
HOC(1) HOC(1)

NAME
hoc — (high-order calculator) [interactive floating-point language]

SYNOPSIS
hoc [−author] [−copyright] [−?] [−help] [−no-banner] [−no-help-file] [−no-load]

[−no-logfile] [−no-readline] [−no-save] [−no-site-file] [−no-translation-file] [−no-user-file]
[−quick] [−silent] [−version] [file . . .]

OPTIONS
hoc options can be prefixed with either one or two hyphens, and can be abbreviated to any unique prefix.
Thus,−a, −author, and−−auth are equivalent.

To avoid confusion with options, if a filename begins with a hyphen, it must be disguised by a leading abso-
lute or relative directory path, e.g.,/tmp/-foo.hocor ./-foo.hoc.

−author Display an author credit, and software distribution information, on the standard error
unit, stderr, and then terminate with a success return code. Sometimes an
executable program is separated from its documentation and source code; this option
provides a way to recover from that.

−copyright Display copyright information on the standard error unit,stderr, and then terminate
with a success return code.

−help or −? Display a help message onstderr, giving a brief usage description, and then termi-
nate with a success return code.

−no-banner Suppress any welcome banners normally printed by dynamically-loaded library
code.

This option can also be set via thehoc system variable_ _BANNER_ _, but it must
be set in an initialization file before code in that file to print the welcome banner is
reached.

−no-help-file Suppress loading of system-widehochelp files at startup.

−no-load Disable theload() function. It will continue to be recognized, but when invoked,
will simply print a warning that it has been disabled.

This option is a security feature: it takes effect only after all initialization files have
been processed.

−no-logfile Disable thelogfile(), logon(), andlogoff() functions. They will continue to be rec-
ognized, but when invoked, will simply print a warning that they hav e been disabled.

This option is a security feature: it takes effect only after all initialization files have
been processed.

−no-readline Suppress use of the GNUreadline library: command completion, editing and recall
are then not available.

On some systems, it may be necessary to use this option whenhoc is used in inter-
national mode (see theINTERNATIONALIZATION section below) in order to get
accented letters displayed properly.

−no-save Disable thesave() function. It will continue to be recognized, but when invoked,
will simply print a warning that it has been disabled.

This option is a security feature: it takes effect only after all initialization files have
been processed.

−no-site-file Suppress loading of the system-wide non-help startup files.

−no-translation-file Suppress loading of the system-wide message translation files.

−no-user-file Suppress loading of the user-specific startup file.

7.0.0.beta 27-Dec-2001 1

HOC(1) HOC(1)

−quick Suppress loading of all startup files: this option is equivalent to−no-help-file −no-
site-file −no-translation-file −no-user-file.

−silent Suppress printing of prompts for interactive input.hoc never prompts when it is
reading noninteractive files.

Thehoc system variable_ _VERBOSE_ _can also be set to zero at run time to turn
off prompts; setting it to nonzero turns them back on.

Thehoc system variable_ _PROMPT_ _contains the prompt string: it can be rede-
fined at any time.

−version Display the program version number and release date onstderr, and then terminate
with a success return code.

DESCRIPTION
hoc interprets a simple language for floating-point arithmetic, at about the level of Basic, with C-like syntax
and functions. However, unlike Basic,hoc has particularly rich support for floating-point arithmetic, and
its facilities are certainly better than that standardly provided by most programming languages, such as C,
C++, and Fortran.

To get a flavor of what typicalhoc code looks like, visit the*.hoc and*.rc files in thehoc installation
directory tree: see theINITIALIZATION FILES section below for their location.

The namedfiles are read and interpreted in order. If nofile is given or iffile is − , hoc interprets the stan-
dard input.

hoc input consists ofexpressionsand statements. Expressions are evaluated and their results printed.
Statements, typically assignments and function or procedure definitions, produce no output unless they
explicitly call print .

Word completion
Whenhoc has been built with the GNUreadlinelibrary, word completion can be used to save typing effort.
It is normally requested by an ESCape character following a prefix of a word inhoc’s symbol table:hoc
will respond with an audible beep, and a list of words that match that prefix, or if only one word matches, it
will silently complete the word:

hoc> c<ESCape>
cbrt ceil copysign cos cosd cosh
hoc> co<ESCape>
copysign cos cosd cosh
hoc> cop<ESCape>
hoc> copysign

The character used to request completion can be changed: see theINITIALIZATION FILES section
below.

Command history and editing
Whenhochas been built with the GNUreadlinelibrary, convenient command history and editing support is
available, much like it is in the UNIXbash(1), ksh(1) andtcsh(1) shells, and in a few GNU programs, like
thebc(1) andgenius(1) calculators. The default history and editing mode isemacs(1)-style; you can also
getvi(1)-style by suitable customizations: see theINITIALIZATION FILES section below.

In the default mode,C-p (hold the Control key down while typing p) moves up in the history list,C-n
moves down,C-b moves backward in the current line,C-f moves forward,C-d deletes forward,DELete
deletes backward,C-a moves to the beginning of the line,C-emoves to the end of the line,C-l repaints the
screen, reprinting the current line at the top, andRETurnresubmits the line for execution.

For more details, consult theGNU Readline Librarymanual, available online in theinfo system. In
emacs(1); typeC-h i mreadlineto get there.

Numbers
All numbers inhocare stored as double-precision floating-point values.

On systems with IEEE 754 arithmetic, such numbers are capable of representing integers of up to 53 bits

7.0.0.beta 27-Dec-2001 2

HOC(1) HOC(1)

exactly, excluding the sign bit. This is an integer range of −(2ˆ53) . . . 2ˆ53, or −9,007,199,254,740,992 . . .
9,007,199,254,740,992.

Numbers may be signed, and may optionally contain a decimal point, and a power-of-ten exponent, which
consists of the lettere (or E) followed by an optionally-signed integer. No other exponent letters are recog-
nized.

A hexadecimal floating-point number format, introduced in the latest ISO C Standard,ISO/IEC 9899:1999
(E) Programming languages — C, usually known by its short name,C99, is also supported, and imple-
mented by portable private code inhoc. This format consists of an optional sign, then0x or 0X, followed
by one or more hexadecimal digits (0−9 A−F a−f) containing at most one hexadecimal point, optionally
followed by a binary (power-of-two) exponent consisting ofp or P followed by an optionally-signed deci-
mal integer. Thus,−0x1.00000p8, −0x100, −0x100000p-12, −0x10p+4, −0x1p+8, −0x1p00008, and
−0x1p8all represent the decimal number−256.

The hexadecimal format, while awkward for humans, has the advantage of guaranteeing exact input/output
conversions on all platforms, andhoc consequently uses this format in files created by thesave()com-
mand.

Strings
String constants are delimited by quotation marks (". . ."), and may not span multiple lines, unless the
embedded line breaks are each prefixed with a backslash, which is removed, leaving the newline in the
string.

All characters in 1 . . . 255 are representable in strings; as in C and C++, character 0 (ASCII NUL) is
reserved as a string terminator.

In string constants, nonprintable characters may be represented by the usual escape sequences defined in
Standard C and Standard C++, plus one extension (\E):

\\ backslash: ASCII decimal 92.

\" quotation mark: ASCII decimal 34.

\a alert or bell (ASCII BEL: decimal 7).

\b backspace (ASCII BS: decimal 8).

\E escape (ASCII ESC: decimal 27).

\f formfeed (ASCII FF or NP: decimal 12).

\n newline (ASCII LF or NL: decimal 10).

\r carriage return (ASCII CR: decimal 13).

\t horizontal tab (ASCII HT: decimal 9).

\v vertical tab (ASCII VT: decimal 11).

\o \oo \ooo octal character number (o = 0−7) in one to three digits.

\xh. . . hexadecimal character (h = 0−9A−F or 0−9a−f) in one or more digits.
Backslash followed by any other character than those listed is simply discarded:\W reduces toW.

Variables
Variable names consist of an initial letter or underscore, followed by any number of letters, underscores, or
digits. Lettercase issignificant. Letters are considered to beA−Z, a−z, and any characters in the range 160
. . . 255 of an 8-bit character set. Use of characters in the latter range is normally not recommended,
because they are often difficult, or impossible, to generate on some computer keyboards. Nevertheless, it
does permit non-English words to be spelled correctly; see theINTERNATIONALIZATION section
below.

