A Complete Bibliography of Publications in
Biometrics: 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

06 February 2022
Version 1.03

Title word cross-reference

p [559, 194, 1535, 1030, 1330]. t [226, 860, 534, 1271]. τ [148]. u [354].

-divergence [1585]. -eQTLs [1612]. -estimation [1369, 1649]. -FWER
[194]. -index [1396]. -mixture [1347, 1501, 836, 1104]. -optimal [1198].


1424-1432 [1547]. 1999 [622, 810].


341X.1999.00603.x [622]. 3rd [659, 656].


70 [691]. 71 [1672]. 73 [1256, 1547]. 75 [1673, 1674].

978-1-4398-1917-3 [842].


Applications

Applied

Approach

Approaches

Approximate

approximated

Approximation

Approximations

Aquitaine

Arbitrary

Ardo

Area

Arm

Arnason

Arnason-Schwarz

Array

arrival

ART

artery

arthritis

article

Artificial

ASA-CRC

Asbestos

aspects

assay

Assays

Assemblages

Assess

Assessment

Assessments

assigned

Assignment

Assisted

Associated

associating

Association

assumption

Assumptions

Assurance

Asymptotic

Asymptotically

attempt

attraction

attraction-repulsion

Attributable

AUC

Audit

auditory

Augmentation

Augmented

Augmenting

August

author

Authors

autism

autism-related

Automated

Autocorrelation

Autologistic

Automated

Disease-associated [1482]. Diseases [570, 485, 540]. dispersed [1496].


Efficacy [583, 69, 598, 32, 1070, 755, 1008]. Efficiency
Efficient [810, 500, 115, 1392, 509, 2, 865, 1094, 733, 1255].
Efficiently
Efron [1298]. Ege [1033]. Eggermont [89].
Eigenvalue
Elashoff [1355]. elastic [1513, 1442].
electromagnetic
Electronic
Elegant
Elements
Eligible
Elizabeth
Eluting
EM-algorithm
Emerging
Emery
Emigration
Empirical
Empirical-likelihood-based
Empirically
Environmental
Epidemics
Epidemiologic
Epidemiology
Epigenome
Epigenome-wide
Epigenomic
eQTL
eQTLs
errors-in-variables [1643]. EST [191]. Estate [658]. Estes
[108, 250, 230, 663, 393, 204, 469, 458, 249, 228, 179, 96, 518, 528, 401, 451, 597, 1391, 853, 1666, 1244, 1424, 920, 1287, 814, 1398, 1134, 831, 1236, 1648, 1377, 1153, 1311, 737, 1201, 1418, 1088, 1194, 1268, 724, 1369, 1570, 749, 774, 1117, 905, 963, 1083, 1636, 709, 941, 829, 888, 1441, 805, 1343, 887, 1612, 968].
group-


Italian [194]. item [139, 1250]. iterative [1600].


