
N

∑
j =�N

f (z j)ω jk � C
p

Ne�
p
πdαN (7.58)

Proof: This is shown in two parts. First, a bound is obtained for g(x) 2 Lα; using

this bound, Equation 7.58 is derived.

145

Part A: Theorem 119.1 of (Kowalski, Sikorski, and Stenger 1995) shows that

g(z) 2 Lα implies φ0(z)g(z) 2 H1(D). Using Theorem 126.1 of (Kowalski,

Sikorski, and Stenger 1995), with F(z) = φ0(z)g(z), the equation

g(x) � ∑
k 2Z

g(xk)Sk(x)

=
1

2π i

Z
∂D
φ0(z)g(z)

sin(πφ(x)/h)
φ(z) �φ(x)

dz
sin(πφ(z)/h)

(7.59)

follows.

To bound the integral, consider the following parts. For z 2 ∂D, φ(z) = �id

and ���� 1
sin(πφ(z)/h)

���� �
���� 1
sinh(πd/h)

���� � Ce�
p
πdαN (7.60)

By definition,φ0(z)g(z) 2 H1(D) gives
Z

∂D
jφ0(z)g(z)j jdzj � C (7.61)

For z 2 ∂D, =φ(z) = �d and for x 2 �,φ(x) 2 R, so

jφ(z)�φ(x)j � d (7.62)

and thus ����sin(πφ(x)/h)
φ(z)�φ(x)

���� � 1/d (7.63)

To bound the tails of the summation, start with the identity

S(k, h)(x) =
h

2π

Z π/h

�π/h
e(�it(kh�x))dt (7.64)

and obtain the bound for jSk(x)j

jSk(x)j =

����12
Z 1

�1
e�iuπ(kh�φ(x))/hdu

���� � 1 (7.65)

Further, g 2 Lα implies

jg(xk)j � Ce�hαjkj, (7.66)

146

which, together with the identities

N

∑
k =1

ekx = ex enx � 1
ex � 1

(7.67)

and

1
∑

k =0

e�kx =
1

1 � e�x , (7.68)

results in

∑
jkj >N

jg(xk)Sk(x)j � Ce�hαN e�hα

1 � e�hα � C
p

Ne�
p
πdαN (7.69)

The last inequality is obtained from a power series expansion of ehα.

Combining these results,

���g(x) �
N

∑
k =�N

g(xk)Sk(x)
���

=

����� ∑
jkj>N

g(xk)Sk(x) +
1

2π i

Z
∂D

φ0(z)g(z)
sin(πφ(z)/h)

sin(πφ(x)/h)
φ(z) �φ(x)

dz

�����
� C

p
Ne�

p
πdαN

(7.70)

Part B: For any x 2 [a, b] and f 2 Mα,

j f (x) �
N

∑
k =�N

f (xk)ωk(x)j

= j f (x) � (T f)(x) �
N�1

∑
k=�N+1

[f (xk) � (T f)(xk)]Sk(x)

+ f (x�N)tL(xN)SN(x) + f (xN)tR(x�N)S�N(x)j

= j f (x) � (T f)(x) �
N�1

∑
k=�N+1

[f (xk) � (T f)(xk)]Sk(x)

+ f (x�N)tL(xN)SN(x) + f (xN)tR(x�N)S�N(x)

� (T f)(x) + (T f)(x)

+
N�1

∑
k =�N+1

[(T f)(xk) � (T f)(xk)]Sk(x)j

� e�
p
πdαNfC1

p
N + C2 + C3 + C4 + (C5

p
N + C6)g

� C
p

Ne�
p
πdαN

(7.71)

147

The C1 term comes from Equation 7.70 because g(x) � f (x) � (T f)(x) 2 Lα,

C2 and C3 stem from Lemma 7.6, C4 originates from Lemma 7.7, and C5 and C6

come from Lemma 7.8. � � �

Theorem 7.10 (Differentiation) Let f 2 Mα(D0). Then

�

h
φ0

��
f �

N

∑
j=�N

f (z j)ω j

�0

 � C
p

Ne�
p
πdαN (7.72)

Proof: This proof follows that of Theorem 7.9, with appropriate modifications

made for derivatives; again, start with a bound for g 2 Lα.

Part A: Differentiating and scaling both sides of Equation 7.59 gives

h
φ0(x)

[g0(x) � ∑
k2Z

g(xk)S0k(x)]

=
h

φ0(x)
1

2π i

Z
∂D
φ0(z)g(z)

�
sin(πφ(x)/h)
φ(z)�φ(x)

�0 dz
sin(πφ(z)/h)

(7.73)

Inequalities 7.60 and 7.61 remain unchanged, so to bound the integral, only

the bound ����[sin(πφ(x)/h)
φ(z) �φ(x)

]0
���� �

����φ0(x)
h

���� (πd + 1/d2) (7.74)

is needed. This bound follows from direct differentiation and Equation 7.62;

obviously, ���� h
φ0(x)

[
sin(πφ(x)/h)
φ(z) �φ(x)

]0
���� � C. (7.75)

To bound the tails of the summation, differentiate the identity in Equa-

tion 7.64 and obtain

jS0k(x)j =

����φ0(x)
h

����
���� iπ2

Z 1

�1
ue�iuπ(kh�φ(x))/hdu

���� , (7.76)

from which ���� h
φ0(x)

���� jS0k(x)j � π/2 (7.77)

immediately follows. Again, g 2 Lα implies

jg(xk)j � Ce�hαjkj, (7.78)

148

which, together with identities 7.67 and 7.68, results in

∑
jkj >N

����g(xk)S0k(x)
h

φ0(x)

���� � C
p

Ne�
p
πdαN (7.79)

Combining these bounds,

��� h
φ0(x)

������g0(x) �
N

∑
k =�N

g(xk)S0k(x)
��� � C

p
Ne�

p
πdαN (7.80)

Part B: For any x 2 [a, b] and f 2 Mα,���� h
φ0(x)

����j f 0(x) �
N

∑
k=�N

f (xk)ω
0
k(x)j

=

���� h
φ0(x)

����j f 0(x)� (T0 f)(x)

�
N�1

∑
k=�N+1

[f (xk)� (T f)(xk)]S0
k(x)

+ f (x�N)tL(xN)S0N(x) + f (xN)tR(x�N)S0�N(x)j
= j h

φ0(x)

�
f 0(x) � (T

0
f)(x)

�
N�1

∑
k=�N+1

[f (xk)� (T f)(xk)]S0k(x)
�

+
h

φ0(x)

�
f (x�N)tL(xN)S0N(x) + f (xN)tR(x�N)S0�N(x)

� (T0 f)(x) + (T
0
f)(x)

+
N�1

∑
k=�N+1

[(T f)(xk) � (T f)(xk)]S0
k(x)

�
j

� e�
p
πdαNfC1

p
N + C2 + C3 + C4 + f(C5

p
N + C6)g

� C
p

Ne�
p
πdαN

(7.81)

The C1 term comes from Equation 7.80 because g(x) � f (x)� (T f)(x) 2 Lα, C2

and C3 stem from Lemma 7.6 and Equation 7.77, C4 originates from Lemma 7.7,

and C5 and C6 come from Lemma 7.8. � � �
The two preceding theorems are the last one-dimensional results needed

here. The remainder of this work deals with multiple dimensions (two), un-

knowns, domains, and equations. The next three definitions provide a precise

naming convention.

149

To uniquely label unknowns (and their series terms), domains, equations

and regions (and their associated collocation points), introduce the following

notation.

Definition 7.11 (Index notation) Assuming unknowns and directions are indexed,

the notation

ij j, k (7.82)

denotes unknown i in domain j and direction k. Usually, i or k will be absent. Similarly,

the notation

i ^ R (7.83)

denotes equation i in region R

Using this notation, the two-dimensional collocation points, basis functions,

operators and right-hand sides are fully described by the following definitions.

Since a given problem consists of main equations and boundary conditions,

it is natural to partition its discrete version, specified by the collocation points,

into analogous regions. This gives rise to the following definition.

Definition 7.12 (Collocation points and regions) The collocation points are given

by zj j, the array of points for the jth domain with entries

zj jkl = (ψj j,x(khj j,x),ψj j,y(lhj j,y)) = (xj jk , yj jl) (7.84)

These collocation points are partitioned into regions analogous to the equations and

boundary conditions of the problem class. On every rectangular domain, we thus have

the regions top (T), right (R), left (L), bottom (B), and interior (I).

To handle multiple domains, we additionally introduce the regions top-, right-,

bottom- and left-overlap (To, Ro, Bo and Lo, respectively). Their locations are identical

to the regions T, R, B and L, respectively, but their meaning and use is different.

Definition 7.13 (Unknown representations) The ith unknown in the jth domain is

denoted by

uij j(x, y). (7.85)

150

Using the preceding notation, the necessary two-dimensional extensions for

sinc interpolation can now be defined. The idea of the X2α product space is taken

from (Schwing 1976), where it was used for integral equations.

Definition 7.14 (Two-dimensional spaces) Rectangle i is denoted by Qji and de-

fined as

Qji = [aji,x, bji,x] � [aji,y, bji,y] (7.86)

Make the definitions

Dji,x = ψji,x(Dji,x
d) (7.87)

Dji,y = ψji,y(Dji,y
d) (7.88)

ji =

n
[aji,x, bji,x] � Dji,y

o
[
n
Dji,x � [aji,y, bji,y]

o
(7.89)

and for any x 2 [aji,x, bji,x], and given a function f ji :
ji ! C with f ji 2 H1(Qji),

define

f ji2 (x, y) : Dji,y ! C (7.90)

by

f ji2 (x, y) = f ji(x, y). (7.91)

Similarly, for any y 2 [aji,y, bji,y], define

f ji1 (x, y) : Dji,x ! C (7.92)

by

f ji1 (x, y) = f ji(x, y). (7.93)

Define the space X2α by

X2α = f f ji on
ji j f ji1 2 Mα(D ji,x)8y 2 [aji,y, bji,y] and (7.94)

f ji2 2 Mα(D ji,y)8x 2 [aji,x, bji,x]g (7.95)

To prove convergence for higher-dimensional approximations, a factoriza-

tion of the interpolant is used, and that factorization’s parts are then bounded.

151

To obtain this factorization, the following definition’s projection operators are

needed.

The basic idea is taken from (Schwing 1976), but is here extended to (a) use

only interior points, (b) also approximate derivatives, and (c) work on any Mα

product space, not just a finite rectangle.

Definition 7.15 (Projection operators) For every Qji, and points x, y 2 Qji, define

the following operators for function approximation:

(�ji,1 f ji)(x) =
Nji,x

∑
k=�Nji,x

f ji1 (xjik , y)ωji,x
k (x) (7.96)

(�ji,2 f ji)(y) =
Nji,y

∑
k=�Nji,y

f ji2 (x, yjik)ω
ji,y
k (y) (7.97)

(T
ji
1 f ji)(x) = f ji1 (aji,x, y)tji,xL (x) + f ji1 (b

ji,x, y)tji,xR (x) (7.98)

(Tji
1 f ji)(x) = f ji1 (xji�Nji,x , y)tji,xL (x) + f ji1 (xji

Nji,x , y)tji,xR (x) (7.99)

(T
ji
2 f ji)(y) = f ji2 (x, aji,y)tji,yL (y) + f ji2 (x, bji,y)tji,yR (y) (7.100)

(Tji
2 f ji)(y) = f ji2 (x, yji�Nji,y)t

ji,y
L (y) + f ji2 (x, yji

Nji,y)t
ji,y
R (y) (7.101)

(P ji f ji)(x, y) = (�ji,1(�ji,2 f ji))(x, y)

=
Nji,x

∑
k=�Nji,x

Nji,y

∑
l=�Nji,y

f ji(xjik , yjil)ω
ji,x
k (x)ωji,y

l (y) (7.102)

The approximations for derivatives are defined by direct differentiation; for the x-

direction, they are

(�ji,1
x f ji)(x) =

Nji,x

∑
k=�Nji,x

f ji1 (xjik , y)(ωji,x
k)0(x) (7.103)

(P ji
x f ji)(x, y) = (�ji,1

x (�ji,2 f ji))(x, y)

=
Nji,x

∑
k=�Nji,x

Nji,y

∑
l=�Nji,y

f ji(xjik , yjil)(ω
ji,x
k)0(x)ωji,y

l (y), (7.104)

and for the y-direction,

152

(�ji,2
y f ji)(y) =

Nji,y

∑
k=�Nji,y

f ji2 (x, yjik)(ω
ji,y
k)0(y) (7.105)

(P ji
y f ji)(x, y) = (�ji,2

y (�ji,1 f ji))(x, y)

=
Nji,x

∑
k=�Nji,x

Nji,y

∑
l=�Nji,y

f ji(xjik , yjil)ω
ji,x
k (x)(ωji,y

l)0(y). (7.106)

The forms of the T’s are trivial.

