Title word cross-reference

(a, b) ← \(\frac{a+b}{2}, \sqrt[2]{ab} + b\) [BB89]. 1 [BM88]. 2 [BM88, Gau02, KM10]. 3 [LR07]. 49.95 [Ber88]. B [SL98]. D4 [Sol95]. e [Has13b, Has14, YY01]. E6 [Sol95]. E8 [Sol95]. \(\lambda\) [SMY14]. \(\mu\) [SMY14]. n [Liu94, LM70, Vas72, Yam06]. p [HM89, Xu15]. \(\Phi\) [Baj78]. \(\pi\) [AB88, AB16, Arn11a, Bai16, BBMW16, BB86, Hurl88, Kan88, Sal76, Sal97, Sal00, Sal04, Sal16, Sin16]. q [BRS13]. \(\mathbb{U}\) [SL98].

-Adic [HM89, KM10]. -adique [HM89].
Sin16, Sol95, SL98, Sur01, Vi14, Ask88, Cas99. algebra [CGM95, Mat95a].

Arch [Dra93a]. argument [Dij94, Dij96a]. Arithmetic [Ake63, AFL96, AB88, Al800, Be14, B93a, BD93, BB83, BB84b, BB84a, BB97, BLM97, BB00, BB04, Bur87, But36, CR16, Car70, Car71, CN97, Cox97, Cox00, Co04, Cas81, Dia60, Eve63, FP84, Gas67, GM03, Hor95, K96b, Kos98, LR07, LO96, Mar88, MT10, MNC71, Min87, Nel87, Neu96, O808, RLC09, Sal76, Sal97, Sal00, Sal04, Sch86, Sch86, Toa98, WCC11, WCC12, Xie102, Yan00, YY01, Abr79, ABK16, Aiy45, Alb12, Alb08, Ald09, Ald10, Ald11, Ald12, AMPV97, ABPV97, Alm87, AB16, Alz87, Az88, Alz9, Alz90b, Alz90c, Alz90d, Az90e, Az90a, Az91, Az92a, Az92b, Az94, Alz95, Alz96, Alz97, Az99, AR02, And83, Aud15, Ba97, Baj78, BR07, Bel56, Ben93, Ben94, Ben95, Ben98, BK00, Bha06, BK08, Bol99, Bor87]. arithmetic [Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89, BBG93, BB16b, Bra01, Bul67, Bul04, Bul91, BE15, CMN71, CF78, CS08, CB11, CO17, Cha02, CE09, CS17, Cho76, Cho77, CZW11, CW11, CW12, CWQ12, CW13, CWQM13, CWQW15, Chu90, Chu12, CL92, Cox84, Cox85, Cox16, CK13, Dij92, Dij94, Dij96a, Dij96b, DL71, DM97, Dob01, DL99, Dra93a, Dra93b, DCP97, Dra98, Dra99, DJ94, EN01, Eve67, Eve69, Fen95, FT08, FJ76, Fin81, Fou99, FLFJ11, FAB12, FFSZ16, Fur14, Fur94, Gao15, Gar94, Gas97, Gau92, Geo02, Gep28, Gla76, GSWC12, GM17, GHT11, GT13, GQ03, GZCS16, Hao93, Hao00, Har91, Has13a, Has13b, Has14, Hay09, HZQ12, HC12, Hei81, HM89, Her72, Hir16, Hol06, HM86, Hun56, Hun27, IKW16, Ito08, Jam14, Jar08, JK99]. arithmetic [Kan88, Kan16, KL96, KL98, KP96a, Ked94, KL07, KLL09, KLM10, KM10, KM12, KM13, Kit92, KKL12, Kla86, Kno03, Kob58, KS07, KMS79, KL12, KS00, KLS00, Lan78, Lat99, LL11, Lek09, LQ15, Lin91, Lin94, LZ06, LGSC13, LM70, LC10, LC11, Luc95, MV10, Mat10, Mat93, Mat95a, Mat95b, MW12, Mer03, MPS08, Mih05, Mit66, Mit70, Mol11, Mon03, MH72, Mur97, Nak01, Nan80, Nan46, Nel15, Nis88, Nis94, Nis97, NC88, NC90, Ono03, Opp65, Opp68, OT04, Pe95, PM97, PV97, Pev99, Pin15, Qi03a, Qi03b, QS09, QC14, QCZ15, Rau42, Raz66, Rey87, Rod17, RM92, Roy03, Rua15, SA06, ST94, Sal89, Sal16, SM99, Sän90, Sän99, SK77, Sch11, Sei87, Sei97, Sen87, Seo12, SZ13, She16, Shi66, SA10, Sv512, SMY14]. arithmetic [Ste96, Stu44, Tan06, Tan07, Tor56, Trn75, Uch08, Vas72, WW07, WY88, Wan99, WCJQ14, WZSC14, WQ16, Waz91, Wil63, Wu17, XHWC12, Xiu15, Xue17, YMT10, Yam13, YYYW14, YSC14, Yan14, YYYO8, ZX11, ZWCL14, ZJ15, ZH15, ZJ16, Zou17, Zul86, ZFFS14, ZC15, dal96, BT11, BM88, Nel95, OC14].

Arithmetic-Logarithmic-Geometric
arithmetic-mean [JK99, Ked94, Wan99].
arithmetic-mean-geometric-mean [Cho77], arithmetico-geometrique [Bol99].
arithmeticisch [Gep28, Hei81, Sch11].
arithmetischen [Alz87, Sei87].
aritmetico [Gau92].
Aritmetisk [Alm78].
aspects [Tan06].
associated [DCP97, Eve67, Eve69, Nak01, Tan07].
Asymptotes [BB93].
Asymptotic [BE15, Bur16, BE17].
August [Bro96].
Automated [Zha96].
average [FLFJ11].
averaging [FLFJ11].
Axially [Lek09].
B [Ask88, Ber88, MNC71, TBDS92, Wim88].
Baglangd [Alm78].
backlogging [CB10a].
based [CS08, DM97, Kno03, RM92, Roy03, Waz91].
bcc [MH71].
bi [SMY14].
billion [BBB16].
binomial [Roo03].
Birth [AA16].
bivariate [Roy03].
Book [Ber88, Cas99, MNC71, TBDS92, Wim88, BBB97, BB204].
bootstrapping [Shi11].
Borchardt [Ber88, Tri65].
Borwein [Ask88, Ber88, Wim88, Ask88].
Borweins [Bai16].
bound [ABK16, Alz90d, LQ15, ZFFS14].
bounding [QSO9].
Bounds [Hor95, WCJQ14, Ald12, CZW11, CWQ12, CWQM13, CQWZ15, DZ17, GZCS16, Kno03, LGSC13, LC11, Pin15, QC14, QCZ15, ST94, SZ13, Tun75, WQC16, XHWC12, YYWQ14, YSC14, Yan14].
Boyer [KP96b, KP96a].
Brent [New85, New16].
busque [Gau92].
C [MNC71, TBDS92].
Calabi [MT10].
Calcul [Bol99].
Calculation [BB84c, Kin21, Kin07, MH71, Kan88, Kan16, MH72, Sal89].
calculations [Tri66].
Calculus [Min87].
called [Mal89].
Canadian [Ber88].
Carlson [TBDS92].
Carnegie [Tra76].
Carnegie-Mellon [Tra76].
case [Bor04c, Bor04b, BCF04, BC04].
categories [YMT10].
Cauchy [Aud15, ZJ16].
Certain [San96, Leh70, Leh71].
chain [Cha14, Chu12].
Characteristic [Gau92].
Characterization [Roy03].
Characterizations [RM92, Har91].
charge [Lek09].
chosen [FLFJ11].
Circles [Kin21].
class [Eng06].
classical [FLFJ11].
Classroom [Ake63, Dia60, Gai67].
closed [JK99].
CM [Ber88].
Coaxial [Kin21].
codes [CGM95].
coefficient [SMY14].
Combination [Gau02, CZW11, HC12, LC11, XHWC12, YYWQ14].
combinations [CWQ12].
combinatorial [Hao00].
Comment [Abr79].
commutative [Hay09].
Comparison [Ald11, Gau02, HK99, FAB12].
complete [MH72, OC13, WQC16].
Complex [LO96, AR02, Bor04b, BC04, CT13a, CT13b, Foun99, MH72, Nis97, Tor56].
complex-parameter [BC04].
Complexity [BB84c, BB87, BB98, Bre76b, Bre10a, Eng06, Tra76, Ber88, Wim88].
composition [MV10].
compositions [Hol06].
Compound [BB93, BE17].
compounding [Leh70, Leh71].
Computation [BB84b, BB97, BB00, BE17, CR16, Sal76, Sal97, Sal00, Sal04, Sal16, AAS16, Bai16, BBMW16, BB16a, BPP16, Bol99, BB16b, Eng06].
Computational [Arn11b, Ber88, BB87, Wim88, BB98, Tra76].
Computations [Kar93, Hur88, Kar93].
compute [BBB16, CB10b].
Computer
[AFL96, Tra76, Pee89]. computers [Tri66].
Computing [Dis02, AK93, AFL96, Arn11a].
concave [Lat99]. Concentration [Ald10].

digits [AAS16, Bai16, BBMW16, BB16, Kan88, Kan16]. dimensional [Bor88f].

Direct [Kin24, Kin07, SM99]. disc [Fou99].
discovered [Bor95].
discrete [Alz95, Gao15].
dispute [CB11].
distance [CB11].

Distribution [Lin91, Gla76, HM86, Nan80, Roy03].
distributions [Lek09, Nan80].
divergence [Lor08, Tan06].
do [Sen87].

double [WCW11, WCW12, GSWC12, Lin91, Q09].

Dynamics [Bor04c, Bor04b, Bor04a, Bul91, Par65, Par68, Par79].
easy [CB10a].
echelon [Cha14].
economic [CB10b].

Edgeworth [HM86].

Eigenvalue [AB07].
electronic [Tri66].

élémentaires [Bol99].

Elementary [BB84b, BB97, BB00, BB04, Bre76a, Min87, Bol99, BB16b, Bre76b, Bre10a, Bre10b, Bre16, Mit70, Yan13].
eLL [Aln78, Sur00, WCJQ14].

Ellipses [Aln78].

Ellipses [AB88, AB16].

ellipse [Alm78, Sur00, WCJQ14].

Elliptic [Alm78].

empiric [FAB12].

entropy [ABK16].

EOQ [CB10a].

EPQ [CB10a].

equality [BS12].
equation [Zul86].
equations [BBB16, MV10, Wil63].
equivalence [Lat99, MV10].

Equivalent [Mal12, YYC08].

Errata [Dra93a].

Error [Mat95a].

error-correcting [CGM95].

Eshelby [FLFJ11].
estimates [SMY14].

Euclidean [Dob01, SA10].

Evaluating [Wac00].

Evaluation

[Bre76a, Bre76b, Bre10a, Bre16, Dup11].
evry [Fur94].

Exact [Pin15, Bol99, Nan80].

Excursion [Bor87, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e].

expansion [BE15, HM86, Roo03].
expsions [BE17].

experiment [Pee89].

Explicit [LR07].

exponential [Lin91].

extended [KS08].

extending [Wu05].

extension [Tor56, Yam06].

Extensions [Fou99, Had12].
external [Seo12].

failure [RM92, Roy03]. Fast [BB84b, BB97, BB00, BB04, Bre76a, Bre16, Dup11, BB16b, DM97, New85, New16]. fcc [MH71]. Fibonacci [Sch84]. field [Tor56].

fields [KM12, KM13]. finding [Bre76b, Bre10a]. finite [Her72]. first [CQW21]. floating [Eng06]. Florida [ML88].

generating [Bre76b, Bre10a]. finite [Her72]. four [Bre76b, Bre10a].

finite [Her72]. four-dimensional [Bor88a]. Fraction [Bor03a, Bor03b, Bor03c, BCF04, BC04, Lor08]. Fractions [Bor04a, Bor04b, Bor04c].

France [CGM95]. French [Bol99, BM88, HM89, Rey87]. function [Bre76b, Bre10a, Mit70, MH71, Nis15, Sal89].

functional [MV10, Zul86]. functionals [LL11]. Functions [BB84b, BB97, BB00, BB04, Bre76a, Kin24, Kin07, LO96, AB07, BRS13, Bol99, BB16b, Bre10b, Bre16, Dup11, Gar94, Gas97, Hir16, JK99, KL12, Na13, SYM14, Tka03, Tri66, Wac00].

gamma [Gla76, Nan80]. Gauss [Sch11].

Gauss [Cox97, AB88, AB16, Bor87, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, CWQM13, Cox84, Cox85, Cox00, Cox04, Cox16, Har91, KS08, MV10, Nis88, Nis94, Ono83, Sän09, Sch11, Sur00, Tan07].

Gaussian [WQC16].

generalibus [Gau17].

generals [Gau92].

generalization [EN01, FJ76, Hei81, Her72, Hun56, Ono83, Tri65]. generalizations [NC88, NC90].

Generalized [BB83, BB84a, Eve63, Pas71, Sch84, Tan06, Xie02, CW13, DZ17, LC10, LC11, Mat10, SV12, WZSC14, ZX11]. Generalizing [Pee89].

generated [Sev91].

genre [BM88].

Genus [LR07, BM88, DL99, Jar08]. Geometric [Ake63, AB88, Als00, BT11, BS93a, BB97, BB00, BB04, Bur87, But36, CR16, Car70, Car71, Cox97, Cox00, Cox04, Cus81, Dia60, Eve63, Gai67, GM03, Hor95, KP96b, Kos98, KK09, LR07, LO96, MNC71, Min87, Ne187, Neu96, O'S68, OC14, Sal76, Sal97, Sal00, Sal04, Sch86, Sch84, Toa98, WCW11, WCW12, Xie02, YY01, Abr79, ABK16, Ayi45, Alb12, Ald08, Ald09, Ald10, Ald11, Ald12, AMPV97, ABPV97, Alm78, AB16, Alz87, Alz88, Alz89, Alz90b, Alz90f, Alz90c, Alz90d, Alz90e, Alz90a, Alz91, Alz92a, Alz92b, Alz94, Alz95, Alz96, Alz97, Alz99, AR02, And83, Aud15, Ba07, Baj78, BR07, Bel14, Bel56, Ben93, Ben94, Ben95, Ben98, BK00, Bha06, BK08, Bol99, Bor87, Bor88a, Bor88b, Bor88c, Bor88d].

geometric [Bor88e, Bor88f, Bor89, BBG93, BB16b, Bra01, Bul67, Bul04, Bul91, BE15, CMN71, CF78, CS08, CB11, CO17, Cha02, CE09, CS17, Cho76, Cho77, CW11, CW11, CW12, CW12, CW12, CWQM13, CWQZ15, Chl90, Chl12, CN87, CL92, Cox84, Cox85, Cox16, CK13, Dij92, Dij94, Dij96a, Dij96b, Dij17, DM97, Dob01, DL99, Dra93a, Dra93b, DCP97, Dra98, Dra99, DJ94, EN01, Eve67, Eve69, Fren95, FT08, FJ76, Fin81, Fou09, FLFJ11, FAB12, FFSZ16, Fur14, Fur94, Gao15, Gar94, Gas97, Gau92, Geo02, Gep98, Glal6, GSWC12, GM17, GHT11, GT13, GQ03, GZCS16, Hao93, Hao00, Har91, Has13a, Has13b, Has14, Hay09, HZQ12, HC12, Hei81, HM89, Her72, Hir16, Hol06, HM86, Hun56, Hun27, IKW16, Ito08, Jam14, Jar08, JK99, KL96, KL98, KP96a, Ked94].

