A Bibliography of Publications of David M. Gay

David M. Gay
AT&T Bell Laboratories
600 Mountain Avenue, Room 2C-463
Murray Hill, NJ 07974-0636
USA
Tel: ?n/a?
FAX: ?n/a?
E-mail: dmg@research.bell-labs.com (Internet)

22 October 2019
Version 2.24

Abstract
This bibliography records publications of David M. Gay.

Title word cross-reference

10th [Gri84]. 18th [BS86]. 1978 [DS79].
25th [ACM98b].
31 [Gay79a].
528 [GG99].
77 [GG99].

'98 [ACM98b].

Algebraic [FFG98, FFG99, FG95, Gay80b, Gay81c, Gay83b, Gay00, FG02, Gay80c, Gay01].

Algorithm [BGW93, DGW81b, DGW81a, FG94, Gay74b, Gay83a, Gay83c, GKR86, Gay87c, Gay85b, Gay87a, Gay83c, GG99].

Algorithmic [Gay81a]. Algorithms [BGG+12, Gay82a, Gay91b, GK91, GC91].

AlSb [MGH+88]. AMPL [FGK93, FGK94, Gay91a, Gay93, Gay96b].

Analysis [PBG08, BCG02, Gri84].

Angewandte [Nic80]. annotations [AGN09]. Application [BGG+12, GHGSW92, GC91].

Applications [Gay75]. Approach [Gay74a, Gay83a, Gay84, GLvB+03].

Architecture [BBCG02]. Arithmetic [CCG+84, CCG+85, DG96, Gay80b]. Art [HHP94]. atomic [AG11, MZGB06].

Autolocker [MZGB06]. Automatic [BBH+08, Gay91a, GC91, PBG08].
Automatically [Gay96a]. Availability [FGMS91].
Barrier [AG98]. Bases [Gay78b].
BENCHMARK [DG96]. biennial [Gri84].
Bipolar [PBG08]. Bound [Gay80c].
Bounds [Gay80b, Gay81c, Gay81e, Gay83b].
Br [Nie80]. Brown [Gay75, Gay76].
Broyden [Gay78a, GS78, Gay79b].
buy [Gay91c].

C
[AGEB08, FGMS90a, FGMS90b, FGMS91].
California [ACM98b]. checking [AGEB08].
Cholesky [Gay91c]. Collins [BS86].
Colorado [BS86]. Combining [Gay78b].
Compliant [DG96]. Composable [AG11].
Computing [ACM98a, Gay81b, Gay81c, Gay83b, Gay96b, IFF95, Moo88, Won87]. concurrency [KHL+07]. concurrent [AGN09]. conducted [MMR78].
Conference [ACM98b, Gri84].

differential [GHT91]. Differentiation [BBH+08, Gay91a, GC91, PBG08, Gay06]. Directions [IFF95]. distributed [BBCG02].

E
[DGW81b]. efficient [Gay06].
Electronic [Gay85a]. embedded [GLvB+03]. emergence [LBC+08].
Energies [HGSW92]. energy [KHL+07]. environment [GG95]. Environments [Won87]. Equation [Gay80b, Gay80c].
Equations [Gay77, GS78, Gay80b, Gay80c, Gay81c, Gay81e, Gay81d, Gay82b, Gay83b, Gay79a, GHT91].
Estimation [BGW93].

F
[FGMS91]. factorizations [Gay91c].
Floating [CCG+84, CCG+85, DG96]. Floating-point [CCG+84, CCG+85]. Folding [HGSW92]. Form [Gay87c]. Fort [BS86]. Fortran [FGMS90a, FGMS90b, FGMS91, GG99].