Markov-modulated [934]. Marks [650, 598, 1666]. Marques [1121].
[201, 735]. Massive [1503]. Masthead [955, 995, 1037, 1079, 1125, 1147,
1218, 1258, 1308, 1357, 1411, 1460, 1510, 1553, 1597, 1634]. Matched
[237, 110, 323, 354, 571, 396, 1547, 1294, 708, 1025, 943, 805]. matched-pair
[805]. Matched-Pairs [323]. Matching
[733, 107, 676, 467, 1465, 923, 1086, 1664]. Maternal [451, 968]. Mateu
[1140]. matter [829]. Matthias [1348]. Max
[1354, 1609]. max-stable [1609]. MAXENT [587]. Maximin [1243]. maximize
Mean [20, 392, 197, 1498, 323, 354, 571, 396, 1547, 1294, 708, 1025, 943, 805]
Meaningful [867]. Means
[406, 1283, 868, 1248]. Measles [487, 1659]. Measure
[267, 1319, 1224, 1102, 1222, 1226, 1223, 1225, 1050]. measured [1589].
Measurement [347, 203, 304, 506, 617, 155, 616, 1618, 60, 303, 48, 183, 424,
1540, 1324, 1632, 1041, 969, 1372, 786, 695, 1323, 1434, 787]. Measurements
[125, 21, 228, 537, 247, 867, 1437, 1064, 784, 1099]. Measures
[627, 573, 669, 353, 628, 629, 280, 626, 507, 1199, 1657, 1193, 1331].
mechanism [727, 1517]. Mechanistic [182, 1042, 502, 647, 1208]. Media
[1184]. Median [530, 510, 483, 1114, 982]. Mediation
[355, 519, 1023, 812, 1601, 1007, 1648, 1153, 787, 1605]. mediators
[812, 1007]. Medical [370, 205, 565, 590, 1537, 815, 1519, 1046, 821, 711, 656].
Medicare [51]. Medicine [1142, 718, 87, 1150, 1419, 1404, 1140, 1407]. Mee
[359, 544, 545, 1416, 416, 421, 585, 462, 197, 791, 233, 543, 1188, 813, 874, 1414,
1377, 1193, 1413, 1417, 873, 1570, 1344, 912, 1415, 806, 1067, 1622, 1215, 327].
meta-analyses [1570]. Meta-Analyses
[544, 545, 1416, 585, 197, 233, 543, 359, 416, 421, 791, 1118, 874, 1414, 1377,
1193, 1413, 1417, 873, 1344, 912, 1415, 1067, 1622, 1215, 327]. meta-analytic
[813]. meta-analytic-predictive [806]. Meta-Experimental [462].
metabolic [1340]. Metapopulation [240]. metastatic [902]. Metcalfe
[214]. Method [220, 544, 110, 455, 184, 303, 312, 276, 601, 291, 517, 567,
1055, 1632, 1072, 1132, 793, 1377, 1013, 1448, 1254, 884, 797, 863, 1367, 840,
893, 981, 703, 1261, 1333, 1612, 983, 1371, 1564]. methodological
[1631, 1035]. Methodology [1033, 215]. Methods
[39, 434, 621, 160, 24, 498, 1141, 551, 1406, 1185, 310, 328, 1352, 1121, 271, 78,
246, 91, 169, 1249, 51, 582, 719, 454, 779, 1075, 54, 1595, 213, 740, 658, 375,
1213, 34, 378, 302, 437, 811, 19, 1434, 308, 1591, 1624, 762, 1236, 1094, 940,
1020, 1606, 1372, 1162, 1500, 1387, 816, 1025, 924, 1019, 1389, 829, 1493, 1571,
multi-state [865, 1621, 931, 728, 899, 1468, 1405]. Multi-study [1544].
Multi-subgroup [1341]. Multi-Subject [678]. multi-test [807].
Multiclass [1639]. Multidimensional [64, 904]. multidrug [802].
multidrug-resistant [802]. Multilevel [185, 369, 119, 492, 672, 870, 581, 1390, 854, 879].
Multinomial [209, 25, 636, 686, 1199, 1168, 935, 1280, 1231, 1640].
Multiphase [208, 1313].
Multiple [245, 1520, 650, 350, 226, 359, 95, 272, 920, 194, 1168, 33, 111, 1494, 489, 1327,
154, 490, 61, 582, 541, 8, 571, 318, 450, 402, 361, 897, 671, 156, 390, 93, 687, 65,
314, 218, 302, 528, 152, 1137, 1421, 1100, 1279, 861, 1016, 1531, 962, 1674, 864,
1174, 1584, 812, 1578, 1449, 776, 1483, 1250, 1197, 1519, 1377, 1473, 1528,
855, 1103, 1480, 746, 1151, 1515, 1373, 1638, 1341, 1065, 1539, 943, 1275, 799,
1314, 1290, 1335, 1323, 921, 1002, 1099, 1571, 1608, 1605, 983, 877, 384, 131].
Multiple-Imputation-Based [8]. multiple-index [776].
multiple-objective [1578]. Multiple-Probe [490]. Multiple-Sample [218].
Multireads [278]. Multiscale [525, 94]. multistage [1059, 967].
Multistate [200, 1386, 821]. Multistep [276]. multisubject [1627].
Multitreatment [543]. Multitype [73]. multivariable [986]. Multivariate [1216, 117, 186, 544, 679, 573, 224, 428, 1328, 144, 930, 598, 1201, 855, 1021,
905, 103, 302, 55, 15, 581, 1100, 1574, 761, 936, 1052, 1648, 1377, 802, 1064,
