A Complete Bibliography of Publications in

Biometrika for the decade 2010–2019

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
E-mail: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe/

25 September 2018
Version 1.14

Title word cross-reference

\[\beta \] [Hog18, YX13]. \(C_p \) [BKN17]. \(D \) [YXCD17, ZZ14, BL14]. \(K \) [MSR16]. \(L_1 \) [FL14]. \(p \) [BL14, CCC10, HRD18, LY16, MSBM11, Woo13a]. \(\phi_p \) [WS14]. \(Q \) [LLS14]. \(R \) [WJL17]. \(t \) [FFM14]. \(U \) [Mao18, TQ10]. \(\varphi_p \) [JH11b]. \(Z \) [BCK15].

-statistics [Mao18]. -trace [YXCD17, ZZ14]. -value [BL14, CCC10, MSBM11]. -values [HRD18, LY16, Woo13a].

Acknowledgements [Ano13a, Ano14a, Ano15a]. across [BH18]. active [DKB15, SDK⁹17]. acyclic [SM10, VT12]. Adaptive [Ros15, STG13, YH18],

1
AZ11, CDC13, LL11a, LGF12, MHZ15, MJPK13, PM16, SYZ10, XLWP16].

bagging [SL14]. balanced [ABMW14, BC12, CDH11]. balancing
categorical [PTG15, Van10a]. category [LCFL13]. causal [BKN17, KSS15, KCG10, KP14b, LZZ17, Mao18, RLSR12, SBS16, WZR17, YD18, YS18].

QT10, SLMJ14, CCL12, CLZ10, CT10, HH11b, HQ13, LC13, LZ13, WLZ15, ZML16, ZGL17, ZZL15, ZZC17]. censoring

BB12, DZK18, LC10, SSZ12]. central [YX13]. chain

[DPDK15, GT13, LL14]. chains [DH16, SM13]. Changepoint

classification [MR18]. Characterization [JLC14, WC14]. charts [GL13].

[SCD15, ZZL14]. Cholesky [RLZ10, ZL12]. Cholesky-based

[BB12, DZK18, LC10, SSZ12]. central [YX13]. chain

[DPDK15, GT13, LL14]. chains [DH16, SM13]. Changepoint

classification [MR18]. Characterization [JLC14, WC14]. charts [GL13].
[WWN15, Wan10b, AMR18, HHG13, Pre14]. constant [KPW13, YH18]. constrained [MWZ18]. constraints [CHN+18, Far11, KHS11, Sus13].

Construction [GSDK14, JH11b, XX17, BS11]. contact [QF14].

doubly [BCVG17, LSH12, ZZL+15]. driven [BDK15, BKL15, KO11]. drop [Han16]. drop-out [Han16]. drop-the-losers [WWY10].

dual [SS18]. Dunnett [MJW12]. dynamic [DD14, ZTLD13]. dynamics [SS12, VTM12].

dynamic [DD14]. dynamics [SS12, VTM12].

dynamics [SS12, VTM12].

early [JS12]. edge [MLG18, Mon18, VT12, ZLZ17]. edge-specific [VT12].

Editor [Ano17]. Editorial [Dav13]. effect [BCVG17, DD18, DFKO15, HZSR15, KP14b, SL11, TS14, Van10b, YS18, dLWR11]. Effective [JFH15, YLW15, HFW14]. effects [CZI+13, GMMMV16, HC17, KG13, KHG11, KCG10, Lee18, LLXC17, LG17, NM11, QP10, SSJ10, SZ15, SRH14, Van10b, WW15, WZR17, Wool13b, YD18, ZCC+12, ZL15, ZZZ14].

efficacy [ELZ12, SDK+17]. Efficiency [MZ13a, Han16, LF18b, LZ10, WM11]. Efficient [BDT13, CLZ12a, DPDK15, LSW10, Li11, LC13, MHZ15, Mei10, RZ15, Tan11, TO15, WT14, WLT+15, CS13, KCL13, SIL+16, SC11b, SC12, SZCY16, Tan10, Tan13a, Tan13b, TQ12, ZK12].

eigenvalues [LZW14, LL16]. eigenvectors [LZW14, LL16].

