A Bibliography of Publications about the Arithmetic–Geometric Mean Iteration

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA

Tel: +1 801 581 5254
FAX: +1 801 581 4148

E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

31 October 2017
Version 1.05

Title word cross-reference

\[(a, b) \leftarrow \left(\frac{a+b}{2}, \frac{\sqrt{ab}+b}{2} \right) \] [BB89]. 1 [BM88]. 2 [BM88, Gau02, KM10]. 3 [LR07]. \$49.95

[Ber88]. B [SL98]. \$49.95

[Has13b, Has14, YY01]. \(E_6 \) [Sol95]. \(E_8 \) [Sol95]. \(\lambda \) [SMY14]. \(\mu \) [SMY14]. \(n \)

[Liu94, LM70, Vas72, Yam06]. \(p \)

[HM89, Xu15]. \(\Phi \) [Baj78]. \(\pi \)

[AB88, AB16, Arn11a, Bai16, BBMW16, BB86, Hur88, Kan88, Sal76, Sal97, Sal00, Sal04, Sal16, Sin16]. \(q \) [BRS13]. \(U_n \) [SL98].

-Adic [HM89, KM10]. -adique [HM89].

-convex [SMY14]. -hypergeometric

[BRS13]. -like [Baj78]. -operators [Yam06].

-starlike [SMY14].

11 [Dra93a]. 11th [CGM95]. 184 [Mat95a].

1975 [Tra76]. 1994 [Bro96].

2-adic [KM12, KM13].

'88 [ML88].

94b [Mat95a]. 94c [Dra93a].

AAECC [CGM95]. AAECC-11 [CGM95].

additional [KLS00]. adic

[KM12, KM13, HM89, KM10]. adique

[HM89]. Advanced [Ber88, Bro96]. AGM

[Ber88, TBDS92, Win88, Arn11a, BB87, BB88, BB91, Bor95, BB98, Bor03a, Bor03b, Bor03c, Bor04c, Bor04b, Bor04a, BCF04, BC04, BDS92, CV91, CT13a, CT13b, Dis02, Dup11, Gau02, KS08, Lor08, Osl15, Roo03,
Sin16, Sol95, SL98, Sur01, Vil14, Ask88, Cas99, algebra [CGM95, Mat95a].
algebraic [CGM95, Mat95a].
Algorithm [Nis97, Bai16, DM97, Tri65].
Algorithms [Car71, Gau02, Nak01, Arn11a, BB86, Bre10b, CGM95, New85, New16].
alternative [QS09]. AM [Bak16, BS12, Hir07, Mal12, Saw17, Shi11].
among [CW13, Fur14]. amplitude [Sal89].
averages [BR07, BBG93, Gar94]. analysis [Bur16, BE17, Cha14, FAB12].
Analytic [Car71, Gau02, Nak01, Arn11a, BB86, Bre10b, CGM95, New85, New16].
Analytical [Par65, Par68, Par79]. analyze [FAB12]. Ando [Yam06].
Application [SA06, Her72, Mar88, ZJ15, ZFFS14].
Applications [Dal96, Ba97, D94, WQC16, Wil63, Zou17].
Applied [CGM95]. approach [CO17, D94]. Approximation [Rey87, Jan14, Thun72, Rey87].
Approximations [CS08, BB16, Eng06]. April [Tra76]. arbitraire [Bol99].
arbitrary [Bol99, GQ03]. arc [Alm78].
Arch [Dra93a]. argument [Dij94, Dij96a].
Arithmetic [Ake63, AFL96, AB88, Als00, Be14, BS93a, BD93, BB83, BB84b, BB84a, BB97, BLM97, BB00, BB04, Bur87, But36, CR16, Car70, Car71, CN87, Cox97, Cox00, Cox04, Cus81, Dia60, Eve63, FP84, Gai67, GM03, Hor95, KP96b, Kos98, LR07, LO96, Mar88, MT10, MNC71, Min87, Ne187, Neu96, O98, RLC90, Sal76, Sal97, Sal00, Sal04, Sch86, Sch84, Toa98, WC11, WC12, Xie02, Yan00, YY01, Abr79, ABK16, Aiy45, Alb12, Ald08, Ald09, Ald10, Ald11, Ald12, AMPV97, ABPV97, Alm78, AB16, Alz87, Alz88, Alz89, Alz90b, Alz90c, Alz90d, Alz90e, Alz90f, Alz91, Alz92a, Alz92b, Alz94, Alz95, Alz96, Alz97, Alz99, AR02, And83, Aud15, Ba97, Bai78, BR07, Bel56, Ben93, Ben94, Ben95, Ben98, BK00, Bha06, BK08, Bol99, Bor87]. arithmetic [Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor89, BBG93, BB16b, Bra01, Bul67, Bul04, Bul91, BE15, CMN71, CF78, CS08, CB11, CO17, Cha02, CE09, CS17, Cho76, Cho77, CZW11, CW11, CW12, CWQ12, CW13, CWQM13, CWQWZ15, Chn90, Chn12, CL92, Cox84, Cox85, Cox16, CK13, Dij92, Dij94, Dij96a, Dij96b, DL17, DM97, Dob01, DL99, Dra93a, Dra93b, DCP97, Dra98, Dra99, DJ94, EN01, Eve67, Eve69, Fen95, FT08, FJ76, Fin81, Fou99, FLFJ11, FAB12, FFSZ16, Fur14, Fur94, Gao15, Gar94, Gas97, Gau92, Geo02, Gep28, Gla76, GSWC12, GM17, GHT11, GT13, GQ03, GZCS16, Hao93, Hao00, Har91, Has13a, Has13b, Has14, Hay09, HZQ12, HC12, Hei81, HM89, Her72, Hir16, Hol06, HM86, Hun56, Hun27, IKW16, Ito08, Jan14, Jar08, JK99]. arithmetic [Kan88, Kan16, KL96, KL98, KP96a, Ked94, KL07, KLL99, KLM10, KM12, KM13, Kit92, KKL12, Kl68, Kn03, Kob58, KS07, KMS79, KL12, KS00, KLS00, Lan78, Lat99, LL11, Lek09, LQ15, Lin91, Lin94, LZ06, LGSC13, LM70, LC10, LC11, Luc95, MV10, Mat10, Mat93, Mat95a, Mat95b, MW12, Mer03, MPS08, Mih05, Mit06, Mit70, Mol11, Mon03, MH72, Mur97, Nak01, Nan80, Nan46, Nel15, Nis88, Nis94, Nis97, NC88, NC90, Ono83, Opp65, Opp68, OT04, Pe95, PM97, PV97, Pov89, Pin15, Qio3a, Qio3b, QS09, QC14, QCZ15, Rau12, Raz86, Rey87, Rod17, RM92, Roy03, Rua15, SA06, ST94, Sal89, Sal16, SM99, Sun90, Sun99, SK77, Sch11, Sei87, Sch7, Sen87, Sen02, SZ13, She16, She17, Shi66, SA10, Svs12, SMY14]. arithmetic [Ste96, Stu44, Tan06, Tan07, Tor56, Tum75, Uch08, Vas72, WW07, Wy88, Wan99, WCQ14, WZSC14, WCQ16, Waz91, Wil63, Wu17, XHWC12, Xu15, Xue17, YMT10, Yam13, YYWQ14, YSC14, Yan14, YYC08, ZK11, ZWCL14, ZI15, ZH15, ZJ16, Zou17, Zul86, ZFFS14, ZC15, dal96, BT11, BM88, Nel95, OC14].
Arithmetic-Logarithmic-Geometric
[AFL96, Tra76, Pee89]. computers [Tri66].
Computing [Dis02, AK93, AFL96, Arn11a].
concave [Lat99]. Concentration [Ald10].
concerning [Kla68, Mit66]. condition [BS12]. conditions [WZSC14]. conjectures [CL92]. connected
[YY01]. constants [BBP16]. Construction [SL98, SA06]. containing [Ba97]. contingency [YMT10].
Continued [Bor03a, Bor03b, Bor03c, Bor04c, Bor04b, Bor04a]. Continuous [Mol11, FAB12]. contra [YYWQ14].
contra-harmonic [YYWQ14]. contraharmonic [CQWZ15].
Contribution [But36]. Convergence [Lor08, MH72]. convergent [Bai16].
converging [Alz90b, KL07, KL99]. convex [AB07, CZW11, Hir16, KL12, SMY14, XHWC12].
Convexity [NC90, Xu15]. correcting [CGM95]. corresponding [KS08].
Counting [Gau02]. courbes [BM88].
course [Tka03]. covariates [SA06]. criteria [KL96, KL98, OT04]. Cubic
[BB88, Gar94, BB91, Bor95]. Curves
[Gau02, BM88, CT13a, CT13b, DL99, KM10, MT10].
data [FAB12]. decimal
[Bai16, Kan88, Kan16]. Deductive
[Bro96]. definite
[And83, KL07, KLL09, ST94, Yam13]. del
[Tri65]. delay [OC13]. Department
[Tra76]. derive [CB10a]. derived [JK99].
design [Bro96]. deteriorating [Cha14].
determinantal [BT11]. determining
[CO17]. developments [FFSZ16]. Diary
[AB88, AB16]. difference
[Ald12, Alz90d, GQ03, LM70, Pin15, Qi03a, Qi03b, SZ13, Tun75]. differences
5

external [Seo12].

failure [RM92, Roy03]. Fast
[BB84b, BB97, BB00, BB04, Bre76a, Bre16,
Dup11, BB16b, DM97, New85, New16], fcc
[MH71]. Fibonacci [Sch84]. field [Tor56].
fields [KM12, KM13], find [Sur00]. finding
[Bre76b, Bre10a], finite [Her72]. first
[CQW21]. floating [Eng06]. Florida
[ML88]. functions [BoI99]. form [KS07].
Forms [BD93, KS08, YYC08]. Formula
[LR07, Seo12]. Formulas [Kin21]. formulas
[KS07, OC14], four [Bot08].
four-dimensional [Bot08], Fraction
[Bot03a, Bot03b, Bot03c, BCF04, BC04,
Lor08]. Fractions [Bot04c, Bot04b, Bot04a].
France [CGM95]. French
[BoI99, BM88, HM89, Rey87], function
[Bre76b, Bre10a, Mit70, MH71, Nis15, Sal89].
functional [MV10, Zul86], functionals
[LL11]. Functions [BB84b, BB97, BB00,
BB04, Bre76a, Kin24, Kin07, LO96, AB07,
BRS13, Bot99, BB16b, Bre10b, Bre16,
Dup11, Gar94, Gas97, Hir16, KJ99, KL12,
Na13, SMY14, Tk03, Tri66, Wac00].

gamma [Gla76, Nan80]. Gauss [Sch11].
Gauss [Cox97, AB88, AB16, Bot87, Bot88a,
Bot88b, Bot88c, Bot88d, Bot88e, CWQM13,
Cox84, Cox85, Cox00, Cox04, Cox16, Har91,
KS08, MV10, Nis88, Nis94, OCN03, Sano99,
Sch11, Srun00, Tan07]. Gaussian [WQC16].
generalibus [Gau17], generalis [Gau92].
generalization [EN01, FJ76, Hei81, Her72,
Hun56, Ono83, Tri65]. generalizations
[NC88, NC90].

BB83, BB84a, Eve63, Pas71, Sch84, Tan06,
Xie02, CW13, DZ17, LC10, LC11, Mat10,
SvS12, WZSC14, ZX11], Generalizing
[Pe689]. generalizzazione [Tri65].
genenerated [Szy91]. generation [BB16].
genre [BM88], Genus
[LR07, BM88, DL99, Jar08]. Geometric
[Ake63, AB88, Al500, BT11, BS93a, BD93,
BB83, BB84b, BB84a, BB97, BL97, BB00,
BB04, Bur87, But36, CR16, Car70, Car71,
Cox97, Cox00, Cox04, Cus81, Dia60, Eve63,
Gai67, GM03, Hor95, KP96b, Koc98, KK09,
LR07, LO96, MNC71, Min87, Ne87, Ne96,
O’S86, OC14, Sal76, Sal97, Sal00, Sal04,
Sch86, Sch84, Toa98, WCD11, WCD12,
Xie62, YYY01, Abr79, ABE16, Aiy45, Alb12,
Ald08, Ald09, Ald10, Ald11, Ald12,
AMPV97, APBV97, Alm78, AB16, Alz87,
Alz88, Alz89, Alz90b, Alz90f, Alz90c, Alz90d,
Alz90e, Alz90a, Alz91, Alz92a, Alz92b,
Alz94, Alz95, Alz96, Alz97, Alz99, AR02,
And83, Aud15, Bat7, Baj78, BR07, Bel14,
Bel56, Ben93, Ben94, Ben95, Ben98, BK00,
Bha06, BK08, Bot99, Bot87, Bot88a, Bot88b,
Bot88c, Bot88d]. geometric
[Bot08e, Bot08f, Bot89, BBG93, BB16b,
Bra01, Bul67, Bul94, Bul91, BE15, CMN71,
CF78, CS08, CB11, CO17, Ch02, CE09].
CS17, Cho76, Cho77, CZW11, CW11, CW12,
CW12Q, CW13, CWQM13, CWQZ15,
Chu90, Chu12, CN87, CL92, Cox84, Cox85,
Cox16, CK13, Dij92, Dij94, Dij96a, Dij96b,
DZ17, DM97, Dob01, DL99, Dra93a, Dra93b,
DPC97, Dra98, Dra99, DJ94, EN01, Eve67,
Eve69, Fen95, FT08, FJ76, Fin81, Fou09,
FLFJ11, FAB12, FSZ16, Fur14, Fur94,
Gao15, Gar94, Gas97, Gau92, Geo02, Gep28,
Gla76, GSWC12, GM17, GHT11, GT13,
GQQ03, GZCS16, Hao93, Haa00, Har91,
Has13a, Has13b, Has14, Hay09, HZQ12,
HC12, Hei81, HM89, Her72, Hir16, Hol06,
HM86, Hun56, Hun27, I1W16, Ita08, Jam14,
Jar08, JK99, KL96, KL98, KP96a, Ked94].
geometric
[KL07, KL09, KLL11, KMC0, KM12, KM13,
Kit92, KKL12, Kla68, Kno03, Kob58,
KS07, KMS97, KL12, KS00, KLS00, Lan78,
Lat99, LL11, Lek09, LQ15, LIn91, LIN94,
LZ06, LGSC13, LM70, LC10, LC11, Lu95,
MV10, Mar88, Mat10, Mat93, Mat95a,
Mat95b, MT10, MW12, Mer03, MPS08,
Mih05, Mit66, Mit70, Mol11, Mon03, MH12,
mean

mean-geometric

means

Medelvardet

mediorum

meta

model

minimum

Mittel

Mittels

Moirr

modular

modus

Monone

moynennes

Multiple-Precision

Multiple

music
[Ake63, Als00, BS93a, Cus81, Dia60, Ked94, Mat10, Nel87, Nel95, Nel15, Saw17, Sch86, Abr79, Alz96, BS12, Ben93, Ben94, Ben95, Ben98, Cho76, Dob01, Lan78, Mat95b, PV97, Q509, SM99, SK77, Shi11, Uch08, Yam13].

Radicals [Osl15]. radius [She16, She17]. Rado [Mih05]. Ramanujan [AB88, AB16, Bor03a, Bor03b, Bor04a, Bor04b, BC04, BC05, BBB16, Gar94, Lor08]. Random [CL92, Gla76]. Rapid [Bo199, BBP16]. rapide [Bo199]. rates [RM92, Roy03].

Ratio [FAB12, Alk10, Gla76, QG03, Has13b, HM86, LQ15, Liu91, Nan80, Qi03a, Qi03b]. real [Bor04c, BC04]. real-parameter [BC04]. rectangular [MH71]. Recursive [OC14]. Reduced [BB84c]. Refined [AKB16, Mer03, KMS79]. refinement [Ald08, Alz98, Alz97, CF78, Fen95, Hao93, ZH15].

Refinements [Bak16, Dra93a, Dra93b, FT08]. Related [Kos98, Toa98, AMPV97, BE15, CS17, It08, LL11, Naj13, OC14, PM97, She17, WY88].

relating [Nan46]. relationship [CE09, DJ94]. reliability [SA06].

Renormalizing [BS93b]. Research [Xu15]. respect [ZX11]. Result [Kra93, AK93, Kar93]. results [Naj13, SZ13, Tao06, Wu05]. reverse [Xue17, ZFFS14, ZC15]. reversed [Bak16].

Sets [Hun27, Opp65, Opp68, Vas72]. Sharp [Ald12, CWQM13, GZCS16, LGSC13, QCZ15, WCW11, WCW12, YSC14, Yan14, GSWC12, KLL09, LQ15]. sharpening [Alz92b, Pec95, Wu05]. Sharpenings [Alz90c]. short [Mur97]. should [Mal98].

Simple [BS93b, Dia60, Vi14, CB10b, CS08, Thu2, Uch08]. simplified [New85, New16]. simulation [FAB12]. Singular [Alb12, GHT11, Hir16, Rua15, Tao06, Zou17]. size [CO17]. Society [Ber88]. Solution [Zul86, Chu12]. Some [Alz99, Ba97, Blu67, CB10b, Kin21, Kit99, Mito70, Naj13, SZ13, Toa98, Wu63, Wu05, YYY08, DCP97, FT08, Kit94, LL11]. source [BBB97, BB04]. sourcebook [BB16a, BB00]. space [KKLP12, ZC15].

Study [Ber88, BB87, Bro96, KP96b, Wim88, BB98, KP96a].
subordinations [Tri65].
sufficient [WZSC14].
Summation [Xie02].
Supercomputing [ML88].
supply [Cha14, Chu12].
survey [YYC08].
Swedish [Alm78].
Symmetric [Gas97, Lek09, Mit70].
Symposium [AFL96, Tra76, CGM95].
systems [Nak01, SA06].
tables [YMT10].
tell [Sen87].
ten [AAS16].
term [KLS00].
test [SA06].
text [YYC08].
their [Ba97, MV10, Tan06, Wac00].
Theorem [KP96b, Gas97, KP96a].
Theorie [Gep28].
Theory [Ber88, BB87, But36, Wim88, Bel14, BB98, Gep28, XGW13].
thermodynamic [Abr79, Lan78].
thermodynamics [Wan99].
Three [Als00, Neu96, Sei97, IKW16, KLL09, KS07, Opp65, Opp68, RLC09, Shi11].
Toader [CW12, DZ17].
Trace [FKY09, LZ06, Yan00].
transformation [Nis15].
Transformations [Sal89].
transforming [Mol11].
transition [FLFJ11].
Treatise [Par65, Par68, Par79].
Trigonometric [Xie02, Nel15].
trillion [AAS16].
Turán [BRS13].
Tutorial [KP96b, KP96a].
Two [Dra93b, Cha14, CWQM13, Lin91, MV10, Mur97, Opp65, Opp68, Sei87, Vas17, Xue17, YMT10, Dra93a].
two-echelon [Cha14].
two-piece [Lin91].
two-way [YMT10].
type [Aiy45, BRS13, Mih05, YMT10].
uncertainty [YMT10].
Ungleichung [Alz87].
Ungleichungen [Alz88].
unit [Q03a, Q03b].
Unitarily [Hor95, Fur94].
united [Q039].
Univalence [KL96, KL98, OT04, Baj78].
University [Tra76].
Unrestricted [Bre10b].
unweighted [Nan80].
Upper [ST94, ZFFS14, ABK16, Kno03, LQ15, Pin15, SZ13, Tun75].
use [Tri66, Zul86].
Using [KP96b, Sal76, Sal97, Sal00, Sal04, Bai16, Dob01, Dup11, FAB12, KP96a, Sal16, WCJQ14].
usual [Thu72].
validated [AFL96].
validity [Chu12].
value [Alb12, GHT11, Tao06].
Values [Toa98, Alz90f, Alz90a, Dis02, Har91, Hir16, Rua15, Zou17, Sei87].
variables [Liu94, MHT72, Shi11].
Variance [Rod17].
varieties [MT10].
Various [HK99, BBP16].
Vectorization [Kan88, Kan16].
Verallgemeinerung [Hei81].
Verification [Kr93, AK93, Kar93].
version [Bha06, New85, New16, She16].
versions [FT08, FFZ16].
versus [FLFJ11].
via [Eng06, Sal89, Yam06].
Vuorinen [TBDS92].
way [YMT10].
Weibull [Roy03].
Weierstrass [Wu05].
Weighted [Pas71, Alz90a, Ben94, Dra98, Fin81, Gao15, Hol06, KLL09, KLL11, MW12, Nan80, Xue17, Yam13, Yan14, Zul86].
weighted-arithmetic [Fin81].
well [Har91].
well-known [Har91].
Werte [Sei87].
Wiley [Ber88].
Wisk. [Dra93a].
within [FLFJ11].
without [Als00, Nel87, Nel95, Nel15, Sch86].
Words [Als00, Nel87, Sch86, Nel15, Nel95].
work [Sch11].
Wuppertal [AFL96].
xv [Ber88].
Yau [MT10].
York [Ber88].
Young [Wu17].
youthful [Sch11].
Zahlen [Sei87].
zero [Bre76b, Bre10a].
zero-finding [Bre76b, Bre10a].
zeros [Her72].
zwischen [Alz87, Sei87].
References

[Götzt Alefeld, Andreas Frommer, and Bruno Lang, editors. *Scientific computing and validated numerics: proceedings of*...

REFERENCES

Almkvist:1978:AGM

Alsina:2000:PWA

Alzer:1987:UZG

Alzer:1988:UGA

Alzer:1989:RAM

Alzer:1990:WAG

Alzer:1990:CAM

Alzer:1990:IA

Alzer:1990:LBD

Alzer:1990:SG

[Alz90e] Horst Alzer. Sharpenings of the arithmetic mean–geometric mean inequality. Congressus Numeran-
REFERENCES

Alzer:1990:GGA

Alzer:1991:NAM

Alzer:1992:IPA

REFERENCES

Ando:1983:AGH

Alzer:2002:AMG

Arndt:2010:AEI

Arndt:2011:MC

Ask:1988:BRP

Audenaert:2015:IBA

Ba:1997:SMA

Bailey:2016:CDD

Bajpai:1978:SAG

REFERENCES

Bakherad:2016:RRG

Borwein:1983:GA

Borwein:1984:AGM

Borwein:1984:RCC

Borwein:1986:MQC

Borwein:1987:PAS

Borwein:1988:CCJ

Borwein:1989:MI

J. M. Borwein and P. B. Borwein. On the mean iteration
REFERENCES

Borwein:1998:PiA

REFERENCES

Bailey:2016:CPI

Bailey:2016:RCV

Borwein:2004:RAFa

Bhatia:1993:MMF

Braden:1992:IAL

Burić:2015:AEA

REFERENCES

REFERENCES

Bhatia:2000:NMA

Bhatia:2008:MAG

Borwein:1997:AGMb

Bost:1988:MAG

Boldo:1999:CRE

Borwein:1987:AGM

[Bor87] Jonathan M. Borwein. The

Borwein:2003:ACFc

Borwein:2004:RACc

Borwein:2004:RACb

Borwein:2004:RACa

Bracken:2001:AGM

Brent:1976:FMP

Brent:1976:MPZ

Brent:2010:MPZ

REFERENCES

REFERENCES

Bullen:1967:SMI

Bullen:1991:DAG

Bullen:2004:GAM

Burk:1987:NGL

Burk:1987:NGL

Bullen:2016:AAI

Butter:1936:CTA

Burk:1987:NGL

Carlson:1970:IMA

Carlson:1971:AIA

REFERENCES

Cardenas-Barron:2010:EMD

Cardenas-Barron:2010:SMC

Casquilho:2011:MDA

Cheon:2009:RBS

Cartwright:1978:RAM

Cohen:1995:AAA

Charzynski:2002:IBA
REFERENCES

Cohen:1987:AGM

Chang:2017:AGM

Cox:1984:AGM

Cox:1985:GAG

Cox:1997:AGM

Cox:2000:AGM

Cox:2004:AGM

Cox:2016:AGM

Chu:2015:OBF

[CQWZ15] Yu-Ming Chu, Wei-Mao Qian, Li-Min Wu, and Xiao-Hui Zhang. Optimal bounds for the first and
second Seiffert means in terms of geometric, arithmetic and contra-
harmonic means. *Journal of In-
equalities and Applications*, pages 44:1–44:9, 2015. ISSN 1029-242X.

Cardoso:2016:MAG

geometric mean and the compu-
tation of the logarithm. *SIAM
Journal on Matrix Analysis and
Applications*, 37(2):719–743, ???.
2016. CODEN SJMAEL. ISSN 0895-4798 (print), 1095-7162
(electronic).

Carvalhaes:2008:APS

[CS08] Claudio G. Carvalhaes and Patrick Suppes. Approximations
for the period of the simple pen-
dulum based on the arithmetic–
geometric mean. *American Jour-
nal of Physics*, 76(12):1150–
1154, December 2008. CODEN
AJPIAS. ISSN 0002-9505 (print),
1943-2909 (electronic). URL
http://aapt.scitation.org/
doi/full/10.1119/1.2968864.
See comments in [Vil14] about
prior work before 1966 by Al-
bert Edward Ingham (1900–1967)
producing both upper and lower
bounds to approximations to the
period of a pendulum.