The following two lemmas will be used later to prove two-dimensional con-

vergence.

Lemma 7.16 (Projector norm bound) For any given rectangle Qji and f ji 2 X2α,

k�ji,1k � sup
x2�ji

k f jik=1

(�����
Nji,x

∑
k=�Nji,x

f ji(xjik , yji)ωji,x
k (x)

�����
)
� C1 + C2 log Nji,x, (7.107)

k hji,x

(φji,x)0
�
ji,1
x k � sup

x2�ji

k f jik=1

(����� hji,x

(φji,x)0(x)

Nji,x

∑
k=�Nji,x

f ji(xjik , yji)(ωji,x
k)0(x)

�����
)

� C1 + C2 log Nji,x

(7.108)

k hji,y

(φji,y)0
�
ji,2
y k � sup

y2�ji

k f jik=1

(����� hji,y

(φji,y)0(y)

Nji,y

∑
k=�Nji,y

f ji(xji, yjik)(ω
ji,y
k)0(y)

�����
)

� C1 + C2 log Nji,y

(7.109)

Proof: For brevity, let g(x) = f (x, y), and ignore unnecessary indices; using

Equation 7.27 and Lemmas 7.8 and 7.6, get the bound on k� j,1k as follows:

k�j,1k = sup
x2�
k f k=1

(�����
N�1

∑
k=�N+1

�
g(xk) � g(x�N)tL(xk) � g(xN)tR(xk)

�
Sk(x)

+ tL(x)g(x�N) + tR(x)g(xN)

� tL(xN)SN(x)g(x�N) � tR(x�N)S�N(x)g(xN)

�����
)

� 3 sup
x2�

(
N�1

∑
k=�N+1

jSk(x)j
)

+ 2 + C1e�
p
πdαN

� C2 + C3e�
p
πdαN + C4 log N

(7.110)

153

Equation 7.107 directly follows from this last inequality.

For the x-derivative operator, the sequence is

k hji,x

(φji,x)0
�
j,1
x k = sup

x2�
k f k=1

(�����
N�1

∑
k=�N+1

�
g(xk) � g(x�N)tL(xk)� g(xN)tR(xk)

�

� S0k(x)
hji,x

(φji,x)0(x)

+ t0L(x)
hji,x

(φji,x)0(x)
g(x�N) + t0R(x)

hji,x

(φji,x)0(x)
g(xN)

� hji,x

(φji,x)0(x)
[tL(xN)S0N(x)g(x�N)

+ tR(x�N)S0�N(x)g(xN)]

�����
)

� 3 sup
x2�

(
N�1

∑
k=�N+1

jS0k(x)
hji,x

(φji,x)0(x)
j
)

+ hji,x/2 + 2e�
p
πdαN

� C2 log N + C3/
p

N + C4e�
p
πdαN

(7.111)

The bound for

 hji,y

(φji,y)0�
ji,2
y

 is derived similarly. � � �

Lemma 7.17 (Directional interpolation) For f 2 X2α and (x, y) 2 Qji,

j f ji1 (x, y) � (�ji,1 f ji)(x, y)j � C1

p
Nji,xe�

p
πdαNji,x

(7.112)

j f ji2 (x, y) � (�ji,2 f ji)(x, y)j � C2

p
Nji,ye�

p
πdαNji,y

(7.113)

j hji,x

(φji,x)0(x)
[f ji1 (x, y) � (�ji,1 f ji)(x, y)]j � C3

p
Nji,xe�

p
πdαNji,x

(7.114)

j hji,y

(φji,y)0(y)
[f ji2 (x, y) � (�ji,2 f ji)(x, y)]j � C4

p
Nji,ye�

p
πdαNji,y

(7.115)

Proof: These results follow directly from Definition 7.15 and Theorems 7.9 and

7.10. � � �
The next theorem presents the final results of the preliminary part of this

chapter: two-dimensional value- and derivative interpolation.

154

Theorem 7.18 (Two-dimensional approximation) Let f ji 2 Xji
2α and choose N =

minfN ji,x, Nji,yg. Then

k f ji(x, y) � (P ji f ji)(x, y)k � sup
(x,y)2Qji

j f ji(x, y)� (P ji f ji)(x, y)j

� (C1 + C2 log N)
p

Ne�
p
πdαN,

(7.116)

k hji,x

(φji,x)0(x)
[f jix (x, y) � (P ji

x f ji)(x, y)]k � (C1 + C2 log N)
p

Ne�
p
πdαN, (7.117)

and

k hji,y

(φji,y)0(y)
[f jiy (x, y)� (P ji

y f ji)(x, y)]k � (C1 + C2 log N)
p

Ne�
p
πdαN. (7.118)

Proof: For brevity, drop unnecessary indices. Using the identity

f � P f = f � �1 f + �1(f � �2 f), (7.119)

together with Lemmas 7.16 and 7.17, obtain the following sequence.

k f (x, y) � (P f)(x, y)k
� k f (x, y) � (�1 f)(x, y)k+k�1kk f (x, y)� (�2 f)(x, y)k
� C1

p
Nji,xe�

p
πdαNji,x

+ (C2 + C3 log Nji,x)
p

Nji,ye�
p
πdαNji,y

(7.120)

Equation 7.116 now follows.

Next,

hji,x

(φji,x)0
[fx � Px f] =

hji,x

(φji,x)0
[fx � �j,1

x f] +
hji,x

(φji,x)0
�
j,1
x (f � �j,2 f), (7.121)

again used with Lemmas 7.16 and 7.17, yields

k hji,x

(φji,x)0(x)
[fx � Px f](x, y)k =

k hji,x

(φji,x)0(x)
[fx � �j,1

x f](x, y)k

+ k hji,x

(φji,x)0(x)
�
j,1
x kk(f � �j,2 f)(x, y)k

� C1

p
Nji,xe�

p
πdαNji,x

+ (C2 + C3 log Nji,x)
p

Nji,ye�
p
πdαNji,y

(7.122)

from which Equation 7.118 follows.

155

For the y-partial, the identity

hji,y

(φji,y)0
[fy � Py f] =

hji,y

(φji,y)0
[fy � �j,2

y f] +
hji,y

(φji,y)0
�
j,2
y (f � �j,1 f), (7.123)

can be used in the same way to obtain Equation 7.118. � � �
The next five definition provide the notation and structure for the first ma-

jor part of this chapter, the setup and solution of a linear algebraic system of

equations from a given system of elliptic PDEs.

First, a matrix has only rows and columns, thus two indices. Here, many

quantities have to be dealt with, requiring many more indices. The following

definition simply requires one-to-one mappings between these sets of indices to

exist.

Definition 7.19 (r(p, q), c(l, m)) Let fig be an enumeration of all collocation points

of the current appropriate region. Denote each point by its index tuple, (p, q), and let

r(p, q) be a one-to-one map such that i = r(p, q)�1.

Similarly, let f jg be an enumeration of all unknown terms of the current appropriate

unknown. Denote each term by its index tuple, (l, m), and let c(l, m) be a one-to-one

map such that j = c(l, m)�1.

Next is the specification for forming a discrete vector of values given a

function.

Definition 7.20 (Discretized unknowns) [unjd] is the vector with entry c(l, m)

given by

[unjd]c(l,m) = unjd(xl , ym) (7.124)

The given equations and boundary conditions are viewed as a collection of

operators acting on the unknowns, with given right-hand sides. All operators in

the first-order block systems considered in this work have the following general

structure.

156

Definition 7.21 (Operators) The operator for the ith unknown in the jth equation for

point-region R of rectangle k is written as

Lijk
j^R =

�
Eijk

j^R(x, y)I + Fijk
j^R(x, y)

∂
∂x

+ Gijk
j^R(x, y)

∂
∂y

�
(7.125)

Zero or more of E, F, G are nonzero.

The notation [Lijk
j^R] denotes a rectangular array of numbers with entry

(r(p, q), c(l, m)) given by

[Lijk
j^R]r(p,q),c(l,m) = Lijk

j^Rω
j j,x
l (xp)ω

j j,y
m (yq) (7.126)

where l and m span the appropriate index ranges.

Analogously, all right-hand-side functions are categorized as follows.

Definition 7.22 (Right-hand functions) The right-hand function for the jth equation

of region R in domain k is written as

f jkj^R(x, y) (7.127)

The vector of values of such a function at sinc points is denoted by [f jkj^R] and its r(p, q)

entry is given by

[f jkj^R]r(p,q) = f jkj^R(xp, yq). (7.128)

Following is the mathematical structure of the first-order linear algebraic

systems considered here. This structure is very complex; as can be seen from

Equation 7.126, every individual numeric entry is specified by eight interdepen-

dent indices. For examples of this structure, the reader is referred to Chapter 6.

Definition 7.23 (First-order system structure) Let Lu = f denote the entire first-

order linear system to be solved, so that L is a block matrix, with all entries of the form

Lijd
e^R as defined in Equation 7.125, u is a block vector with entries uijd(x, y), and f is a

block vector with entries f jkj^R(x, y).

Further, let [L] denote the block matrix with entries of the form [Lijd
e^R] as defined

by Equation 7.126, and let [u] denote the block vector with entries [uijd] as defined by

Equation 7.124.

157

For a system with k unknowns, each block row of [Lu] is uniquely identified by

[Lu]i^Rjd, and the row r(p, q) of each block row has the form

([Lu]i^Rjd)r(p,q) = L1jd
e^Ru1jd(xp, yq) + � � � + Lkjd

e^Rukjd(xp, yq)

+ fL1jdo
e^Ro

u1jdo(xr, ys) + � � � + Lkjdo
e^Ro

ukjdo(xr, ys)g
(7.129)

where the braced sum contains the overlap blocks from a domain do with boundary Ro

adjacent to the R boundary of domain d, and the points (xp, yq) and (xr, ys) are the sinc

collocation points appropriate for the respective regions.

Analogously, each block row of [L][u] is uniquely identified by ([L][u])i^Rjd, and for

a system with k unknowns, each row of such a block row has the form

(([L][u])i^Rjd)r(p,q) = ([L1jd
e^R][u

1jd])r(p,q) + � � � + ([Lkjd
e^R][u

kjd])r(p,q)

+ f([L1jdo
e^Ro

][u1jdo])r(r,s) + � � � + ([Lkjdo
e^Ro

][ukjdo])r(r,s)g
(7.130)

For a linear system with the preceding structure, a forward error bound can

now be shown. This bounds the difference between the exact values of [Lu] at

the sinc points1 and the approximate values obtained from the product of the

approximated operator [L] and the exact values before operator application, [u].

Theorem 7.24 (Collocation forward error) Let Lu = f be a first-order system as in

Definition 7.23. For every Lijd
e^R, require

Eijd
e^R(x, y) 2 H1(Qjd)

Fijd
e^R(x, y)(φj j,x)0(x) 2 H1(Qjd)

Gijd
e^R(x, y)(φj j,y)0(y) 2 H1(Qjd);

for every uijd(x, y), require

uijd(x, y) 2 X2α(Qjd).

Choose N = minfN ji,x, Nji,yg.

Then

[L][u]� [Lu]

 � CN log(N)e�

p
πdαN (7.131)

1 The values obtained after application of the exact operator L to the vector of exact functions
u.

158

Proof: Let ε = log N
p

Ne�
p
πdαN. Consider an arbitrary row, r(p, q), of an

arbitrary (equation,region, domain) block row, e ^ Rjd. For every unknown i,

jEijd
e^RIuijd(xp, yq) � ([Eijd

e^R][u
ijd])r(p,q)j

= jEijd
e^R(xp, yq)[uijd(xp, yq) � (P jduijd)(xp, yq)]j

� Cε

(7.132)

and

jFijd
e^Ruijd

x (xp, yq) � ([Fijd
e^R][u

ijd])r(p,q)j
= jFijd

e^R(xp, yq)[uijd
x � (P jd

x uijd)](xp, yq)j

= jFijd
e^R(xp, yq)

(φjd,x)0(xp)

hjd,x

� hjd,x

(φjd,x)0(xp)
[uijd

x � (P jd
x uijd)](xp, yq)j

� C
p

Nε.