Estimation

[AG13, HW13, HFW14, LYB11, MR14, NM11, TS14, Van10b, WZ10, AHL16, AL13, AMBFL18, BHRG13, BCK15, BD10, BT11, BRW10, CTU10, CLL13, CW15, CQ16, CG11, CD10, Che11, CLZ12a, CWS15, CFBL17, CHF18, CS13, DR17, DI13, Dic14, EC17, FL12, Fry13, GD13, GMMMV16, GLMZ11, HFQ10, HNLR11, HQ11b, HHC11, HQ13, HC17, HD13, KF15, KS13a, KC13, KP14a, KD14, LFF17, LSW10, LZ16, LW18, Li11, LF13, LSL17, LC13, LCFL13, LLX17, LLZ13, LLQ17, LJ15, MSBM11, Mao18, MLG18, NCC15, OR12, PPRS12, PC12, PDS11, Rat13, RZ15, RLL10, RLSR12, SC11a, SL11, STG13, SM10, SRH14, SK18, SC11b, SC12, SZCY16, Tan10, TRR10, TR11, VL14, VSW14, WO11, WSZ12, WWS12, WLT15, WZR17, WWY10, XLV16, YK16, YS18, Yu13, YLQ17, ZML16, ZGL17, ZTLD13]. estimation

[ZZ14, ZCL14, ZM18, ZK12, ZWZF10, ZW14, ZJDP11, dLWR11]. estimator

[BS10, CPS10, DPDK15, HQF12, Lee18, PTK12, Pre14, RV16].

Estimators

[DRS05, DRS12, BDG13, Cam15, CJ11, CKO18, CG12, CV18, HZ11, JHD13, KK12, KCL13, LF18b, LBB16, LT15, MT16, MR18, MCW15, MCW18, Rot12, SK16, STL17, Tan11, Tan13a, Tan13b, VT14, WS10, WO11, ZJDP11].

ethics [AG10a].

evaluation [GKK15]. event [CLZ10, CLZ12b, DSB18, EL12, GKB12, KJW12, LCFL13, NCC15, Oak16, WH14, Yu13, ZC10].
events [CZI13, Rob13, ZC10].

evidence [Ros10].

Ewens [Cra15].

Exact [DEO16, FWCT14, JH11b].

exceedances [ET12].

exchangeability [MR15, MR16a].

exchangeable [GCYS16].

exciting [Cal10].

existing [WSSQ17].

Expandable [SED17].

期待 [VTH14, WC14, ZWZF10].

expectation-maximization [WC14].

expensive [DL15].

experimental [JH11b].

experiments [GSDK14, HT13, JH11b, JGB15, SM15, VMT14].

explicit [LSWZ17].

exploratory [HZSR15].

Exponential

[KS16, DKB10, DKB15, DY10, FW15].

exposure [TR11, Van12].

exposures [Van10a].

expression [CCC10].

Extended

[TW14, TSMW15, WO13a].

extension [LL11b, MRV18, TMJ11].

extractions [She17].

extrapolation [BLC17].

extrema [HM10].

extremal [Hog18].

extreme [BS11, STE17, WT14].

extremes [WT12].

extremum [WDH17].

Factor

[Wan12, BD11, KD14, LT11, She17, SED17, ZL12].

factorial

[TX14, ZLK13].

factorials [MT12].

factorized [MRSR17].

factors

[AZ11, Kon17, LYB11, Ros10, SW18, TX14].

failed [QF14].

failure

[DW11, HNLR11, LLZ13, NCZ16, Pre16, ZC17].

faithful [BKM10].

False

[ED11, SY11, GL13, RZ15, SL11, ZCL18].

falsification

[WRR17a, WRR17b].

families [DKB15, DY10, FW15, KES11].

family

[KJ15].

familywise [HZSR15].

Fast [BCM16].

feature [SH12].

features

[BH18].

fewer [KR14].

field [ZCR10].

fields [AG10b].

filling

[XH11, ZC15].

filter [LW18, MZ13b].

filtering [DKLP12].

filters [FK13].

finding [CE10, DKB15, SDK17].

findings [BH18].

