A Complete Bibliography of Publications in

Bayesian Analysis

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 June 2023
Version 1.22

Title word cross-reference

[MP18]. G [ZH+16, BH11, FN22, HBJ14, SKG15, Wan17], Γ [GD09]. J
[HYDE21]. Lp [Scr14]. M [LC17], Μ [CCY13]. p [FMM18, SF14]. P(X < Y)
[RS13, VR11]. ψ [SM19]. R* [LV22]. t [CF10, FD14b, HSH21a].

-Complete [CCY13, LC17]. -D [BVN09]. -Distributions [FD14b].
[LC17]. -Optimal [AGG16]. -Prior [ZH+16]. -Priors
-value [SF14]. -Values [FMM18]. -walk [CF10].

Aalen [DRRS17]. ABC [GRM+09, Pra17]. Abnormal [BF17]. Abundance
[GSWF19]. Accelerated [GW16]. Accelerating [DEGP22, WSD22].
Accelerator [LSZH06]. Accounts [BG13]. Accuracy [CS12]. Accurate
Acquisition [JGP+19, SMBS+23]. Activation [GS+21]. Activity [HAJF+23]. Acyclic [CCVP+18, DBHG+19]. Adaptation [NdVA+20].

Acquiring [Pra+17]. Adaptive [BS+14, BW+15, BCJ+21, FM+18, FT+13, GM+16, LW+21, LBJ+16, Ma+17, MTS+21, PKL+10, SCHT+13b, Sc+14, SK+17, SCKGC+21, SOL+12, XX+20, YSLR+14, RW+08]. Additive [KK+16, KCK+21, VHV+20, ZSM+07].

After [XTMR+17]. Against [GDB+20, GBGTR+19]. age [BC+11a].

Air [DWM+21, XTMR+17]. al. [LH+10, Ver+06, WFR+11b].

Albert [Fre+12, Gos+12]. Algorithm [WOJL+22, ZG+19, CF+10, WT+06].

Alternative [OM+22]. Analysers [MVG+20]. Analyses [WG+15, BVN+09, CZ+10, Chr+06, CLM+07].

Analysis [APS+18, ADL+12, BHvD+17, BG+21, BM+22, Ber+06a, Bra+22, CMG+14, CFL+18, CCL+09a, DP+12, FSG+08, GTHB+19, Gl+06a, GGM+19, HSH+21a, HHG+08, KSM+06, KSM+18, KFF+19, KEMM+19, LB+09, LB+16, MC+07, NJM+18, Raj+19, RCLW+17, RdGvP+06, RMHR+15, SXR+06, SSM+20, SLB+21, SCF+14, TRWF+17, VGB+10a, WG+18, Wan+17, YHW+16, ZJLC+10, ZWC+16, ZWF+18, Zho+18, dTM+10, AZ+10, AVCGG+08, BM+06, Dra+06, FMY+11, FS+11, HkLM+10a, JKNR+09, Kad+06, MPK+10, OBS+13, RH+11, vdL+11b]. Analyzing [CG+10].

Ancestral [XS+07]. angle [HkLM+10a]. ANOVA [CS+16a, KS+10a].

Application [ATF+23, AFRB+14, BGQ+21, GS+21, Hdg+21, HG+23, MNS+20, NJ+21, Rcsss+21, SS+08, SW+22, WHG+06, XX+20, ZWC+16, AVC+08, BVN+09, FMV+11, GP+10, LN+08, LZN+08, T+10]. Applications [BH+18, BR+13, FCP+09, GDJ+18, RL+14, ZWD+14, Hof+11b]. Applied [RDP+16, Bar+11].

Approach [Bha+07, BGQ+20, Cas+21, CCVP+18, CGS+22, D+15, FH+17, GDB+20, GMB+20, GHO+13, GGM+19, HMC+09, HSH+21b, HMZ+22, HSF+20, LM+16, LM+21, LC+23, MB+17, NBC+14, OJP+23, PHG+23, RMP+12, TK+12b, VDP+15, WP+22, HSO+09, JP+08, MS+07a, SB+11]. Approaches [SC+17]. Approximate [BW+15, CNR+15, DPM+16, GMS+16, GL+17, HSH+21b, JGP+19, LNR+19, LC+22, PKL+11, RCM+22, SCKGC+21, WFR+11a].

CLH$^{+}$16, Cla12, CC15, Das16, DL15, Dob13, Fea11, Fer12, Fre14, Fre12, GPP16, Gel10, GM13b, Gos12, GL16, Gra16, GMR15, GB12, HP15, Han16, Hof13, KB15, Koo11, Lam06, LH10, Lia12, LC12, Lys16, MYGE16, MGP15, O’H13, PS13, RF16, Rou15, Sca12, Sha14a, Siv15, Sta12, Was13, Was10, WS14, Woo13, WFR11b, Xu14, Zid15, tHM14, AB09, All11, BD09, Ber08, Car06, Che06, CK09, CGM09, CS07, Cra09, Dah07, Dun09, Fra09, Fre11, FS08, Gel06, Gli09, Han11, HP08, Hen10, HG08, Hoe06, Hof11a, Kad08, KN06, Li09, LG06, Mac07, MCG11, MV06, Mil08, Phu06, Poo10, QM09, Ran10, Rig10, Rob07, Rou08, RC07, Sch09, Sen08, SYvD11, SS10. article [SK08, Ste09, Ver06, Was08, vD10, vdL06]. articles [Chr06, Dra06, Fie06a, Kad06, Kas06, Lad06, O’H06, Was06]. Artificial [Per07]. Aspects [Joh13, NB18]. Assess [CHG12]. Assessment [BE13, GHO$^{+}$13, Joh07, LG17, MS07b, WG15, Rob10, Tre08]. Assessments [PVC20]. Assisted [DM07a], associate [MT09b]. Associated [Kad16]. Association [CS12]. Associations [LMC20]. Astrophysics [vDCE$^{+}$06]. Asymmetric [LG12b, RS13, SML20, SRG13, SR17]. Asymptotic [AZ13, DG13, GTGC16, GC17, Kom15, Spi08]. Asymptotics [GM13a]. Atlantic [TGK$^{+}$11]. Atrophy [RGC20]. Attraction [WDML22]. Augmentation [TAN$^{+}$18, PS11a, PS11b]. Auto [DBHG19]. Auto-Regressive [DBHG19]. Automated [TdVPAB17]. Autopsies [LMC20]. Autoregressive [DGMQ13, HK22, PKL$^{+}$11, YHW16]. Autoregressive [CVL12, KFF19, KCR19, KG09, LBBJ16, Per07, SCFJ14, BC11a]. Auxiliary [OM20, HH06, vdL11a]. Available [SN07]. Average [YVSG18]. averages [MM07]. Averaging [SXR06, YMP13]. avoiding [LZN08]. Away [RRJW20]. axioms [DT09].

