A Bibliography of Publications of David M. Young

David M. Young
University of Texas at Austin
Department of Mathematics
Austin, TX
USA
Tel: ?n/a?
FAX: ?n/a?
E-mail: young@math.utexas.edu (Internet)

11 February 2019
Version 3.28

Abstract

This bibliography records publications of David M. Young.

Title word cross-reference

-point [ALY88].

1983 [ES84, Gar83]. 1984 [Lak84, VS84].

[GRKY82, KRYG82, KORY84]. 2D [KOY89].

5th [FDKN04].

A. [You62a]. Abstracts [SDK+95].
Academic [You62a]. Accelerated
[KGKY82, KGY80, KGRY81, KRYG82,
You77, You74]. Accelerating [YJK84].
Acceleration
[HLY80, JY80, MY89, YM14, JY88].
accuracy [YM69]. Adapting
[KY81, KOY82, KY83]. Adaptive
[GKMY78, KGKY82, KGY79, KGY80,
KFRY81, KRYG82, MY89, JY88]. adjoint
[EGRS59a]. Advanced
[CKO+84, FDKN04, Gra73, KCO+84].
Advances [VS79, VS84]. Algebra
[BD92, You60b, D+86]. algebraic
[Rhe72, You72c]. Algorithm
[GKRY82, Bro87]. Algorithms
[Car88, GKMY78, JY86, KGY80, KGY81,
KY83, MY87, YJM86]. Alternating
[YW63, YW64, YK95, YK96].
alternating-type [YK95, YK96].
Alternative [YC94]. American [Cur56].
Analysis
[ALY88, BC95, Bec52, Lak84, Tod62, VWY01, You58, You61b, Cur56, You73b].

Applications
[FDKN04, Gar83, VWY01, Whi76, ISV82, Bec52, RSY93, Car88]. Applied
[Cur56, HY81, HY04, You97]: architecture

Arising
[You76].

August
[BC95, D+86, ES84, FDKN04, Gra73]. Automatic
[MY89].

Birkhoff
[You61a].

Biconjugate
[YC94]. Birkhoff
[You97].

Boston
[BS84].

Bulgaria
[BC95, VWY01].

Bureau
[Bec52].

California
[BCEP94]. CBMS [Rhe72]. CDC [KY83].

Celebrating
[Kin04]. Centenary
[BCEP94]. Center [Gar83]. Certain
[HY80].

Chebyshev
[JY88, MY89, RSY93]. Class
[KY75, YK95, YK96]. Colloquium [BC95].

Colorado
[SRS79, ISV82].

Conforming
[BCEP94].

Conjugate
[You72a]. Construction
[Bec52].

Convergence
[You69, You70].

Cornelius
[BC95, Gar83].

Cyber
[Cra87].

D
[??89].

Dallas
[SW86].

Data
[Gar83, You61a].

December
[BCEP94].

Derived
[AK10, RSY93]. definite
[You72c].

Degree
[KY91, YK90, YK92, YK72, You72d, YK93].

Denver
[SRS79].

Determination
[MY89, YW70].

Digital
[Ral65]. Direction
[YW63, YW64].

Dirichlet
[You55].

Discussion
[YK84, YM69].

Distinct
[??89].

Dual
[MH89].

Dundee
[Wat74].

Edinburgh
[Mor70].

Efficient
[KY83].

Eigenvalues
[EGRS59a].

Elliptic
[Rae95, Sch81, You59, YE60, YF62, YF63, You50, You62b, You74, YXB95, BS84].

ELLPACK
[Rae95]. Encyclopedia
[BHK79].

Engineering
[Ame64, Cra87].

ENUMATH
[FDKN04].

Equation
[You61b].

Equations
[CO+84, KY75, KCO+84, YF62, YF63, YF64, YD65a, YD65b, You59, YF62, YF63, You62a].
Equivalence [HLY80]. Error [Ral65, You58]. European [FDKN04].

Exact [You61b]. exceeding [YM14].

Factor [WY70, You71]. Factors [YWD65, YM14]. Fall [SW86]. False [You58]. February [SRS79]. fifth [VS84]. Fifty [Kin04]. Finite [CKO+84, KGY79, KY81, You60a, You61b, You62a, You63, You76, You89a, You89b, You90, You91, You92, You93a, You93b, You94].