Finite

handle [EC17]. Hastings [STL17]. hazard [TSMW15, VMT14]. hazards
[AH16, WC14]. Hierarchical [SW15]. High
[DG16, Fry13, GWY16, NL13, dFD18, AGL14, AMR18, AMBFL18, BCM16, BMG14, BKM10, CLL18, CYZ17, CDHT18, Dic14, GC17, GvHF11, HX10, HCL17, JLA18, KXYZ16, Kon17, LYB11, LZW14, Li18, MZY12, MZ13b, RZ15, RZ15, RZ15, SHE17, SM10, SLMJ14, Tan13a, Tan13b, TNWL16, TL10, XCL18, XLWP16, ZJUB14, ZPF14]. High-dimensional
[DG16, Fry13, GWY16, NL13, dFD18, AGL14, AMR18, AMBFL18, BCM16, BMG14, BKM10, CLL18, CYZ17, Dic14, GvHF11, HX10, LYB11, Li18, MZ13b, RZ15, RZ15, SM10, SLMJ14, TL10, XCL18, XLWP16, ZPF14]. high-entropy [Tan13a, Tan13b]. high-frequency [CDHT18, Kon17]. high-throughput [DG16, Fry13, GWY16, NL13, dFD18, AGL14, AMR18, AMBFL18, BCM16, BMG14, BKM10, CLL18, CYZ17, Dic14, GvHF11, HX10, LYB11, Li18, MZ13b, RZ15, RZ15, SM10, SLMJ14, TL10, XCL18, XLWP16, ZPF14]. Higher
[AGL14, HM10, Har12, LY16, Ros12]. Hysteretic [GLY15].

[CDH11, CH17, Kim11, KY17, WMC12, YK16]. imputations [LGH+14]. In-sample [HMMN16]. Inadmissibility [BM14, MT14]. incidence [CAW12]. incidental [Lun18]. incomplete [SR17]. Incorporating
[HX10, TS14]. increase [QZL+15]. independence
[FP18, HCL17, KD16, RBN10, SS14, SLMJ14, Wan12, XZ11]. independent
[DKLP12, KR12, SR17]. Indicator [SDW14]. Indirect [MR16b, CR10b]. individual [AG10a, LZ10]. individual-level [LZ10]. individualized
[DSB18, LZ15, ZSL+15]. induced [KP15]. inequality [KHS11]. Inference
[BLC+17, Van12, ZJHB14, BKN17, BCK15, BCV17, BD15, CC18, CNN+17, CR10b, DD16, DKY12, DY10, DZ12, FRS16, KSS15, KZ13, KGV17a, KGV17b, KD16, KP14b, LC10, MH11, MT11, NCC+15, Ogg17, PADS14, PW11, QF14, RLSR12, SBS16, SIL+16, SW15, TO15, WT14, Wad15, WWS12, WH14, WKY18, WC14, XQ15, YD18, ZZR10, ZW14, dFD18]. Inferring [VTM12]. infinite [BD11, CC15]. infinite-dimensional [CC15]. influence
[ZIT11]. Information
[BKL15, Jan14, SS12, CC18, DOXV11, FL12, HWF15, KHS11, MZ15, OAB16, PDS11, QZL+15, WW15, XQ15, YTY+16, BKL18]. Information-theoretic [BKL15, BKL18]. informative

