Title word cross-reference

\((a, b) \leftarrow \left(\frac{a + \sqrt{a^2 + b}}{2}, \frac{\sqrt{ab} + b}{2}\right)\) [BB89]. 1 [BM88]. 2 [BM88, Gau02, KM10]. 3 [LR07]. \$49.95 [Ber88]. \(B\) [SL98]. \(D_4\) [Sol95]. \(\epsilon\) [Has13b, Has14, YY01]. \(E_6\) [Sol95]. \(E_8\) [Sol95]. \(\lambda\) [SMY14]. \(\mu\) [SMY14]. \(n\) [Liu94, LM70, Vas72, Yam06]. \(p\) [HM89, Xu15]. \(\Phi\) [Baj78]. \(\pi\) [AB88, AB16, Arn11a, Bai16, BBMW16, BRT18, BB86, Hur88, Kam88, Sal76, Sal97, Sal100, Sal04, Sal16, Sin16]. \(q\) [BRS13]. \(U_n\) [SL98].

2-adic [KM12, KM13].

'88 [ML88].

94b [Mat95a]. 94c [Dra93a].

AAECC [CGM95]. AAECC-11 [CGM95]. additional [KLS00]. adic [KM12, KM13, HM89, KM10]. adique [HM89]. Advanced [Ber88, Bro96]. AGM [Ber88, TBDS92, Win88, Arn11a, BB87, BB88, BB91, Bor95, BB98, Bor03a, Bor03b, Bor03c, Bor04c, Bor04b, Bor04a, BCF04].
BC04, BDS92, CV91, CT13a, CT13b, Di02, Dup11, Gau02, KS08, Lor08, Osi15, Roo03, Sin16, Sol95, SL98, Sur01, Vil14, Ask88, Cas99. algebra [CGM95, Mat95a]. algebraic [CGM95]. Algorithm [Nis97, Bai16, DM97, Tri65]. Algorithms [Nis97, Bai16, DM97, Tri65]. Alternative [QS09]. AM [Bak16, BS12, Hir07, Mal12, Saw17, Shi11]. among [CW13, Fur14]. amplitude [Sal89]. analogues [BR07, BBG93, Gar94]. analysis [Bur16, BE17, Cha14, FAB12]. Analytic [SA06, Her72, Mar88, ZJ15, ZFFS14]. Applications [dal96, Ba97, DQ16, Wil63, Zou17]. Applied [CGM95]. approach [CO17, DJ94]. Approximation [Rey87, Jam14, Tha12, Rey87]. Approximations [CS08, BBB16, Eng06]. April [Tra76]. arbitraire [Bol99]. arbitrary [Bol99, GQ03]. arc [Alm78]. Arch [Dra93a]. argument [Dij94, Dij96a]. Arithmetic [Ake63, AFL96, AB88, Al-00, Bel14, BS09a, BD93, BB83, BB84b, BB84a, BB97, BLM97, BB00, BB04, Bur87, But36, CR16, Car70, Car71, CN87, Cox97, Cox00, Cox04, Cus81, Dia60, Ewe63, FP84, Gai67, GM03, Hor95, KP06b, Kos98, LR07, LO96, Mar88, MT10, MNC71, Min87, Neu87, Neu96, O'S98, RLC09, Sal76, Sal97, Sal00, Sal04, Schs86, Schs84, Tea98, WCW11, WCW12, Xia02, Ym00, YY10, Abr79, ABK16, Aiy15, Ah12, Al10, Al09, A110, Al2, AMP97, ABP97, Alm78, AB16, Alz87, Alz98, Alz89, Alz90b, Alz90f, Alz90c, Alz90d, Alz90e, Alz90a, Alz91, Alz92a, Alz92b, Alz94, Alz95, Alz96, Alz97, Alz99, AR02, And83, Aud15, Ba97, Baj78, BR07, Bel56, Ben93, Ben94, Ben95, Ben98, BK00, Bha06, BK08, Bol99, Bor87]. arithmetic [Bis88a, Bor88b, Bor88c, Bor88d, Bor88e, Bor88f, Bor90, BBG93, BB16b, Bra01, Bu06, Bu04, Bu91, BE15, CMN71, CF78, CS08, CR11, CO17, Cha02, CE09, CS17, Cho76, Cho77, Czw11, CW11, CW12, CWQ12, CW13, CWQM13, CQWZ15, Chu90, Chu12, CL92, Cox84, Cox85, Cox16, CK13, Dij92, Dij94, Dij96a, Dij96b, DZ17, DM97, Dob01, DL99, Dra93a, Dra93b, DCP97, Dra98, Dra99, DJ94, EN01, Eve67, Eve69, Fan95, FT08, FJ76, Fin81, Fou99, FLF11, FAB12, FFSZ16, Fur14, Fur94, Gao15, Gar94, Gas97, Gar92, Geo02, Gep28, Gl67, GSWC12, GM17, GHT11, GT13, GQ03, GZCS16, Hao93, Hao00, Har91, Has13a, Has13b, Has14, Hay09, HZQ12, HIC12, Hei81, HM89, Her72, Hir16, Hol06, HM86, Hu06, Hw07, IKW16, It08, Jam14,.Is09, JK99].
Computations [Kra93, Hur88, Kar93].
compute [BBB16, CB10b]. Computer [AFL96, Tra76, Pee89]. computers [Tri66].
Computing [BRT18, Dis02, AK93, AFL96, Arn11a].
concave [Lat99]. Concentration [Ald10].
concerning [Kla68, Mit66]. condition [BS12]. conditions [WZSC14]. conjectures [CL92].
Constant [YY01]. constants [BBP16].
continuous [Mol11, FAB12].
controlling [Ba97]. contingency [YMT10].
Continued [Bor03a, Bor03b, Bor03c, Bor04c, Bor04b, Bor04a]. Continuous [Mol11, FAB12].
contra [YYWQ14]. contra-harmonic [YYWQ14].
Contribution [But36].
Convexity [NC90, Xu15]. correcting [CGM95]. corresponding [KS08].
Counting [Gau02]. courbes [BM88].
course [Tka03]. covariates [SA06]. criteria [KL96, KL98, OT04]. Cubic [BB88, Gar94, BB91, Bor95].
Curves [Gau02, BM88, CT13a, CT13b, DL99, KM10, MT10].
data [FAB12]. decimal [Bai16, Kan88, Kan16]. Decimals [BRT18].
derive [CB10a]. derived [JK99]. design [Bro96]. deteriorating [Cha14].
difference [Ald12, Alz90d, GQ03, LM70, Pin15, Qi03a, Qi03b, SZ13, Tun75]. differences [Ald11, FAB12]. Differential [CK13, LL11].
digits [AAS16, Bai16, BBMW16, BBB16, Kan88, Kan16]. dimensional [Bor88f].
Direct [Kin24, Kin07, SM99]. disc [Fou99].
discovered [Bor95]. discrete [Alz95, Gao15].
dispute [CB11]. distance [CB11].
Distribution [Lin91, Gla76, HM86, Nan80, Roy03].
distributions [Lek09, Nan80]. divergence [Lor08, Tan06]. do [Sen87]. Double [WCW11, WCW12, GSWC12, Lin91, QS09].
Dynamics [Bor04c, Bor04b, Bor04a, Bul91, Part65, Par68, Par79].

ey [CB10a]. echelon [Cha14]. economic [CB10b]. Edgeworth [HM86].
Eigenvalue [AB07]. electronic [Tri66]. élémentaires [Bo99].
Elementary [BB84b, BB97, BB00, BB04, Bre76a, Min87, BB16b, Bre76b, Bre10a, Bre10b, Bre16, Mit70, Yam13].
ellipse [Alm78, Sur00, WCJQ14]. Ellipsens [Am78]. Ellipses [AB88, AB16].
Elliptic [Gau02, Kin24, Kin07, Tka03, Arn11a, CT13a, CT13b, KM10, Mon03, MH72, Wac00, QWC16]. empiric [FAB12].
entropy [ARB16]. EOQ [CB10a]. EPQ [CB10a].
equality [BS12]. equation [Zul86]. equations [BBB16, MV10, Wl63].
equivalence [Lat99, MV10]. Equivalent [Mal12, YY08]. Errata [Dra93a].
Erratum [Mat95a]. error [CGM95, Mon03]. error-correcting [CGM95]. Eshelby [FLFJ11].
estimates [SMY14]. Euclidean [Dob01, SA10]. Evaluating [Wac00].
Evaluation [Bre76a, Bre76b, Bre10a, Bre16, Dup11].
every [Fur94]. Exact [BRT18, Pin15, Bol99, Nan80]. Excursion [Bor87, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e]. expansion [BE15, HM86, Rro03]. expansions [BE17].
evaluation [CB10b]. Evaluating [Wac00].

every [Fur94]. Exact [BRT18, Pin15, Bol99, Nan80]. Excursion [Bor87, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e]. expansion [BE15, HM86, Rro03]. expansions [BE17]. experiment [Pee89].
Explicit [LR07], exponential [Lin91].
extended [KS08], extending [Wu05].
extension [Tor56, Yan06]. Extensions [Fou99, Had12].
external [Seo12].

failure [RM92, Roy03]. Fast
[BB84b, BB97, BB00, BB04, Bre76a, Bre16, Dup11, BB16b, DM97, New85, New16]. fcc
[MH71]. Fibonacci [Sch84]. field [Tor56].
fields [KM12, KM13]. finite [Her72]. first
[CQWZ15]. floating [Eng06]. Florida
[ML88]. fonctions [Bol99]. form [KS07].

Formal [BRT18]. Forms
[BD93, KS08, YYC08]. Formula
[LR07, Seo12]. Formulae [Kin21]. formulas
[KS07, OC14]. four [Bor88f].
four-dimensional [Bor88f]. Fraction
[Bor03a, Bor03b, Bor03c, BCF04, BC04, Lor08]. Fractions [Bor04e, Bor04b, Bor04a].

France [CGM95]. French
[Bol99, BM88, HM89, Rey87]. function
[Bre76b, Bre10a, Mit70, MH71, Nis15, Sal89].
functional [MV10, Zul86]. functionals
[LL11]. Functions [BB84b, BB97, BB00, BB04, Bre76a, Kin24, Kin07, LO96, AB07, BRS13, Bol99, BB16b, Bre10b, Bre16, Dup11, Gar94, Gas97, Hir16, JK99, KL12, Naj13, SMY14, Tka03, Tri66, Wa00].

gamma [Gla76, Nan80]. Gaus [Sch11].
Gauss [Cox97, AB88, AB16, Bor87, Bor88a, Bor88b, Bor88c, Bor88d, Bor88e, CWQM13, Cox84, Cox85, Cox00, Cox04, Cox16, Har91, KS08, MV10, Nis88, Nis94, Ono83, Sán99, Sch11, Sur00, Tan07]. Gaussian [WQC16].
generalibus [Gau17]. generalis [Gau92].
generalization [EN01, FJ76, Hei81, Her72, Hun56, Ono83, Tri65]. generalizations
[NC88, NC90]. Generalized
[BB83, BB84a, Eve63, Pas71, Sch84, Tan06, Xie02, CW13, DZ17, LC10, LC11, Mat10, SwS12, WZSC14, ZX11]. Generalizing
[Pee89]. generalizzazione [Tri65].
genenerated [Szy91]. generation [BB16a].
genre [BM88]. Genus
[LR07, BM88, DL99, Jar08]. Geometric
[Ake63, AB88, Al800, BT11, BS93a, BD93, BB83, BB84b, BB84a, BB97, BLM97, BB00, BB04, Bur87, But36, CR16, Car70, Car71, Cox97, Cox00, Cox04, Cus81, Dia60, Eve63, Gai67, GM03, Hor95, KP96b, Kos98, KK09, LR07, LO96, MNC71, Mi87, Neu96, O'S68, OC14, Sal76, Sal97, Sal00, Sal04, Sch86, Sch84, Toa98, WCW11, WCW12, Xie02, YY01, Abr79, ABK16, Aiy45, Alb12, Ald08, Ald09, Ald10, Ald11, Ald12, AMPV97, ABPV97, Aln78, AB16, Alz87, Alz88, Alz90b, Alz90f, Alz90c, Alz90d, Alz90e, Alz90a, Al91, Al92a, Al92b, Al94, Al95, Al96, Al97, Al99, AR02, And83, Aud15, Ba97, Baj78, BR07, Bel14, Bel56, Ben93, Ben94, Ben95, Ben98, BK00, Bha06, BK08, Bol99, Bor87, Bor88a, Bor88b, Bor88c, Bor88d]. geometric
[Bor88e, Bor88f, Bor89, BBG93, BB16b, Bra01, Bul67, Bul04, Bul91, BE15, CMN71, CF78, CS08, CB11, CO17, Cha02, CE09, CS17, Cha76, Cha77, CZW11, CW11, CW12, CWQ12, CW13, CWQM13, CQWZ15, Chu90, Chu12, CN87, CL92, Cox84, Cox85, Cox16, CK13, Dij92, Dij94, Dij96a, Dij96b, DZ17, DM97, Dob01, DL99, Dra93a, Dra93b, DCP97, Dra98, Dra99, DJ94, EN01, Eve67, Eve69, Fen95, FT08, FJ76, Fin81, Fou99, FLFJ11, FAB12, FFSZ16, Fur14, Fur94, Gao15, Gar94, Gas97, Gau92, Geo02, Gep28, Glal76, GSWC12, GM17, GHT11, GT13, GQ03, GZCS16, Hao93, Hao00, Har91, Has13a, Has13b, Has14, Hay09, HQZ12, HC12, Hei81, HM89, Her72, Hir16, Hol06, HM86, Hun56, Hun27, IKW16, It008, Jam14, Jar08, JK99, KL96, KL98, KP96a, Ke94]. geometric
[KL07, KLL09, KLM11, KM10, KM12, KM13, Kit92, KKL12, Kla86, Kno03, Kob58, KS07, KMS79, KL12, KS00, KLS00, Lan78, Lat99, LL11, Lek09, LQ15, Lin91, Liu94].
LZ06, LGSC13, LM70, LC10, LC11, Luc95, MV10, Mar88, Mat10, Mat93, Mat95a, Mat95b, MT10, MW12, Mer03, MPS08, Mihi5, Mit66, Mit70, Mol11, Mon03, MH72, Mur97, Nak01, Nan80, Nan46, Nel15, Nis88, Nis94, Nis97, NC88, NC90, Ono83, Opp65, Opp68, OT04, Peč95, PM97, PV97, Pee99, Pin15, QIo3a, QIo3b, QS09, QC14, QCZ15, RLC09, Rau42, Raz86, Rey87, Rod17, RM92, Roy03, Rua15, SA06, ST94, SaI99, Sal16, SM99, Sán90, Sán99, SK77, Sch11, Sei87, Sei97, Sen87, Seo12, SZ13, She16, She17, Shi66, SA10, SvS12, SMY14, Ste96, Stu44, geometric

[Sur00, Tan06, Tan07, Tor56, Tun75, Uch08, Vas72, WW07, WY88, Wan99, WCQ14, WZSC14, WQC16, Waz91, Wul63, Wu17, XHWCl2, Xu15, Xue17, YMT10, Yam06, Yam13, Yam00, YWYQ14, YSC14, Yan14, YC08, ZX11, ZWCL14, ZJ15, ZI15, ZJ16, Zou17, Zul96, ZFCS14, ZC15, da96, Nel95, BM88].

dal96, Nel95, BM88.

go[94]. geometric-harmonic

[Mat93, Mat95a, Mat95b, ST94, Ste96].

g[94]. geometric-harmonic-mean

[And83].

g[94]. geometric-mean

[GM17, JK99, Ked94, Kit92, Wan99].

g[92]. Geometrical

[Shi66].

g[92]. geometrie

[Bo99, BM88, HM89].

g[92]. geometrie

[Rey87], geometrische

[Alz88, Alz90f].

g[92]. geometrischen

[Alz87, Gep28, Hei81, Sch11, Sei87].

g[88]. geometrica

[Alm78].

g[93]. geometry

[Dob01].

g[93]. German

[Alz87, Alz88, Alz90f, Gep28, Hei81, Sch11, Sei87].

g[98]. German

[AF96, Bro96].

g[94]. gewichtete

[Alz90f].

g[92]. Gini

[CW12].

g[92]. good

[Bru72], graphs

[Ber88].

g[91]. Green

[MH71], growth

[AAS16].

g[91]. Guarantees

[BRT18].

g[91]. Guesstimation

[KK99].

Hadamard

[Hor95, Mat93, Mat95a].

hapless

[Pee99].

Harmonic

[FP84, Nel87, Sch84, YMT10, AMPV97, Alz90c, Alz90a, Alz95, And83, Bel14, CB11, CS17, CW11, Dra99, Fur14, HC12, Hun27, KLL11, Kla68, KL12, LC11, Mat93, Mat95a, MW12, Mer03, Nak01, QCZ15, RLC09, RM92, Roy03, ST94, Sen87, Shi66, SA10, Ste96, WW07, WCQ14, WZSC14, YWYQ14].

harmonic-mean

[AMPV97].

Heinz

[GHT11, HZQ12, KKL12, ZWCL14].

held

[AFL96, Bro96, Tra76].

He[94].

Heron

[ZWCL14].

heuristics

[Dij94, Dij96a].

Higher

[Jar08, DL99, KL07].

Hilbert

[KKLP12, ZC15].

history

[BB16a].

Hölder

[Kob58, Mal98].

Holomorphic

[Nis94, Nis88].

Hyperelliptic

[SVS12, MT10].

Hypergeometric

[BB93, KM12, KM13, BRS13, BR07, Gar94].

identities

[Gar94].

Identity

[BB88, Sin16, BT11, BB91].

Identric

[Neu96, Sei97].

II

[BC04, KL96, Nan46, Nis94, Opp68, Sán96].

III

[Aiy45].

imperfect

[CO17, OC13].

Improved

[KKLP12, ZC15, GT13, HZQ12].

improvement

[Ald09, Dra98].

inaccessible

[BBMW16].

included

[Dij94, Dij96a].

independence

[Hum27].

Induction

[Kin21, Zha96].

inductive

[BS12, Mat95b, SM99].

Inequality

[Nel87].

Inequalities

[Alz90c, Alz92a, BB93, CS17, CW12, CW13, GQ03, Kla68, Kos98, MPS08, Nan46, Neu96, QIo3a, QIo3b, Sán96, VV94, WY88, Alb12, AMPV97, ALz59, Alz99, And83, Aud15, AB07, Ba97, BRS13, BR07, BK00, BuI67, BE15, CW11, FKY09, Fur14, GHT11, GT13, HZQ12, HC12, Ito08, Kit94, Kit99, KKL12, Liu94, LC10, MW12, Mer03, Mihi5, Mit70, Naj13, Opp65, Opp68, PM97, Sei97, Shi66, Ste96, Tao06, Vas2, WZSC14, Wul05, Wu17, Xue17, Yan00, ZWCL14, ZJ16, ZC15, Alz88].

Inequality

[Ake63, Als00, BS93a, BD93].
BB04, BDS92, Bur87, But36, CR16, CV91, Cox97, Cox00, Cox04, Cus81, Dia60, FP84, Ga167, GM03, Hor95, KP96b, Kos98, KK09, LR07, LO96, Min87, NeI87, O’S68, Pas71, Sal76, Sal97, Sal00, Sal04, Sch86, Toa98, YY01, Abr79, ABK16, Alb12, AMPV97, ABPV97, Alm78, AL16, Alz87, Alz89, Alz90b, Alz90c, Alz90d, Alz94, Alz95, Alz99, Baj78, Bel14, Bul67, Bur16, BE17, CMN71, CB11, CS17, CZW11, CW11, CW12, CWQ12, CW13, CQWZ15, Chu90, CN87, CL92, CK13, Dij96b, DZ17, DM97, DCP97, Dra98, FJ76, Fin81, FOU99, FAB12, Gas97, Geo02, GSWC12, GHT11, GQ03, GZCS16, Hao93, Hao00, Has13b, Has14, HC12, Ho06, Hun56, Ito08, Jar08, KL96, KL98, KL07, KLL09, KLL11, KKL12, KLP12, Kla68, Koba58, KMS79, KL12, Lat99, LL11, Leh70, Leh71, LGSC13, LC10, LC11, Mar88, Mat10, MT10, MW12, MP80, Miu05, Mia07, Naka01, Nana03, Nana08, Opp65, Opp68, OT04, Pin15, Qi03a, Qi03b, QC14, QCZ15, Rey87]

mean

[Chu12, Cox84, Cox85, Cox16, Dij92, Dij94, Dij96a, DZ17, Dob01, DL99, Dra93a, Dra93b, Dra99, DJ94, EN01, Eve67, Eve69, Fen95, FT08, FLFJ11, FAB12, FFSZ16, Fur14, Fur94, Gao15, Gao94, Gep28, Glav76, GM17, GT13, Har91, Has13a, Hay09, HZQ12, HC12, Hei81, HM89, Her72, Hir16, HM86, Hun27, IKW16, Jam14, JKK9, KP96a, Ked94, KLL11, KM10, KM12, KM13, Kit92, Kn003, KS07, KL12, KS00, KLS00, Lan78, Lek09, LQ15, Lin91, Liu94, LZ06, LGSC13, LM70, LC11, Lu9c5, MV10, Mat93, Mat95a, Mat95b, Mer03, Mol11, Mon03, MH72, Mur97, Nan80, Nel15, Nis88, Nis94, Nis97, NC88, NC90, Pce95, PM97, PV97, Pee89, QSO9, QC15, RLC09, Rau42, Raz86, Rua15, SA06, Sal89, Sal16, SM90, Sän99, SK77, Sch11] **mean**

[Sci87, Seo12, SZ13, She16, She17, SV12, Ste96, Sur00, Tan06, Tor56, Tun75, Uch08, WW07, Wan99, WZSC14, WQ16, Wu17, XHWC12, XGW13, Xu15, Xuc17, Yam06, Yam13, Yan00, YSC14, Yan14, YYYC08, ZX11, ZX15, ZH15, ZJ16, Zou17, BT11, Nel95, OC14, TBDS92]. **mean-geometric**

[Alz91, Alz92b, CF78, Cho76, Dra93a, Dra93b]. **meaning**

[BLM97, Car70, Car71, Eve63, HK99, Neu96, Sän96, Sch84, VV94, WCW11, WCW12, Aiy45, Ald08, Ald09, Ald10, Ald11, Ald12, Alz90c, Alz90d, Alz92a, Alz94, Alz95, Alz99, Baj78, Bel14, Bul67, Bur16, BE17, CMN71, CB11, CS17, CZW11, CW11, CW12, CWQ12, CW13, CQWZ15, Chu90, CN87, CL92, CK13, Dij96b, DZ17, DM97, DCP97, Dra98, FJ76, Fin81, FOU99, FAB12, Gas97, Geo02, GSWC12, GHT11, GQ03, GZCS16, Hao93, Hao00, Has13b, Has14, HC12, Ho06, Hun56, Ito08, Jar08, KL96, KL98, KL07, KLL09, KLL11, KKL12, KLP12, Kla68, Koba58, KMS79, KL12, Lat99, LL11, Leh70, Leh71, LGSC13, LC10, LC11, Mar88, Mat10, MT10, MW12, MP80, Miu05, Mia07, Naka01, Nana03, Nana08, Opp65, Opp68, OT04, Pin15, Qi03a, Qi03b, QC14, QCZ15, Rey87]**means**

[Rod17, RM92, Roy03, ST94, Sann90, Sei97, Sen87, Shi06, SA10, SMY14, Stu44, Tan07, Vas72, WY88, WCQJ14, WZSC14, Waz91, Wil63, XHWC12, YMT10, YYWQ14, Yan14, ZX11, ZWCL14, Zul86, ZFFS14, ZC15, dal96, MNC71]. **measure**

[Tan06, WW07]. **measures**

[Lat99, YMT10]. **Medelvärden**

[Alm78]. **media**

[Gau92]. **mediorum**

[Gau17, Gau92]. **Mellon**

[Tra76]. **meta**

[FAB12]. **meta-analysis**

[FAB12]. **method**

[CB10a, CB10b, Chu12, FLFJ11, Raz86]. **methods**

[Bre76b, Bre10a, Waz91]. **minimum**

[CB11]. **Mittel**

[Sci87, Alz87, Sch11]. **Mittels**

[Gep28, Hei81]. **Mittelwerte**

[Alz88, Alz90f]. **Mixed**

[Car70, CMN71, Ito08, MNC71, Baj97, Gao15, Ked94, Mat95b]. **model**

[FLFJ11]. **models**

[CB10a, Cha14]. **Modified**

[Waz91]. **modular**

[BBB16, Dup11, Gar94, KS07, KS08]. **modulus**

[MI72]. **Mono**

[Ber88]. **Mono-**

[Ber88]. **monotonicity**

[GQ03, Qi03a, Qi03b]. **Moore**

[KP96b, KP96a]. **Moyenne**

[BMS8, HM89, Bol99]. **moyennes**

[Rey87]. **MR1209383**

[Mat95a]. **MR1220829**

[Dra93a]. **Muirhead**

[WZSC14]. **Multiple**

[Bre76a, Bre76b, Bre10a, Kar93, Krä93, MNC71].
Multiple-Precision
[Bre76a, Kri93, LO96, Bre76b, Bre10a, Kar93, Bre16, Kan88, Kan16]. music
[Bel14]. Mutual
[Kin21].

NATO [Bro96]. Necessary [WZSC14]. Negative [Min87]. Nested [Os15].

Newton [Dup11]. next [BB16a]. Neuw
[Dra93a]. no [Dra93a]. nominal [YMT10]. Non
[Hay09, Dob01]. Non-commutative
[Hay09]. non-Euclidean [Dob01]. noncommuting [NC88]. noncontinuous
[EN01]. nonlinear [dal96]. Norm
[Hor95, Aud15, Fur94, Kit99, ZJ16].

normalized [Nan80]. Norms
[Hor95, GT13, SA10]. Note
[Alz94, Chu90, GM03, Tor56, Wu17, Alz91, Fur94, Kit92, MW12, SA10, Ste96, ZJ16].

Notes [Ake63, BK00, Bur87, Cus81, Dia60, Gai67, Min87, O’S68, Rua15]. novel
[Tan07]. November [ML88]. Number
[Ber88, BB87, Wim88, BB98, Has13b, Has14]. Numbers
[Als00, Min87, AR02, Has13b, Opp65, Opp68, Sei87, Vas72]. Numerical
[Kin21, Kin24, Kin07, She16, She17, Waz91]. numerics
[AFL96]. numerorum
[Gau17, Gau92].

observations [CB10b, CL92]. once
[Dij96b]. one
[BBB16, HC12, Mat10, Tri65, XHWC12]. one-parameter [HC12, XHWC12]. ones
[Her72]. operation [Tan07]. Operator
[Fur14, ZWCL14, Bak16, Bha06, Kit94, LZ06, MP08, ZFFS14]. operator-trace
[LZ06]. Operators
[HK99, Kos98, Alb12, Hir16, KL07, KLL09, Kit99, KKLP12, NC88, RLC09, She16, Szy91, Xue17, Yam06, Yan00, ZC15].

Optimal
[CZW11, CW11, CWQ12, CQWZ15, DZ17, HC12, LC10, LC11, OC13, QC14, WQC16, XHWC12, CO17, Chn12, Mat10, YYWQ14]. order
[CB10b, KL07]. origene
[Gau17, Gau92]. Orlando [ML88].

Ostrowski [Had12]. other [Har91]. outcomes [FAB12]. overweighted [Alz90f].

packing [XGW13]. parallel [SA06]. parameter

Particle [XGW13]. Patterns [Szy91]. payments [OC13]. Pendulum
[BS93b, Vill14, CS08, Thu72]. Pennsylvania
[Tra76]. perimeter [Sur00, WCJQ14]. period
[CS08, Thu72]. périodes [BM88]. periods [BM88, CT13a, CT13b]. permissible [OC13]. Peter
[Ask88, Ber88, Wim88]. Pi
[Ask88, BB16a, BB07, BB87, Bor89, BB98, AAS16, BB16, CL92, Kan16, Sin16, BB00, BBB0, Ber88, Cas99, Wim88].

[Fou99]. point [Eng06]. Points [Gau02]. polylogarithmic [BBP16]. polynomial
[Eng06, JK99, Wil63]. polynomials [GM17].

pondered [Ben95]. Popovicu [Mih05]. population [Aiy45]. Positive
[Als00, And83, CN87, GQ03, Has14, KL07, KLL09, Opp65, Opp68, Qi03a, Qi03b, RLC09, ST94, Vas72, Xue17, Yam13, ZC15].

postulates [Hun27]. power
[Bur16, Xu15, Yan14]. power-convexity
[Xu15]. pp [Ber88]. Precision
[Bre76a, Kra93, LO96, Bol99, Bre76b, Bre10a, Bre16, Kan88, Kan16, Kar93, Bol99].

presence [SA06]. present [Dia02].

preserve [Baj78]. previously [BBMW16]. Price [Ber88]. prime [Has13b]. probability
[YYC08]. problem [DJ94, Eve67, Eve69].

procedure [MH72]. Proceedings
[Bro96, Tra76, AFL96, ML88, CGM95].

process [CO17, OC13]. Product
production
production-inventory
Program
Proof
Proofs
quadratic
Radicals
Rado
Ramanujan
Random
Rapide
Ratio
real
real-parameter
Rectangular
Recursive
Refined
reification
Relaxing
relating
Renormalizing
Respect
result
Reverse
Review
 Reviews
Riemannian
Root
Salamin
Sample
Samples
sampling
scale
Scientific
Sequences
Series
set
size
Source
Sourcebook
REFERENCES

References

Agarwal:2016:BGC

Almkvist:1988:GLR

Aujla:2007:EIC

Abriata:1979:CTP

REFERENCES

[Ald12] J. M. Aldaz. Sharp bounds for the difference between the

Alzer:1990:Sam

Alzer:1990:Gga

Alzer:1991:Nam

Alzer:1992:Ip

Alzer:1992:Sam

Alzer:1994:Nsa
[Alz94] Horst Alzer. Note on special arithmetic and geometric means.

Alzer:1995:Dii

Alzer:1996:Pam

Alzer:1997:Nra

Alzer:1999:Sia
REFERENCES

Alic:1997:AGH

Ando:1983:AGH

Alzer:2002:AMG

Arndt:2010:AEI

Ba:1997:SMA

Arndt:2011:MC

Askey:1988:BRP

Audenaert:2015:IBA

Bailey:2016:CDD

REFERENCES

Bajpai:1978:SAG

Bakherad:2016:RRG

Borwein:1983:GAG

Borwein:1984:GAG

Borwein:1984:AGM

Borwein:1984:RCC

Borwein:1986:MCC

Borwein:1987:PAS

Borwein:1988:CCJ

[BB88] J. M. Borwein and P. B. Borwein. A cubic counterpart of Jacobi’s identity and the AGM. Re-
REFERENCES

Bailey:2016:PNG

Borwein:2016:AGM

analogue of the arithmetic–
geometric mean iteration. *Constructive Approximation*, 9(4):
URL http://docserver.carma.
newcastle.edu.au/1556/; http://
link.springer.com/article/1
10.1007/BF01204654.

[Bailey:2016:CPI]

[BBMW16] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly,
and Glenn Wightwick. The computation of previously in
accessible digits of \(\pi \). In Bailey and Borwein [BB16a],
pages 327–339. ISBN 3-319-
32375-X, 3-319-32377-6 (e-book).
LCCN QA251. URL http://
docserver.carma.newcastle.
myilibrary.com?id=941862.

[Bailey:2016:RCV]

pages 219–231. ISBN 3-319-
32375-X, 3-319-32377-6 (e-book).
LCCN QA251. URL http://
docserver.carma.newcastle.
myilibrary.com?id=941862.

[Borwein:2004:RAFb]

org/euclid.em/1103749837.

[Borwein:2004:RAFa]

J. Borwein, R. Crandall, and G. Fee. On the Ramanujan AGM fraction. I. The real
docserver.carma.newcastle.
org/euclid.em/1103749836.

[Bhatia:1993:MMF]

[Braden:1992:IAL]

[Buric:2015:AEA]

Tomislav Burić and Neven Elezović. Asymptotic expansion of the arithmetic–geometric mean
REFERENCES

Buric:2017:CAA

Bellman:1956:AGM

Bellissima:2014:AGH

Bencze:1994:NPW

Bencze:1995:NPA

Bencze:1998:NPA

Berndt:1988:BRJ

Bhatia:2006:IAG

Bhatia:2000:NMA

Bhatia:2008:MAG

Borwein:1997:AGMb

Bost:1988:MAG

Boldo:1999:CRE

Under the direction of Paul Zimmernann.

[Bor03b] Jonathan M. Borwein. The AGM continued fraction of Ramanujan. First Plenary Lecture, First Congress of the Mathematical Society of South East Europe

REFERENCES

[Barratt:2012:IPC] Carl Barratt and Ramesh Sharma. 96.16 An inductive proof of the...
REFERENCES

[Car71] Bille Chandler Carlson. Algorithms involving arithmetic

REFERENCES

Joel E. Cohen and Thomas M. Liggett. Random arithmetic-geometric means and random
REFERENCES

Carlson:1971:MAG

Cohen:1987:AGM

Chang:2017:AGM

Cox:1984:AGM

Cox:1985:GAG

Cox:1997:AGM

Cox:2000:AGM

Cox:2004:AGM

com/chapter/10.1007/978-1-4757-4217-6_55.

[Cox16] David A. Cox. The arithmetic–
geometric mean of Gauss (1984). In Bailey and Borwein [BB16a],
LCCN QA251. URL http://
docserver.carma.newcastle.
myilibrary.com?id=941862.

[CQWZ15] Yu-Ming Chu, Wei-Mao Qian, Li-
Min Wu, and Xiao-Hui Zhang. Optimal bounds for the first and
second Seiffert means in terms of
genetic, arithmetic and contra-
harmonic means. Journal of In-
equalities and Applications, pages
44:1–44:9, 2015. ISSN 1029-242X.

[CR16] João R. Cardoso and Rui
Ralha. Matrix arithmetic–
geometric mean and the computa-
tion of the logarithm. SIAM
Journal on Matrix Analysis and
CODEN SJMAEL. ISSN
0895-4798 (print), 1095-7162
(electronic).

[CS08] Claudio G. Carvalhaes and
Patrick Suppes. Approximations
for the period of the simple pen-
dulum based on the arithmetic–
geometric mean. American Jour-
nal of Physics, 76(12):1150–
1154, December 2008. CODEN
AJPIAS. ISSN 0002-9505 (print),
1943-2909 (electronic). URL
http://aapt.scitation.org/
doi/full/10.1119/1.2968864.
See comments in [Vil14] about
prior work before 1966 by Al-
bert Edward Ingham (1900–1967)
producing both upper and lower
bounds to approximations to the
period of a pendulum.

[CS17] D. Choi and M. Sababheh. In-
equalities related to the arith-
metic, geometric and harmonic
means. Journal of Mathematical
ISSN 1846-579x (print), 1848-
9575 (electronic).

[CT13a] John E. Cremona and Thot-
saphon Thongjunthug. The com-
plex AGM, periods of elliptic
curves over and complex elliptic
logarithms. arXiv.org. ??
(??):1–32, February 20, 2013.
1011.0914.pdf.

[CT13b] John E. Cremona and Thot-
saphon Thongjunthug. The com-
plex AMG, periods of elliptic
curves over and complex elliptic
logarithms. Journal of Number
CODEN JNUTA9. ISSN 0022-
314x (print), 1096-1658 (elec-
sciencedirect.com/science/
article/pii/S0022314X13000735.
Cusmariu:1981:MNP

Carlson:1991:IAL

Chu:2011:OIB

Chu:2012:IBA

Chu:2013:IAG

Chu:2012:OLM

Chu:2013:STP

Chu:2011:OCC

dalahu:1996:AIA

Dragomir:1997:SMA

S. S. Dragomir, D. Comanescu, and C. E. M. Pearce. On some

Dmitrieva:1997:FAB

Dobbs:2001:PAG

Dragomir:1993:ETR

Dragomir:1993:TRA

Dragomir:1998:IAG

Dragomir:1999:CAM

Dupont:2011:FEM

Ding:2017:OBA

Ekart:2001:NGA
Enge:2006:CCP

Everitt:1963:IGA

Everitt:1967:LPA

Everitt:1969:CLP

Friedrich:2012:RGM

Feng:1995:RAG

Fujii:2016:RDM

Fink:1981:WAG

REFERENCES

Gaines:1967:AMG

Gao:2015:DWM

Garvan:1994:CMI

Gasharov:1997:SFT

Gauss:1866:W

Gauss:1992:AGM

Gaudry:2002:CCS

Guo:2003:IMR

Gong:2012:SDI

Gumus:2013:IAG

Guo:2016:SBN

Hadjidimos:2012:IEO

Hao:1993:RA

Hao:2000:CIA

Haruki:1991:NCA

Hassani:2013:AGM
Hassani:2013:RAG

Hassani:2014:AGM

Hayashi:2009:NCA

He:2012:OIB

Heinrich:1981:VAG

Hering:1972:GAG

Hirschhorn:2007:GI

Hirzallah:2016:SVC

Hiai:1999:CVM

Huda:1986:ESE

Henniart:1989:MAG

Holland:2006:IBC

Horn:1995:NBH

Huntington:1927:SIP

Hunter:1956:GIA

Hurley:1988:RCP

He:2012:IAG

REFERENCES

ISSN 1846-579x (print), 1848-9575 (electronic).

Kedlaya:1994:PMA

Kittaneh:1992:NAG

King:1921:SNF

King:1924:DNC

Kittaneh:1994:SOI

Kittaneh:1999:SNI

Kosheleva:2009:GNJ

Kwon:2000:ATB

Kinjo:2010:AAG

Kinjo, Kensaku; Miyasaka, Yuken. 2-Adic arithmetic–geometric mean and elliptic curves. *Interdisciplinary Information Sciences*, 16(1):5–15, 2010. ISSN 1340-9050 (print), 1347-6157 (electronic).

Kinjo:2012:HSA

Klob:1958:AGM

Kaufmann:1996:IBMb

Kaufmann:1996:IBM

Kramer:1993:MPC

Kwon:2000:AGM

Koike:2007:IFP

Koike:2008:EGA

Lagrange:1868:X

Landsberg:1978:TPI

Latala:1999:EBG

Long:2010:OIG

Long:2011:OGL

Lehmer:1970:CCM

Lehmer:1971:CCM

Lekner:2009:ASC

Liu:2013:SBS

Lingappaiah:1991:DRG

Liu:1994:GLA

Lecko:2011:DSA
REFERENCES

Loewner:1970:DBG

Luther:1996:CAG

Lorentzen:2008:CDR

Leng:2015:SUB

Lehavi:2007:EFA

Lucht:1995:AGM

Liu:2006:OTA

Maligranda:1998:WHI

Maligranda:2012:GIE

Martins:1988:AGM

Mathias:1993:AGH

Mathias:1995:EAG

Matsuda:1995:IPM

Matejic̆ka:2010:POO

Mercer:2003:RAG

Morita:1971:CLG

Morita:1972:CAG

References

Micic:2008:IIA

Matsumoto:2010:AGM

Murthy:1997:AMG

Maksa:2010:ETF

Maze:2012:NWH

Najafi:2013:SRK

Nakamura:2001:AAA

Nanjundiah:1946:IRA

Nandi:1980:EDN

S. B. Nandi. On the exact distribution of a normalized ratio of the weighted geometric

D. J. Newman. A simplified version of the fast algorithms...
REFERENCES

REFERENCES

Oppenheim:1965:ICA

Oppenheim:1968:ICA

O'Shea:1968:MNA

Osl15

Ovesea-Tudor:2004:UCC

Pars:1965:TAD

Pars:1968:TAD

Pars:1979:TAD

Passy:1971:GWM

Pecaric:1995:RSA

Pinelis:2015:EUL

Pecaric:1997:AMG

Pecaric:1997:NPA

Qi:2003:IMRa

Qi:2003:IMRb

Qi:2009:AUP

Rauch:1942:MPS

Razpet:1986:MAG

Reyssat:1987:AMA

Raissouli:2009:AGH

Roy:1992:CBA

Rodin:2017:VIA

Rooin:2003:AIB

Roy:2003:CBW

Ruan:2015:NAG

REFERENCES

REFERENCES

SM99 J. Cruz Sampedro and M. Teltlalmatzi Montiel. A direct inductive proof of the geometric

Szyszko:1991:PGL

Taneja:2006:GAG

Tanimoto:2007:NOA

Tao:2006:MRS

Todd:1992:BRB

Thurston:1972:HGU

Tkachev:2003:EFI

Toader:1998:SMV

Torrent:1956:NEC

Traub:1976:ACC

J. F. (Joseph Frederick) Traub, editor. *Analytic computational

Tricomi:1965:SID

Tricomi:1966:RUS

Tung:1975:LUB

Uchida:2008:SPG

Vasic:1972:ICA

Villarino:2014:ASP

Vamanamurthy:1994:IM

Wachspress:2000:EEF

Wang:1999:SLT

Wazwaz:1991:MNM

Wang:2014:BPE

Wang:2011:SDI

Wang:2012:SDI

Wilf:1963:SAI

Wimp:1988:BRP

Wang:2016:OBG

Hua Wang, Wei-Mao Qian, and Yu-Ming Chu. Optimal bounds for Gaussian arithmetic–geometric mean with applications to complete elliptic integral. *Journal of Function Spaces*, pages
REFERENCES

3698463.1–3698463.6, 2016. ISSN 2314-8896.

Wu:2005:SRE

Wu:2017:NYA

Walden:2007:HMI

Wang:1988:IRA

Wang:2014:NSC

Xu:2013:PPM

Xia:2012:OOP

Xie:2002:SGA

REFERENCES

REFERENCES

Yang:2001:AGM

Yeh:2008:SEF

Yang:2014:OGC

Zuo:2014:UBS

Zou:2015:RAG

Zhang:1996:AMI

Zou:2015:IRA