Underscore (_) by itself is a reserved variable containing the value of the lastnumericexpression evalu-
ated. Double underscore (_ _) is a reserved variable containing the value of the laststring expression eval-
uated. They cannot be assigned to by user code.

7.0.0.beta 27-Dec-2001 3

HOC(1) HOC(1)

Predefined numeric constants and variables
Certain immutable named constants are already initialized:

CATALAN Catalan’s constant: sum((−1)ˆi/(2*i+1)ˆ2, i = 0..infinity) = approximately
0.915965594177219015054603514932. . .

DEG 180/PI, degrees per radian

E base of natural logarithms

GAMMA Euler’s constant:
limit(sum(1/i,i=1. . .n)− ln(n), n→ infinity) = approximately
0.577215664901532860606512090082. . .

INF or Inf or Infinity IEEE-754 floating-point infinity

MAXNORMAL Largest finite normalized floating-point number.

MINNORMAL Smallest (in absolute value) nonzero normalized floating-point number.

MINSUBNORMAL Smallest (in absolute value) subnormal floating-point number. If your
computer system does not support subnormal numbers, this is identical
to MINNORMAL .

NAN or NaN IEEE-754 floating-point not-a-number

PHI golden ratio: (1 + sqrt(5))/2 = approximately
1.61803398874989484820458683436. . .

PI ratio of the circumference of a circle to its diameter, approximately
3.14159265358979323846264338327. . .

PREC maximum number of significant digits in output, initially 17 on most
systems (the precise value is computed dynamically, from Matula’s 1968
result: ceil(N/log_b(10) + 1), for a host floating-point system withN
base-b digits). PREC = 0gives shortest ‘exact’ values.

QNAN or QNaN IEEE-754 floating-point quiet not-a-number

SNAN or SNaN IEEE-754 floating-point signaling not-a-number

More information on the floating-point constants is available in theFLOATING-POINT ARITHMETIC
section below.

Predefined system constants and variables
hoc also provides a number of system constants and variables, adopting the C/C++ convention that names
beginning with two underscores are reserved for the implementation:

_ _BANNER_ _ [reassignable number] Nonzero (true) if printing of welcome
banners is permitted. It can be changed by the−no-banner
option.

_ _DATE_ _ [constant string] Date of the start of job execution, in the
form "Dec 16 2001" . The day number has a leading
space if only one digit is needed, so that the string always has
constant width.

_ _FILE_ _ [constant string] Name of the current input file. This is
"/dev/stdin" when hoc is reading from the standard
input.

_ _FILE_ _[n] [constant string] Name of then-th input file in the current job.
This provides a history of exactly what files have been read.
Becausehoc does not yet support arrays, the only way to dis-
play these is with thewho() function.

7.0.0.beta 27-Dec-2001 4

HOC(1) HOC(1)

_ _IEEE_754_ _ [constant number] Nonzero (true) if the host system supports
IEEE 754 arithmetic.

_ _LINENO_ _ [constant number] Number of the current input line in the file
named by_ _FILE_ _.

_ _PA CKAGE_BUGREPORT_ _ [constant string] Where to report bugs.

_ _PA CKAGE_DATE_ _ [constant string] Date of last modification of the software.

_ _PA CKAGE_NAME_ _ [constant string] Program name.

_ _PA CKAGE_STRING_ _ [constant string] Program name and version number.

_ _PA CKAGE_VERSION_ _ [constant string] Program version number.

_ _PROMPT_ _ [reassignable string] Current prompt string. Prompting is
controlled by the setting of_ _VERBOSE_ _(see below).

For example,
_ _PROMPT_ _ = "\n\E[7mInput:\E[0m "

will produce a blank line followed by a prompt in inverse
video in terminal emulators, such asxterm(1) and DEC
VT100, that follow the ANSI X3.64-1979 or ISO 6429-1983
terminal standards.

If _ _PROMPT_ _ contains the two-character format string
%d, that string will be replaced by the prompt count: for
example, this silly setting

_ _PROMPT_ _="\E[4;5;34;43m[%d]\E[0m: "

will display the count digits in blue, and underlined, on a yel-
low background, in anxterm(1) window that supports text
color attributes. [Rundircolors -p for more information
on color settings.]

_ _READLINE_ _ [constant number] Nonzero (true) if the GNUreadlinelibrary
is in use.

_ _TIME_ _ [constant string] Local time-of-day (24-hour clock) of the
start of job execution, in the usual hours, minutes, seconds
form "14:57:23" .

_ _VERBOSE_ _ [reassignable number] Nonzero (true) ifhoc should prompt
for input from interactive files. The actual prompt string is
controlled by the_ _PROMPT_ _variable.

[NB: A bug in the GNUreadlinelibrary (version 4.2a) makes
this variable ineffective; it works correctly with the−no-
readline option. The bug has been reported to thereadline
maintainers.]

Numeric expressions
Numeric expressions are formed with these C-like operators, listed by decreasing precedence.

ˆ Exponentiation.

! - ++ -- Logical negation, arithmetic negation, increment-by-one, decre-
ment-by-one. As in C and C++, the latter two may be applied
beforea variable (acting first before taking the value), orafter (tak-
ing the current value first, then acting).

* / % Multiply, divide, modulus.

7.0.0.beta 27-Dec-2001 5

HOC(1) HOC(1)

+ - Add, subtract.

> >= < <= == != Greater than, greater than or equal to, less than, less than or equal
to, equal to, not equal to.

&& Logical and. Both operands arealwaysevaluated, unlike in C and
C++, where the second is evaluated only if the first is nonzero
(true).

|| Logical or. Both operands arealwaysevaluated, unlike in C and
C++, where the second is evaluated only if the first is zero (false).

= += -= *= /= %= := Assignment, assign the left-hand side the (sum, difference, prod-
uct, dividend, or modulus) of its current value and the right-hand
side, permanent assignment. The operator:= is a one-time-only
assignment operator, used for defining permanent constants that
cannot be redefined in the samehocsession.

As in C and C++, assignment is a right-associative expression
whose value is the left-hand side. This means thatx = y = z
= 3 is interpreted asx = (y = (z = 3)) . That is,3 is
assigned toz , then that result is assigned toy , and finally, that
result is assigned tox , so all three variables are assigned the value
3. Similarly, sqrt(x = 4) assigns the value4 to x before com-
puting and returning its square root.

Expression lists inprint -like statements, and in argument lists, are evaluated in strictleft-to-right order.
Thus, the output of expressions with side effects, such as

n = 3
print ++n, n++

is predictable: that example prints
4 4

String expressions
String expressions support only the relational operators (> >= < <= == !=) and the simple assignment
operators (= :=), plus concatenation, which is indicated by two successive string expressions, without any
specific operator, following the practice in C, C++, andawk(1). These two assignments are equivalent:

s = "hello" ", " "wor" "ld"
s = "hello, world"

Numbers in string expressions are converted to strings according to the current precision variable,PREC.
k = 123
PREC = 4
s = "abc" k "def" PI
println s
abc123def3.142

Several string functions listed below augment string expressions.

Built-in functions and procedures
Longer documentation of the built-in functions and procedures is relegated to the later section,DESCRIP-
TIONS OF BUILT-IN FUNCTIONS AND PROCEDURES .

These numeric built-in functions take zero arguments:rand, second, andsystime.

These numeric built-in functions take one numeric argument:abs, acos, acosh, asin, asinh, atan, atanh,
cbrt , ceil, cos, cosd, cosh, erf, erfc, exp, expm1, exponent, factorial , floor, gamma, ilogb, int , isfinite,
isinf, isnan, isnormal, isqnan, issnan, issubnormal, J0, J1, lgamma, ln, log, log10, log1p, log2,
macheps, nint , number, randl , rint , rsqrt , setrand, significand, sin, sind, sinh, sqrt, tan, tand, tanh,
trunc , Y0, andY1.

These numeric built-in functions take two numeric arguments:copysign, errbits , fmod, gcd, hypot, Jn,
lcm, ldexp, logb, max, min, randint , nearest, nextafter, remainder, scalb, andYn.

7.0.0.beta 27-Dec-2001 6

HOC(1) HOC(1)

These string built-in functions take zero arguments:logoff, logon, andnow.

These string built-in functions take one argument:ev al, getenv, length, hexfp, hexint, load, logfile, print-
env, string, tolower, toupper, andwho.

These string built-in functions take two arguments:index, putenv, save, andstrftime .

This string built-in function takes three arguments:substr.

These startup file procedures take no arguments:author, help, help_xxx, andnews.

