A Bibliography of Publications of Yousef Saad

Yousef Saad
Computer Science Dept., University of Minnesota
4-192 EE/CSci Building, 200 Union Street S.E.
Minneapolis, MN 55455
USA
Tel: +1 612 624 7804
FAX: +1 612 625 0572
E-mail: saad@cs.umn.edu (Internet)
19 September 2023
Version 2.74

Abstract

This bibliography records publications of Yousef Saad.

Title word cross-reference

3D [GHS10]. \(\exp(-\tau A)b \) [SSS10]. \(f(A)b \) [CAS11]. \(ILU \) [LSC03]. \(ILUS \) [CS97c]. \(k \) [CrFS09]. \(LU \) [CS97c, LSS03b, Saa94d]. \(\text{tr}(f(A)) \) [CS18, UCS17].

'02 [AGPS03].

1988 [BTS+89]. 1993 [BCEP94].

20th [Sv00].

5 [WS93].

Abaffy [Saa92h]. ABS [Saa92h]. Abstract [SS85c]. accelerated [LS13b]. accelerating [KKPS18]. Acceleration [BRZS18, KS87, Saa84b, BCRZS22, CS99, rFS09, KS92, ZSTC06a]. acceptors [SKBS88]. acoustic [EGMS20]. Adapted [FSUS20]. ADI [MS92, MS93]. advances [GGL94]. algebra [DS91a]. Algebraic [LS17, GHS10, LSS03a, SS02b, SST04, SCC04, XLS16]. Algorithm [DS91b, LXV+16, Saa85a, SYEG00, ZS07, ESS86, GS87, GS88b, GS88a, GS89b, Saa74c, Saa80a, Saa82a, Saa86c, SS86c, SL86, SL88, SW93, Saa93a, SW96b, Saa91a]. algorithms [Saa74b]. Algorithms [AGPS03, ASSS11, BDG+10, CS92, CS85a, CS86, CTJ+95, CTSZ07, CZC+09, LXES19, SS85g, Saa92a, Saa92h, Saa94a, Saa94b, Saa06, BGSS14, BS94, CS93, CS96, FRSY96, GS94, KS87, Saa90b, Saa94e, US19, VS14]. Alternating [JSS87, SS85c]. amplitude [WGSC18]. Analysis [BSS09, BSS10, Saa92b, Saa94b, Saa97, Saa16, BJR+09, Saa94e, Sa00b]. analytics [KMB+18]. Anderson [BRZS18, BCRZS22].
Anderson-type \cite{BCRZS22}. angle \cite{LSS86, SL88}. Application \cite{CS12, CTWS94}. Applications \cite{AGPS03, ASSS11, BKJ08, BDG10, FSUS20, Saa06, SrrF08, BJR09, CSS02, CCS10, CS98a, CS98b, Saa90d, Saa90f, Saa90l, SAD00, SS11, SSC04}. approach \cite{GS90a}. approaches \cite{KKPS18}. Approximate \cite{BS02b, BS02c, CS94, CS97d, CS98b, Saa03a, BS02a, CrFS09, CS97f, USS17a}. Approximating \cite{LSY16}. Approximation \cite{CS09b, FSUS20, GS92a, BSS09, CCE18, CS97a, CS08, EGMS20, GS90b, GS90a, GS92b, GSS03, ITS07, Saa84a, Saa86b, Saa90d, SM92, SS11, UMS17}. Approximations \cite{CAS11, Saa92b, GHS10, US19}.

Architectures \cite{IS85, IS86b, IS86a, SS86b, GS89d, SS89b}. arising \cite{Saa84a, Saa86b, Saa86e, SMSW00}. ARMS \cite{SSS85}. Arnoldi \cite{BS00, SSS03, Saa92a, BSS09, SSS85}. Assignment \cite{DS91b, Saa88d}. Associated \cite{DS91b}. Atom \cite{TZA06}. Augmented \cite{Saa97, SSS10, Saa92a}. Automated \cite{KXS18}. automatic \cite{TZA06}. Banded \cite{SS85e, SS87}. Based \cite{BS05b, HS06, KS07, SSS03, Saa92a, SSS03, LS03, MS93}. Basic \cite{PSWF93, Ssa90a}. basis \cite{CTS93, SSS94}. Benchmark \cite{SW88b, SW88a, SW90}. Beresford \cite{Saa83e}. between \cite{BS02c}. Beyond \cite{KXS18}. BILUTM \cite{Saa88c}. BILUTM (SAA88c). biorphogonalization \cite{Saa80a, Saa82a}. bisection \cite{CrFS09}. Block \cite{LS03, SSS03, MS93, SSS03, Saa92a, SSS03, ZS07, ZCS14, ZSTC06b, ZSTC06a}. Bound \cite{Saa90a}. bounds \cite{Saa94a}. Brownian \cite{ACS12}. Bulk \cite{TZA06}. calculation \cite{ZSTC06b}. Calculations \cite{ ¨OBSC03, SCS10, AJS75, CTS93, CTSS94, KKPS18, SSC04}. Carolina \cite{BCEP94}. Centenary \cite{BCEP94}. century \cite{Sv00}. CFD \cite{CSW00, SSS03, SST04}. Chain \cite{PSS92, Saa91c}. chains \cite{GBG10, RGSB08}. charge \cite{BSTC05}. charging \cite{RGSB08}. Chebyshef \cite{ESS86, Saa84b, ZSTC06a, ZSTC06b, Saa15, ZCS14}. Chebyshev-filtered \cite{ZSTC06a, ZSTC06b, ZCS14}. classes \cite{rFS09}. clusters \cite{CTJ95, TJD94}. CM \cite{PSWF93, WS93}. CM-5 \cite{WS93, PSWF93}. Coarse \cite{MS07a}. Coarse-Grid \cite{MS07a}. Coarsening \cite{MS07b, OKLS15, US19}. codes \cite{GS83, JKSC99, UMS17}. Communication \cite{SS85a, Saa85a, SS85b, Saa86c, SS86b, SM95, Saa89a, Saa89b}. Community \cite{CS12}. Compensation \cite{MOKS12}. Complement \cite{DKXS18, LS05b, Saa90a, Saa90b, Saa90f, KS16, LX516, Saa07, XKL22, ZXS21}. complement-based \cite{LSX16}.