geometric [KL07, KLL09, KLL11, KM10, KM12, KM13, Kit92, KKKP12, Kla68, Kna03, Kob58, KS07, KMS79, KL12, KS00, KLS00, Lan78, Lat99, LL11, Lek09, LQ15, Lin91, Lin94, LZ06, LGSC13, LM70, LC10, LC11, Luc95, MV10, Mar88, Mat10, Mat93, Mat95a, Mat95b, MT10, MW12, Mer03, MPS08, Mih05, Mit66, Mit70, Mol11, Mon03, MH72,
Mur97, Nak01, Nan80, Nan46, Nel15, Nis88, Nis94, Nis97, NC88, NC90, Ono83, Opp65, Opp68, OT04, Peč95, PM97, PV97, Pee89, Pin15, Qi03a, Qi03b, Qs09, Qc14, QCZ15, RLC09, Rau42, Raz86, Rey87, Rod17, RM92, Roy03, Rua15, SA06, ST94, SaL99, SaL16, SM99, Sán90, Sán99, SK77, Sch11, Sei87, Sei97, Sen87, Seo12, SZ13, She16, She17, Shi66, SA10, Svs12, SMy14, Ste96, Stu44. geometric [Sur00, Tan06, Tan07, Tor56, Tun75, Uch08, Vas72, WW07, WY88, Wan99, WCJQ14, WZSC14, WQC16, Waz91, WIl63, Wu17, XHWC12, Xu15, Xue17, YMT10, Yam06, Yam13, Yan00, YWQ14, YSC14, Yan14, YYC08, ZZ11, ZZCL14, ZJ15, ZH15, ZJ16, Zou17, Zuu66, ZFF14, ZC15, da96, Ne95, BM88]. geometric-harmonic [Mat93, Mat95a, ST94, Ste96]. geometric-harmonic-mean [And83]. geometric-mean [GM17, JK99, Ked94, Kit92, Wan99]. geométrica [Gau92]. Geometrical [Shi66]. géométrique [Rey87]. geometrische [Alz87, Alz90f, Alz90a, Alz95, And83, Bel14, CB11, CS17, CW12, Dra99, Fur14, HC12, Hun27, KLL11, Kla68, KL12, LC11, Mat93, Mat95a, MW12, Mer03, Nak01, QCZ15, RLC09, RM92, Roy03, ST94, Sen87, Shi66, SA10, Ste96, WW07, WCJQ14, WZSC14, YWQ14]. harmonic-mean [AMPV97]. Heinz [GHT11, HZQ12, KKLP12, ZWCL14]. held [AFL96, Bro96, Tra76]. Hellinger [DJ94]. Heron [ZWCL14]. Heuristic [KK90]. heuristics [Dij94]. Higher [Jar08, DL99, KL07]. Hilbert [KKLP12, ZC15]. History [BB16]. Hölder [Ko95, Mai98]. Holomorphic [Nis94, Nis88]. Hyperelliptic [SvS12, MT10]. Hypergeometric [BBG93, KM12, KM13, BR13, BR07, Gar94]. geometric-harmonic-mean [And83]. geometric-mean [GM17, JK99, Ked94, Kit92, Wan99].
Ald08, Ald09, ABPV97, Alz87, Alz89, Alz90b, Alz90e, Alz91, Alz92b, Alz96, Alz97, AR02, Bak16, Bel56, Ben93, Ben94, Ben95, Ben98, Bha06, BK08, Bra01, Bul04, CF78, CO17, Cha02, CE09, Cho76, Cho77, Chu90, Dob01, Dra93a, Dra93b, Dra98, Dra99, Eve67, Eve69, Fen95, FT08, FJ76, Fin81, Fou99, FFSZ16, Fur94, Gao15, Geo02, GSWC12, Hao93, Hao00, Hai13a, Hay09, Her72, Hir07, Hir16, Hol06, Hun56, IKW16, JD99, Ked94, KL07, KLL09, Kit92, Kno03, Kob58, KMS79, KS00, Lan78, LZ06, Luc95, Mat10, Mat93, Mat95a, Mat95b, Mit66.

inequality [Mur97, Nel15, Pec95, PV97, QS09, Rod17, Roo03, Rua15, SA06, SM99, San90, SK77, Seo12, She17, Uch08, Wan99, Wil63, Yam06, Yam13, YC08, ZJ15, ZH15, Zou17, dal96, Mal98, Nel95, TBDS92].

M [Ask88, Ber88, TBDS92, Wim88]. Mapping [Rau42]. mappings [DCP97]. maps [Mol11]. Marktoberdorf [Bro96]. Mathematical [Ber88, Cus81, O'S68, Zha96]. Mathias [Yam06]. matrices [ABPV97, And83, CN87, FKY09, GHT11, HZQ12, IKW16, Kit92, Mol11, ST94, She17, SA10, Tao06, Wuy17, Yam13]. Matrix [BD93, CR16, FT08, LO96, AMPV97, Aud15, BK00, BK08, FFSZ16, Fur94, GT13, KLL11, PM97, ZJ16]. Matters [Arn11b]. Mean [Ake63, AB88, Als00, BS93a, BD93, BB83, BB84b, BB84a, BB89, BB93, BB97, BB07, BB04, BDS92, Bur87, But36, CR16, CV91, Cox97, Cox00, Cox04, Cus81, Dia60, FP84, Gai67, GM03, Hor95, KP96b, Kos98, KK09, LR07, LO96, Min87, Nel87, O'S88, Pas71, Sal76, Sal97, Sal00, Sal04, Sch86, Toa98].

way [YMT10]. Weibull [Roy03]. Weierstrass [Wu05]. Weighted [Pas71, Alz90a, Ben94, Dra88, Fin81, Gao15, Hol06, KLL09, KLL11, MW12, Nan80, Xue17, Yam13, Yan14, Zul86]. weighted-arithmetic [Fin81]. well [Har91]. well-known [Har91]. Werke [Gau66, Gau11]. Werte [Sei87]. Wiley [Ber88]. Wisk. [Dra93a]. within [FLFJ11]. without [Als00, Nel87, Nel95, Nel15, Sch86]. Words [Als00, Nel87, Sch86, Nel15, Nel95]. work [Sch11]. Wuppertal [AFL96].

xv [Ber88].