microclustering [JLD18]. minimal [GCAIM12]. minimax [He17].
naive [Ogd17]. natural [TS14]. Nearly [MST14, GSDK14].
network [YXCD17, ZLZ17]. networked [ZS16].
networks [MRV18, XCC15, ZCL14]. noise [CYZ17]. noisy
[CDHT18]. Non [DBP17, FS11, GL13, CV18, DL10, PS13].
nondifferentially [OV13]. none [ELZ12]. non-ignorable
[Cha13a, FS16, QF14, SW16, ZM18]. Nonlinear
[LFH17, BDW11, GMD15, Jia14, MWY13]. Nonnested [McE16].
Nonparametric [AHL16, BD10, CD13, CAW12, CQ16, DH15, DD14,
ELZ12, HQC11, KI16, LCFL13, MH11, PPRS12, SSW15, VL14,
ZRR10, ZW14, BCVG17, DHW14, DL10, PS13, ZM18].
nonlinear [CDC13]. normal [CZ16]. normality [Li18, WO11].
normalized [FLP12, Zha11]. normalizing [KPV13]. note
[Che15, CW10, KY17, NT15, Pal09, RLL10, YK16]. Notice [Ros16].
novel [PDV11, WSSQ17]. nuclear [CDC13]. nugget [KG13]. Nuisance [Cha13a]. number
[BOW13, CWA12, EZ11, JLA18, Kon17, Mei10, RZ15, SCD15,
Wan10b, YX13, ZH14].

Oakes [Pre16]. Objective [DKY12, DY10, FFM14]. observation
[BKL15, BKL18, MH11]. observation-driven [BKL15, BKL18].
observational [HZSR15, Ros10, Ros12, WC18, YD18]. observations
[CE10, Far10, KP14a]. observed [BDK15, CSDK10, HFW15, PS11, Rat13].
ocurrence [Wad15]. odds [Che15, TRR10, TR11]. one
[ABMW14, JN17, Ros12]. onwards [TIt13a, TIt13b]. operating [DZ13].
operator [LLZ16]. operators [KP12, PS16, PADS14]. Optimal
[AMR12, BDW11, DMY17, DKBB10, DGMW18, DFKO15, MT12, Rat13,
SDK17, SC15, YTY16, ZM18, AG10a, CSK13, CJ11, DSB18, JH11b,
KD15, SS12, WS14, ZTL13]. Optimality
[LLZA12, BKL15, BKL18, KK12, SM15, WM11]. Optimizing [RV11].
Optimum [Atk15]. Order
[HFW15, DL10, HWTH12, KP12, Lun16, LL16, RF10]. order-two
ordered [PTK12]. ordering [SG10, YLQ17]. ordinal
[LS12, OV13, Van10a]. orthogonal
[AJ13, GSDK14, HQ11a, HT13, MST14, ST17, WYX18].
Ordered [PTK12]. ordering [SG10, YLQ17]. ordinal
[LS12, OV13, Van10a]. orthogonal
[AJ13, GSDK14, HQ11a, HT13, MST14, ST17, WYX18].
Orthogonalization [GCAIM12]. other [BCK15]. outcome
[DV16, DVR17, ELZ12, LJ15, NCZ16, Van10b, YTY+16]. outcomes
[DSB18, LM11, LS12, SDK+17, WZR17]. Outlier
[RZKY15, CCC10, RCZ17]. overadjustment [HLL10]. overdispersed
[CZI+13]. overdispersion [Fle12]. overfitting [HKM18].