Choi:2017:IRA

[CS17] D. Choi and M. Sababheh. In-
equalities related to the arith-
cmetic, geometric and harmonic
means. *Journal of Mathemati-

Cremona:2013:CAPa

[CT13a] John E. Cremona and Thot-
saphon Thongjunthug. The com-
plex AGM, periods of elliptic
curves over and complex elliptic
logarithms. arXiv.org, ??
(??):1–32, February 20, 2013.
1011.0914.pdf.

Cremona:2013:CAPb

[CT13b] John E. Cremona and Thot-
saphon Thongjunthug. The com-
plex AGM, periods of elliptic
curves over and complex elliptic
logarithms. *Journal of Number
CODEN JNUTA9. ISSN 0022-
314x (print), 1096-1658 (elec-
sciencedirect.com/science/
article/pii/S0022314X13000735.

Cusmariu:1981:MNP

[Cus81] Adolf Cusmariu. Mathematical
notes: a proof of the arithmetic
mean–geometric mean inequality.
American Mathematical Monthly,
88(3):192–194, March 1981. CO-
DEN AMMYAE. ISSN 0002-9890
(print), 1930-0972 (electronic).

Carlson:1991:IAL

Inequality of the AGM and the
logarithmic mean. *SIAM Re-
view*, 33(4):655, ???. 1991. CO-
DEN SIREAD. ISSN 0036-1445
(print), 1095-7200 (electronic).

REFERENCES

Dijkstra:1992:AMG

Dijkstra:1994:AAA

Dijkstra:1996:AAA

Dijkstra:1996:AGM

Disch:2002:CPV

Dzhaparidze:1994:SAI

Donagi:1999:AGM

Dmitrieva:1997:FAB

Dobbs:2001:PA

REFERENCES

Everitt:1963:IGA

Fen95

Everitt:1967:LPA

Eve69

Fink:1981:WA

Fink:1976:GA

Fujii:2016:RDM

Friedrich:2012:RGM

Feng:1995:RA

Fujii:2009:TIP

Georgakis:2002:IA

Geppert:1928:TAG

Gumus:2011:SVI

Glaser:1976:RGM

Gluskin:2003:NGA

Griffiths:2017:AGM

Guo:2003:IMR

Gong:2012:SDI
[GSWC12] Wei-Ming Gong, Ying-Qing Song, Miao-Kun Wang, and Yu-Ming Chu. A sharp double inequality between Seiffert, arith-

S. Huda and Rahul Mukerjee. Edgeworth series expansion for the distribution of the log of the ratio of arithmetic mean to geo-
REFERENCES

40

Henniart:1989:MAG

Holland:2006:IBC

Horn:1995:NBH

Huntington:1927:SIP

Hunter:1956:GIA

Hurley:1988:RCP

He:2012:IA

Israel:2016:AGM

Ito:2008:MAG

Takashi Ito. Mixed arithmetic and geometric means and related

Jameson:2014:AAG

Jarvis:2008:HGA

Joseph:1999:AMG

Kanada:1988:VMA

Kanada:2016:VMP

Karmer:1993:MPC

Kedlaya:1994:PMA

King:1921:SNF

This is the first known publication of the AGM method, discovered by the author in 1913, for computing Jacobian elliptic functions. See also [Kin24, Kin07].

King:1924:DNC

King:2007:DNC

Kittaneh:1992:NAG

Kittaneh:1994:SOI

Kittaneh:1999:SNI

Kosheleva:2009:GNJ

Kittaneh:2012:IA

Kanas:1996:UCC

Stanisława Kanas and Adam Lecko. Univalence criteria connected with arithmetic and geometric means. II. *Zeszyty Nauk.*

Kinjo:2013:HSA

Kosaki:1998:AGM

Krafft:1979:RGA

Knockaert:2003:BUB

Kober:1958:AGM

Kaufmann:1996:IBM

Kaufmann:1996:IBMa

REFERENCES

Kramer:1993:MPC

Kwon:2000:AGM

Koike:2007:IFP

Koike:2008:EGA

Lagrange:1868:X

Landsberg:1978:TP1

Latala:1999:EBG

Long:2010:OIG

Long:2011:OGL

References

[LO96] Wolfram Luther and Werner Otten. The complex arithmetic–geometric mean and multiple-precision matrix functions. In

Lorentzen:2008:CDR

Leng:2015:SUB

Tuo Leng and Xiaolin Qin. The sharp upper bound for the ratio between the arithmetic and the geometric mean. Mathematical Inequalities & Applications, 18(3):975–980, 2015. ISSN 1331-4343 (print), 1848-9966 (electronic).