Bagged [HM23]. balancing [GP10]. Balls [WG18]. Banded [LL20]. Bandwidth [LL20]. BART [CGMS22]. Baseball [QMRM08, JMW09a]. Based [ANRS16, BS14, CBC23, DM15a, DL07, JGP$^{+}$19, LLPR06, LTY21, Nec19, NTL19, PQ15, Per07, RMP12, SCHT13b, SN07, SRG13, SR17, US16, VL20, XLH16, XTM17, BD06a, BAR23, FI09, GP12, Hof06, HHG08, LAE$^{+}$09, MS07a, FFS10, RW08, Vir11]. Baseline [Han06]. basic [CO08]. Basket [LTY21]. Bayes [ATF23, Ald08, AKO19, BE13, BVN09, CCDT$^{+}$12, CCVP18, CS16a, DG13, EH17, GTGC16, GHO$^{+}$13, HC17, HhHG21, LC17, LZN08, MF19, TGM09, WOPF11, Was06, Wei12, Woo14]. Bayesian [Fie06a, Fie06b, Kad06, SR17, vdL11a, APS18, AGG16, ADP22, AM07, AZ10, AO06, AVCGG08, ADL12, APRS22, AFRB14, BPSS15, BM06, Ban17, Bar11, BF17, BB10, BP20, BHyD17, BG06, BG21, BF21, BJM$^{+}$22, Ber06a, BJS23, BGP15, BHJ18, Bha07, BLE16, BW15, BC11b, BR10, Bra22, BD06a, BG13, BALQ06, BS21, BMBV22, CNR15, CKY20, CHG12, CS13, CZ04, CDP$^{+}$12, CS12, CVCB23, CVL12, CLMtH15, CZGV19, CC21, CEMR12, CB21, CBC23, CKH08, CDH16, CCY16a, sC16, Chr06, Chr09, CO08, COIG19, CFLN18, CGS22, CCL$^{+}$09a, CT11, CAV23, CHMK22, DCKW08,
Bayesian

DM15a, DWM+21, DW13, DRH17, DG11, Des13, DLPS20, DGMQ13, DHDC12, DR16, Dra06, DPM16, DT18, DD07, DT09, DD18, EMS13, FT12, Fie06b, FH17, FD14b, FMV11, FCP09, GDB20, Gel08a, GLM18, GMP21, GLJB23, GTHB19, Gol06a, Gol06b, GD09, GMB20, GM4PV21, GMS16, GL17, GMvCT14, GABP19, GW16, GC18, GvO17, GRM22, GS21, GGPM19, DBGTR19, HAJF23, HMC20, HJZ12, HSH21a, HW06, HSH+21b, HGXS23, HZM+22, HD12, HS10, HUT07, HW19, JGP+19, JGVM21, JMW09a, J16, JKNR09, JD08, JYL17, J19, Joh07, Joh13, JHJ22, Kad06, KR21, KS10a, KFF19, KD12, KK22, KDV09, KAL12, KSLP12a, KCR19, KEMM19, KS19, KCK+21, KD12, Kob17, Kom15, KMB19, KG09, KGGC10, Kyu11, Lad06, LHE+20, LMLM14, LJC21, LL18, LNR19, LL20, LL23, LG17, LM16, LM21, LKOB19, LC22, LM21, LN08, LL10, LX10, LG14, LMC20, LBLS22, LMPS17, LW09, LBB09, LN13, LCL+14, LC23, MJW08, MC07, ML22, MMN22, MS07a].

Bayesian

[MBBRB17, MMW15, MNS+20, MS07b, MJM16, MC15, MW15, MNPM20, MRG19, MG20, MM13a, MHSC16, MQ22, Nee19, NBCC14, NJ21, NGT19, NDME18, NTL19, OS09, OJP23, OBS13, OGP19, OM20, OM22, PW19, dBPSW08, Per07, PKLM10, PKL+11, Poi06, Pol17, PPG08, PBT+21, PJP+21, PHG23, Pra08, Pia18, QMR08, Rab16, RCL17, RCMO22, RdGvP06, RL14, RB07, RT18, RH11, RMHR15, RC17, RGC20, RS13, RSS17, RD16, SRA23, San12b, SMBB23, SW22, S10, SXR06, SK17, Sha21, SY17, SY19, SCKL22, SS11, SSM20, SPG15, SCKGC21, Sik06, SCJF14, Spi08, Srp11, SRG13, SB11, SG16, SG17, TM17, TRWFB17, TFHP18, TZG10, TK12b, Tre08, TSA20, US16, VR11, VDP15, VGB10a, VDP19, WMP11, WG18, WT06, Wan12, WB18, WT20].

Bayesian [Kas06]. be [Fie06a, dBPSW08]. become [Fie06b].

Bernstein [PS15]. Beta [BMP12, CVL12, CLM17, TM17].

Binary [AFRB14, DK15, HH06, HvdH09, RH11, vld11a].

Binomial [BJS23, Gop22, Kad16, MJW08, Nee19, TM17, ZWF+18, Zho18, TGM09]. Biological [MMN22, RDP16]. Bipartite [GRM22]. birth [DZP+07a].
Combining [ADGJ+12a, BP08, WHG+06]. Combustion [VDF+12]. Commensurate [HSC12]. Comment [AB09, All11, BD09, Ber08, Ber14, Bur10, Car06, CM13, CB14, Cas14, CD15, CGM09, Cla12, CS07, CC15, Dah07, Das16, DL15, Dob13, Dun09, Fea11, Fer12, For14, Fra09, Fre11, Fre12, FS08, GPP16, Gel10, GM13b, Gli09, Gos12, GL16, Gra16, GMR15, GB12, Han11, HP15, Han16, HP08, Hen10, HG08, Hof11a, Hof13, Kad08, KB15, Koo11, Lam06, LH10, Li09, Lia12, LC12, LG06, Lys16, Mac07, MCG11, MYGE16, MGP15, MV06, Mil08, O’H13, PS13, Phu06, Poo10, QM09, Ran10, RF16, Rig10, Rob07, Rout08, Rout15, RC07, Sca12, Sco09, Sco14, Sen08, SYvD11, Sha14a, Siv15, SS10, SK08, Sta12, Ste09, Ver06, Wan13, Was08, Was10, WS14, Whi10, Woo13, WFR11b, Xu14, Zid15, tHM14, vD10, vdL06, Chr06, Dra06].

Comment [Fie06a, Gel06, Hoe06, Kad06, KN06, Kas06, Lad06, O’H06, Was06, vdL11a]. Comments [Che06, CK09, Cra09, Dra06]. Communities [LC23]. Community [SC17, vdPvdV18]. Comparative [SRX06]. Compare [MRB12]. Comparing [BP07, CEMR12, GBGTR19]. Comparison [CS13, CB21, HK18, TA+18, WM23, XTM17, BD06a]. comparisons [Spi11]. Complete [LC17, CCY13]. Completely [CAS+19, AM07].

Constant [Hut07]. Constrained [CS13, GM13a, LKOB19]. Constraint [SRA23]. Contents [Ano06a, Ano06b, Ano06c, Ano06d, Ano07a, Ano07b, Ano07c, Ano07d, Ano08a, Ano08b, Ano08c, Ano08d, Ano09a, Ano09b, Ano09c, Ano09d, Ano10a, Ano10b, Ano10c, Ano10d, Ano11b, Ano11c, Ano11d, Ano11e, Ano12b, Ano12c, Ano12d, Ano12e, Ano13b, Ano13c, Ano13d, Ano13e, Ano14d, Ano14e, Ano16c, Ano16d]. Context [EMS13, NPKC14, US16]. Context-Dependent [US16]. Context-Specific [NPKC14]. contingent [LKF09]. Continuous [APD19,
HMZ$^{+22}$, HYY12, QSF09, SS08, Sha21, XCPX22, ZWC$^{+16}$, CF10, HS09.