Garrett [You97]. Gene [You93b]. Generalizations [CKY99, You72a]. Generalized [JY80, JY83, KY80, KY81, KRY82, KY83, KGY80, KOY86b, KCSY88a, KCSY88b, KY91, MY87, You50, YE59, You71, You75, You76, You89a, You89b, You90, You93b]. Fixed [You58]. Future [KY84a].

IFIP [ES84, Mor70]. II [BS84, Whi76]. III [VS79]. IMACS [VS79, VS84]. Implementation [KGY80, KY95]. INFOMART [SW86]. Information [Mor70]. Institute [Bec52, Gra73]. Interfaces [ES84]. International [BC95, BCEP94, Lak84, VS79, VS84, VWY01, ISV82, Cra87]. Interpolation [You60a]. introduction [You93a, You93b]. Involving [You61b]. issue [AK10]. Iteration [MY89, You61b, ALY88, You56].

Iterative [BD92, CKO+84, EGRS59a, GKM87, Gar83, HY81, HLY80, HY04, JY80, KY75, KGY80, KY81, KRY81, KRY82, KY83, KGY80, KY81, KRY82, KGY83, KCO+84, KOY86b, KCSY88a, KCSY88b, KY91, MY87, You50, YE59, You71, You75, You76, You89a, You89b, You90, You93b, CKY99, KY92, KYC01, YK71, KY72].

ITPACK [GKMY78, GKY80, GKY81, KGY82, KRY82, KY84a, KRY85b, KORY85a, KY88, YK81, YK84].

ITPACKV [KORY84, KGY89].

Kjeller [Gra73].

Laplacian [ALY88]. Large [GKY82, KGY79, KGY79, KGY80, KRG82, KY83, KCSY88a, KCSY88b, KH90, MY87, You71, YK72, You77, YK81, You88, YK90, YC94, You72d, You72c, YM86, YR92, YK93, You03]. least [Bro87].

Lecture [Ode75]. Lehigh [VS79, VS84]. Level [You88, You89b]. life [KVW10]. Linear [BD92, D+86, GKY82, JY83, KGY79, KGY79, KGY80, KRG81, KRY82, KY83, KGY84, KOY86a, KH90, MY87, You60b, You71, YK72, You75, You76, You77, YK81, YHOK85, You88, You90, YK90, YK93, YC94, JY88, KY83, KYC00, Lak84, You56, You72b, You72d, You72c, You73a, YM86, YR92, You03, D+86].

M [AK10, Kin04, KVW10, You62a, You93b]. mapping [You52]. maps [Bec52].
Maryland [Gar83]. Massachusetts [D+86]. Mathematical [Cur56]. Mathematics [Cur56, FDKN04, Mor70, Ode75, Wli76, YG72, YG73, YG88a, YG88b, You97].
matrices [You72c]. Mechanics [Ode75].
memory [AK10, RSY93]. Mesh [KY86].
Method [KY71, Kin04, WY70, You58, YB60, You61b, YWD65, YK71, You77, YC94, CKY99, KY72, KCY01, KYC03, YM14, You71, You74].
Methods [BD92, CKO+84, Car88, EGRS59a, GKRY82, HLY80, HY81, HY04, JY80, JY83, KY75, KY79, KGY79, KGY79, KGY81, KRYG82, KCO+84, KY84c, KY86, KOY86b, KH90, KY91, VS79, VS84, VY89, WY70, YE59, You60b, YF62, YW63, You63, YF63, YW64, You69, YK69, You70, YK72, You89a, You90, YK90, YJ93, KY92, KCY00, You50, You72b, You72d, YJK84, YR92, YK93, You93b, XBY95, YK95, YK96, You93a].
MGMRES [KYC00]. Milne [You53].
Minneapolis [Cra87]. Minnesota [Cra87].
modern [You73b]. modifications [CKY99].
Modified [YWD65, YK71, KY72].
Modules [ES84, KORY85b, KORY85a].
Monterey [BS84]. Muller [YB60].
multidimensional [Bro87]. Multilevel [VY89].