The help system (described later) documents each of these functions, and any additional ones provided by
startup files. Most have the same names as they do in C, C++, and Fortran, so many will already be famil-
iar to users who have learned any of those programming languages.

Built-in functions and procedures areimmutable: they cannot be redefined by the user inhoc code. User-
defined variables, functions, and procedures can be redefined at any time to objects of the same type. Vari-
ables can be redefined to be functions or procedures. However, the reverse does not hold: once a name has
been used as a function or procedure, it can only be redefined to be a new function or procedure.

The procedureabort(message)prints message, immediately terminates evaluation, and returns to the top-
level interpreter, discarding and clearing the function/procedure call stack. It is equivalent to a similar
internal function thathocuses to recover from catastrophic errors. Use it sparingly!

The functionread(x) reads a value into the variablex. The value must be either a number, or a quoted
string, or an existing variable or named constant. The return value is 1 on success, or 0 on end-of-file; the
function aborts for any other error condition.

The statementprint prints a list of expressions that may include string constants such as"hello\n" . It
doesnotprint a final newline: the last expression must end with one if a newline is required.

The statementprintln works likeprint , but always supplies a following newline.

There is an incompletely implementedprintf statement: it will not be further documented until it is fully
working.

The functionwho(prefix) produces a lengthy report of all of the named constants and variables with their
current values, plus the names of all built-in functions and procedures, and all user-defined functions and
procedures. Only those names whose initial letters match the argument string,prefix, are included. To
print all symbols, use an empty prefix:who("") . The return value is always an empty string.

Symbols with three or more leading underscores are for internal use byhoc, and are thus consideredhid-
den. They can only be shown by a suitableprefix argument towho(). Hidden symbols are used for locale
translations of embedded strings. See theINTERNATIONALIZATION section below for further details.

Statements
Control flow statements areif−else, while, andfor , with braces for grouping. Newline or semicolon ends a
statement. Backslash-newline is equivalent to a space.

Functions and procedures are introduced by the wordsfunc andproc; return is used to return with a value
from a function. Within a function or procedure, arguments are referred to as$1, $2, etc.; all other vari-
ables are global.

FLOATING-POINT ARITHMETIC
All arithmetic inhoc is done in double-precision floating point (C/C++ typedouble).

On most modern systems, this arithmetic conforms closely (or loosely) to the 1985IEEE 754 Standard for
Binary Floating-Point Arithmetic. This arithmetic system has numerous advantages over older designs, and
has helped enormously to improve the environment for, and portability and reliability of, numerical soft-
ware.

How floating-point numbers are represented
In IEEE 754 arithmetic, double-precision numbers are represented as 64-bit values, consisting of a sign bit,
an 11-bit biased exponent, and a 53-bit significand. That is a total of 65 bits: the first significand bit is
called ahiddenbit, and is not actually stored. The binary point lies between the hidden bit and the stored

7.0.0.beta 27-Dec-2001 7

HOC(1) HOC(1)

fraction, so that for normal numbers, the significand is at least one, but less than two.

Biased, rather than explicitly signed, exponents are conventional in floating-point architectures. For IEEE
754 64-bit arithmetic, the exponent bias is 1023; that is, the true exponent is 1023 less than the stored
biased value.

The smallest biased exponent (0), and the largest biased exponent (2ˆ11 - 1 = 2047), are given special inter-
pretation, described below for subnormals, and Infinity and NaN, respectively.

Large normal numbers
With the IEEE 754 format, the number range is approximately −1.80e+308 . . +1.80e+308, with a precision
of about 15 decimal figures. The exact value of the largest floating-point number is(1 − 2ˆ(−53)) * 2ˆ1024.

Small normal numbers
The smallestnormalizednumber that can be represented is about 2.23e-308, or more precisely,2ˆ(−1022),
and its reciprocal is also representable, being almost exactly a quarter of the largest representable number.

Smaller subnormal numbers
The IEEE 754 Standard defines a numerically useful feature calledgradual underflowthat, when the biased
exponent reaches its smallest value (0), relaxes the normalization requirement and drops the hidden bit, per-
mitting small numbers to decrease further down to about 4.94e-324, or more precisely,2ˆ(−1074), but with
loss of precision. Such numbers are calledsubnormal(formerly, denormalized). Not all systems support
such numbers: thehoc function issubnormal(x) can be used to test whetherx is subnormal. The reciprocal
of the largest floating-point number is nonzero only if subnormal numbers are supported. Thus, you could
define thishoc function to find out whether your system has subnormals; it returns 1 (true) if that is the
case:

func hassubnormals() \
return (issubnormal(1/(((1 - 2ˆ(-53)) * 2ˆ1023) * 2)))

With a predefined constant, this can also be written as
func hassubnormals() return (issubnormal(1/MAXNORMAL))

Underflow
Numbers below the smallest normalized, or when supported, the smallest subnormal, values quietlyunder-
flow to zero.

Machine epsilon
Another significant quantity inany floating-point system is known as themachine epsilon. This is the
smallest positive number that can be added to one, and produce a sum still different from one.hoc provides
a generalization of this, withx replacingone in the last sentence:macheps(x).

In IEEE 754 arithmetic,macheps(1)is about 2.22e-16, or more precisely,2ˆ(−52). The negative of its
base-10 logarithm is the number of decimal digits that can be represented. An error ofmacheps(x) is
called anULP (Unit in theLastPlace). Ify is an approximation tox, then with the definition

func errbits() \
{

if ($1 == $2) \
return (0) \

else \
return (ceil(log2(abs(($1 - $2)/max($1,$2))/macheps($1))))

}
errbits(x,y) is the number of bits that are in error iny: that is, the base-2 logarithm of the relative error in
ULPs, rounded up to the nearest integer. Incidentally, this function behaves as expected if either of its argu-
ments are NaN (described below), or Infinity of opposite signs, even though there are no tests for those val-
ues: the result is a NaN.

One might reasonably argue forerrbits(x,y) that the case of two Infinity arguments of like sign should also
return a NaN. The current implementation does not include such a test, but doing so would require just one
additional statement:if (isinf($1) && isinf($2)) return (NAN) .

macheps(0) is the smallest representable floating-point number, either normalized, or subnormal if

7.0.0.beta 27-Dec-2001 8

HOC(1) HOC(1)

supported. Thus, the test function above can be written more simply and portably (since it also works for
non-IEEE 754 systems) as

func hassubnormals() return issubnormal(macheps(0))
but it will run somewhat more slowly, since the current portable implementation ofmacheps(x)involves a
loop. Another simple implementation of this function uses predefined constants:

func hassubnormals() return (MINNORMAL > MINSUBNORMAL)

Special values: Infinity and NaN
IEEE 754 also defines two special values: Infinity, and NaN (not-a-number). The latter are expected to be
available in two flavors: quiet and signaling, but some architectures provide only one kind. The distinction
between the two NaNs is rarely significant: the Standard’s intent was that quiet NaNs should be generated
in numerical operations, while signaling NaNs could be used to initialize numeric variables, so that their
use before assignment of a normal value could then be trapped.

Both Infinity and NaN are signed, but the sign of a NaN is usually irrelevant, and may not reflect how it was
computed: some architectures only generate negative NaNs, others generate only positive ones, and a few
may preserve the expected sign in the NaN produced.

Signed zero
IEEE 754 has both positive and negative zero, but they compare equal. A positive zero is represented by all
zero bits. A neg ative zero has a leading one-bit, followed by 63 zero bits.

Negative zero is generated from
0 / −Infinity
sqrt(−0)

In principle, you should be able to get a negative zero in any programming language by simply writing−0,
but many compilers will convert this to positive zero. You then have to introduce a variable, assign it a
zero, and negate the variable, possibly hiding the negation in an external function that simply returns its
value, to foil optimizers. Inhoc, howev er,−0 works correctly.

Signs of numbers
In hoc, you can extract the sign of any value,x, including negative zero, Infinity, and NaN, like this:

copysign(1,x)
The result will be either +1 or −1.

Nonstop computing
Infinity and NaN are intended to providenonstop computingbehavior. In contrast, older architectures
tended to abruptly terminate a job that computed a number too large to be stored (anoverflow), or divided
by zero. IEEE 754 arithmetic produces Infinity or NaN for these two cases, according to well-defined, and
obvious, rules discussed below.

