Abstract
This bibliography records publications of Jörg Peters.

Title word cross-reference

(3, 5) [Pet02a]. 2 [NKP16]. 3
[NKP16, Pet90a, PS04, PSZF06]. 4 [PS04].
A [KP15d]. C1 [KP15c, NKP16, Pet90b,
NP92, PS92b, PS92a, Pet95a, Pet95d]. C2
[KP05, KP18, Pet02a, KP09b, MP09, Pet89,
Pet96a, Pet95b]. Ck [GP15, Pet92b]. G
[SP16]. G1 [ASC18, Pet18, Pet92a]. G2
[HPS12, KP11a, KP11b, KP15a]. Gk [GP15].

- constructions [GP15]. - continuous
[GP15]. - direction [PS04]. - splines [SP16].
-surface [Pet95d]. - variate [PS92a].

1996 [FBBD98].
B [Pet97a, PR98b, Pet98c, Pet98a].

Face [KEP08]. Face-Centered [KEP08].
Facets [MNP08]. fair [Sap94]. fairness [Pet03]. Fast [KP09c, MNP08, PRR05].
Fields [WP04]. Filters [NP16, NP17, Pet15]. finite [KP18, NKP16].
GPU [SJP05]. Graphics [MK91, War92]. guided [KP05].
H [Pet95c]. held [Mul96]. Hermite [Pet89].
Higher [GP95, NP92]. higher-dimensional [NP92]. house [GP98].
Iterative [PRR05].
kernel [SJP05]. knot [Pet13].
Lattice [KEP08, KP10]. lattices [KP11c].
layout [Pet97a]. Learning [HAPR94].
Least [NP17]. Least-Degree [NP17]. Lens [KP09b]. Lens-shaped [KP09b].
Made [Pet95c]. manifolds [NP16]. maps [Pet94a]. Massachusetts [War92].
Meshes [MNP08, NN07, Pet93, Pet95a, Pet96b, Pet96d, PF10]. Messages [GTP98].
method [Pet90d]. Methods [DLS98, BS92, DLS94]. Mid [Pet04].
Mid-structures [Pet04]. minimal [KP14].
n [PR98a]. n-space [PR98a]. need [Pet03].
nets [GP95]. network [Pet90d]. networks [HPS12]. Non [KP13b, KP14, NKP16].
non-tensor-product [NP16].
Non-uniform [KP13b, KP14].
Nonuniform \([NP16]\), norm \([PW03]\), normal \([Pet90b]\), November \([War92]\), Numerical \([BS92]\), NURBS \([KP12b, Pet97a, Pet97b]\), NV \([BBP+08]\).

objects \([GOMP98]\), optimality \([PW03]\), Optimized \([LP01a, SPZ10]\), organized \([Mul96]\).

Pairs \([MKP08]\), papers \([GHPW12]\), Parallel \([MNP08]\), parametric \([OPR06]\), parametrization \([OPR06]\), Partitioned \([Pet91a]\), Part \([BBP+08]\), patch \([Pet92a, Pet97a]\), patch-layout \([Pet97a]\), Patches \([Pet98b, ASC18, KP05, KP09a, Pet90c, Pet92b, Pet03, Pet18]\), Patching \([Pet01]\), Pcp2Nurb \([Pet98c, Pet98a]\), Pent \([MNP08]\), piece \([NPLxx]\), pieces \([LP01a]\), piecewise \([GOMP98, PW03, Pet04]\), pixel \([YBP14]\), pixel-accurate \([YBP14]\), Platonic \([PK98]\), Point \([KP15c, OPB+18, OPR06]\), Point-augmented \([KP15c]\), Point-Sets \([OPB+18]\), polar \([KP07, MKP08, MP09]\), polycube \([SP16]\), polygon \([NPLxx]\), Polygons \([KP15d]\), Polyhedra \([Pet95e, Pet98b, Pet97b, PR97]\), Polynomial \([KP05, PS15, GOMP98, LP01a, NPLxx]\), Prautzsch \([Pet95c]\), preconditioners \([OPR06]\), Preprocessors \([SZP10]\), principles \([PR04]\), problem \([OPR06]\), Proceedings \([BBP+08, GM97, MK91, Mul96]\), product \([NKP16]\).

Quad \([MNP08, PF10]\), quadratic \([Pet93, PR98a]\), quadrilateral \([NNP07]\), Quads \([KP15d]\), quality \([Sap94]\), quantitative \([NPLxx]\), Quartic \([Pet89]\), Rapidly \([KP18]\), Rational \([KP11a, KP11b, KP05, PS15]\), realtime \([SJP05]\), Reconciling \([SPZ10]\), Reconstruction \([KEP08]\), Recursive \([PN97]\), Refinability \([Pet14]\), Refinable \([SP16, LP01a]\), Refined \([Pet01]\), regions \([Pet96c]\), regular \([Pet14]\), Regularly \([Pet94c]\), rendering \([YBP14]\), Response \([ASC18]\), Review \([Pet95c]\), rigid \([PSZF06, SPZ10]\), root \([KP11c]\), roots \([Pet94a]\).