References

[Alefeld:1996:SCV] Götz Alefeld, Andreas Frommer, and Bruno Lang, editors. Scientific computing and validated numerics: proceedings of

REFERENCES

[Alz90e] Horst Alzer. Sharpenings of the arithmetic mean–geometric mean inequality. Congressus Numeran-
REFERENCES

Alzer:1990:GGA
Horst Alzer. Über gewichtete geometrische und arithmetische Mittelwerte. (German) [On over-
weighted geometric and arithmetic mean values]. Anz.
Österreich. Akad. Wiss. Math.-

Alzer:1991:NAM
Horst Alzer. A note on the arithmetic mean-geometric mean in-
equality. Ann. Univ. Sci. Bu-
dapest. Eötvös Sect. Math., 34:
11–13 (1992), 1991. ISSN 0524-
9007.

Alzer:1992:IPA
Horst Alzer. Inequalities for pseudo-arithmetic and geometric
means. In General inequalities, 6
(Oberwolfach, 1990), volume 103
pages 5–16. Birkhäuser, Basel,

Alzer:1992:SAM
Horst Alzer. A sharpening of the arithmetic mean-geometric mean
inequality. Utilitas Mathematica,
41:249–252, 1992. CODEN UT-
MADA. ISSN 0315-3681.

Alzer:1994:NSA
Horst Alzer. Note on special
arithmetic and geometric means. Com-
ment. Math. Univ. Carolin.,
35(2):409–412, 1994. ISSN 0010-
2628 (print), 1213-7243 (elec-
tronic).

Alzer:1995:DI
Horst Alzer. On discrete inequalities involving arithmetic, geometric,
and harmonic means. Rend.
Istit. Mat. Univ. Trieste, 27(1-2):
1–9 (1996), 1995. ISSN 0049-
4704.

Alzer:1996:PAM
Horst Alzer. A proof of the arithmetic mean–geometric mean in-
equality. American Mathematical Monthly, 103(7):585, August/
September 1996. CODEN AM-
MYAE. ISSN 0002-9890 (print),
1930-0972 (electronic).

Alzer:1997:NRA
Horst Alzer. A new refinement
of the arithmetic mean–geometric mean inequality. Rocky Mountain
Journal of Mathematics, 27(3):
663–667, 1997. CODEN RMJ-
MAE. ISSN 0035-7596 (print),
1945-3795 (electronic).

Alzer:1999:SIA
Horst Alzer. Some inequalities
for arithmetic and geometric
means. Proceedings of the Royal
Society of Edinburgh. Section A,
Mathematical and Physical Sci-
ces, 129(2):221–228, 1999. CO-
DEN PEAMDU. ISSN 0308-2105
(print), 1473-7124 (electronic).

Alic:1997:AGH
M. Alić, B. Mond, J. Pečarić,
and V. Volenec. The arithmetic–
geometric–harmonic-mean and
related matrix inequalities. Lin-
ear Algebra and its Applications,
REFERENCES

Ando:1983:AGH

Alzer:2002:AMG

Arndt:2010:AEI

Arndt:2011:MC

Askey:1988:BRP

Audenaert:2015:IBA

Ba:1997:SMA

Bai:1988:BRP

Audenaert:2015:IBA

Ba:1997:SMA

Bai:2016:CDD

Bajpai:1978:SAG
S. K. Bajpai. Special arithmetic and geometric means preserve Φ-like univalence. *Rev. Colombiana*
REFERENCES

Bakherad:2016:RRG

Borwein:1983:GAG

Borwein:1984:AGM

Borwein:1984:RCC

Borwein:1986:MQC

Borwein:1987:PAS

Borwein:1988:CCJ

Borwein:1989:MI

J. M. Borwein and P. B. Borwein. On the mean iteration

REFERENCES

Buric:2017:CAA

Bellman:1956:AGM

Bellissima:2014:AGH

Bencze:1993:NPAa

Bencze:1994:NPW

Bencze:1995:NPA

Bencze:1998:NPA

Berndt:1988:BRJ

Bhatia:2006:IAG

REFERENCES

Bhatia:2000:NMA

Bhatia:2008:MAG

Borwein:1997:AGMb

Bost:1988:MAG

Boldo:1999:CRE

Borwein:1987:AGM
[Bor87] Jonathan M. Borwein. The
REFERENCES

REFERENCES

Borwein:2003:ACFc

Borwein:2004:RACc

Borwein:2004:RACb

Borwein:2004:RACA

Barnard:2007:IHA

Bracken:2001:AGM

Brent:1976:FMP

Brent:1976:MPZ

Brent:2010:MPZ
REFERENCES

REFERENCES

[Bul1967:SMI]

[Bull67]

[Bul91]

[Bul04]

[Bur87]

[Bur16]

[But36]

[Bur1967:SMI]

[Cas99]

[Bur2016:AAI]

[Cass99:BRP]

[Burr1967:SMI]

[Burr1967:SMI]
REFERENCES

Cardenas-Barron:2010:EMD

Cardenas-Barron:2010:SMC

Casquilho:2011:MDA

Cheon:2009:RBS

Cartwright:1978:RAM

Cohen:1995:AAA

Charzynski:2002:IBA

REFERENCES

Chang:2014:API

Chong:1976:AMG

Chong:1977:AMG

Chuan:1990:NIA

Crisan:2013:DSI

Cohen:1992:RA

Carlson:1971:MAG
Cohen:1987:AGM

Chang:2017:AGM

Cox:1984:AGM

Cox:1985:GAG

Cox:1997:AGM

Cox:2000:AGM

Cox:2004:AGM

Cox:2016:AGM

Chu:2015:OBF

[CQWZ15] Yu-Ming Chu, Wei-Mao Qian, Li-Min Wu, and Xiao-Hui Zhang. Optimal bounds for the first and
second Seiffert means in terms of geometric, arithmetic and contraharmonic means. *Journal of Inequalities and Applications*, pages 44:1–44:9, 2015. ISSN 1029-242X.

Cardoso:2016:MAG

Carvalhaes:2008:APS

Choi:2017:IRA

Cremona:2013:CAPa

Cremona:2013:CAPb

Cusmariu:1981:MNP

Carlson:1991:IAL

[Chu:2011:OIB]

[Chu:2011:OCC]

[Chu:2012:IBA]

[dalahu:1996:AIA]

[Chu:2013:IAG]

[Chu:2012:OLM]

[Dragomir:1997:SMA]

[Diananda:1960:CNS]
REFERENCES

Dijkstra:1992:AMG

Dijkstra:1994:AAA

Dijkstra:1996:AAA

Dijkstra:1996:AGM

Dzhaparidze:1994:SAI

Donagi:1999:AGM

Dmitrieva:1997:FAB

Dobbs:2001:CPV

Dragomir:1993:ETR

Dragomir:1993:TRA

Dragomir:1998:IAG

Dragomir:1999:CAM

Dupon:t:2011:FEM

Ding:2017:OBA

Enge:2006:CCP

Eng:2006:CCP

Everitt:1963:IGA

Everitt:1967:LPA

Everitt:1969:CLP

Fang:1995:RAG

Fujii:2016:RDM

Fink:1981:WAG

Fink:1976:GAG

Furuichi:2009:TIP

Friedrich:2012:RGM

REFERENCES

Freour:2011:MCS

Fournier:1999:EGA

Foster:1984:AHM

Feng:2008:MVS

Furuta:1994:NAG

Furuichi:2014:OIA

Gaines:1967:AMG

Gao:2015:DWM

REFERENCES

Georgakis:2002:IAG

Geppert:1928:TAG

Gumus:2011:SVI

Glaser:1976:RGM

Gluskin:2003:NGA

Griffiths:2017:AGM

Guo:2003:IMR

Gong:2012:SDI

[GSWC12] Wei-Ming Gong, Ying-Qing Song, Miao-Kun Wang, and Yu-Ming Chu. A sharp double inequality between Seiffert, arith-

Gumus:2013:IAG

Guo:2016:SBN

Hadjidimos:2012:IEO

Hao:2000:CIA

Hao:2013:AGM

Hassani:2013:A

Hassani:2013:RAG

Hassani:2014:AGM

Mehdi Hassani. On the arithmetic–geometric means of positive integers and the number
REFERENCES

Hayashi:2009:NCA

He:2012:OIB

Heinrich:1981:VAG

Hering:1972:GAG

Hirzallah:2016:SVC

Hiai:1999:CVM

Huda:1986:ESE

S. Huda and Rahul Mukerjee. Edgeworth series expansion for the distribution of the log of the ratio of arithmetic mean to geo-

Hay:2009:NCA

Hirzallah:2016:SVC

Hirschhorn:2007:GI

Hirzallah:2016:SVC

Huda:1986:ESE
REFERENCES

REFERENCES

Jameson:2014:AAG

Jarvis:2008:HGA

Joseph:1999:AMG

Kanada:1988:VMA

Kanada:2016:VMP

Karmer:1993:MPC

Kedlaya:1994:PMA

King:1921:SNF

REFERENCES

This is the first known publication of the AGM method, discovered by the author in 1913, for computing Jacobian elliptic functions. See also [Kin24, Kin07].