On these older systems,hoc tries to prevent generation of exceptional values that might otherwise terminate
the job: it aborts such computations with an error message, and returns you to top level, ready for more
input. On IEEE 754 systems, computation inhocsimply proceeds as the Standard intended.

The IEEE 754 nonstop property is exceedingly important in modern heavily-pipelined, or parallel, or super-
scalar, or vector, architectures, all of which have multiple operations underway at once. An interrupt to
handle a floating-point exception in software is extremely costly in performance.

Properties of Infinity and NaN
Both Infinity and NaN propagate in computations, so that if they occur in intermediate results, they will
usually be visible in the final results too, and alert the user to a potential problem.

Infinity behaves somewhat like a mathematical infinity:
finite / Infinity → 0
Infinity * Infinity → Infinity
Infinityˆ(finite or Infinity) → Infinity

NaN is produced whenever one or more operands of an arithmetic expression is a NaN, or from most
numerical functions with NaN arguments, or from expressions where a limiting value cannot be deter-
mined:

7.0.0.beta 27-Dec-2001 9

HOC(1) HOC(1)

Infinity − Infinity → NaN
Infinity / Infinity → NaN
0 / 0 → NaN

NaN has a unique property not shared by any other floating-point values, including Infinity: it is not equal
to anything, even itself! This should be usable as a completely portable test for a NaN, even on older sys-
tems that do not have IEEE 754 arithmetic:

(x != x) is true if, and only if,x is a NaN.

Regrettably, compiler writers on several systems have failed to grasp this important point, and they incor-
rectly optimize this test to false. Thus, portable code needs to use a test function, andhoc provides three of
them:isnan(x), isqnan(x), andissnan(x), which return true ifx is a NaN (of any flavor, or quiet, or signal-
ing, respectively).

What NaNs mean for programmers
The presence of NaNs in the arithmetic system has an extremely important implication for numerical soft-
ware: comparisons now hav ethreeoutcomes, not two. The expression(x < y) will be true or false if neither
x nor y is a NaN, but it is calledunorderedif either, or both, is a NaN. In particular, this means that it is
almost alwayswrong to use a computer programming language two-branchif − else statement with a
numerical test. Instead, there need to be additional initial tests to check for NaNs. Thus, instead of thehoc
statement

if (x > y) \
print "x is greater than y\n" \

else \
print "x is less than or equal to y\n"

you should instead write
if (isnan(x)) \

print "x is a NaN\n" \
else if (isnan(y)) \

print "y is a NaN\n" \
else if (x > y) \

print "x is greater than y\n" \
else \

print "x is less than or equal to y\n"

Since if − elsestatements are very common in software, but most programmers, and computer textbook
authors, are not sufficiently familiar with IEEE 754 arithmetic, you should expect that most existing soft-
ware, and textbook examples, will fail to behave consistently, or correctly, when dealing with NaN, and
possibly also Infinity.

There have been some major disasters, such as the failure of the Ariane satellite launch in West Africa, the
failure of Patriot missiles in the Gulf War, and a U.S. nuclear aircraft carrier sitting dead in the water for six
hours, all attributed to computer programmers who lacked sufficiently understanding of computer arith-
metic. Arithmetic really does matter!

Numerical software often contains convergence tests of the form
while (tolerance is not reached)

reduce the tolerance
If a NaN ever appears in thewhile expression, the test will never be satisfied, and the program will be in an
infinite loop. Even famous libraries like EISPACK and LINPACK hav e routines that will never return
because of loops caused by NaNs. [In fairness, both of those libraries were developed before IEEE 754
arithmetic existed, but CDC and Cray machines of that era had special values similar to Infinity and NaN,
so even then, there were systems where the code could endlessly loop.]

Vendor-provided floating-point systems and run-time libraries are not always entirely reliable in their han-
dling of signed zero, Infinity, and NaN, and portable programs likehoc can help to ferret out implementa-
tion differences, and errors that should be reported to the vendors. As noted earlier, signed zero is often
botched by compiler writers, and two functions commonly available in most programming languages,
max(x,y) and min(x,y), in particular are badly done. Their simple implementations use a two-branch

7.0.0.beta 27-Dec-2001 10

HOC(1) HOC(1)

conditional like this one formax(x,y): if (x > y) return x else return y . If either argu-
ment is a NaN, then the test will fail, and the second argument will be returned, leading to inconsistent non-
sense likemax(1,NaN) → NaN but max(NaN,1) → 1. The C and C++ languages lack such functions
(users are expected to write them as macros), but Fortran and many other languages have them. In the fall
of 2001, tests of 61 Fortran compilers on 15 different UNIX platforms showed thatall fail to behave consis-
tently formax(x,y) andmin(x,y).

Unsupported IEEE 754 features
Finally, there are two additional features of IEEE 754 arithmetic that are not yet supported by this version
of hoc, but will be in future releases:

(1) access to floating-point status flags, so that you can tell after the fact whether a computation
encountered any exceptional conditions, and

(2) access to rounding control, which determines whether rounding is to minus Infinity, zero,
nearest, or plus Infinity. The default is always round-to-nearest.

Once rounding control is available,hoc could, in principle, be extended to support interval arithmetic, in
which each numeric operation produces upper and lower bounds for the result. Of course, a proper imple-
mentation would also require such support in all of the mathematical functions in the C/C++ run-time
library, and such support is lacking almost everywhere.

HELP SYSTEM
One of the files thathoc normally loads on startup contains an extensive help system. Each named con-
stant, variable, function and procedure has an associated function,help_NAME(), whereNAME is the
object name. Help is also available on each of thehoc language statements, and on related topics. For an
introduction, runhelp(), and for a detailed list of what help functions are available, invokehelp_help().
To display the entire help system, invokehelp_all().

Users are encouraged to follow these help convention with their ownhoccode.

The entire help corpus is intentionallyexternalto hoc itself, to facilitate modification, partial replacement,
and internationalization, as discussed in the next section.

INTERNATIONALIZATION
The hoc help system can be readily extended to support documentation in languages other than English,
and early releases contain limited prototype text in several languages.

Changing the language alters only documentation and program messages: the basichoc language remains
unchanged, and English-centric, just as do virtually all computer programming languages.

Selecting a language
An alternate language is selected at run-time by defining any one of three environment variables:LC_ALL ,
LC_MESSAGES, or LANG , just as described for other programming languages inlocale(1). These vari-
ables take values of a locale code, the values of which you can list by

locale -a | sort -f
You could thus launch a German version ofhoc like this:

env LANG=de hoc
Environment variables, rather than command-line options, control the locale selection, because it is likely
that most individuals will want to choose a fixed locale, and that can be done once and for all in user login
files, and also because several UNIX library functions access the locale environment variables to guide their
behavior. UNIX users could also create convenient shell aliases, e.g., incsh(1)/ tcsh(1) syntax,

alias hoc-da ’env LANG=da hoc \!*’
alias hoc-de ’env LANG=de hoc \!*’
alias hoc-fr ’env LANG=fr hoc \!*’
. . .

What if you have no locale support?
Virtually all UNIX vendors today provide locale support, but they usually require installation of one or
more additional software packages that your system manager may have omitted, but is probably willing to
install on request.

7.0.0.beta 27-Dec-2001 11

HOC(1) HOC(1)

Locale support is usually present in one of these directories; besides using thelocale(1) command as shown
in the previous subsection, you can runls(1) on the appropriate one of them to see what locales are installed
on your system:

/usr/share/locale Apple Darwin (MacOS X), FreeBSD, GNU/Linux (all architectures)

/usr/lib/nls/loc Compaq/DEC Alpha, IBM AIX

/usr/share/i18n/localesGNU/Linux (all architectures)

/usr/lib/nls/loc/locales Hewlett-Packard HP-UX

/usr/lib/locale SGI IRIX, Sun Solaris

What the locale affects
Normally, changing the locale affects more than just text: dates, monetary formats, numbers, and sort order
all change. However, for now, in the interests of simplicity, and cross-platform and cross-locale consis-
tency,hoc sets the locale categories forLC_COLLATE , LC_CTYPE , LC_MESSAGES, LC_MONE-
TARY , LC_NUMERIC , andLC_TIME to their traditional (English/American) values. Changes will be
needed in future versions ofhoc to support other values of these categories; some of that support is already
available, as shown in the next subsection.

Changing the locale inside hoc programs
Locale categories can be set in the environment frominsidehoc programs to control calendar date and time
formatting by thestrftime() function:

Show time in the default locale:
hoc> strftime("%c",systime())
Fri Dec 21 15:18:14 2001

Switch to Portuguese: ISO8859-1 (Latin-1) encoding:
hoc> old_lc_time = putenv("LC_TIME", "pt")
hoc> strftime("%c",systime())
sex 21 dez 2001 03:17:29 PM MST

Restore the original locale:
hoc> ignore = putenv("LC_TIME", old_lc_time)

The current locale setting can be saved and restored as shown. Less desirably, the value"C" resets it to the
C/C++ default of English.

The locale code is interpreted as the name of a subdirectory in which to find a localized version of any sys-
tem file thathoc loads at startup time. For example, in a Danish locale, it will load the English file,
help.hoc , and then the Danish file,da/help.hoc , from thehoc system installation directory, provided
that the localized file exists. Otherwise,hoc is silent about its absence.

Changing the language of internal messages
Thehoc program contains a number of messages that are hard-coded in English. Any, or all, of these can
be replaced at run time by assignments to special variables named with the reserved seven-character prefix
_ _ _msg_(yes, there arethreeleading underscores) used to identify translation variables.

These variables are normally only set in thetranslations.hocfiles in thehoc system directory tree, but they
can also be set by user programs as well, unless they hav e been defined as permanent constants.

See the comments in those files for further documentation. Except for translation work, it should never be
necessary for ordinary users to reference or modify these variables.

Character set constraints
The significant constraint is that characters must be representable in 8-bit character sets, such as the dozen
or so ISO8859-n sets that supply characters needed for European languages, or the Unicode (also known as
ISO10646-1) UTF-8 variable-byte-count encoding of potentially two million or so symbols used in the
world’s writing systems. In addition, thehoc user must be running the program in an environment capable
of such display.

7.0.0.beta 27-Dec-2001 12

HOC(1) HOC(1)

Changing screen display fonts
In a UNIX system, you might first scan the voluminous output ofxlsfonts(1) to find out what fonts are
available for your window system, and then launch a terminal window like this:

xterm -fn \
-adobe-courier-medium-r-normal--14-100-100-100-m-90-iso8859-1 &

to get a 14pt font with all of the characters needed for ISO8859-1 (Latin 1, handling most of the languages
of Western Europe, and many others, such as Hawaiian, Indonesian, and Swahili).

Your system manager may be able to tell you about additional window system fonts that may also be avail-
able, but are not loaded by default. For example, at the maintainer’s site, there is a large collection of Asian
and European fonts installed in theemacs(1) editor tree. To add, say, the European collection, in a shell
window type

xset fp+ /usr/local/share/emacs/fonts/European
xset fp rehash

The new fonts will then be available, and will be listable byxlsfonts(1). You can make those additions per-
manent by adding those two commands to your$HOME/.xinitrcor $HOME/.xsessionfile; the name is plat-
form-dependent, so the best choice is to make them identical, with one a symbolic link to the other.

Use
xset q

to find out what font directories are currently in the font search path.

Each X Window System font directory has afonts.dir text file that maps short file names to long font
names. There is sometimes also afonts.alias text file to provide short aliases for the otherwise rather
long font names used in the X Window System. You can scan those files to see what is available.

Recent versions ofxterm(1) have a special option,−u8, to handle UTF-8 multibyte encoding, but you then
need to use a font with the corresponding character repertoire:

xterm -u8 -fn \
-misc-fixed-medium-r-normal--20-200-75-75-c-100-iso10646-1 &

Documentation for hoc in other languages
Internationalized documentation will usually augment, rather than replace, the English documentation.
That way, translations can be developed incrementally. Thus, in a French environment,help() responds in
English, while output fromaide() is in French. On startup,hoc will then usually display a greeting in two
languages: English, and the local one. Here is what this looks like in the French locale:

% env LANG=fr hoc
--
Welcome to the extensible high-order calculator, hoc.
This is hoc version 7.0.0.beta [15-Dec-2001].
Type help() for help, news() for news, and author() for author
information.
This system supports IEEE 754 floating-point arithmetic.
--
--
Bienvenue à la calculatrice, hoc.
C’est la version 7.0 du 15 décembre 2001.
Taper aide() pour de l’assistance, nouvelles() pour des
nouvelles, et auteur() pour des renseignements sur les
auteurs.
Cet ordinateur supporte l’arithmétique en virgule flottante du
standard IEEE 754.
--

The maintainer will be grateful for contributions of additional translations ofhoc help files and internal
messages!

7.0.0.beta 27-Dec-2001 13

HOC(1) HOC(1)

HOC SUPPORT IN GNU EMACS
Whenhoc is installed properly, it adds a new library,hoc.el, to theemacs/site-lispdirectory, which should
always be included in theemacs(1) load-pathvariable (in an editor session, typeC-h vload-path to
display it).

By suitable manual edits to thesite-init.elfile in that directory, your system manager could makehoc-mode
support automatically available, but thehoc installation process cannot safely do that automatically.

You can test whether this has been done at your site by visiting a new file with extension.hoc; if the
emacs(1) mode line shows(hoc . . .) , instead of something else, like(fundamental . . .) , then
you need do nothing more:hoc-modeis already fully installed.

Otherwise, in order to avoid the need for tedious manual loading of thehoc support inemacs(1), add this
snippet of Emacs Lisp code at the end of your$HOME/.emacsinitialization file:

(if (string-lessp (substring emacs-version 0 2) "19") ; earlier than 19.x
(progn

(setq auto-mode-alist
(cons (cons "\.hoc$" ’hoc-mode) auto-mode-alist))

(autoload ’hoc-mode "hoc"
"Enter hoc mode." t nil))

(progn
(if (not (assoc "\.hoc$" auto-mode-alist))

(setq auto-mode-alist
(cons (cons "\.hoc$" ’hoc-mode) auto-mode-alist)))

(autoload ’hoc-mode "hoc"
"Enter hoc (high-order calculator) mode." t nil)))

There are two sections in this code, one for (now very old)emacs(1) versions before 19.x, and the other for
all newer versions. They add a binding between files with extension.hocandhoc-modein emacs(1), and
arrange for thehoc.ellibrary to be loaded the first time that it is required.

DESCRIPTIONS OF BUILT-IN FUNCTIONS AND PROCEDURES
These descriptions are taken from the output of the correspondinghelp_xxx() functions, and, apart from
font differences, are intended to be identical to them. Thehelp_xxx() functions are considered to be the
definitive documentation of each function.

In the following descriptions, square brackets on number ranges indicate that the endpoint isincluded;
parentheses indicate that the endpoint isexcluded.

abort(message) abort(message)prints message, then aborts evaluation of the current expression,
returning to top-level without further processing of the remainder of the current
statement or function/procedure call chain. The message should include the name
of the function callingabort(), since there is currently no function call traceback,
and end with a newline.

abs(x) abs(x)returns the absolute value ofx.

acos(x) acos(x)returns the arc cosine ofx. x must be in [−1. . .+1].

acos(x) acos(x)returns the arc cosine ofx. x must be in [−1. . .+1].

acosh(x) acosh(x)returns the inverse hyperbolic cosine ofx. x must be outside the interval
(−1. . .+1).

asinh(x) asinh(x)returns the inverse hyperbolic sine ofx.

atan(x) atan(x) returns the arc tangent ofx.

atanh(x) atanh(x) returns the inverse hyperbolic tangent ofx.

author() author() prints information about the program authors.

cbrt(x) cbrt(x) returns the cube root ofx.

7.0.0.beta 27-Dec-2001 14

HOC(1) HOC(1)

ceil(x) ceil(x) returns the smallest integer greater than or equal tox.

copysign(x,y) copysign(x,y)returns a value with the magnitude ofx, and the sign ofy.

cos(x) cos(x)returns the cosine ofx (x in radians). Expect severe accuracy loss for large
|x|.

cosd(x) cosd(x)returns the cosine ofx (x in degrees). Expect severe accuracy loss for
large|x|.

cosh(x) cosh(x)returns the hyperbolic cosine ofx.

cpulimit(t) cpulimit(t) sets the CPU time limit from now to an additionalt seconds, sets the
system variable__CPU_LIMIT__ to t, and returns the current CPU time limit,
which is always measured from thestart of the job.

If the limit is exceeded, execution of the current expression is aborted, control
returns to the top-level interpreter, and the time limit is incremented by the current
value of__CPU_LIMIT__ .

Although t may be fractional, on most operating systems, the time limit is an inte-
ger, sot will be rounded up internally to the nearest integer before setting the time
limit.

If resource usage and limits are not supported on the current platform, this func-
tion has no effect, other than setting__CPU_LIMIT__ , and returning Infinity.

By default, there is no time limit for the job (although some operating systems
may impose such limits).

Negative, zero, and NaN arguments are treated like Infinity.

NB: This function isexperimental, and may be withdrawn in future versions.

erf(x) erf(x) returns the error function ofx.

erfc(x) erfc(x) returns the complementary error function ofx.

errbits(x,y) errbits(x,y) , with y an approximation tox, returns the number of bits thaty is in
error by.

ev al(string) eval(string) pushes its argument string, which must contain validhoc code, onto
the input stack so that it will be evaluated next.

This function makes it possible forhoc programs to construct newhoc code on-
the-fly and then run it.

There is a limit, set by the compiled-in dimension of the input pushback buffer, on
the size of the expression that can be evaluated, but it is fairly large: it should be at
least 10K characters in allhoc implementations. In this implementation, it is set
to nnn. [Print the value of_ _MAX_PUSHBACK_ _ in your implementation.]

exp(x) exp(x)returns the exponential function ofx, Eˆx.

expm1(x) expm1(x)returns the exponential function ofx, less 1:Eˆx − 1.

For small x, exp(x) is approximately 1, so there is serious subtraction loss in
directly usingexp(x) − 1; expm1(x)avoids this loss.

From Sun Solaris documentation: ‘‘Theexpm1()and log1p() functions are useful
for financial calculations of((1 + x)ˆn− 1) / x, namely:

expm1(n * log1p(x))/x

whenx is very small (for example, when performing calculations with a small
daily interest rate). These functions also simplify writing accurate inverse hyper-
bolic functions.’’

7.0.0.beta 27-Dec-2001 15

HOC(1) HOC(1)

exponent(x) exponent(x)returns the base-2 exponent ofx, such that

x == significand(x) * 2ˆexponent(x)

where|significand(x)|is in [1...2).

For IEEE 754 arithmetic, normal numbers haveexponent(x)in [-1022...1023] and
subnormal numbers, if supported, haveexponent(x)in [-1074...1023].

WARNING: The power2ˆexponent(x)will underflow to zero for IEEE 754 sub-
normal numbers, so for such numbers, the right-hand side must be computed with
suitable scaling, like this:

(significand(x) * 2ˆ(exponent(x) + 52)) * 2ˆ(-52)

factorial(n) factorial(n) returnsn! = n*(n−1)*(n−2)*. . .*1, where1! == 0! == 1, by defini-
tion. Negative arguments generate a call toabort().

floor(x) floor(x) returns the greatest integer less than or equal tox.

fmod(x,y) fmod(x,y) returns the remainder of the division ofx by y.

gamma(x) gamma(x)returns the Gamma (generalized factorial) function ofx.

gcd(x,y) gcd(x,y)returns the greatest common divisor ofx andy.

getenv(envvar) getenv(envvar)returns the string value of the environment variableenvvar, or an
empty string if it is not defined.

hexfp(x) hexfp(x) returns a string containing the hexadecimal floating-point representation
of x, in the form

"+0x1.hhhhh...p+ddddd"

Trailing zeros in the fraction, and leading zeros in the exponent, are dropped, and
the sign is always included.

See alsohelp_hexint(), help_number(), andhelp_string().

hexint(x) hexint(x) returns a string containing the hexadecimal integer representation ofx,
if that is possible, in the form

"+0xhhhhh..."

Leading zeros are dropped, and the sign is always included.

If x is too big to represent as an exact integer, then the floating-point representa-
tion, hexfp(x), is returned instead.

See alsohelp_hexfp(), help_number(), andhelp_string().

hypot(x,y) hypot(x,y) function computes the length of the hypotenuse of a right-angled trian-
gle, sqrt(xˆ2 + yˆ2), but without accuracy loss or range limitation from premature
overflow or underflow.

This function has possibly unexpected behavior for exceptional arguments: when
either argument is Infinity, then the result is Infinity,even ifthe other argument is a
NaN! The explanation is found on the 4.3BSD manual page:

. . . programmers on machines other than a VAX (it has no infinity) might
be surprised at first to discover thathypot(+infinity,NaN) = +infinity .
This is intentional; it happens becausehypot(infinity,v) = +infinity for
all v, finite or infinite. Hencehypot(infinity,v) is independent ofv.
Unlike the reserved operand on a VAX, the IEEE NaN is designed to dis-
appear when it turns out to be irrelevant, as it does inhypot(infin-
ity,NaN). . . .

ilogb(x) ilogb(x) returns the exponent part ofx, that is,int(log2(x)).

7.0.0.beta 27-Dec-2001 16

HOC(1) HOC(1)

index(s,t) index(s,t)returns the index of stringt in strings, counting from 1, or 0 ift is not
found ins.

int(x) int(x) returns the integer part (truncated toward zero) ofx.

isfinite(x) isfinite(x) returns 1 (true) ifx is finite and otherwise, 0 (false).

isinf(x) isinf(x) returns 1 (true) ifx is Infinite, and otherwise, 0 (false).

isnan(x) isnan(x)returns 1 (true) ifx is a NaN, and otherwise, 0 (false).

isnormal(x) isnormal(x) returns 1 (true) ifx is finite and normalized and not subnormal, and
otherwise, 0 (false).

isqnan(x) isqnan(x)returns 1 (true) ifx is a quiet NaN, and otherwise, 0 (false).

On some architectures (e.g., Intel x86 and MIPS), there is only one type of NaN.
isqnan(x) is then defined to returnisnan(x).

issnan(x) issnan(x)returns 1 (true) ifx is a signaling NaN, and otherwise, 0 (false).

On some architectures (e.g., Intel x86 and MIPS), there is only one type of NaN.
issnan(x)is then defined to returnisnan(x).

You can test whether your system has both quiet and signaling NaNs like this:iss-
nan(NaN). The result is 0 (false) if distinct NaN types are available, and 1 (true)
if not.

issubnormal(x) issubnormal(x) returns 1 (true) ifx is subnormal (formerly, denormalized), and
otherwise, 0 (false).

J0(x) J0(x) returns the Bessel function of the first kind of order 0 ofx.

J1(x) J1(x) returns the Bessel function of the first kind of order 1 ofx.

Jn(n,x) Jn(n,x) returns the Bessel function of the first kind of integral ordern of x.

lcm(x,y) lcm(x,y) returns the least common multiple ofint(x) andint(y) .

ldexp(x,y) ldexp(x,y)returnsx * 2ˆ(int(y)) .

lgamma(x) lgamma(x)returns the natural logarithm ofgamma(x).

Becausegamma(x) has poles at zero and at negative integer values, and grows
factorially with increasingx, it reaches the floating-point overflow limit fairly
quickly. For 64-bit IEEE 754 arithmetic, this happens at approximatelyx =
206.779. Howev er,lgamma(x) is representable almost to the overflow limit. In
64-bit IEEE 754 arithmetic, this happens at approximatelyx = 2.55e+306(the
overflow limit is 1.80e+308).

Unfortunately, there is mathematically-unavoidable accuracy loss when
gamma(x) is computed fromexp(lgamma(x)), so you should avoid the logarith-
mic form unless you really need large arguments that would cause overflow.

ln(x) ln(x) returns the natural (base-E) logarithm ofx.

load(filename) load(filename)reads input from the specified file. The file can be prepared by
hand, or by thesave()command.

Loaded files can themselves containload() commands, with nesting up to some
unknown limit imposed by the host operating system on the maximum number of
simultaneously-open files for a process, user, or the entire system.

This command can be disabled for security reasons by the command-line−no-
load option.

The return value is an empty string on success, and otherwise, an error message.

7.0.0.beta 27-Dec-2001 17

HOC(1) HOC(1)

log(x) log(x) returns the natural (base-E) logarithm ofx.

log10(x) log10(x)returns the logarithm to the base 10 ofx.

log1p(x) log1p(x)returnslog(1 + x), but without accuracy loss for small|x|. x must be in
(−1. . .infinity].

log2(x) log2(x)returns the logarithm to the base 2 ofx.

logfile(filename) logfile(filename)logs the session on the specified file, which, for security reasons,
mustbe a new file. It is a normal text which you can edit, print, and view.

Input is recorded verbatim. Output is recorded in comments. This permits the
logfile to be read byhoc later, allowing a session to be replayed.