GaSb [MGH+86]. Generalizations
[Gay75]. Generalized [Gay80a].
Germanium [MGWH85].
Germanium-Doped [MGWH85].
Germany [Nic80]. Glass [MGWH85].
gradient [Gay06]. Group [MMR78].
Growth [MGH+86, MGH+88].
Having [Gay77, Gay79a].
Hierarchical [BGG+12]. High
[ACM98a, IF195, YSP+98a, YSP+98b].
High-Performance
[ACM98a, YSP+98a, YSP+98b]. holistic
[GLvB+03]. Hooking [Gay93].
Hyatt [DS79]. Hessian [Gay96b].
IEEE [DG96]. Implementation [GC91].
Implementing [Gay76]. in-core [Gay91c].
Incorporation [MGWH85]. independent
[CCG+84, CCG+85]. Indoor [FGK+95].
inference [AG98, MZGB06]. Information
[Gay96b]. Institut [Nic80]. integrated
[GG05]. Integrating [KHL+07]. Interest
[MMR78]. Interface [BS86, Gay94].
Interior [GKT91, Gay91b, GOW98b, GOW98a].
Interior-Point [Gay91b]. International
[Nic80]. Interval [Gay80b, Gay81d, Gay82b, Gay88, Moo88, Nic80]. Introduction
[FGK94].

Jacobian [Gay79a, Gay77]. January
[ACM98b]. Japan [IF195]. Java
[ACM98a, YSP+98a, YSP+98b]. July
[Gri84, MMR78]. Junction [PBG08]. June
[Gri84].

Karmarkar
[Gay85b, GKR86, Gay87a, Gay87c].
Knoxville [DS79]. Kyoto [IF195].

L [GHGSW92, HGSWG92]. L-alanine
[HGSWG92]. Laboratories [GG85].
Language [FFG98, FFG99, FGK90, FGK93, FGK94, FG95, Gay94, Gay00, GA01, FG02, Gay01, GLvB+03]. Languages [ACM98b].
Large [Gay87b, HHP94, PBG08, Wou87].
Large-Scale [PBG08, Wou87]. Least
[DGW81b, DGW81a, Gay83c, Gay88, GK91].
Least-Squares
[DGW81b, Gay83c, DGW81a]. length
[CCG+84, CCG+85]. Letter [GG85].
Library [Gay87b]. Lightweight [AGN09].
Likelihood [BGW93, GW86, GW88].
Linear [Gay74a, Gay74b, Gay80a, Gay81d, Gay82b, Gay85a, GKR86, Gay87c, KGT91, Gay91b, Gay85b, Gay87a]. Linearly
[Gay84]. little [Gay91c]. Locally [Gay81b].
LP [Gay78b].

Machine [Gay87b, GG99]. Madison
[MMR78]. Mail [Gay85a]. Majorizing
[Gay80b, Gay80c]. Management
[GA98, KHL+07]. March [ACM98a, BS86].
mashups [EG07]. Massive [Gay91c].
Materials [HGSWG92].
Material [HGSWG92].
Mathematical
[FGK90, FGK93, FGK94, FG95, Gay00, MMR78, Gay01]. mathematics [Nic80].
Mathemathik [Nic80]. Matrix
[DS79, Gay77, Gay79a]. Maximum
[BGW93, GW86, GW88]. May [Nic80].
Measuring [DG96]. Memory
[GA98, Gay91c]. Method [Gay75, Gay76, Gay78a, GS78, Gay79b, GOW98b, GOW98a].
Methods [GKT91, Moo88]. Mexico
[HT91]. Mexico-United [HT91].
Microcomputers [Wou87]. Minimization
[Gay75, Gay83a]. Model [Gay82a, Gay83a].
Model/Trust [Gay82a, Gay83a].
Model/Trust-Region [Gay83a]. Modeling
[FFG98, FFG99, FGK90, FGK93, FGK94, FG95, Gay00, FG02, GG05, Gay01]. Models
[BGW93, GW86, GW88, Gay91a, Gay96b].
Modifying [Gay77, Gay79a].
multithreaded [AGEB08].

Nanoporous [BGG+12]. nesC [GLvB+03].
nestable [AG11]. Network [ACM98a].
networked [GLvB+03]. networking [LBC+08]. NL2SOL [DGW81b, Gay83c]. no [Gay79a, GG95].
Nonconvex [GOW98b, GOW98a]. Nonlinear [BGW93, DGW81b, DGW81a, Gay77, GST78, Gay80b, Gay80c, Gay81c, Gay81c, Gay83b, Gay83c, GW86, GW88, Gay91a, GK91, Gay96a, Gay96b, MMR78, GOW98b, Gay79a, GOW98a]. November [DS79]. Numerical [Gri84, IFI95, GHT91].