1670, 1178, 1433, 1210, 1389, 799, 1209, 1609, 1441, 1255, 1434, 328].
MW [1215]. MW-L [1215]. myelodyplastic [804]. myeloma [1341].
N [172, 1184, 552, 385, 432]. N. [556, 376, 89]. Naive [617]. Nan [1077].
Nason [127]. Natalia [1256]. Natural [637, 596, 651, 518]. Neelon [258].
negative [796, 1529]. Nested [20, 123, 53, 136, 861, 892, 1189, 1494, 788, 959, 1369, 708, 1609, 942, 1381].
Network-Based [631, 487, 348, 1102]. Networks [137, 1350, 802, 911, 741, 1483, 1359, 1362, 1376, 1276, 1360, 1528, 881, 1277, 1361].
Neural [1184]. neuroimaging [1657]. Neuroimaging [688, 525, 1026, 919, 897, 1652, 785].
nodes [1528]. Noel [1667]. noise [741, 930, 1113]. Non [673, 613, 650, 186, 1329, 1244, 1584, 1245, 763, 711, 726, 931, 1493, 703, 755,
Non-Invasive [650]. non-linear [1244, 1245]. Non-Local [613].
non-Markov [931, 856]. non-monotone [726, 703, 755]. non-normal
[1329, 763, 1116]. non-parametric [1170]. non-randomized [1584].
nonadditive [1096]. Noncentrality [534]. Noncompliance [296, 1622].
Nondestructive [23]. Nonexchangeable [459]. Nonhomogeneous [270].
Nonidentifiable [72]. Nonignorable [145, 365, 109, 17, 724].
Noninferiority [370, 1214]. Noniterative [254]. Nonlinear
[404, 501, 527, 506, 316, 284, 567, 1287, 874, 1208, 717, 1197, 881, 1117, 1652].
Nonmonotone [365]. Nonnegative [237]. Nonparametric
[227, 1256, 1203, 503, 1299, 287, 1138, 1051, 328, 36, 871, 1020, 305, 560, 132, 155, 228, 397, 484, 1571, 900, 269, 483, 977, 1281, 856, 1468, 1195, 765, 1096, 702, 831, 802, 1153, 1044, 1372, 1467, 736, 1436, 1045, 938, 381].
nonparametrics [972]. Nonproportional [529, 179]. Nonsmall [299].
nonstationarity [1228]. nonstationary [1336]. Nordic [515, 4].
[356]. Null [219, 1368, 1648, 1655]. Number
[609, 534, 1000, 1482, 1010, 1440, 1054, 704]. Numerical [437, 377].
nutrients [1231]. Nutritional [60, 969]. Nyhuis [1304].
O [329, 171, 993, 1408]. O104 [803]. Obesity [467]. Objective
[613, 1578, 1130]. O'Brien [258]. Observation
[526, 49, 57, 269, 1013, 821, 1289]. Observational [665, 129, 662, 354, 571, 671, 266, 516, 1191, 1464, 1207, 976, 1155, 1175, 1086, 1664]. Observations
[403, 225, 685, 1329, 763, 1640, 1116]. Normal/Independent [316].
[356]. Null [219, 1368, 1648, 1655]. Number
[609, 534, 1000, 1482, 1010, 1440, 1054, 704]. Numerical [437, 377].
nutrients [1231]. Nutritional [60, 969]. Nyhuis [1304].
O [329, 171, 993, 1408]. O104 [803]. Obesity [467]. Objective
[613, 1578, 1130]. O'Brien [258]. Observation
[526, 49, 57, 269, 1013, 821, 1289]. Observational [665, 129, 662, 354, 571, 671, 266, 516, 1191, 1464, 1207, 976, 1155, 1175, 1086, 1664]. Observations
[403, 225, 685, 1329, 763, 1640, 1116]. Normal/Independent [316].
[356]. Null [219, 1368, 1648, 1655]. Number
[609, 534, 1000, 1482, 1010, 1440, 1054, 704]. Numerical [437, 377].
nutrients [1231]. Nutritional [60, 969]. Nyhuis [1304].
O [329, 171, 993, 1408]. O104 [803]. Obesity [467]. Objective
[613, 1578, 1130]. O'Brien [258]. Observation
[526, 49, 57, 269, 1013, 821, 1289]. Observational [665, 129, 662, 354, 571, 671, 266, 516, 1191, 1464, 1207, 976, 1155, 1175, 1086, 1664]. Observations
[403, 225, 685, 1329, 763, 1640, 1116]. Normal/Independent [316].
[356]. Null [219, 1368, 1648, 1655]. Number
[609, 534, 1000, 1482, 1010, 1440, 1054, 704]. Numerical [437, 377].
nutrients [1231]. Nutritional [60, 969]. Nyhuis [1304].
O [329, 171, 993, 1408]. O104 [803]. Obesity [467]. Objective
[613, 1578, 1130]. O'Brien [258]. Observation
[526, 49, 57, 269, 1013, 821, 1289]. Observational [665, 129, 662, 354, 571, 671, 266, 516, 1191, 1464, 1207, 976, 1155, 1175, 1086, 1664]. Observations
[403, 225, 685, 1329, 763, 1640, 1116]. Normal/Independent [316].
[356]. Null [219, 1368, 1648, 1655]. Number
[609, 534, 1000, 1482, 1010, 1440, 1054, 704]. Numerical [437, 377].
nutrients [1231]. Nutritional [60, 969]. Nyhuis [1304].