(7.133)

Similarly,

jGijd
e^Ruijd

x (xp, yq) � ([Gijd
e^R][u

ijd])r(p,q)j � C
p

Nε. (7.134)

From the definition of Lijd
e^R in Equation 7.125,���Lijd

e^Ruijd(xp, yq) � ([Lijd
e^R][u

ijd])r(p,q)

��� � C
p

Nε (7.135)

follows. By subtracting equations 7.129 and 7.130, obtain

��([Lu]e^Rjd)r(p,q) � (([L][u])e^Rjd)r(p,q)

�� � C
p

Nε (7.136)

Therefore,

[Lu]e^Rjd � ([L][u])e^Rjd

 � C

p
Nε (7.137)

from which

[L][u]� [Lu]

 = max

e^Rjd

[Lu]e^Rjd � ([L][u])e^Rjd

 � C

p
Nε (7.138)

follows. � � �
The next theorem is the key theorem for the approximate solution of elliptic

systems using the sinc method. It shows that the approximations obtained by

159

solution of the linear algebraic system accurately approximate the exact values

at the collocation points, as long as the inverse matrix norm remains small. This

condition is easily tested experimentally, and has held for all problems tested to

date.

Theorem 7.25 (Collocation convergence) Let the assumptions of Theorem 7.24 be

satisfied, and let [c] be a computed solution to [L][c] = [f] satisfying

k[L][c] � [f]k � εu (7.139)

with εu proportional to the unit-roundoff error. If [L]�1 exists then

k[u] � [c]k �

[L]�1

 (CN log(N)e�

p
πdαN + εu) (7.140)

Proof: Note that

[L]([u]� [c]) = [L][u]� [Lu] + [Lu] � [f] + [f]� [L][c] (7.141)

and therefore

k[u] � [c]k �

[L]�1

�k[L][u]� [Lu]k

+ k[Lu] � [f]k + k[f] � [L][c]k
�

�

[L]�1

�CN log(N)e�

p
πdαN + 0 + εu

�
.

(7.142)

� � �
In practice, the unit-roundoff term is negligible, and the bound

C k[L]�1kN log(N)e�
p
πdαN is used.

These last theorems provide the basis for calculation of both values and

derivatives of functions at nonsinc points inside the computational domains.

Not only does one get exponential accuracy at a predefined set of points in

the computational domain, but using these values, an exponentially accurate

interpolant is available as well. Thus, unlike in several other numerical methods,

no accuracy is lost when values and derivatives need to be calculated at nongrid

points.

160

Theorem 7.26 (Scaled collocation) For every domain d and unknown i, let f ijd 2
X2α, δ > 0, and let [u] be a vector with structure as in Definition 7.23, such that

[uijd]� [f ijd]

 � δ. (7.143)

Choose N = minfN ji,x, Nji,yg.

Then for any (x, y) 2 Qji,���[f ijd � P jiuijd](x, y)
��� � e�

p
πdαNC log N

p
N + C log2 Nδ (7.144)

���� hji,x

(φji,x)0(x)
[f ijd

x � P ji
x uijd](x, y)

���� � e�
p
πdαNC log N

p
N + C log2 Nδ (7.145)

���� hji,y

(φji,y)0(y)
[f ijd

y � P ji
y uijd](x, y)

���� � e�
p
πdαNC log N

p
N + C log2 Nδ (7.146)

Proof: Using Equations 7.116 and 7.107 and ignoring indices,

j f � Puj = j f � P f + P f � Puj
� j f � P f j+

�ji,1

�ji,2

 k f � uk
� C1 log N

p
Ne�

p
πdαN + C2 log Nji,x log Nji,y � δ

(7.147)

and Equation 7.144 follows. The other equations are simply scaled versions. � � �

Theorem 7.27 (Collocation) For [u] computed by the present algorithm, and satisfy-

ing the conditions of Theorem 7.25, for all (x, y) 2 Qji,���[f ijd � P jiuijd](x, y)
��� � e�

p
πdαN(C log3 N

[L]�1

N) (7.148)

Further, let

[aji,x < aji,xs < bji,xs < bji,x] (7.149)

[aji,y < aji,ys < bji,ys < bji,y] (7.150)

and define Qji
s by

Qji
s = [aji,xs , bji,xs] � [aji,ys , bji,ys] (7.151)

Then for all (x, y) 2 Qji
s ,���[f ijd

x � P ji
x uijd](x, y)

��� � e�
p
πdαN(C log3 N

[L]�1

N3/2)

���(φji,x)0(x)
��� (7.152)

161

and

���[f ijd
y � P ji

y uijd](x, y)
��� � e�

p
πdαN(C log3 N

[L]�1

N3/2)

���(φji,y)0(y)
��� (7.153)

Proof: Equation 7.148 follows by substitution from Equation 7.140 into Equa-

tion 7.144.

Equation 7.152 follows from substitution of Equation 7.140 into Equa-

tion 7.145 and using the definition of hji,x.

Equation 7.153 follows from substitution of Equation 7.140 into Equa-

tion 7.146 and using the definition of hji,y. � � �

CHAPTER 8

FUTURE WORK

8.1 Method, algorithm and implementation
8.1.1 Input language improvements

The input data language is already customized for the problem; it remains to

turn this into a small programming language — extensible in OCAML — so that

all parts of the algorithm can be expressed in it, and so that input can be spread

across files in any way desired.

8.1.2 Use of the input language in other solvers

The usual approach taken for providing equations to an algorithm (see e.g.,

(Houstis, Mitchell, and Rice 1985; Kaufman 1990)) is to give specific names or

meanings to operands. As operands depend on (and determine) the problem,

there is no way for an algorithm to automatically identify them properly. With

this approach, individual operands must therefore be explicitly identified, which

is impractical. Chapter 4.5.1 presents the typed-operator approach which allows

unambiguous algorithmic specification of symbolic input data to PDE solvers

in a notation almost identical to standard mathematical notation. Use of this

typed-operator algorithm provides a key connection between the mathematics

presented Chapter 4 and the practical, readable, maintainable implementation

described in Chapter 6, but this input format conversion should work equally

well for finite-difference and finite-element algorithms. Perhaps it can be added

to one of the free packages as proof-of-concept.

8.1.3 Method efficiency and error estimation

The smallest resulting matrix structure for a two-domain problem is shown

in Figure 6.12. With M = N = 17, this becomes 29400 � 29400 with 1,643,388

163

nonzeros, or 0.19% fill. During execution, the fill reverts to O(m4), and the work

to O(m6) — clearly unacceptable for solution of larger problems, as evidenced in

Section 5.2. Further, multiple solutions are needed for convergence checks. Both

of these problems may be addressed simultaneously by using a multigrid-like

approach for the SINC-ELLPDE algorithm. A successful algorithm in this style

would remove the fill and improve the work to O(m4), reducing the computation

time for two-dimensional problems to minutes, and paving the way for three-

dimensional problems.

8.1.4 Programming language issues

Readability of programs is vastly improved by the use of proper program-

ming languages. Especially in research, where program requirements are float-

ing requirements, programming in “standard” programming languages — e.g.,

C, C++, FORTRAN, Java — is extremely detrimental to quickly writing readable,

fast, flexible code.1 Unfortunately, most computer scientists never implement

programs for scientific computing, and most computing scientists never learn

better ways of programming, i.e., non-FORTRAN, nonimperative styles.

As a good illustration of the complexity introduced by imperative program-

ming, consider again the main collocation algorithm in Figure 6.9. This figure

contains only necessary parts, and is therefore independent of implementation

methodology. Adding the accumulation of matrix entries, using an imperative

style, yields Figure 6.10, which is more complex than the original. The author

encountered a problem of similar complexity later on, but wrote a solution in a

nearly-pure functional style; adding accumulation of data in this way produced

a simplified graph. In retrospect, imperative programming style was a poor

choice for Figure 6.9; a functional version of this algorithm may be written in

the future.

Although object-oriented programming receives much attention, it is vastly

1 Of course, using existing libraries written in those languages poses little difficulty, as
illustrated by the use of the SUPERLU package.

164

inferior to functional programming in the implementation of complex mathe-

matical algorithms.2 Many short examples of this could be shown, but this

would not convey the true power of the combination of features found in modern,

functional-programming languages, especially OCAML, listed in the introduc-

tion. Eventually, the current code will be cleaned up and packaged for dis-

tribution and made available on the Internet. Perhaps this will expose more

computing scientists to functional programming.

8.2 Other problems
The primary goal of this dissertation is the accurate numerical solution of

material crack problems; considering the algorithm design and implementation

problems and the associated need for testing of functions and programs using

numerous test problems, these problems are nothing more than another set of

test problems, although more complicated than those typically found in the

literature on numerical algorithms.

8.2.1 Boundary layers

Other numerical methods do not handle singularities or boundary layers

without “assistance”; sinc methods do. Applying the algorithm to such prob-

lems may prove fruitful.

8.2.2 Anisotropic materials

Of more recent interest is the solution of composite-material problems; for

these, use of anisotropic material models is useful. Anisotropy requires no

additions to the present algorithm, only an enhanced front-end to generate the

equations. Problems of this type, as solved in e.g., (Clements 1971; Li and

Nemat-Nasser 1990), may be addressed in the future. It is important to note

2 This is the author’s personal experience after writing a large C++ program, a large JAVA
program, and the present OCAML program which combines features from both. The JAVA and
OCAML programs are both quite readable, but only the OCAML program was a pleasure to
write and has retained the most important property of all: extensibility. The C++ program
(see (Raymond 1991) for a proper definition of C++), due to the extreme clutter required by
the language and the lack of other key features, was dropped in 1996.

165

that anisotropic materials and nonrectangular coordinate systems can be used

by the SINC-ELLPDE algorithm without problems, but the input equations would

be substantially more complex.

8.2.3 General geometries and non-Cartesian coordinate systems

The use of mathematical cracks with numerical methods is a historical con-

venience. For closed-form solutions, this simplifies the solution; for numerical

methods, this forces solutions to have singular, rather than steep, solutions —

which is bad for convergence and accuracy. For the SINC-ELLPDE method, use

of a very sharp ellipse (e.g., a major/minor axis ratio < 10�4) would likely

produce smoother convergence (compare Figure 2.3 to Figure 5.1), narrow the

near-boundary gap to < 0.001 (or 0.1% of a rectangle’s length, compare Fig-

ure 2.9 and Figure 5.5), and reduce the number of needed rectangles with the

proper choice of coordinate system, e.g., elliptic-cylindrical coordinates for a

crack. At the same time, numerical values should retain good agreement with

those obtained for the mathematical crack — perhaps three to five digits.

In this context, it should be noted that the first-order system used on pages

62–63 is just one way to rewrite a second-order system; especially in elasticity, it

is be more practical to use the stress definitions τ i j as the derivative terms instead

of ∂u1

∂x , etc. This would result in a simpler, manageable first-order system when

using non-Cartesian coordinate systems.

APPENDIX A

PROGRAM FOR DERIVATION OF

EQUATIONS

The MPP1 program was written by the author to address several shortcom-

ings of the MAPLE computer algebra system, to provide customized, more

readable syntax for tensor-based expressions, and to provide both code and

pretty-printed/typeset output from a single input, to reduce the errors in printed

documentation and program alike.

The ideas relevant in the following programs are the use of modules and

automatically-resolved dependencies between equations. The command

in-module module code

places all code given to it inside the named module; this avoids naming conflicts.

Similarly,

anonymous names block

replaces all occurrences of names in the block with globally unique versions; it is

similar in purpose to Common Lisp’s gensym. Lastly, the construct

define-dependency target dependencies body

is analogous to Makefile rules, but for expressions. The target expression is

produced by the body, using only the expressions specified as dependencies.

Together with its companion command, make, this provides a very clean way

of re-using already-computed expressions in appropriate contexts — via use of

modules. The syntax is

make target search-paths.

1 Short for Maple Pre-Processor.

167

The typesetting of the programs and expressions contained in the following

sections was done automatically by MPP; these listings serve several purposes.

First, these listings illustrate advantages and shortcomings of automatic

pretty-printing. Instead of (1) working out mathematical expressions using a

combination of paper and computer algebra system (CAS), (2) manually con-

verting relevant parts of these equations to another computer language, and

(3) manually converting (other) relevant parts of these equations for typeset-

ting, only the CAS needs to be used; the expressions can be automatically

converted to any other desired computer language, and typeset output is also

directly obtained. The disadvantages are (1) the need to implement a (somewhat

complex) conversion program to do the format conversions, and (2) the lack

of general algorithms to typeset a combination of mathematics and program.

To illustrate these points, only a handful of linebreaks were manually inserted

to avoid excessive line lengths. In those places were linebreaks were inserted,

the following lines are flush left. The reader may expect some less-than-perfect

typesetting, but should keep in mind that almost no extra work was required to get

all these expressions. The reader should compare this with raw (directly printed)

MAPLE or FORTRAN programs, especially when viewing the nested summations

so common in tensor analysis.