Lehavi:2007:EFA

Lucht:1995:AGM

Maligranda:1998:WHI

Maligranda:2012:GIE

Martins:1988:AGM

Mathias:1993:AGH

REFERENCES

CODEN AMMYAE. ISSN 0002-9890 (print), 1930-0972 (electronic).

Murthy:1997:AMG

Maksa:2010:ETF

Maze:2012:NWH

Najafi:2013:SRK

Nakamura:2001:AAA

Nanjundiah:1946:IRA

Nandi:1980:EDN

Nussbaum:1988:AGM

REFERENCES

Nussbaum:1990:CPG

Nelsen:1987:PWH

Nelsen:1995:PWA

Nelsen:2015:PWT

Neuman:1996:TIA

Newman:1985:SVF

Newman:2016:SVF

Nishiwada:1988:HSA
REFERENCES

ISSN 0386-2194. URL http://projecteuclid.org/euclid.pja/1195513088.

[Nis94] Kimimasa Nishiwada. Holomorphic structure of the arithmetic–

[Ono83] Takashi Ono. A generalization of Gauss’ theorem on arithmetic–

[Opp68] A. Oppenheim. On inequalities connecting arithmetic means and
REFERENCES

[Pin15] Iosif Pinelis. Exact upper and lower bounds on the difference between the arithmetic and geometric means. *Bulletin of
REFERENCES

Pecaric:1997:AMG

Pecaric:1997:NPA

Qian:2014:OBN

Qian:2015:SBS

Qi:2003:IMRa

Qi:2003:IMRb

Qi:2009:AUP

Rauch:1942:MPS

REFERENCES

Salamin:1976:CUA

Salamin:1997:CUA

Salamin:2004:CUA

Sandor:1996:CIM

Sandor:1999:IAAG

J. Sándor. On certain inequalities for means, II. *Journal of Mathematical Analysis and Applications*, 199(2):629–635, 1996. CODEN JMANAK. ISSN 0022-
Sándor:1999:AGM

Sawhney:2017:TPG

Schlesinger:1911:GJA

Schlesinger:1986:GJA

Schoen:1984:HGA

Sen:1987:WDA

Schattschneider:1986:PWA

Seiffert:1987:WZG

Seiffert:1997:TIA

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sol95]</td>
<td>Patrick Sole. D_4, E_6, E_8 and the AGM. In Cohen et al. [CGM95], pages</td>
</tr>
</tbody>
</table>
REFERENCES

REFERENCES

[Tri65] F. G. Tricomi. Sull’algoritmo iterativo del Borchardt e su di una sua generalizzazione. (italian) On the iterative algorithm of

[Tricomi:1965:SID] F. G. Tricomi. Sull’algoritmo iterativo del Borchardt e su di una sua generalizzazione. (italian) On the iterative algorithm of

Tricomi:1966:RUS

Tung:1975:LUB

Uchida:2008:SPG

Vasic:1972:ICA

Villarino:2014:ASP

Vamanamurthy:1994:IM

Wachspress:2000:EEF

Wang:1999:SL

Wazwaz:1991:MNM

Abdul-Majid Wazwaz. Modified numerical methods based on

Wang:2014:BPE

Wang:2011:SDI

Wang:2012:SDI

Wilf:1963:SAI

Wimp:1988:BRP

Wang:2016:OBG

Wu:2005:SRE

REFERENCES

[YYC08] Cheh-Chih Yeh, Hung-Wen Yeh, and Wenyaw Chan. Some equivalent forms of the arithmetic–geometric mean inequality in probability: a survey. Journal of Inequalities and Applications,
Yang:2014:OGC

Zuo:2015:IRA

Zuo:2014:UBS

Zou:2015:RAG

Zhang:1996:AMI

Zou:2015:IA

Zou:2016:NIB

Zou:2017:AGM
REFERENCES