Complements \cite{BS05a}. Complex \cite{PS85, PS87, Saa83a, Saa84a, Saa86b, Saa86e, Saa87c}. complexities \cite{GS89d}. Complexity \cite{ISS84, ISS86, Saa85a, Saa86c}. Component \cite{JSS07}. Component-based \cite{JSS07}. Computation \cite{BS05a, BKS08, Saa74a, Saa84b, Saa85c}. Computational \cite{PS20, SM95, CTF16}. Computations \cite{BTS89, FWPS92, PSWF93, SW88a, Saa94a, Saa94b, SW88a, SW90, Saa90a}. Computers \cite{FWPS92, SSS03, Saa88b, Saa88a}. Computing \cite{BSTC05, Saa92a, Saa95, SSS11, Ts15, Saa80c, Saa81d, Ts12}. Concurrent \cite{Saa95}. condition \cite{Saa84a, Saa86b}. Conference \cite{BCEP94, Fit16}. Conflated \cite{ ¨OBSC03}. Conjugate \cite{SS85a, SS85b, Saa86a, SYEG00, Saa86c}. Conquer \cite{LS13a}.
consistent [ZSTC06a, ZSTC06b].

Constructed [BS05b]. construction
[CrFS09]. continuation [CS5b]. contour
[KKPS18, LXSdH20]. control
[DS91a, Saa90d]. Convergence
[BS94, Saa80b]. convergent [BS89].

convex [BSS09]. Cornelius [BCEP94].

contour [KKPS18, LXSdH20]. counts
[AT16, NPS16]. coupled [KS92].

convex [CrFS09]. correction [BS92, P07, ZXS21].

corrections [LXS16, XLS16].

corrections [LXS16, XLS16]. counts
[PS16, NPS16]. coupled [KS92].

correcting [UMS17]. Crout [LSC03, LS05a].

cubic [SKBS88]. Cucheb [AKS17].

cyclic [GS87, GS88b, GS88a, GS89b].

dans [Saa74b]. Data
[SS85a, SS85d, SS86b, SS89a, SS89b, Saa94a, SM95, CrFS09, KMB+18, SS14]. Davidson
[SSW98, Saa98b, ZS07]. December
[BS94]. Decomposition
[BS92, HS06, KXS18, Saa94a, TS11, CS93, CS96, KKP18, LXS16, PS07, Saa92a, SS89, UMS17]. decoupling [KS87].

Definite [SS80, VSS14]. Deflated
[CS97b, Saa92e]. deflation [Saa88d]. Dense
[CS12, ISS84, ISS86, KMB+18].

Dense-Linear-System [ISS86]. Densities
[XLS18, BSTC05, LSY16, USS17a]. Density
[BSK08, BSK+03, RGS8b, S81, dGGS+05]. density-functional [RGS8b].

dependent [BSK+03, RGS8b, dGGS+05].

Design
[Saa87b, SW95, SW96a, Saa87a, SSSW00].

Detection [CS12]. Development [Saa22].

Diagonal
[S299c, Saa05, TS11, BKS07, TS12].

diagonization [JKSC99, ZS14].

diatomic [CTWS94]. dictionary [USS17b].

Dielectric [ÖBSC03]. difference
[CT93, CT94, CTWS04, JTD+94, SSS85].

Differential
[CSS85, CSS87, SS81].

Dimension
[CS09a, KCS09, KCS11, Saa83b].

dimensional
[CrFS09, LSS86, LXSdH20, SS14].

Dimensionality [KS07, NBS10, SrFS08].

Dirac [SS11]. Direct
[SS85e, SS87, SW96b].

Direction
[SS85c, JSS87]. disjoint
[Saa83d]. Distributed [MS94, Saa92e, Saa94a, SM95, SS98a, SS99a, SS99c, Saa07].

Distributions [CS14]. Divide [LS13a].

Domain
[CS92, KXS18, KKP18, S17, Saa94a, SS89, SS99b, TS11, CS93, CS96, LXS16, PS07, Saa92a]. Domain-Based
[SS99b]. Domain-Decomposition-Type
[TS11]. Dominance [Saa05]. d’origine
[Saa74b]. DQGMRES [SW93, SW96b].

dual [Saa92d, Saa94d]. Dynamic
[SSW98]. dynamics [ACSS12, CJWS96, JTD+94].

dans [Saa74b]. Data
[SS85a, SS85d, SS86b, SS89a, SS89b, Saa94a, SM95, CrFS09, KMB+18, SS14].

Davidson
[SSW98, Saa98b, ZS07]. December
[BS94]. Decomposition
[CS92, HS06, KXS18, S17, Saa94a, TS11, CS93, CS96, KKP18, LXS16, PS07, Saa92a, SS89, UMS17]. decoupling [KS87].

Definite [SS80, VSS14]. Deflated
[CS97b, SYEG00]. deflation [Saa88d]. Dense
[CS12, ISS84, ISS86, KMB+18].

Dense-Linear-System [ISS86]. Densities
[XLS18, BSTC05, LSY16, USS17a]. Density
[BSK08, BSK+03, RGS8b, S81, dGGS+05]. density-functional [RGS8b].

dependent [BSK+03, RGS8b, dGGS+05].

Design
[Saa87b, SW95, SW96a, Saa87a, SSSW00].

Detection [CS12]. Development [Saa22].

Diagonal
[S299c, Saa05, TS11, BKS07, TS12].

diagonization [JKSC99, ZS14].

diatomic [CTWS94]. dictionary [USS17b].

Dielectric [ÖBSC03]. difference
[CT93, CT94, CTWS04, JTD+94, SSS85].