October [IFI95]. Optimal [Gay81b, Gay81c, Gay91b]. Optimization [BGG+12, FGK+95, Gay82a, Gay84, GHGSW92, HHP94, GHT91]. order [Gay81c].
Partially [Gay96a]. Performance [ACM98a, DG96, IFI95, YSP+98a, YSP+98b].
Programming [ACM98b, FGK90, FGK93, FGK94, FG95, Gay74a, Gay74b, Gay85a, GKR86, Gay87c, GKT91, Gay91b, Gay96a, Gay00, GOW98b, EG07, FG02, GG05, Gay85b, Gay87a, GOW98a, Gay01, GGNY11, MMR78].

Radiation [PBG08]. Radiation-Damaged [PBG08]. Radix [CCG+84, CCG+85].
Regions [GA98, GA01]. Regression [BGW93, Gay80a, GW88]. Reid [Gay78b].
sections [MZGB06]. Self [GG99].
Small [Gay87b]. Software [GLC05, GLC07, IFI95]. Solution [Gay80c]. Solutions
REFERENCES

Gay77, Gay80b, Gay91b, Gay79a. Solver
Gay93. Solvers [FFG98, FFG99]. Solving
GS78, Gay80a, Gay81d, Gay82b. Some
Gay75, Gay78a, Gay79b, Gay91c. Sparse
Gay78b, Gay85b, Gay91c, DS79. Special
FG95, MMR78. speed [Gay91c]. Squares
DGW81b, Gay83c, Gay88, GK91, DGW81a.
Stability [MGW85, MGH^88]. Standard
CCG^84, CCG^85, Gay87c. State
HHP94. statements [AG11, GG95].
States [GHT91]. statistics [BS86]. Steps
Gay81b. stochastic [GG05]. Stopping
Gay91b. Straightforward [GGNY11].
strategies [AGEB08]. Structure [Gay96a].
Structures [FG95, HGSWG92, AGN09].
Subroutines [BGW93, Gay83a]. Support
GA01, BBCG02, FG02. Symbolic
Gay00, Gay01. Symbolic-Algebraic
Gay00, Gay01. Symposium
ACM98b, BS86, DS79, Nic80, MMR78.
synchronization [MZGB06]. Synthesis
MGH^86. Systems [FGK^95, Gay77,
GS78, Gay80b, Gay80c, Gay79a, GLvB^03].

T [GG85]. Tennessee [DS79]. Test
Gay85a. Testing [Gay82a]. Tests
Gay91b. their [MGH^88]. Them
FFG98, FFG99. Theory [GC91].
Thermodynamic
MGW85, MGH^86, MGH^88. Time
Gay74b. TinyOS [GLC05, GLC07].
Titanium [YP^98a, YSP^98b]. Tool
Gay88. Tradeoffs [GG91]. Transient
PBG08. Transistor [PBG08]. Trust
Gay82a, Gay84. Trust-Region
Gay83a, Gay84. Types [Gay94].

uncommenting [GG95]. Unconstrained
Gay82a, Gay83a. Understanding
HGSWG92. United [GHT91]. Universal
HGSWG92. Universität [Nic80].
University [Gri84, MMR78]. Updates
GS78. User [EG07]. User-friendly
EG07. Using

Gay80b, Gay80c, Gay83a, Gay87b, DG96].

Values [Gay77, Gay79a]. Variant [Gay87c].
Variations [Gay81a]. Vector [Gay80c]. VI
BBCG02. via [PBG08].

Web [EG07]. Wings [GKR86]. Wireless
FGK^95, LBC^08. Wisconsin [MMR78].
Wisconsin-Madison [MMR78]. WISE
FGK^95. Word [CCG^84, CCG^85].
Word-length-independent
CCG^84, CCG^85. Workshop
ACM98a, GHT91, IFI95.

Yada [GGNY11].