Non [JY80, Lak84]. Non- [JY80].
Non-linear [Lak84]. Nonlinear [Ame64, You75, Rhee72]. nonstationary [YK95].
Nonsymmetric [KY81, YC94, JY93, KYC00].
Nonsymmetricizable [JY83, YJK84].
Norms [KY71, YK69]. North [BCEP94].
Norway [Gra73]. Notes [Ode75, You60a, YB60]. November [SW86].
NSF [Rhee72]. NSF-CBMS [Rhee72].
number [YM69]. Numerical [BC95, Bec52, FDKN04, Tod62, Wat74, You53, You59, YE59, You60b, You63, YG72, YG73, YG88a, YG88b, You6b, YM69, You73b, You93a, You93b, Cur56, FDKN04, Gra73, Rhee72, VWY01].

October [Gar83]. Omega [YM90]. one [RSY93]. Operators [YD65a, YD65b].
Optimum [WY70, You71]. Ordering [KY86, You72a]. ORDVAC [You55].
Ortega [You93b]. Ostrowski [You62a].
Overrelaxation [KY71, Kin04, WY70, YWD65, You69, YK69, You70, YK71, EGRS59b, KY72, You71].
Overview [You89a, KYC00].

P. [RSY93]. PA [Rhee72]. Package [GKRY82, KY75, KGY81, KRYG82, KY84b, YK81, YK84]. Papers [VWY01].
Parabolic [You59, YF62, YF63, You62b].
Parallel [KCSY88a, KCSY88b, VY89, YK95, ???85, YK96, Car88, NN93].
Parallelism [You88, You89b]. Parameter [You61b]. Parameters [MY89, YK71, KY72]. Partial [CKO+84, KY75, KCO+84, KY84c, KOY86b, VS79, VS84, You59, YF62, YW63, You63, YF63, YW64, YD65a, YD65b, You75, Gra73, You50, You62b]. Past [KY84a]. PDE [ES84, ES84, KGY79, KGY82].
PDE-Related [KGY79, KGY79]. PDEs [KCSY88a]. Peaceman [You61b].
polynomials [RSY93]. Position [You58].
positive [You72c]. pp [You53, You62a].
Practice [Lak84]. Prague [FDKN04].
Preconditioned [JYM86]. Preface [AK10].
Problems [Ame64, EGRS59a, RB85, You60b, You61b, You74]. Proc [Mor70].
Procedure [MY89]. Proceedings [Bec52, Cra87, Cur56, D+86, ES84, FDKN04].
Gar83, Gra73, Lak84, SW86, VS79, VS84, ???89, BC95, BCEP94, ISV82, ???85.
Processing [Mor70, ISV82, NN93].
Processors [???85]. Project [KY84a, KY88]. Properties [You69, You70].
property [You72a]. Purdue [???89].
Refined [EGRS59a]. Regional [Rhe72]. Related [KY79, You69, You70, KYG79].
Relaxation [WY70, WYD65, YM14, You71]. Report [GKMY78]. Representations [YD65a, YD65b].
Reservoir [SRS79]. Review [You53, You62a, You90, You93a, KY88].
Revised [WVY01]. Rousse [WVY01].
S [???89]. scaling [Bro87]. scheduled [YM14]. Science [Cra87]. Sciences [BHK79]. Scientific
[Nas90, You93b, ???85, NN93, You93a]. Search [You88, You89b, YM90]. Second [KY91, WYV01, YK72, You72d, YK90, KY92, YK93].
Second-Degree [KY91, YK90, YK72, You72d, KY92, YK93].
Self [EGRS59a]. Self-adjoint [EGRS59a].
Seminar [Gar83]. September [Cra87]. Several [YWD65, RSY93]. signals [D+d86].
Simplification [JY83, JY86]. Simulation [SR79]. Single [You01b]. Sixth [Cur56].
Society [Cur56]. Söderköping [ES84]. Software [ES84, KY84b, MY87, YK84, SDK+d95, YJM86, Mor70]. Solution
[EGRS59a, KORY85b, KORY85a, KCSY88a, KCSY88b, MY87, Wat74, You59, You62a, You63, You71, YK72, You73a, You75, You76, You88, YK90, Gra73, Rhei72, You53, You56, You62b, You72d, You72c, YK93, You03].
Solutions [You55]. Solvers [BS84, Sch81, You89b]. Solving [GKRY82, KY75, KGY79, KYG79, KGY80, KGRY81, KRYG82, KY83, KCO+d84, KY84c, YE59, You60b, YF62, YW63, YF63, YW64, You77, YHOK85, YC94, CKO+d84, YJ88, YJ93, KYC00, You50, You74, YJM86, YR92, YX895, RB85]. Some [YE59]. SOR [ALY88]. Space [Gar83]. Sparse [GKMY78, GKRY82, KYMY79, KY79, KYG79, KGY80, KRYG81, KRYG82, KY83, KGY84, KOY86a, KCSY88a, KCSY88b, MY87, YK81, YHOK85, You88, You89b, YC94, You72c, YJM86, YR92]. Special [AK10]. sponsored [Gar83]. squared [Bro87]. squares [Bro87]. SSOR [You74, You77]. Standards [Bec52]. State [ISV82]. Stationary [KY91, KY92, YK72, YK90, You72b, YK93].
Storage [GKMY78, KGY79]. streamlines [You52]. Studies [YE59].
Study [Gra73]. Successful [KY71, Kin04, WY70, WYD65, You69, YK69, You70, YK71, KY72, You71].
Sufficient [JY86]. Supercomputers [KY84c, Cra87]. Supercomputing [Car88]. support [SDK+d95]. surveillance [YM69].
Survey [KY79, Tod62, YF62, YF63, YG72, YG73, YG88a, YG88b, You73b]. Sweden [ES84]. Symmetric
[GKMY78, KGY79, KY81, You69, You70]. symmetrizable [JY80]. Symposium
[Curr56, VS79, VS84, ISV82, Bec52, Cra87, SR79]. System [You89b]. Systems
[ES84, GKRY82, JY83, KGY79, KYG79, KGY80, KY81, KGYR81, KRYG82, KY83, KOY84, KOY86a, KCSY88a, KCSY88b, MY87, You61a, You71, YK72, You75, You76, You77, YK81, YHOK85, You88, YK90, YC94, D+d86, YJ88, YJ93, KYC00, Rhe72, You56, You62a, You72d, You72c, You73a, YJM86, YR92, YK93, You03, KH90].
TC [ES84]. Techniques [You76]. Technology [BHK79]. Texas [Lak84, SW86]. their [RSY93]. them
SDK+d95. Theory [Lak84]. Third
REFERENCES

[BC95, Cra87, VS79]. times [KVW10].
tools [SDK+95]. Topics [RSY93]. Trends
[Lak84, Lak84]. Tutorial [KY86]. type
[JY93, You50, YK95, YK96].

University [Bec52, Lak84, Rhe72, VS79,
VS84, ISV82, ???89]. Unsymmetric
[You69, You70]. USA [VS79, VS84]. Use
[KGY79, KGY79, KOY82, KY83, KY84c,
YWD65, YHOK85, You52, YR92]. User
[GKY78, KORY84, KOY89]. Using
[ES84, KGMY79, RB85, You61b, YM14].

V [VS84]. Value [EGRS59a, You74],
variables [RSY93]. Variations [KYC03].
Vector
[KOY82, KOY84, KOY86a, KCSY88a,
KCSY88b, YHOK85, ISV82, ???85].
Vectorized [KOY86b]. VIth [Lak84]. Vol
[Mor70]. volume [RSY93].

W. [You53]. Wiley [You53]. Working
[ES84].

Years [Kin04]. Yokohama [NN93]. York
[You53, You62a]. Young [AK10, EGRS59b,
KVW10, Bro87, Kin04].

References

[???85] ???, editor. Proceedings of the
Conference Vector and Parallel
Processors for Scientific Com-
putation. Accademia dei Lincei,
???? LCCN ????

[???89] ???, editor. Purdue University
Conference Proceedings honoring
Dr. S. D. Conte. ?????, ?????, 1989.
ISBN ???? LCCN ????

Axelsson:2010:PSI
Owe Axelsson and David R. Kin-
caid. Preface [special issue: dedi-
ticated to the memory of David
M. Young, Jr.]. Numerical lin-
ear algebra with applications, 17
(5):741–742, October 2010. CO-
DEN NLAAEM. ISSN 1070-5325
(print), 1099-1506 (electronic).

Adams:1988:ASI
Loyce M. Adams, Randall J.
LeVeque, and David M. Young.
Analysis of the SOR iteration for
the 9-point Laplacian. SIAM
Journal on Numerical Analysis,
CODEN SJNAAM. ISSN 0036-
1429 (print), 1095-7170 (elec-
tronic).

Ames:1964:NPE
William F. Ames, editor. Non-
linear Problems of Engineering.
Academic Press, New York, NY,
USA, 1964. xiv + 252 pp. LCCN
TA331 .A4. Fifteen lectures de-
livered at a seminar conducted
by the Dept. of Mechanical Engi-
neering, University of Delaware,
at the university, June 19–21,
1963.

Bainov:1995:PTI
D. Baïnov and Valéry Covachev,
editors. Proceedings of the Third
International Colloquium on Nu-
merical Analysis: Plovdiv, Bul-
garia, 13–17 August, 1994. VSP,
International Science Publishers,
ISBN 90-6764-193-6. LCCN
REFERENCES

[CKO84] Graham F. Carey, David R. Ken-
REFERENCES

Chen:1999:GMG

Cray:1987:SEC

Curtiss:1956:NAP

Datta:1986:LAS

Engeli:1959:RIM

Engeli:1959:YO

Engquist:1984:PSM

REFERENCES

Feistauer:2004:NMA

Gary:1983:CAS

Grimes:1978:IUG

Grimes:1978:IUG

[GKY78] Roger G. Grimes, David R. Kincaid, and David M. Young. ITPACK 2.0 user's guide. Report CNA-150, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, August 1978.

Grimes:1973:IRA

REFERENCES

REFERENCES

[KCSY88a] David R. Kincaid, Graham F. Carey, Kamy Sepehrnoori, and David M. Young. Vector and parallel iterative solution of large sparse systems for PDEs. Report CNA-222, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, August 1988.

[KGRY81] David R. Kincaid, Roger G. Grimes, John R. Respess, and David M. Young. ITPACK 2B: A Fortran package for solving large sparse linear systems by adaptive accelerated iterative methods. Report CNA-173, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, September 1981. (Also, Report CCSN—44, Computation Center, University of Texas at Austin.).

[KGRY79] David R. Kincaid, Roger G. Grimes, John R. Respess, and David M. Young. ITPACK 2B: A Fortran package for solving large sparse linear systems by adaptive accelerated iterative methods. Report CNA-173, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, September 1981. (Also, Report CCSN—44, Computation Center, University of Texas at Austin.).

[KGRY81] David R. Kincaid, Roger G. Grimes, John R. Respess, and David M. Young. ITPACK 2B: A Fortran package for solving large sparse linear systems by adaptive accelerated iterative methods. Report CNA-173, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, September 1981. (Also, Report CCSN—44, Computation Center, University of Texas at Austin.).

[KGRY81] David R. Kincaid, Roger G. Grimes, John R. Respess, and David M. Young. ITPACK 2B: A Fortran package for solving large sparse linear systems by adaptive accelerated iterative methods. Report CNA-173, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, September 1981. (Also, Report CCSN—44, Computation Center, University of Texas at Austin.).
REFERENCES

Analysis, University of Texas at Austin, Austin, TX, USA, October 1980.

Kincaid:1990:IML

Kincaid:2004:CFY

Kincaid:1984:AIR

[KOY82] David R. Kincaid, Thomas C. Oppe, and David M. Young. Adapting ITPACK routines for use on a vector computer. In ISVPA’82 [ISV82], page ?? LCCN ?????.

Kincaid:1984:VCS

Kincaid:1986:VCS

Kincaid:1986:VIM

[KOY86b] David R. Kincaid, Thomas C. Oppe, and David M. Young. Vectorized iterative methods for par-
REFERENCES

Kincaid:1989:IUG

[KOY89] David R. Kincaid, Thomas C. Oppe, and David M. Young. ITPACKV 2D user’s guide. Report CNA-232, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, May 1989.

Kincaid:1982:IFP

Kincaid:2010:LTD

Kincaid:1971:NSO

[KY71] David R. Kincaid and David M. Young. Norms of the successive overrelaxation method. Report CNA-26, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, July 1971.

Kincaid:1972:MSO

Kincaid:1975:DCP

Kincaid:1979:SIM

Kincaid:1981:AIA

REFERENCES

Kincaid:1983:AIA

Kincaid:1984:IPP

Kincaid:1984:ISP

Kincaid:1984:UIM

Kincaid:1986:TFD

Kincaid:1988:BRI

Kincaid:1991:SSD
David R. Kincaid and David M. Young. Stationary second-degree iterative methods and recurrences. Report CNA-250, Center for Numerical Analysis, University of Texas at Austin, Austin, TX, USA, February 1991.