Receiving [209]. reciprocal [1383]. reclassification [1072].


Recurrent [313, 583, 259, 265, 264, 10, 602, 468, 603, 49, 314, 223, 1566, 1084, 1092, 1396, 1063, 1020, 756, 979, 1433, 1070, 963, 923, 1654, 1434, 819].


Regime [67, 1650, 1175, 1428]. Regimens [1672, 886, 1058]. Regimess [1059].


Regressions [234, 1165, 1181, 1166].


Related [463, 890, 1606, 697, 1533]. Relatedness [119, 1240, 1342].


Reply [654, 514, 512]. Report
Status [440, 364, 268, 57, 1291, 1317, 1472, 729, 1470]. STEC [803]. Stefano [655].
Strain [583, 648]. Strain-Specific [583]. Stram [1408]. Strata [409].
Streptococcus [648]. stroke [708]. Struchiner [211]. Structural [20, 845, 1642, 461, 846, 1409, 1215, 847, 1369, 566, 1268, 959, 1268, 848, 849, 773].
Structure [360, 447, 600, 576, 132, 1329, 1131, 1437, 1201, 855, 1133, 1068].
Structured [113, 119, 1165, 837, 342, 1485]. structures [1089, 1637]. Stuart [515]. Studies
Subcluster-Level [336]. Subgroup [564, 1274, 1150, 1341, 887]. subgroups [1447, 1083]. Subject
[547, 678, 225, 295, 19, 266, 1566, 1011, 1101, 713, 1087, 1333]. subject-level [1101]. Subject-Specific [225, 295]. subjects [1010, 1603]. Subpopulations
[261, 985]. supervised [1519]. Suppress [369]. Suppression [48, 739].
Surface [23, 1109]. surfaces [1575, 1530]. Surgical [467]. Surrogacy [416, 421, 68]. Surrogate [422, 627, 301, 595, 628, 629, 423, 626, 466, 149, 504, 813, 1040, 1519, 1313, 1653, 1475]. Surrogates [627, 628, 629, 626, 1085].
Surveillance [464, 572, 1174, 711, 908, 1526]. survey [1114, 906]. Surveys
[643, 309, 933, 934, 940, 1543, 554]. Survival [665, 422, 226, 1161, 482, 529, 362, 224, 669, 1405, 1095, 181, 530, 531, 582, 296, 470, 400, 292, 8, 96, 1074, 510, 9, 59, 178, 222, 507, 1391, 1179, 1426, 759, 1319, 1541, 1208, 1224, 1191, 1049, 1466, 1180, 830, 1364, 1524, 1393, 1023, 1473, 1190, 1380, 851, 1021,


REFERENCES


References

Follmann:1999:BME


Weinberg:1999:UPE


Cai:2003:HRI


Baker:2005:GSP


Louis:2010:RE


Almirall:2010:SNM


Liang:2010:RBM


Chen:2010:SRS


Wulfsohn:2010:NSE


Buckland:2010:DOL


Link:2010:ULM


Foster:2010:ABU


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[175] Thomas A. Louis, Russell Millar, Geert Verbeke, David Zucker, and
ix, March 2011. CODEN BIOMB6. ISSN 0006-341X (print), 1541-0420
(electronic).

[176] Brent R. Logan, Mei-Jie Zhang, and John P. Klein. Marginal models for
clustered time-to-event data with competing risks using pseudovalues.
(print), 1541-0420 (electronic).

[177] Dandan Liu, John D. Kalbfleisch, and Douglas E. Schaubel. A posi-
tive stable frailty model for clustered failure time data with covariate-
BIOMB6. ISSN 0006-341X (print), 1541-0420 (electronic).

hazards regression for the analysis of clustered survival data from case-
ISSN 0006-341X (print), 1541-0420 (electronic).

[179] Douglas E. Schaubel and Guanghui Wei. Double inverse-weighted es-
timation of cumulative treatment effects under nonproportional hazards
BIOMB6. ISSN 0006-341X (print), 1541-0420 (electronic).

[180] Ronald B. Geskus. Cause-specific cumulative incidence estimation and
the fine and Gray model under both left truncation and right censoring.
*Biometrics*, 67(1):39–49, March 2011. CODEN BIOMB6. ISSN 0006-
341X (print), 1541-0420 (electronic).

[181] Xiaomei Liao, David M. Zucker, Yi Li, and Donna Spiegelman. Survival
analysis with error-prone time-varying covariates: a risk set calibration
ISSN 0006-341X (print), 1541-0420 (electronic).


[196] Haibo Zhou, Rui Song, Yuanshan Wu, and Jing Qin. Statistical inference for a two-stage outcome-dependent sampling design with a continuous


McCulloch:2011:PRE


Neelon:2011:BTP


Dupuis:2011:EOR


Chen:2011:PLA


Haneuse:2011:MDS


Baker:2011:EIC


Cheng:2011:ARF

REFERENCES


REFERENCES


REFERENCES


REFERENCES


[283] Arnab Maity and Xihong Lin. Powerful tests for detecting a gene effect in the presence of possible gene-gene interactions using garrote kernel ma-


REFERENCES


REFERENCES


Boonstra:2011:BMG


Thall:2011:OCB


Zetlaoui:2011:EFC


Stoklosa:2011:HCR


Li:2011:NMA


Sabo:2011:LEB

Madsen:2011:ARF


Lou:2011:BRS


Westfall:2011:BRM


Hubert:2011:BRM


Bonner:2011:BRB


Eilers:2011:BRO


Giesbrecht:2011:BRD

Ribeiro:2011:BRS


Zhang:2011:BRAb


Rizopoulos:2011:DPP


Chen:2011:DRE


Huang:2011:ICS


Wu:2011:RAR


Chen:2011:PSA

REFERENCES

Nummi:2011:TCS


Zhou:2011:PLM


Reich:2011:SDR


Wang:2011:PBS


Liu:2011:SEC


Ghosh:2011:BVS


Guan:2011:BCV

[345] Yongtao Guan. Bias-corrected variance estimation and hypothesis testing for spatial point and marked point processes using subsampling. *Bio-
REFERENCES

Yue:2011:BSI


Christensen:2011:FKS


Jiang:2011:NBA


Lee:2011:CPS


Cai:2011:KMA


Wang:2011:SIM


Pan:2011:EMC


REFERENCES


[366] Dean Follmann and Martha Nason. An augmented probit model for missing predictable covariates in quantal bioassay with small sample size.


Anonymous:2011:BRSa


Anonymous:2011:BRN


Anonymous:2011:BRSb


Baker:2012:CNM


Dickhaus:2012:BRM


Mitra:2012:BRF


Ding:2012:BRC


[394] Julia Braun, Leonhard Held, and Bruno Ledergerber. Predictive cross-validation for the choice of linear mixed-effects models with application
REFERENCES


REFERENCES


Yan:2012:MSC


Yu:2012:SFM


Lian:2012:IPL


Thas:2012:OCA


Dawson:2012:EBA


Sanchez:2012:LVA


Yang:2012:LAD

REFERENCES


REFERENCES

Leon-Novelo:2012:BSN


Spencer:2012:WDL


Guo:2012:BLS


Ibrahim:2012:BME


Biswa:2012:LBL


Reich:2012:EAR


Meyer:2012:STC

REFERENCES


REFERENCES


REFERENCES


REFERENCES


Zhang:2012:DRS


Zhang:2012:RME


Vansteelandt:2012:NDI


Daniels:2012:BIC


Sobel:2012:CMM


Shen:2012:MSG


Daniels:2012:BMS

Montagna:2012:BLF


Fu:2012:EER


Skup:2012:MAM


Cai:2012:TVL


Fong:2012:RBR


Wang:2012:TUF


Choi:2012:GCS

REFERENCES


REFERENCES


REFERENCES


Simpson:2013:PED


Gijbels:2013:THM


Dail:2013:EOP


Zaslavsky:2013:BHT


Majumdar:2013:NBS


Leon-Novelo:2013:SBI


Jeong:2013:WBB


REFERENCES


REFERENCES


REFERENCES


[606] Jonathan S. Schildcrout, Shawn P. Garbett, and Patrick J. Heagerty. Outcome vector dependent sampling with longitudinal continuous re-