Continuous-Time [SS08]. Contraction [CGZ16]. Contributed [APA$^{+13}$, Ano14a, BCT$^{+16}$, CLH$^{+16}$]. Control

CCDT$^{+22}$, GBGR19, MTS$^{+21}$, SY19). Controlled [GMdPV21].

Convergence [LV22, NS23, WT06]. Convolution

[GSWF19, ZKRVA18, MPK10]. Conway [KSM$^{+18}$, BF21, KSM$^{+06}$, Kad16].

Cooling [MTS$^{+21}$]. Copula [GL17, SCHT13b]. Copulas

[GC18, KS19, Wil18], Cooling [MTS$^{+21}$]. Copula [GL17, SCHT13b]. Copulas

[GC18, KS19, Wil18]. Correction

[CB21, KEMM19, SR17, dOAL$^{+22}$, KSM$^{+18}$]. Correlated

[BBGR21, GL22, NGT19, PL16, MAL11]. Correlation

[GSWF19, ZKRVA18, MPK10]. Conway [KSM$^{+18}$, BF21, KSM$^{+06}$, Kad16].

Covariance [FJM14, HW13, KK22, LHE$^{+20}$, LL18, LM16, LM21, MP18, XCPX22, YZCC16, Hof11b]. Covariate [HD12, MHSC16]. Covariates

[BWD20, DCKW08, DLPS20, PQ15, WT20, MT09b]. Credibility

[BD09, Dun09, Sch09]. Credible

[LNR19, Sha14b, WG18, ZB18, DM07b]. Credit [BMBV22]. Criminal

[BS21]. Criteria [CFRT06a, US16, FI09]. critical [Rob10]. Criticism

[SMW19]. Cross [BH07, HC17]. Cross-Validation [BH07, HC17].

Cumulative [MMW15]. Curve [BALO06]. Curves

[CDH16, BB08a]. Cyclist [DWM$^{+22}$]. Cyclone [TGK$^{+11}$].

D [BVN09, SLB$^{+21}$]. DAGAR [DBHG19]. Dark [LC22]. Data

[APS18, AE17, ADP22, AQ17, AFRB14, BP20, BHW18, BG13, BR13, Cas21, CFRT06a, CB21, DCKW08, DRH17, EH17, EM06, GMP21, GL22, GR20, HIS22, Han06, HRW18, HGXS23, KK22, Kom15, Kow21, LJCB14, LM16, LM21, LMPS17, LBBJ16, MCM016, MC15, MTS$^{+21}$, NSAL$^{+21}$, OMC19, PS20, PS11a, PS11b, PBT$^{+21}$, Qia18, QMRM08, SW22, SSM10, DGW18, ZYCC16, ZKRVA18, ZWE$^{+18}$, ZD17, dOAL$^{+22}$, dTM10, DGS09, GM09, GP10, Hof11b, HvDH09, JD08, Ngu10, RH11, Spi11, Vir11, vdL11b]. Data-Dependent [TM17].

Datasets [APRS22, ZSM07, BM06, HKLM10a]. Dawid

[GMR15, HP15, KB15]. day [PKL$^{+11}$]. De-Duplication [TSL20]. Decision

[DMW$^{+21}$, Iwj19, LV22, OM22, XTM17]. Decision-Theoretic

[OM22, XTM17]. Decisions [HMZ$^{+22}$, KM14]. Decomposable

Deconvolution [HYDE21, vDCE$^{+06}$]. Deep [MF12, PS17]. Default

[Gr10, KN06]. Definite [WC14b]. Degrees [VW14]. Delayed

[LTY21, LN13]. Demographic [BG13]. Densities

[CLMT15, GM21, Kom15]. Density [BGQ20, GL18, HK22, JLM$^{+17}$, RV14, Scr14, SRG13, SR17, TZG10, WPCAV22, Grie10, Rth08]. Dependence

[CB21, FH17, LL23, LM16, WS20, WFR11a]. Dependencies [WRC11]. dependency [PW08]. Dependent [BJQ12, DD07, JLM$^{+17}$, KCR19, KK16,
Dynamical [SCHT13b]. Dynamics

Experiments
[AFRB14, DT18, LKOB19, OM20, OM22, SXR06, WWACH16, WHG+06].
Expert [ADGJ+12a, sC16, DM07a, DL07, PVC20]. Explaining [GSW+06a].
Explanatory [Bic20]. Exploitation [SMBS23]. Exploiting [FMO16].
Exploration [SMBS23, BR10]. Exponential [DP12, RR12]. Exposure [CCL+09a, CT11]. Expression [HCH06]. Extended [JHB22, RB07].
Extension [HdHG21]. Extensions [BJQ12]. Extrinsic [LMCD19].

Factor [APRS22, BJM+22, FSG08, GL22, LM21, ML22, MF19, MVG20, OK22, Wei12, Zho18]. Factorization [ZG19]. Factors [AKO19, BE13, CCDT+22, CS16a, HC17, HdHG21]. Failure [DD07].
Families [DP12, RR12]. Family [CS16b, ZWF+18]. Faraday [SHK07]. Fast [BF21, CCZ17, Gop22, SLB+21, ZG19, vES21]. favor [TGM09]. Fay [Pol17].
Fixed [SK13]. Fixed-Form [SK13]. Fleming [ALR21]. Flexible [BC11a, KSLP12a, LHE+20, MHSC16, QSF09, VDP15]. Flows [BG21, TSA20]. Flyer [WHG+06]. fMRI [CSN+15, LBBJ16, SLB+21].
Formulations [TSA20]. found [CT11]. Frailties [HJZ12]. Frame [SF14]. Framework [CNR15, DWM+21, TN14, TSL20]. Fraud [BMBV22]. free [Hof16, TDC+22, DEJL11, GRM+09, Pac06, WFR11a]. free-knot [Pac06].
Function [LLPR06, Pra17, RRJW20, LKF09]. Function-Specific [RRJW20]. Functional [BHJ18, EH17, GABP19, HZ22, HGXS23, JP16, KCR19, Kow21, LJCB14, SW22, SCFJ14, SG16, SG17, YZCC16, ZD17, KS10a, vdlL11b].
Functional-Coefficient [SCFJ14]. Functions [ANRS16, BPJ13, CDH16, GABP19, Hut07, PQ15, PBT+21, SMBS23, MM07]. Fusion [PW19].

Galactic [SHK07]. Galaxy [VGB10a]. Gamerman [CD15, CC15, Zid15]. Gamma [NB18, Qia18, BC11a, CLM07, GB10, Nee19]. Gammas [Han06]. Gaussian
[AZ13, BWD20, CKY20, FND15, Gu19, GL22, HSH+21b, JGVM21, JB18, KS10a, KFF19, LG14, LMC20, LMD19, MF22, MW15, NS18, OJP23, PVC20, Raj19, RV14, Scr14, SHK07, TZG10, VHV20, WWACH16, ZKRVA18].