If a logfile is already opened, it is closed before opening the new one.

Logging may be turned on and off withlogon() and logoff(), and can be entirely
disabled for security reasons by the command-line−no-logfileoption.

The return value is an empty string on success, and otherwise, an error message.

logoff() logoff() suspends logging to any open log file. It isnot an error if there is no cur-
rent log file.

logon() logon()restores logging to any open log file. It isnot an error if there is no cur-
rent log file.

macheps(x) macheps(x)returns the generalized machine epsilon ofx, the smallest number
which, when added tox, produces a sum that still differs fromx: (x +
macheps(x)) != x.

macheps(1)is the normal machine epsilon.

macheps(−x)is macheps(x)/base, or equivalently, the smallest number that can
be subtracted fromx with the result still different fromx.

macheps(0)is the smallest representable floating-point number. Depending on
the host system, it may be a normal number, or a subnormal number (invoke
help_subnormal()for details).

max(x,y) max(x,y)returns the larger ofx andy.

If eitherargument is a NaN, the result is a NaN.

maxnormal() maxnormal() returns the maximum positive normal number.

min(x,y) min(x,y) returns the smaller ofx andy.

If eitherargument is a NaN, the result is a NaN.

minnormal() minnormal() returns the minimum positive normal number.

minsubnormal() minsubnormal() returns the minimum positive subnormal number. If subnor-
mals are not supported, then it returns the minimum normal number instead.

nearest(x,y) nearest(x,y)returns the next different machine number nearestx, in the direction
of the infinity with the same sign asy.

nextafter(x,y) nextafter(x,y) returns the nearest machine number nearestx, in the direction of
the infinity with the same sign asy.

nint(x) nint(x) returns the nearest integer tox, rounding away from zero in case of a tie.

now() now() returns the current date, in the form "Dec 8 2001". If the month day has
only one digit, then it is preceded by an extra space, so that the format is uni-
formly "MMM DD YYYY".

number(s) number(s)converts the strings to a number and returns it.

7.0.0.beta 27-Dec-2001 18

HOC(1) HOC(1)

s should contain either a hexadecimal floating-point number, a hexadecimal inte-
ger, a decimal floating-point number, a decimal integer, or a representation of NaN
or Infinity.

If s contains a number followed by unrecognizable text, the number is converted
and returned, and the following text is silently ignored. Otherwise, the return
value is 0, and the text is silently ignored. Thus,number("123abc") returns 123,
andnumber("abc") returns 0.

This function is an inverse ofhexfp(), hexint(), andstring():

number(hexfp(x)) == x [for all numericx]
number(hexint(x)) == x [for all numericx]
number(string(x)) == x [for all numericx]

See alsohelp_hexint(), help_hexfp(), andhelp_string().

printenv(prefix) printenv(prefix) prints the names and values of all environment variables whose
names match thatprefix. Useprintenv("") to match all names.

putenv(envvar,newval)
putenv(envvar,newval)replaces the current string value of the environment vari-
ableenvvar with newval, and returns its old value.

This affects subsequent calls togetenv(), but doesnot affect the environment of
the parent process.

You can use this function to set locale environment variables that control the out-
put of dates and times, in order to get internationalized output fromstrftime() .

rand() rand() returns a pseudo-random number uniformly distributed on (0. . .1). Unless
the seed is changed (seehelp_setrand()), successive runs of the same program
will generate the same sequence of pseudo-random numbers.

See help_randint() for uniformly-distributed integers in an interval, and
help_randl() for logarithmically-distributed pseudo-random numbers.

The pseudo-random generator algorithm is platform-independent, allowing repro-
duction of the same number sequence on any computer architecture.

randint(x,y) randint(x,y) returns a pseudo-random integer uniformly distributed on
[int(x). . .int(y)] . Unless the seed is changed (seehelp_setrand()), successive
runs of the same program will generate the same sequence of pseudo-random
numbers.

The pseudo-random generator algorithm is platform-independent, allowing repro-
duction of the same number sequence on any computer architecture.

randl(x) randl(x) returns a pseudo-random number logarithmically distributed on
(1,exp(x)). Unless the seed is changed (seehelp_setrand()), successive runs of
the same program will generate the same sequence of pseudo-random numbers.

This function can be used to generate logarithmic distributions on any interval:
a*randl(ln(b/a)) is logarithmically distributed on(a. . .b).

The pseudo-random generator algorithm is platform-independent, allowing repro-
duction of the same number sequence on any computer architecture.

remainder(x,y) remainder(x,y) returns the remainderr = x − n*y , wheren is the integral value
nearest the exact valuex/y. When|n − x/y| = 1/2, the value ofn is chosen to be
ev en.

rint(x) rint(x) returns the integral value nearestx in the direction of the current IEEE 754
rounding mode.

7.0.0.beta 27-Dec-2001 19

HOC(1) HOC(1)

rsqrt(x) rsqrt(x) returns the reciprocal square root,1/sqrt(x).

save(filename,prefix) save(filename,prefix)saves the state of the current session in the specified file,
which, for security reasons,mustbe a new file.

If the prefix string is not empty, then only symbols whose initial characters match
the prefix string are saved.

Symbols are output in strict alphabetical order

Reserved symbol names (those beginning with two or more underscores) are not
saved. Predefined immutable names are also excluded.

The saved file is a normal text file that can be later read byhocon any platform.

[NB: A temporary implementation restriction also excludes user-defined
immutable names, and all functions and procedures.]

This command can be disabled for security reasons by the command-line−no-
saveoption.

The return value is an empty string on success, and otherwise, an error message.

scalb(x,y) scalb(x,y)returnsx * 2ˆ(int(y)) .

second() second()returns the CPU time in job seconds since some fixed time in the past.
Take the difference of two bracketing calls to get the elapsed CPU time for a block
of code. For example,

PREC = 3
x = 1
t = second()
for (k = 1; k < 1000000; ++k) x *= 1
second() - t
4.73

setrand(x) setrand(x), wherex should be a large integer, sets the seed of the pseudo-random
number generator tox, and returns the old seed.

As a special case, whenx is zero,x is ignored, and a new seed is constructed from
a random number multiplied by either the calendar time (if available), or the pro-
cess number (if available), or the next pseudo-random number.

If setrand(x) is never called, thenrand(), randint() , and randl(x) will each
return the same sequence of pseudo-random numbers: seehelp_rand(),
help_randint(), andhelp_randl().

The pseudo-random generator algorithm is platform-independent, allowing repro-
duction of the same number sequence on any computer architecture.

significand(x) significand(x)returns the significand ofx, s,such thatx = s * 2ˆn, with s in [1,2),
andn an integer.

Seehelp_exponent()for how to extract the exponent,n.

sin(x) sin(x) returns the sin ofx (x in radians). Expect severe accuracy loss for large|x|.

sind(x) sind(x) returns the sin ofx (x in degrees). Expect severe accuracy loss for large
|x|.

sinh(x) sinh(x) returns the hyperbolic sin ofx.

sqrt(x) sqrt(x) returns the square root ofx. x must be in [−0. . .Infinity].

Special case:sqrt(−0) → −0.

strftime(format,time) strftime(format,time) converts a numeric time measured in seconds since the
epoch (usually obtained fromsystime()) to a formatted string determined by one

7.0.0.beta 27-Dec-2001 20

HOC(1) HOC(1)

or more of these format items:

%A the locale’s full weekday name.

%a the locale’s abbreviated weekday name.

%B the locale’s full month name.

%b the locale’s abbreviated month name.

%c the locale’s appropriate date and time representation.

%d the day of the month as a decimal number (01−31).

%H the hour (24-hour clock) as a decimal number (00−23).

%I the hour (12-hour clock) as a decimal number (01−12).

%j the day of the year as a decimal number (001−366).

%M the minute as a decimal number (00−59).

%m the month as a decimal number (01−12).

%p the locale’s equivalent of either ‘‘AM’’ or ‘‘PM’’.

%S the second as a decimal number (00−60).

%U the week number of the year (Sunday as the first day of the week)
as a decimal number (00−53).

%W the week number of the year (Monday as the first day of the
week) as a decimal number (00−53).

%w the weekday (Sunday as the first day of the week) as a decimal
number (0−6).

%X the locale’s appropriate time representation.

%x the locale’s appropriate date representation.

%Y the year with century as a decimal number.

%y the year without century as a decimal number (00−99).

%Z the time zone name.