Second, these listings illustrate one way of dealing with full tensor equations

using a CAS, here MAPLE. The steps shown are the rectangular Cartesian expan-

sions of relevant tensor formulas, repeated use of these expansions to form the

equations for different regions of different rectangles, and the restructuring of

the resulting formulas into the form required by the block-conversion algorithm

of Section 6.1.

Third, these listings are an example of a subject-specific front end to the SINC-

ELLPDE core. They provide the necessary basis for semiautomatic generation of

input equations for more complicated geometries in solid mechanics.

Fourth, these listings illustrate the very substantial difference between theory

and its implementation. The original equations from Section 3.1 are only around

168

one page; their algorithmic versions in Section A.1 are about five pages (single

spaced). Their use as input to a real program, Section A.2, is about 31 pages.

Specifically, Section A.1 shows actual equations as found in textbooks, e.g.,

(Green and Zerna 1992), suitably wrapped in an algorithmically-useful form,

and Section A.2 shows the full MPP program which utilizes this form of the

equations used to provide the isotropic tensor elasticity equations in a format

usable by the SINC-ELLPDE algorithm.

A.1 General elasticity equations
The program listing of this section shows the elasticity equations as they

appear in the mathematical literature, combined with the algorithmic details

necessary to make them useful for machine manipulation. Although they are

most likely correct2, they are not meant for detailed analysis, but rather for

illustration. They are, and will remain, very sparsely documented.

47 in-module :deps:elasticity f

Displacement vector components from physical displacement components.

51 define-dependency D2 fg22, D2g f

52 anonymous i f

53 for i from 1 to 3 do

54 Di :=
Di

p
gii

;

od ;

g ;

g ;

g ;

61 in-module :deps:elasticity f

Physical displacement components from displacement vector components.

2 These expressions are directly generated from the same source used to provide input to the
numerical algorithm, the solution from which agrees well with known results. Thus, these parts
are mutual verifications of each other’s correctness. It is of course possible that the LATEX-backend
of MPP has a flaw and produces wrong output in certain circumstances. Also, these expressions
have not been tested thoroughly in more interesting coordinate systems, so they may contain
errors not affecting their rectangular Cartesian expansion.

169

65 define-dependency D2 fg22, D2g f

66 anonymous i f

67 for i from 1 to 3 do

68 Di :=
p

giiDi;

od ;

g ;

g ;

g ;

75 in-module :deps:elasticity f

Main displacement equations. ~v is the unknown, ~D the specified.

79 define-dependency DisplacementEqns fD2, v2g f

80 anonymous i f

81 DisplacementEqns := [(Di = vi)$i = 1..3];

g ;

g ;

g ;

87 in-module :deps:elasticity f

Covariant derivatives. Here, we only need them for the vi and Ti
k components.

Notice that to simplify things to their lowest terms and keep them there, we form

the table of the results of the derivatives for a particular v instead of just forming

the functions. First, CovDiff1Cont.

96 define-dependency v22 fv2, θ2,
n
2

2 2

o
g f

97 anonymous s, r, i f

98 for i from 1 to 3 do

99 for r from 1 to 3 do

100 vr
i :=

∂vr

∂θi + (
3

∑
s=1

n r
s i

o
vs);

od ;

od ;

g ;

g ;

170

CovDiff2ContCov.

109 define-dependency v222 fθ2,
n
2

2 2

o
, v22g f

110 anonymous i, k, l, m f

111 for i from 1 to 3 do

112 for k from 1 to 3 do

113 for l from 1 to 3 do

114 vi
kl :=

∂vi
k

∂θl + (
3

∑
m=1

�
i

m l

�
vm

k) �

(
3

∑
m=1

n m
k l

o
vi

m);

od ;

od ;

od ;

g ;

g ;

g ;

126 in-module :deps:elasticity f

The Navier equation core in terms of the stress tensor σ i j, in the θ system. Note

that σ is not expanded further here. The rhs would be the body force term, if

present.

133 define-dependency NavierCoreσ fθ2,
n
2

2 2

o
,σ22g f

134 anonymous i, k, m f

135 NavierCoreσ := [((
3

∑
i=1

∂σ ik

∂θi + (
3

∑
m=1

�
i

m i

�
σmk) +

(
3

∑
m=1

�
k

m i

�
σ im)))$k = 1..3];

g ;

g ;

g ;

147 in-module :deps:elasticity f

Physical traction tensor from contravariant tensor.

150 define-dependency τ22 fτ22, g22g f

151 anonymous i, k f

171

152 for i from 1 to 3 do

153 for k from 1 to 3 do

154 τ ik := τ ikpgiigkk;

od ;

od ;

157 τ22 := :evalSumDi�(:op(τ22));

g ;

g ;

g ;

163 in-module :deps:elasticity f

Traction core equations. ~T are the tensor components of the specified boundary

conditions; ~n is the normal vector to the boundary, here expressed via covariant

components.

T j = (
3

∑
i=1

τ i jni);

169 define-dependency TractionCore fτ22, n2g f

170 anonymous i, j f

171 TractionCore := [((
3

∑
i=1

τ i jni))$ j = 1..3];

g ;

g ;

g ;

177 in-module :deps:elasticity f

Navier equation core (nonbody force terms) for interior.

180 define-dependency NavierCore fg22, ν, v222g f

181 anonymous s, j, i f

182 NavierCore := [((1 � 2ν)(
3

∑
j=1

(
3

∑
s=1

gs jvi
s j)) +

(
3

∑
j=1

(
3

∑
s=1

gisv j
js)))$i = 1..3];

g ;

g ;

172

g ;

198 in-module :deps:elasticity f

Metric tensors. Notice that we are assuming the xi system to be rectangular

Cartesian, and the mapping given should be a direct mapping to the system in

which the work is done.

203 define-dependency g22 fx2, θ2g f

204 g22 := :array(1 .. 3, 1 .. 3);

205 anonymous i, j, m f

206 for i from 1 to 3 do

207 for j from 1 to 3 do

208 gi j := (
3

∑
m=1

∂xm

∂θi

∂xm

∂θ j);

od ;

od ;

g ;

215 g22 := :evalSumDi�(:op(g22));

g ;

218 define-dependency g22 fg22g f

219 g22 := :linalg[:inverse](g22);

g ;

Christoffel symbols.

223 define-dependency

"
2,2 2

#
fg22, θ2g f

224 anonymous i, j, k f

225 for i from 1 to 3 do

226 for j from 1 to 3 do

227 for k from 1 to 3 do

228

"
i, j k

#
:=

1
2
(

∂gi j

∂θk +
∂gik

∂θ j �
∂gjk

∂θi);

od ;

od ;

od ;

173

233

"
2,2 2

#
:= :evalSumDi�(:op(

"
2,2 2

#
));

g ;

g ;

237 define-dependency
n
2

2 2

o
fg22,

"
2,2 2

#
g f

238 anonymous i, j, k, l f

239 for i from 1 to 3 do

240 for j from 1 to 3 do

241 for k from 1 to 3 do

242

�
i

j k

�
:= (

3

∑
l=1

gil

"
l, j k

#
);

od ;

od ;

od ;

248

n
2

2 2

o
:= :evalSumDi�(:op(

n
2

2 2

o
));

g ;

g ;

Stress in terms of displacements.

258 define-dependency τ22 fµ, g22, v22, νg f

259 anonymous i, j, s f

260 for i from 1 to 3 do

261 for j from 1 to 3 do

262 τ i j := µ((
3

∑
s=1

gjsvi
s) + (

3

∑
s=1

gisv j
s) +

(
3

∑
s=1

2ν
(1 � 2ν)

gi jvs
s));

od ;

od ;

270 τ22 := :evalSumDi�(:op(τ22));

g ;

g ;

Traction vector from physical traction.

174

275 define-dependency T2 fT2, g22g f

276 anonymous i f

277 for i from 1 to 3 do

278 Ti :=
Ti

p
gii

;

od ;

g ;

g ;

Unit vector’s components from vector’s components

284 define-dependency n2 fg22, n2g f

285 anonymous i, j, k f

286 for i from 1 to 3 do

287 ni :=
niq

(∑3
j=1(∑

3
k=1 gk jnknj))

;

od ;

292 n2 := :evalSumDi�(:op(n2));

g ;

g ;

Covariant components – this ”lowering” of indices is really an operator...

299 define-dependency n2 fg22, n2g f

300 anonymous i, j f

301 for i from 1 to 3 do

302 ni := (
3

∑
j=1

gi jn j);

od ;

304 n2 := :evalSumDi�(:op(n2));

g ;

g ;

g ;

175

A.2 Expansion of general equations
The program listing of this section shows the use of the elasticity equations

of Section A.1 in the construction of the input structure required by the block-

conversion algorithm of Section 6.1.

The rectangular Cartesian expansions of relevant tensor formulas is shown

in Section A.2.1, utility functions and expressions are shown in Section A.2.2,

general two-dimensional equations and expressions are derived in Section A.2.3,

and the two-dimensional expansions are used repeatedly in Sections A.2.4 and

A.2.5 to form the equations for different rectangles. Finally, the restructuring of

the resulting formulas into the form required by the block-conversion algorithm

of Section 6.1 is done in Section A.2.6.

Throughout, italicized text indicates expressions whose expansion is shown

in Section B; small-type numbers to the left of program lines indicate the source

location of the code.

Although the programs are most likely correct, they contain little error check-

ing; they are meant for competent (MAPLE) programmers with an understand-

ing of the elasticity equations and data structures involved, and are intended

to illustrate one possible approach of converting from very loosely specified

mathematical equations to a precisely-specified data structure. They are, and

will remain, very sparsely documented.

A.2.1 Basic expressions and boundary conditions

448 in-module a f

The transformation from target system to rectangular. Theθ are the target system

components.

451 x1 := θ1;

452 x2 := θ2;

453 x3 := θ3;

g ;

456 in-module a f

Get the metric tensor.

176

458 define-terminal θ2 f

θ2;

g ;

459 define-terminal x2 f

x2;

g ;

Metric tensor gi j

make g22 :deps:elasticity ;

g ;

466 in-module a f

And simplify it as far as possible.

468 :simplify0 := proc(foo)

:simplify(:evalSumDi�(foo));

end;

Metric tensor gi j

474 g22 := :map(:simplify0, g22);

g ;

481 in-module a f

make g22 :deps:elasticity ;

g ;

489 in-module b f

Get the fully evaluated expressions for the three-dimensional equations.

First, use a simple form of the solution vector v, and ”manually” simplify

prerequisites.

496 define-terminal µ f

µ;

g ;

497 define-terminal ν f

ν;

177

g ;

498 define-terminal v2 f

501 v1 := u2;

504 v2 := u2;

507 v3 := u2;

g ;

g ;

513 in-module b f

make

"
2,2 2

#
:deps:elasticity :a;

First Christoffel symbol

518

"
2,2 2

#
:= :map(:simplify0,

"
2,2 2

#
);

g ;

525 in-module b f

make
n
2

2 2

o
:deps:elasticity :a;

Second Christoffel symbol

530

n
2

2 2

o
:= :map(:simplify0,

n
2

2 2

o
);

g ;

537 in-module b f

make v22 :deps:elasticity :a;

539 v22 := :map(:simplify0, v22);

g ;

542 in-module b f

make v222 :deps:elasticity :a;

544 v222 := :map(:simplify0, v222);

g ;

549 in-module b1 f

A routine to produce readable output from the generated expressions of ui .

556 :readableSubstitution1 := proc(foo)

:mpCollect(:eval(:subs(:b:u2 = :u1, :b:u2 = :u2, :b:u2 = :u3,

178

:b:n = :n, :b:µ = :µ, :b:ν = :ν,

:a:θ1 = :θ1, :a:θ2 = :θ2, :a:θ3 = :θ3,

:subs(:di� = :Di� , foo))), [:Di� , :θ2, :ν, :µ], []);

end;

g ;

582 in-module b f

A routine for collection.

585 :exprCollect2 := proc(foo)

:mpFactor(:mpCollect(foo, [:sin, :cos, :di� , :Di� , :θ2,

:ν, :µ], []));

end;

g ;

594 in-module b f

595 :evalSum := proc(foo)

:simplify(:eval(:subs(:Sum = :sum, foo)));

end;

g ;

601 in-module b f

And a routine for σ terms.