Gaussian-Process [NS18].

Gelfand [Fer12, GB12, Hoe06, LC12, Ver06].

Gelman [Ber08, Kad08, Sen08, Was08].

Gene [HCH06, NJM18, Bar11].

General [GTGC16, HSBvdW17, HSC12, Ski06, CLPT10, CF10, WT06].

Generalised [Pol17].

Generalized [BLE16, BH11, Bra22, FNP18, FSMWG21, GKMvCT14, HSC12, TN14, VDP15, WM23, CHIK08, KN06, MPK10, RH11, Yim09a].

Generating [HRW18].

Goodness [CCQ11, HC17, Vie07].

Goodness-of-fit [CCQ11].

GPU [GW16].

GPU-Accelerated [GW16].

Hastings [Pra16a].

Hazard [DD07].

Hazard [HJZ12].

Heavy [GOO07, Tre08].

Heavy-tailed [GOO07].

Held [vdL11a].

Hellinger [She14].

Herriot [Pol17].

Heterogeneity [SM17].

Heterogeneous [APRS22, HMC20, HLC20, PQ15, VHV20, ZD17].

Heteroscedastic [SCFJ14].

Hidden [BG06, FWLH06, HAJF23, KCG15, MNPM20, XSO7, Ry08a].

Hierarchical [AZ10, BFPT22, BCR20, BQG21, BHJ18, Bra22, BS21, CKG20, CI06, CCL+09a, CAS+19, DD07, EDF+19, Gop22, GB17, JMWO9a, KFF19, LPLR06, MM16, MTM12, OGP19, PVC20, RMHR15, RSTT17, YS07, YZCC16, YPVG22, YH11, GSW+06a, Gel06, MS07a].

Hierarchical-Based [SN07].

High [APD19, Ban17, BHW18, CKG20, GC17, Joh13, LL20, LL23, LAE+09, ML22, MRG19, OK22, RGC20, SN18, SKG15, YN20, vDCE+06, LN08, MT09b, Sp08].

High-Dimensional [APD19, Ban17, BHW18, CKG20, MRG19, OK22, SN18, SKG15, GC17, LL20, LL23, MT09b, Sp08].

High-Energy [vDCE+06].
WN21, XX20, ZR21, CHIK08, KN06, Leo11, Pac06, RH11. Link [MMW15].
Linkage [GRM22], LIO [SMBL19]. Local
[CKG20, CS16b, HIS22, LMLM14, LL23, SG16, ZB18, vdL07]. Local-Mass
[LMLM14]. Localization [VGS+21]. Locally
[FM18, KCR19, MS07b, Ngu10]. Locally-Autoregressive [KCR19].
Location [RS14a]. Location-Scale [RS14a]. Log
[FT12, JB18, MM16, NTL19, RMP12, ZKRNA18, FJS08, KS10b].
Log-Gaussian [ZKRVA18]. log-likelihood [KS10b].
Log-Likelihoods [MM16]. Log-Linear [JB18, RMP12]. Log-Normal [FT12].
Logarithmic [CVCB23]. Logic [HSF20]. Logistic
[GLM18, GP12, HBJ14, PWB12, RV14, SLAV13, TZG10, LN08]. Logit
[TM17, vdL11a]. Long [HMC09]. Longitudinal
[BJM+22, GMP21, GR20, PS20, HvDH09]. Look [CCL+09a]. Loss
[FT12, LLPR06, VL20]. Loss-Based [VL20]. Low
[DPM16, SMBL19, YMX23]. Low-Rank [YMX23]. lower [MM07]. Luce
[HK18, JHB22]. Lum [Fer12, GB12, LC12]. Lung
[XTMR17]. MacEachern [BJQ12]. machines [PS11a, PS11b]. Magnetic
[BHJ18, LJCBB14]. make [Fie06a]. Mallows [CAV23]. Manifold
[PSMB20, PJM+21]. Manifolds [LMCD19]. Manolopoulou [RGZ10, WHI10].
many [MY08]. MAP [DM07b, RCL17]. MAPK [PW08], MAPK/ERK
[PW08]. Mapping [DBHG19, MBRRB17]. Maps [HHG08, BP08]. Marginal
Markov [CLMTH15, CCVP18, FM18, GPL+19, HAIF23, HS09, JP08, KCG15, PMG14, PNNC17, PKLM10, Ryd08a, SPD19, TK09, TDY18, TdVPAB17, Wei12, XS07, XJC16, ZWC+16]. Markovian [MM14]. Mass
[LMLM14]. Massive [BP20, BM06]. Matching [KD12, ZSZ18]. material
[An14b, Ana14c]. materials [BVN09]. Matérn [SLB+21]. Matrices
[BCHJ19, GMP21, GL22, HW13, LHE+20, LL18, LL20, MP18, WC14b].
Matrix [CW07, MP18, PSMB20, XCPX22, YMX23, ZWDJ14, FI09]. Matrix-
[BF21, KSM+06, KSM+17, Kad16]. Maxwell-Binomial [Kad16]. mBART
[CGMS22]. MCMC
[BH07, DEGP22, LV22, LC22, NS18, NDV+20, SCHT13b, SOL+12]. Mean
[Pa17, WOPF11, YZCC16]. Mean-Covariance [YZCC16]. Meaningful
[ADL12, HD12, SC06, CG10, RB07]. Measures
[CAS+19, FMM18, KK07, LCS+14, Pas23, SHK07]. Measuring [CZ10].
Membership [HLC20, GM09]. Memory [HMC09]. Merge [ZSM07]. Merging
[BG21]. Metabolites [HYDE21]. Metals [HCH06].
Method [COIG19, KAL12, Kyu11, NGT19, SN18, WB18, WCKL18, BM06, LZN08, MT09b, Yin09a]. methodology [GD09]. Methods [BP07, BDK21, CEMR12, FJM14, LC22, LML21, Poi06, VL20, VHJS08, WM23, vDCE+06, BD06a, CZ10, GRM+09, JD08, OS09]. metrics [Scr14]. Metropolis [Pra16a]. Microarray [SXR06, CZ10]. Microbiome [SSML20]. micronutrient [DZP+07a]. Minimax [LL18, GD09]. Mises [PS15]. Misinformation [Pac06]. Missing [BWD20, CFRT06a, DCKW08, DLPS20, MRB12, WT20, GP10]. Missingness [BHS14]. Misspecified [DW13, GvO17, RSM15, SRG13, SR17]. Mitra [APA+13, CM13, Hof13, O’HI’13]. Mixed [BJS23, BDK21, DRH17, HD12, HLC20, JP16, PL16, TN14, WT20, WGBS17, Bar11, KN06, RH11]. Mixed-Effects [HD12, WGBS17]. Mixing [RRJW20]. Mixture [AIJGM22, DRH17, GM16, Han06, HRW18, JN07b, LR16, MCM10b, MCM20, Raj19, SW22, SM17, SML19, SM19, TK09, TK12a, XX20, CLM07, Gri10, JMKW09, WT06, YH11]. Mixtures [BGQ20, FN22, FSMWG21, GL18, MB12, MVG20, NB18, Nee19, Scr14, SS11, Wan17, YSB22, AVCGG08, B306, CLPT10]. Modal [Dal09]. Model [ADL12, BBGR21, BBG12, BBB06, BF21, BLE16, Bra22, BAR23, BS21, CS13, CVL12, CMG14, CZGV19, Cas21, CS16b, CCL+09a, CAV23, DCKW08, DM15a, DLPS20, DD07, GM16, GC18, HJZ12, Ho06, HM23, HHG08, JN07b, JNBQ13, JGP+19, Joh07, Joh13, KCG15, KMB19, LG17, LM16, LM21, LBBJ16, MM14, MMW15, MN+20, MD10, MCM20, MNPM20, NS23, OM22, PFS10, Per07, PKLM10, Pol17, Raj19, RW08, Ros22, SFZ08a, SX-06, SMW19, SOL+12, SCFJ14, TM17, TAN+18, Vir11, VDF+12, WC14b, XCPX22, YZCC16, YMP13, ZSM07, ZG19, vES21, BR10, CKS07, CLM07, CT11, DEJ11, FMV11, FS11, GM09, GRM+09, HvDD99, JHB22, LW09, MPK10, Pac06, RB07, WT06, vdL11a]. Model-Based [JGP+19, Ho06, HHG08, PFS10, RW08]. Model-Fitting [ZG19]. Modeling [BHJ18, CGS22, CAS+19, DK15, DGS09, EDF+19, FD14b, GSWF19, GR20, Han06, HSBvdW17, HRW18, JYL17, LHE+20, LC23, MCMW10b, MHSC16, PCM19, PBT+21, RGC20, SM19, TK12a, TRKS+17, TFHP18, VHV20, WRC11, WSDC13, WB18, XS07, XTM17, YN20, YSB22, ZKRA18, ZD17, dCJH13c13, AO06, GSW+06a, Hoe06, JMW09a, KS10a]. Modelling [CNR15, DG11, Des13, GB13, GL18, KR21, RdGvP06, Scu13a, ZWC+16, JMKW09, LW09, Pac06]. Models [AKO19, AQ17, BPSS15, BCR20, BHvD17, BG06, BJS23, Bha07, BWD20, BDK21, BH11, BHW18, BR13, BPH21, CHG12, CW07, CMG14, CC21, CFRTO6a, CI06, CSN+15, DBHC19, DW13, DRH17, DM07a, DGMQ13, DPM16, DEGP22, FWH06, FJM14, FND15, FNP18, FN22, GTHR19, GMB20, Gop22, GPL+19, GL17, GKMvCT14, GB17, GW16, GoVO17, HAJF23, HMC20, HN18, HSC12, Hof16, HSH+21b, HRW18, HD12, JV23, JP16, JLM+17, JB18, KFF19, KD12, KD09, KSLP12a, KCK+21, KDC21, Kow21, KG09, LLW21, MMM14, LJCB14, LR16, LMC20, LLPR06, LBU09, Ma17, ML22, MF22, MRB12, MMW15, MW19, MM16, MS07b, MMJ16, MW15, MT12, MG20, NJM18.
NTL19, NPKC14, OJP23, OK22, OM20, PQ16b, PVC20, PKLM10, PKL+11, PL16, Pra16a, Rah16, RSM15, RCMO22, RMHR15, RS14a, RDP16, SR16.