pairs [Cam15]. pairwise [CM16, MY16, SFG16]. paradox [SHM16].
Parameter [CM10, Cha13a, Che11, KJ15, KS13a, PDS11, WDS13].
parameterization [MT12, RBN10, SDW14]. parameters
[AR10, FR516, HM10, Lun18, WH14]. Parametric
[Kim11, CTU+10, CK12, GMMMV16, ZW11]. Pareto [TO15]. Partial
[CIHF18, SKMdG16, SC11b, LLZ16, MWZ18]. Partially
[KXYZ16, BDK15, BDW11, BKM10, CSDF10, LT11, QP10, Rat13]. Particle
[NSF16, PDS11, FK13, LW18, SL17]. Partition [KHL17].
Partition-based [KHL17]. pathways [DPW15]. pattern [Far10]. patterns
[SW15]. PC [BKM10]. PC-simple [BKM10]. peaks [dFD18].
peaks-over-threshold [dFD18]. Pearson [Ald13, Sti12]. penalization
[CDC13]. Penalized [BC12, KC13, LT12a, SM10, TL10, ZJC10, CKO18,
KO11, KK12, WS10, YXCD17, ZZ14]. perfect [SM13]. periodic [VL14].
periodicities [WC10]. permanental [YMM12]. Permuting [TX14].
personal [Cox16]. perspective [DD18, KXX18]. phase [FMPP17, LSW10].
phylogenetic [NTWY17]. piling [AM10]. pioneers [Cox16]. Pitman
[CLNP17, Cra15]. pivotal [BCW11]. planar [BS10, BD10]. plug [NT15].
plug-in [NT15]. point [BCRW14, DWG14, GS10, MSR16, ZX15]. points
[FHV10]. Pointwise [PTK12]. Poisson
[BS10, KF11, MSR16, Rat13, Wan10a]. Poisson-compound [Wan10a].
Polya [TM11]. polygenic [SAL+17]. polynomial [DCGO18, WS14].
population [AL13, BHKG13, CG12, LLQ17, MW18, OAB16]. populations
[FMPP18]. Positive [Rot12]. positives [RZ15]. post
[BCK15, CC18, HKM18]. post-selection [BCK15, CC18, HKM18].
Posterior [ADL+13, VTH14, LSD17]. potential [KP14a]. power
[AMR12, CS13, HW17, KC13, QZL+15, XCL11]. Practical [SM13].
precision [AGL14, AMBFL18, CLLX13, Cox15, MLG18, MR18, ZZ14].
prediction [KS13a, MK15, PC12, YTY+16]. Predictive
[CLZ12b, BM14, FHV10, MT11]. predictor [WS14, YZPZ13]. predictors
[AMW16, DL10, FHV10]. presence
[AZ11, Atk15, KG13, Lin17, LLZA12, LHD16, TWB18, VL14]. prevalence
[QZL+15]. prevalent [CAW12]. Principal
[NTWY17, SWZL17, HWTH12, JDM12, JLA18, LZW14, Sch14]. principle
[BS11, Pal09, Pal10]. prior [DFKO15, GD13, PX10, KJW12]. priors
[ADL+13, BDPW16, BCM16, FL12, GB12, MK15]. probabilistic
[Pal09, Pal10]. probabilities [AL13, Far11, HX10, MWZ18, ZLZ17].
Probability [HAW10, LHBD16, MLS13, RLL10, SD11, Sti12].
procedure [LSWZ17, LCOT13, SFG16]. procedures [CH17, DKLP12, GTXR14, Su18]. process [BDT13, BS10, CLNP17, DWG14, HD13, KRS18, KJW12, LTF13, LD14, TMJ11, YMM12]. processes [BCRW14, CD13, CD10, CKR17, DEMR13, DEO16, GMS11, GPS15, GS10, JH11a, MSR16, NCC+15, SIL+16, TO15, WT14, WH14, Zha11]. products [KPW13]. profile [HQF12, LLZ13]. profiled [Wan12].
Propensity [KI14, KKP16, Lee18, SW16, YD18]. proper [For12]. Properties [CR10a, CC10, CKO18, FL14, FMRR18, JS12, ZX15]. property [GT18].
Proportional [CCD12, HR12, Cha13a, CIHF18, DI13, DOXV11, LT12b, LT15]. prospective [BD14, Sta10]. protected [TR11]. Protective [SRH14].

Quadratic [WWS12, SDW14, WS14, YM10]. quantification [ZM17].
sparsity

Spatial

Spatially

spatiotemporal

Species

specific

description

spectral

spectral-based

spectrum

spheres

sphericity

spike

Spline

spline

squares

stability

stable

standard

state

statisticians

Statistics

status

Stein

step

strategies

stratification

stratified

streams

Strictly

Strong

structural

structure

Structuring

Student

Students

subject

subject-specific

subasymptotic

subpopulations

subset

Sudoku

Sudoku-based

Sufficient

sum

summary

supervised

Sure

surrogates

surveys

Survival

switching

symmetric

symmetries
[MLG18]. symmetry [BD14]. Systematic [ZBDPJ10, And16].

systematic-scan [And16].

temperatures [Ste17]. temporal [KMM11]. tensors [HWTH12]. terminal [ZC10]. test [BL14, BMG14, CC15, CL10, CHN+18, DD18, GMMMV16, GTXR14, HHG13, Hog18, JN17, MJW12, Sch13, SG10, Woo13b, WX11, XLWP16, YL16, ZLL18].

tested [PJ16]. testimation [AGPS10]. Testing [CYZ17, CKR17, FP18, GvHF11, LL11b, Ros12, SS14, TBW18, XCC15, ZH14, ZW11, AGL14, CSK13, CW15, DKL12, DHW14, DH15, DKFO15, GMD15, JS12, KES11, LLZA12, MJPK13, PS16, SSW15, SYZ10, WWN15, WMGK14, XCL18, ZW14].