605 simp4 := proc(foo)

:eval(:subs(:b:n = :n, :b:µ = :µ, :b:ν = :ν, :b:σ22 = :σ22,

:a:θ2 = :θ2, foo));

end;

616 factorSigma := proc(foo)

:mpCollect(foo, [:sigma22, θ2, :di� , :Di�], []);

end;

g ;

179

A.2.1.1 Navier equations

629 in-module b f

make NavierCore :deps:elasticity :a;

The Navier equation core.

634 NavierCore := :map(:simplify0, NavierCore);

g ;

A.2.1.2 Stress Tensor

649 in-module b f

make τ22 :deps:elasticity :a;

The Stress tensor τ i j

654 τ22 := :map(:simplify0, τ22);

g ;

A.2.1.3 Navier equations usingσ only

669 in-module b f

Get the Navier equations in terms of σ .

672 define-terminal σ22 f

673 σ22 := :evaln(σ22);

g ;

make NavierCoreσ :deps:elasticity :a;

g ;

678 in-module b f

...and produce a readable form.

The Navier core, σ version.

683 NavierCoreσ := :map(factorSigma, :map(simp4,

:map(:evalSum, NavierCoreσ)));

g ;

180

A.2.2 Substitutions and additions

A.2.2.1 System

707 in-module b f

The substitutions/equations to convert the second order equations to first order

equations.

713 :systemEqns := [
∂:u1

∂:θ1 = :u2,
∂:u1

∂:θ2 = :u2,
∂:u2

∂:θ1 = :u2,
∂:u2

∂:θ2 = :u2];

The substitutions for the n terms.

719 :doSystemSubs := proc(foo)

:eval(:subs(:op(:systemEqns), foo));

end;

g ;

730 in-module b f

A custom factorization procedure for the NavierCore.

733 :exprCollect3 := proc(foo)

:mpCollect(foo, [:sin, :cos, :a, :b, :di� , :Di� ,

:θ2, :ν, :µ, :n], []);

end;

A procedure to combine the series substitution with collection and human-

readable printing.

742 :collectτ := proc(foo)

:exprCollect3(:readableSubstitution1(foo));

end;

g ;

A.2.2.2 Elimination of third dimension components.

758 in-module b f

761 :eliminationEqns := [
∂u2

∂:a:θ3 = 0,
∂u2

∂:a:θ3 = 0,
∂u2

∂:a:θ3 = 0,

∂u2

∂:a:θ3 = 0,
∂u2

∂:a:θ3 = 0,
∂u2

∂:a:θ3 = 0, u2 = 0];

The substitutions for the n terms.

181

787 :eliminateZ := proc(foo)

:eval(:subs(:op(:eliminationEqns), foo));

end;

g ;

800 in-module b f

801 :remove1stOrderEqns := proc(foo)

802 if (not:type(foo, `=`)) then

:ERROR(

`Wrong argument type -- expected =:`,

foo);

fi ;

805 thelist2 := :rhs(foo);

806 if (:nops(thelist2) <> 6) then

:ERROR(

`Wrong number of terms in argument rhs -- expected 6:`,

thelist2);

fi ;

:lhs(foo) = [:op(1 .. 2, thelist2)];

end;

g ;

All first order systems derived here have structure

(list

(equations -> OpEqn

(lhs

(sum -> OpSum

(terms

(* coeff -> OpProd

(unknown

(or Diff -> OpDiff

182

name)))))) -> name

(rhs (sum))))

and are mapped to the indicated format using the following functions.

832 in-module d f

833 :makeOpDi� := proc(term, unknown)

834 if (:has(term, unknown)) then

Manual pattern matching. . .

836 if (:op(0, term) = :Di�) then

837 depVar := :op(1, term);

838 indepVar := :op(2, term);

For collocation, we need to know the index of the argument of the function with

respect to which the derivative is taken. Here the arguments are θ1, θ2.

843 indepVarIndex := :op(1, indepVar);

844 if (indepVarIndex = 1) then

845 argIndex := 1;

846 elif (indepVarIndex = 2) then

847 argIndex := 2;

848 else

:ERROR(

`Invalid independent variable (name) found in (term):`,

indepVar, term);

fi ;

852 if (depVar <> unknown) then

:ERROR(

`Internal pattern matching failed on:`, term);

fi ;

:RETURN(:OpDi�(unknown, argIndex));

856 else

183

:ERROR(

`Unidentified term containing dependent variable:`, term);

fi ;

859 else

:ERROR(

`Term does not contain unknown:`, term, unknown);

fi ;

end;

g ;

865 in-module d f

866 :makeOpProd := proc(foo)

867 for unknown in :toOpForm:nameList do

See if the current unknown shows up anywhere in the examined expression.

871 if (:has(foo, unknown)) then

Coe� will not handle unknowns inside a Di� or other function call, so we check

for this next. Since we are only interested in the case of a diff or Diff of our

unknown w.r.t. some other variable, we

1. get a list of all Diffs/diffs in the current expression;

2. make sure there is at most one;

3. dissect the one, if present.

884 :mvcollist2 := [];

885 :mvcoltable22 := :table([0 = 0]);

:mpmklist2;

887 if (:nops(:mvcollist2) > 1) then

:ERROR(

`Too many diffs found in subexpression:`, foo);

889 elif (:nops(:mvcollist2) = 1) then

184

890 term := :op(:mvcollist2);

891 ret := :OpProd(:coe�(foo, term),

:makeOpDi�(term, unknown));

895 else

896 ret := :OpProd(:coe�(foo, unknown), unknown);

fi ;

898 matchFound := true;

break;

fi ;

od ;

902 if (matchFound) then

ret;

904 else

:ERROR(

`No name of first matches in second`,

:toOpForm:nameList, foo);

fi ;

end;

g ;

911 in-module d f

912 :makeOpSum := proc(currLhs)

913 if (:type(currLhs, `+`)) then

914 numberOfTerms := :nops(currLhs);

915 for termNum from 1 to numberOfTerms do

Now separate the unknown from its coefficient.

917 currTerm := :op(termNum, currLhs);

918 currOpProd := :makeOpProd(:eval(:subs(

:toOpForm:subsList, currTerm)));

919 if (termNum > 1) then

185

920 currOpProd := :OpSum(cumulativeOpProd,

currOpProd);

fi ;

922 cumulativeOpProd := currOpProd;

od ;

924 else

925 cumulativeOpProd := :makeOpProd(:eval(:subs(

:toOpForm:subsList, currLhs)));

fi ;

cumulativeOpProd;

end;

g ;

932 in-module d f

933 :makeOpEqn := proc(currEqn)

934 currLhs := :lhs(currEqn);

935 currRhs := :rhs(currEqn);

936 lhsOpSum := :makeOpSum(currLhs);

:OpEqn(lhsOpSum, currRhs);

end;

g ;

941 in-module d f

942 :makeOpEqnList := proc(eqnList)

943 numberOfEquations := :nops(eqnList);

944 newList := [];

945 for eqnNum from 1 to numberOfEquations do

946 currEqn := :op(eqnNum, eqnList);

947 opEqn := :makeOpEqn(currEqn);

948 newList := [:op(newList), opEqn];

od ;

newList;

186

end;

g ;

954 in-module toOpForm f

Separating the unknown from its coefficient requires the name of the unknown

in the current term. Also, the use of indexed types for the unknowns was useful

for previous Maple operations, but now simple names are needed.

To handle both requirements, we first substitute the simple names; this will

also give a list of said names, with which we can determine the current term’s

name.

964 subsList := [:u2 = :u11, :u2 = :u12, :u2 = :u21, :u2 = :u22,

:u1 = :u1, :u2 = :u2];

975 nameList := [:u1, :u2, :u11, :u12, :u21, :u22];

g ;

A.2.3 General expressions

A.2.3.1 Navier equations for all interiors

1001 in-module b f

NavierCore[1];

:lprint(NavierCore[1]);

:eliminateZ(NavierCore[1]);

g ;

1007 in-module b f

Make the series substitutions in the Navier equations and get the reduced main

equations. The first two expressions seem to produce the same output, but the

second is better collected...

:readableSubstitution1(:exprCollect3(:eliminateZ(NavierCore[1])));

:exprCollect3(:readableSubstitution1(:eliminateZ(NavierCore[1])));

g ;

187

1017 in-module b f

Navier core equations.

Make the simplified global form available. Notice that the third equation is

removed.

1025 NavierCoreSeries := [:op(1 .. 2, :map(:exprCollect3,

:map(:readableSubstitution1, :map(:eliminateZ, NavierCore))))];

g ;

1038 in-module b f

Given 2 lists of expressions, return a single list of equations.

1040 :mergeLhsRhs := proc(lhsList, rhsList)

1041 if (:nops(lhsList) <> :nops(rhsList)) then

:ERROR(`list lengths do not match`);

fi ;

1044 ret := [];

1045 for i from 1 to :nops(lhsList) do

1046 ret := [:op(ret), :op(i, lhsList) = :op(i, rhsList)];

od ;

end;

1050 :rhsToLhs := proc(foo)

:lhs(foo) � :rhs(foo) = 0;

end;

g ;

1054 in-module b f

Substitute the first-order system equations. This gives the main equation’s lhs

expressions; since all domains here have homogeneous right hand sides, the final

system of equations is also formed here.

The substituted equations form the rest of the system.

1063 NavierCoreSysExpressions := :map(:doSystemSubs,

NavierCoreSeries);

First order system equations.

188

1069 NavierCoreSysEqns := [:op(

:mergeLhsRhs(NavierCoreSysExpressions, [0, 0])),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1076 in-module d f

Get the Interior=[...] portion of the eqn input file format.

1080 InteriorEqn := :Interior = :makeOpEqnList(:b:NavierCoreSysEqns);

g ;

Since the series substitutions involve only the vi, nothing needs to be done for

the σ version of the Navier equations.

A.2.3.2 Traction equations using stress tensor

1096 in-module b f

Eliminate the z-direction components of the stress tensor and collect and sim-

plify the results.

1099 tmp := :op(τ22);

1100 τ22 := :table();

1101 anonymous i, j f

1102 for i from 1 to 2 do

1103 for j from 1 to 2 do

1104 τ i j := :eliminateZ(tmp[i, j]);

od ;

od ;

g ;

g ;

1110 in-module b f

τ i j after series substitutions.

:map(:collectτ , τ22);

g ;

189

A.2.3.3 Displacement vector

Make the series substitutions for the displacement vector and collect and

simplify the results.

1131 in-module b f

vi after series substitutions.

:map(:collectτ , [(vi)$i = 1..3]);

g ;

A.2.4 Conditions for domain 1

1173 in-module d1Top f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1179 conditions := [v1, v2];

Boundary conditions, rhs.

1187 conditionsRhs := [0, 0];

g ;

A.2.4.1 Top conditions

1202 in-module d1Top f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1212 in-module d1Top f

1213 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

1219 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

190

g ;

1226 in-module d1Top f

Get the :Top =[...] portion of the eqn input.

1230 Eqn := :Top = :makeOpEqnList(SysEqns);

g ;

1236 in-module d1Left f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1242 conditions := [
∂v2

∂θ1 , v1];

Boundary conditions, rhs.

1250 conditionsRhs := [0, 0];

g ;

A.2.4.2 Left conditions

1265 in-module d1Left f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1275 in-module d1Left f

1276 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

1282 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1289 in-module d1Left f

Get the :Left =[...] portion of the eqn input.

1293 Eqn := :Left = :makeOpEqnList(SysEqns);

g ;

191

1298 in-module d1Bottom f

1299 define-terminal n2 f

1300 n1 := 0;

1301 n2 := �1;

1302 n3 := 0;

g ;

make n2 :deps:elasticity :b, :a;

1306 n2 := :map(:simplify0, n2);

g ;

1309 in-module d1Bottom f

make n2 :deps:elasticity :b, :a;

1311 n2 := :map(:simplify0, n2);

g ;

1314 in-module d1Bottom f

make TractionCore :deps:elasticity :b, :a;

1317 TractionCore := [:op(1 .. 2, :map(:simplify0, TractionCore))];

g ;

1320 in-module d1Bottom f

The traction equation core τ i jni.

:map(:readableSubstitution1, :map(:exprCollect2, TractionCore));

The traction equation rhs.

1329 TractionRhs := [0, :σ];

g ;

A.2.4.3 Bottom conditions

1350 in-module d1Bottom f

1351 TractionSysExpressions := :map(:collectτ , TractionCore);

The first order traction equation system.

1357 TractionSysEqns := [:op(:mergeLhsRhs(TractionSysExpressions,

TractionRhs)), :op(:map(:rhsToLhs, :systemEqns))];

192

g ;

1366 in-module d1Bottom f

Get the :Bottom =[...] portion of the eqn input, n and non-n equations.

1370 Eqn := :Bottom = :makeOpEqnList(TractionSysEqns);

g ;

1377 in-module d1Right f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1383 conditions := [
∂v1

∂θ1 ,
∂v2

∂θ1];

Boundary conditions, rhs.

1391 conditionsRhs := [0, 0];

g ;

A.2.4.4 Right conditions

1406 in-module d1Right f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1416 in-module d1Right f

1417 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

1423 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1430 in-module d1Right f

Get the :Right =[...] portion of the eqn input.

1434 Eqn := :Right = :makeOpEqnList(SysEqns);

g ;

193

1440 in-module d1RightOL f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1446 conditions := [v1, v2];

Boundary conditions, rhs.

1454 conditionsRhs := [0, 0];

g ;

A.2.4.5 RightOL conditions

1469 in-module d1RightOL f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1479 in-module d1RightOL f

1480 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

1486 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1493 in-module d1RightOL f

Get the :RightOL =[...] portion of the eqn input.

1497 Eqn := :RightOL = :makeOpEqnList(SysEqns);

g ;

A.2.5 Conditions for domain 2

1510 in-module d2Right f

make v2 :deps:elasticity :a, :b;

194

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1516 conditions := [v1, v2];

Boundary conditions, rhs.

1524 conditionsRhs := [0, 0];

g ;

A.2.5.1 Right conditions

1539 in-module d2Right f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1549 in-module d2Right f

1550 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

1556 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1563 in-module d2Right f

Get the :Right =[...] portion of the eqn input.

1567 Eqn := :Right = :makeOpEqnList(SysEqns);

g ;

1573 in-module d2Top f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1579 conditions := [v1, v2];

Boundary conditions, rhs.

195

1587 conditionsRhs := [0, 0];

g ;

A.2.5.2 Top conditions

1602 in-module d2Top f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1612 in-module d2Top f

1613 SysExpressions := :map(:doSystemSubs, :map(:collectτ ,

conditions));

The first order equation system.

1619 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1626 in-module d2Top f

Get the :Top =[...] portion of the eqn input.

1630 Eqn := :Top = :makeOpEqnList(SysEqns);

g ;

1636 in-module d2Left f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1642 conditions := [�v1, �v2];

Boundary conditions, rhs.

1650 conditionsRhs := [0, 0];

g ;

196

A.2.5.3 Left conditions

1665 in-module d2Left f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1675 in-module d2Left f

1676 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

1682 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1689 in-module d2Left f

Get the :Left =[...] portion of the eqn input.

1693 Eqn := :Left = :makeOpEqnList(SysEqns);

g ;

1699 in-module d2LeftOL f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1705 conditions := [�∂v1

∂θ1 , �∂v2

∂θ1];

Boundary conditions, rhs.

1713 conditionsRhs := [0, 0];

g ;

A.2.5.4 LeftOL conditions

1728 in-module d2LeftOL f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

197

1738 in-module d2LeftOL f

1739 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

1745 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1752 in-module d2LeftOL f

Get the :LeftOL =[...] portion of the eqn input.

1756 Eqn := :LeftOL = :makeOpEqnList(SysEqns);

g ;

1762 in-module d2Bottom f

make v2 :deps:elasticity :a, :b;

make θ2 :deps:elasticity :a, :b;

Boundary conditions.

1768 conditions := [
∂v1

∂θ2 , v2];

Boundary conditions, rhs.

1776 conditionsRhs := [0, 0];

g ;

A.2.5.5 Bottom conditions

1791 in-module d2Bottom f

Conditions after simplification and factorization.

:map(:collectτ , conditions);

g ;

1801 in-module d2Bottom f

1802 SysExpressions := :map(:doSystemSubs,

:map(:collectτ , conditions));

The first order equation system.

198

1808 SysEqns := [:op(:mergeLhsRhs(SysExpressions, conditionsRhs)),

:op(:map(:rhsToLhs, :systemEqns))];

g ;

1815 in-module d2Bottom f

Get the :Bottom =[...] portion of the eqn input.

1819 Eqn := :Bottom = :makeOpEqnList(SysEqns);

g ;

A.2.6 Structure output

For numerics, we use the first order systems converted to Operator format

(derived above), arranged appropriately for use by eqn read.ml.

1831 in-module eqnInp f

The equations:

1833 structure := :subs(:θ1 = :x, :θ2 = :y,

:equationspecs2 = [:unknowns = :toOpForm:nameList,

:domains = [

1 = [:regions = [:d:InteriorEqn, :d1Bottom:Eqn, :d1Left:Eqn,

:d1Top:Eqn, :d1Right:Eqn, :remove1stOrderEqns(:d1RightOL:Eqn)]],

2 = [:regions = [:remove1stOrderEqns(:d2LeftOL:Eqn),

:d2Left:Eqn, :d2Top:Eqn, :d2Right:Eqn, :d:InteriorEqn, :d2Bottom:Eqn]]]]);

APPENDIX B

OUTPUT FROM PROGRAM FOR

DERIVATION OF EQUATIONS

This chapter presents the output resulting from the italicized code of Sec-

tion A.2. As before, note that all of these expressions are computer-generated

from the same input which generates the actual code. Thus, the expres-

sions typeset here are really pretty-printed computer program fragments, not

manually-typed mathematics. As for any program listing, manual adjustment is

therefore avoided — it would add no content, and waste time.

B.1 Basic expressions and boundary conditions
Metric tensor gi j

(B.1)

[[1, 2] = 0,
[2, 2] = 1,
[1, 3] = 0,
[1, 1] = 1,
[3, 2] = 0,
[2, 3] = 0,
[2, 1] = 0,
[3, 3] = 1,
[3, 1] = 0]

200

Metric tensor gi j

(B.2)

[[1, 2] = 0,
[2, 2] = 1,
[1, 3] = 0,
[1, 1] = 1,
[3, 2] = 0,
[2, 3] = 0,
[2, 1] = 0,
[3, 3] = 1,
[3, 1] = 0]

First Christoffel symbol

(B.3)

[[2, 1, 1] = 0,
[3, 3, 2] = 0,
[2, 3, 1] = 0,
[3, 1, 2] = 0,
[3, 3, 3] = 0,
[3, 1, 1] = 0,
[3, 1, 3] = 0,
[1, 2, 1] = 0,
[3, 2, 3] = 0,
[1, 3, 1] = 0,
[3, 2, 2] = 0,
[3, 2, 1] = 0,
[1, 1, 1] = 0,
[2, 2, 2] = 0,
[3, 3, 1] = 0,
[1, 3, 2] = 0,
[1, 2, 3] = 0,
[1, 3, 3] = 0,
[1, 1, 3] = 0,
[1, 2, 2] = 0,
[2, 1, 2] = 0,
[2, 2, 1] = 0,
[2, 3, 2] = 0,
[2, 3, 3] = 0,
[2, 1, 3] = 0,
[1, 1, 2] = 0,
[2, 2, 3] = 0]

201

Second Christoffel symbol

(B.4)

[[2, 1, 1] = 0,
[3, 3, 2] = 0,
[2, 3, 1] = 0,
[3, 1, 2] = 0,
[3, 3, 3] = 0,
[3, 1, 1] = 0,
[3, 1, 3] = 0,
[1, 2, 1] = 0,
[3, 2, 3] = 0,
[1, 3, 1] = 0,
[3, 2, 2] = 0,
[3, 2, 1] = 0,
[1, 1, 1] = 0,
[2, 2, 2] = 0,
[3, 3, 1] = 0,
[1, 3, 2] = 0,
[1, 2, 3] = 0,
[1, 3, 3] = 0,
[1, 1, 3] = 0,
[1, 2, 2] = 0,
[2, 1, 2] = 0,
[2, 2, 1] = 0,
[2, 3, 2] = 0,
[2, 3, 3] = 0,
[2, 1, 3] = 0,
[1, 1, 2] = 0,
[2, 2, 3] = 0]

B.1.1 Navier equations

The Navier equation core.

(B.5)

�
(2 � 2ν)

∂2u1

(∂θ1)2 + (1 � 2ν)
∂2u1

(∂θ2)2 + (1 � 2ν)
∂2u1

(∂θ3)2 +
∂2u3

∂θ1∂θ3 +
∂2u2

∂θ1∂θ2 ,

(1� 2ν)
∂2u2

(∂θ1)2 +(2� 2ν)
∂2u2

(∂θ2)2 +(1� 2ν)
∂2u2

(∂θ3)2 +
∂2u3

∂θ2∂θ3 +
∂2u1

∂θ1∂θ2 ,

(1 � 2ν)
∂2u3

(∂θ1)2 + (1 � 2ν)
∂2u3

(∂θ2)2 + (2 � 2ν)
∂2u3

(∂θ3)2 +
∂2u2

∂θ2∂θ3 +
∂2u1

∂θ1∂θ3

�

202

B.1.2 Stress Tensor

The Stress tensor τ i j

[1, 2] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

[2, 2] =
2µ (�1 + ν)

�1 + 2ν
∂u2

∂θ2 �
2µν

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u3

∂θ3

[1, 3] = µ
∂u1

∂θ3 + µ
∂u3

∂θ1

[1, 1] =
2µ (�1 + ν)

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u2

∂θ2 �
2µν

�1 + 2ν
∂u3

∂θ3

[3, 2] = µ
∂u2

∂θ3 + µ
∂u3

∂θ2

[2, 3] = µ
∂u2

∂θ3 + µ
∂u3

∂θ2

[2, 1] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

[3, 3] =
2µ (�1 + ν)

�1 + 2ν
∂u3

∂θ3 �
2µν

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u2

∂θ2

[3, 1] = µ
∂u1

∂θ3 + µ
∂u3

∂θ1

(B.6)

B.1.3 Navier equations usingσ only

The Navier core, σ version.

(B.7)
�

∂σ1,1

∂θ1 +
∂σ 2,1

∂θ2 +
∂σ 3,1

∂θ3 ,
∂σ 1,2

∂θ1 +
∂σ 2,2

∂θ2 +
∂σ3,2

∂θ3 ,
∂σ1,3

∂θ1 +
∂σ2,3

∂θ2 +
∂σ3,3

∂θ3

�

B.2 Substitutions and additions
B.2.1 System

The additional/substitution equations.

(B.8)
�

∂u1

∂θ1 = uˆ [1, 1] ,
∂u1

∂θ2 = uˆ [1, 2] ,
∂u2

∂θ1 = uˆ [2, 1] ,
∂u2

∂θ2 = uˆ [2, 2]
�

203

B.2.2 Elimination of third dimension components.

The substitutions used (inert form).

(B.9)

�
∂u1 (θ1,θ2,θ3)

∂θ3 = 0,
∂2u1 (θ1,θ2,θ3)

(∂θ3)2 = 0,
∂u2 (θ1,θ2,θ3)

∂θ3 = 0,

∂2u2 (θ1,θ2,θ3)

(∂θ3)2 = 0,
∂u3 (θ1,θ2,θ3)

∂θ3 = 0,
∂2u3 (θ1,θ2,θ3)

(∂θ3)2 = 0,

u3 �θ1,θ2,θ3� = 0
�

B.3 General expressions
B.3.1 Navier equations for all interiors

Navier core equations.

(B.10)
(�2ν + 2)

∂2u1

(∂θ1)2 + (1 � 2ν)
∂2u1

(∂θ2)2 +
∂2u2

∂θ1∂θ2 = 0

(1 � 2ν)
∂2u2

(∂θ1)2 + (�2ν + 2)
∂2u2

(∂θ2)2 +
∂2u1

∂θ1∂θ2 = 0

First-order system equations.

(�2ν + 2)
∂u1,1

∂θ1 + (1 � 2ν)
∂u1,2

∂θ2 +
∂u2,1

∂θ2 = 0,

(1 � 2ν)
∂u2,1

∂θ1 + (�2ν + 2)
∂u2,2

∂θ2 +
∂u1,1

∂θ2 = 0

∂u1

∂θ1 � u1,1 = 0

∂u1

∂θ2 � u1,2 = 0

∂u2

∂θ1 � u2,1 = 0

∂u2

∂θ2 � u2,2 = 0

(B.11)

B.3.2 Traction equations using stress tensor

τ i j after series substitutions.

204

[1, 2] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

[2, 2] =
�2µ (1 � ν)
�1 + 2ν

∂u2

∂θ2 �
2µν

�1 + 2ν
∂u1

∂θ1

[1, 1] =
2µ (�1 + ν)

�1 + 2ν
∂u1

∂θ1 �
2µν

�1 + 2ν
∂u2

∂θ2

[2, 1] = µ
∂u1

∂θ2 + µ
∂u2

∂θ1

(B.12)

B.3.3 Displacement vector

vi after series substitutions.