tsaddle \([OPR06]\), Scale \([NP16]\), scheme \([PR97]\), schemes \([KP12a]\), Search \([OPB+18]\), Section \([KP11b]\), segments \([Pet96c]\), selected \([GHPW12]\), seminar \([GHPW12]\), sensitive \([KP13a]\), September \([GM97, Mul96]\), sequences \([Pet13]\), Sets \([OPB+18, Pet96a, Pet95b]\), Shape \([KPR04, PR04, KP15b, Sap94]\), shaped \([KP09b]\), shapes \([KP11b, KP12b, PW97a]\), Sharp \([NPLxx]\), Shift \([NP16]\), sided \([KP15e, Pet03]\), simplest \([PR97]\), Simplex \([Pet94c, Pet90d]\), simplices \([GP95]\), singularly \([Pet91a]\), Sizes \([GTP98]\), sleses \([PW03]\), Smooth \([FP96, KP15e, MNP08, Pet90e, Pet91b, Pet93, Pet01, Pet90a, Pet90c, Pet91a, Pet92b, Pet97a, Pet98c, Pet98a, PF10]\), Smoothing \([Pet95e, Pet97b, Pet98b, PR97]\), Smoothness \([Pet03]\), Solids \([PN97]\), solutions \([Pet15]\), Solvers \([PRR05]\), Space \([Pet89, PR98a]\), Spaces \([OPB+18]\), Special \([GHPW12, HFPPW09]\), Spheroids \([PK98]\), Spline \([KPP17, KEP08, Pet96d, PR98b, KP05, Pet95a, Pet96d, Pet98b, PW97b, PF10, Pet15, PS15]\), Splines \([Gon97, Pet13, KP11a, KP11b, KP12b, KP13a, KP13b, KP15e, KP09c, KP10, KP11c, LP01b, Pet93, Pet95d, PW97a, Pet97a, Pet98c, Pet98a, Pet14, SP16]\), Stability \([PS92b, PS92a]\), stable \([KP09c]\), stitched \([ASC18, Pet18]\), Stokes \([OPR06, PRR05]\), Structural \([RP06]\), structures \([Pet04]\), studies \([KPR04]\).
Subdivision [PN97, PR98b, PW06, PR08, WP04, GP95, KPR04, KP07, KP99b, KP12a, KP13b, KP14, KP15c, KP18, MP09, NNP07, PR97, PU00, PS04, PR04, RP06, SJP05].

summary [RP06]. supporting [MKP08].

Surface [Gon97, KP15b, MKP08, Pet90b, Pet90c, Pet91a, Pet92a, Pet92b, Pet95d].

Surfaces [DL98, KPP17, MNP08, PN97, WP04, GOMP98, GM97, KPR04, KP05, KP09a, KP09b, KP15a, KP15c, KP15d, KP18, Mul96, Pet90a, Pet93, Pet95a, Pet96a, Pet95b, Pet96b, Pet96d, Pet97a, PR98a, PU00, Pet02a, PR04, PR08, PF10, PS15, RP06, Sap94, War92, YBP14].
surfacing [HPS12, Pet98c, Pet98a].

Symmetric [KP10, KP11c]. Symposium [BBP+08].

System [HAPR94]. Systems [SZP10, PSZF06, SPZ10].

T [KPP17]. T-junctions [KPP17]. tensor [NKP16]. Ternary [NNP07]. tessellations [Pet14]. theory [BS92]. Tight [LP01b].

Tool [HAPR94]. topological [GP98].

topology [ASC18, Pet94b, Pet18]. transitions [PS15]. Tri [MNP08].

Tri/Quad/Pent [MNP08]. triangular [KP09a]. triangulation [PS92b].

Triangulations [Pet01]. Trimmed [Pet98b, Pet97a, Pet97b, Pet98c, Pet98a].

trivariate [PW97a]. Tschirnhaus [FP96].

UK [GM97]. underlying [PS92b].

Uniform [OPR06, KP13b, KP14].

University [Mul96]. unsorted [Pet13].

USA [BBB+08]. Using [Pet98b, Gon97, Pet92a, PW97a, Pet97b].

Variables [Pet12]. variate [PS92a].

W [Pet95c]. workshop [FBBD98].

XXX [Far97].

yield [GP15]. yields [KP18].

zero [Pet96a, Pet95b].

References

Akleman:2018:RT

See [Pet18].

Bebis:2008:AVCa

REFERENCES

REFERENCES

sciencedirect.com/science/article/pii/S1524070312000422

REFERENCES

[KP10]

[KP11c]

[KP12a]

[KP12b]

[KP13a]

[KP13b]

REFERENCES

Nguyen:2016:FEN

Ni:2007:TSQ

Peters:1992:IHD

Nguyen:2017:ELD

Nairn:19xx:SQB

Ozkan:2018:AEA

Olshanskii:2006:UPP

Peters:1989:LGH

Peters:1990:FSP

Peters:1990:LCB

Peters:1990:LSS

Peters:1990:NSM

Peters:1990:SMI

Peters:1991:PSE

Peters:1991:SIM

Peters:1992:IGS

Peters:1992:JSP
J. Peters. Joining smooth patches at a vertex to form a C^k surface. *Computer-Aided Geometr-

Peters:2001:SPR

Peters:2002:FFS

Peters:2002:GC

Peters:2003:SFN

Peters:2004:MSL

Peters:2012:CV

Peters:2013:SUK

Peters:2014:RSD

Peters:2015:GSF

Peters:2018:GSB

REFERENCES

Peters:2010:CSS

Peters:1994:GCC

Peters:1998:PS

Peters:1997:CVS

Peters:1997:SSS

Peters:1998:ECQ

Peters:1998:AAG

Peters:2004:SCS

Peters:2008:SS

204 pp. With introductory contributions by Nira Dyn and Malcolm Sabin.

References

- **Peters:2005:FIS**

- **Peters:1992:SVI**

- **Peters:1992:SIC**

- **Peters:2004:CDS**

- **Peters:2015:PSS**

- **Peters:2006:EGR**

- **Peters:2000:GMC**

- **Peters:2001:CCB**
REFERENCES

Peters:1997:BBI

Peters:1997:BSB

Peters:2003:OPL

Peters:2006:LLI

Reif:2006:SAS

Sapidis:1994:DFC

Shiue:2005:RGS

Sarov:2016:RPG

Sitharam:2010:OPS