%% is replaced by ‘%’.

string(x) string(x) returns a string containing the decimal representation ofx, either in inte-
ger form (ifx is exactly representable that way), or in floating-point form.

See alsohelp_hexfp(), help_hexint(), andhelp_number().

substr(s,start,len) substr(s,start,len)returns a substring of strings beginning at characterstart
(counting from 1), of length at mostlen. If start is outside the string, it is moved
to the nearest endpoint,without adjustinglen. Fewer thanlen characters will be
returned if the substring extends outside the original string.

systime() systime()returns the calendar time in seconds since the epoch. On UNIX sys-
tems, the epoch starts on January 1, 1970 00:00:00 UTC. Other operating systems
make different choices. It can be converted to a formatted time string withstrf-
time().

tan(x) tan(x) returns the tangent ofx (x in radians). Expect severe accuracy loss for
large|x|.

tand(x) tand(x) returns the tangent ofx (x in degrees). Expect severe accuracy loss for
large|x|.

tanh(x) tanh(x) returns the hyperbolic tangent ofx.

7.0.0.beta 27-Dec-2001 21

HOC(1) HOC(1)

tolower(s) tolower(s)returns a copy of strings with uppercase letters converted to lowercase,
and all other characters unchanged.

Which characters are considered uppercase depends on the locale. On UNIX, this
is determined by theLC_CTYPE environment variable.

toupper(s) toupper(s) returns a copy of strings with lowercase letters converted to upper-
case, and all other characters unchanged.

Which characters are considered lowercase depends on the locale. On UNIX, this
is determined by theLC_CTYPE environment variable.

trunc(x) trunc(x) returns the integer part ofx, with the fractional part discarded.

who(prefix) who(prefix) prints all symbols whose initial characters match theprefix string,
grouped by category. To print all symbols, use an empty prefix:who("") .

Y0(x) Y0(x) returns the Bessel function of the second kind of order 0 ofx, for x >= 0.
This function is also calledWeber’s function.

Y1(x) Y1(x) returns the Bessel function of the second kind of order 1 ofx, for x >= 0.
This function is also calledWeber’s function.

Yn(n,x) Yn(n,x) returns the Bessel function of the second kind of integral ordern of x, for
x >= 0. This function is also calledWeber’s function.

IMPLEMENTATION LIMITS
hoc has a few compile-time dimensions that limit the size of certain objects. Their current values are avail-
able in these predefined immutable constants:

_ _MAX_NAME_ _ Longest identifier name.

_ _MAX_PUSHBACK_ _ Input pushback buffer size, and thus, also the limit on the length of
the string argument that theev al()function can handle.

_ _MAX_STRING_ _ Longest character string constant.

_ _MAX_TOKEN_ _ Longest numeric token.

The functionhelp_limits() can be conveniently used to display their current values.

A design goal for future versions ofhoc is to eliminate these limits entirely, making them subject only to
available memory.

EXAMPLES
func gcd() {

gcd(i,j) returns the greatest common denominator of i and j
temp = abs($1) % abs($2)
if(temp == 0) return abs($2)
return gcd($2, temp)

}

for(i=1; i<12; i++) print gcd(i,12)
print "\n"
1 2 3 4 1 6 1 4 3 2 1

Print a table of the representable negative powers of 2
k = 0
x = 1
while (x > 0) \
{

print "2ˆ(", k, ") = ", x, "\n"
k--
x /= 2

}

7.0.0.beta 27-Dec-2001 22

HOC(1) HOC(1)

2ˆ(0) = 1
2ˆ(-1) = 0.5
2ˆ(-2) = 0.25
2ˆ(-3) = 0.125
. . .
2ˆ(-1072) = 1.9762625833649862e-323
2ˆ(-1073) = 9.8813129168249309e-324
2ˆ(-1074) = 4.9406564584124654e-324

INITIALIZATION FILES
On startup, after processing any command-line options that suppress initialization files,hoc checks for the
existence of local system-wide initialization files,

• /usr/local/share/lib/hoc/hoc-7.0.0.beta/hoc.rc ,

• /usr/local/share/lib/hoc/hoc-7.0.0.beta/LN/hoc.rc ,

• /usr/local/share/lib/hoc/hoc-7.0.0.beta/help.hoc ,

• /usr/local/share/lib/hoc/hoc-7.0.0.beta/LN/help.hoc ,

• /usr/local/share/lib/hoc/hoc-7.0.0.beta/translations.hoc ,

• /usr/local/share/lib/hoc/hoc-7.0.0.beta/LN/translations.hoc ,
(LN is replaced by the locale name (see theINTERNATIONALIZATION section above), if one is
defined, and otherwise, that file is omitted), and a private initialization file,

• $HOME/.hocrc ,
in that order. Any that exist are automatically processed before the remaining command-line options are
handled.

This feature allows for local customization ofhoc, usually for additional constants and functions, as well as
for locale-specific translations of output strings.

In initialization files, theload(), logfile(), andsave()commands arealwaysavailable, even if command-
line options disable them from use later in the job.

If GNU readline library support is available inhoc, then its initialization file,$HOME/.inputrc , (over-
riddable by setting an alternate filename in the value of theINPUTRC environment variable), can be used
for customization of key bindings for command completion, editing, and recall. To restrict any such bind-
ings tohoc, put them in a conditional like this:

$if hoc
. . .

$endif

SEE ALSO
awk(1), bc(1), dc(1), dircolors(1), emacs(1), expr(1), genius(1), locale(1), vi(1), xlsfonts(1), xterm(1).
Brian W. Kernighan and Rob Pike,The UNIX Programming Environment, Prentice-Hall, 1984,
ISBN 0-13-937699-2 (hardcover), 0-13-937681-X (paperback),
LCCN: QA76.76.O63 K48 1984.

BUGS
All components of afor statement must be non-empty.

Error recovery is imperfect within function and procedure definitions.

The treatment of newlines is not exactly user-friendly.

Arguments$1 , etc., are not really variables and thus won’t work in constructs like, for instance,$1++ .

Functions and procedures typically have to be declared before use, which makes mutual recursion at first
sight impossible. The workaround is to first define a dummy version of one of them. For example, here is
an unusual implementation of a pair of functions, each of which returns the factorial of its argument:

func foo() return 0
func bar() {if ($1 > 0) return $1 * foo($1-1) else return 1}

7.0.0.beta 27-Dec-2001 23

HOC(1) HOC(1)

func foo() {if ($1 > 0) return $1 * bar($1-1) else return 1}

AV AILABILITY
hoc is highly portable, and vastly smaller than a compiler for a major programming language, so it should
be usable on all computing platforms. When a C or C++ compiler is available,hoc can be easily built, vali-
dated, and installed using the distribution source code from its master archive:

ftp://ftp.math.utah.edu/pub/hoc
http://www.math.utah.edu/pub/hoc/

For platforms where suitable compilers are often not installed, there may be binary distributions available at
those locations.

COPYRIGHT
Copyright (C) AT&T 1995
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of AT&T or any of its entities
not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

AT&T DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL AT&T OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

ACKNOWLEDGEMENTS
The hoc version 7 developer and maintainer (Nelson H. F. Beebe<beebe@math.utah.edu>) thanks
the AT&T/Lucent Bell Labs people (current and former), notably Ken Thompson, Dennis Ritchie, Brian
Kernighan, Rob Pike, John Bentley, Bill Plauger, Stu Feldman, David Gay, Norm Schryer, and Bjarne
Stroustrup for developing the wonderful UNIX and C/C++ programming environment, and being a constant
source of inspiration for software development and superb book authoring.

He also thanks the many people at the Free Software Foundation, for enriching UNIX with GNUware, and
most notably, Richard Stallman foremacs(1) andgcc(1), for founding the FSF and the GNU Project, and
for vigorous campaigning to keep software freely distributable.

Finally, he thanks friends and colleagues on thehoc help facility translation team for assistance in interna-
tionalization: Hugo Bertete-Aguirre (Portuguese), Andrej Cherkaev (Russian), Tanya Damjanovic (Ser-
bian), Michel Debar (French), Miguel Dumett (Spanish), Henryk Hecht (Polish), Michael Hohn (German),
Ismail Küçük (Turkish), Young Seon Lee (Korean), Dragan Milicic (Croatian), and Jingyi Zhu (Chinese).
[The English and Danish, and part of the French, help facilities were written by the maintainer.]

7.0.0.beta 27-Dec-2001 24