(B.13)
�
u1, u2, u3�

B.4 Conditions for domain 1
B.4.1 Top conditions

Starting conditions.

(B.14)
�
u1, u2�

Starting rhs.

(B.15)[0, 0]

Conditions after simplification and factorization.

(B.16)
�
u1, u2�

The first-order equation system.�
u1 = 0, u2 = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.17)

205

B.4.2 Left conditions

Starting conditions.

(B.18)
�

∂u2

∂θ1 , u1
�

Starting rhs.

(B.19)[0, 0]

Conditions after simplification and factorization.

(B.20)
�

∂u2

∂θ1 , u1
�

The first-order equation system.�
uˆ [2, 1] = 0,u1 = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.21)

B.4.3 Bottom conditions

The traction equation core τ i jni.

(B.22)

"
�µ ∂u1

∂θ2 � µ
∂u2

∂θ1 ,
�2µ (�1 + ν)

�1 + 2ν
∂u2

∂θ2 +
2µν ∂u1

∂θ1

�1 + 2ν

#

The calculated surface normal ni.

(B.23)table ([1 = 0, 2 = �1, 3 = 0])

The traction equation core rhs.

(B.24)[0,σ]

The first-order traction equation system.
�
�µ ∂u1

∂θ2�µ
∂u2

∂θ1 = 0,
�2µ (�1 + ν)

�1 + 2ν
∂u2

∂θ2 +
2µν ∂u1

∂θ1

�1 + 2ν
= σ ,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.25)

206

B.4.4 Right conditions

Starting conditions.

(B.26)
�

∂u1

∂θ1 ,
∂u2

∂θ1

�

Starting rhs.

(B.27)[0, 0]

Conditions after simplification and factorization.

(B.28)
�

∂u1

∂θ1 ,
∂u2

∂θ1

�

The first-order equation system.

(B.29)

�
uˆ [1, 1] = 0, uˆ [2, 1] = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2

� uˆ [1, 2] = 0,
∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
�

B.4.5 RightOL conditions

Starting conditions.

(B.30)
�
u1, u2�

Starting rhs.

(B.31)[0, 0]

Conditions after simplification and factorization.

(B.32)
�
u1, u2�

The first-order equation system.�
u1 = 0, u2 = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.33)

207

B.5 Conditions for domain 2
B.5.1 Right conditions

Starting conditions.

(B.34)
�
u1, u2�

Starting rhs.

(B.35)[0, 0]

Conditions after simplification and factorization.

(B.36)
�
u1, u2�

The first-order equation system.�
u1 = 0, u2 = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.37)

B.5.2 Top conditions

Starting conditions.

(B.38)
�
u1, u2�

Starting rhs.

(B.39)[0, 0]

Conditions after simplification and factorization.

(B.40)
�
u1, u2�

The first-order equation system.�
u1 = 0, u2 = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.41)

208

B.5.3 Left conditions

Starting conditions.

(B.42)
��u1,�u2�

Starting rhs.

(B.43)[0, 0]

Conditions after simplification and factorization.

(B.44)
��u1,�u2�

The first-order equation system.�
�u1 = 0,�u2 = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.45)

B.5.4 LeftOL conditions

Starting conditions.

(B.46)
�
�∂u1

∂θ1 ,�∂u2

∂θ1

�

Starting rhs.

(B.47)[0, 0]

Conditions after simplification and factorization.

(B.48)
�
�∂u1

∂θ1 ,�∂u2

∂θ1

�

The first-order equation system.�
�uˆ [1, 1] = 0,�uˆ [2, 1] = 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,

∂u1

∂θ2 � uˆ [1, 2] = 0,
∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.49)

209

B.5.5 Bottom conditions

Starting conditions.

(B.50)

"
�µ ∂u1

∂θ2 � µ
∂u2

∂θ1 ,
�2µ (�1 + ν)

�1 + 2ν
∂u2

∂θ2 +
2µν ∂u1

∂θ1

�1 + 2ν

#

Starting rhs.

(B.51)table ([1 = 0, 2 = �1, 3 = 0])

Conditions after simplification and factorization.

(B.52)[0, 0]

The first-order equation system.

�
�µ ∂u1

∂θ2 � µ
∂u2

∂θ1 = 0,
�2µ (�1 + ν)

�1 + 2ν
∂u2

∂θ2 +
2µν ∂u1

∂θ1

�1 + 2ν
= 0,

∂u1

∂θ1 � uˆ [1, 1] = 0,
∂u1

∂θ2 � uˆ [1, 2] = 0,

∂u2

∂θ1 � uˆ [2, 1] = 0,
∂u2

∂θ2 � uˆ [2, 2] = 0
� (B.53)

APPENDIX C

ORIGINAL APPROACH TO MIXED BVPS

C.1 Overview
This appendix describes the original, “textbook” approach for the solution of

two-dimensional sinc boundary value problems originally tried. Although this

will work for Lα problems withα > 1, it will not work for the present problems.

Further, a fully automated implementation of this algorithm is greatly compli-

cated by the presence or absence of certain splines. Lastly, using a second-order

system implementation is very restrictive, and yields very large dense matrices.

This short overview is included here to illustrate what not to do, and to help

readers avoid wasting a large amount of their time.

C.2 Proper approach to mixed
boundary value problems

We begin with some known one-dimensional results in section C.2.1; the

extension to two dimensions is shown in section C.2.2. The extension to higher

dimensions is similar, and will not be shown here.

C.2.1 Sinc methods for one-dimensional problems

In this section, we summarize some available results for sinc interpolation

and sinc collocation. The main reference for technical details of this section is the

book (Stenger 1993a); most results are proven there.

C.2.1.1 Interpolation and simple collocation

First, some definitions.

The sinc function is defined by

sinc(x) =
sin(π x)
π x

(C.1)

211

Define the domain Dd by

Dd = fw 2 Cj=(w) < dg (C.2)

Letα > 0, and let Lα(Dd) denote the family of functions f with the properties

� f is analytic in Dd;

� for some c > 0 and all z 2 Dd,

j f (z)j � c
eαz

(1+jezj)2α (C.3)

Now, taking h =

�
πd
αN

�1/2

, we have the interpolation result

f (x) =
N

∑
k=�N

f (kh)sinc
�

x � kh
h

�
+ E(N)

E(N) = c1

p
Ne�

p
πdαN (C.4)

for a positive c1 depending only on f , d and α. Notice that this result is for the

real line, and the function must decay at �1.

By first remapping functions approaching a nonzero limit, this can be en-

hanced to handle nonzero values at �1:

f (x) =
N

∑
k=�M

cksinc
�

x � kh
h

�
+ cN+1S1(x) + c�M�1S�1(x) + E(N) (C.5)

ck = f (kh), k = �N..N (C.6)

c�M�1 = f (�1) (C.7)

cN+1 = f (1) (C.8)

S�1(x) =
1

1 + eαx (C.9)

S1(x) =
eαx

1 + eαx (C.10)

Notice that the summation runs from �M to N; the error bound is of the same

form as above.

212

Defining m as m = 2N + 1, this means once n digits of accuracy are obtained,

one can roughly get 1.4n digits by doubling m.

To interpolate a function f defined on [a, b] � R we first make the following

definitions:

1. for [a, b] 2 D,φ is a conformal map withφ : D ! Dd

2. ψ = φ�1

3. ρ = eφ(z)

4. γk
(h) = sinc

�
φ(x)�kh

h

�
Letα > 0, and let Lα(D) denote the family of functions F with the properties

� F is analytic in D

� for some c > 0 and all z 2 D,

jF(z)j � c
ρ(z)α

(1+jρ(z)j)2α (C.11)

Now, taking h =

�
πd
αN

�1/2

, we have the interpolation result

f (x) =
N

∑
k=�N

ckγ
(h)
k (x) + E(N)

E(N) = C
p

Ne�
p
πdαN (C.12)

for a positive c1 depending only on f , d andα. Notice that equation C.11 requires

f to vanish at the endpoints of the interval. As before, this series can be enhanced

to handle nonhomogeneous endpoint values with a simple addition:

F(x) =
N

∑
k=�M

ckγ
(h)
k (x) + cN+1Sb(x) + c�M�1Sa(x) + E(M, N) (C.13)

ck = (F � Sa � Sb)(ψ(kh)), k = �N..N (C.14)

cN+1 = F(b) (C.15)

c�M�1 = F(a) (C.16)

and Sa and Sb are cubic splines with value 1 at the left and right endpoints,

respectively, and zero derivatives at the endpoints.

213

As written, the expressions for the ck are no longer simple function evalu-

ations. This extra work can be shifted to the expansion of F by defining the

discrete-orthogonal terms

Ŝa(x) = Sa(x)�
N

∑
k=�M

dkγk(x) (C.17)

dk = Sa(ψ(kh)) (C.18)

Ŝb(x) = Sb(x)�
N

∑
k=�M

dkγk(x) (C.19)

dk = Sb(ψ(kh)) (C.20)

With these definitions, we have the expansion

F(x) =
N

∑
k=�N

ckγ
(h)
k (x) + cbŜb(x) + caŜa(x) (C.21)

with ck = F(xk), ca = F(a), cb = F(b), and xk = ψ(kh)

C.2.1.2 Extensions for mixed boundary value problems

For the solution of mixed boundary value problems, a finite nonzero ap-

proximation of the derivative at endpoints is needed. Since the derivatives of

the γk are unbounded at the endpoint, a nullifier g is introduced to make the

derivatives of the series terms also vanish at the endpoints. Then, as before,

adding extra terms with the right properties gives a useful basis.

Let Ta(x) and Tb(x) be cubic splines with derivatives of one at the left and

right endpoint, respectively, and other values and derivatives zero at the end-

points; then the following series can be used to approximate f on [a, b] when f

is specified via a mixed boundary value problem.

f (x) =
N

∑
k=�M

ckγk(x) + cbŜb(x) + ca Ŝa(x) + cb0 T̂b(x) + (C.22)

ca0 T̂a(x) + E(N, M) (C.23)

γk = sinc
�
φ(x) � kh

h

�
g(x) (C.24)

xk = ψ(kh) (C.25)

214

g(x) =
1

φ0(x)
(C.26)

ck = f (xk)/g(xk) (C.27)

cb = f (b) (C.28)

ca = f (a) (C.29)

cb0 = f 0(b) (C.30)

ca0 = f 0(a) (C.31)

Ŝa(x) = Sa(x) �
N

∑
k=�M

dkγk(x) (C.32)

dk =
Sa(xk)

g(xk)
(C.33)

Ŝb(x) = Sb(x) �
N

∑
k=�M

dkγk(x) (C.34)

dk =
Sb(xk)

g(xk)
(C.35)

T̂a(x) = Ta(x) �
N

∑
k=�M

dkγk(x) (C.36)

dk =
Ta(xk)

g(xk)
(C.37)

T̂b(x) = Tb(x) �
N

∑
k=�M

dkγk(x) (C.38)

dk =
Tb(xk)

g(xk)
(C.39)

All following extensions are based upon this series representation, or subsets of

it.

C.2.2 Sinc methods extended for two-dimensional problems

The straightforward way to extend the sinc series to higher dimensions is via

tensor products. In this section, two derivations of the series expansion are given

and the matrix structure which arises for collocation is described.

In section C.2.2.1, we first show the derivation under the assumption that

the unknown can be fully represented by the series (C.22), and using a tensor

product to get the two-dimensional extension.

215

Next, we treat the splines in (C.22) as a change of unknown, so as to produce

a homogeneous equation to be satisfied by the simple sum
N

∑
k=�M

ckγk(x), and

extend this line of thinking to two dimensions – section C.2.2.2.

Extension of the series to multiple domains is considered in section C.2.2.3

C.2.2.1 Tensor product derivation

Let u(x) be represented by the full sum used in equation (C.22), written as a

single sum. Thus

u(x) =
N+2

∑
k=�M�2

ckγk(x) = ckγk(x) (C.40)

where the last equation is written in summation notation (repeated subscripts

are summed over). Then we have

u(x, y) = [dk1(y)]γk1(x)

= [dk1k2γk2(y)]γk1(x)

=
N1+2

∑
k1=�M1�2

N2+2

∑
k2=�M2�2

dk1k2γk1(x)γk2(y) (C.41)

This representation is valid on any rectangular region; regions with other shapes

can easily be mapped onto a rectangle. Also, the “rectangle” can be unbounded

on one or more sides; only the choice of conformal map (below) changes. Thus,

half- or fullspace problems can be solved easily.

Assume for simplicity N1 = N2, M1 = M2 . Define m as m = N + M + 1.