Differential
[CSS85, CSS87, SS81].

Dimension
[CS09a, KCS09, KCS11, Saa83b].

dimensional
[CrFS09, LSS86, LXSdH20, SS14].

Dimensionality [KS07, NBS10, SrFS08].

Dirac [SS11]. Direct
[SS85e, SS87, SW96b].

Direction
[SS85c, JSS87]. disjoint
[Saa83d]. Distributed [MS94, Saa92e, Saa94a, SM95, SS98a, SS99a, SS99c, Saa07].

Distributions [CS14]. Divide [LS13a].

Domain
[CS92, KXS18, KKP18, S17, Saa94a, SS89, SS99b, TS11, CS93, CS96, LXS16, PS07, Saa92a]. Domain-Based
[SS99b]. Domain-Decomposition-Type
[TS11]. Dominance [Saa05]. d’origine
[Saa74b]. DQGMRES [SW93, SW96b].

dual [Saa92d, Saa94d]. Dynamic
[SSW98]. dynamics [ACSS12, CJWS96, JTD+94].

E. [Saa92h]. Editorial [Saa00a, BGSS14].

Effective [CS09a]. Efficient
[AJT+07, D16, GS90b, GS92b, GS92a, NPS16, dGGS+05, LSS86].

Eigendecomposition [SS14].

eigenelements [Saa80c]. Eigenfaces
[SRFS08]. Eigenproblems
[ZS07, KCS09, KCS11, SGSM15].

Eigensolutions [SS85b]. Eigenvalue
[BS91, BFS12, IS85, IS86b, LXV+16, PS89, Saa83c, Saa84b, Saa11b, Saa16, SSF93, XLS18, D16, EGMS20, KLS16, KKP18, NPS16, Saa82b, Saa93c, Saa92g, SS96, Saa23, SSF95, SS98b, WSS98, ZS08].

Eigenvalues [BS05a, Saa74a, LXS19].

Electronic
[JKSC99, SCS10, AJT+07, CTS93, CTS94, CKV+03, CTS07, CZC+09, SSC+96].

element [KSS03, KSSG04]. Elimination
[Saa85a, Saa86a, Saa96, Saa86c, Saa86d, Saa92c].

Elliptic
[CSS85, CSS87, GS87, GS88b, GS88a, GS89b, GS89d, SS92, SS81, SS885].

Engineering [PS20]. Enhanced
[SS99b, ZS01]. Environments
[Saa87b, Saa92e, Saa93a]. equation
[KSS03, KSSG04, LSS86, LXSdH20, SL86, SL88, ZS14].

Equations
[CSS85, GS92a, MS92, MS93, BCRZS22, BS87, BS90, BS91].
CSS87, ESS86, GS87, GS88b, GS88a, GS89b, GS89c, GS89a, GS90b, GS90d, GS92b, GS83, PS07, SS81, SSS85, Saa90c, Saa20. Eric [Saa95]. Error [Saa94b, CS18, Saa94e, UMS17]. estimate [CS18]. Estimation [UCS17, DIFS16, NPS16, USS17a]. estimator [BKS07]. Etudes [Saa74b]. Evolution [TZA+06, CTSZ07]. Evolving [Saa16]. EVSL [LXES19]. Exact [Saa03a]. excited [BGB+10, SKBS88]. Experimental [CS97e]. exploration [Fit86]. Exponential [Saa92b, CS98a]. Extended [SS85c]. Extraction [CS12]. Extreme [rFS12].

F [Saa95]. Face [KS05a]. faces [KS05a]. Factored [BS02b, BS02c, BS02a]. Factorization [HS06, LS05a, Saa92d, Saa94d]. Factorizations [MOKS12, CCS10]. Fast [CrFS09, USS17a, UCS17, VS14, XLS18, GS87, GS88b, GS88a, GS89b, GS89d, US19]. February [GGL94]. feedback [Saa88d]. Fermi [SS11]. few [Saa94b, Saa94e]. field [ZSTC06a, ZSTC06b]. Filtered [BKS08, rFS12, Saa06, AKS17, ZSTC06a, ZSTC06b, ZCS14]. Filtering [KXS18, LxV+16]. Filters [XS16]. Finding [Saa03a]. finite [CTS93, CT94, CTWS94, JTD+94, KS03, KSSG04]. finite-difference [CTWS94]. finite-difference-pseudopotential [JTD+94]. first [AJT+07]. first-principles [AJT+07]. flexible [Saa91a, Saa93a]. flow [WGSC18]. flows [LLCS02]. fMRI [SS14]. forces [CJWS96]. format [CS97c]. free [ZCS14]. frequency [LXSdH20]. Function [XS17, SS11]. Functional [BKS08, BS+03, RGSB08, SS11, dLGG+05]. Functions [FSUS20]. Further [BSS10, Saa00b].

Gaussian [CS14, Saa85a, Saa86c, Saa86a, Saa86d]. General [CS92, CS94, LSC03, Saa94b, Saa96, SZ99a, SZ99b, SS99a, SS02a, CS93, CS96, Saa92a, Saa92c, Saa94e, SS98, SS99a, SS02b, Saa07, XKL+22, ZXS20, ZXS21]. Generalized [XLS18, SS86c]. Globally [BS89]. GMRES [Saa91a, SS86c, Saa93a, YXS21]. GPU [AKS17, LS13b]. GPU-accelerated [LS13b]. Gradient [SS85g, SS86a, SYEG00, Saa85c]. Gradient-like [SS85g]. Gram [Saa86e]. Graph [FSUS20, HS06, SrFS08, VSS14, CrFS09, GS94, OKLS15]. Graph-Based [SrFS08]. Greedy [MS07b, MS07a]. Grid [MS07a]. Guest [BGSS14].