Kincaid:1992:SSD
David R. Kincaid and David M. Young. Stationary second-degree iterative methods and recurrences. In Beauwens and De Groen [BD92], pages 27–
REFERENCES

REFERENCES

[SDK+95] Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M. Young, and Gregory Zelesnik. Abstractions for software architecture and tools to support them.

REFERENCES

[YS89] Bi Roubolo Vona and David M. Young. Parallel multilevel methods. In ??? [???89], page ?? ISBN ???. LCCN ???.

[WY70] Charles H. Warlick and David M. Young. A priori methods for the determination of the optimum relaxation factor for the successive overrelaxation method. Report TNN-105, Computation Center, University of Texas at Austin, Austin, TX, USA, May 1970.

[YE59] David M. Young and Louis Ehrlich. Some numerical studies of iterative methods for solv-
REFERENCES

David M. Young and Thurman G. Frank. A survey of computer methods for solving elliptic and parabolic partial differential equations. Report TNN-5, Computation Center, University of Texas at Austin, Austin, TX, USA, April 1959.

[157x646]Young:1963:SCM

[157x513]Young:1988:SNMa

[157x279]Young:1985:UVC
David M. Young, Linda J. Hayes, Thomas C. Oppe, and David R. Kincaid. On the use of vector computers for solving sparse linear systems. In ???? [???85], page ?? ISBN ???? LCCN ????

[157x180]Young:1984:ANI
David M. Young, Kang C. Jea, and David R. Kincaid. Accelerating nonsymmetrizable iterative methods. In Birkhoff and Schoenstadt [BS84], pages...
REFERENCES

[Young:1995:PIC] David M. Young and David R. Kincaid. Parallel implementa-

Young:1996:NCP

Young:1969:SCN

David M. Young and Alvis E. McDonald. On the surveillance and control of number range and accuracy in numerical computation (with discussion). In Morrell [Mor70], pages 145–152. ISBN 0-7204-2032-6. LCCN QA 75.5 I57 1968.

Young:1990:SO

Young:1990:SO

Yang:2014:AJI

Young:1950:IMS

David M. Young. The use of conformal mapping to determine flows with free streamlines. In Beckenbach [Bec52], pages 125–136. LCCN QA3 .U5 no.18 Bar.

Young:1952:UCM

Young:1953:BRW

COAH. ISSN 0004-5411 (print), 1557-735X (electronic).

Young:1956:SLS

Young:1958:EAM

You58 David M. Young. Error analysis for the method of false position. Report TNN-1, Computation Center, University of Texas at Austin, Austin, TX, USA, October 1958.

Young:1959:NSE

You59 David M. Young. The numerical solution of elliptic and parabolic partial differential equations. Report TNN-4, Computation Center, University of Texas at Austin, Austin, TX, USA, April 1959.

Young:1960:NI

You60a David M. Young. Notes on interpolation. Report TNN-3, Computation Center, University of Texas at Austin, Austin, TX, USA, November 1960.

Young:1960:NMS

You60b David M. Young. Numerical methods for solving problems in linear algebra. Report TNN-9, Computation Center, University of Texas at Austin, Austin, TX, USA, May 1960.

Young:1961:ASC

You61a David M. Young. Automonitor systems for the Control Data 1604 computer. Report TNN-14, Computation Center, University of Texas at Austin, Austin, TX, USA, August 1961.

Young:1961:EAP

You61b David M. Young. Exact analysis of the Peaceman–Rachford method using a single iteration parameter for problems involving the Helmholtz equation in the rectangle. Report TNN-12, Computation Center, University of Texas at Austin, Austin, TX, USA, June 1961.

Young:1962:BRM

Young:1962:NSE

Young:1963:NSP

You63 David M. Young. On the numerical solution of partial differential equations by finite differ-
ence methods. Report TNN-21, Computation Center, University of Texas at Austin, Austin, TX, USA, January 1963.

You74:1974:ASM

You74:1975:ISL

You74:1976:ISL

You74:1977:ASM

You74:1988:SLP

You89a:1989:HOI

You89b:1989:SLP

You90:1990:HRI

You93a:1993:BRS

REFERENCES