Tests [CO14, Sch14, AMR12, CLL18, CR10b, DLS15, DW11, HM10, HCL17, Har12, LS13, Sus13, WC10, ZPFW14].

theoretical [BK15, BKL18].

theorem [FWCT14, YX13, YWS15].

three-dimensional [PW11, Sti12, Van10a]. three-dimensional [PW11].

time-dependent [HNLR11, SSZ12]. time-to-event [DSB18, ELZ12, Yu13].

time-varying [CZI+13]. times [CLZ10, CLZ12b, HNLR11, MH11, Wad15].

token [Hid14].

transformation [CT10, KP15, LLXC17, LZ13, SZ15, ZML16]. transformation-induced [KP15].

Transformed [WGZX14, Hun12].

treatment [BCVG17, CI1+13, CH17, DSB18, DD18, ELZ12, HC17, L15, Lee18, L15, MJW12, RV11, ZC1+12, ZTLD13, ZZL+15, dLWR11].

treatments [Atk15].

Tree [LZ15, SZAS16, TMJ11]. Tree-based [LZ15]. trees [GT13, NTWY17].

trend [SG10, VL14]. trends [ZW11].

trial [KL15].

trials [Ag10a, Az11, ELZ12, LM11, Oak16, SDK+17, SK18].

truncated [HGK13, WZ17]. truncation [Cha13a].

twice [Ros12]. Two [CL18, DKLP12, LS13, ABMW14, AW10, Atk15, AMR12, BMG14, BI18, CFB17, EPS16, FMPP17, HWTH12, Hun12, KC16, KR12, LT11, LM11, Li18, MT12, SCD15, XLWP16, YLQ17, ZLK13, ZXL17].

two-dimensional [AW10, EPS16]. two-factor [LT11]. two-level [MT12, SCD15, ZLK13].

two-phase [FMPP17].

Two-sample [CL18, LS13, AMR12, BMG14, Li18, XLWP16, YLQ17].

Two-stage [DKLP12, CFB17, Hun12, LM11].

type [CC15, GvHF11, GTXR14, HM12, Hid14, KHS11, LT15].

type-token

without [Cha13b, SZAS16].

Yor [CLNP17].

References

An:2014:HTB

Abramovich:2010:BTA

Alexandrovich:2016:NIM

Arnold:2013:SOA

Aronow:2013:IEP

Aldrich:2013:KPB

Ahn:2010:MDP

REFERENCES

Anonymous:2013:CV

Anonymous:2014:A

Anonymous:2014:CV

Anonymous:2015:A

Anonymous:2015:CV

Anonymous:2017:EB

Agresti:2010:PSC

REFERENCES

REFERENCES

REFERENCES

[Biedermann:2011:OD]

[Bogomolov:2018:ARF]

[Beaumont:2013:UAR]

[Broda:2016:DR]

[Blasques:2015:ITO]

[Blasques:2018:ACI]
REFERENCES

REFERENCES

Bien:2011:SEC

Binkiewicz:2017:CAS

Cai:2010:FQS

Camponovo:2015:VPB

Carone:2012:NIE

Chen:2010:SIC

REFERENCES

REFERENCES

REFERENCES

[CLL18] Yuanpei Cao, Wei Lin, and Hongzhe Li. Two-sample tests of high-dimensional means for compositional data. Biometrika, 105

REFERENCES

[CPB17] F. Cuevas, E. Porcu, and M. Bevilacqua. Contours and dimple for the Gneiting class of space–time correlation func-
REFERENCES

Carvalho:2010:HES

Chen:2014:LHD

Chan:2016:NML

Chopin:2010:PNS

Czellar:2010:ART

Crane:2015:GEP

REFERENCES

spatial-covariance-models-a.

weird-resampling-for-complex-survival.