Models [SM17, Sha21, SN18, SMBL19, SHK07, TN14, TRWFB17, TAN+18, VGE19, VHJS08, VDP19, VDF+12, WRC11, Wan12, Wan15, Wan17, WC18, WGBS17, WG15, Wi18, WN21, XX20, XJC16, YPVG22, ZR21, ZWF+18, AZ10, Bar11, BC11a, BD06a, CCQ11, CHIK08, CO08, Dah09, Gel06, Gri10, HS09, HHC07, HH06, KN06, LKF09, LN06, LZN08, MS07a, MAL11, RD11, RH11, Ryd08a, WFR11a, YH11, vdL11a, vdL11b]. Modes [vdL07].

[FHK + 20, KK16, RC17, Wan17, Gel06, LN08, MAL11, PW08, TGM09].
Parametric [BJM + 22, DW13, KEMM19, SRA23, VDP19, QMRM08].
Partial [OJP23, XX20, AM07]. Partially [AKO19, DR16, MNS + 20].
Particle [BKD21, CLPT10, LSZH06, SS08]. Partition [LAE + 09, PHOD21, PQ16b, Raj19, Dah09, MAL11]. partitioning [MT09b].
pathway [PW08]. Pathways [CCL + 09a, MMJ16].
Partitioning [LAE + 09, PHOD21, PQ16b, Raj19, Dah09, MAL11]. partitioning [MT09b].
pathway [PW08]. Pathways [CCL + 09a, MMJ16].
Penalization [ZL15]. Penalized [KGGC10, ZB18]. percentiles [DZP + 07a].
Potts [MNP20]. Power [BP12, CI06, FND15, FNP18, FN22]. Power-Expected-Posterior [FND15, FNP18, FN22]. Powerful [NJ21].
Prior-Data [AE17, EM06, NSAL+21]. Priors
[APD19, ANRSL16, BS14, BBS15a, BHJ18, Bic20, BH11, CDL+19, CS13, CKG20, CS16b, CAV23, CHMK22, FM18, FND15, FNP18, FN22, FHK+20, FCP09, GKSG21, GTGC16, GC17, GB13, GB17, HIS22, HBJ14, HSC12, HZ22, JB18, KFF19, KK16, LVW20, LCS+14, PHOD21, PSMB20, PB20, RM21, RS14a, She14, SMBL19, SSML20, SLB+21, SKG15, Ste15, Wan17, XLI16, ZWDJ14, ZL15, ZB18, CKS07, CHIK08, Gri10, RB07].

R [DWM+21]. R-INLA [DWM+21]. R [Ald08]. Radiation [ZJLC10]. radio [AAFS06]. radiocarbon [BB08a, BAL06]. Random [BS14, BLE16, CLM015, CAS+19, DLPS20, FM18, FH17, KDV09, KK07, Pas23, PHC17, SLAV13, SC06, BVN09, CKS07, GRM+09]. Randomised [DT18]. Randomization [FMM18]. Randomized [MTS+21]. Rank [BHvD17, VG+21, YM23, GM09, vdl11b]. Rank-Normalization
t [VW14]. Table
[Ano06a, Ano06b, Ano06c, Ano06d, Ano07a, Ano07b, Ano07c, Ano07d, Ano08a, Ano08b, Ano08c, Ano09a, Ano09b, Ano09c, Ano09d, Ano10a, Ano10b, Ano10c, Ano10d, Ano11b, Ano11c, Ano11d, Ano11e, Ano12b, Ano12c, Ano12d, Ano12e, Ano13b, Ano13c, Ano13d, Ano13e, Ano14d, Ano14e, Ano16c, Ano16d].

Tadesse [CGM09, Fra09, Li09, Ste09]. Tail [BGP15, RSV14]. tailed
[GOO07, Tre08]. Target [Kom15]. Targeted [MCW10b]. Task [SMBS23].
technique [RM08]. Techniques [TAN+18, YS07, AZ10]. Telemetric
[HAF23]. Telescoping [FSMZG21]. Temperature [MNP20]. Temporal
[BHW18, RdGvP06, VDF+12, WSDC13, ZC20]. Temporally [HJJZ2].
Temporally-Stratified [HJZ2]. Tensor [GS21]. Term [CLM21]. Test
[FMM18, LL20, AM07, dBP08]. Testing [CB21, DD18, FH17, GTGC16, GBTR19, HSC15, KDV09, MP18, MF19, Sal18, Spi08, Sp11]. Tests
[FMM18, JYL17, N21, SY17]. Theorem [PS15, SS08, Ald08]. Theorems
[HZ22]. Theoretic [OM22, TMR17]. Theoretical [BG21]. Theory
[RSSSSL21, pD20, Cla10, Hoo08]. three [Vir11]. three-way [Vir11].
Threshold [GKvCT14]. Thresholded [CKY20]. Time [ADP22, AQ17, BF17, DHDC12, DPM16, DDP07, FDL06, HK18, HMZ+22, JNQB13, KR21, KMMM19, Kw21, LCB14, MHC16, NBB14, NGT19, PFS10, SS08, SW22, Sha21, WC18, YHW16, ZWC+16, DGS09, FMV11, FS11, HS09].
Time-Dependent [DD07, MHSC16]. Time-Frequency [YHW16].
Time-Varying [KR21, YHW16]. Time-Weighted [HK18]. Times [RRJW20].
Timing [HMZ+22]. Tobit [Kob17]. Tolerance [SCKGC21].
Topic [GTHB19]. Topological [MMN22]. Toxicsities [LN13]. Tractable [WC14b].
Transmission [MNS+20]. Treat [MTS+21]. Treatment [HCPH18, HMZ+22, SM17, VDP15].
Treatments [GBGTR19, XTM17]. Tree [HMC20, LV22, LBLS22, Ma17, OBO13, Pra16a, ZSM07].
Tropical [TGK+11]. true [BP08]. Truncated [CCZ17, HK18]. Tucker [Hof11b, Hof16]. Tumor [ZJLC10].
Tuning [BCJ21, RC17]. Tutorial [WSD22]. Two [HCGS15, HSH+21b, LLPR06, MRB12, RS14a, SY17, ZSM07, ZHG+16].
Two-Component [ZHG+16]. Two-Piece [RS14a]. Two-Pronged [MRB12]. Two-sample [HCGS15].
Two-Stage [LLPR06, SY17]. Two-Step [HSH+21b]. Type [AJGM22, Ma17, PB20, PL16, HR20, SY19]. Types [Bra22].

Unattenuated [WS20]. Uncertainty [CHG12, CCDT+22, CCCG16a, LV22, VGB10a, YMX23, vdPSvdV17].
Unconstrained [LL18]. Underreported [dOAL+22]. Unified [TSL20].
Uniformly [NJ21]. Unit [JNBQ13]. United [OGPD19]. Univariate [QSF09]. Universal [San12b].
Unsettled [CGS22]. Update [TSA20]. upper [MM07]. Use [BR13, GLM18, GSWF19]. Used [Scu13a]. Useful [YPVG22]. Using [APD19, APRS22, BGP15, BJH18, BWD20, Bra22, BG13, CSN+15, DBHG19, DWM+21, DT18, FD14b, Gop22, GL18, Han06, HSC12, HM23, Joh07, KD12, LV22, LG17, LMC20, LBBJ16, LG12b, MRB12, NSAL+21, OM20, Paj17, PVC20, RS13, RDF16, SFZ08a, SN07, SHK07, SG16, TRKS+17, VDP15, VDF+12, WWACH16, Wil18, WN21, XX20, YVSG18, YSLR14, ZKRA18, ZWF+18, ZG19, AZ10, A006, BF21, BC11a, Chr06, DEGP22, DGS09, GD09, HKLM10a, KS10a, MM07, RB07, SB11, dTM10]. Utilising [JV23]. Utility [CBC23, LAE+09]. Utility-Based [CBC23, LAE+09].

Validation [BH07, HC17]. valuation [LKF09]. value [SF14]. Valued [BHW18, DPM16]. Values [FMM18]. VAR [PKLM10]. Variable [CS12, Cas21, FND15, Gu19, LLW21, LJCB14, LMPS17, MRG19, PHC17, Qia18, RL14, RM21, VL20, WOJL22, ZHG+16, ZB18, ZG19, Bar11, CHIK08, HH06, OS09, YH11, vdL11a]. Variables [BBGR21, BG06, FH17, GR20, KAD16, KOM15, vdL11b]. Variance
References

Albert:2009:CAJ Jim Albert and Phil Birnbaum. Comment on article by...

[ADP22] Angelos Alexopoulos, Petros Dellaportas, and Omiros Papaspiliopoulos. Bayesian prediction of jumps in large panels

[ADP20] Angelos Alexopoulos, Petros Dellaportas, and Omiros Papaspiliopoulos. Bayesian prediction of jumps in large panels...
REFERENCES

Muteb Alharthi, Theodore Kypraios, and Philip D. O’Neill. Bayes factors for partially observed stochastic epidemic mod-

REFERENCES

Anonymous:2007:TCa

Anonymous:2007:TCb

Anonymous:2007:TCc

Anonymous:2007:TCd

Anonymous:2007:WIA

Anonymous:2007:WIB

Anonymous:2007:WIC

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Anonymous:2011:TCc

Anonymous:2011:TCd

Anonymous:2011:WIa

Anonymous:2011:WId

Anonymous:2011:WId

Anonymous:2011:WId

Anonymous:2012:SF

Anonymous:2012:TCa

Anonymous:2012:TCb

Anonymous:2012:TCc

Anonymous:2012:TCd

Anonymous:2012:WIa

Anonymous:2012:WId

Anonymous:2012:WIl

Anon
nymous:2012:WId

Anon
nymous:2013:SF

Anon
nymous:2013:TCa

Anon
nymous:2013:TCb

Anon
nymous:2013:TCc

Anon
nymous:2013:TCd

Anon
nymous:2013:WIa

REFERENCES

Arias-Nicolas:2016:NCP

Andrade:2006:BRM

Aitken:2013:CDA

Antonelli:2019:HDC

Avalos-Pacheco:2022:HLD

REFERENCES

https://projecteuclid.org/journals/bayesian-analysis/volume-17/issue-1/Heterogeneous-Large-Datasets-Integration-Using-Bayesian-Factor-Regression/10.1214/20-BA1240.full

AlLabadi:2013:APA

Buck:2006:BNE

Banerjee:2017:HDB

Baragatti:2011:BVS

Buchholz:2023:DCM

REFERENCES

Blackwell:2008:ERC

Blackwell:2008:R

Barger:2010:OBE

Bazan:2006:SIR

Bayes:2012:NRR

Barbieri:2021:MPM

Berger:2015:OOP

Blaauw:2011:FPA

Bornn:2011:BCD

REFERENCES

See comments [Gel06, KN06, Lam06] and rejoinder [BD06b].

REFERENCES

[BHJ18] Martin Bezener, John Hughes, and Galin Jones. Bayesian spatiotemporal modeling using hierarchical spatial priors, with applications to functional magnetic resonance imaging (with discussion). *Bayesian Analysis*, 13(4):1261–1313, December 2018. CO-
Barclay:2014:CEG

Basturk:2017:BAB

Bradley:2018:CEM

Bickel:2020:ERP

Barber:2008:CMM

Barrientos:2020:BBM

Burgette:2021:SPM

Broderick:2013:FAP

Bae:2015:BPR

Bottolo:2010:ESS

Leonard Bottolo and Sylvia Richardson. Evolutionary stochastic search for Bayesian model exploration. *Bayesian Analysis*, 5
REFERENCES

REFERENCES

Bingham:2009:BOS

Bonassi:2015:SMC

Bishoyi:2020:LSR

Carlin:2006:CAC

Carlin:2008:ECN
REFERENCES

REFERENCES

[CCCG16a] Oksana A. Chkrebtii, David A. Campbell, Ben Calderhead, and Mark A. Girolami. Bayesian solution uncertainty quan-
REFERENCES

Chkrebtii:2016:R

Capistran:2022:ECN

Craigmile:2009:HMB

Craigmile:2009:R
See [CCL^+09a].

Cabras:2011:GFC

Castelletti:2018:LME

Clarke:2013:PCP

Cong:2017:FSH

Chipeta:2015:CAF

REFERENCES

Cheng:2016:BRF

Camerlenghi:2019:LNN

Celeux:2012:RRC

Christen:2010:GPS

Consonni:2018:PDO

Celeux:2006:DIC
REFERENCES

Celeux:2006:R

Chakraborty:2010:ASP

Chipman:2009:CAM

Chipman:2022:MMM

Cote:2022:BAM

Marie-Pier Côté, Christian Genest, and David A. Stephens. A Bayesian approach to modeling multivariate multilevel in-

REFERENCES

Cui:2022:IBN

Christen:2006:SUS

Christensen:2009:IBE

Chen:2006:RBP

Chen:2009:CA

REFERENCES

http://projecteuclid.org/euclid.ba/1340370273. See [Yin09a].

Cao:2020:HDP

Cano:2007:IPO

Cai:2020:BNM

Clarke:2010:DPT

Clarke:2012:CAS

Chkrebtii:2016:CDA
Oksana A. Chkrebtii, Scotland Leman, Andrew Hoeger, Reihaneh Entezari, Radu V. Craiu, Jeffrey S. Rosenthal, Abdolreza Mohammadi, Maurits Kapteyn, Luca Martino, Rafael B. Stern, and

REFERENCES

REFERENCES

[CT11] Amélie Crépet and Jessica Tressou. Bayesian nonparametric model for clustering individual co-exposure to pesticides found

[CZGV19] Alberto Cassese, Weixuan Zhu, Michele Guindani, and Marina Vannucci. A Bayesian nonparametric spiked process prior for

REFERENCES

Dey:2007:QSQ

Datta:2015:CAB

Dhara:2020:NBS

Denham:2007:GAE

Druilhet:2007:IHC

Dawid:2015:BMS

A. Philip Dawid and Monica Musio. Bayesian model selection based on proper scoring rules. *Bayesian Analysis*, 10(2):479–
REFERENCES

REFERENCES

REFERENCES

Ferreira:2015:R

Dupre:2009:NAR

Drovandi:2018:IEF

deTibeiro:2010:CAI

Dunson:2009:CAC

DeBlasi:2013:BED

REFERENCES

REFERENCES

REFERENCES

[Fearnhead:2011:CAW]

[Ferreira:2012:CAL]

[Filippi:2017:BNA]

[Fuglstad:2020:IJP]

[Fritsch:2009:ICC]
REFERENCES

[80]

Faulkner:2018:LAS

Forastiere:2018:PPP

Friel:2016:EMC

Ford:2011:BSM

Fouskakis:2022:PEP

REFERENCES

Fruhwirth-Schnatter:2008:CAR

Freeman:2011:DST

FreitasLopes:2008:SDF

Fruhwirth-Schnatter:2021:GMF

Fabrizi:2012:BEL
REFERENCES

Griffin:2013:SPS

Griffin:2017:HSP

Gutierrez:2019:BNM

Ghosh:2017:AOO

Gruber:2018:BMS

Gomez-Deniz:2009:SBC

Gagnon:2020:NBA

Ghanta:2018:LMP

Gelman:2006:PDV

Gelman:2008:OBS

Gelman:2008:R

Gelman:2010:CAR

REFERENCES

87

Gutierrez:2019:BAS

Gosling:2013:BLA

Ginebra:2007:MIS

Greb:2014:RBE

Gao:2021:IMR

Yuxiang Gao, Lauren Kennedy, Daniel Simpson, and Andrew Gelman. Improving multilevel regression and post-stratification with structured priors. Bayesian Analysis, 16(3):719–744, September 2021. CODEN ?? ?? ISSN

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Chris C. Holmes, François Caron, Jim E. Griffin, and David A. Stephens. Two-sample Bayesian nonparametric hypothesis test-
REFERENCES

REFERENCES

REFERENCES

REFERENCES

101

REFERENCES

REFERENCES

REFERENCES

Hobbs:2012:CPI

Hubin:2020:NAA

He:2021:OBA

Hrafnkelsson:2021:MST
Hutter:2007:EBR

Horrocks:2009:PPJ

Huang:2013:SMN

Heinecke:2021:BDQ

Huo:2012:BDF

REFERENCES

Hu:2022:FCL

Irie:2019:BEM

Johndrow:2018:OGA

Jiang:2008:BMC

Jarvenpaa:2019:EAR

Jarvenpaa:2021:PGP

[Johnson:2022:BIE]

[Jewell:2009:BAE]

[Jiang:2019:BOP]

[Jo:2017:DSS]

[JMKW09]

Chunlin Ji, Daniel Merl, Thomas B. Kepler, and Mike West. Spatial mixture modelling for unobserved point processes: examples in immunofluorescence histology. *Bayesian Analysis*.
REFERENCES

Jensen:2009:HBM

Jensen:2009:R

Jain:2007:R

Jain:2007:SMC

Jara:2013:TSM

REFERENCES

[Johnson:2007:BMA]

[Johnson:2013:NAB]

[Jeliazkov:2008:DSF]

[Jeong:2016:BSI]

[Jones:2022:QOP]

[KCR19] Guillaume Kon Kam King, Antonio Canale, and Matteo Ruggiero. Bayesian functional forecasting with locally-autoregressive

Kenobi:2012:BMU

Kleinegesse:2021:SBE

Kim:2009:SDP

Kirch:2019:BWN

Keefe:2019:OBA

Matthew J. Keefe, Marco A. R. Ferreira, and Christopher T. Franck. Objective Bayesian analysis for Gaussian hierarchical

Covariance-Estimation-for-Large-Spatial-Data/10.1214/21-BA1273.full.

cmu.edu/journal/2011/vol06/issue04/koop.pdf; http://projecteuclid.org/euclid.ba/1339616534. See [WFR11a].

Kowal:2021:DRM

Karmakar:2021:BMT

Kaufman:2010:BFA

Kharroubi:2010:PSS

Klein:2019:ICB

REFERENCES

Lad:2006:OBS

Liverani:2009:EUB

Lambert:2006:CAB

Liu:2009:MBA

Liu:2016:PSF

REFERENCES

REFERENCES

[LG12b] Kristian Lum and Alan E. Gelfand. Spatial quantile multiple regression using the asymmetric Laplace process. *Bayesian
REFERENCES

Li:2014:BMS

Leininger:2017:BIM

Lawrence:2010:CAV

Lan:2020:FBD

Li:2009:CAM

See [MT09b].

REFERENCES

REFERENCES

Leorato:2016:SPD

Leorato:2021:BFM

Li:2020:UBL

Lin:2019:EGP

Lewis:2021:BRL

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mlan:2015:OBI

Mallick:2011:CAP

Moore:2020:DPM

Manolopoulou:2010:R

Manolopoulou:2010:SSL

See comments [Rig10, Whi10] and rejoinder [MCW10a].

Migliorati:2018:NRM

Mulder:2019:BFT

Marmin:2022:DGP

Mulgrave:2020:BIN

Mendoza:2015:CAB

Murray:2016:FBS

Thomas A. Murray, Brian P. Hobbs, Daniel J. Sargent, and Bradley P. Carlin. Flexible Bayesian survival modeling with
REFERENCES

[135x681] MLan:2008:BSS

[135x681] Muller:2013:BNI

Muller:2013:R

Martinez:2014:NCP

Michalak:2016:PPH

Mitra:2016:BGM

Maroulas:2022:BTL
REFERENCES

References

REFERENCES

REFERENCES

issue04/meng.pdf; http://projecteuclid.org/euclid.ba/1340370937. See [CFRT06a].

Naulet:2018:SAS

Nieto-Barajas:2014:BNA

Nishimura:2020:RIS

Nott:2018:ABP

Nguyen:2020:NAM

REFERENCES

REFERENCES

REFERENCES

[Pac06] Christopher J. Paciorek. Misinformation in the conjugate prior for the linear model with implications for free-knot

Pajor:2017:EML

Passeggeri:2023:QID

Pena:2020:RTI

Porcu:2021:NBM

Peluso:2019:SMM

REFERENCES

References

REFERENCES

REFERENCES

Poole:2010:CA

Popova:2008:BFP

Perez:2017:SBD

Page:2015:PBC

Page:2016:R

Page:2016:SPP

REFERENCES

Pratola:2016:EMH

Pratola:2016:R

Prangle:2017:AAD

Polson:2011:DAS

Polson:2011:RDA

REFERENCES

147

pdf; http://projecteuclid.org/euclid.ba/1339611940. See [PS11a].

[PSMB20] Subhadip Pal, Subhajit Sengupta, Riten Mitra, and Arunava Banerjee. Conjugate priors and posterior inference for the ma-

[Qia18] Hang Qian. Big data Bayesian linear regression and variable selection by normal-inverse-gamma summation. *Bayesian
REFERENCES

Quintana:2009:CAJ

Quintana:2008:SPB

Quintana:2009:FUC

Rahman:2016:BQR

Rajkowski:2019:AMP
REFERENCES

[RCMO22] Louis Raynal, Sixing Chen, Antonietta Mira, and Jukka-Pekka Onnela. Scalable approximate Bayesian computation for growing network models via extrapolated and sampled summaries.
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Choi:2016:EIN

Sewell:2017:LSA

Scarpa:2012:CAK

Song:2014:BAF

Schmidt:2009:CAC

REFERENCES

REFERENCES

Scott:2014:CAR

Scricciolo:2014:ABD

Scutari:2013:PPD

Scutari:2013:R

Senn:2008:CAG

REFERENCES

Shallowa:2014:ECR

Shaochuan:2021:BMC

Shemyakin:2014:HDN

Short:2010:PVC

Short:2007:EFR

Sivaganesan:2015:CAB

REFERENCES

DEN ???? ISSN 1931-6690 (print), 1931-6690 (electronic). See [BBS15a].

REFERENCES

REFERENCES

REFERENCES

Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, and Michael U. Gutmann. Likelihood-free inference by ratio

REFERENCES

[terHorst:2014:CAW]

[Taddy:2009:MSD]

[Taddy:2012:MMM]

[Tokdar:2012:SLQ]

[Tak:2017:DDP]

REFERENCES

REFERENCES

REFERENCES

cmu.edu/journal/2012/vol07/issue03/vrbik.pdf; http://projecteuclid.org/euclid.ba/1346158778.

REFERENCES

Tim van Erven and Botond Szabó. Fast exact Bayesian inference for sparse signals in the normal sequence model. *Bayesian Analysis*, 16(3):933–960, September 2021. CODEN
REFERENCES

Alejandro Villagran, Gabriel Huerta, Charles S. Jackson, and Mrinal K. Sen. Computational methods for parameter estima-

Vanhatalo:2020:AMG

Vie:2007:NEK

Vir:2011:MBC

Villa:2020:LBP

Ventura:2011:RAB

REFERENCES

two number of degrees of freedom of a t distribution. Bayesian Anal-
ysis, 9(1):197–220, March 2014. CODEN ????? ISSN 1931-
cmu.edu/journal/2014/vol09/issue01/villa.pdf; http://
projecteuclid.org/euclid.ba/1393251776.

terior computation. Bayesian Analysis, 7(4):867–886, December
2012. CODEN ????? ISSN 1931-6690 (print), 1931-6690 (elec-
tronic). URL http://ba.stat.cmu.edu/journal/2012/vol07/
ba/1354024465.

sis, 8(3):543–548, September 2013. CODEN ????? ISSN 1931-
cmu.edu/journal/2013/vol08/issue03/wang.pdf; http://
/projecteuclid.org/euclid.ba/1378729917. See [RS14a].

CODEN ????? ISSN 1931-6690 (print), 1931-6690 (electronic).

els with a diverging number of parameters. Bayesian Analy-
sis, 12(2):511–532, June 2017. CODEN ????? ISSN 1931-6690
org/euclid.ba/1467722664.

[Wasserman:2006:FBO] Larry Wasserman. Frequentist Bayes is objective (comment on
articles by Berger and by Goldstein). Bayesian Analysis, 1
edu/journal/2006/vol01/issue03/wasserman.pdf; http:

Ruby Chiu-Hsing Weng and D. Stephen Coad. Real-time Bayesian parameter estimation for item response models.
REFERENCES

REFERENCES

issue04/weng.pdf; http://projecteuclid.org/euclid.ba/1340110853.

Williams:2006:CED

Whiteley:2010:CAM

Wilson:2018:SIP

Wu:2023:CLR

Wade:2011:ECP

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
REFERENCES

REFERENCES

Xie:2020:ABN

Yau:2011:HBN

Yang:2016:BLF

Yin:2009:R

REFERENCES

Yu:2013:CBM

Yuchi:2023:BUQ

Yang:2020:CGS

Yao:2022:BHS

Yan:2007:BDT
REFERENCES

Yin:2022:FME

Yang:2018:SMC

Yue:2014:BAS

Yao:2018:USA

Yang:2016:SMC

Zhang:2018:VSP

REFERENCES

REFERENCES

REFERENCES