[613] Davide Altomare, Guido Consonni, and Luca La Rocca. Objective Bayesian search of Gaussian directed acyclic graphical models for or-
REFERENCES


REFERENCES

Anonymous:2013:CAE

Anonymous:2013:CBM

Zhu:2013:BRSb

Tusell:2013:BRP

Solari:2013:BRS

VanderWeele:2013:SMC

Elliott:2013:DSM
REFERENCES


[635] Denis Heng-Yan Leung, Dylan S. Small, Jing Qin, and Min Zhu. Shrinkage empirical likelihood estimator in longitudinal analysis with time-


[642] Christoph Bernau, Thomas Augustin, and Anne-Laure Boulesteix. Correcting the optimal resampling-based error rate by estimating the error

[Borchers:2013:UHM]


[Chakraborty:2013:IOD]


[Shen:2013:TBT]


[Johnson:2013:MCE]


[Shotwell:2013:MAC]


[Numminen:2013:ETD]


[Mao:2013:PSE]


REFERENCES


Vock:2013:ACE

Bai:2013:DRE

Diao:2013:ESE

Lin:2013:BSA

Sinnott:2013:ORA

Guo:2013:NAM

Qu:2013:LST
REFERENCES


REFERENCES


REFERENCES


[691] Clarice R. Weinberg and David M. Umbach. Correction to “Linear mixed function-on-function regression models,” by Wei Wang; *70*, 794–
REFERENCES


**Anonymous:2014:RE**


**Hudgens:2014:PLI**


**Ning:2014:ETD**


**Sinha:2014:SAL**


**Das:2014:SAS**


**Neuhaus:2014:LBA**


**Laber:2014:SVD**


REFERENCES


REFERENCES

March 2014. CODEN BIOMB6. ISSN 0006-341X (print), 1541-0420 (electronic).


June 2014. CODEN BIOMB6. ISSN 0006-341X (print), 1541-0420 (electronic).


[740] Shaun R. Seaman, Menelaos Pavlou, and Andrew J. Copas. Methods for observed-cluster inference when cluster size is informative: a review and


REFERENCES


REFERENCES


Tian:2014:D


Zhao:2014:DCB


Yu:2014:DCB


Kang:2014:RCB


Taguri:2014:MSC


Zhang:2014:EEH

REFERENCES


REFERENCES


REFERENCES


REFERENCES


[823] Xiaohui Chang, Rasmus Waagepetersen, Herbert Yu, Xiaomei Ma, Theodore R. Holford, Rong Wang, and Yongtao Guan. Disease risk esti-
REFERENCES

Li:2015:IVA

Zhang:2015:SOD

Luo:2015:AAC

Fay:2015:COS

Touloumis:2015:TMM

Vock:2015:SVS

He:2015:SVS
[830] Zangdong He, Wanzhu Tu, Sijian Wang, Haoda Fu, and Zhangsheng Yu. Simultaneous variable selection for joint models of longitudinal and


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[893] Yanqing Wang, Suojin Wang, and Raymond J. Carroll. The direct integral method for confidence intervals for the ratio of two location param-

**Schmertmann:2015:APS**


**Tounkara:2015:MRM**


**Breheny:2015:GEL**


**Shu:2015:MTN**


**Fogarty:2015:BHR**


**deCastro:2015:BPS**


**Zee:2015:NDS**

REFERENCES

Wu:2015:PRI


Wang:2015:PCC


Cassese:2015:BMI


Hua:2015:EKM


Raffa:2015:MLD


Lipsitz:2015:TIC


Zhang:2015:SMH

[907] Jingnan Zhang, Yicheng Kang, Yang Yang, and Peihua Qiu. Statistical monitoring of the hand, foot and mouth disease in China. Biometrics,
REFERENCES


875–879, December 2015. CODEN BIOMB6. ISSN 0006-341X (print), 1541-0420 (electronic). See [913, 913].