References

ACM:1998:AWJ

ACM:1998:CRP

REFERENCES

Aiken:1998:BI

Anderson:2011:CNP

Anderson:2008:SCD

Anderson:2009:LAC

Begel:2002:AVA

Bischof:2008:AAD

Boggs:2012:OAH

Bunch:1993:ASM

Boardman:1986:CSS

Cody:1984:PRW

Cody:1985:PRW

Darcy:1996:FMF

REFERENCES

[FG94] Robert Fourer and David M. Gay. Expressing special structures in an algebraic modeling language for mathematici-
REFERENCES

Fourer:2002:EAM
Robert Fourer and David M. Gay. Extending an algebraic
modeling language to support constraint programming. IN-
1091-9856 (print), 1526-5528 (electronic). Special issue on
the merging of mathematical programming and constraint
programming.

Fourer:1990:MLM
R. Fourer, D. M. Gay, and B. W. Kernighan. A model-
ing language for mathematical programming. Management
Science, 36(5):519–554, 1990. CODEN MSCIAM. ISSN 0025-
1909 (print), 1526-5501 (electronic). URL http://cm.bell-
labs.com/cm/cs/what/ampl/REFS/amplmod.ps.gz. (The
URL is for the longer technical report cited in the Manages-
tment Science paper.)

Fourer:1993:AML
Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL:
A Modeling Language for Mathematical Programming.
The Scientific Press (now an imprint of Boyd & Fraser Publish-
351 pp. LCCN QA 76.73 A26F68 1994.

Fourer:1994:IAM
the AMPL modeling language for mathematical programming.

Fortune:1995:WDI
Steven J. Fortune, David M. Gay, Brian W. Kernighan, Or-
lando Landron, Reinaldo A. Valenzuela, and Margaret H.
Wright. WISE design of indoor wireless systems: Prac-
tical computation and optimization. IEEE Computational
ISCEE4. ISSN 1070-9924 (print), 1558-190X (electronic).
URL http://www.computer.

Feldman:1990:FCCa
No. 149, AT&T Bell Laboratories, Murray Hill, NJ, USA,
com/netlib/f2c/f2c.ps.Z.

Feldman:1990:FCCb
S. I. Feldman, D. M. Gay, M. W. Maimone, and N. L.
Schryer. A Fortran to C con-
verter. ACM Fortran Forum, 9
REFERENCES

[Fay:1974:SPP]

[Fay:1975:BMS]

[Gay:1974:MRS]

[Gay:1974:SPP]

[Gay:1975:BMS]

[Gay:1974:MRS]

[Gay:1977:IBM]

[Gay:1977:MSV]

[Gay:1978:SCP]

[Gay:1977:IBM]

[Gay:1978:SCP]
REFERENCES

Gay:1978:CSR

Gay:1979:CMS

Gay:1979:SCP

Gay:1980:SRG

Gay:1980:UIA

Gay:1980:USV

Gay:1981:CAV

Gay:1981:COL

Gay:1981:CPB
REFERENCES

Gay:1981:SIL

Gay:1981:PBN

Gay:1982:CTM

Gay:1982:SIL

Gay:1983:ASU

Gay:1983:CPB

Gay:1983:RNE

Gay:1984:TRA

Gay:1985:EMD
REFERENCES

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gay:1991:MMB</td>
<td>David M. Gay. Massive memory buys little speed for complete, in-core sparse Cholesky factorizations on some scalar com-</td>
</tr>
</tbody>
</table>

REFERENCES

REFERENCES

Gomez:1991:ANP

GHT91

[Gay:1991:TAS]

Gay:1991:KAA

GKR86

GKT91

Gay:1991:IPM

Gay:2005:SDP

Gay:2007:SDP

Gay:2003:NLH

David Gay, Michael L. Overton, and Margaret H. Wright. A primal-dual interior method for
REFERENCES

[Overton:1998:PDI]

[Griffiths:1984:NAP]

[Gay:1978:SSN]

[Gay:1986:MLQ]

[Gay:1988:MLQ]

[Head-Gordon:1992:PAU]

[Hager:1994:LSO]

REFERENCES

REFERENCES

Moore:1988:RCR

McCloskey:2006:ASI

Nickel:1980:IMP

Phipps:2008:LST

Wouk:1987:NCE

Yelick:1998:THPa

Yelick:1998:THPb
Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto,