A Complete Bibliography of Publications in

Algorithms

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

26 August 2021
Version 1.15

Title word cross-reference

(1 + 1) [1389]. (8/3)pn^3 [277]. (α, β) [1493]. (H, S) [1084]. (n^2 - 1) [277].
0 < p < 1 [145]. 1 [892]. 2
[66, 1263, 1217, 1238, 892, 101, 259, 1162, 1191, 1367, 536, 731]. 3
[152, 683, 1267, 635, 1250, 1210, 1008, 852, 1368, 91, 606, 819]. 3
[683]. Cross
[28, 897]. h [73]. H_{∞} [343]. K [1376, 921, 1271, 687, 238, 1301, 890, 1405,
1034, 1290, 195, 1350, 1155, 727, 1127, 4, 541, 767]. k < 2 [1350]. L^p [145]. L_0
[751]. L_1 [102, 104]. λ [1422]. m_λ [443]. N [46]. O(n) [98]. p [1052, 1389]. Q
[690]. X [974].

-Coverage [66]. -Cut [541]. -D [91]. -Distance-Hereditary [1350].

2 [390]. 2-Phase [521]. 2.0 [1296]. 2.5D [1388]. 2015 [387]. 219 [1339].

3 [538]. 3-RRR [538]. 309.- [74]. 3D [1331, 1347]. 3SAT [136].

479.50.- [74].

5-Point [102].

60th [1209].

7 [213].

87 [460].

9 [353, 460]. 978 [74]. 978-0-387-30770-1 [74].

Entropy-Based [566, 1426]. Entry [1380]. Enumerating [259, 767].

Location [1326, 743, 1362, 1449, 1311, 986, 1315, 2, 873]. Loci [1379, 190].
Logical [1479]. Logistic [141, 561, 1096]. Logistics [699, 1311]. Long
[713, 1414, 620, 917, 640, 614]. Long-Range [620]. Long-Span [1414].
Long-Term [614]. Longest [80, 186]. Longest-First [80]. LongestMatch
[1300]. Look [700]. Loop [981, 1074, 37, 563, 637]. Loss [840, 1388, 1496].
Loss-Based [1388]. Losses [769]. Lossless [1041, 339, 1116]. Lossy
Low-Carbon [873]. Low-Power [1152]. Low-Rank [1042, 204, 351].
[1180, 808, 188, 316]. Lyapunov [528]. Lyme [1259]. Lyndon
[1205, 868]. LZ [427]. LZ-Compressed [427]. LZ77 [1303]. LZ78
[1466, 1175, 1410, 1378, 1061, 956, 976, 1078, 457, 1128, 1129, 1239, 881, 711,
1207, 1131, 1029, 715, 1044, 548, 680, 1214, 843, 745, 1023, 776, 943, 597, 947,
611, 1259, 1460, 756, 638, 573, 549, 1375, 8, 411, 82]. Machine-Learning
[1207, 1023]. Machine-Processable [1029]. Machinery [69]. Machines
[1278, 375, 56, 587, 599]. Macrocephalus [70]. Macromolecular [36].
[1120, 57, 1062]. Magnetization [1085]. Magnetorheological [939].
Magnetotelluric [731]. Magnitude [1141]. Magnus [98]. Maintenance
[844, 1054, 947]. MAKHA [269]. Making
[590, 1468, 787, 1082, 1364, 684, 1285, 560, 943, 536, 533, 407, 651, 666, 703].
Mammographic [140]. Mammography [53]. Man [177]. Man-Optimal
[177]. Management [734, 702, 1182, 1046, 978, 1029, 1044, 1059, 564, 1455].
[1106, 973]. Manipulation [200]. Manipulator [404]. Manipulators [810].
Manufacturing [1249, 621, 588, 599]. Many [203, 63, 406, 479].
Many-Core [203]. Many-Objective [479]. Map
[303, 1183, 157, 561, 733, 1374, 918, 740]. Map-Reduce [740]. Mapping
[503, 695, 893, 190, 1046, 45, 1214, 937, 642]. Mappings [360, 398, 1493].
MapReduce [905, 330, 743, 749, 910]. Maps [636, 15]. MAPSkew
[490, 373, 1321, 26, 775, 79, 877, 589, 964]. Markovian [877]. Marquardt
[1014, 1156, 1125, 945, 365]. Match [1367]. Matching [215, 976, 192, 202,
1387, 1329, 817, 36, 1022, 110, 458, 422, 121, 909, 263, 1450, 200, 65, 712].
Matching-Iteration-Based [1329]. Matching-Widths [712]. Matchings
Multi-Facility [1362, 1449]. Multi-Factor [986]. Multi-Feedback [279].
Multi-Fidelity [1192]. Multi-Hop [306]. Multi-Improved [1056].
Multi-Object [1022]. Multi-Objective [1289, 654, 1320, 374, 190, 887, 800, 1161, 275, 843, 805, 249, 1373, 724, 1144, 1195].
Multi-One-Class [1376]. Multi-Parametric [875]. Multi-Period [977, 1311].
Multichannel [746]. Multicommodity [168]. Multicore [201, 196].
Multicriteria [1442]. Multidimensional [1176, 1328, 1135, 997].
Multinomial [1363]. Multiojective [446, 1187, 257, 1293]. Multipartite [571].
Multiple [1379]. Multiple-Attribute [536]. Multiple-Feature [1091].
Multiple-Vehicle [1091]. Multiplication [69, 1459]. Multiplicative [684].
Multiprocessor [1017, 1489]. Multiscale [928, 535, 1203]. Multisensorial [64]. Multisets [1384].
Nature-Based [511]. Nature-Inspired [1231, 556, 1008].
Nearly [608]. Need [1029, 1458]. Needed [63]. Negamax [151].
Negations [1082, 833]. Negative [1222, 1368]. Negatively [167]. NEH [1054].

OADMs [1386]. Object [540, 38, 707, 1022, 1109, 1253, 681, 91, 653, 1461, 733, 958].

Object-Oriented [540]. Objective [1289, 1017, 654, 1320, 374, 190, 887, 800, 1161, 275, 843, 597, 805, 249, 1373, 599, 724, 1144, 479, 1195].

Octapeptide [22]. ODEs [341]. OFDM [279, 965]. Off [744, 553].

One [1376, 287, 501, 870]. One-Bit [287]. One-Day-Ahead [501].

One-Dimensional [870]. Online [1466, 1326, 1184, 781, 1022, 690, 920, 134, 58, 1134, 564, 1001, 1170, 545, 718, 682]. Only [315, 388]. Ontology [1002, 926, 1370]. Open [1017, 169, 55, 725, 1484, 1038, 155].

Open-Source [169, 1484, 155]. OpenACC [721]. OpenCL [893].

Operation [1398]. Operational [1302, 693]. Operations [1394, 1422, 1026].

Operator [778, 747]. Operators [291, 1082, 1338, 560, 536, 533, 651].

Opinions [82]. Opportunistic [650, 656]. Opposition [366, 578, 244, 415].

Opposition-Based [366, 578, 244, 415]. OPT [1210]. OPTCON [1411].

Optical [1264, 1386, 648, 619, 795, 1003, 660, 836].

Optimal [66, 289, 955, 1291, 1411, 970, 617, 1126, 1294, 473, 574, 892, 1444, 177, 333, 267, 728, 1309, 612, 1428, 1453, 986, 1456, 1457, 966, 588, 1399, 545, 317, 479, 729].

Optimality [200, 1427, 634]. Optimally [909]. Optimisation [1307, 1492, 396].

Optimization-Based [1158, 437, 1161, 548].

Optimized [777, 723, 521, 472, 795, 271, 375, 891, 425]. Optimizer
Species [183, 880, 1209, 1212, 212, 1165, 1092, 1257, 618, 952].

Species-Concentration [28, 67].

Spectra [1415, 823, 39, 1013].

Speed [752].

Spatial-Temporal [870, 608, 1096, 377, 780, 384].

Spanning Spaces [796, 1342].

Space-Ecient [796, 1220, 399, 757, 292, 968, 1342, 367, 710, 646, 593, 249].

Spectrometry [489, 1204, 1329, 234, 304, 706, 547, 558, 582, 546, 405, 1113, 368, 496, 228].

Spectrum-Sharing [738, 384].

Somatization [548].

Some [464, 29, 305, 283, 147, 1277, 1252, 946, 310, 1258].

SOMs [1051].

Sonar [777].

Sorting [92, 955, 1412, 1422].

Sound [268].

Source [169, 1415, 648, 839, 757, 1484, 1455, 857, 155].

Sources [738, 384].

Sources-Based [384].

Space [1149, 629, 1232, 1324, 673, 380, 1276, 1305, 796, 1220, 399, 757, 292, 968, 1342, 367, 710, 646, 593, 249].

Space-Efficient [796, 1342].

Spaces [302, 229, 398, 1493].

Spain [1287].

Span [1414].

Spanning [584].

Spark [1014, 744, 273, 725, 1400].

Sparks [476].

Sparse [1034, 220, 313, 1183, 204, 196, 1447, 1110, 1030, 804, 1093, 281, 657, 875, 918, 870, 608, 1096, 377, 750, 384].

Spatial [1320, 379, 338, 573, 752].

Spatial-Temporal [752].

Spatially [1148].

Spatiotemporal [727, 982, 963].

Special [698, 734, 971, 215, 556, 1468, 813, 1381, 1383, 313, 387, 754, 1270, 183, 880, 1209, 1212, 212, 1165, 1092, 1257, 618, 952].

Species [56, 1368, 1405].

Species-Concentration [1368].

Specific [434, 125, 1273, 1047, 459].

Specificity [50].

Specificity-Determining [50].

Spectra [28, 67].

Spectral [1154, 258, 39, 1278].

Spectrogram [119].

Spectrometry [44].

Spectroscopic [220].

Spectroscopy [1062, 1178, 314].

Spectrum [489, 1204, 1329, 234, 304, 706, 547, 558, 582, 546, 405, 1113, 368, 496, 228].

Spectrum-Adapted [1204].

Spectrum-Sharing [706].

Speech [1415, 823, 39, 1013].

Speed [788, 596, 1078, 690, 917, 686, 1093, 798].

Yang [74]. Yarn [508]. YOLOv2 [518]. YOLOv3 [1056]. YOLOv5 [1357].

References

REFERENCES

[40] Alexey Sorokin, Nikita Boyko, Vladimir Boginski, Stan Uryasev, and Panos M. Pardalos. Mathematical programming techniques for sensor

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>
REFERENCES

Tom Burr, Todd Graves, Nicolas Hengartner, Toshihiko Kawano, Feng Pan, and Patrick Talou. Alternatives to the least squares solution to

REFERENCES

REFERENCES

References

REFERENCES

Tian:2013:MCD

Nikolidakis:2013:EER

Marzban:2013:CSP

Uehara:2013:TIG

Isaacs:2013:DTS

Takes:2013:CED

Akutsu:2013:PTA

Ma:2013:ANN

Kiraly:2013:SMF

Bailey:2013:OSI

Cirani:2013:ESM

Chen:2013:SUC

Jakob:2013:FRM

[172] Wilfried Jakob, Sylvia Strack, Alexander Quinte, Günther Bengel, Karl-Uwe Stucky, and Wolfgang Süß. Fast rescheduling of multiple workflows to constrained heterogeneous resources using multi-criteria memetic

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[225] Antonio Costa, Fulvio Antonio Cappadonna, and Sergio Fichera. A hybrid metaheuristic approach for minimizing the total flow time in a flow...

REFERENCES

Yu:2014:ESI

Beskers:2014:HOE

Cecchini:2014:NNM

Chen:2014:LFT

Cui:2014:TSP

Xu:2014:CNO

REFERENCES

[251] Falk Hüffner, Christian Komusiewicz, Rolf Niedermeier, and Martin Rötzschke. The parameterized complexity of the rainbow subgraph prob-

Francisco I. Chicharro, Alicia Cordero, and Juan R. Torregrosa. Dynamics and fractal dimension of Steffensen-type methods. *Algorithms*

REFERENCES

[277] Ian Parberry. Solving the $(n^2 - 1)$-puzzle with $(8/3)pn^3$ expected moves. *Algorithms (Basel)*, 8(3):459–465, September 2015. CODEN ALGOCH.
REFERENCES

REFERENCES

[290] Juan Liang, Xiaowu Li, Zhinan Wu, Mingsheng Zhang, Lin Wang, and Feng Pan. Fifth-order iterative method for solving multiple roots of the

Li:2015:CSA

Babajee:2015:SIH

Khedr:2015:EDA

Yang:2015:SAF

Li:2015:NSI

Zhang:2015:PFT

Taher:2015:CAD

Zheng:2015:OBM

Hernandez-Veron:2015:LCT

Zhang:2015:EIC

Davis:2015:GRL

Jiang:2015:DAA

Chu:2015:NSC

[322] Ajie Chu, Shouqiang Du, and Yixiao Su. A new smoothing conjugate gradient method for solving nonlinear nonsmooth complementarity prob-
REFERENCES

93

REFERENCES

Cuzzocrea:2016:AMQ

Wang:2016:TED

Li:2016:GOP

Pizzolante:2016:MLC

Bulteau:2016:CCU

Qasim:2016:CFJ

REFERENCES

[355] Henrik Björklund, Martin Berglund, and Petter Ericson. Uniform vs. nonuniform membership for mildly context-sensitive languages: a brief

Tai:2016:RRT

Baeyens:2016:DSA

Yu:2016:VTS

Wang:2016:JAS

Gong:2016:OBA

Tantau:2016:GIA

Tavassoli:2016:DFI

[368] Zahra Hojjati Tavassoli, Seyed Hossein Iranmanesh, and Ahmad Tavassoli Hojjati. Designing a framework to improve time series data of

REFERENCES

REFERENCES

[394] Mehmet Fatih Tasgetiren, Quan-Ke Pan, Damla Kizilay, and Kaizhou Gao. A variable block insertion heuristic for the blocking flowshop
 schedul}

REFERENCES

REFERENCES

Xie:2016:DAA

Gao:2016:MMS

Fu:2016:NRI

Zheng:2016:WWH

Mezei:2017:UFF

Liu:2017:BBI

BenAbdallah:2017:MDD

[421] Olga C. Santos. Toward personalized vibrotactile support when learning motor skills. *Algorithms (Basel)*, 10(1), March 2017. CODEN ALGOCH.
REFERENCES

REFERENCES

REFERENCES

[441] Evaggelos Spyrou, Michalis Korakakis, Vasileios Charalampidis, Apostolos Psallas, and Phivos Mylonas. A geo-clustering approach for the

Chen:2017:RIA

Feng:2017:RPS

Pelusi:2017:RGS

Wang:2017:ESO

Jia:2017:IMP

Hofman:2017:TBD

REFERENCES

[454] Ioannis K. Argyros, Janak Raj Sharma, and Deepak Kumar. Extending the applicability of the MMN–HSS method for solving systems of non-

REFERENCES

REFERENCES

[485] Lijin Xie and Qun Wan. Automatic modulation recognition using compressive cyclic features. *Algorithms (Basel)*, 10(3), September 2017. CO-

Sanchez:2017:HLG

Ye:2017:BBO

Olivas:2017:CST

Nathan:2017:LCD

Zhang:2017:EDS

Zhao:2017:CBI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[536] Xiyue Tang, Yuhan Huang, and Guiwu Wei. Approaches to multiple-attribute decision-making based on Pythagorean 2-tuple linguistic Bon-

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[616] Yong-Hong Lan and Zhe-Min Cui. ILC with initial state learning for fractional order linear distributed parameter systems. *Algorithms (Basel)*,
REFERENCES

Dalen:2018:POP

Werner:2018:SIA

Ji:2018:EDL

Li:2018:DTP

Liu:2018:NMC

Himpe:2018:EEG

Yang:2018:PCC

[623] Guoliang Yang, Haitao Yi, Chunhua Chai, Bingxu Huang, Yuna Zhang, and Zhe Chen. Predictive current control of boost three-level and T-type

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[676] Haijing Tang, Guo Chen, Yu Kang, and Xu Yang. Application of data science technology on research of circulatory system disease prediction

Vignesh:2018:TCC

Fakhrolmobasheri:2018:MEP

Zhao:2018:FA

Madhusudhanan:2018:ILC

Savvopoulos:2018:LA

Zhou:2018:OUI

REFERENCES

[689] Ioannis Lamprou, Russell Martin, and Paul Spirakis. Cover time in edge-uniform stochastically-evolving graphs. *Algorithms (Basel)*, 11(10),
Kofinas:2018:FLA

Yin:2018:WNP

Almabrok:2018:FTP

Lagana:2018:ROC

Liu:2018:MBD

Essani:2018:AMA

REFERENCES

[702] Chentong Bian, Guodong Yin, Liwei Xu, and Ning Zhang. Virtual belt algorithm for the management of isolated autonomous intersection. *Algorithms (Basel)*, 11(11), November 2018. CODEN ALGOCH. ISSN
REFERENCES

Zhuan:2018:AIV

Kollintza-Kyriakoulia:2018:MIF

You:2018:IIM

Li:2018:RSB

Hu:2018:DDN

Gao:2018:UEI

REFERENCES

REFERENCES

REFERENCES

REFERENCES

[745] Vasilios Plakandaras, Periklis Gogas, and Theophilos Papadimitriou. The effects of geopolitical uncertainty in forecasting financial markets: a ma-

[751] Di Guo, Zhangren Tu, Jiechao Wang, Min Xiao, Xiaofeng Du, and Xiaobo Qu. Salt and pepper noise removal with multi-class dictionary learning and L_0 norm regularizations. *Algorithms (Basel)*, 12(1), January
REFERENCES

Maragoudakis:2019:DAS

Deabes:2019:FIE

Maguerra:2019:DEP

Sun:2019:EBD

Liu:2019:PPH

Scire:2019:FCB

REFERENCES

REFERENCES

Fernandez-Baca:2019:TCI

Templos-Santos:2019:PTP

Cao:2019:DOA

Li:2019:MAE

Nguyen:2019:PER

Dumitrescu:2019:SSH

Almonacid:2019:APR

REFERENCES

REFERENCES

[830] Hyeongjin Hwang, Jehwon Lee, Sangjune Eum, and Kanghyun Nam. Kalman-filter-based tension control design for industrial roll-to-roll sys-
REFERENCES

[837] Na Su and Qi Zhu. Power control and channel allocation algorithm for energy harvesting D2D communications. *Algorithms (Basel)*, 12(5), May
REFERENCES

Kizilay:2019:VBI

Schimmack:2019:ADE

Maxim:2019:TFD

Wang:2019:INN

Clements:2019:BPE

Lin:2019:AAC

Chen:2019:IND

[850] Jeang-Kuo Chen and Wei-Zhe Lee. An introduction of NoSQL databases based on their categories and application industries. *Algorithms (Basel)*,
REFERENCES

Stefanescu:2019:SBR

Deon:2019:PTG

Yu:2019:CBS

Ryabko:2019:TUD

El-Amin:2019:INS

Darmawahyuni:2019:DLR

Hasheminasab:2019:RFM

[863] Hamidreza Hasheminasab, Sarfaraz Hashemkhani Zolfani, Mahdi Bitarafan, Prasenjit Chatterjee, and Alireza Abhaji Ezabadi. The role
REFERENCES

176

Zhang:2019:IPP

Radac:2019:LOR

Chen:2019:HAN

Ciaramella:2019:RCV

Ghuman:2019:LFA

Sato:2019:CSM

REFERENCES

REFERENCES

Qu:2019:SSB

Trifan:2019:HMM

Rusu:2019:ODS

Horla:2019:VCA

Faict:2019:MGI

Bergadano:2019:DDP

Zhang:2019:SID

REFERENCES

Haddadene:2019:BVR

Finbow:2019:GT

Vestias:2019:SCN

Zhang:2019:RMA

Pitolli:2019:CMN

Farago:2019:SDS

Nepomuceno:2019:FRA

REFERENCES

[916] Max Bannach and Sebastian Berndt. Practical access to dynamic programming on tree decompositions. *Algorithms (Basel)*, 12(8), August
REFERENCES

[923] Zongyang Li, Yefei Wang, and Le Wang. A fast particle-locating method for the arbitrary polyhedral mesh. Algorithm (Basel), 12(9), September
REFERENCES

Azais:2019:NEE

Teng:2019:FAL

Ghoniem:2019:NHG

Li:2019:IWM

Chen:2019:FDR

Luo:2019:CTI

Aziz:2019:SSM

Djidjev:2019:UGP

deHaan:2019:CPP

Creignou:2019:PEM

Dourado:2019:PSB

Meindl:2019:FBI

Shah:2019:CQD

REFERENCES

Torres-Sospedra:2019:CSI

Shuai:2019:USL

Zhao:2019:IAN

Gottesburen:2019:FBN

Gotschel:2019:CCL

Hamann:2019:CBM

[949] Ilia Tarasov, Alain Haït, and Olga Battaïa. A generalized MILP formulation for the period-aggregated resource leveling problem with variable job
Tadesse:2020:DSI

Juan:2020:UBR

Werner:2020:SIE

Shahid:2020:CAD

Espinoza:2020:NAF

Barbay:2020:OPF

REFERENCES

Lutgehetmann:2020:CPH

Zhang:2020:CCT

Yan:2020:MCM

Li:2020:NDA

Smeresky:2020:OLS

Keshtkar:2020:UUB

Sharma:2020:LCE

REFERENCES

Min:2020:FFD

Pilz:2020:ABS

Alekseeva:2020:PSC

Xue:2020:OCS

Rodriguez-Mata:2020:FSM

Loukrezis:2020:AUQ

Andreas Rauh, Wiebke Frenkel, and Julia Kersten. Kalman filter-based online identification of the electric power characteristic of solid oxide fuel

[1014] Athanasios Alexopoulos, Georgios Drakopoulos, Andreas Kanavos, Phivos Mylonas, and Gerasimos Vonitsanos. Two-step classification with

[1027] Liliya A. Demidova and Artyom V. Gorchakov. Research and study of the hybrid algorithms based on the collective behavior of fish schools and

REFERENCES

[1052] Philippe Blondeel, Pieterjan Robbe, Cédric Van hoorickx, Stijn François, Geert Lombaert, and Stefan Vandewalle. \(p \)-refined multilevel quasi-Monte Carlo for Galerkin finite element methods with applications in

[1065] Diego Santoro, Andrea Tonon, and Fabio Vandin. Mining sequential patterns with VC-dimension and Rademacher complexity. *Algorithms*
Zh:2020:NMI

V:2020:MDL

Chen:2020:PSP

Chen:2020:EDD

Ma:2020:CPD

Malczewski:2020:IRE

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Khang:2020:FMC

Knudson:2020:ATG

Li:2020:MHS

Makris:2020:TSA

Malowany:2020:BIV

Margaris:2020:ADE

[1123] Luc Bonnet, Jean-Luc Akian, Éric Savin, and T. J. Sullivan. Adaptive reconstruction of imperfectly observed monotone functions, with applications to uncertainty quantification. *Algorithms (Basel)*, 13(8), August
Cavanna:2020:AMA

DEmidio:2020:FAM

Donado:2020:OCR

Dritsas:2020:TCK

Dupin:2020:MLG

Epstein:2020:SFA

Islam:2020:RRA
Md. Saiful Islam, Emam Hossain, Abdur Rahman, Mohammad Shahadat Hossain, and Karl Andersson. A review on recent advancements in...

REFERENCES

[1143] Filippo Zanetti and Luca Bergamaschi. Scalable block preconditioners for linearized Navier–Stokes equations at high Reynolds number. *Algo-
REFERENCES

219

REFERENCES

[1156] Fabio Cumbo, Eleonora Cappelli, and Emanuel Weitschek. A brain-inspired hyperdimensional computing approach for classifying massive

[Du:2020:IHA]

[Katsaragakis:2020:SUT]

[Kondylakis:2020:RDC]

[Li:2020:FAA]

[Li:2020:SMO]

REFERENCES

REFERENCES

[1180] Xin Chen, Hong Zhao, and Ping Zhou. Lung lobe segmentation based on lung fissure surface classification using a point cloud region grow-
REFERENCES

Dong:2020:BQE

Fedele:2020:ISS

Feng:2020:EFE

Goyal:2020:ORP

Hajij:2020:EDR

Kim:2020:DVN

REFERENCES

REFERENCES

[1205] Frantisek Franek and Michael Liut. Computing maximal Lyndon sub-
strings of a string. *Algorithms (Basel)*, 13(11):??, November 2020. CO-

[1206] Zhenwen He, Shirong Long, Xiaogang Ma, and Hong Zhao. A boundary
distance-based symbolic aggregate approximation method for time series
data. *Algorithms (Basel)*, 13(11):??, November 2020. CODEN ALGOCH.
13/11/284.

[1207] Eslam A. Hussein, Christopher Thron, Mehrdad Ghaziasgar, Antoine
Bagula, and Mattia Vaccari. Groundwater prediction using machine-
learning tools. *Algorithms (Basel)*, 13(11):??, November 2020. CODEN
1999-4893/13/11/300.

[1208] Paul Samuel Ignacio, Jay-Anne Bulauan, and David Uminsky. Lumawig:
an efficient algorithm for dimension zero bottleneck distance com-
putation in topological data analysis. *Algorithms (Basel)*, 13(11):??, November

[1209] Napsu Karmitsa and Sona Taheri. Special issue “Nonsmooth Optimiza-
tion in Honor of the 60th Birthday of Adil M. Bagirov”: foreword by
Guest Editors. *Algorithms (Basel)*, 13(11):??, November 2020. CODEN

[1210] Giuseppe Lancia and Marcello Dalpasso. Finding the best 3-OPT move in
subcubic time. *Algorithms (Basel)*, 13(11):??, November 2020. CODEN

[1211] Min-Young Lee and Young Ik Kim. Development of a family of Jarratt-
like sixth-order iterative methods for solving nonlinear systems with their

REFERENCES

REFERENCES

REFERENCES

[1262] Saleh A. Bawazeer, Saleh S. Baakeem, and Abdulmajeed A. Mohamad. New approach for radial basis function based on partition of unity of Taylor series expansion with respect to shape parameter. *Algorithms (Basel)*,

Gapeev:2021:PAC

Guzzo:2021:SIP

Hamalainen:2021:ISK

Hansknecht:2021:DSP

Ishtaiwi:2021:DCS

Ji:2021:MNW

Kaye:2021:MAE

REFERENCES

REFERENCES

[1308] Xiaoting Mo, Xinglu Liu, and Wai Kin (Victor) Chan. Modeling and optimization in resource sharing systems: Application to bike-sharing with

REFERENCES

REFERENCES

Gurvich:2021:CHM

Han:2021:DAC

Lang:2021:ELA

Li:2021:FMC

Li:2021:IRI

Lucena-Sanchez:2021:FLS

[1334] Usman Mahmood, Zening Fu, Vince D. Calhoun, and Sergey Plis. A
deep learning model for data-driven discovery of functional connectivity.
Algorithms (Basel), 14(3), March 2021. CODEN ALGOCH. ISSN 1999-

[1335] Nicholas Mamo, Joel Azzopardi, and Colin Layfield. An automatic par-
ticipant detection framework for event tracking on Twitter. *Algorithms
(Basel)*, 14(3), March 2021. CODEN ALGOCH. ISSN 1999-4893 (elec-

[1336] Werner Mostert, Katherine M. Malan, and Andries P. Engelbrecht. A
feature selection algorithm performance metric for comparative analysis.
Algorithms (Basel), 14(3), March 2021. CODEN ALGOCH. ISSN 1999-

[1337] Andreas Rauh and Julia Kersten. Transformation of uncertain linear
systems with real eigenvalues into cooperative form: The case of constant
and time-varying bounded parameters. *Algorithms (Basel)*, 14(3), March

[1338] Andreas Rauh, Auguste Bourgois, and Luc Jaulin. Union and inter-
section operators for thick ellipsoid state enclosures: Application to
bounded-error discrete-time state observer design. *Algorithms (Basel)*,

Relaxed Rule-Based Learning for Automated Predictive Maintenance:
March 2021. CODEN ALGOCH. ISSN 1999-4893 (electronic). URL
https://www.mdpi.com/1999-4893/14/3/86. See [1167].

[1340] Mahdi Rezapour and Khaled Ksaibati. Accounting for attribute non-
attendance and common-metric aggregation in the choice of seat belt use,
REFERENCES

REFERENCES

Zheng:2021:MMC

Zisad:2021:INN

Amirghasemi:2021:EDB

Cicerone:2021:QHD

Cordero:2021:CSN

Deon:2021:PCW

Dey:2021:MFA
REFERENCES

REFERENCES

REFERENCES

REFERENCES

[1398] Vladimir Stanovov, Shakhnaz Akhmedova, and Eugene Semenkin. Difference-based mutation operation for neuroevolution of augmented

REFERENCES

REFERENCES

Poudel:2021:AVT

Que:2021:SME

Ruffini:2021:GDO

Rupp:2021:LBQ

Sun:2021:CUN

Totounferoush:2021:ESI

Wang:2021:APC

[1431] Chunxia Wang, Jun Bi, Quyue Sai, and Zun Yuan. Analysis and prediction of carsharing demand based on data mining methods. *Algorithms*

REFERENCES

Atchade-Adelomou:2021:QQC

Bhatti:2021:DFH

Ebrahimi:2021:HAI

Gao:2021:SMP

Gonzalez-Neira:2021:MSA

Huang:2021:CCF

Ibrahim:2021:OTM

Jnoub:2021:FCR

Kang:2021:SAP

Ma:2021:CSB

Muaad:2021:AND

Nemec:2021:OWM

REFERENCES

Jatschk:2021:GCO

Kegenbekov:2021:ASC

Kontogiannis:2021:TDA

Kousis:2021:DMA

Lancia:2021:CCI

Li:2021:DOC

Li:2021:ETV

[1488] Zhenyu Song, Xuemei Yan, Lvxing Zhao, Luyi Fan, Cheng Tang, and Junkai Ji. Adaptive self-scaling brain-storm optimization via a chaotic
REFERENCES

273

REFERENCES

Wang:2021:NAD

Weiner:2021:IDT

Wu:2021:CDM

Xu:2021:SIG

Yamada:2021:SSS

Zhang:2021:EGS