Then the series (C.41) has

(m + 4)2 = m2 + 8 m + 16 (C.42)

terms. Notice that this is the most general form possible, used for problems

with mixed conditions on all boundaries. Since not every problem has mixed

conditions on all boundaries, the nullifier must be selected in conjunction with

the splines for each direction and boundary separately before forming the tensor

product.

To this end, it is more natural to think of the splines as a remapping of the

unknown — the subject of the next section.

216

For collocation points, starting from fxkjxk = ψ(kh)gk=�M�1..N+1 [fxa, xbg
for the one-dimensional case, we get the collocation points as a tensor product

also:

fxk jjxk j = (ψ(kh1),ψ(jh2))gk=�M1�1..N1+1, j=�M2�1..N2+1 [(C.43)

fxa jjxa j = (xa,ψ(jh2))g j=�M2�1..N2+1 [(C.44)

fxb jjxb j = (xb,ψ(jh2))g j=�M2�1..N2+1 [(C.45)

fxkajxka = (ψ(kh1), ya)gk=�M1�1..N1+1 [(C.46)

fxkbjxkb = (ψ(kh1), yb)gk=�M1�1..N1+1 (C.47)

Notice that we have (m + 4)2 = m2 + 8 m + 16 points, as expected.

C.2.2.2 Tensor products revisited

Recall the simple series used for Lα functions in one-dimensional (equation

(C.12)). By using a nullifier, this series has zero value and zero derivative at the

boundaries. By providing splines for the nonhomogeneous boundary conditions

(equation (C.13)), the problem Lu = f , Bu = g is effectively remapped to Lv =

f̃ , Bv = 0 and this problem can be solved with the sinc-only series (C.12).

The same approach can be taken in two (and higher) dimensions. Starting

with the simple sinc series and forming the tensor product, we obtain the repre-

sentation

u(x, y) =
N1

∑
j=�M1

N2

∑
k=�M2

c jk (S(k, h1) Æφ1g1) (x) (S(j, h2) Æφ2g2) (y) (C.48)

valid for u 2 Lα, u0(a) = u0(b) = 0. It thus remains to remap the problem

Lu = f , Bu = g to Lv = f̃ , Bv = 0.1 Taking a hint from the previous section, on

each boundary of the rectangle, we can use a series of the form

N1

∑
k=�M1

�
(S(k, h) Æφ1g1) (x1) + Ŝa(x1) + Ŝb(x1) + T̂a(x1) + T̂b(x1)

�
Ŝ(x2) (C.49)

1 Note: for single-unknown problems, an explicit remapping can usually be found, so that
the resulting problem has only the coefficients of (C.48) as unknowns. However, with multiple
unknowns, only the form of the remapping is known, and unknown coefficients of this form also
go into the matrix system. Thus, this approach is somewhat implicit.

217

for u’s value and tangential derivative, and a series of the form

N1

∑
k=�M1

�
(S(k, h) Æφg) (x1) + Ŝa(x1) + Ŝb(x1)

�
T̂(x2) (C.50)

for
∂u
∂n

. The direction of the boundary is x1, the normal direction x2. This gives a

total of m2 + 8m + 24 terms per unknown. The causes for this larger number are

redundancies at the corners of the domain, in the spline-only terms. First, u only

has one value at each corner, reducing the total number of terms by 4. Then, the

x and y partials at each corner are unique also, further reducing the number of

terms by 8. Thus, we are left with m2 + 8m + 12 terms per unknown. The four

terms missing here but present in (C.41) are the second-order mixed derivative

terms representing
∂2

∂x∂y
at the corners of the domain.

The results in sections C.2.2.1 and C.2.2.2 thus differ at the corners of the do-

main; numerically, the presence of terms representing the mixed second partial

is redundant and these terms are not used.

Next, we derive at the collocation points by extending the one-dimensional

problem in a way analogous to the series derivation, rather than by tensor

product. First, recall that for one-dimensional problems, three point regions

can be distinguished. Always present are interior collocation points, given by

xk = ψ(kh), k = �M..N since these correspond to the sinc part of the series.

When the splines representing the value of the unknown at the endpoints of the

interval are present (Ŝxa etc.), the collocation point set is expanded to include

the boundary points. Lastly, when the splines representing the derivatives at

endpoints (T̂xa , etc.) are included, the collocation points are further extended

with extra points in the interior: xk = ψ(kh), k = f�M� 1, N + 1g
Selecting the collocation points in two-dimensional analogously we have a

point grid as shown in Figure C.1.

Notice that here we have no points at the corners, unlike equations (C.43); this

is consistent with the series selection in equations (C.48) through (C.50), since

there we also have four terms fewer than equation (C.41).

218

Figure C.1. The point layout for two-dimensional collocation, for N = M = 1.
The circles are the boundary points, while the crosses represent the al-
ways-present part of the interior points obtained from the one-dimensional ten-
sor product. The points marked with triangles are used only when the derivative
spline terms corresponding to them are present. Notice that the points are not
really evenly spaced.

C.2.2.3 Multiple-domain problems in two dimensions

Handling of multiple domain problems is straightforward. At the connecting

boundaries, the equations involve unknowns from both domains and this simply

reflects in the collocation matrix.

Stated another way, the continuous properties of the linear problem are re-

flected in the discrete approximation via the linear system. Therefore, one has to

only consider the matrix implications of domain coupling. These considerations

go along with those for general matrix setup.

Further, the method of setting up and solving the system is generalized here.

Reference (Morlet, Lybeck, and Bowers 1994) uses the bordering algorithm for

a one-dimensional problem on two domains. While it reduces effective matrix

sizes for one-dimensional problems, it significantly complicates any algorithm.

Also, for two- and higher-dimensional problems, reductions in work are negligi-

ble. In reference (Lund and Bowers 1992) and others, equations are manually

re-written to reduce nonhomogeneous boundary conditions to homogeneous

form. Unfortunately, this approach fails when boundary conditions involve

more than one unknown.

REFERENCES

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Compilers— Principles, Techniques,
and Tools. Reading, MA, USA: Addison-Wesley.

Backus, J. (1978, August). Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs. Communications
of the Association for Computing Machinery 21(8), 613–641. Reproduced in “Se-
lected Reprints on Dataflow and Reduction Architectures” ed. S. S. Thakkar,
IEEE, 1987, pp. 215-243.

Bogy, D. B. (1968). Edge bonded dissimilar orthogonal elastic wedges under
normal and shear loading. Journal of Applied Mechanics 35, 460–466.

Chailloux, E., P. Manoury, and B. Pagano (2000, April). Développement
d’applications avec Objective CAML (1st ed.). O’Reilly & Associates, Inc.

Clements, D. L. (1971). A crack between dissimilar anisotropic media. Int. J.
Eng. Sci. 9, 257–265.

Demmel, J. W., S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu (1999,
July). A supernodal approach to sparse partial pivoting. SIAM Journal on
Matrix Analysis and Applications 20(3), 720–755. Implementation and docu-
mentation available at http://www.nersc.gov/~xiaoye/SuperLU.

England, A. H. (1965, June). A crack between dissimilar media. Journal of
Applied Mechanics, 400–402.

Erdogan, F. (1963, June). Stress distribution in a nonhomogeneous elastic
plane with cracks. Journal of Applied Mechanics, 232–236.

Folias, E. S. (1965). A finite line crack in a pressurized spherical shell. Interna-
tional Journal of Fracture, 20–46.

Folias, E. S. (1975, September). On the three-dimensional theory of cracked
plates. Journal of Applied Mechanics, 663–674.

Graham, P. (1994). On Lisp: Advanced Techniques for Common Lisp. Prentice
Hall.

Green, A. E. and W. Zerna (1992). Theoretical Elasticity. Dover.

Griffith, A. A. (1924). The theory of rupture. In Proceedings of the First
International Congress of Applied Mechanics, pp. 55–63.

220

Hein, V. L. and F. Erdogan (1971). Stress singularities in a two-material wedge.
International Journal of Fracture 7(3), 317–330.

Houstis, E. N., W. F. Mitchell, and J. R. Rice (1985). Collocation software
for second-order elliptic partial differential equations. ACM Transactions on
Mathematical Software 11(4), 379–412.

Inglis, C. (1913). Stresses in a plate due to the presence of cracks and sharp
corners. Trans. Inst. Naval Architects 55, 219.

Kaufman, L. (1990, December). TTGU — a package for solving time varying
partial differential equations on a union of rectangles. Technical Report 154,
AT&T Bell Labs Computing Sciences. Available at http://cm.bell-labs.
com/cm/cs/cstr/154.ps.gz.

Kernighan, B. W. and R. Pike (1984). The UNIX Programming Environment.
Upper Saddle River, NJ 07458, USA: Prentice-Hall.

Kowalski, M. A., K. A. Sikorski, and F. Stenger (1995). Selected Topics in
Approximation and Computation. Oxford University Press.

Leroy, X. (1995). Le système caml special light: modules et compilation
efficace en caml. Technical report, INRIA. This report describes the precursor
to OCAML. Available at http://pauillac.inria.fr/~xleroy/publi/caml-
special-light-rr.ps.gz.

Leroy, X. (1997). Objective caml. Online, http://pauillac.inria.fr/ocaml.
Most recent version at ftp://ftp.inria.fr/lang/caml-light/ocaml-3.00.
tar.gz.

Levine, J. R., T. Mason, and D. Brown (1992). lex & yacc (Second ed.). 981
Chestnut Street, Newton, MA 02164, USA: O’Reilly & Associates, Inc.

Li, L. and S. Nemat-Nasser (1990). Interface cracks in anisotropic dissimilar
materials: an analytic solution. J. Mech. Phys. Solids 39, 113–144.

Lund, J. and K. L. Bowers (1992). Sinc Methods for Quadrature and Differential
Equations. SIAM.

Lybeck, N. J. and K. L. Bowers (1994). The sinc-Galerkin patching method
for Poisson‘s equation. Proceedings of the 14th IMACS World Congress on
Computational and Applied Mathematics 1, 325–328. Also available at http:/
/www.math.montana.edu/~bowers/publications/imacs94.ps.

Lybeck, N. J. and K. L. Bowers (1996). Sinc methods for domain decom-
position. Applied Mathematics and Computation 75, 13–41. Also available at
http://www.math.montana.edu/~bowers/publications/dd1.ps.

Morlet, A. et al. (1997). The schwarz alternating sinc domain decomposition
method. Applied Numerical Math. 25, 461–483.

221

Morlet, A. C., N. J. Lybeck, and K. L. Bowers (1994, October). Sinc domain
decomposition methods I: The direct approach. The contents of this paper are
similar to (Lybeck and Bowers 1996).

Morlet, A. C., N. J. Lybeck, and K. L. Bowers (1999). Convergence of the
sinc overlapping domain decomposition method. Applied Mathematics and
Computation 98, 209–227. Also available at http://www.math.montana.edu/
~bowers/publications/overconv.ps.

Penado, F. E. and E. S. Folias (1989). The three dimensional stress field around
a cylindrical inclusion in a plate of arbitrary thickness. International Journal of
Fracture 39, 129–145.

Raymond, E. (1991). The New Hacker’s Dictionary. Cambridge, MA, USA:
MIT Press. This book corresponds to version 2.9.6 of the on-line jargon
file. The latest (at the time of writing) is version 2.9.12 (jargon2912.txt.z)
which is available by anonymous ftp from prep.ai.mit.edu (in /pub/gnu) or
wuarchive.wustl.edu (in mirrors/gnu). Changes since the publication of this
book can be found in the file jargon-upd.z. (*.z are files compressed by GNU
zip (gzip)).

Rice, J. R. and G. C. Sih (1965). Plane problems of cracks in dissimilar media.
ASME J. Appl. Mech. 32, 418 – 423.

Schwing, J. (1976). Numerical Solution of Integral Equations in Potential Theory
Problems. Ph. D. thesis, University of Utah.

Sneddon, I. N. (1946). The distribution of stress in the neighbourhood of a
crack in an elastic solid. Proc. Roy. Soc. London A187, 229–260.

Sneddon, I. N. (1995). Fourier Transforms. Dover.

Stenger, F. (1993a). Numerical Methods Based on Sinc and Analytic Functions.
Springer-Verlag.

Stenger, F. (1993b). Sincpack. Available at http://www.cs.utah.edu/~
stenger/PACKAGES/SincPack.tar.

Stenger, F. (1993c). Summary of sinc approximation. Available at http://
www.cs.utah.edu/~stenger/PACKAGES/SincPack.ps.

Zhong, F. H. and E. S. Folias (1992). The 3d stress field of a fiber embedded
into a matrix and subjected to an axial load. Computational Mechanics 9, 1–15.