Hand [Saa87d, KMB+18]. Harnessing [BGB+10]. Harwell [SW89]. Harwell-Boeing [SW89]. held [GGL94]. Helmholtz [KS03, KSSG04, LXSdH20, OKLS10]. Hermitian [LxV+16, Saa74a]. Heuristic [GS94]. Hierarchical [DKXS18, HS06]. hierarchy [CCE+18]. High [CSW00, CrFS09, LXSdH20, SS14]. high-dimensional [SS14]. high-frequency [LXSdH20]. High-order [CSW00]. Higher [CTWS94, SKBS88, JTD+94]. Higher-order [CTWS94, JTD+94]. Highly [Saa94c]. historical [Saa20]. Houston [Fit86]. Hybrid [BS87, BS90, ESS86, GHS10]. hydrodynamic [ACS12]. Hypercube [CS85a, CS85b, CS86, CS87]. Hypercubes [SS85a, SS85d, SS85b, Saa86a, SS88, Saa86d, Saa89a].

ILU [CSW00, CS97e, HS06, LS05a, MS94, OKLS15, Saa92d, Saa92c, Saa96, SZ99a, SZ99c, SZ01, Saa03a, Saa05]. ILUM [Saa92c, Saa96]. ILUs [BS02c, BS05b]. ILUT [Saa92d, Saa94d, SZ99b]. IMA [GGL94]. Impact [IS85, IS86b, IS86a]. Implementation...
Implementations
[SS85f, SS86a, Saa91b, Saa93b]. Implicitly
[SSW98]. Improving [US17b].
Incoherence [USS17b]. Improving
[LXV+16, RGSB08, Saa80a, Saa80b, Saa82a, Saa87d, Saa94b, Saa94e, UCS17].
Lanczos-Type [Saa94b, Saa94e]. Large
[BKS08, BTA+89, DS91b, IS86a, LS06, ÖBSC03, PS89, Saa85b, Saa11b, SSF93, ZS07, DS91a, LSY16, Saa74a, Saa80a, Saa80c, Saa81, Saa82a, Saa83b, Saa83c, Saa89b, Saa90c, Saa92g, SSC+96, SAD+00, SF95, UMS17, WSS98, ZS08].
Latent [SrFS08, VS14]. learned [USS17b].
Least [CAS11, LS06, Saa83a, Saa87c, XS16, Saa84a, Saa86b, Saa86c]. Least-Squares
[LXES19, SW94, SW95, SKL+97].
Like [DS91b, SS85g].
Linear [DKXS18, ITS07, ISS84, ISS86, MS92, MS93, MS94, SS85g, SS85e, SS87, SS98a, SS99a, SS99c, SS02a, XS17, AS88, DS91a, ESS86, GS83, GSS03, JSS07, KMB+18, LS13b, OKS10, Saa81, Saa83d, Saa84c, SSS85, SS86c, Saa87c, Saa88a, Saa88c, SSZ98, SS99c, SSS99, Svv00, SZ01, Saa01, Saa02b, Saa03b, Saa07, Saa20, SMSW00, ZXS20, ZXS21]. liquid [LLCS02].
Localized [CJSW96]. Low [CSS92, DKXS18, LS13a, LS17, UMS17, Saa80c, Saa84a, Saa86b, Saa92c, Saa94c, UMS17, XLS16, XKL+22, ZXS20, ZXS21]. Low-Rank
[LS13a, LS17, XLS16, XKL+22, ZXS20, ZXS21]. LR [Saa74b]. LU [CCS10].
Lyapunov [Saa90c].
Magnetism [TZA+06]. March [GGL94].
Markov [SS92, Saa91c]. Massively
[FWPS92]._Material_ [SOS+00]. _Materials_ [PS20, SCS10]. mathematical
[Fit86, Fit86]. Matrices [CSS92, CS94, LSC03, LS13a, ÖBSC03, PS87, Saa85b, SW89, Saa96, SZ99b, Saa16, BSS09, CS93, CS96, CS97d, CS97e, LS05a, LSY16, PS85, Saa74a, Saa80c, Saa84a, Saa86b, Saa86e, Saa92c, Saa94c, UMS17, XLS16, XKL+22]. Matrix [AGPS03, ASSS11, AEKS90].
BDG +10, FSUS20, FWPS92, IS86a, OKLS15, PSWF93, SW88a, Saa92b, Saa94a, SW94, TS11, BJR +09, BKS07, BGSS14, CCE +18, CS98a, Saa83a, Saa83b, SW88b, Saa90a, SW95, SW96a, SAD +00, TS12, USS17a, US19, VSS14, dIGGS +05.