REFERENCES

Xu:2015:LBI


Jalilian:2015:MPS


Titman:2015:TPE


Willis:2015:EDF


Beliveau:2015:AUA


Borchers:2015:DOL


Schofield:2015:CLM

REFERENCES


REFERENCES

Carriere:2015:BRA


Kim:2015:BRG


Park:2015:BRBa


Park:2015:BRBBb


Anonymous:2016:IITa


Anonymous:2016:IIMa


Anonymous:2016:IIa


Anonymous:2016:IIeA

REFERENCES


[965] Xiaoyan Sun, Limin Peng, Amita Manatunga, and Michele Marcus. Quantile regression analysis of censored longitudinal data with irregu-


REFERENCES


REFERENCES


185

Drovandi:2016:ASB


Wang:2016:EDM


Kong:2016:TEM


Payne:2016:KMT


Rivera:2016:UWC


Casalicchio:2016:RBP


Huang:2016:HTM

REFERENCES


REFERENCES


Zhao:2016:UBS


Huang:2016:MAS


Ma:2016:BPM


Satagopan:2016:BEB


Chen:2016:BHF


Choo-Wosoba:2016:MRM


King:2016:SMA

REFERENCES


REFERENCES


[1043] Dankmar Böning, Irene Rocchetti, Marco Alf6, and Heinz Holling. A flexible ratio regression approach for zero-truncated capture-recapture


REFERENCES


REFERENCES

Wallace:2016:MAD


Chakraborty:2016:EOS


Li:2016:PEP


Tayob:2016:UEB


Wang:2016:AIA


Krol:2016:JML

REFERENCES


REFERENCES


REFERENCES

Anonymous:2016:IITd

Anonymous:2016:IIMd

Anonymous:2016:IIId

Anonymous:2016:IIEd

Shen:2016:IPM

Schnell:2016:BCS

Payne:2016:RRP

Gabriel:2016:CBT
REFERENCES


REFERENCES

1122, December 2016. CODEN BIOMB6. ISSN 0006-341X (print), 1541-0420 (electronic).


Lloyd-Jones:2016:MTD


Rueda:2016:CPR


Luo:2016:SIV


Wan:2016:CSO


Lee:2016:ECC


Dennis:2016:GAI


McCulloch:2016:BUE

Lee:2016:LNR


Fraser:2016:AMR


Hsu:2016:SST


Zoh:2016:PPC


Potgieter:2016:MRM


Yang:2016:MAF


Shepherd:2016:BRI


Gelfond:2016:BRG


Laake:2016:BRB


Stangl:2016:BRG


Anonymous:2016:A


Anonymous:2017:IITa


Anonymous:2017:IIMa


Anonymous:2017:IIIa

REFERENCES

Anonymous:2017:IIEa


Anonymous:2017:RE


Chi:2017:CB


Yang:2017:TOR


Chang:2017:CLC


Fu:2017:SMD


Park:2017:REM


Cooley:2017:BRD


Finkelstein:2017:BRC


Hothorn:2017:BRB


Belin:2017:BRR


Kauermann:2017:BRA


Anonymous:2017:IITb


Anonymous:2017:IIMb


Anonymous:2017:IIIb

REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[1212] Yuan Zhang, Shili Lin, and Swati Biswas. Detecting rare and common haplotype-environment interaction under uncertainty of gene-


REFERENCES


REFERENCES


REFERENCES


REFERENCES


[1262] Jingjing Yang, Dennis D. Cox, Jong Soo Lee, Peng Ren, and Taeryon Choi. Efficient Bayesian hierarchical functional data analysis with basis


[1269] Qing Cai, Mei-Cheng Wang, and Kwan Chuen Gary Chan. Joint modeling of longitudinal, recurrent events and failure time data for survivor’s


Nie:2017:ETV


Park:2017:GEM


Agniel:2017:AMD


Shi:2017:MPM


deCarvalho:2017:NBC


Ghosh:2017:DMM


Chang:2017:SBH

REFERENCES


REFERENCES


REFERENCES


[Xulei Liu, 2017, Book Review](#)

[Anonymous, 2017, Acknowledgements](#)

[Anonymous, 2018, Issue Information](#)

[Brandon Koch, David M. Vock, and Julian Wolfson, 2018, Covariate Selection](#)