K. De Brabanter, F. Cao, I. Gijbels, and J. Opsomer. Local polynomial regression with correlated errors in random design and unknown correlation structure. *Biometrika*, 105(3):
REFERENCES

REFERENCES

Dobriban:2015:OMT

Dette:2018:ODD

Delaigle:2015:NMG

Delaigle:2016:AFF

Delaigle:2012:CCC

Delaigle:2014:NAN
A. Delaigle, P. Hall, and J. R. Wishart. New approaches to nonparametric and semiparametric regression for univariate and
REFERENCES

Davidov:2013:CLT

Dicker:2014:VEH

Dette:2015:DDF

Dette:2010:ODE

Dai:2012:TST

DiCiccio:2012:OBC

Thomas J. DiCiccio, Todd A. Kuffner, and G. Alastair Young. Objective Bayes, conditional inference and the signed root likeli-

I. Díaz, O. Savenkov, and K. Ballman. Targeted learning ensembles for optimal individualized treatment rules with time-

Duan:2013:CQR

Dicker:2016:HDC

Diao:2018:SRA

Eck:2017:WEE

Efron:2016:EBD

Elashoff:2012:NIA

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Garthwaite:2012:OVM

George:2016:EMD

Gaskins:2013:NPS

Gervini:2015:WFR

Greven:2010:BMC

Gandy:2010:RAM

Ghosh:2015:BEB

M. Ghosh, T. Kubokawa, and Y. Kawakubo. Benchmarked empirical Bayes methods in multiplicative area-level models with

Jelle J. Goeman, Hans C. van Houwelingen, and Livio Finos. Testing against a high-dimensional alternative in the generalized

REFERENCES

REFERENCES

Hall:2012:CTD

Hiabu:2016:SFL

Hu:2011:TDC

Hoga:2018:SBT

Hristache:2017:CMM

He:2011:NOA

REFERENCES

REFERENCES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>
| [HWF15] | Order selection in finite mixture models: complete or observed likeli-

Hung:2012:MPC

Hall:2010:IPP

HXX13

Hall:2011:DEC

Jansen:2014:ICV

REFERENCES

REFERENCES

REFERENCES

Kosmidis:2011:MLB

Kanamori:2015:REU

Kleiber:2013:SVC

Kosmidis:2017:CIA

Kosmidis:2017:IAL
REFERENCES

REFERENCES

[KN16] Shengchun Kong and Bin Nan. Semiparametric approach to regression with a covariate subject to a detection limit. *Biometrika*,
Kauermann:2011:DDS

Kong:2017:NCF

Kraus:2012:DOR

Kraus:2014:FEE

Kuroki:2014:MBE

Kato:2015:MTI

REFERENCES

REFERENCES

June 2013. CODEN BIOKAX. ISSN 0006-3444 (print), 1464-3510 (electronic). URL http://biomet.oxfordjournals.org/content/100/2/385.

Kharroubi:2016:ETB

Kennedy:2015:SCI

Kong:2016:PFL

Kong:2018:BVF

Kim:2017:NMI

Kim:2013:UIS

REFERENCES

March 2013. CODEN BIOKAX. ISSN 0006-3444 (print), 1464-3510 (electronic). URL http://biomet.oxfordjournals.org/content/100/1/203.

Lu:2012:RAL

Liu:2014:SDI

Li:2015:HA

Liu:2016:IPW

Levine:2011:MSL

Li:2011:ESR

Yehua Li. Efficient semiparametric regression for longitudinal data with nonparametric covariance estimation. Biometrika, 98

REFERENCES

Lee:2014:VBG

Luo:2016:CEV

Liu:2017:MEL

Laber:2014:IMB

Lin:2017:RRE
REFERENCES

Liu:2013:KSP

Lee:2016:APC

Liu:2012:OGT

Li:2011:SSF

Li:2012:NRO

Lumley:2013:TSR

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Mei:2010:ESS

Maathuis:2011:NIC

Ma:2015:SML

Ma:2015:ECS

Magirr:2013:SCI

Magirr:2012:GDT

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Biometrika, 98(3):567–582, September 2011. CODEN BIKAX.

factorials under a baseline parameterization. *Biometrika*, 99(1):
71–84, March 2012. CODEN BIKAX. ISSN 0006-3444 (print),

[MT14] Andrew F. Magyar and David E. Tyler. The asymptotic inad-
missibility of the spatial sign covariance matrix for elliptically
2014. CODEN BIKAX. ISSN 0006-3444 (print), 1464-
content/101/3/673.

bly robust estimators under missingness not at random with a
shadow variable. *Biometrika*, 103(2):475–482, June 2016. CO-
DEN BIKAX. ISSN 0006-3444 (print), 1464-3510 (electronic).

additive models for nonlinear functional regression. *Biometrika*,
97(4):791–805, December 2010. CO-

REFERENCES

Pigoli:2014:DIC

Pal:2009:NCS

Pal:2010:ACC

Peters:2014:IGS

Pfeffermann:2012:EBB

Samia:2011:MLE

Su:2011:PEE

Su:2012:IEE

She:2017:RRR

Singh:2015:OTL

Schott:2013:LRT

Schott:2014:TKE

Skinner:2011:IPW

Schorning:2017:ODA

Sabbaghi:2014:IFA

Srivastava:2017:EFA

Severini:2010:LRS

REFERENCES

REFERENCES

REFERENCES

Song:2014:CRI

Shojai:2010:PLM

Stein:2013:PPS

Stallings:2015:GWO

Shen:2012:LAI

Sadinle:2017:ICI

REFERENCES

REFERENCES

[S Scheike:2010:SRE 108]

[Sun:2017:GRM]

[Staicu:2010:EPR]

[Ste17]

[STG13]

[Sti12]
REFERENCES

REFERENCES

REFERENCES

ISSN 0006-3444 (print), 1464-3510 (electronic). URL http://biomet.oxfordjournals.org/content/100/4/1024.2. See [Tit13b].

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Wang:2015:EEN

Wang:2011:BEW

Wei:2012:MIQ

Wang:2014:SGT

Wang:2011:ANV

Wood:2013:VSC

Wang:2015:EEN

Wang:2011:BEW

Wei:2012:MIQ

Wang:2014:SGT

Wang:2011:ANV

Wood:2013:VSC

REFERENCES

REFERENCES

Yin Xia, T. Tony Cai, and Hongzhe Li. Joint testing and false discovery rate control in high-dimensional multivariate

REFERENCES

Yan:2013:CLT

Yuan:2017:DNA

Yu:2013:DRP

Ziegel:2010:SSE

Zeng:2010:SAR

Zeng:2012:ETE

ZHao:2014:DED

Zhou:2018:SR

Zeng:2017:MLE

Zhan:2014:TEL

Zhao:2011:SNC

Zhu:2015:DMC

REFERENCES

Zh:2011:BIA

Zheng:2014:IMC

Zhang:2010:PBD

Ziegel:2011:VEG

Zhou:2012:EME

Zhang:2012:MAC

Weiping Zhang and Chenlei Leng. A moving average Cholesky factor model in covariance modelling for longitudinal data.
REFERENCES

REFERENCES

Zhao:2018:OPE

Zeng:2016:MLE

Zou:2014:MSB

Zhang:2013:DCA

Zhou:2016:RAN

Zhang:2010:DSC

Zhang:2013:REO

Zhang:2011:TPA

Zhu:2012:ABS

Zhu:2014:NIB

Zhang:2015:VCA

Zhu:2010:SDR

[ZWZF10] Liping Zhu, Tao Wang, Lixing Zhu, and Louis Ferré. Sufficient dimension reduction through discretization-expectation estima-
REFERENCES

Zhao:2015:MAW

Y. Q. Zhao, D. Zeng, E. B. Laber, R. Song, M. Yuan, and M. R. Kosorok. Doubly robust learning for estimating individ-