Kinjo:2013:HSA

KMS79

Knockaert:2003:BUB

Kob58

Kosaki:1998:AGM

Kaufmann:1996:IBMb

Kaufmann:1996:IBMa

Kramer:1993:MPC

Kwon:2000:AGM

Koike:2007:IFP

Koike:2008:EGA

Lagrange:1868:X

Landsberg:1978:TP1

Latala:1999:EBG

Long:2010:OIG

Long:2011:OGL

REFERENCES

Lehmer:1970:CCM

Lehmer:1971:CCM

Lekner:2009:ASC

Liu:2013:SBS

Lingappaiah:1991:DRG

Liu:1994:GLA

Lecko:2011:DSA

Loewner:1970:DBG

Luther:1996:CAG

[LO96] Wolfram Luther and Werner Otten. The complex arithmetic–geometric mean and multiple-precision matrix functions. In
REFERENCES

Lorentzen:2008:CDR

Leng:2015:SUB

Lehavi:2007:EFA

Lucht:1995:AGM

Liu:2006:OTA

Maligranda:1998:WHI

Maligranda:2012:GIE

Mathias:1993:AGH

REFERENCES

REFERENCES

Mitrinovic:1966:ICA

Mitrovic:1970:SII

Martin:1988:SPN

Meany:1971:BRB

Molnar:2011:CMM

Monhor:2003:AGM

Micic:2008:IAA

Matsumoto:2010:AGM

Keiji Matsumoto and Tomohide Terasoma. Arithmetic–geometric

Murthy:1997:AMG

Maksa:2010:ETF

Maze:2012:NWH

Najafi:2013:SRK

Nakamura:2001:AAA

Nanjundiah:1946:IRA

Nandi:1980:EDN

Nussbaum:1988:AGM

REFERENCES

Iosif Pinelis. Exact upper and lower bounds on the difference between the arithmetic and geometric means. *Bulletin of
REFERENCES

Pecaric:1997:AMG

Pecaric:1997:NPA

Qi:2003:IMRa

Qi:2003:IMRb

Qian:2014:OBN

Qi:2015:SBS

Qi:2009:AUP

Qi:2003:IMRa

REFERENCES

MAE. ISSN 0035-7596 (print), 1945-3795 (electronic).

Sándor:1999:AGM

Sawhney:2017:TPG

Schlesinger:1911:GJA

L. Schlesinger. Über Gauss’ Jugendarbeiten zum arithmetisch-geometrischen Mittel. (German) [On Gauss’ youthful work on the arithmetic–geometric mean]. *Jahresbericht der Deutschen Mathematiker-Vereinigung (DMV)*, 20(??):396–403, ???? 1911.

Schoen:1984:HGA

Sen:1987:WDA

Schattschneider:1986:PWA

Seiffert:1987:WZG

Seiffert:1997:TIA

Seo:2012:AGM

Sheikhhosseini:2016:NRV

Sheikhhosseini:2017:AGM

Shisha:1966:GII

Shirali:2011:BPG

Singh:2016:PAL

[Sin16] Paramanand Singh. π (PI) and the AGM: Legendre’s identity.

Schaumberger:1977:APA

Sole:1998:LCA

Sampedro:1999:DIP

Srivastava:2014:ICE

Sole:1995:A

[Sol95] Patrick Sole. D_4, E_6, E_8 and the AGM. In Cohen et al. [CGM95], pages
REFERENCES

REFERENCES

[Tri65] F. G. Tricomi. Sull’algoritmo iterativo del Borchardt e su di una sua generalizzazione. (italian) On the iterative algorithm of...
REFERENCES

Tricomi:1966:RUS

Tung:1975:LUB

Uchida:2008:SPG

Vasic:1972:ICA

Vil14

Vamanamurthy:1994:IM

Wachspress:2000:EEF

Wang:1999:SL

Wazwaz:1991:MNM

Abdul-Majid Wazwaz. Modified numerical methods based on

Wang:2014:BPE

Wang:2011:SDI

Wang:2012:SDI

Wilf:1963:SAI

Wimp:1988:BRP

Wang:2016:OBG

Wu:2005:SRE

REFERENCES

REFERENCES

Yang:2014:OGC

Zuo:2015:IRA

Zuo:2014:UBS

Zou:2015:RAG

Zhang:1996:AMI

Zou:2015:IA

Zou:2016:NIB

Zou:2017:AGM

REFERENCES

Zulauf:1986:SFE

Zhao:2014:OI

Zhang:2011:IGM