[Emily L. Butler, Eric B. Laber, Sonia M. Davis, and Michael R. Kosorok, 2018, Incorporating Patient Preferences](#)
REFERENCES

Huang:2018:EPS


Tamhane:2018:GPT


Villar:2018:CAR


Zhou:2018:ODS


Liu:2018:SPM


Sun:2018:SFO


Dai:2018:LAP


REFERENCES


Matsui:2018:MSG


Mauguen:2018:EPC


Wu:2018:PES


Montagna:2018:SBL


Hedeker:2018:NMR


Warton:2018:WYC

REFERENCES


REFERENCES

Haggstrom:2018:RDD


Efford:2018:SCM


Hong:2018:IPD


Zhang:2018:JPT


Zhou:2018:EST


Sohn:2018:GBL


Gauran:2018:ENE


Mertens:2018:ADR

[1369] Karl Mertens and Stijn Vansteelandt. Augmented and doubly robust *G*-estimation of causal effects under a structural nested failure time model.

Mandel:2018:IPW


Zhu:2018:SLB


McIntyre:2018:MCM


Lou:2018:OTA


Qiu:2018:EEL


Schmidt:2018:ADO


Huang:2018:EDM

REFERENCES


[1390] Anup Amatya and Dulal K. Bhaumik. Sample size determination for multilevel hierarchical designs using generalized linear mixed models. *Bio-
REFERENCES


[1397] Jiawei Bai, Yifei Sun, Jennifer A. Schrack, Ciprian M. Crainiceanu, and Mei-Cheng Wang. A two-stage model for wearable device data. Bio-


REFERENCES


[1418] Qunhua Li and Feipeng Zhang. A regression framework for assessing covariate effects on the reproducibility of high-throughput experiments.


[1425] Stavros Nikolakopoulos, Ingeborg van der Tweel, and Kit C. B. Roes. Dynamic borrowing through empirical power priors that control type i

Chen:2018:GSI


Zhang:2018:CLN


Yang:2018:MSD


Liu:2018:ARE


Chen:2018:EIT


Shen:2018:MSS

REFERENCES


1013, September 2018. CODEN BIOMB6. ISSN 0006-341X (print), 1541-0420 (electronic).


[1445] Neal O. Jeffries, James F. Troendle, and Nancy L. Geller. Detecting treatment differences in group sequential longitudinal studies with co-


REFERENCES


REFERENCES


REFERENCES


Griffin:2018:DMP


Safo:2018:SGE


Chang:2018:SBV


Estes:2018:TDP


Haneuse:2018:DTD


Goetghebeur:2018:DTD


REFERENCES


Anonymous:2019:IITa


Anonymous:2019:IIMa


Anonymous:2019:IIEa


Lu:2019:ABR


Gregory:2019:AEN


Zhou:2019:RMA


Liu:2019:JSE


Wrobel:2019:REF

REFERENCES

258


REFERENCES


REFERENCES


REFERENCES


Anonymous:2019:IIEb

Anonymous:2019:RE

Chapple:2019:HPI

Leifer:2019:DHP

Zhou:2019:DHP

Chapple:2019:RHP

Li:2019:MCB
REFERENCES


REFERENCES


[1588] Issa J. Dahabreh, Sarah E. Robertson, Eric J. Tchetgen, Elizabeth A. Stuart, and Miguel A. Hernán. Generalizing causal inferences from indi-

**Hu:2019:CCE**


**Hogan:2019:BRC**


**Comulada:2019:BRQ**


**Mahmood:2019:BRB**


**Xu:2019:BRE**


**Patterson:2019:BRH**

REFERENCES


REFERENCES


REFERENCES


REFERENCES


REFERENCES

Gerds:2019:BRA

Tabb:2019:BRB

Kidwell:2019:BRS

Chen:2019:BRS

Anonymous:2019:IITd

Anonymous:2019:IIMd

Anonymous:2019:IIEd
REFERENCES

Sekula:2019:DDE


Gao:2019:IAG


Masotti:2019:PIA


Li:2019:MLD


Zhang:2019:SER


Wang:2019:CRS


Gaynanova:2019:SLI

REFERENCES


REFERENCES


REFERENCES


Anonymous:2019:A


Anonymous:2020:CDR


Anonymous:2021:CEL


Chen:2021:CCA