Memory [Saa87b, SM95, Saa87a]. Message [Saa87b, Saa87a, WS93]. Method [SS80, Saa87d, CTS93, CTS94, CTWS94, CS18, EGMS20, JTD +94, KSS03, KSSG04, LSS86, Saa80c, Saa85c, Saa23, SCS12, TS12, ZS08, ZCS14]. Methods [BTS +89, CCSV98, CS14, DS91b, GS92a, LS17, PSS92, SS81, SSS85c, SS85c, SS85f, SS86a, Saa87b, SS87, Saa91b, Saa92c, Saa93b, Saa97, SCS10, Saa11a, Saa11b, Saa22, SSW98, SOS +00, TS11, ACS12, BSS09, BS87, BS89, BS90, BS91, CSS02, CSS85b, rFS09, Fit86, GS90b, GS92b, GGL94, JSS87, JSS07, KS92, KCS09, KCS11, Saa80a, Saa80b, Saa81, Saa82a, Saa82b, Saa83d, Saa83b, Saa83e, Saa84c, Saa87a, Saa89a, Saa90b, Saa90d, Saa91c, Saa92g, Saa92f, Saa98, Saa01, Saa03b, Saa20, SS98b]. minimal [SS86c, SW93, SW96b]. minimum [Saa08b]. Minneapolis [BTS +89, GGL94]. Minnesota [BTS +89, GGL94]. MIQR [LS06]. Modeling [PSS92, Fit86]. models [Saa91c]. modern [CSS82, SSC04]. Modification [MOKS12]. Modified [CS99, Saa84a, Saa86b]. module [SW94, SW95, SW96a]. Molecular [CTWS94, GSS96, BGB +10, JTD +94]. molecular-dynamics [JTD +94]. molecules [CTWS94]. moment [Saa84a, Saa86b]. Multi [Saa96, Saa92c, SSZ98, SZ99e, SZ01]. Multi-Elimination [Saa96, Saa92e]. multi-level [SSZ98, SZ99e, SZ01]. Multicolor [ZZS20, SS99b]. Multielimination [SZ99a]. Multigrid [CS85a, CS86]. Multilevel [BS05b, KXS18, LS06, Saa92a, Saa99b, Saa05, SrFS08, LSS03a, OKLS15, SSS02b, SST04, SSC04, US19, XLS16, XKL +22]. multiple [KMB +18]. Multiprocessor [CS85a, CS86, ISS84, ISS86, CSS87]. Multiprocessors [Saa85a, Saa87a, Saa87b, Saa87c, Saa90b, Saa90d, Saa91c]. N [Saa83c]. nanocrystals [CTSZ07, CZC +09]. Neighborhood [KSS07, KS05b]. News [Saa95]. Newton [BS94, WSS98]. NN [CrFS09]. Non [Saa99c]. Non-standard [Saa99c]. nonlinear [BCRZ22, BS87, BS90, BS91, BS94, EGMS20, rFS09, KS92, SGSM15]. Nonsymmetric [LSS03b, MS92, MS93, MS07b, Saa84b, SS85b, Saa85b, Saa86b, Saa86c, Saa87c, Saa87e, Saa88a, Saa88b, Saa88c, Saa89b]. normal [BS809]. North [BCEP94]. null [ITS07]. null-space [ITS07]. number [Saa86e]. numbers [Saa84a, Saa86b]. Numerical [PSS92, Saa83b, Saa87b, Saa90b, Saa90c, Saa92g, SCS10, Saa11b, Saa87a, Saa91c]. oblique [Saa80a, Saa82a]. Observer [DS91b]. October [BTS +89]. ODE [GS83]. Operator [Saa92b, CS98a]. ORPA [KS05a]. ORPA-faces [KS05a]. Optimal [CS09b, CS08]. Optimization [NBS10, NBS12, BSS09, KCS09, KCS11]. order [CSW00, CTWS94, JTD +94]. Origin [Saa22, Saa74c]. Orthogonal [CS92b, KO5b, KS07, CS08, Saa83d]. orthogonalization [SW93, SW96b]. other [Saa80a, Saa82a]. outer [Saa91a, Saa93a]. Overlapping [CS92, CS93, CS96, LS05b]. overview [Saa90d].

P SPARSLIB [SW94, SW95, SW96a, SKL +97]. Package [SW88a, SS02a, SW88b, SW90, XKL +22]. papers [GGL94]. Parabolic [CS92a, GS89c,
GS89a, GS90b, GS90a, GS92b]. Parallel
[BDG+10, BGSS14, BSK+03, CSS02, CS97f, FWPS92, FRSY96, GS90a, HS06, IS85, IS86b, IS86a, SS85e, SS85f, SS86b, SS86a, Saa87b, SS87, SW94, SS99c, Saa01, SS02a, SÖS+00, ZSTC06a, AS88, AS89, CS99, GS87, GS88b, GS88a, GS89b, GS9c, GS9a, GS9d, GH10, LSS03a, LLCS02, SS80, Saa87a, SS89b, Saa92c, Saa94c, SW95, SW96a, KKL+97, SS99b, SSSC04, XKL+22, AGPS03, ASSS11]. parGeMSLR
[XKL+22]. Parlett [Saa83c]. pARMS
[SS03a, SS02a]. Partial [CSS85, DS91b, Saa85b, XIS16, CSS87, Saa88d]. partially
[BSTC05]. Particle [LLCS02]. partitioned
[CS97d]. partitioning
[GS94, LLCS02, Saa74a, VSS14]. Passing
[Saa87b, Saa87a, WS93]. Performance
[WS93], periodic [AJT+07]. Phase
[WGSC18], physical [CSS02, SSSC04].

Pivoting [BS02b, BS02a, LS05a]. Plane
[JKSC09, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c]. Plane-wave [JKSC09]. PMAA
[AGPS03]. PMAA'10 [ASSS11]. Point
[LS03, LSS03b]. Pole [Saa88a]. Polynomial
[BK08, CAS11, FSSU20, LXV+16, YXS21, GS90b, LXSdH20, Saa85c]. polynomials
[Saa83d, Saa83a, Saa87c, SS810]. portable
[SKL+97]. Positive [SS80, VSS14].

posteriori [CS18]. Potential
[CTS93, CTS94]. Power [XSS21]. Practical
[BT8+89, Saa84c, Saa85c, BTS+89].

Preconditioned [CCSY98, CS14, SS85f, SS86a, Saa91b, Saa93b, Saa98, LS13b, Saa91a, Saa92f, Saa93a]. Preconditioner
[BS02b, DKLX18, LS05b, LS06, Saa96, SZ99a, SZ99b, XS17, BS02a, CS97c, Saa92c, XLS16, ZX20, ZX21]. Preconditioners
[BS05b, CS94, CS98b, LS13a, LS17, LS03, LSS03b, MS92, MS93, MS94, Saa7a, CSW00, CS97e, CS97f, GS03, LXS16, Saa94c, SZ99c, Saa07]. Preconditioning
[CS98a, KSS03, KSSG04, OKS10, Saa88a, Saa88b, Saa88c, SAD+00, Saa03a, SMSW00, SSF93, YXS21, LXSdH20, OKLS15, SS99b, SZ01, SSF95, VSS14, WSS98, XKL+22]. preconditionings [Saa85c]. Predicting
[SÖS+00, CTJ+95]. Preserving
[CCSY98, KS07, KS05b]. Prewhitening
[SS14]. primitives [WS93]. principles
[AJT+07]. probing [TS12]. Problem
[NBS10, NBS12, CKV+03, Saa23, SCS12, Saa83c]. Problems
[BS91, BS10, GS90b, RS12, GGL94, IS85, LS06, LXV+16, LS03, LS803b, MS07b, PS89, Saa84b, Saa11b, Saa16, SSF93, XLS18, CSW00, DS91a, EGMS20, FRSY96, IS86b, KLS16, KKKP18, Saa82b, Saa83a, Saa83b, Saa83c, Saa89b, Saa90d, Saa92g, SSSC+96, SAD+00, SST04, SSF95, WSS08, ZSS08].

Procedure [rFS12, AJS97]. Proceedings
[BTS+89, Fit86, BCP94]. Process [BS10].

Processing [FSUS20], processors [SSS85]. Projection
[BS91, KS07, Saa82b, Saa83c, Saa88d, Saa91c, Saa92h, ITS07, Saa80a, Saa82a].

Projection-Based [KS07]. Projections
[KS07, KS05b]. Properties [SS85b, SS88, SÖS+00, CTJ+95, CTS207, CZC+09]. Proxy
[XSS21]. Proxy-GMRES [XSS21]. pseudo
[CTS93, CTS94]. pseudo-potential
[CTS93, CTS94]. pseudopotential
[CTWS94, JTD+94]. pseudopotentials
[CKV+03]. PseudopartsLib [Saa89a]. purpose
[Saa92a].
recycling [SGSM15]. Reduction

[CS09a, KS07, NBS10, SrFS08, GS87, GS88b, GS88a, GS89b, KCS09, KCS11].

Relations [BS02c], reordering [OKLS15].

Reorderings [Saa05], reorthogonalized [BSTC05]. reservoir [Fit86]. Residual

[Saa06, Ss86c, SW93, SW96b, Saa00b].

Residual-type [Saa06]. Restart [LVX+16].

Restarted [SSW98]. Restarting

[SSW98, Ss98b]. Restricted [LS05b].

retrieval [WGSC18]. Review

[Saa83c, Saa92h]. Reviews [Saa95].

Revisiting [Saa23]. reweighted [WGSC18]. Right

[Saa87d, KMB+18]. Right-Hand

[Saa87d, KMB+18]. Ring [ISS84, ISS86].

Robust [SSF93, SSF95, SZ99c]. rotation

[Saa23].

Saddle [LS03, LSS03b]. Sampling

[CS14, US19]. scalable [KMB+18]. Scale

[BTS+89]. Schur [BS05a, DXXS18, GHS10, KLS16, LS05b, LX16, Ss99a, Saa07, XKL+22, ZXS21, ZS08]. SchurRAS

[LS05b]. Science [PS20]. Scientific [Saa95].

Seismic [Fit86]. Selection [MS07a]. Self

[ZSTC06b, ZSTC06a]. Self-consistent-field

[ZSTC06b, ZSTC06a]. Semantic

[SrFS08, VS14]. semiconductor [KS87].

semiconductors [SKBS88]. separation

[CCE+18]. Sequence [BRZS18]. sets [SS14].

Several [Saa87d]. Sham [SCS12, ZCS14].

Shanks [BRZS18, BCRZS22]. Shared

[Saa87b, Saa87a]. Shift [PS87, PS85]. Shifts

[Saa74c]. shrinkage [US17b]. SI [JTD+94].

Sides [Saa87d, KMB+18]. Signal [FSU20].

Simulation [KS87]. simulations

[ACS12, JTD+94]. Singular [CS09a].

skyline [CS97c]. Slicing [LXES19, SCS12].

Smallest [BS05a]. SMASH [CCE+18].

SNAP [IT07]. Software

[AEKS90, LXX19, Saa92a]. solid [LLCS02].

solid-liquid [LLCS02]. Solution

[DS91a, GS92a, ISS84, IS85, ISS86, ISS86, SSC+96, Ss98a, Ss99c, GS87, GS88b, GS88a, GS96b, GS98c, GS99a, GS90b, GS90a, GS92b, GS83, ITS07, KSS03, KSSG04, SS81, Saa83d, Saa83b, Saa89b, Saa90c, Saa91c, SW95, SW96a, Ss90, SST04, SGSM15, XKL+22].

Solving [AS88, AS89, CSS85, CSS87, LXXdH20, MS92, MS93, PS89, SS80, Saa84b, SS85g, SS85e, SS85, SS97d, SS97e, BS91, CS85b, EGMS20, ES86, LS86, Saa80a, Saa81, Saa82a, Saa82b, Saa83a, Saa83e, Saa84e, SS86c, SL6, Saa87c, SL88, ZCS14].

Some [GS98d, SW89, Saa92b, BSS90, Saa84c, Saa86c]. SOLVER [MS94]. Space

[YXS21, CKV+03, ITS07]. SPARK [SW90].

Sparse

[AEKS90, CS92, CS94, CS98b, FWPS92, GHS10, GGL94, IS86a, LSC03, LS06, MS92, MS93, MS94, PSW93, PS90, SW88a, SW95, Saa94a, SW94, SM95, Saa96, SS98a, Ss99a, Ss99b, SS99a, SS99c, Ss02a, XS17, AS88, AS89, CS93, CS96, CS97c, GS03, JSS07, Ss05a, Saa82b, Saa83a, Saa83e, SW88b, SW90, Saa90a, Saa92c, SW95, SW96a, SKL+97, SSZ98, SZ99c, SAD+00, SZ01, Saa01, Ss02b, Ss03b, Saa07, Ss095, XLS16, XKL+22, XZ20, XZ21, ZCS14].

Sparse-Sparse [CS98b]. SPARSKIT

[Saa90a]. Special

[ASS11, BJR+09, BDG+10]. Spectra

[XS16, CJWS96]. Spectral [BS05a, KLS16, SGSM15, XLS18, LSY16, US17a].

Spectrum [DS91b, FSU20, SCS12]. Spectrum-Adapted [FSU20]. Spedicato

[Saa92h]. Squares [CAS11, LS06, XS16, Saa83a, Saa84a, Saa86b, Saa86c, Saa87c].

standard [SS99c]. Standards [AEKS90].

state [Saa88d]. states [BGB+10, SKBS88].

Statistics [SW89]. Stiefel [SS80].

Stochastic [UCS17]. Strategies

[MS07b, MOKS12, PS87, SS99c, LLCS02,
PS85, SZ01, SGSM15, SMSW00]. Strategy [MS07a, structural [CTJ+95], Structure [SCS10, AJT+07, CTS93, CTS94, CKV+03, JKSC99, SSC+96], Structured [GGL94, CCE+18, FRSY96], Structures [Saa94a, SM95, Saa03a. study [C897e]. Subgraph [CS12]. Subspace [CCSY98, CS14, Saa91b, Saa93b, Saa97, Saa11a, Saa16, Saa22, ACSS12, BSS09, BSS97b, ESS86, Saa81, Saa84c, Saa89a, Saa90b, Saa92f, Saa98, Saa23, ZSTC06a, ZSTC06b, ZCS14]. Subspaces [BKS08, PS07]. Substructuring [KXS18]. sum [CS97a]. Supercomputer [BTS+89, Saa91b, Saa93b]. Supercomputers [PS89, Saa89a, SVD [CS08, Saa91b]. Sylvester [DS91b]. Sylvester-Like [DS91b]. Symmetric [LS13a, LSS03b, Saa83c, Saa87d, Saa90b, Saa92f, LS17, AJT+07, AS88, AS89, BCRZS22, BS90, BS91, SSS05b, CJWS96, ESS86, GSS03, Saa70, KS92, OKS10, Saa80a, Saa81, Saa82a, Saa83d, Saa84c, SSS86c, Saa88a, Saa88b, SSSZ98, SSS99c, SSS99b, Sv00, Ss01, Ss02b, Saa03b, Saa07, Saa20, SMSW00, VSS14, XSS20, XSS21].

System [ISS84, ISS86, BS87, ITS07, KMB+18]. Systems [DKXS18, MS92, MS93, MS94, ÖBS93, SS80, SS85g, SS85e, Saa87d, SSS87, SSS98a, SS99a, SSS99a, SS99c, SS802a, Ss17, AJT+07, AS88, AS89, BCRZS22, BS90, BS91, SSS85b, CJWS96, ESS86, GSS03, Saa70, KS92, OKS10, Saa80a, Saa81, Saa82a, Saa83d, Saa84c, SSS86c, Saa88a, Saa88b, SSSZ98, SSS99c, SSS99b, Ss00, Ss01, Ss02b, Saa03b, Saa07, Saa20, SMSW00, VSS14, XSS20, XSS21].

Technique [KS07]. Techniques [IS86a, Saa4b, SSS99a, BCRZS22, CS97b, CS97d, KLS16, KSS03, KSSG04, KS87, Saa74a, Saa88a, Saa88b, SSS88c, SSZ98b, SSZ99c, Ss002a, Ss98d, SS99b, SAD+00, SS98b, WSS98]. Tensor [CS97a, C097b, CS08]. Tensors [CS97b, CS08]. Texas [Fit86]. their [GS89d, Saa87c]. Theoretical [Saa94b, Saa94e]. Theory [BKS08, BS09, BS94, BSK+03, RGSB08, Saa90b, Ss11, dGGSS+05]. thermoacoustics [SGSM15]. Thick [LXV+16, SSSW98]. Thick-Restart [LXV+16]. three [LSS86, LXSdH20]. three-dimensional [LSS86, LXSdH20]. Threshold [MOKS12, Saa92d, Saa94d, SZZ99c]. Threshold-based [MOKS12]. time [BSK+03, RGSB08, dGGSS+05]. time-dependent [BSK+03, RGSB08, dGGSS+05]. tire [SSW00]. tool [Saa90a]. Tools [SOS+00, Saa92a]. Topological [SS85b, SS88]. Trace [KCS09, KCS11, NBS10, NBS12]. Transformations [BRZS18, translations [SA74b], trends [Saa89f], triangular [AS88, AS89]. Turbo [RGSB08]. Two [rSF09, Saa83d]. Type [Saa94b, TS11, BCRZS22, Saa94e, SS98, Saa06]. Unstructured [MS94]. unsymmetric [Saa80a, Saa80c, Saa81, Saa82a]. updating [VS14]. use [Saa84c, Saa85c, Saa87c]. Using [BKS08, CKV+03, SSS98a, SSSC04, BS05a, CS18, JTD+94, KS05a, LXSdH20, OKLS15, Saa83d, USS17a, UMS17, VSS14, ZSS20, ZSS21].

values [VS14]. Variations [Saa80c, SST04]. Vectors [CS09a]. Velde [Saa95]. Version [LS05b, SYEG00, LSS03a]. Versions [LSC03, SSS99a, LS05a]. versus [CS09a]. via [BS09, CrFS09, CAS11, CS98b, UCS17, USS17b, WGSC18, YXS21, ZSS20, ZSS21]. Vibrational [CJWS96, CZC+09]. volume [BJR+09].

References

REFERENCES

REFERENCES

Bekas:2008:CLI

Brown:1990:HKM

Brown:1991:PMS

Brown:1994:CTN

Bollhofer:2001:FAI

REFERENCES

Bekas:2005:CCD

Boley:1989:PIM

Chen:2011:CLS

Cai:2018:SSM

Calgaro:2010:IIIL

Chan:1998:PSP

REFERENCES

Chelikowsky:1996:MDQ

Chelikowsky:2003:URS

Chen:2009:FAG

Chan:1985:IMS

Chan:1986:MAH

Cai:1992:ODD

Cai:1993:ODD

Chow:1994:AIP

[CS94] E. Chow and Y. Saad. Approximate inverse preconditioners for
REFERENCES

REFERENCES

Chow:2014:PKS

Chen:2018:PEE

Jie Chen and Yousef Saad. A posteriori error estimate for computing $\text{tr}(f(A))$ by using the Lanczos method. *Numerical Linear Algebra with Applications*, 25(5):??, October 2018. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic).

Chan:1985:SEP

Chapman:2000:HOI

Chelikowsky:1995:APS

REFERENCES

[delGGS+05] Emmanuel Lorin de la Grandmaison, Shivaraju B. Gowda, Yousef Saad, Murilo L. Tiago, and James R. Chelikowsky. Efficient computation of the coupling matrix in time-dependent density functional theory. Com-
REFERENCES

DiNapoli:2016:EEE

Datta:1991:SLL

Datta:1991:AML

El-Guide:2020:RAM

Fan:2020:SAP

Datt:1991:AML

[FSUS20] Tiffany Fan, David I. Shuman, Shashanka Ubaru, and Yousef

Ferng:1992:SMC

Golub:1994:RAI

Giraud:2010:SAS

Gear:1983:ISL

Gallopoulos:1987:PBC

Gallopoulos:1988:PBCb

GS83

GS87

REFERENCES

Gallopoulos:1988:PBCa

Gallopoulos:1989:PSPb

Gallopoulos:1989:PBC

Gallopoulos:1989:SFE

Gallopoulos:1990:PSP

Gallopoulos:1990:ESP

Gallopoulos:1992:ESPb

Ipsen:1986:CDL

Ilic:2007:LSS

Jay:1999:ESC

Johnsson:1987:ADM

Jones:2007:CBI

Jing:1994:IMD

Kokiopoulou:2009:TOE

Kokiopoulou:2011:TOE

Kalantzis:2018:DDA

Kalantzis:2016:SSC

Kalantzis:2018:SID

Kerkhoven:1987:ATD

Kerkhoven:1992:AMC

Kokiopoulou:2005:FRU

Kokiopoulou:2005:ONP

[Effrosyni Kokiopoulou and Yousef Saad. Orthogonal neighbor-
hood preserving projections.

[Kokiopoulou:2007:ONP]

[KSS03]

[KSSG04]

[Kalantzis:2018:BAM]

[Little:2002:PPS]

[Little:2003:BPSa]

REFERENCES

REFERENCES

MacLachlan:2012:MCS

Ma:1992:BAP

Ma:1993:BAP

Ma:1994:DIS

MacLachlan:2007:GSC

MacLachlan:2007:GCS

Ngo:2010:TRO

Ngo:2012:TRO

Napoli:2016:EEE

Ogut:2003:ICL

Osei-Kuffuor:2015:MRU

Osei-Kuffuor:2010:PHL

Parlett:1985:CSI

Parlett:1987:CSI

Phillippe:1989:SLS

REFERENCES

Philippe:2007:CED

Polizzi:2020:CMS

Philippe:1992:NMM

Petiton:1993:BSM

Fang:2009:TCM

Fang:2012:FLP

Rocca:2008:TCT

Saad:1974:CEL

Saad:1974:ETO

Saad:1974:SOA

Saad:1980:LBA

Saad:1980:RCL

Saad:1980:VAM

Saad:1981:KSM

Saad:1982:LBA

Saad:1982:PMS

Saad:1983:LSP

Saad:1983:NMS
Y. Saad. Numerical methods for the solution of large dimen-
REFERENCES

REFERENCES

[Saa87c] Youcef Saad. Least squares polynomials in the complex plane and their use for solving nonsymmetric linear systems. *SIAM Jour-

Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report 90-20, Research Institute for Advanced

[Saa92b] Y. Saad. Analysis of some Krylov subspace approximations

[Saa94a] Y. Saad. Data structures and algorithms for domain decomposition and distributed sparse

[Saa07] Yousef Saad. Schur complement preconditioners for distributed general sparse linear

Saad:2011:KSM

Saad:2011:NML

Saad:2016:ASI

Saad:2020:IML

Saad:2022:ODK

Saad:2023:RBJ

Saad:2000:PTL

Yousef Saad, Owe Axelsson, Iain Duff, Wei-Pai Tang, and Andy Wathen, editors. Preconditioning techniques for large sparse matrix problems in industrial applications. Wiley, New York, NY, USA, 2000. CODEN NLAAEM. ISSN 1070-5325 (print), 1099-1506 (electronic). Papers from the International Conference (SPARSE '99) held at the University of Minnesota, Minneapolis, MN, June

Saad:2010:NME

Schofield:2012:SSM

Salas:2015:SRS

Said:1988:HES

Saad:1997:PPL

Saad:1986:NAS

Saad:1988:NAS

Saad:1995:DSC

[SM95] Y. Saad and A. V. Malevsky. Data structures, computational,

Preconditioning techniques for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999).

Saad:1987:PDM

Saad:1988:TPH

Saad:1989:DCH

Saad:1989:DCP

Saad:1998:SDS

Stathopoulos:1998:RTJ

Saad:1999:DSC

Saad:1999:EPM

REFERENCES

REFERENCES

[SW95] Yousef Saad and Kesheng Wu. Design of an iterative solution

Saad:1999:DTT

Saad:2001:EML

Tang:2011:DDT

Tang:2012:PMC

Tang:2011:EMI

Ubarru:2017:FES

Ubarru:2017:LRA

Ubaru:2019:SMC

Ubaru:2017:FEA

Ubaru:2017:IIL

Vecharynski:2014:FUA

Vecharynski:2014:GPU

Wang:2018:PRR

Wu:1993:PCM

Wu:1998:INP

Xi:2016:CPS

Xi:2017:RFP

Ye:2021:PGP

Zhou:2014:CFS
REFERENCES

Zhou:2007:CDA

Zhou:2008:BKS

Zhou:2006:SCF

Zheng:2020:MLR

Zheng:2021:PSC